1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/ConstantFolding.h" 67 #include "llvm/Analysis/Dominators.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DerivedTypes.h" 76 #include "llvm/IR/GlobalAlias.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/ConstantRange.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/GetElementPtrTypeIterator.h" 86 #include "llvm/Support/InstIterator.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetLibraryInfo.h" 90 #include <algorithm> 91 using namespace llvm; 92 93 STATISTIC(NumArrayLenItCounts, 94 "Number of trip counts computed with array length"); 95 STATISTIC(NumTripCountsComputed, 96 "Number of loops with predictable loop counts"); 97 STATISTIC(NumTripCountsNotComputed, 98 "Number of loops without predictable loop counts"); 99 STATISTIC(NumBruteForceTripCountsComputed, 100 "Number of loops with trip counts computed by force"); 101 102 static cl::opt<unsigned> 103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 104 cl::desc("Maximum number of iterations SCEV will " 105 "symbolically execute a constant " 106 "derived loop"), 107 cl::init(100)); 108 109 // FIXME: Enable this with XDEBUG when the test suite is clean. 110 static cl::opt<bool> 111 VerifySCEV("verify-scev", 112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 113 114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 115 "Scalar Evolution Analysis", false, true) 116 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 120 "Scalar Evolution Analysis", false, true) 121 char ScalarEvolution::ID = 0; 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 #endif 137 138 void SCEV::print(raw_ostream &OS) const { 139 switch (getSCEVType()) { 140 case scConstant: 141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 142 return; 143 case scTruncate: { 144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 145 const SCEV *Op = Trunc->getOperand(); 146 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 147 << *Trunc->getType() << ")"; 148 return; 149 } 150 case scZeroExtend: { 151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 152 const SCEV *Op = ZExt->getOperand(); 153 OS << "(zext " << *Op->getType() << " " << *Op << " to " 154 << *ZExt->getType() << ")"; 155 return; 156 } 157 case scSignExtend: { 158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 159 const SCEV *Op = SExt->getOperand(); 160 OS << "(sext " << *Op->getType() << " " << *Op << " to " 161 << *SExt->getType() << ")"; 162 return; 163 } 164 case scAddRecExpr: { 165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 166 OS << "{" << *AR->getOperand(0); 167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 168 OS << ",+," << *AR->getOperand(i); 169 OS << "}<"; 170 if (AR->getNoWrapFlags(FlagNUW)) 171 OS << "nuw><"; 172 if (AR->getNoWrapFlags(FlagNSW)) 173 OS << "nsw><"; 174 if (AR->getNoWrapFlags(FlagNW) && 175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 176 OS << "nw><"; 177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 178 OS << ">"; 179 return; 180 } 181 case scAddExpr: 182 case scMulExpr: 183 case scUMaxExpr: 184 case scSMaxExpr: { 185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 186 const char *OpStr = 0; 187 switch (NAry->getSCEVType()) { 188 case scAddExpr: OpStr = " + "; break; 189 case scMulExpr: OpStr = " * "; break; 190 case scUMaxExpr: OpStr = " umax "; break; 191 case scSMaxExpr: OpStr = " smax "; break; 192 } 193 OS << "("; 194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 195 I != E; ++I) { 196 OS << **I; 197 if (llvm::next(I) != E) 198 OS << OpStr; 199 } 200 OS << ")"; 201 switch (NAry->getSCEVType()) { 202 case scAddExpr: 203 case scMulExpr: 204 if (NAry->getNoWrapFlags(FlagNUW)) 205 OS << "<nuw>"; 206 if (NAry->getNoWrapFlags(FlagNSW)) 207 OS << "<nsw>"; 208 } 209 return; 210 } 211 case scUDivExpr: { 212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 214 return; 215 } 216 case scUnknown: { 217 const SCEVUnknown *U = cast<SCEVUnknown>(this); 218 Type *AllocTy; 219 if (U->isSizeOf(AllocTy)) { 220 OS << "sizeof(" << *AllocTy << ")"; 221 return; 222 } 223 if (U->isAlignOf(AllocTy)) { 224 OS << "alignof(" << *AllocTy << ")"; 225 return; 226 } 227 228 Type *CTy; 229 Constant *FieldNo; 230 if (U->isOffsetOf(CTy, FieldNo)) { 231 OS << "offsetof(" << *CTy << ", "; 232 WriteAsOperand(OS, FieldNo, false); 233 OS << ")"; 234 return; 235 } 236 237 // Otherwise just print it normally. 238 WriteAsOperand(OS, U->getValue(), false); 239 return; 240 } 241 case scCouldNotCompute: 242 OS << "***COULDNOTCOMPUTE***"; 243 return; 244 default: break; 245 } 246 llvm_unreachable("Unknown SCEV kind!"); 247 } 248 249 Type *SCEV::getType() const { 250 switch (getSCEVType()) { 251 case scConstant: 252 return cast<SCEVConstant>(this)->getType(); 253 case scTruncate: 254 case scZeroExtend: 255 case scSignExtend: 256 return cast<SCEVCastExpr>(this)->getType(); 257 case scAddRecExpr: 258 case scMulExpr: 259 case scUMaxExpr: 260 case scSMaxExpr: 261 return cast<SCEVNAryExpr>(this)->getType(); 262 case scAddExpr: 263 return cast<SCEVAddExpr>(this)->getType(); 264 case scUDivExpr: 265 return cast<SCEVUDivExpr>(this)->getType(); 266 case scUnknown: 267 return cast<SCEVUnknown>(this)->getType(); 268 case scCouldNotCompute: 269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 270 default: 271 llvm_unreachable("Unknown SCEV kind!"); 272 } 273 } 274 275 bool SCEV::isZero() const { 276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 277 return SC->getValue()->isZero(); 278 return false; 279 } 280 281 bool SCEV::isOne() const { 282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 283 return SC->getValue()->isOne(); 284 return false; 285 } 286 287 bool SCEV::isAllOnesValue() const { 288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 289 return SC->getValue()->isAllOnesValue(); 290 return false; 291 } 292 293 /// isNonConstantNegative - Return true if the specified scev is negated, but 294 /// not a constant. 295 bool SCEV::isNonConstantNegative() const { 296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 297 if (!Mul) return false; 298 299 // If there is a constant factor, it will be first. 300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 301 if (!SC) return false; 302 303 // Return true if the value is negative, this matches things like (-42 * V). 304 return SC->getValue()->getValue().isNegative(); 305 } 306 307 SCEVCouldNotCompute::SCEVCouldNotCompute() : 308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 309 310 bool SCEVCouldNotCompute::classof(const SCEV *S) { 311 return S->getSCEVType() == scCouldNotCompute; 312 } 313 314 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 315 FoldingSetNodeID ID; 316 ID.AddInteger(scConstant); 317 ID.AddPointer(V); 318 void *IP = 0; 319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 321 UniqueSCEVs.InsertNode(S, IP); 322 return S; 323 } 324 325 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 326 return getConstant(ConstantInt::get(getContext(), Val)); 327 } 328 329 const SCEV * 330 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 332 return getConstant(ConstantInt::get(ITy, V, isSigned)); 333 } 334 335 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 336 unsigned SCEVTy, const SCEV *op, Type *ty) 337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 338 339 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scTruncate, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot truncate non-integer value!"); 345 } 346 347 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot zero extend non-integer value!"); 353 } 354 355 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 356 const SCEV *op, Type *ty) 357 : SCEVCastExpr(ID, scSignExtend, op, ty) { 358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 359 (Ty->isIntegerTy() || Ty->isPointerTy()) && 360 "Cannot sign extend non-integer value!"); 361 } 362 363 void SCEVUnknown::deleted() { 364 // Clear this SCEVUnknown from various maps. 365 SE->forgetMemoizedResults(this); 366 367 // Remove this SCEVUnknown from the uniquing map. 368 SE->UniqueSCEVs.RemoveNode(this); 369 370 // Release the value. 371 setValPtr(0); 372 } 373 374 void SCEVUnknown::allUsesReplacedWith(Value *New) { 375 // Clear this SCEVUnknown from various maps. 376 SE->forgetMemoizedResults(this); 377 378 // Remove this SCEVUnknown from the uniquing map. 379 SE->UniqueSCEVs.RemoveNode(this); 380 381 // Update this SCEVUnknown to point to the new value. This is needed 382 // because there may still be outstanding SCEVs which still point to 383 // this SCEVUnknown. 384 setValPtr(New); 385 } 386 387 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 389 if (VCE->getOpcode() == Instruction::PtrToInt) 390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 391 if (CE->getOpcode() == Instruction::GetElementPtr && 392 CE->getOperand(0)->isNullValue() && 393 CE->getNumOperands() == 2) 394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 395 if (CI->isOne()) { 396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 397 ->getElementType(); 398 return true; 399 } 400 401 return false; 402 } 403 404 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 406 if (VCE->getOpcode() == Instruction::PtrToInt) 407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 408 if (CE->getOpcode() == Instruction::GetElementPtr && 409 CE->getOperand(0)->isNullValue()) { 410 Type *Ty = 411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 412 if (StructType *STy = dyn_cast<StructType>(Ty)) 413 if (!STy->isPacked() && 414 CE->getNumOperands() == 3 && 415 CE->getOperand(1)->isNullValue()) { 416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 417 if (CI->isOne() && 418 STy->getNumElements() == 2 && 419 STy->getElementType(0)->isIntegerTy(1)) { 420 AllocTy = STy->getElementType(1); 421 return true; 422 } 423 } 424 } 425 426 return false; 427 } 428 429 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 431 if (VCE->getOpcode() == Instruction::PtrToInt) 432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 433 if (CE->getOpcode() == Instruction::GetElementPtr && 434 CE->getNumOperands() == 3 && 435 CE->getOperand(0)->isNullValue() && 436 CE->getOperand(1)->isNullValue()) { 437 Type *Ty = 438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 439 // Ignore vector types here so that ScalarEvolutionExpander doesn't 440 // emit getelementptrs that index into vectors. 441 if (Ty->isStructTy() || Ty->isArrayTy()) { 442 CTy = Ty; 443 FieldNo = CE->getOperand(2); 444 return true; 445 } 446 } 447 448 return false; 449 } 450 451 //===----------------------------------------------------------------------===// 452 // SCEV Utilities 453 //===----------------------------------------------------------------------===// 454 455 namespace { 456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 457 /// than the complexity of the RHS. This comparator is used to canonicalize 458 /// expressions. 459 class SCEVComplexityCompare { 460 const LoopInfo *const LI; 461 public: 462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 463 464 // Return true or false if LHS is less than, or at least RHS, respectively. 