1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumBruteForceEvaluations, 87 "Number of brute force evaluations needed to " 88 "calculate high-order polynomial exit values"); 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 static cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant derived loop"), 102 cl::init(100)); 103 104 static RegisterPass<ScalarEvolution> 105 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 106 char ScalarEvolution::ID = 0; 107 108 //===----------------------------------------------------------------------===// 109 // SCEV class definitions 110 //===----------------------------------------------------------------------===// 111 112 //===----------------------------------------------------------------------===// 113 // Implementation of the SCEV class. 114 // 115 SCEV::~SCEV() {} 116 void SCEV::dump() const { 117 print(cerr); 118 } 119 120 uint32_t SCEV::getBitWidth() const { 121 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 122 return ITy->getBitWidth(); 123 return 0; 124 } 125 126 bool SCEV::isZero() const { 127 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 128 return SC->getValue()->isZero(); 129 return false; 130 } 131 132 133 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 134 135 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 136 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 137 return false; 138 } 139 140 const Type *SCEVCouldNotCompute::getType() const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return 0; 143 } 144 145 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return false; 148 } 149 150 SCEVHandle SCEVCouldNotCompute:: 151 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 152 const SCEVHandle &Conc, 153 ScalarEvolution &SE) const { 154 return this; 155 } 156 157 void SCEVCouldNotCompute::print(std::ostream &OS) const { 158 OS << "***COULDNOTCOMPUTE***"; 159 } 160 161 bool SCEVCouldNotCompute::classof(const SCEV *S) { 162 return S->getSCEVType() == scCouldNotCompute; 163 } 164 165 166 // SCEVConstants - Only allow the creation of one SCEVConstant for any 167 // particular value. Don't use a SCEVHandle here, or else the object will 168 // never be deleted! 169 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 170 171 172 SCEVConstant::~SCEVConstant() { 173 SCEVConstants->erase(V); 174 } 175 176 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 177 SCEVConstant *&R = (*SCEVConstants)[V]; 178 if (R == 0) R = new SCEVConstant(V); 179 return R; 180 } 181 182 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 183 return getConstant(ConstantInt::get(Val)); 184 } 185 186 const Type *SCEVConstant::getType() const { return V->getType(); } 187 188 void SCEVConstant::print(std::ostream &OS) const { 189 WriteAsOperand(OS, V, false); 190 } 191 192 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 193 // particular input. Don't use a SCEVHandle here, or else the object will 194 // never be deleted! 195 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 196 SCEVTruncateExpr*> > SCEVTruncates; 197 198 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 199 : SCEV(scTruncate), Op(op), Ty(ty) { 200 assert(Op->getType()->isInteger() && Ty->isInteger() && 201 "Cannot truncate non-integer value!"); 202 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 203 && "This is not a truncating conversion!"); 204 } 205 206 SCEVTruncateExpr::~SCEVTruncateExpr() { 207 SCEVTruncates->erase(std::make_pair(Op, Ty)); 208 } 209 210 void SCEVTruncateExpr::print(std::ostream &OS) const { 211 OS << "(truncate " << *Op << " to " << *Ty << ")"; 212 } 213 214 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 215 // particular input. Don't use a SCEVHandle here, or else the object will never 216 // be deleted! 217 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 218 SCEVZeroExtendExpr*> > SCEVZeroExtends; 219 220 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 221 : SCEV(scZeroExtend), Op(op), Ty(ty) { 222 assert(Op->getType()->isInteger() && Ty->isInteger() && 223 "Cannot zero extend non-integer value!"); 224 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 225 && "This is not an extending conversion!"); 226 } 227 228 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 229 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 230 } 231 232 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 233 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 234 } 235 236 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 237 // particular input. Don't use a SCEVHandle here, or else the object will never 238 // be deleted! 239 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 240 SCEVSignExtendExpr*> > SCEVSignExtends; 241 242 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 243 : SCEV(scSignExtend), Op(op), Ty(ty) { 244 assert(Op->getType()->isInteger() && Ty->isInteger() && 245 "Cannot sign extend non-integer value!"); 246 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 247 && "This is not an extending conversion!"); 248 } 249 250 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 251 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 252 } 253 254 void SCEVSignExtendExpr::print(std::ostream &OS) const { 255 OS << "(signextend " << *Op << " to " << *Ty << ")"; 256 } 257 258 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 259 // particular input. Don't use a SCEVHandle here, or else the object will never 260 // be deleted! 261 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 262 SCEVCommutativeExpr*> > SCEVCommExprs; 263 264 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 265 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 266 std::vector<SCEV*>(Operands.begin(), 267 Operands.end()))); 268 } 269 270 void SCEVCommutativeExpr::print(std::ostream &OS) const { 271 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 272 const char *OpStr = getOperationStr(); 273 OS << "(" << *Operands[0]; 274 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 275 OS << OpStr << *Operands[i]; 276 OS << ")"; 277 } 278 279 SCEVHandle SCEVCommutativeExpr:: 280 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 281 const SCEVHandle &Conc, 282 ScalarEvolution &SE) const { 283 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 284 SCEVHandle H = 285 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 286 if (H != getOperand(i)) { 287 std::vector<SCEVHandle> NewOps; 288 NewOps.reserve(getNumOperands()); 289 for (unsigned j = 0; j != i; ++j) 290 NewOps.push_back(getOperand(j)); 291 NewOps.push_back(H); 292 for (++i; i != e; ++i) 293 NewOps.push_back(getOperand(i)-> 294 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 295 296 if (isa<SCEVAddExpr>(this)) 297 return SE.getAddExpr(NewOps); 298 else if (isa<SCEVMulExpr>(this)) 299 return SE.getMulExpr(NewOps); 300 else if (isa<SCEVSMaxExpr>(this)) 301 return SE.getSMaxExpr(NewOps); 302 else if (isa<SCEVUMaxExpr>(this)) 303 return SE.getUMaxExpr(NewOps); 304 else 305 assert(0 && "Unknown commutative expr!"); 306 } 307 } 308 return this; 309 } 310 311 312 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 313 // input. Don't use a SCEVHandle here, or else the object will never be 314 // deleted! 315 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 316 SCEVUDivExpr*> > SCEVUDivs; 317 318 SCEVUDivExpr::~SCEVUDivExpr() { 319 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 320 } 321 322 void SCEVUDivExpr::print(std::ostream &OS) const { 323 OS << "(" << *LHS << " /u " << *RHS << ")"; 324 } 325 326 const Type *SCEVUDivExpr::getType() const { 327 return LHS->getType(); 328 } 329 330 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 331 // particular input. Don't use a SCEVHandle here, or else the object will never 332 // be deleted! 333 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 334 SCEVAddRecExpr*> > SCEVAddRecExprs; 335 336 SCEVAddRecExpr::~SCEVAddRecExpr() { 337 SCEVAddRecExprs->erase(std::make_pair(L, 338 std::vector<SCEV*>(Operands.begin(), 339 Operands.end()))); 340 } 341 342 SCEVHandle SCEVAddRecExpr:: 343 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 344 const SCEVHandle &Conc, 345 ScalarEvolution &SE) const { 346 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 347 SCEVHandle H = 348 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 349 if (H != getOperand(i)) { 350 std::vector<SCEVHandle> NewOps; 351 NewOps.reserve(getNumOperands()); 352 for (unsigned j = 0; j != i; ++j) 353 NewOps.push_back(getOperand(j)); 354 NewOps.push_back(H); 355 for (++i; i != e; ++i) 356 NewOps.push_back(getOperand(i)-> 357 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 358 359 return SE.getAddRecExpr(NewOps, L); 360 } 361 } 362 return this; 363 } 364 365 366 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 367 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 368 // contain L and if the start is invariant. 369 return !QueryLoop->contains(L->getHeader()) && 370 getOperand(0)->isLoopInvariant(QueryLoop); 371 } 372 373 374 void SCEVAddRecExpr::print(std::ostream &OS) const { 375 OS << "{" << *Operands[0]; 376 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 377 OS << ",+," << *Operands[i]; 378 OS << "}<" << L->getHeader()->getName() + ">"; 379 } 380 381 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 382 // value. Don't use a SCEVHandle here, or else the object will never be 383 // deleted! 384 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 385 386 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 387 388 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 389 // All non-instruction values are loop invariant. All instructions are loop 390 // invariant if they are not contained in the specified loop. 391 if (Instruction *I = dyn_cast<Instruction>(V)) 392 return !L->contains(I->getParent()); 393 return true; 394 } 395 396 const Type *SCEVUnknown::getType() const { 397 return V->getType(); 398 } 399 400 void SCEVUnknown::print(std::ostream &OS) const { 401 WriteAsOperand(OS, V, false); 402 } 403 404 //===----------------------------------------------------------------------===// 405 // SCEV Utilities 406 //===----------------------------------------------------------------------===// 407 408 namespace { 409 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 410 /// than the complexity of the RHS. This comparator is used to canonicalize 411 /// expressions. 412 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 413 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 414 return LHS->getSCEVType() < RHS->getSCEVType(); 415 } 416 }; 417 } 418 419 /// GroupByComplexity - Given a list of SCEV objects, order them by their 420 /// complexity, and group objects of the same complexity together by value. 421 /// When this routine is finished, we know that any duplicates in the vector are 422 /// consecutive and that complexity is monotonically increasing. 423 /// 424 /// Note that we go take special precautions to ensure that we get determinstic 425 /// results from this routine. In other words, we don't want the results of 426 /// this to depend on where the addresses of various SCEV objects happened to 427 /// land in memory. 428 /// 429 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 430 if (Ops.size() < 2) return; // Noop 431 if (Ops.size() == 2) { 432 // This is the common case, which also happens to be trivially simple. 433 // Special case it. 434 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 435 std::swap(Ops[0], Ops[1]); 436 return; 437 } 438 439 // Do the rough sort by complexity. 440 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 441 442 // Now that we are sorted by complexity, group elements of the same 443 // complexity. Note that this is, at worst, N^2, but the vector is likely to 444 // be extremely short in practice. Note that we take this approach because we 445 // do not want to depend on the addresses of the objects we are grouping. 446 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 447 SCEV *S = Ops[i]; 448 unsigned Complexity = S->getSCEVType(); 449 450 // If there are any objects of the same complexity and same value as this 451 // one, group them. 452 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 453 if (Ops[j] == S) { // Found a duplicate. 454 // Move it to immediately after i'th element. 455 std::swap(Ops[i+1], Ops[j]); 456 ++i; // no need to rescan it. 457 if (i == e-2) return; // Done! 458 } 459 } 460 } 461 } 462 463 464 465 //===----------------------------------------------------------------------===// 466 // Simple SCEV method implementations 467 //===----------------------------------------------------------------------===// 468 469 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 470 /// specified signed integer value and return a SCEV for the constant. 471 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 472 Constant *C; 473 if (Val == 0) 474 C = Constant::getNullValue(Ty); 475 else if (Ty->isFloatingPoint()) 476 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 477 APFloat::IEEEdouble, Val)); 478 else 479 C = ConstantInt::get(Ty, Val); 480 return getUnknown(C); 481 } 482 483 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 484 /// 485 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 486 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 487 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 488 489 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType()))); 490 } 491 492 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 493 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 494 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 495 return getUnknown(ConstantExpr::getNot(VC->getValue())); 496 497 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType())); 498 return getMinusSCEV(AllOnes, V); 499 } 500 501 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 502 /// 503 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 504 const SCEVHandle &RHS) { 505 // X - Y --> X + -Y 506 return getAddExpr(LHS, getNegativeSCEV(RHS)); 507 } 508 509 510 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 511 // Assume, K > 0. 512 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 513 ScalarEvolution &SE, 514 const IntegerType* ResultTy) { 515 // Handle the simplest case efficiently. 516 if (K == 1) 517 return SE.getTruncateOrZeroExtend(It, ResultTy); 518 519 // We are using the following formula for BC(It, K): 520 // 521 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 522 // 523 // Suppose, W is the bitwidth of the return value. We must be prepared for 524 // overflow. Hence, we must assure that the result of our computation is 525 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 526 // safe in modular arithmetic. 527 // 528 // However, this code doesn't use exactly that formula; the formula it uses 529 // is something like the following, where T is the number of factors of 2 in 530 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 531 // exponentiation: 532 // 533 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 534 // 535 // This formula is trivially equivalent to the previous formula. However, 536 // this formula can be implemented much more efficiently. The trick is that 537 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 538 // arithmetic. To do exact division in modular arithmetic, all we have 539 // to do is multiply by the inverse. Therefore, this step can be done at 540 // width W. 541 // 542 // The next issue is how to safely do the division by 2^T. The way this 543 // is done is by doing the multiplication step at a width of at least W + T 544 // bits. This way, the bottom W+T bits of the product are accurate. Then, 545 // when we perform the division by 2^T (which is equivalent to a right shift 546 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 547 // truncated out after the division by 2^T. 548 // 549 // In comparison to just directly using the first formula, this technique 550 // is much more efficient; using the first formula requires W * K bits, 551 // but this formula less than W + K bits. Also, the first formula requires 552 // a division step, whereas this formula only requires multiplies and shifts. 553 // 554 // It doesn't matter whether the subtraction step is done in the calculation 555 // width or the input iteration count's width; if the subtraction overflows, 556 // the result must be zero anyway. We prefer here to do it in the width of 557 // the induction variable because it helps a lot for certain cases; CodeGen 558 // isn't smart enough to ignore the overflow, which leads to much less 559 // efficient code if the width of the subtraction is wider than the native 560 // register width. 561 // 562 // (It's possible to not widen at all by pulling out factors of 2 before 563 // the multiplication; for example, K=2 can be calculated as 564 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 565 // extra arithmetic, so it's not an obvious win, and it gets 566 // much more complicated for K > 3.) 567 568 // Protection from insane SCEVs; this bound is conservative, 569 // but it probably doesn't matter. 570 if (K > 1000) 571 return new SCEVCouldNotCompute(); 572 573 unsigned W = ResultTy->getBitWidth(); 574 575 // Calculate K! / 2^T and T; we divide out the factors of two before 576 // multiplying for calculating K! / 2^T to avoid overflow. 577 // Other overflow doesn't matter because we only care about the bottom 578 // W bits of the result. 579 APInt OddFactorial(W, 1); 580 unsigned T = 1; 581 for (unsigned i = 3; i <= K; ++i) { 582 APInt Mult(W, i); 583 unsigned TwoFactors = Mult.countTrailingZeros(); 584 T += TwoFactors; 585 Mult = Mult.lshr(TwoFactors); 586 OddFactorial *= Mult; 587 } 588 589 // We need at least W + T bits for the multiplication step 590 // FIXME: A temporary hack; we round up the bitwidths 591 // to the nearest power of 2 to be nice to the code generator. 592 unsigned CalculationBits = 1U << Log2_32_Ceil(W + T); 593 // FIXME: Temporary hack to avoid generating integers that are too wide. 594 // Although, it's not completely clear how to determine how much 595 // widening is safe; for example, on X86, we can't really widen 596 // beyond 64 because we need to be able to do multiplication 597 // that's CalculationBits wide, but on X86-64, we can safely widen up to 598 // 128 bits. 599 if (CalculationBits > 64) 600 return new SCEVCouldNotCompute(); 601 602 // Calcuate 2^T, at width T+W. 603 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 604 605 // Calculate the multiplicative inverse of K! / 2^T; 606 // this multiplication factor will perform the exact division by 607 // K! / 2^T. 608 APInt Mod = APInt::getSignedMinValue(W+1); 609 APInt MultiplyFactor = OddFactorial.zext(W+1); 610 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 611 MultiplyFactor = MultiplyFactor.trunc(W); 612 613 // Calculate the product, at width T+W 614 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 615 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 616 for (unsigned i = 1; i != K; ++i) { 617 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 618 Dividend = SE.getMulExpr(Dividend, 619 SE.getTruncateOrZeroExtend(S, CalculationTy)); 620 } 621 622 // Divide by 2^T 623 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 624 625 // Truncate the result, and divide by K! / 2^T. 626 627 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 628 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 629 } 630 631 /// evaluateAtIteration - Return the value of this chain of recurrences at 632 /// the specified iteration number. We can evaluate this recurrence by 633 /// multiplying each element in the chain by the binomial coefficient 634 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 635 /// 636 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 637 /// 638 /// where BC(It, k) stands for binomial coefficient. 639 /// 640 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 641 ScalarEvolution &SE) const { 642 SCEVHandle Result = getStart(); 643 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 644 // The computation is correct in the face of overflow provided that the 645 // multiplication is performed _after_ the evaluation of the binomial 646 // coefficient. 647 SCEVHandle Val = 648 SE.getMulExpr(getOperand(i), 649 BinomialCoefficient(It, i, SE, 650 cast<IntegerType>(getType()))); 651 Result = SE.getAddExpr(Result, Val); 652 } 653 return Result; 654 } 655 656 //===----------------------------------------------------------------------===// 657 // SCEV Expression folder implementations 658 //===----------------------------------------------------------------------===// 659 660 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 661 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 662 return getUnknown( 663 ConstantExpr::getTrunc(SC->getValue(), Ty)); 664 665 // If the input value is a chrec scev made out of constants, truncate 666 // all of the constants. 667 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 668 std::vector<SCEVHandle> Operands; 669 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 670 // FIXME: This should allow truncation of other expression types! 671 if (isa<SCEVConstant>(AddRec->getOperand(i))) 672 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 673 else 674 break; 675 if (Operands.size() == AddRec->getNumOperands()) 676 return getAddRecExpr(Operands, AddRec->getLoop()); 677 } 678 679 if (isa<SCEVCouldNotCompute>(Op)) 680 return new SCEVCouldNotCompute(); 681 682 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 683 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 684 return Result; 685 } 686 687 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 688 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 689 return getUnknown( 690 ConstantExpr::getZExt(SC->getValue(), Ty)); 691 692 // FIXME: If the input value is a chrec scev, and we can prove that the value 693 // did not overflow the old, smaller, value, we can zero extend all of the 694 // operands (often constants). This would allow analysis of something like 695 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 696 697 if (isa<SCEVCouldNotCompute>(Op)) 698 return new SCEVCouldNotCompute(); 699 700 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 701 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 702 return Result; 703 } 704 705 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 706 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 707 return getUnknown( 708 ConstantExpr::getSExt(SC->getValue(), Ty)); 709 710 // FIXME: If the input value is a chrec scev, and we can prove that the value 711 // did not overflow the old, smaller, value, we can sign extend all of the 712 // operands (often constants). This would allow analysis of something like 713 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 714 715 if (isa<SCEVCouldNotCompute>(Op)) 716 return new SCEVCouldNotCompute(); 717 718 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 719 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 720 return Result; 721 } 722 723 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 724 /// of the input value to the specified type. If the type must be 725 /// extended, it is zero extended. 726 SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 727 const Type *Ty) { 728 const Type *SrcTy = V->getType(); 729 assert(SrcTy->isInteger() && Ty->isInteger() && 730 "Cannot truncate or zero extend with non-integer arguments!"); 731 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 732 return V; // No conversion 733 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 734 return getTruncateExpr(V, Ty); 735 return getZeroExtendExpr(V, Ty); 736 } 737 738 // get - Get a canonical add expression, or something simpler if possible. 739 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 740 assert(!Ops.empty() && "Cannot get empty add!"); 741 if (Ops.size() == 1) return Ops[0]; 742 743 // Sort by complexity, this groups all similar expression types together. 744 GroupByComplexity(Ops); 745 746 // Could not compute plus anything equals could not compute. 747 if (isa<SCEVCouldNotCompute>(Ops.back())) 748 return new SCEVCouldNotCompute(); 749 750 // If there are any constants, fold them together. 751 unsigned Idx = 0; 752 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 753 ++Idx; 754 assert(Idx < Ops.size()); 755 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 756 // We found two constants, fold them together! 757 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 758 RHSC->getValue()->getValue()); 759 Ops[0] = getConstant(Fold); 760 Ops.erase(Ops.begin()+1); // Erase the folded element 761 if (Ops.size() == 1) return Ops[0]; 762 LHSC = cast<SCEVConstant>(Ops[0]); 763 } 764 765 // If we are left with a constant zero being added, strip it off. 766 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 767 Ops.erase(Ops.begin()); 768 --Idx; 769 } 770 } 771 772 if (Ops.size() == 1) return Ops[0]; 773 774 // Okay, check to see if the same value occurs in the operand list twice. If 775 // so, merge them together into an multiply expression. Since we sorted the 776 // list, these values are required to be adjacent. 777 const Type *Ty = Ops[0]->getType(); 778 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 779 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 780 // Found a match, merge the two values into a multiply, and add any 781 // remaining values to the result. 782 SCEVHandle Two = getIntegerSCEV(2, Ty); 783 SCEVHandle Mul = getMulExpr(Ops[i], Two); 784 if (Ops.size() == 2) 785 return Mul; 786 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 787 Ops.push_back(Mul); 788 return getAddExpr(Ops); 789 } 790 791 // Now we know the first non-constant operand. Skip past any cast SCEVs. 792 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 793 ++Idx; 794 795 // If there are add operands they would be next. 796 if (Idx < Ops.size()) { 797 bool DeletedAdd = false; 798 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 799 // If we have an add, expand the add operands onto the end of the operands 800 // list. 801 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 802 Ops.erase(Ops.begin()+Idx); 803 DeletedAdd = true; 804 } 805 806 // If we deleted at least one add, we added operands to the end of the list, 807 // and they are not necessarily sorted. Recurse to resort and resimplify 808 // any operands we just aquired. 809 if (DeletedAdd) 810 return getAddExpr(Ops); 811 } 812 813 // Skip over the add expression until we get to a multiply. 814 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 815 ++Idx; 816 817 // If we are adding something to a multiply expression, make sure the 818 // something is not already an operand of the multiply. If so, merge it into 819 // the multiply. 820 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 821 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 822 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 823 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 824 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 825 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 826 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 827 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 828 if (Mul->getNumOperands() != 2) { 829 // If the multiply has more than two operands, we must get the 830 // Y*Z term. 831 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 832 MulOps.erase(MulOps.begin()+MulOp); 833 InnerMul = getMulExpr(MulOps); 834 } 835 SCEVHandle One = getIntegerSCEV(1, Ty); 836 SCEVHandle AddOne = getAddExpr(InnerMul, One); 837 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 838 if (Ops.size() == 2) return OuterMul; 839 if (AddOp < Idx) { 840 Ops.erase(Ops.begin()+AddOp); 841 Ops.erase(Ops.begin()+Idx-1); 842 } else { 843 Ops.erase(Ops.begin()+Idx); 844 Ops.erase(Ops.begin()+AddOp-1); 845 } 846 Ops.push_back(OuterMul); 847 return getAddExpr(Ops); 848 } 849 850 // Check this multiply against other multiplies being added together. 851 for (unsigned OtherMulIdx = Idx+1; 852 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 853 ++OtherMulIdx) { 854 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 855 // If MulOp occurs in OtherMul, we can fold the two multiplies 856 // together. 857 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 858 OMulOp != e; ++OMulOp) 859 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 860 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 861 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 862 if (Mul->getNumOperands() != 2) { 863 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 864 MulOps.erase(MulOps.begin()+MulOp); 865 InnerMul1 = getMulExpr(MulOps); 866 } 867 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 868 if (OtherMul->getNumOperands() != 2) { 869 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 870 OtherMul->op_end()); 871 MulOps.erase(MulOps.begin()+OMulOp); 872 InnerMul2 = getMulExpr(MulOps); 873 } 874 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 875 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 876 if (Ops.size() == 2) return OuterMul; 877 Ops.erase(Ops.begin()+Idx); 878 Ops.erase(Ops.begin()+OtherMulIdx-1); 879 Ops.push_back(OuterMul); 880 return getAddExpr(Ops); 881 } 882 } 883 } 884 } 885 886 // If there are any add recurrences in the operands list, see if any other 887 // added values are loop invariant. If so, we can fold them into the 888 // recurrence. 