465 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 466 return compare(LHS, RHS) < 0; 467 } 468 469 // Return negative, zero, or positive, if LHS is less than, equal to, or 470 // greater than RHS, respectively. A three-way result allows recursive 471 // comparisons to be more efficient. 472 int compare(const SCEV *LHS, const SCEV *RHS) const { 473 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 474 if (LHS == RHS) 475 return 0; 476 477 // Primarily, sort the SCEVs by their getSCEVType(). 478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 479 if (LType != RType) 480 return (int)LType - (int)RType; 481 482 // Aside from the getSCEVType() ordering, the particular ordering 483 // isn't very important except that it's beneficial to be consistent, 484 // so that (a + b) and (b + a) don't end up as different expressions. 485 switch (LType) { 486 case scUnknown: { 487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 489 490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 491 // not as complete as it could be. 492 const Value *LV = LU->getValue(), *RV = RU->getValue(); 493 494 // Order pointer values after integer values. This helps SCEVExpander 495 // form GEPs. 496 bool LIsPointer = LV->getType()->isPointerTy(), 497 RIsPointer = RV->getType()->isPointerTy(); 498 if (LIsPointer != RIsPointer) 499 return (int)LIsPointer - (int)RIsPointer; 500 501 // Compare getValueID values. 502 unsigned LID = LV->getValueID(), 503 RID = RV->getValueID(); 504 if (LID != RID) 505 return (int)LID - (int)RID; 506 507 // Sort arguments by their position. 508 if (const Argument *LA = dyn_cast<Argument>(LV)) { 509 const Argument *RA = cast<Argument>(RV); 510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 511 return (int)LArgNo - (int)RArgNo; 512 } 513 514 // For instructions, compare their loop depth, and their operand 515 // count. This is pretty loose. 516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 517 const Instruction *RInst = cast<Instruction>(RV); 518 519 // Compare loop depths. 520 const BasicBlock *LParent = LInst->getParent(), 521 *RParent = RInst->getParent(); 522 if (LParent != RParent) { 523 unsigned LDepth = LI->getLoopDepth(LParent), 524 RDepth = LI->getLoopDepth(RParent); 525 if (LDepth != RDepth) 526 return (int)LDepth - (int)RDepth; 527 } 528 529 // Compare the number of operands. 530 unsigned LNumOps = LInst->getNumOperands(), 531 RNumOps = RInst->getNumOperands(); 532 return (int)LNumOps - (int)RNumOps; 533 } 534 535 return 0; 536 } 537 538 case scConstant: { 539 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 540 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 541 542 // Compare constant values. 543 const APInt &LA = LC->getValue()->getValue(); 544 const APInt &RA = RC->getValue()->getValue(); 545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 546 if (LBitWidth != RBitWidth) 547 return (int)LBitWidth - (int)RBitWidth; 548 return LA.ult(RA) ? -1 : 1; 549 } 550 551 case scAddRecExpr: { 552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 554 555 // Compare addrec loop depths. 556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 557 if (LLoop != RLoop) { 558 unsigned LDepth = LLoop->getLoopDepth(), 559 RDepth = RLoop->getLoopDepth(); 560 if (LDepth != RDepth) 561 return (int)LDepth - (int)RDepth; 562 } 563 564 // Addrec complexity grows with operand count. 565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 566 if (LNumOps != RNumOps) 567 return (int)LNumOps - (int)RNumOps; 568 569 // Lexicographically compare. 570 for (unsigned i = 0; i != LNumOps; ++i) { 571 long X = compare(LA->getOperand(i), RA->getOperand(i)); 572 if (X != 0) 573 return X; 574 } 575 576 return 0; 577 } 578 579 case scAddExpr: 580 case scMulExpr: 581 case scSMaxExpr: 582 case scUMaxExpr: { 583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 585 586 // Lexicographically compare n-ary expressions. 587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 default: 620 llvm_unreachable("Unknown SCEV kind!"); 621 } 622 } 623 }; 624 } 625 626 /// GroupByComplexity - Given a list of SCEV objects, order them by their 627 /// complexity, and group objects of the same complexity together by value. 628 /// When this routine is finished, we know that any duplicates in the vector are 629 /// consecutive and that complexity is monotonically increasing. 630 /// 631 /// Note that we go take special precautions to ensure that we get deterministic 632 /// results from this routine. In other words, we don't want the results of 633 /// this to depend on where the addresses of various SCEV objects happened to 634 /// land in memory. 635 /// 636 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 637 LoopInfo *LI) { 638 if (Ops.size() < 2) return; // Noop 639 if (Ops.size() == 2) { 640 // This is the common case, which also happens to be trivially simple. 641 // Special case it. 642 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 643 if (SCEVComplexityCompare(LI)(RHS, LHS)) 644 std::swap(LHS, RHS); 645 return; 646 } 647 648 // Do the rough sort by complexity. 649 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 650 651 // Now that we are sorted by complexity, group elements of the same 652 // complexity. Note that this is, at worst, N^2, but the vector is likely to 653 // be extremely short in practice. Note that we take this approach because we 654 // do not want to depend on the addresses of the objects we are grouping. 655 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 656 const SCEV *S = Ops[i]; 657 unsigned Complexity = S->getSCEVType(); 658 659 // If there are any objects of the same complexity and same value as this 660 // one, group them. 661 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 662 if (Ops[j] == S) { // Found a duplicate. 663 // Move it to immediately after i'th element. 664 std::swap(Ops[i+1], Ops[j]); 665 ++i; // no need to rescan it. 666 if (i == e-2) return; // Done! 667 } 668 } 669 } 670 } 671 672 673 674 //===----------------------------------------------------------------------===// 675 // Simple SCEV method implementations 676 //===----------------------------------------------------------------------===// 677 678 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 679 /// Assume, K > 0. 680 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 681 ScalarEvolution &SE, 682 Type *ResultTy) { 683 // Handle the simplest case efficiently. 684 if (K == 1) 685 return SE.getTruncateOrZeroExtend(It, ResultTy); 686 687 // We are using the following formula for BC(It, K): 688 // 689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 690 // 691 // Suppose, W is the bitwidth of the return value. We must be prepared for 692 // overflow. Hence, we must assure that the result of our computation is 693 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 694 // safe in modular arithmetic. 695 // 696 // However, this code doesn't use exactly that formula; the formula it uses 697 // is something like the following, where T is the number of factors of 2 in 698 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 699 // exponentiation: 700 // 701 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 702 // 703 // This formula is trivially equivalent to the previous formula. However, 704 // this formula can be implemented much more efficiently. The trick is that 705 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 706 // arithmetic. To do exact division in modular arithmetic, all we have 707 // to do is multiply by the inverse. Therefore, this step can be done at 708 // width W. 709 // 710 // The next issue is how to safely do the division by 2^T. The way this 711 // is done is by doing the multiplication step at a width of at least W + T 712 // bits. This way, the bottom W+T bits of the product are accurate. Then, 713 // when we perform the division by 2^T (which is equivalent to a right shift 714 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 715 // truncated out after the division by 2^T. 716 // 717 // In comparison to just directly using the first formula, this technique 718 // is much more efficient; using the first formula requires W * K bits, 719 // but this formula less than W + K bits. Also, the first formula requires 720 // a division step, whereas this formula only requires multiplies and shifts. 721 // 722 // It doesn't matter whether the subtraction step is done in the calculation 723 // width or the input iteration count's width; if the subtraction overflows, 724 // the result must be zero anyway. We prefer here to do it in the width of 725 // the induction variable because it helps a lot for certain cases; CodeGen 726 // isn't smart enough to ignore the overflow, which leads to much less 727 // efficient code if the width of the subtraction is wider than the native 728 // register width. 729 // 730 // (It's possible to not widen at all by pulling out factors of 2 before 731 // the multiplication; for example, K=2 can be calculated as 732 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 733 // extra arithmetic, so it's not an obvious win, and it gets 734 // much more complicated for K > 3.) 735 736 // Protection from insane SCEVs; this bound is conservative, 737 // but it probably doesn't matter. 738 if (K > 1000) 739 return SE.getCouldNotCompute(); 740 741 unsigned W = SE.getTypeSizeInBits(ResultTy); 742 743 // Calculate K! / 2^T and T; we divide out the factors of two before 744 // multiplying for calculating K! / 2^T to avoid overflow. 745 // Other overflow doesn't matter because we only care about the bottom 746 // W bits of the result. 747 APInt OddFactorial(W, 1); 748 unsigned T = 1; 749 for (unsigned i = 3; i <= K; ++i) { 750 APInt Mult(W, i); 751 unsigned TwoFactors = Mult.countTrailingZeros(); 752 T += TwoFactors; 753 Mult = Mult.lshr(TwoFactors); 754 OddFactorial *= Mult; 755 } 756 757 // We need at least W + T bits for the multiplication step 758 unsigned CalculationBits = W + T; 759 760 // Calculate 2^T, at width T+W. 761 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 762 763 // Calculate the multiplicative inverse of K! / 2^T; 764 // this multiplication factor will perform the exact division by 765 // K! / 2^T. 766 APInt Mod = APInt::getSignedMinValue(W+1); 767 APInt MultiplyFactor = OddFactorial.zext(W+1); 768 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 769 MultiplyFactor = MultiplyFactor.trunc(W); 770 771 // Calculate the product, at width T+W 772 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 773 CalculationBits); 774 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 775 for (unsigned i = 1; i != K; ++i) { 776 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 777 Dividend = SE.getMulExpr(Dividend, 778 SE.getTruncateOrZeroExtend(S, CalculationTy)); 779 } 780 781 // Divide by 2^T 782 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 783 784 // Truncate the result, and divide by K! / 2^T. 785 786 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 787 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 788 } 789 790 /// evaluateAtIteration - Return the value of this chain of recurrences at 791 /// the specified iteration number. We can evaluate this recurrence by 792 /// multiplying each element in the chain by the binomial coefficient 793 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 794 /// 795 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 796 /// 797 /// where BC(It, k) stands for binomial coefficient. 798 /// 799 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 800 ScalarEvolution &SE) const { 801 const SCEV *Result = getStart(); 802 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 803 // The computation is correct in the face of overflow provided that the 804 // multiplication is performed _after_ the evaluation of the binomial 805 // coefficient. 806 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 807 if (isa<SCEVCouldNotCompute>(Coeff)) 808 return Coeff; 809 810 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 811 } 812 return Result; 813 } 814 815 //===----------------------------------------------------------------------===// 816 // SCEV Expression folder implementations 817 //===----------------------------------------------------------------------===// 818 819 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 820 Type *Ty) { 821 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 822 "This is not a truncating conversion!"); 823 assert(isSCEVable(Ty) && 824 "This is not a conversion to a SCEVable type!"); 825 Ty = getEffectiveSCEVType(Ty); 826 827 FoldingSetNodeID ID; 828 ID.AddInteger(scTruncate); 829 ID.AddPointer(Op); 830 ID.AddPointer(Ty); 831 void *IP = 0; 832 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 833 834 // Fold if the operand is constant. 835 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 836 return getConstant( 837 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 838 839 // trunc(trunc(x)) --> trunc(x) 840 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 841 return getTruncateExpr(ST->getOperand(), Ty); 842 843 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 844 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 845 return getTruncateOrSignExtend(SS->getOperand(), Ty); 846 847 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 848 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 849 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 850 851 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 852 // eliminate all the truncates. 853 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 854 SmallVector<const SCEV *, 4> Operands; 855 bool hasTrunc = false; 856 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 857 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 858 hasTrunc = isa<SCEVTruncateExpr>(S); 859 Operands.push_back(S); 860 } 861 if (!hasTrunc) 862 return getAddExpr(Operands); 863 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 864 } 865 866 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 867 // eliminate all the truncates. 868 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 869 SmallVector<const SCEV *, 4> Operands; 870 bool hasTrunc = false; 871 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 872 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 873 hasTrunc = isa<SCEVTruncateExpr>(S); 874 Operands.push_back(S); 875 } 876 if (!hasTrunc) 877 return getMulExpr(Operands); 878 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 879 } 880 881 // If the input value is a chrec scev, truncate the chrec's operands. 882 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 883 SmallVector<const SCEV *, 4> Operands; 884 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 885 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 886 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 887 } 888 889 // The cast wasn't folded; create an explicit cast node. We can reuse 890 // the existing insert position since if we get here, we won't have 891 // made any changes which would invalidate it. 892 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 893 Op, Ty); 894 UniqueSCEVs.InsertNode(S, IP); 895 return S; 896 } 897 898 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 899 Type *Ty) { 900 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 901 "This is not an extending conversion!"); 902 assert(isSCEVable(Ty) && 903 "This is not a conversion to a SCEVable type!"); 904 Ty = getEffectiveSCEVType(Ty); 905 906 // Fold if the operand is constant. 907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 908 return getConstant( 909 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 910 911 // zext(zext(x)) --> zext(x) 912 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 913 return getZeroExtendExpr(SZ->getOperand(), Ty); 914 915 // Before doing any expensive analysis, check to see if we've already 916 // computed a SCEV for this Op and Ty. 917 FoldingSetNodeID ID; 918 ID.AddInteger(scZeroExtend); 919 ID.AddPointer(Op); 920 ID.AddPointer(Ty); 921 void *IP = 0; 922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 923 924 // zext(trunc(x)) --> zext(x) or x or trunc(x) 925 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 926 // It's possible the bits taken off by the truncate were all zero bits. If 927 // so, we should be able to simplify this further. 928 const SCEV *X = ST->getOperand(); 929 ConstantRange CR = getUnsignedRange(X); 930 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 931 unsigned NewBits = getTypeSizeInBits(Ty); 932 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 933 CR.zextOrTrunc(NewBits))) 934 return getTruncateOrZeroExtend(X, Ty); 935 } 936 937 // If the input value is a chrec scev, and we can prove that the value 938 // did not overflow the old, smaller, value, we can zero extend all of the 939 // operands (often constants). This allows analysis of something like 940 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 941 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 942 if (AR->isAffine()) { 943 const SCEV *Start = AR->getStart(); 944 const SCEV *Step = AR->getStepRecurrence(*this); 945 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 946 const Loop *L = AR->getLoop(); 947 948 // If we have special knowledge that this addrec won't overflow, 949 // we don't need to do any further analysis. 950 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 951 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 952 getZeroExtendExpr(Step, Ty), 953 L, AR->getNoWrapFlags()); 954 955 // Check whether the backedge-taken count is SCEVCouldNotCompute. 956 // Note that this serves two purposes: It filters out loops that are 957 // simply not analyzable, and it covers the case where this code is 958 // being called from within backedge-taken count analysis, such that 959 // attempting to ask for the backedge-taken count would likely result 960 // in infinite recursion. In the later case, the analysis code will 961 // cope with a conservative value, and it will take care to purge 962 // that value once it has finished. 963 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 964 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 965 // Manually compute the final value for AR, checking for 966 // overflow. 967 968 // Check whether the backedge-taken count can be losslessly casted to 969 // the addrec's type. The count is always unsigned. 970 const SCEV *CastedMaxBECount = 971 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 972 const SCEV *RecastedMaxBECount = 973 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 974 if (MaxBECount == RecastedMaxBECount) { 975 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 976 // Check whether Start+Step*MaxBECount has no unsigned overflow. 977 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 978 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 979 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 980 const SCEV *WideMaxBECount = 981 getZeroExtendExpr(CastedMaxBECount, WideTy); 982 const SCEV *OperandExtendedAdd = 983 getAddExpr(WideStart, 984 getMulExpr(WideMaxBECount, 985 getZeroExtendExpr(Step, WideTy))); 986 if (ZAdd == OperandExtendedAdd) { 987 // Cache knowledge of AR NUW, which is propagated to this AddRec. 988 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 989 // Return the expression with the addrec on the outside. 990 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 991 getZeroExtendExpr(Step, Ty), 992 L, AR->getNoWrapFlags()); 993 } 994 // Similar to above, only this time treat the step value as signed. 995 // This covers loops that count down. 996 OperandExtendedAdd = 997 getAddExpr(WideStart, 998 getMulExpr(WideMaxBECount, 999 getSignExtendExpr(Step, WideTy))); 1000 if (ZAdd == OperandExtendedAdd) { 1001 // Cache knowledge of AR NW, which is propagated to this AddRec. 1002 // Negative step causes unsigned wrap, but it still can't self-wrap. 1003 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1004 // Return the expression with the addrec on the outside. 1005 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1006 getSignExtendExpr(Step, Ty), 1007 L, AR->getNoWrapFlags()); 1008 } 1009 } 1010 1011 // If the backedge is guarded by a comparison with the pre-inc value 1012 // the addrec is safe. Also, if the entry is guarded by a comparison 1013 // with the start value and the backedge is guarded by a comparison 1014 // with the post-inc value, the addrec is safe. 1015 if (isKnownPositive(Step)) { 1016 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1017 getUnsignedRange(Step).getUnsignedMax()); 1018 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1019 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1020 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1021 AR->getPostIncExpr(*this), N))) { 1022 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1023 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1024 // Return the expression with the addrec on the outside. 1025 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1026 getZeroExtendExpr(Step, Ty), 1027 L, AR->getNoWrapFlags()); 1028 } 1029 } else if (isKnownNegative(Step)) { 1030 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1031 getSignedRange(Step).getSignedMin()); 1032 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1033 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1034 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1035 AR->getPostIncExpr(*this), N))) { 1036 // Cache knowledge of AR NW, which is propagated to this AddRec. 1037 // Negative step causes unsigned wrap, but it still can't self-wrap. 1038 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1039 // Return the expression with the addrec on the outside. 1040 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1041 getSignExtendExpr(Step, Ty), 1042 L, AR->getNoWrapFlags()); 1043 } 1044 } 1045 } 1046 } 1047 1048 // The cast wasn't folded; create an explicit cast node. 1049 // Recompute the insert position, as it may have been invalidated. 1050 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1051 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1052 Op, Ty); 1053 UniqueSCEVs.InsertNode(S, IP); 1054 return S; 1055 } 1056 1057 // Get the limit of a recurrence such that incrementing by Step cannot cause 1058 // signed overflow as long as the value of the recurrence within the loop does 1059 // not exceed this limit before incrementing. 