889 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 890 ++Idx; 891 892 // Scan over all recurrences, trying to fold loop invariants into them. 893 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 894 // Scan all of the other operands to this add and add them to the vector if 895 // they are loop invariant w.r.t. the recurrence. 896 std::vector<SCEVHandle> LIOps; 897 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 898 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 899 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 900 LIOps.push_back(Ops[i]); 901 Ops.erase(Ops.begin()+i); 902 --i; --e; 903 } 904 905 // If we found some loop invariants, fold them into the recurrence. 906 if (!LIOps.empty()) { 907 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 908 LIOps.push_back(AddRec->getStart()); 909 910 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 911 AddRecOps[0] = getAddExpr(LIOps); 912 913 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 914 // If all of the other operands were loop invariant, we are done. 915 if (Ops.size() == 1) return NewRec; 916 917 // Otherwise, add the folded AddRec by the non-liv parts. 918 for (unsigned i = 0;; ++i) 919 if (Ops[i] == AddRec) { 920 Ops[i] = NewRec; 921 break; 922 } 923 return getAddExpr(Ops); 924 } 925 926 // Okay, if there weren't any loop invariants to be folded, check to see if 927 // there are multiple AddRec's with the same loop induction variable being 928 // added together. If so, we can fold them. 929 for (unsigned OtherIdx = Idx+1; 930 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 931 if (OtherIdx != Idx) { 932 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 933 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 934 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 935 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 936 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 937 if (i >= NewOps.size()) { 938 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 939 OtherAddRec->op_end()); 940 break; 941 } 942 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 943 } 944 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 945 946 if (Ops.size() == 2) return NewAddRec; 947 948 Ops.erase(Ops.begin()+Idx); 949 Ops.erase(Ops.begin()+OtherIdx-1); 950 Ops.push_back(NewAddRec); 951 return getAddExpr(Ops); 952 } 953 } 954 955 // Otherwise couldn't fold anything into this recurrence. Move onto the 956 // next one. 957 } 958 959 // Okay, it looks like we really DO need an add expr. Check to see if we 960 // already have one, otherwise create a new one. 961 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 962 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 963 SCEVOps)]; 964 if (Result == 0) Result = new SCEVAddExpr(Ops); 965 return Result; 966 } 967 968 969 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 970 assert(!Ops.empty() && "Cannot get empty mul!"); 971 972 // Sort by complexity, this groups all similar expression types together. 973 GroupByComplexity(Ops); 974 975 if (isa<SCEVCouldNotCompute>(Ops.back())) { 976 // CNC * 0 = 0 977 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 978 if (Ops[i]->getSCEVType() != scConstant) 979 break; 980 981 SCEVConstant *SC = cast<SCEVConstant>(Ops[i]); 982 if (SC->getValue()->isMinValue(false)) 983 return SC; 984 } 985 986 // Otherwise, we can't compute it. 987 return new SCEVCouldNotCompute(); 988 } 989 990 // If there are any constants, fold them together. 991 unsigned Idx = 0; 992 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 993 994 // C1*(C2+V) -> C1*C2 + C1*V 995 if (Ops.size() == 2) 996 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 997 if (Add->getNumOperands() == 2 && 998 isa<SCEVConstant>(Add->getOperand(0))) 999 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1000 getMulExpr(LHSC, Add->getOperand(1))); 1001 1002 1003 ++Idx; 1004 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1005 // We found two constants, fold them together! 1006 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1007 RHSC->getValue()->getValue()); 1008 Ops[0] = getConstant(Fold); 1009 Ops.erase(Ops.begin()+1); // Erase the folded element 1010 if (Ops.size() == 1) return Ops[0]; 1011 LHSC = cast<SCEVConstant>(Ops[0]); 1012 } 1013 1014 // If we are left with a constant one being multiplied, strip it off. 1015 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1016 Ops.erase(Ops.begin()); 1017 --Idx; 1018 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1019 // If we have a multiply of zero, it will always be zero. 1020 return Ops[0]; 1021 } 1022 } 1023 1024 // Skip over the add expression until we get to a multiply. 1025 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1026 ++Idx; 1027 1028 if (Ops.size() == 1) 1029 return Ops[0]; 1030 1031 // If there are mul operands inline them all into this expression. 1032 if (Idx < Ops.size()) { 1033 bool DeletedMul = false; 1034 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1035 // If we have an mul, expand the mul operands onto the end of the operands 1036 // list. 1037 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1038 Ops.erase(Ops.begin()+Idx); 1039 DeletedMul = true; 1040 } 1041 1042 // If we deleted at least one mul, we added operands to the end of the list, 1043 // and they are not necessarily sorted. Recurse to resort and resimplify 1044 // any operands we just aquired. 1045 if (DeletedMul) 1046 return getMulExpr(Ops); 1047 } 1048 1049 // If there are any add recurrences in the operands list, see if any other 1050 // added values are loop invariant. If so, we can fold them into the 1051 // recurrence. 1052 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1053 ++Idx; 1054 1055 // Scan over all recurrences, trying to fold loop invariants into them. 1056 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1057 // Scan all of the other operands to this mul and add them to the vector if 1058 // they are loop invariant w.r.t. the recurrence. 1059 std::vector<SCEVHandle> LIOps; 1060 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1061 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1062 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1063 LIOps.push_back(Ops[i]); 1064 Ops.erase(Ops.begin()+i); 1065 --i; --e; 1066 } 1067 1068 // If we found some loop invariants, fold them into the recurrence. 1069 if (!LIOps.empty()) { 1070 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1071 std::vector<SCEVHandle> NewOps; 1072 NewOps.reserve(AddRec->getNumOperands()); 1073 if (LIOps.size() == 1) { 1074 SCEV *Scale = LIOps[0]; 1075 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1076 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1077 } else { 1078 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1079 std::vector<SCEVHandle> MulOps(LIOps); 1080 MulOps.push_back(AddRec->getOperand(i)); 1081 NewOps.push_back(getMulExpr(MulOps)); 1082 } 1083 } 1084 1085 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1086 1087 // If all of the other operands were loop invariant, we are done. 1088 if (Ops.size() == 1) return NewRec; 1089 1090 // Otherwise, multiply the folded AddRec by the non-liv parts. 1091 for (unsigned i = 0;; ++i) 1092 if (Ops[i] == AddRec) { 1093 Ops[i] = NewRec; 1094 break; 1095 } 1096 return getMulExpr(Ops); 1097 } 1098 1099 // Okay, if there weren't any loop invariants to be folded, check to see if 1100 // there are multiple AddRec's with the same loop induction variable being 1101 // multiplied together. If so, we can fold them. 1102 for (unsigned OtherIdx = Idx+1; 1103 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1104 if (OtherIdx != Idx) { 1105 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1106 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1107 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1108 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1109 SCEVHandle NewStart = getMulExpr(F->getStart(), 1110 G->getStart()); 1111 SCEVHandle B = F->getStepRecurrence(*this); 1112 SCEVHandle D = G->getStepRecurrence(*this); 1113 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1114 getMulExpr(G, B), 1115 getMulExpr(B, D)); 1116 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1117 F->getLoop()); 1118 if (Ops.size() == 2) return NewAddRec; 1119 1120 Ops.erase(Ops.begin()+Idx); 1121 Ops.erase(Ops.begin()+OtherIdx-1); 1122 Ops.push_back(NewAddRec); 1123 return getMulExpr(Ops); 1124 } 1125 } 1126 1127 // Otherwise couldn't fold anything into this recurrence. Move onto the 1128 // next one. 1129 } 1130 1131 // Okay, it looks like we really DO need an mul expr. Check to see if we 1132 // already have one, otherwise create a new one. 1133 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1134 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1135 SCEVOps)]; 1136 if (Result == 0) 1137 Result = new SCEVMulExpr(Ops); 1138 return Result; 1139 } 1140 1141 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1142 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1143 if (RHSC->getValue()->equalsInt(1)) 1144 return LHS; // X udiv 1 --> x 1145 1146 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1147 Constant *LHSCV = LHSC->getValue(); 1148 Constant *RHSCV = RHSC->getValue(); 1149 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1150 } 1151 } 1152 1153 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1154 1155 if (isa<SCEVCouldNotCompute>(LHS) || isa<SCEVCouldNotCompute>(RHS)) 1156 return new SCEVCouldNotCompute(); 1157 1158 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1159 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1160 return Result; 1161 } 1162 1163 1164 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1165 /// specified loop. Simplify the expression as much as possible. 1166 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1167 const SCEVHandle &Step, const Loop *L) { 1168 std::vector<SCEVHandle> Operands; 1169 Operands.push_back(Start); 1170 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1171 if (StepChrec->getLoop() == L) { 1172 Operands.insert(Operands.end(), StepChrec->op_begin(), 1173 StepChrec->op_end()); 1174 return getAddRecExpr(Operands, L); 1175 } 1176 1177 Operands.push_back(Step); 1178 return getAddRecExpr(Operands, L); 1179 } 1180 1181 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1182 /// specified loop. Simplify the expression as much as possible. 1183 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1184 const Loop *L) { 1185 if (Operands.size() == 1) return Operands[0]; 1186 1187 if (Operands.back()->isZero()) { 1188 Operands.pop_back(); 1189 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1190 } 1191 1192 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1193 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1194 const Loop* NestedLoop = NestedAR->getLoop(); 1195 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1196 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1197 NestedAR->op_end()); 1198 SCEVHandle NestedARHandle(NestedAR); 1199 Operands[0] = NestedAR->getStart(); 1200 NestedOperands[0] = getAddRecExpr(Operands, L); 1201 return getAddRecExpr(NestedOperands, NestedLoop); 1202 } 1203 } 1204 1205 // Refuse to build an AddRec out of SCEVCouldNotCompute. 1206 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 1207 if (isa<SCEVCouldNotCompute>(Operands[i])) 1208 return new SCEVCouldNotCompute(); 1209 } 1210 1211 SCEVAddRecExpr *&Result = 1212 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1213 Operands.end()))]; 1214 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1215 return Result; 1216 } 1217 1218 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1219 const SCEVHandle &RHS) { 1220 std::vector<SCEVHandle> Ops; 1221 Ops.push_back(LHS); 1222 Ops.push_back(RHS); 1223 return getSMaxExpr(Ops); 1224 } 1225 1226 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1227 assert(!Ops.empty() && "Cannot get empty smax!"); 1228 if (Ops.size() == 1) return Ops[0]; 1229 1230 // Sort by complexity, this groups all similar expression types together. 1231 GroupByComplexity(Ops); 1232 1233 if (isa<SCEVCouldNotCompute>(Ops.back())) { 1234 // CNC smax +inf = +inf. 1235 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 1236 if (Ops[i]->getSCEVType() != scConstant) 1237 break; 1238 1239 SCEVConstant *SC = cast<SCEVConstant>(Ops[i]); 1240 if (SC->getValue()->isMaxValue(true)) 1241 return SC; 1242 } 1243 1244 // Otherwise, we can't compute it. 1245 return new SCEVCouldNotCompute(); 1246 } 1247 1248 // If there are any constants, fold them together. 1249 unsigned Idx = 0; 1250 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1251 ++Idx; 1252 assert(Idx < Ops.size()); 1253 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1254 // We found two constants, fold them together! 1255 ConstantInt *Fold = ConstantInt::get( 1256 APIntOps::smax(LHSC->getValue()->getValue(), 1257 RHSC->getValue()->getValue())); 1258 Ops[0] = getConstant(Fold); 1259 Ops.erase(Ops.begin()+1); // Erase the folded element 1260 if (Ops.size() == 1) return Ops[0]; 1261 LHSC = cast<SCEVConstant>(Ops[0]); 1262 } 1263 1264 // If we are left with a constant -inf, strip it off. 1265 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1266 Ops.erase(Ops.begin()); 1267 --Idx; 1268 } 1269 } 1270 1271 if (Ops.size() == 1) return Ops[0]; 1272 1273 // Find the first SMax 1274 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1275 ++Idx; 1276 1277 // Check to see if one of the operands is an SMax. If so, expand its operands 1278 // onto our operand list, and recurse to simplify. 1279 if (Idx < Ops.size()) { 1280 bool DeletedSMax = false; 1281 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1282 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1283 Ops.erase(Ops.begin()+Idx); 1284 DeletedSMax = true; 1285 } 1286 1287 if (DeletedSMax) 1288 return getSMaxExpr(Ops); 1289 } 1290 1291 // Okay, check to see if the same value occurs in the operand list twice. If 1292 // so, delete one. Since we sorted the list, these values are required to 1293 // be adjacent. 