1060 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1061 ICmpInst::Predicate *Pred, 1062 ScalarEvolution *SE) { 1063 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1064 if (SE->isKnownPositive(Step)) { 1065 *Pred = ICmpInst::ICMP_SLT; 1066 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1067 SE->getSignedRange(Step).getSignedMax()); 1068 } 1069 if (SE->isKnownNegative(Step)) { 1070 *Pred = ICmpInst::ICMP_SGT; 1071 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1072 SE->getSignedRange(Step).getSignedMin()); 1073 } 1074 return 0; 1075 } 1076 1077 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1078 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1079 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1080 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1081 // result, the expression "Step + sext(PreIncAR)" is congruent with 1082 // "sext(PostIncAR)" 1083 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1084 Type *Ty, 1085 ScalarEvolution *SE) { 1086 const Loop *L = AR->getLoop(); 1087 const SCEV *Start = AR->getStart(); 1088 const SCEV *Step = AR->getStepRecurrence(*SE); 1089 1090 // Check for a simple looking step prior to loop entry. 1091 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1092 if (!SA) 1093 return 0; 1094 1095 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1096 // subtraction is expensive. For this purpose, perform a quick and dirty 1097 // difference, by checking for Step in the operand list. 1098 SmallVector<const SCEV *, 4> DiffOps; 1099 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1100 I != E; ++I) { 1101 if (*I != Step) 1102 DiffOps.push_back(*I); 1103 } 1104 if (DiffOps.size() == SA->getNumOperands()) 1105 return 0; 1106 1107 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1108 // same three conditions that getSignExtendedExpr checks. 1109 1110 // 1. NSW flags on the step increment. 1111 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1112 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1113 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1114 1115 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1116 return PreStart; 1117 1118 // 2. Direct overflow check on the step operation's expression. 1119 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1120 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1121 const SCEV *OperandExtendedStart = 1122 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1123 SE->getSignExtendExpr(Step, WideTy)); 1124 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1125 // Cache knowledge of PreAR NSW. 1126 if (PreAR) 1127 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1128 // FIXME: this optimization needs a unit test 1129 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1130 return PreStart; 1131 } 1132 1133 // 3. Loop precondition. 1134 ICmpInst::Predicate Pred; 1135 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1136 1137 if (OverflowLimit && 1138 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1139 return PreStart; 1140 } 1141 return 0; 1142 } 1143 1144 // Get the normalized sign-extended expression for this AddRec's Start. 1145 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1146 Type *Ty, 1147 ScalarEvolution *SE) { 1148 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1149 if (!PreStart) 1150 return SE->getSignExtendExpr(AR->getStart(), Ty); 1151 1152 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1153 SE->getSignExtendExpr(PreStart, Ty)); 1154 } 1155 1156 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1157 Type *Ty) { 1158 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1159 "This is not an extending conversion!"); 1160 assert(isSCEVable(Ty) && 1161 "This is not a conversion to a SCEVable type!"); 1162 Ty = getEffectiveSCEVType(Ty); 1163 1164 // Fold if the operand is constant. 1165 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1166 return getConstant( 1167 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1168 1169 // sext(sext(x)) --> sext(x) 1170 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1171 return getSignExtendExpr(SS->getOperand(), Ty); 1172 1173 // sext(zext(x)) --> zext(x) 1174 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1175 return getZeroExtendExpr(SZ->getOperand(), Ty); 1176 1177 // Before doing any expensive analysis, check to see if we've already 1178 // computed a SCEV for this Op and Ty. 1179 FoldingSetNodeID ID; 1180 ID.AddInteger(scSignExtend); 1181 ID.AddPointer(Op); 1182 ID.AddPointer(Ty); 1183 void *IP = 0; 1184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1185 1186 // If the input value is provably positive, build a zext instead. 1187 if (isKnownNonNegative(Op)) 1188 return getZeroExtendExpr(Op, Ty); 1189 1190 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1191 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1192 // It's possible the bits taken off by the truncate were all sign bits. If 1193 // so, we should be able to simplify this further. 1194 const SCEV *X = ST->getOperand(); 1195 ConstantRange CR = getSignedRange(X); 1196 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1197 unsigned NewBits = getTypeSizeInBits(Ty); 1198 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1199 CR.sextOrTrunc(NewBits))) 1200 return getTruncateOrSignExtend(X, Ty); 1201 } 1202 1203 // If the input value is a chrec scev, and we can prove that the value 1204 // did not overflow the old, smaller, value, we can sign extend all of the 1205 // operands (often constants). This allows analysis of something like 1206 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1207 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1208 if (AR->isAffine()) { 1209 const SCEV *Start = AR->getStart(); 1210 const SCEV *Step = AR->getStepRecurrence(*this); 1211 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1212 const Loop *L = AR->getLoop(); 1213 1214 // If we have special knowledge that this addrec won't overflow, 1215 // we don't need to do any further analysis. 1216 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1217 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1218 getSignExtendExpr(Step, Ty), 1219 L, SCEV::FlagNSW); 1220 1221 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1222 // Note that this serves two purposes: It filters out loops that are 1223 // simply not analyzable, and it covers the case where this code is 1224 // being called from within backedge-taken count analysis, such that 1225 // attempting to ask for the backedge-taken count would likely result 1226 // in infinite recursion. In the later case, the analysis code will 1227 // cope with a conservative value, and it will take care to purge 1228 // that value once it has finished. 1229 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1230 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1231 // Manually compute the final value for AR, checking for 1232 // overflow. 1233 1234 // Check whether the backedge-taken count can be losslessly casted to 1235 // the addrec's type. The count is always unsigned. 1236 const SCEV *CastedMaxBECount = 1237 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1238 const SCEV *RecastedMaxBECount = 1239 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1240 if (MaxBECount == RecastedMaxBECount) { 1241 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1242 // Check whether Start+Step*MaxBECount has no signed overflow. 1243 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1244 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1245 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1246 const SCEV *WideMaxBECount = 1247 getZeroExtendExpr(CastedMaxBECount, WideTy); 1248 const SCEV *OperandExtendedAdd = 1249 getAddExpr(WideStart, 1250 getMulExpr(WideMaxBECount, 1251 getSignExtendExpr(Step, WideTy))); 1252 if (SAdd == OperandExtendedAdd) { 1253 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1254 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1255 // Return the expression with the addrec on the outside. 1256 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1257 getSignExtendExpr(Step, Ty), 1258 L, AR->getNoWrapFlags()); 1259 } 1260 // Similar to above, only this time treat the step value as unsigned. 1261 // This covers loops that count up with an unsigned step. 1262 OperandExtendedAdd = 1263 getAddExpr(WideStart, 1264 getMulExpr(WideMaxBECount, 1265 getZeroExtendExpr(Step, WideTy))); 1266 if (SAdd == OperandExtendedAdd) { 1267 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1268 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1269 // Return the expression with the addrec on the outside. 1270 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1271 getZeroExtendExpr(Step, Ty), 1272 L, AR->getNoWrapFlags()); 1273 } 1274 } 1275 1276 // If the backedge is guarded by a comparison with the pre-inc value 1277 // the addrec is safe. Also, if the entry is guarded by a comparison 1278 // with the start value and the backedge is guarded by a comparison 1279 // with the post-inc value, the addrec is safe. 1280 ICmpInst::Predicate Pred; 1281 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1282 if (OverflowLimit && 1283 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1284 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1285 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1286 OverflowLimit)))) { 1287 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1288 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1289 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1290 getSignExtendExpr(Step, Ty), 1291 L, AR->getNoWrapFlags()); 1292 } 1293 } 1294 } 1295 1296 // The cast wasn't folded; create an explicit cast node. 1297 // Recompute the insert position, as it may have been invalidated. 1298 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1299 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1300 Op, Ty); 1301 UniqueSCEVs.InsertNode(S, IP); 1302 return S; 1303 } 1304 1305 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1306 /// unspecified bits out to the given type. 1307 /// 1308 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1309 Type *Ty) { 1310 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1311 "This is not an extending conversion!"); 1312 assert(isSCEVable(Ty) && 1313 "This is not a conversion to a SCEVable type!"); 1314 Ty = getEffectiveSCEVType(Ty); 1315 1316 // Sign-extend negative constants. 1317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1318 if (SC->getValue()->getValue().isNegative()) 1319 return getSignExtendExpr(Op, Ty); 1320 1321 // Peel off a truncate cast. 1322 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1323 const SCEV *NewOp = T->getOperand(); 1324 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1325 return getAnyExtendExpr(NewOp, Ty); 1326 return getTruncateOrNoop(NewOp, Ty); 1327 } 1328 1329 // Next try a zext cast. If the cast is folded, use it. 1330 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1331 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1332 return ZExt; 1333 1334 // Next try a sext cast. If the cast is folded, use it. 1335 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1336 if (!isa<SCEVSignExtendExpr>(SExt)) 1337 return SExt; 1338 1339 // Force the cast to be folded into the operands of an addrec. 