1294 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1295 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1296 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1297 --i; --e; 1298 } 1299 1300 if (Ops.size() == 1) return Ops[0]; 1301 1302 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1303 1304 // Okay, it looks like we really DO need an smax expr. Check to see if we 1305 // already have one, otherwise create a new one. 1306 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1307 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1308 SCEVOps)]; 1309 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1310 return Result; 1311 } 1312 1313 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1314 const SCEVHandle &RHS) { 1315 std::vector<SCEVHandle> Ops; 1316 Ops.push_back(LHS); 1317 Ops.push_back(RHS); 1318 return getUMaxExpr(Ops); 1319 } 1320 1321 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1322 assert(!Ops.empty() && "Cannot get empty umax!"); 1323 if (Ops.size() == 1) return Ops[0]; 1324 1325 // Sort by complexity, this groups all similar expression types together. 1326 GroupByComplexity(Ops); 1327 1328 if (isa<SCEVCouldNotCompute>(Ops[0])) { 1329 // CNC umax inf = inf. 1330 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 1331 if (Ops[i]->getSCEVType() != scConstant) 1332 break; 1333 1334 SCEVConstant *SC = cast<SCEVConstant>(Ops[i]); 1335 if (SC->getValue()->isMaxValue(false)) 1336 return SC; 1337 } 1338 1339 // Otherwise, we can't compute it. 1340 return new SCEVCouldNotCompute(); 1341 } 1342 1343 // If there are any constants, fold them together. 1344 unsigned Idx = 0; 1345 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1346 ++Idx; 1347 assert(Idx < Ops.size()); 1348 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1349 // We found two constants, fold them together! 1350 ConstantInt *Fold = ConstantInt::get( 1351 APIntOps::umax(LHSC->getValue()->getValue(), 1352 RHSC->getValue()->getValue())); 1353 Ops[0] = getConstant(Fold); 1354 Ops.erase(Ops.begin()+1); // Erase the folded element 1355 if (Ops.size() == 1) return Ops[0]; 1356 LHSC = cast<SCEVConstant>(Ops[0]); 1357 } 1358 1359 // If we are left with a constant zero, strip it off. 1360 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1361 Ops.erase(Ops.begin()); 1362 --Idx; 1363 } 1364 } 1365 1366 if (Ops.size() == 1) return Ops[0]; 1367 1368 // Find the first UMax 1369 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1370 ++Idx; 1371 1372 // Check to see if one of the operands is a UMax. If so, expand its operands 1373 // onto our operand list, and recurse to simplify. 1374 if (Idx < Ops.size()) { 1375 bool DeletedUMax = false; 1376 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1377 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1378 Ops.erase(Ops.begin()+Idx); 1379 DeletedUMax = true; 1380 } 1381 1382 if (DeletedUMax) 1383 return getUMaxExpr(Ops); 1384 } 1385 1386 // Okay, check to see if the same value occurs in the operand list twice. If 1387 // so, delete one. Since we sorted the list, these values are required to 1388 // be adjacent. 1389 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1390 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1391 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1392 --i; --e; 1393 } 1394 1395 if (Ops.size() == 1) return Ops[0]; 1396 1397 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1398 1399 // Okay, it looks like we really DO need a umax expr. Check to see if we 1400 // already have one, otherwise create a new one. 1401 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1402 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1403 SCEVOps)]; 1404 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1405 return Result; 1406 } 1407 1408 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1409 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1410 return getConstant(CI); 1411 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1412 if (Result == 0) Result = new SCEVUnknown(V); 1413 return Result; 1414 } 1415 1416 1417 //===----------------------------------------------------------------------===// 1418 // ScalarEvolutionsImpl Definition and Implementation 1419 //===----------------------------------------------------------------------===// 1420 // 1421 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1422 /// evolution code. 1423 /// 1424 namespace { 1425 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1426 /// SE - A reference to the public ScalarEvolution object. 1427 ScalarEvolution &SE; 1428 1429 /// F - The function we are analyzing. 1430 /// 1431 Function &F; 1432 1433 /// LI - The loop information for the function we are currently analyzing. 1434 /// 1435 LoopInfo &LI; 1436 1437 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1438 /// things. 1439 SCEVHandle UnknownValue; 1440 1441 /// Scalars - This is a cache of the scalars we have analyzed so far. 1442 /// 1443 std::map<Value*, SCEVHandle> Scalars; 1444 1445 /// IterationCounts - Cache the iteration count of the loops for this 1446 /// function as they are computed. 1447 std::map<const Loop*, SCEVHandle> IterationCounts; 1448 1449 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1450 /// the PHI instructions that we attempt to compute constant evolutions for. 1451 /// This allows us to avoid potentially expensive recomputation of these 1452 /// properties. An instruction maps to null if we are unable to compute its 1453 /// exit value. 1454 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1455 1456 public: 1457 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li) 1458 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1459 1460 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1461 /// expression and create a new one. 1462 SCEVHandle getSCEV(Value *V); 1463 1464 /// hasSCEV - Return true if the SCEV for this value has already been 1465 /// computed. 1466 bool hasSCEV(Value *V) const { 1467 return Scalars.count(V); 1468 } 1469 1470 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1471 /// the specified value. 1472 void setSCEV(Value *V, const SCEVHandle &H) { 1473 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1474 assert(isNew && "This entry already existed!"); 1475 } 1476 1477 1478 /// getSCEVAtScope - Compute the value of the specified expression within 1479 /// the indicated loop (which may be null to indicate in no loop). If the 1480 /// expression cannot be evaluated, return UnknownValue itself. 1481 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1482 1483 1484 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1485 /// an analyzable loop-invariant iteration count. 1486 bool hasLoopInvariantIterationCount(const Loop *L); 1487 1488 /// getIterationCount - If the specified loop has a predictable iteration 1489 /// count, return it. Note that it is not valid to call this method on a 1490 /// loop without a loop-invariant iteration count. 1491 SCEVHandle getIterationCount(const Loop *L); 1492 1493 /// deleteValueFromRecords - This method should be called by the 1494 /// client before it removes a value from the program, to make sure 1495 /// that no dangling references are left around. 1496 void deleteValueFromRecords(Value *V); 1497 1498 private: 1499 /// createSCEV - We know that there is no SCEV for the specified value. 1500 /// Analyze the expression. 1501 SCEVHandle createSCEV(Value *V); 1502 1503 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1504 /// SCEVs. 1505 SCEVHandle createNodeForPHI(PHINode *PN); 1506 1507 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1508 /// for the specified instruction and replaces any references to the 1509 /// symbolic value SymName with the specified value. This is used during 1510 /// PHI resolution. 1511 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1512 const SCEVHandle &SymName, 1513 const SCEVHandle &NewVal); 1514 1515 /// ComputeIterationCount - Compute the number of times the specified loop 1516 /// will iterate. 1517 SCEVHandle ComputeIterationCount(const Loop *L); 1518 1519 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1520 /// 'icmp op load X, cst', try to see if we can compute the trip count. 1521 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1522 Constant *RHS, 1523 const Loop *L, 1524 ICmpInst::Predicate p); 1525 1526 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1527 /// constant number of times (the condition evolves only from constants), 1528 /// try to evaluate a few iterations of the loop until we get the exit 1529 /// condition gets a value of ExitWhen (true or false). If we cannot 1530 /// evaluate the trip count of the loop, return UnknownValue. 1531 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1532 bool ExitWhen); 1533 1534 /// HowFarToZero - Return the number of times a backedge comparing the 1535 /// specified value to zero will execute. If not computable, return 1536 /// UnknownValue. 1537 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1538 1539 /// HowFarToNonZero - Return the number of times a backedge checking the 1540 /// specified value for nonzero will execute. If not computable, return 1541 /// UnknownValue. 1542 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1543 1544 /// HowManyLessThans - Return the number of times a backedge containing the 1545 /// specified less-than comparison will execute. If not computable, return 1546 /// UnknownValue. isSigned specifies whether the less-than is signed. 1547 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1548 bool isSigned); 1549 1550 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 1551 /// (which may not be an immediate predecessor) which has exactly one 1552 /// successor from which BB is reachable, or null if no such block is 1553 /// found. 1554 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); 1555 1556 /// executesAtLeastOnce - Test whether entry to the loop is protected by 1557 /// a conditional between LHS and RHS. 1558 bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS); 1559 1560 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1561 /// in the header of its containing loop, we know the loop executes a 1562 /// constant number of times, and the PHI node is just a recurrence 1563 /// involving constants, fold it. 1564 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1565 const Loop *L); 1566 }; 1567 } 1568 1569 //===----------------------------------------------------------------------===// 1570 // Basic SCEV Analysis and PHI Idiom Recognition Code 1571 // 1572 1573 /// deleteValueFromRecords - This method should be called by the 1574 /// client before it removes an instruction from the program, to make sure 1575 /// that no dangling references are left around. 1576 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1577 SmallVector<Value *, 16> Worklist; 1578 1579 if (Scalars.erase(V)) { 1580 if (PHINode *PN = dyn_cast<PHINode>(V)) 1581 ConstantEvolutionLoopExitValue.erase(PN); 1582 Worklist.push_back(V); 1583 } 1584 1585 while (!Worklist.empty()) { 1586 Value *VV = Worklist.back(); 1587 Worklist.pop_back(); 1588 1589 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1590 UI != UE; ++UI) { 1591 Instruction *Inst = cast<Instruction>(*UI); 1592 if (Scalars.erase(Inst)) { 1593 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1594 ConstantEvolutionLoopExitValue.erase(PN); 1595 Worklist.push_back(Inst); 1596 } 1597 } 1598 } 1599 } 1600 1601 1602 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1603 /// expression and create a new one. 1604 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1605 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1606 1607 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1608 if (I != Scalars.end()) return I->second; 1609 SCEVHandle S = createSCEV(V); 1610 Scalars.insert(std::make_pair(V, S)); 1611 return S; 1612 } 1613 1614 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1615 /// the specified instruction and replaces any references to the symbolic value 1616 /// SymName with the specified value. This is used during PHI resolution. 1617 void ScalarEvolutionsImpl:: 1618 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1619 const SCEVHandle &NewVal) { 1620 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1621 if (SI == Scalars.end()) return; 1622 1623 SCEVHandle NV = 1624 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1625 if (NV == SI->second) return; // No change. 1626 1627 SI->second = NV; // Update the scalars map! 1628 1629 // Any instruction values that use this instruction might also need to be 1630 // updated! 1631 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1632 UI != E; ++UI) 1633 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1634 } 1635 1636 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1637 /// a loop header, making it a potential recurrence, or it doesn't. 1638 /// 1639 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1640 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1641 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1642 if (L->getHeader() == PN->getParent()) { 1643 // If it lives in the loop header, it has two incoming values, one 1644 // from outside the loop, and one from inside. 1645 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1646 unsigned BackEdge = IncomingEdge^1; 1647 1648 // While we are analyzing this PHI node, handle its value symbolically. 1649 SCEVHandle SymbolicName = SE.getUnknown(PN); 1650 assert(Scalars.find(PN) == Scalars.end() && 1651 "PHI node already processed?"); 1652 Scalars.insert(std::make_pair(PN, SymbolicName)); 1653 1654 // Using this symbolic name for the PHI, analyze the value coming around 1655 // the back-edge. 1656 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1657 1658 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1659 // has a special value for the first iteration of the loop. 1660 1661 // If the value coming around the backedge is an add with the symbolic 1662 // value we just inserted, then we found a simple induction variable! 1663 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1664 // If there is a single occurrence of the symbolic value, replace it 1665 // with a recurrence. 1666 unsigned FoundIndex = Add->getNumOperands(); 1667 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1668 if (Add->getOperand(i) == SymbolicName) 1669 if (FoundIndex == e) { 1670 FoundIndex = i; 1671 break; 1672 } 1673 1674 if (FoundIndex != Add->getNumOperands()) { 1675 // Create an add with everything but the specified operand. 