1340 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1341 SmallVector<const SCEV *, 4> Ops; 1342 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1343 I != E; ++I) 1344 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1345 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1346 } 1347 1348 // If the expression is obviously signed, use the sext cast value. 1349 if (isa<SCEVSMaxExpr>(Op)) 1350 return SExt; 1351 1352 // Absent any other information, use the zext cast value. 1353 return ZExt; 1354 } 1355 1356 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1357 /// a list of operands to be added under the given scale, update the given 1358 /// map. This is a helper function for getAddRecExpr. As an example of 1359 /// what it does, given a sequence of operands that would form an add 1360 /// expression like this: 1361 /// 1362 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1363 /// 1364 /// where A and B are constants, update the map with these values: 1365 /// 1366 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1367 /// 1368 /// and add 13 + A*B*29 to AccumulatedConstant. 1369 /// This will allow getAddRecExpr to produce this: 1370 /// 1371 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1372 /// 1373 /// This form often exposes folding opportunities that are hidden in 1374 /// the original operand list. 1375 /// 1376 /// Return true iff it appears that any interesting folding opportunities 1377 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1378 /// the common case where no interesting opportunities are present, and 1379 /// is also used as a check to avoid infinite recursion. 1380 /// 1381 static bool 1382 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1383 SmallVector<const SCEV *, 8> &NewOps, 1384 APInt &AccumulatedConstant, 1385 const SCEV *const *Ops, size_t NumOperands, 1386 const APInt &Scale, 1387 ScalarEvolution &SE) { 1388 bool Interesting = false; 1389 1390 // Iterate over the add operands. They are sorted, with constants first. 1391 unsigned i = 0; 1392 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1393 ++i; 1394 // Pull a buried constant out to the outside. 1395 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1396 Interesting = true; 1397 AccumulatedConstant += Scale * C->getValue()->getValue(); 1398 } 1399 1400 // Next comes everything else. We're especially interested in multiplies 1401 // here, but they're in the middle, so just visit the rest with one loop. 1402 for (; i != NumOperands; ++i) { 1403 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1404 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1405 APInt NewScale = 1406 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1407 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1408 // A multiplication of a constant with another add; recurse. 1409 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1410 Interesting |= 1411 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1412 Add->op_begin(), Add->getNumOperands(), 1413 NewScale, SE); 1414 } else { 1415 // A multiplication of a constant with some other value. Update 1416 // the map. 1417 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1418 const SCEV *Key = SE.getMulExpr(MulOps); 1419 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1420 M.insert(std::make_pair(Key, NewScale)); 1421 if (Pair.second) { 1422 NewOps.push_back(Pair.first->first); 1423 } else { 1424 Pair.first->second += NewScale; 1425 // The map already had an entry for this value, which may indicate 1426 // a folding opportunity. 1427 Interesting = true; 1428 } 1429 } 1430 } else { 1431 // An ordinary operand. Update the map. 1432 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1433 M.insert(std::make_pair(Ops[i], Scale)); 1434 if (Pair.second) { 1435 NewOps.push_back(Pair.first->first); 1436 } else { 1437 Pair.first->second += Scale; 1438 // The map already had an entry for this value, which may indicate 1439 // a folding opportunity. 1440 Interesting = true; 1441 } 1442 } 1443 } 1444 1445 return Interesting; 1446 } 1447 1448 namespace { 1449 struct APIntCompare { 1450 bool operator()(const APInt &LHS, const APInt &RHS) const { 1451 return LHS.ult(RHS); 1452 } 1453 }; 1454 } 1455 1456 /// getAddExpr - Get a canonical add expression, or something simpler if 1457 /// possible. 1458 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1459 SCEV::NoWrapFlags Flags) { 1460 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1461 "only nuw or nsw allowed"); 1462 assert(!Ops.empty() && "Cannot get empty add!"); 1463 if (Ops.size() == 1) return Ops[0]; 1464 #ifndef NDEBUG 1465 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1466 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1467 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1468 "SCEVAddExpr operand types don't match!"); 1469 #endif 1470 1471 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1472 // And vice-versa. 1473 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1474 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1475 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1476 bool All = true; 1477 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1478 E = Ops.end(); I != E; ++I) 1479 if (!isKnownNonNegative(*I)) { 1480 All = false; 1481 break; 1482 } 1483 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1484 } 1485 1486 // Sort by complexity, this groups all similar expression types together. 1487 GroupByComplexity(Ops, LI); 1488 1489 // If there are any constants, fold them together. 1490 unsigned Idx = 0; 1491 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1492 ++Idx; 1493 assert(Idx < Ops.size()); 1494 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1495 // We found two constants, fold them together! 1496 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1497 RHSC->getValue()->getValue()); 1498 if (Ops.size() == 2) return Ops[0]; 1499 Ops.erase(Ops.begin()+1); // Erase the folded element 1500 LHSC = cast<SCEVConstant>(Ops[0]); 1501 } 1502 1503 // If we are left with a constant zero being added, strip it off. 1504 if (LHSC->getValue()->isZero()) { 1505 Ops.erase(Ops.begin()); 1506 --Idx; 1507 } 1508 1509 if (Ops.size() == 1) return Ops[0]; 1510 } 1511 1512 // Okay, check to see if the same value occurs in the operand list more than 1513 // once. If so, merge them together into an multiply expression. Since we 1514 // sorted the list, these values are required to be adjacent. 1515 Type *Ty = Ops[0]->getType(); 1516 bool FoundMatch = false; 1517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1519 // Scan ahead to count how many equal operands there are. 1520 unsigned Count = 2; 1521 while (i+Count != e && Ops[i+Count] == Ops[i]) 1522 ++Count; 1523 // Merge the values into a multiply. 1524 const SCEV *Scale = getConstant(Ty, Count); 1525 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1526 if (Ops.size() == Count) 1527 return Mul; 1528 Ops[i] = Mul; 1529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1530 --i; e -= Count - 1; 1531 FoundMatch = true; 1532 } 1533 if (FoundMatch) 1534 return getAddExpr(Ops, Flags); 1535 1536 // Check for truncates. If all the operands are truncated from the same 1537 // type, see if factoring out the truncate would permit the result to be 1538 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1539 // if the contents of the resulting outer trunc fold to something simple. 1540 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1541 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1542 Type *DstType = Trunc->getType(); 1543 Type *SrcType = Trunc->getOperand()->getType(); 1544 SmallVector<const SCEV *, 8> LargeOps; 1545 bool Ok = true; 1546 // Check all the operands to see if they can be represented in the 1547 // source type of the truncate. 1548 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1549 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1550 if (T->getOperand()->getType() != SrcType) { 1551 Ok = false; 1552 break; 1553 } 1554 LargeOps.push_back(T->getOperand()); 1555 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1556 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1557 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1558 SmallVector<const SCEV *, 8> LargeMulOps; 1559 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1560 if (const SCEVTruncateExpr *T = 1561 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1562 if (T->getOperand()->getType() != SrcType) { 1563 Ok = false; 1564 break; 1565 } 1566 LargeMulOps.push_back(T->getOperand()); 1567 } else if (const SCEVConstant *C = 1568 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1569 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1570 } else { 1571 Ok = false; 1572 break; 1573 } 1574 } 1575 if (Ok) 1576 LargeOps.push_back(getMulExpr(LargeMulOps)); 1577 } else { 1578 Ok = false; 1579 break; 1580 } 1581 } 1582 if (Ok) { 1583 // Evaluate the expression in the larger type. 1584 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1585 // If it folds to something simple, use it. Otherwise, don't. 1586 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1587 return getTruncateExpr(Fold, DstType); 1588 } 1589 } 1590 1591 // Skip past any other cast SCEVs. 1592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1593 ++Idx; 1594 1595 // If there are add operands they would be next. 1596 if (Idx < Ops.size()) { 1597 bool DeletedAdd = false; 1598 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1599 // If we have an add, expand the add operands onto the end of the operands 1600 // list. 1601 Ops.erase(Ops.begin()+Idx); 1602 Ops.append(Add->op_begin(), Add->op_end()); 1603 DeletedAdd = true; 1604 } 1605 1606 // If we deleted at least one add, we added operands to the end of the list, 1607 // and they are not necessarily sorted. Recurse to resort and resimplify 1608 // any operands we just acquired. 1609 if (DeletedAdd) 1610 return getAddExpr(Ops); 1611 } 1612 1613 // Skip over the add expression until we get to a multiply. 1614 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1615 ++Idx; 1616 1617 // Check to see if there are any folding opportunities present with 1618 // operands multiplied by constant values. 1619 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1620 uint64_t BitWidth = getTypeSizeInBits(Ty); 1621 DenseMap<const SCEV *, APInt> M; 1622 SmallVector<const SCEV *, 8> NewOps; 1623 APInt AccumulatedConstant(BitWidth, 0); 1624 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1625 Ops.data(), Ops.size(), 1626 APInt(BitWidth, 1), *this)) { 1627 // Some interesting folding opportunity is present, so its worthwhile to 1628 // re-generate the operands list. Group the operands by constant scale, 1629 // to avoid multiplying by the same constant scale multiple times. 