1676 std::vector<SCEVHandle> Ops; 1677 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1678 if (i != FoundIndex) 1679 Ops.push_back(Add->getOperand(i)); 1680 SCEVHandle Accum = SE.getAddExpr(Ops); 1681 1682 // This is not a valid addrec if the step amount is varying each 1683 // loop iteration, but is not itself an addrec in this loop. 1684 if (Accum->isLoopInvariant(L) || 1685 (isa<SCEVAddRecExpr>(Accum) && 1686 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1687 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1688 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1689 1690 // Okay, for the entire analysis of this edge we assumed the PHI 1691 // to be symbolic. We now need to go back and update all of the 1692 // entries for the scalars that use the PHI (except for the PHI 1693 // itself) to use the new analyzed value instead of the "symbolic" 1694 // value. 1695 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1696 return PHISCEV; 1697 } 1698 } 1699 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1700 // Otherwise, this could be a loop like this: 1701 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1702 // In this case, j = {1,+,1} and BEValue is j. 1703 // Because the other in-value of i (0) fits the evolution of BEValue 1704 // i really is an addrec evolution. 1705 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1706 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1707 1708 // If StartVal = j.start - j.stride, we can use StartVal as the 1709 // initial step of the addrec evolution. 1710 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1711 AddRec->getOperand(1))) { 1712 SCEVHandle PHISCEV = 1713 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1714 1715 // Okay, for the entire analysis of this edge we assumed the PHI 1716 // to be symbolic. We now need to go back and update all of the 1717 // entries for the scalars that use the PHI (except for the PHI 1718 // itself) to use the new analyzed value instead of the "symbolic" 1719 // value. 1720 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1721 return PHISCEV; 1722 } 1723 } 1724 } 1725 1726 return SymbolicName; 1727 } 1728 1729 // If it's not a loop phi, we can't handle it yet. 1730 return SE.getUnknown(PN); 1731 } 1732 1733 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1734 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1735 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1736 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1737 static uint32_t GetMinTrailingZeros(SCEVHandle S) { 1738 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1739 return C->getValue()->getValue().countTrailingZeros(); 1740 1741 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1742 return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth()); 1743 1744 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1745 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 1746 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes; 1747 } 1748 1749 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1750 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 1751 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes; 1752 } 1753 1754 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1755 // The result is the min of all operands results. 1756 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 1757 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1758 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 1759 return MinOpRes; 1760 } 1761 1762 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1763 // The result is the sum of all operands results. 1764 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 1765 uint32_t BitWidth = M->getBitWidth(); 1766 for (unsigned i = 1, e = M->getNumOperands(); 1767 SumOpRes != BitWidth && i != e; ++i) 1768 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 1769 BitWidth); 1770 return SumOpRes; 1771 } 1772 1773 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1774 // The result is the min of all operands results. 1775 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 1776 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1777 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 1778 return MinOpRes; 1779 } 1780 1781 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1782 // The result is the min of all operands results. 1783 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 1784 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1785 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 1786 return MinOpRes; 1787 } 1788 1789 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1790 // The result is the min of all operands results. 1791 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 1792 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1793 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 1794 return MinOpRes; 1795 } 1796 1797 // SCEVUDivExpr, SCEVUnknown 1798 return 0; 1799 } 1800 1801 /// createSCEV - We know that there is no SCEV for the specified value. 1802 /// Analyze the expression. 1803 /// 1804 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1805 if (!isa<IntegerType>(V->getType())) 1806 return SE.getUnknown(V); 1807 1808 unsigned Opcode = Instruction::UserOp1; 1809 if (Instruction *I = dyn_cast<Instruction>(V)) 1810 Opcode = I->getOpcode(); 1811 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1812 Opcode = CE->getOpcode(); 1813 else 1814 return SE.getUnknown(V); 1815 1816 User *U = cast<User>(V); 1817 switch (Opcode) { 1818 case Instruction::Add: 1819 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1820 getSCEV(U->getOperand(1))); 1821 case Instruction::Mul: 1822 return SE.getMulExpr(getSCEV(U->getOperand(0)), 1823 getSCEV(U->getOperand(1))); 1824 case Instruction::UDiv: 1825 return SE.getUDivExpr(getSCEV(U->getOperand(0)), 1826 getSCEV(U->getOperand(1))); 1827 case Instruction::Sub: 1828 return SE.getMinusSCEV(getSCEV(U->getOperand(0)), 1829 getSCEV(U->getOperand(1))); 1830 case Instruction::Or: 1831 // If the RHS of the Or is a constant, we may have something like: 1832 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1833 // optimizations will transparently handle this case. 1834 // 1835 // In order for this transformation to be safe, the LHS must be of the 1836 // form X*(2^n) and the Or constant must be less than 2^n. 1837 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1838 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1839 const APInt &CIVal = CI->getValue(); 1840 if (GetMinTrailingZeros(LHS) >= 1841 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1842 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1))); 1843 } 1844 break; 1845 case Instruction::Xor: 1846 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1847 // If the RHS of the xor is a signbit, then this is just an add. 1848 // Instcombine turns add of signbit into xor as a strength reduction step. 1849 if (CI->getValue().isSignBit()) 1850 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1851 getSCEV(U->getOperand(1))); 1852 1853 // If the RHS of xor is -1, then this is a not operation. 1854 else if (CI->isAllOnesValue()) 1855 return SE.getNotSCEV(getSCEV(U->getOperand(0))); 1856 } 1857 break; 1858 1859 case Instruction::Shl: 1860 // Turn shift left of a constant amount into a multiply. 1861 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1862 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1863 Constant *X = ConstantInt::get( 1864 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1865 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1866 } 1867 break; 1868 1869 case Instruction::LShr: 1870 // Turn logical shift right of a constant into a unsigned divide. 1871 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1872 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1873 Constant *X = ConstantInt::get( 1874 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1875 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1876 } 1877 break; 1878 1879 case Instruction::Trunc: 1880 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1881 1882 case Instruction::ZExt: 1883 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1884 1885 case Instruction::SExt: 1886 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1887 1888 case Instruction::BitCast: 1889 // BitCasts are no-op casts so we just eliminate the cast. 1890 if (U->getType()->isInteger() && 1891 U->getOperand(0)->getType()->isInteger()) 1892 return getSCEV(U->getOperand(0)); 1893 break; 1894 1895 case Instruction::PHI: 1896 return createNodeForPHI(cast<PHINode>(U)); 1897 1898 case Instruction::Select: 1899 // This could be a smax or umax that was lowered earlier. 1900 // Try to recover it. 1901 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 1902 Value *LHS = ICI->getOperand(0); 1903 Value *RHS = ICI->getOperand(1); 1904 switch (ICI->getPredicate()) { 1905 case ICmpInst::ICMP_SLT: 1906 case ICmpInst::ICMP_SLE: 1907 std::swap(LHS, RHS); 1908 // fall through 1909 case ICmpInst::ICMP_SGT: 1910 case ICmpInst::ICMP_SGE: 1911 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 1912 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 1913 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 1914 // ~smax(~x, ~y) == smin(x, y). 1915 return SE.getNotSCEV(SE.getSMaxExpr( 1916 SE.getNotSCEV(getSCEV(LHS)), 1917 SE.getNotSCEV(getSCEV(RHS)))); 1918 break; 1919 case ICmpInst::ICMP_ULT: 1920 case ICmpInst::ICMP_ULE: 1921 std::swap(LHS, RHS); 1922 // fall through 1923 case ICmpInst::ICMP_UGT: 1924 case ICmpInst::ICMP_UGE: 1925 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 1926 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 1927 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 1928 // ~umax(~x, ~y) == umin(x, y) 1929 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)), 1930 SE.getNotSCEV(getSCEV(RHS)))); 1931 break; 1932 default: 1933 break; 1934 } 1935 } 1936 1937 default: // We cannot analyze this expression. 1938 break; 1939 } 1940 1941 return SE.getUnknown(V); 1942 } 1943 1944 1945 1946 //===----------------------------------------------------------------------===// 1947 // Iteration Count Computation Code 1948 // 1949 1950 /// getIterationCount - If the specified loop has a predictable iteration 1951 /// count, return it. Note that it is not valid to call this method on a 1952 /// loop without a loop-invariant iteration count. 1953 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1954 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1955 if (I == IterationCounts.end()) { 1956 SCEVHandle ItCount = ComputeIterationCount(L); 1957 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1958 if (ItCount != UnknownValue) { 1959 assert(ItCount->isLoopInvariant(L) && 1960 "Computed trip count isn't loop invariant for loop!"); 1961 ++NumTripCountsComputed; 1962 } else if (isa<PHINode>(L->getHeader()->begin())) { 1963 // Only count loops that have phi nodes as not being computable. 1964 ++NumTripCountsNotComputed; 1965 } 1966 } 1967 return I->second; 1968 } 1969 1970 /// ComputeIterationCount - Compute the number of times the specified loop 1971 /// will iterate. 1972 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1973 // If the loop has a non-one exit block count, we can't analyze it. 1974 SmallVector<BasicBlock*, 8> ExitBlocks; 1975 L->getExitBlocks(ExitBlocks); 1976 if (ExitBlocks.size() != 1) return UnknownValue; 1977 1978 // Okay, there is one exit block. Try to find the condition that causes the 1979 // loop to be exited. 1980 BasicBlock *ExitBlock = ExitBlocks[0]; 1981 1982 BasicBlock *ExitingBlock = 0; 1983 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1984 PI != E; ++PI) 1985 if (L->contains(*PI)) { 1986 if (ExitingBlock == 0) 1987 ExitingBlock = *PI; 1988 else 1989 return UnknownValue; // More than one block exiting! 1990 } 1991 assert(ExitingBlock && "No exits from loop, something is broken!"); 1992 1993 // Okay, we've computed the exiting block. See what condition causes us to 1994 // exit. 1995 // 1996 // FIXME: we should be able to handle switch instructions (with a single exit) 1997 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1998 if (ExitBr == 0) return UnknownValue; 1999 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2000 2001 // At this point, we know we have a conditional branch that determines whether 2002 // the loop is exited. However, we don't know if the branch is executed each 2003 // time through the loop. If not, then the execution count of the branch will 2004 // not be equal to the trip count of the loop. 2005 // 2006 // Currently we check for this by checking to see if the Exit branch goes to 2007 // the loop header. If so, we know it will always execute the same number of 2008 // times as the loop. We also handle the case where the exit block *is* the 2009 // loop header. This is common for un-rotated loops. More extensive analysis 2010 // could be done to handle more cases here. 2011 if (ExitBr->getSuccessor(0) != L->getHeader() && 2012 ExitBr->getSuccessor(1) != L->getHeader() && 2013 ExitBr->getParent() != L->getHeader()) 2014 return UnknownValue; 2015 2016 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2017 2018 // If it's not an integer comparison then compute it the hard way. 2019 // Note that ICmpInst deals with pointer comparisons too so we must check 2020 // the type of the operand. 2021 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2022 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 2023 ExitBr->getSuccessor(0) == ExitBlock); 2024 2025 // If the condition was exit on true, convert the condition to exit on false 2026 ICmpInst::Predicate Cond; 2027 if (ExitBr->getSuccessor(1) == ExitBlock) 2028 Cond = ExitCond->getPredicate(); 2029 else 2030 Cond = ExitCond->getInversePredicate(); 2031 2032 // Handle common loops like: for (X = "string"; *X; ++X) 2033 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2034 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2035 SCEVHandle ItCnt = 2036 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 2037 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2038 } 2039 2040 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2041 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2042 2043 // Try to evaluate any dependencies out of the loop. 2044 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2045 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2046 Tmp = getSCEVAtScope(RHS, L); 2047 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2048 2049 // At this point, we would like to compute how many iterations of the 2050 // loop the predicate will return true for these inputs. 2051 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2052 // If there is a loop-invariant, force it into the RHS. 2053 std::swap(LHS, RHS); 2054 Cond = ICmpInst::getSwappedPredicate(Cond); 2055 } 2056 2057 // FIXME: think about handling pointer comparisons! i.e.: 2058 // while (P != P+100) ++P; 2059 2060 // If we have a comparison of a chrec against a constant, try to use value 2061 // ranges to answer this query. 2062 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2063 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2064 if (AddRec->getLoop() == L) { 2065 // Form the comparison range using the constant of the correct type so 2066 // that the ConstantRange class knows to do a signed or unsigned 2067 // comparison. 2068 ConstantInt *CompVal = RHSC->getValue(); 2069 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2070 CompVal = dyn_cast<ConstantInt>( 2071 ConstantExpr::getBitCast(CompVal, RealTy)); 2072 if (CompVal) { 2073 // Form the constant range. 2074 ConstantRange CompRange( 2075 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2076 2077 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 2078 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2079 } 2080 } 2081 2082 switch (Cond) { 2083 case ICmpInst::ICMP_NE: { // while (X != Y) 2084 // Convert to: while (X-Y != 0) 2085 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 2086 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2087 break; 2088 } 2089 case ICmpInst::ICMP_EQ: { 2090 // Convert to: while (X-Y == 0) // while (X == Y) 2091 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 2092 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2093 break; 2094 } 2095 case ICmpInst::ICMP_SLT: { 2096 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 2097 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2098 break; 2099 } 2100 case ICmpInst::ICMP_SGT: { 2101 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2102 SE.getNotSCEV(RHS), L, true); 2103 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2104 break; 2105 } 2106 case ICmpInst::ICMP_ULT: { 2107 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 2108 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2109 break; 2110 } 2111 case ICmpInst::ICMP_UGT: { 2112 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2113 SE.getNotSCEV(RHS), L, false); 2114 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2115 break; 2116 } 2117 default: 2118 #if 0 2119 cerr << "ComputeIterationCount "; 2120 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2121 cerr << "[unsigned] "; 2122 cerr << *LHS << " " 2123 << Instruction::getOpcodeName(Instruction::ICmp) 2124 << " " << *RHS << "\n"; 2125 #endif 2126 break; 2127 } 2128 return ComputeIterationCountExhaustively(L, ExitCond, 2129 ExitBr->getSuccessor(0) == ExitBlock); 2130 } 2131 2132 static ConstantInt * 2133 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2134 ScalarEvolution &SE) { 2135 SCEVHandle InVal = SE.getConstant(C); 2136 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2137 assert(isa<SCEVConstant>(Val) && 2138 "Evaluation of SCEV at constant didn't fold correctly?"); 2139 return cast<SCEVConstant>(Val)->getValue(); 2140 } 2141 2142 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2143 /// and a GEP expression (missing the pointer index) indexing into it, return 2144 /// the addressed element of the initializer or null if the index expression is 2145 /// invalid. 2146 static Constant * 2147 GetAddressedElementFromGlobal(GlobalVariable *GV, 2148 const std::vector<ConstantInt*> &Indices) { 2149 Constant *Init = GV->getInitializer(); 2150 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2151 uint64_t Idx = Indices[i]->getZExtValue(); 2152 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2153 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2154 Init = cast<Constant>(CS->getOperand(Idx)); 2155 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2156 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2157 Init = cast<Constant>(CA->getOperand(Idx)); 2158 } else if (isa<ConstantAggregateZero>(Init)) { 2159 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2160 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2161 Init = Constant::getNullValue(STy->getElementType(Idx)); 2162 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2163 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2164 Init = Constant::getNullValue(ATy->getElementType()); 2165 } else { 2166 assert(0 && "Unknown constant aggregate type!"); 2167 } 2168 return 0; 2169 } else { 2170 return 0; // Unknown initializer type 2171 } 2172 } 2173 return Init; 2174 } 2175 2176 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 2177 /// 'icmp op load X, cst', try to see if we can compute the trip count. 2178 SCEVHandle ScalarEvolutionsImpl:: 2179 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 2180 const Loop *L, 2181 ICmpInst::Predicate predicate) { 2182 if (LI->isVolatile()) return UnknownValue; 2183 2184 // Check to see if the loaded pointer is a getelementptr of a global. 2185 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2186 if (!GEP) return UnknownValue; 2187 2188 // Make sure that it is really a constant global we are gepping, with an 2189 // initializer, and make sure the first IDX is really 0. 2190 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2191 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2192 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2193 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2194 return UnknownValue; 2195 2196 // Okay, we allow one non-constant index into the GEP instruction. 2197 Value *VarIdx = 0; 2198 std::vector<ConstantInt*> Indexes; 2199 unsigned VarIdxNum = 0; 2200 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2201 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2202 Indexes.push_back(CI); 2203 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2204 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2205 VarIdx = GEP->getOperand(i); 2206 VarIdxNum = i-2; 2207 Indexes.push_back(0); 2208 } 2209 2210 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2211 // Check to see if X is a loop variant variable value now. 2212 SCEVHandle Idx = getSCEV(VarIdx); 2213 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2214 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2215 2216 // We can only recognize very limited forms of loop index expressions, in 2217 // particular, only affine AddRec's like {C1,+,C2}. 2218 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2219 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2220 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2221 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2222 return UnknownValue; 2223 2224 unsigned MaxSteps = MaxBruteForceIterations; 2225 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2226 ConstantInt *ItCst = 2227 ConstantInt::get(IdxExpr->getType(), IterationNum); 2228 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 2229 2230 // Form the GEP offset. 2231 Indexes[VarIdxNum] = Val; 2232 2233 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2234 if (Result == 0) break; // Cannot compute! 2235 2236 // Evaluate the condition for this iteration. 2237 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2238 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2239 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2240 #if 0 2241 cerr << "\n***\n*** Computed loop count " << *ItCst 2242 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2243 << "***\n"; 2244 #endif 2245 ++NumArrayLenItCounts; 2246 return SE.getConstant(ItCst); // Found terminating iteration! 2247 } 2248 } 2249 return UnknownValue; 2250 } 2251 2252 2253 /// CanConstantFold - Return true if we can constant fold an instruction of the 2254 /// specified type, assuming that all operands were constants. 2255 static bool CanConstantFold(const Instruction *I) { 2256 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2257 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2258 return true; 2259 2260 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2261 if (const Function *F = CI->getCalledFunction()) 2262 return canConstantFoldCallTo(F); 2263 return false; 2264 } 2265 2266 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2267 /// in the loop that V is derived from. We allow arbitrary operations along the 2268 /// way, but the operands of an operation must either be constants or a value 2269 /// derived from a constant PHI. If this expression does not fit with these 2270 /// constraints, return null. 2271 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2272 // If this is not an instruction, or if this is an instruction outside of the 2273 // loop, it can't be derived from a loop PHI. 2274 Instruction *I = dyn_cast<Instruction>(V); 2275 if (I == 0 || !L->contains(I->getParent())) return 0; 2276 2277 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2278 if (L->getHeader() == I->getParent()) 2279 return PN; 2280 else 2281 // We don't currently keep track of the control flow needed to evaluate 2282 // PHIs, so we cannot handle PHIs inside of loops. 2283 return 0; 2284 } 2285 2286 // If we won't be able to constant fold this expression even if the operands 2287 // are constants, return early. 2288 if (!CanConstantFold(I)) return 0; 2289 2290 // Otherwise, we can evaluate this instruction if all of its operands are 2291 // constant or derived from a PHI node themselves. 2292 PHINode *PHI = 0; 2293 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2294 if (!(isa<Constant>(I->getOperand(Op)) || 2295 isa<GlobalValue>(I->getOperand(Op)))) { 2296 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2297 if (P == 0) return 0; // Not evolving from PHI 2298 if (PHI == 0) 2299 PHI = P; 2300 else if (PHI != P) 2301 return 0; // Evolving from multiple different PHIs. 2302 } 2303 2304 // This is a expression evolving from a constant PHI! 2305 return PHI; 2306 } 2307 2308 /// EvaluateExpression - Given an expression that passes the 2309 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2310 /// in the loop has the value PHIVal. If we can't fold this expression for some 2311 /// reason, return null. 2312 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2313 if (isa<PHINode>(V)) return PHIVal; 2314 if (Constant *C = dyn_cast<Constant>(V)) return C; 2315 Instruction *I = cast<Instruction>(V); 2316 2317 std::vector<Constant*> Operands; 2318 Operands.resize(I->getNumOperands()); 2319 2320 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2321 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2322 if (Operands[i] == 0) return 0; 2323 } 2324 2325 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2326 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2327 &Operands[0], Operands.size()); 2328 else 2329 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2330 &Operands[0], Operands.size()); 2331 } 2332 2333 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2334 /// in the header of its containing loop, we know the loop executes a 2335 /// constant number of times, and the PHI node is just a recurrence 2336 /// involving constants, fold it. 2337 Constant *ScalarEvolutionsImpl:: 2338 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 2339 std::map<PHINode*, Constant*>::iterator I = 2340 ConstantEvolutionLoopExitValue.find(PN); 2341 if (I != ConstantEvolutionLoopExitValue.end()) 2342 return I->second; 2343 2344 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 2345 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2346 2347 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2348 2349 // Since the loop is canonicalized, the PHI node must have two entries. One 2350 // entry must be a constant (coming in from outside of the loop), and the 2351 // second must be derived from the same PHI. 2352 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2353 Constant *StartCST = 2354 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2355 if (StartCST == 0) 2356 return RetVal = 0; // Must be a constant. 2357 2358 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2359 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2360 if (PN2 != PN) 2361 return RetVal = 0; // Not derived from same PHI. 2362 2363 // Execute the loop symbolically to determine the exit value. 2364 if (Its.getActiveBits() >= 32) 2365 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2366 2367 unsigned NumIterations = Its.getZExtValue(); // must be in range 2368 unsigned IterationNum = 0; 2369 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2370 if (IterationNum == NumIterations) 2371 return RetVal = PHIVal; // Got exit value! 2372 2373 // Compute the value of the PHI node for the next iteration. 2374 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2375 if (NextPHI == PHIVal) 2376 return RetVal = NextPHI; // Stopped evolving! 2377 if (NextPHI == 0) 2378 return 0; // Couldn't evaluate! 2379 PHIVal = NextPHI; 2380 } 2381 } 2382 2383 /// ComputeIterationCountExhaustively - If the trip is known to execute a 2384 /// constant number of times (the condition evolves only from constants), 2385 /// try to evaluate a few iterations of the loop until we get the exit 2386 /// condition gets a value of ExitWhen (true or false). If we cannot 2387 /// evaluate the trip count of the loop, return UnknownValue. 2388 SCEVHandle ScalarEvolutionsImpl:: 2389 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2390 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2391 if (PN == 0) return UnknownValue; 2392 2393 // Since the loop is canonicalized, the PHI node must have two entries. One 2394 // entry must be a constant (coming in from outside of the loop), and the 2395 // second must be derived from the same PHI. 2396 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2397 Constant *StartCST = 2398 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2399 if (StartCST == 0) return UnknownValue; // Must be a constant. 