1630 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1631 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1632 E = NewOps.end(); I != E; ++I) 1633 MulOpLists[M.find(*I)->second].push_back(*I); 1634 // Re-generate the operands list. 1635 Ops.clear(); 1636 if (AccumulatedConstant != 0) 1637 Ops.push_back(getConstant(AccumulatedConstant)); 1638 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1639 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1640 if (I->first != 0) 1641 Ops.push_back(getMulExpr(getConstant(I->first), 1642 getAddExpr(I->second))); 1643 if (Ops.empty()) 1644 return getConstant(Ty, 0); 1645 if (Ops.size() == 1) 1646 return Ops[0]; 1647 return getAddExpr(Ops); 1648 } 1649 } 1650 1651 // If we are adding something to a multiply expression, make sure the 1652 // something is not already an operand of the multiply. If so, merge it into 1653 // the multiply. 1654 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1655 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1656 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1657 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1658 if (isa<SCEVConstant>(MulOpSCEV)) 1659 continue; 1660 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1661 if (MulOpSCEV == Ops[AddOp]) { 1662 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1663 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1664 if (Mul->getNumOperands() != 2) { 1665 // If the multiply has more than two operands, we must get the 1666 // Y*Z term. 1667 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1668 Mul->op_begin()+MulOp); 1669 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1670 InnerMul = getMulExpr(MulOps); 1671 } 1672 const SCEV *One = getConstant(Ty, 1); 1673 const SCEV *AddOne = getAddExpr(One, InnerMul); 1674 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1675 if (Ops.size() == 2) return OuterMul; 1676 if (AddOp < Idx) { 1677 Ops.erase(Ops.begin()+AddOp); 1678 Ops.erase(Ops.begin()+Idx-1); 1679 } else { 1680 Ops.erase(Ops.begin()+Idx); 1681 Ops.erase(Ops.begin()+AddOp-1); 1682 } 1683 Ops.push_back(OuterMul); 1684 return getAddExpr(Ops); 1685 } 1686 1687 // Check this multiply against other multiplies being added together. 1688 for (unsigned OtherMulIdx = Idx+1; 1689 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1690 ++OtherMulIdx) { 1691 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1692 // If MulOp occurs in OtherMul, we can fold the two multiplies 1693 // together. 1694 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1695 OMulOp != e; ++OMulOp) 1696 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1697 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1698 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1699 if (Mul->getNumOperands() != 2) { 1700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1701 Mul->op_begin()+MulOp); 1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1703 InnerMul1 = getMulExpr(MulOps); 1704 } 1705 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1706 if (OtherMul->getNumOperands() != 2) { 1707 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1708 OtherMul->op_begin()+OMulOp); 1709 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1710 InnerMul2 = getMulExpr(MulOps); 1711 } 1712 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1713 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1714 if (Ops.size() == 2) return OuterMul; 1715 Ops.erase(Ops.begin()+Idx); 1716 Ops.erase(Ops.begin()+OtherMulIdx-1); 1717 Ops.push_back(OuterMul); 1718 return getAddExpr(Ops); 1719 } 1720 } 1721 } 1722 } 1723 1724 // If there are any add recurrences in the operands list, see if any other 1725 // added values are loop invariant. If so, we can fold them into the 1726 // recurrence. 1727 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1728 ++Idx; 1729 1730 // Scan over all recurrences, trying to fold loop invariants into them. 1731 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1732 // Scan all of the other operands to this add and add them to the vector if 1733 // they are loop invariant w.r.t. the recurrence. 1734 SmallVector<const SCEV *, 8> LIOps; 1735 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1736 const Loop *AddRecLoop = AddRec->getLoop(); 1737 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1738 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1739 LIOps.push_back(Ops[i]); 1740 Ops.erase(Ops.begin()+i); 1741 --i; --e; 1742 } 1743 1744 // If we found some loop invariants, fold them into the recurrence. 1745 if (!LIOps.empty()) { 1746 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1747 LIOps.push_back(AddRec->getStart()); 1748 1749 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1750 AddRec->op_end()); 1751 AddRecOps[0] = getAddExpr(LIOps); 1752 1753 // Build the new addrec. Propagate the NUW and NSW flags if both the 1754 // outer add and the inner addrec are guaranteed to have no overflow. 1755 // Always propagate NW. 1756 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1757 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1758 1759 // If all of the other operands were loop invariant, we are done. 1760 if (Ops.size() == 1) return NewRec; 1761 1762 // Otherwise, add the folded AddRec by the non-invariant parts. 1763 for (unsigned i = 0;; ++i) 1764 if (Ops[i] == AddRec) { 1765 Ops[i] = NewRec; 1766 break; 1767 } 1768 return getAddExpr(Ops); 1769 } 1770 1771 // Okay, if there weren't any loop invariants to be folded, check to see if 1772 // there are multiple AddRec's with the same loop induction variable being 1773 // added together. If so, we can fold them. 1774 for (unsigned OtherIdx = Idx+1; 1775 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1776 ++OtherIdx) 1777 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1778 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1779 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1780 AddRec->op_end()); 1781 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1782 ++OtherIdx) 1783 if (const SCEVAddRecExpr *OtherAddRec = 1784 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1785 if (OtherAddRec->getLoop() == AddRecLoop) { 1786 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1787 i != e; ++i) { 1788 if (i >= AddRecOps.size()) { 1789 AddRecOps.append(OtherAddRec->op_begin()+i, 1790 OtherAddRec->op_end()); 1791 break; 1792 } 1793 AddRecOps[i] = getAddExpr(AddRecOps[i], 1794 OtherAddRec->getOperand(i)); 1795 } 1796 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1797 } 1798 // Step size has changed, so we cannot guarantee no self-wraparound. 1799 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1800 return getAddExpr(Ops); 1801 } 1802 1803 // Otherwise couldn't fold anything into this recurrence. Move onto the 1804 // next one. 1805 } 1806 1807 // Okay, it looks like we really DO need an add expr. Check to see if we 1808 // already have one, otherwise create a new one. 1809 FoldingSetNodeID ID; 1810 ID.AddInteger(scAddExpr); 1811 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1812 ID.AddPointer(Ops[i]); 1813 void *IP = 0; 1814 SCEVAddExpr *S = 1815 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1816 if (!S) { 1817 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1818 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1819 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1820 O, Ops.size()); 1821 UniqueSCEVs.InsertNode(S, IP); 1822 } 1823 S->setNoWrapFlags(Flags); 1824 return S; 1825 } 1826 1827 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1828 uint64_t k = i*j; 1829 if (j > 1 && k / j != i) Overflow = true; 1830 return k; 1831 } 1832 1833 /// Compute the result of "n choose k", the binomial coefficient. If an 1834 /// intermediate computation overflows, Overflow will be set and the return will 1835 /// be garbage. Overflow is not cleared on absence of overflow. 1836 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1837 // We use the multiplicative formula: 1838 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1839 // At each iteration, we take the n-th term of the numeral and divide by the 1840 // (k-n)th term of the denominator. This division will always produce an 1841 // integral result, and helps reduce the chance of overflow in the 1842 // intermediate computations. However, we can still overflow even when the 1843 // final result would fit. 1844 1845 if (n == 0 || n == k) return 1; 1846 if (k > n) return 0; 1847 1848 if (k > n/2) 1849 k = n-k; 1850 1851 uint64_t r = 1; 1852 for (uint64_t i = 1; i <= k; ++i) { 1853 r = umul_ov(r, n-(i-1), Overflow); 1854 r /= i; 1855 } 1856 return r; 1857 } 1858 1859 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1860 /// possible. 1861 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1862 SCEV::NoWrapFlags Flags) { 1863 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1864 "only nuw or nsw allowed"); 1865 assert(!Ops.empty() && "Cannot get empty mul!"); 1866 if (Ops.size() == 1) return Ops[0]; 1867 #ifndef NDEBUG 1868 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1869 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1870 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1871 "SCEVMulExpr operand types don't match!"); 1872 #endif 1873 1874 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1875 // And vice-versa. 1876 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1877 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1878 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1879 bool All = true; 1880 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1881 E = Ops.end(); I != E; ++I) 1882 if (!isKnownNonNegative(*I)) { 1883 All = false; 1884 break; 1885 } 1886 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1887 } 1888 1889 // Sort by complexity, this groups all similar expression types together. 1890 GroupByComplexity(Ops, LI); 1891 1892 // If there are any constants, fold them together. 1893 unsigned Idx = 0; 1894 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1895 1896 // C1*(C2+V) -> C1*C2 + C1*V 1897 if (Ops.size() == 2) 1898 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1899 if (Add->getNumOperands() == 2 && 1900 isa<SCEVConstant>(Add->getOperand(0))) 1901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1902 getMulExpr(LHSC, Add->getOperand(1))); 1903 1904 ++Idx; 1905 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1906 // We found two constants, fold them together! 1907 ConstantInt *Fold = ConstantInt::get(getContext(), 1908 LHSC->getValue()->getValue() * 1909 RHSC->getValue()->getValue()); 1910 Ops[0] = getConstant(Fold); 1911 Ops.erase(Ops.begin()+1); // Erase the folded element 1912 if (Ops.size() == 1) return Ops[0]; 1913 LHSC = cast<SCEVConstant>(Ops[0]); 1914 } 1915 1916 // If we are left with a constant one being multiplied, strip it off. 1917 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1918 Ops.erase(Ops.begin()); 1919 --Idx; 1920 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1921 // If we have a multiply of zero, it will always be zero. 1922 return Ops[0]; 1923 } else if (Ops[0]->isAllOnesValue()) { 1924 // If we have a mul by -1 of an add, try distributing the -1 among the 1925 // add operands. 