2400 2401 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2402 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2403 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2404 2405 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2406 // the loop symbolically to determine when the condition gets a value of 2407 // "ExitWhen". 2408 unsigned IterationNum = 0; 2409 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2410 for (Constant *PHIVal = StartCST; 2411 IterationNum != MaxIterations; ++IterationNum) { 2412 ConstantInt *CondVal = 2413 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2414 2415 // Couldn't symbolically evaluate. 2416 if (!CondVal) return UnknownValue; 2417 2418 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2419 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2420 ++NumBruteForceTripCountsComputed; 2421 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2422 } 2423 2424 // Compute the value of the PHI node for the next iteration. 2425 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2426 if (NextPHI == 0 || NextPHI == PHIVal) 2427 return UnknownValue; // Couldn't evaluate or not making progress... 2428 PHIVal = NextPHI; 2429 } 2430 2431 // Too many iterations were needed to evaluate. 2432 return UnknownValue; 2433 } 2434 2435 /// getSCEVAtScope - Compute the value of the specified expression within the 2436 /// indicated loop (which may be null to indicate in no loop). If the 2437 /// expression cannot be evaluated, return UnknownValue. 2438 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2439 // FIXME: this should be turned into a virtual method on SCEV! 2440 2441 if (isa<SCEVConstant>(V)) return V; 2442 2443 // If this instruction is evolved from a constant-evolving PHI, compute the 2444 // exit value from the loop without using SCEVs. 2445 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2446 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2447 const Loop *LI = this->LI[I->getParent()]; 2448 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2449 if (PHINode *PN = dyn_cast<PHINode>(I)) 2450 if (PN->getParent() == LI->getHeader()) { 2451 // Okay, there is no closed form solution for the PHI node. Check 2452 // to see if the loop that contains it has a known iteration count. 2453 // If so, we may be able to force computation of the exit value. 2454 SCEVHandle IterationCount = getIterationCount(LI); 2455 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2456 // Okay, we know how many times the containing loop executes. If 2457 // this is a constant evolving PHI node, get the final value at 2458 // the specified iteration number. 2459 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2460 ICC->getValue()->getValue(), 2461 LI); 2462 if (RV) return SE.getUnknown(RV); 2463 } 2464 } 2465 2466 // Okay, this is an expression that we cannot symbolically evaluate 2467 // into a SCEV. Check to see if it's possible to symbolically evaluate 2468 // the arguments into constants, and if so, try to constant propagate the 2469 // result. This is particularly useful for computing loop exit values. 2470 if (CanConstantFold(I)) { 2471 std::vector<Constant*> Operands; 2472 Operands.reserve(I->getNumOperands()); 2473 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2474 Value *Op = I->getOperand(i); 2475 if (Constant *C = dyn_cast<Constant>(Op)) { 2476 Operands.push_back(C); 2477 } else { 2478 // If any of the operands is non-constant and if they are 2479 // non-integer, don't even try to analyze them with scev techniques. 2480 if (!isa<IntegerType>(Op->getType())) 2481 return V; 2482 2483 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2484 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2485 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2486 Op->getType(), 2487 false)); 2488 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2489 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2490 Operands.push_back(ConstantExpr::getIntegerCast(C, 2491 Op->getType(), 2492 false)); 2493 else 2494 return V; 2495 } else { 2496 return V; 2497 } 2498 } 2499 } 2500 2501 Constant *C; 2502 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2503 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2504 &Operands[0], Operands.size()); 2505 else 2506 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2507 &Operands[0], Operands.size()); 2508 return SE.getUnknown(C); 2509 } 2510 } 2511 2512 // This is some other type of SCEVUnknown, just return it. 2513 return V; 2514 } 2515 2516 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2517 // Avoid performing the look-up in the common case where the specified 2518 // expression has no loop-variant portions. 2519 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2520 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2521 if (OpAtScope != Comm->getOperand(i)) { 2522 if (OpAtScope == UnknownValue) return UnknownValue; 2523 // Okay, at least one of these operands is loop variant but might be 2524 // foldable. Build a new instance of the folded commutative expression. 2525 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2526 NewOps.push_back(OpAtScope); 2527 2528 for (++i; i != e; ++i) { 2529 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2530 if (OpAtScope == UnknownValue) return UnknownValue; 2531 NewOps.push_back(OpAtScope); 2532 } 2533 if (isa<SCEVAddExpr>(Comm)) 2534 return SE.getAddExpr(NewOps); 2535 if (isa<SCEVMulExpr>(Comm)) 2536 return SE.getMulExpr(NewOps); 2537 if (isa<SCEVSMaxExpr>(Comm)) 2538 return SE.getSMaxExpr(NewOps); 2539 if (isa<SCEVUMaxExpr>(Comm)) 2540 return SE.getUMaxExpr(NewOps); 2541 assert(0 && "Unknown commutative SCEV type!"); 2542 } 2543 } 2544 // If we got here, all operands are loop invariant. 2545 return Comm; 2546 } 2547 2548 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2549 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2550 if (LHS == UnknownValue) return LHS; 2551 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2552 if (RHS == UnknownValue) return RHS; 2553 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2554 return Div; // must be loop invariant 2555 return SE.getUDivExpr(LHS, RHS); 2556 } 2557 2558 // If this is a loop recurrence for a loop that does not contain L, then we 2559 // are dealing with the final value computed by the loop. 2560 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2561 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2562 // To evaluate this recurrence, we need to know how many times the AddRec 2563 // loop iterates. Compute this now. 2564 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2565 if (IterationCount == UnknownValue) return UnknownValue; 2566 2567 // Then, evaluate the AddRec. 2568 return AddRec->evaluateAtIteration(IterationCount, SE); 2569 } 2570 return UnknownValue; 2571 } 2572 2573 //assert(0 && "Unknown SCEV type!"); 2574 return UnknownValue; 2575 } 2576 2577 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2578 /// following equation: 2579 /// 2580 /// A * X = B (mod N) 2581 /// 2582 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2583 /// A and B isn't important. 2584 /// 2585 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2586 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2587 ScalarEvolution &SE) { 2588 uint32_t BW = A.getBitWidth(); 2589 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2590 assert(A != 0 && "A must be non-zero."); 2591 2592 // 1. D = gcd(A, N) 2593 // 2594 // The gcd of A and N may have only one prime factor: 2. The number of 2595 // trailing zeros in A is its multiplicity 2596 uint32_t Mult2 = A.countTrailingZeros(); 2597 // D = 2^Mult2 2598 2599 // 2. Check if B is divisible by D. 2600 // 2601 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2602 // is not less than multiplicity of this prime factor for D. 2603 if (B.countTrailingZeros() < Mult2) 2604 return new SCEVCouldNotCompute(); 2605 2606 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2607 // modulo (N / D). 2608 // 2609 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2610 // bit width during computations. 2611 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2612 APInt Mod(BW + 1, 0); 2613 Mod.set(BW - Mult2); // Mod = N / D 2614 APInt I = AD.multiplicativeInverse(Mod); 2615 2616 // 4. Compute the minimum unsigned root of the equation: 2617 // I * (B / D) mod (N / D) 2618 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2619 2620 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2621 // bits. 2622 return SE.getConstant(Result.trunc(BW)); 2623 } 2624 2625 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2626 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2627 /// might be the same) or two SCEVCouldNotCompute objects. 2628 /// 2629 static std::pair<SCEVHandle,SCEVHandle> 2630 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2631 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2632 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2633 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2634 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2635 2636 // We currently can only solve this if the coefficients are constants. 2637 if (!LC || !MC || !NC) { 2638 SCEV *CNC = new SCEVCouldNotCompute(); 2639 return std::make_pair(CNC, CNC); 2640 } 2641 2642 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2643 const APInt &L = LC->getValue()->getValue(); 2644 const APInt &M = MC->getValue()->getValue(); 2645 const APInt &N = NC->getValue()->getValue(); 2646 APInt Two(BitWidth, 2); 2647 APInt Four(BitWidth, 4); 2648 2649 { 2650 using namespace APIntOps; 2651 const APInt& C = L; 2652 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2653 // The B coefficient is M-N/2 2654 APInt B(M); 2655 B -= sdiv(N,Two); 2656 2657 // The A coefficient is N/2 2658 APInt A(N.sdiv(Two)); 2659 2660 // Compute the B^2-4ac term. 2661 APInt SqrtTerm(B); 2662 SqrtTerm *= B; 2663 SqrtTerm -= Four * (A * C); 2664 2665 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2666 // integer value or else APInt::sqrt() will assert. 2667 APInt SqrtVal(SqrtTerm.sqrt()); 2668 2669 // Compute the two solutions for the quadratic formula. 2670 // The divisions must be performed as signed divisions. 2671 APInt NegB(-B); 2672 APInt TwoA( A << 1 ); 2673 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2674 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2675 2676 return std::make_pair(SE.getConstant(Solution1), 2677 SE.getConstant(Solution2)); 2678 } // end APIntOps namespace 2679 } 2680 2681 /// HowFarToZero - Return the number of times a backedge comparing the specified 2682 /// value to zero will execute. If not computable, return UnknownValue 2683 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2684 // If the value is a constant 2685 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2686 // If the value is already zero, the branch will execute zero times. 2687 if (C->getValue()->isZero()) return C; 2688 return UnknownValue; // Otherwise it will loop infinitely. 2689 } 2690 2691 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2692 if (!AddRec || AddRec->getLoop() != L) 2693 return UnknownValue; 2694 2695 if (AddRec->isAffine()) { 2696 // If this is an affine expression, the execution count of this branch is 2697 // the minimum unsigned root of the following equation: 2698 // 2699 // Start + Step*N = 0 (mod 2^BW) 2700 // 2701 // equivalent to: 2702 // 2703 // Step*N = -Start (mod 2^BW) 2704 // 2705 // where BW is the common bit width of Start and Step. 2706 2707 // Get the initial value for the loop. 2708 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2709 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2710 2711 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2712 2713 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2714 // For now we handle only constant steps. 2715 2716 // First, handle unitary steps. 2717 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2718 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned) 2719 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2720 return Start; // N = Start (as unsigned) 2721 2722 // Then, try to solve the above equation provided that Start is constant. 2723 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2724 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2725 -StartC->getValue()->getValue(),SE); 2726 } 2727 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2728 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2729 // the quadratic equation to solve it. 2730 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2731 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2732 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2733 if (R1) { 2734 #if 0 2735 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2736 << " sol#2: " << *R2 << "\n"; 2737 #endif 2738 // Pick the smallest positive root value. 2739 if (ConstantInt *CB = 2740 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2741 R1->getValue(), R2->getValue()))) { 2742 if (CB->getZExtValue() == false) 2743 std::swap(R1, R2); // R1 is the minimum root now. 2744 2745 // We can only use this value if the chrec ends up with an exact zero 2746 // value at this index. When solving for "X*X != 5", for example, we 2747 // should not accept a root of 2. 2748 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2749 if (Val->isZero()) 2750 return R1; // We found a quadratic root! 2751 } 2752 } 2753 } 2754 2755 return UnknownValue; 2756 } 2757 2758 /// HowFarToNonZero - Return the number of times a backedge checking the 2759 /// specified value for nonzero will execute. If not computable, return 2760 /// UnknownValue 2761 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2762 // Loops that look like: while (X == 0) are very strange indeed. We don't 2763 // handle them yet except for the trivial case. This could be expanded in the 2764 // future as needed. 2765 2766 // If the value is a constant, check to see if it is known to be non-zero 2767 // already. If so, the backedge will execute zero times. 2768 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2769 if (!C->getValue()->isNullValue()) 2770 return SE.getIntegerSCEV(0, C->getType()); 2771 return UnknownValue; // Otherwise it will loop infinitely. 2772 } 2773 2774 // We could implement others, but I really doubt anyone writes loops like 2775 // this, and if they did, they would already be constant folded. 2776 return UnknownValue; 2777 } 2778 2779 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2780 /// (which may not be an immediate predecessor) which has exactly one 2781 /// successor from which BB is reachable, or null if no such block is 2782 /// found. 