1926 if (Ops.size() == 2) { 1927 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1928 SmallVector<const SCEV *, 4> NewOps; 1929 bool AnyFolded = false; 1930 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1931 E = Add->op_end(); I != E; ++I) { 1932 const SCEV *Mul = getMulExpr(Ops[0], *I); 1933 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1934 NewOps.push_back(Mul); 1935 } 1936 if (AnyFolded) 1937 return getAddExpr(NewOps); 1938 } 1939 else if (const SCEVAddRecExpr * 1940 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1941 // Negation preserves a recurrence's no self-wrap property. 1942 SmallVector<const SCEV *, 4> Operands; 1943 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1944 E = AddRec->op_end(); I != E; ++I) { 1945 Operands.push_back(getMulExpr(Ops[0], *I)); 1946 } 1947 return getAddRecExpr(Operands, AddRec->getLoop(), 1948 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1949 } 1950 } 1951 } 1952 1953 if (Ops.size() == 1) 1954 return Ops[0]; 1955 } 1956 1957 // Skip over the add expression until we get to a multiply. 1958 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1959 ++Idx; 1960 1961 // If there are mul operands inline them all into this expression. 1962 if (Idx < Ops.size()) { 1963 bool DeletedMul = false; 1964 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1965 // If we have an mul, expand the mul operands onto the end of the operands 1966 // list. 1967 Ops.erase(Ops.begin()+Idx); 1968 Ops.append(Mul->op_begin(), Mul->op_end()); 1969 DeletedMul = true; 1970 } 1971 1972 // If we deleted at least one mul, we added operands to the end of the list, 1973 // and they are not necessarily sorted. Recurse to resort and resimplify 1974 // any operands we just acquired. 1975 if (DeletedMul) 1976 return getMulExpr(Ops); 1977 } 1978 1979 // If there are any add recurrences in the operands list, see if any other 1980 // added values are loop invariant. If so, we can fold them into the 1981 // recurrence. 1982 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1983 ++Idx; 1984 1985 // Scan over all recurrences, trying to fold loop invariants into them. 1986 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1987 // Scan all of the other operands to this mul and add them to the vector if 1988 // they are loop invariant w.r.t. the recurrence. 1989 SmallVector<const SCEV *, 8> LIOps; 1990 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1991 const Loop *AddRecLoop = AddRec->getLoop(); 1992 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1993 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1994 LIOps.push_back(Ops[i]); 1995 Ops.erase(Ops.begin()+i); 1996 --i; --e; 1997 } 1998 1999 // If we found some loop invariants, fold them into the recurrence. 2000 if (!LIOps.empty()) { 2001 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2002 SmallVector<const SCEV *, 4> NewOps; 2003 NewOps.reserve(AddRec->getNumOperands()); 2004 const SCEV *Scale = getMulExpr(LIOps); 2005 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2006 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2007 2008 // Build the new addrec. Propagate the NUW and NSW flags if both the 2009 // outer mul and the inner addrec are guaranteed to have no overflow. 2010 // 2011 // No self-wrap cannot be guaranteed after changing the step size, but 2012 // will be inferred if either NUW or NSW is true. 2013 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2014 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2015 2016 // If all of the other operands were loop invariant, we are done. 2017 if (Ops.size() == 1) return NewRec; 2018 2019 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2020 for (unsigned i = 0;; ++i) 2021 if (Ops[i] == AddRec) { 2022 Ops[i] = NewRec; 2023 break; 2024 } 2025 return getMulExpr(Ops); 2026 } 2027 2028 // Okay, if there weren't any loop invariants to be folded, check to see if 2029 // there are multiple AddRec's with the same loop induction variable being 2030 // multiplied together. If so, we can fold them. 2031 for (unsigned OtherIdx = Idx+1; 2032 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2033 ++OtherIdx) { 2034 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2035 continue; 2036 2037 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2038 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2039 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2040 // ]]],+,...up to x=2n}. 2041 // Note that the arguments to choose() are always integers with values 2042 // known at compile time, never SCEV objects. 2043 // 2044 // The implementation avoids pointless extra computations when the two 2045 // addrec's are of different length (mathematically, it's equivalent to 2046 // an infinite stream of zeros on the right). 2047 bool OpsModified = false; 2048 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2049 ++OtherIdx) { 2050 const SCEVAddRecExpr *OtherAddRec = 2051 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2052 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2053 continue; 2054 2055 bool Overflow = false; 2056 Type *Ty = AddRec->getType(); 2057 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2058 SmallVector<const SCEV*, 7> AddRecOps; 2059 for (int x = 0, xe = AddRec->getNumOperands() + 2060 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2061 const SCEV *Term = getConstant(Ty, 0); 2062 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2063 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2064 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2065 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2066 z < ze && !Overflow; ++z) { 2067 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2068 uint64_t Coeff; 2069 if (LargerThan64Bits) 2070 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2071 else 2072 Coeff = Coeff1*Coeff2; 2073 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2074 const SCEV *Term1 = AddRec->getOperand(y-z); 2075 const SCEV *Term2 = OtherAddRec->getOperand(z); 2076 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2077 } 2078 } 2079 AddRecOps.push_back(Term); 2080 } 2081 if (!Overflow) { 2082 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2083 SCEV::FlagAnyWrap); 2084 if (Ops.size() == 2) return NewAddRec; 2085 Ops[Idx] = NewAddRec; 2086 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2087 OpsModified = true; 2088 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2089 if (!AddRec) 2090 break; 2091 } 2092 } 2093 if (OpsModified) 2094 return getMulExpr(Ops); 2095 } 2096 2097 // Otherwise couldn't fold anything into this recurrence. Move onto the 2098 // next one. 2099 } 2100 2101 // Okay, it looks like we really DO need an mul expr. Check to see if we 2102 // already have one, otherwise create a new one. 2103 FoldingSetNodeID ID; 2104 ID.AddInteger(scMulExpr); 2105 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2106 ID.AddPointer(Ops[i]); 2107 void *IP = 0; 2108 SCEVMulExpr *S = 2109 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2110 if (!S) { 2111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2112 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2113 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2114 O, Ops.size()); 2115 UniqueSCEVs.InsertNode(S, IP); 2116 } 2117 S->setNoWrapFlags(Flags); 2118 return S; 2119 } 2120 2121 /// getUDivExpr - Get a canonical unsigned division expression, or something 2122 /// simpler if possible. 2123 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2124 const SCEV *RHS) { 2125 assert(getEffectiveSCEVType(LHS->getType()) == 2126 getEffectiveSCEVType(RHS->getType()) && 2127 "SCEVUDivExpr operand types don't match!"); 2128 2129 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2130 if (RHSC->getValue()->equalsInt(1)) 2131 return LHS; // X udiv 1 --> x 2132 // If the denominator is zero, the result of the udiv is undefined. Don't 2133 // try to analyze it, because the resolution chosen here may differ from 2134 // the resolution chosen in other parts of the compiler. 2135 if (!RHSC->getValue()->isZero()) { 2136 // Determine if the division can be folded into the operands of 2137 // its operands. 2138 // TODO: Generalize this to non-constants by using known-bits information. 2139 Type *Ty = LHS->getType(); 2140 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2141 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2142 // For non-power-of-two values, effectively round the value up to the 2143 // nearest power of two. 2144 if (!RHSC->getValue()->getValue().isPowerOf2()) 2145 ++MaxShiftAmt; 2146 IntegerType *ExtTy = 2147 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2148 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2149 if (const SCEVConstant *Step = 2150 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2151 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2152 const APInt &StepInt = Step->getValue()->getValue(); 2153 const APInt &DivInt = RHSC->getValue()->getValue(); 2154 if (!StepInt.urem(DivInt) && 2155 getZeroExtendExpr(AR, ExtTy) == 2156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2157 getZeroExtendExpr(Step, ExtTy), 2158 AR->getLoop(), SCEV::FlagAnyWrap)) { 2159 SmallVector<const SCEV *, 4> Operands; 2160 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2161 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2162 return getAddRecExpr(Operands, AR->getLoop(), 2163 SCEV::FlagNW); 2164 } 2165 /// Get a canonical UDivExpr for a recurrence. 2166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2167 // We can currently only fold X%N if X is constant. 2168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2169 if (StartC && !DivInt.urem(StepInt) && 2170 getZeroExtendExpr(AR, ExtTy) == 2171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2172 getZeroExtendExpr(Step, ExtTy), 2173 AR->getLoop(), SCEV::FlagAnyWrap)) { 2174 const APInt &StartInt = StartC->getValue()->getValue(); 2175 const APInt &StartRem = StartInt.urem(StepInt); 2176 if (StartRem != 0) 2177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2178 AR->getLoop(), SCEV::FlagNW); 2179 } 2180 } 2181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2183 SmallVector<const SCEV *, 4> Operands; 2184 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2185 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2187 // Find an operand that's safely divisible. 2188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2189 const SCEV *Op = M->getOperand(i); 2190 const SCEV *Div = getUDivExpr(Op, RHSC); 2191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2193 M->op_end()); 2194 Operands[i] = Div; 2195 return getMulExpr(Operands); 2196 } 2197 } 2198 } 2199 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2200 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2201 SmallVector<const SCEV *, 4> Operands; 2202 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2203 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2204 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2205 Operands.clear(); 2206 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2207 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2208 if (isa<SCEVUDivExpr>(Op) || 2209 getMulExpr(Op, RHS) != A->getOperand(i)) 2210 break; 2211 Operands.push_back(Op); 2212 } 2213 if (Operands.size() == A->getNumOperands()) 2214 return getAddExpr(Operands); 2215 } 2216 } 2217 2218 // Fold if both operands are constant. 