2783 /// 2784 BasicBlock * 2785 ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 2786 // If the block has a unique predecessor, the predecessor must have 2787 // no other successors from which BB is reachable. 2788 if (BasicBlock *Pred = BB->getSinglePredecessor()) 2789 return Pred; 2790 2791 // A loop's header is defined to be a block that dominates the loop. 2792 // If the loop has a preheader, it must be a block that has exactly 2793 // one successor that can reach BB. This is slightly more strict 2794 // than necessary, but works if critical edges are split. 2795 if (Loop *L = LI.getLoopFor(BB)) 2796 return L->getLoopPreheader(); 2797 2798 return 0; 2799 } 2800 2801 /// executesAtLeastOnce - Test whether entry to the loop is protected by 2802 /// a conditional between LHS and RHS. 2803 bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned, 2804 SCEV *LHS, SCEV *RHS) { 2805 BasicBlock *Preheader = L->getLoopPreheader(); 2806 BasicBlock *PreheaderDest = L->getHeader(); 2807 2808 // Starting at the preheader, climb up the predecessor chain, as long as 2809 // there are predecessors that can be found that have unique successors 2810 // leading to the original header. 2811 for (; Preheader; 2812 PreheaderDest = Preheader, 2813 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 2814 2815 BranchInst *LoopEntryPredicate = 2816 dyn_cast<BranchInst>(Preheader->getTerminator()); 2817 if (!LoopEntryPredicate || 2818 LoopEntryPredicate->isUnconditional()) 2819 continue; 2820 2821 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 2822 if (!ICI) continue; 2823 2824 // Now that we found a conditional branch that dominates the loop, check to 2825 // see if it is the comparison we are looking for. 2826 Value *PreCondLHS = ICI->getOperand(0); 2827 Value *PreCondRHS = ICI->getOperand(1); 2828 ICmpInst::Predicate Cond; 2829 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2830 Cond = ICI->getPredicate(); 2831 else 2832 Cond = ICI->getInversePredicate(); 2833 2834 switch (Cond) { 2835 case ICmpInst::ICMP_UGT: 2836 if (isSigned) continue; 2837 std::swap(PreCondLHS, PreCondRHS); 2838 Cond = ICmpInst::ICMP_ULT; 2839 break; 2840 case ICmpInst::ICMP_SGT: 2841 if (!isSigned) continue; 2842 std::swap(PreCondLHS, PreCondRHS); 2843 Cond = ICmpInst::ICMP_SLT; 2844 break; 2845 case ICmpInst::ICMP_ULT: 2846 if (isSigned) continue; 2847 break; 2848 case ICmpInst::ICMP_SLT: 2849 if (!isSigned) continue; 2850 break; 2851 default: 2852 continue; 2853 } 2854 2855 if (!PreCondLHS->getType()->isInteger()) continue; 2856 2857 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 2858 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 2859 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 2860 (LHS == SE.getNotSCEV(PreCondRHSSCEV) && 2861 RHS == SE.getNotSCEV(PreCondLHSSCEV))) 2862 return true; 2863 } 2864 2865 return false; 2866 } 2867 2868 /// HowManyLessThans - Return the number of times a backedge containing the 2869 /// specified less-than comparison will execute. If not computable, return 2870 /// UnknownValue. 2871 SCEVHandle ScalarEvolutionsImpl:: 2872 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 2873 // Only handle: "ADDREC < LoopInvariant". 2874 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2875 2876 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2877 if (!AddRec || AddRec->getLoop() != L) 2878 return UnknownValue; 2879 2880 if (AddRec->isAffine()) { 2881 // FORNOW: We only support unit strides. 2882 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 2883 if (AddRec->getOperand(1) != One) 2884 return UnknownValue; 2885 2886 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant 2887 // m. So, we count the number of iterations in which {n,+,1} < m is true. 2888 // Note that we cannot simply return max(m-n,0) because it's not safe to 2889 // treat m-n as signed nor unsigned due to overflow possibility. 2890 2891 // First, we get the value of the LHS in the first iteration: n 2892 SCEVHandle Start = AddRec->getOperand(0); 2893 2894 if (executesAtLeastOnce(L, isSigned, 2895 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) { 2896 // Since we know that the condition is true in order to enter the loop, 2897 // we know that it will run exactly m-n times. 2898 return SE.getMinusSCEV(RHS, Start); 2899 } else { 2900 // Then, we get the value of the LHS in the first iteration in which the 2901 // above condition doesn't hold. This equals to max(m,n). 2902 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start) 2903 : SE.getUMaxExpr(RHS, Start); 2904 2905 // Finally, we subtract these two values to get the number of times the 2906 // backedge is executed: max(m,n)-n. 2907 return SE.getMinusSCEV(End, Start); 2908 } 2909 } 2910 2911 return UnknownValue; 2912 } 2913 2914 /// getNumIterationsInRange - Return the number of iterations of this loop that 2915 /// produce values in the specified constant range. Another way of looking at 2916 /// this is that it returns the first iteration number where the value is not in 2917 /// the condition, thus computing the exit count. If the iteration count can't 2918 /// be computed, an instance of SCEVCouldNotCompute is returned. 2919 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2920 ScalarEvolution &SE) const { 2921 if (Range.isFullSet()) // Infinite loop. 2922 return new SCEVCouldNotCompute(); 2923 2924 // If the start is a non-zero constant, shift the range to simplify things. 2925 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2926 if (!SC->getValue()->isZero()) { 2927 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2928 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 2929 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 2930 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2931 return ShiftedAddRec->getNumIterationsInRange( 2932 Range.subtract(SC->getValue()->getValue()), SE); 2933 // This is strange and shouldn't happen. 2934 return new SCEVCouldNotCompute(); 2935 } 2936 2937 // The only time we can solve this is when we have all constant indices. 2938 // Otherwise, we cannot determine the overflow conditions. 2939 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2940 if (!isa<SCEVConstant>(getOperand(i))) 2941 return new SCEVCouldNotCompute(); 2942 2943 2944 // Okay at this point we know that all elements of the chrec are constants and 2945 // that the start element is zero. 2946 2947 // First check to see if the range contains zero. If not, the first 2948 // iteration exits. 2949 if (!Range.contains(APInt(getBitWidth(),0))) 2950 return SE.getConstant(ConstantInt::get(getType(),0)); 2951 2952 if (isAffine()) { 2953 // If this is an affine expression then we have this situation: 2954 // Solve {0,+,A} in Range === Ax in Range 2955 2956 // We know that zero is in the range. If A is positive then we know that 2957 // the upper value of the range must be the first possible exit value. 2958 // If A is negative then the lower of the range is the last possible loop 2959 // value. Also note that we already checked for a full range. 2960 APInt One(getBitWidth(),1); 2961 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2962 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 2963 2964 // The exit value should be (End+A)/A. 2965 APInt ExitVal = (End + A).udiv(A); 2966 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2967 2968 // Evaluate at the exit value. If we really did fall out of the valid 2969 // range, then we computed our trip count, otherwise wrap around or other 2970 // things must have happened. 2971 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 2972 if (Range.contains(Val->getValue())) 2973 return new SCEVCouldNotCompute(); // Something strange happened 2974 2975 // Ensure that the previous value is in the range. This is a sanity check. 2976 assert(Range.contains( 2977 EvaluateConstantChrecAtConstant(this, 2978 ConstantInt::get(ExitVal - One), SE)->getValue()) && 2979 "Linear scev computation is off in a bad way!"); 2980 return SE.getConstant(ExitValue); 2981 } else if (isQuadratic()) { 2982 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2983 // quadratic equation to solve it. To do this, we must frame our problem in 2984 // terms of figuring out when zero is crossed, instead of when 2985 // Range.getUpper() is crossed. 2986 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2987 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 2988 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 2989 2990 // Next, solve the constructed addrec 2991 std::pair<SCEVHandle,SCEVHandle> Roots = 2992 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 2993 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2994 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2995 if (R1) { 2996 // Pick the smallest positive root value. 2997 if (ConstantInt *CB = 2998 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2999 R1->getValue(), R2->getValue()))) { 3000 if (CB->getZExtValue() == false) 3001 std::swap(R1, R2); // R1 is the minimum root now. 3002 3003 // Make sure the root is not off by one. The returned iteration should 3004 // not be in the range, but the previous one should be. When solving 3005 // for "X*X < 5", for example, we should not return a root of 2. 3006 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3007 R1->getValue(), 3008 SE); 3009 if (Range.contains(R1Val->getValue())) { 3010 // The next iteration must be out of the range... 3011 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3012 3013 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3014 if (!Range.contains(R1Val->getValue())) 3015 return SE.getConstant(NextVal); 3016 return new SCEVCouldNotCompute(); // Something strange happened 3017 } 3018 3019 // If R1 was not in the range, then it is a good return value. Make 3020 // sure that R1-1 WAS in the range though, just in case. 3021 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3022 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3023 if (Range.contains(R1Val->getValue())) 3024 return R1; 3025 return new SCEVCouldNotCompute(); // Something strange happened 3026 } 3027 } 3028 } 3029 3030 // Fallback, if this is a general polynomial, figure out the progression 3031 // through brute force: evaluate until we find an iteration that fails the 3032 // test. This is likely to be slow, but getting an accurate trip count is 3033 // incredibly important, we will be able to simplify the exit test a lot, and 3034 // we are almost guaranteed to get a trip count in this case. 3035 ConstantInt *TestVal = ConstantInt::get(getType(), 0); 3036 ConstantInt *EndVal = TestVal; // Stop when we wrap around. 3037 do { 3038 ++NumBruteForceEvaluations; 3039 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE); 3040 if (!isa<SCEVConstant>(Val)) // This shouldn't happen. 3041 return new SCEVCouldNotCompute(); 3042 3043 // Check to see if we found the value! 3044 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) 3045 return SE.getConstant(TestVal); 3046 3047 // Increment to test the next index. 3048 TestVal = ConstantInt::get(TestVal->getValue()+1); 3049 } while (TestVal != EndVal); 3050 3051 return new SCEVCouldNotCompute(); 3052 } 3053 3054 3055 3056 //===----------------------------------------------------------------------===// 3057 // ScalarEvolution Class Implementation 3058 //===----------------------------------------------------------------------===// 3059 3060 bool ScalarEvolution::runOnFunction(Function &F) { 3061 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>()); 3062 return false; 3063 } 3064 3065 void ScalarEvolution::releaseMemory() { 3066 delete (ScalarEvolutionsImpl*)Impl; 3067 Impl = 0; 3068 } 3069 3070 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3071 AU.setPreservesAll(); 3072 AU.addRequiredTransitive<LoopInfo>(); 3073 } 3074 3075 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 3076 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 3077 } 3078 3079 /// hasSCEV - Return true if the SCEV for this value has already been 3080 /// computed. 3081 bool ScalarEvolution::hasSCEV(Value *V) const { 3082 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 3083 } 3084 3085 3086 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 3087 /// the specified value. 3088 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 3089 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 3090 } 3091 3092 3093 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 3094 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 3095 } 3096 3097 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 3098 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 3099 } 3100 3101 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 3102 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 3103 } 3104 3105 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 3106 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 3107 } 3108 3109 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 3110 const Loop *L) { 3111 // Print all inner loops first 3112 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3113 PrintLoopInfo(OS, SE, *I); 3114 3115 OS << "Loop " << L->getHeader()->getName() << ": "; 3116 3117 SmallVector<BasicBlock*, 8> ExitBlocks; 3118 L->getExitBlocks(ExitBlocks); 3119 if (ExitBlocks.size() != 1) 3120 OS << "<multiple exits> "; 3121 3122 if (SE->hasLoopInvariantIterationCount(L)) { 3123 OS << *SE->getIterationCount(L) << " iterations! "; 3124 } else { 3125 OS << "Unpredictable iteration count. "; 3126 } 3127 3128 OS << "\n"; 3129 } 3130 3131 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 3132 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 3133 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 3134 3135 OS << "Classifying expressions for: " << F.getName() << "\n"; 3136 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3137 if (I->getType()->isInteger()) { 3138 OS << *I; 3139 OS << " --> "; 3140 SCEVHandle SV = getSCEV(&*I); 3141 SV->print(OS); 3142 OS << "\t\t"; 3143 3144 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 3145 OS << "Exits: "; 3146 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 3147 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3148 OS << "<<Unknown>>"; 3149 } else { 3150 OS << *ExitValue; 3151 } 3152 } 3153 3154 3155 OS << "\n"; 3156 } 3157 3158 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 3159 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 3160 PrintLoopInfo(OS, this, *I); 3161 } 3162