2219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2220 Constant *LHSCV = LHSC->getValue(); 2221 Constant *RHSCV = RHSC->getValue(); 2222 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2223 RHSCV))); 2224 } 2225 } 2226 } 2227 2228 FoldingSetNodeID ID; 2229 ID.AddInteger(scUDivExpr); 2230 ID.AddPointer(LHS); 2231 ID.AddPointer(RHS); 2232 void *IP = 0; 2233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2235 LHS, RHS); 2236 UniqueSCEVs.InsertNode(S, IP); 2237 return S; 2238 } 2239 2240 2241 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2242 /// Simplify the expression as much as possible. 2243 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2244 const Loop *L, 2245 SCEV::NoWrapFlags Flags) { 2246 SmallVector<const SCEV *, 4> Operands; 2247 Operands.push_back(Start); 2248 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2249 if (StepChrec->getLoop() == L) { 2250 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2251 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2252 } 2253 2254 Operands.push_back(Step); 2255 return getAddRecExpr(Operands, L, Flags); 2256 } 2257 2258 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2259 /// Simplify the expression as much as possible. 2260 const SCEV * 2261 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2262 const Loop *L, SCEV::NoWrapFlags Flags) { 2263 if (Operands.size() == 1) return Operands[0]; 2264 #ifndef NDEBUG 2265 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2266 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2267 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2268 "SCEVAddRecExpr operand types don't match!"); 2269 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2270 assert(isLoopInvariant(Operands[i], L) && 2271 "SCEVAddRecExpr operand is not loop-invariant!"); 2272 #endif 2273 2274 if (Operands.back()->isZero()) { 2275 Operands.pop_back(); 2276 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2277 } 2278 2279 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2280 // use that information to infer NUW and NSW flags. However, computing a 2281 // BE count requires calling getAddRecExpr, so we may not yet have a 2282 // meaningful BE count at this point (and if we don't, we'd be stuck 2283 // with a SCEVCouldNotCompute as the cached BE count). 2284 2285 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2286 // And vice-versa. 2287 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2288 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2289 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2290 bool All = true; 2291 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2292 E = Operands.end(); I != E; ++I) 2293 if (!isKnownNonNegative(*I)) { 2294 All = false; 2295 break; 2296 } 2297 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2298 } 2299 2300 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2301 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2302 const Loop *NestedLoop = NestedAR->getLoop(); 2303 if (L->contains(NestedLoop) ? 2304 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2305 (!NestedLoop->contains(L) && 2306 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2307 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2308 NestedAR->op_end()); 2309 Operands[0] = NestedAR->getStart(); 2310 // AddRecs require their operands be loop-invariant with respect to their 2311 // loops. Don't perform this transformation if it would break this 2312 // requirement. 2313 bool AllInvariant = true; 2314 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2315 if (!isLoopInvariant(Operands[i], L)) { 2316 AllInvariant = false; 2317 break; 2318 } 2319 if (AllInvariant) { 2320 // Create a recurrence for the outer loop with the same step size. 2321 // 2322 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2323 // inner recurrence has the same property. 2324 SCEV::NoWrapFlags OuterFlags = 2325 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2326 2327 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2328 AllInvariant = true; 2329 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2330 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2331 AllInvariant = false; 2332 break; 2333 } 2334 if (AllInvariant) { 2335 // Ok, both add recurrences are valid after the transformation. 2336 // 2337 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2338 // the outer recurrence has the same property. 2339 SCEV::NoWrapFlags InnerFlags = 2340 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2341 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2342 } 2343 } 2344 // Reset Operands to its original state. 2345 Operands[0] = NestedAR; 2346 } 2347 } 2348 2349 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2350 // already have one, otherwise create a new one. 2351 FoldingSetNodeID ID; 2352 ID.AddInteger(scAddRecExpr); 2353 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2354 ID.AddPointer(Operands[i]); 2355 ID.AddPointer(L); 2356 void *IP = 0; 2357 SCEVAddRecExpr *S = 2358 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2359 if (!S) { 2360 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2361 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2362 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2363 O, Operands.size(), L); 2364 UniqueSCEVs.InsertNode(S, IP); 2365 } 2366 S->setNoWrapFlags(Flags); 2367 return S; 2368 } 2369 2370 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2371 const SCEV *RHS) { 2372 SmallVector<const SCEV *, 2> Ops; 2373 Ops.push_back(LHS); 2374 Ops.push_back(RHS); 2375 return getSMaxExpr(Ops); 2376 } 2377 2378 const SCEV * 2379 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2380 assert(!Ops.empty() && "Cannot get empty smax!"); 2381 if (Ops.size() == 1) return Ops[0]; 2382 #ifndef NDEBUG 2383 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2384 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2385 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2386 "SCEVSMaxExpr operand types don't match!"); 2387 #endif 2388 2389 // Sort by complexity, this groups all similar expression types together. 2390 GroupByComplexity(Ops, LI); 2391 2392 // If there are any constants, fold them together. 2393 unsigned Idx = 0; 2394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2395 ++Idx; 2396 assert(Idx < Ops.size()); 2397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2398 // We found two constants, fold them together! 2399 ConstantInt *Fold = ConstantInt::get(getContext(), 2400 APIntOps::smax(LHSC->getValue()->getValue(), 2401 RHSC->getValue()->getValue())); 2402 Ops[0] = getConstant(Fold); 2403 Ops.erase(Ops.begin()+1); // Erase the folded element 2404 if (Ops.size() == 1) return Ops[0]; 2405 LHSC = cast<SCEVConstant>(Ops[0]); 2406 } 2407 2408 // If we are left with a constant minimum-int, strip it off. 2409 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2410 Ops.erase(Ops.begin()); 2411 --Idx; 2412 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2413 // If we have an smax with a constant maximum-int, it will always be 2414 // maximum-int. 2415 return Ops[0]; 2416 } 2417 2418 if (Ops.size() == 1) return Ops[0]; 2419 } 2420 2421 // Find the first SMax 2422 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2423 ++Idx; 2424 2425 // Check to see if one of the operands is an SMax. If so, expand its operands 2426 // onto our operand list, and recurse to simplify. 2427 if (Idx < Ops.size()) { 2428 bool DeletedSMax = false; 2429 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2430 Ops.erase(Ops.begin()+Idx); 2431 Ops.append(SMax->op_begin(), SMax->op_end()); 2432 DeletedSMax = true; 2433 } 2434 2435 if (DeletedSMax) 2436 return getSMaxExpr(Ops); 2437 } 2438 2439 // Okay, check to see if the same value occurs in the operand list twice. If 2440 // so, delete one. Since we sorted the list, these values are required to 2441 // be adjacent. 2442 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2443 // X smax Y smax Y --> X smax Y 2444 // X smax Y --> X, if X is always greater than Y 2445 if (Ops[i] == Ops[i+1] || 2446 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2447 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2448 --i; --e; 2449 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2450 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2451 --i; --e; 2452 } 2453 2454 if (Ops.size() == 1) return Ops[0]; 2455 2456 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2457 2458 // Okay, it looks like we really DO need an smax expr. Check to see if we 2459 // already have one, otherwise create a new one. 2460 FoldingSetNodeID ID; 2461 ID.AddInteger(scSMaxExpr); 2462 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2463 ID.AddPointer(Ops[i]); 2464 void *IP = 0; 2465 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2466 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2467 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2468 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2469 O, Ops.size()); 2470 UniqueSCEVs.InsertNode(S, IP); 2471 return S; 2472 } 2473 2474 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2475 const SCEV *RHS) { 2476 SmallVector<const SCEV *, 2> Ops; 2477 Ops.push_back(LHS); 2478 Ops.push_back(RHS); 2479 return getUMaxExpr(Ops); 2480 } 2481 2482 const SCEV * 2483 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2484 assert(!Ops.empty() && "Cannot get empty umax!"); 2485 if (Ops.size() == 1) return Ops[0]; 2486 #ifndef NDEBUG 2487 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2488 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2489 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2490 "SCEVUMaxExpr operand types don't match!"); 2491 #endif 2492 2493 // Sort by complexity, this groups all similar expression types together. 2494 GroupByComplexity(Ops, LI); 2495 2496 // If there are any constants, fold them together. 2497 unsigned Idx = 0; 2498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2499 ++Idx; 2500 assert(Idx < Ops.size()); 2501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2502 // We found two constants, fold them together! 2503 ConstantInt *Fold = ConstantInt::get(getContext(), 2504 APIntOps::umax(LHSC->getValue()->getValue(), 2505 RHSC->getValue()->getValue())); 2506 Ops[0] = getConstant(Fold); 2507 Ops.erase(Ops.begin()+1); // Erase the folded element 2508 if (Ops.size() == 1) return Ops[0]; 2509 LHSC = cast<SCEVConstant>(Ops[0]); 2510 } 2511 2512 // If we are left with a constant minimum-int, strip it off. 2513 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2514 Ops.erase(Ops.begin()); 2515 --Idx; 2516 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2517 // If we have an umax with a constant maximum-int, it will always be 2518 // maximum-int. 2519 return Ops[0]; 2520 } 2521 2522 if (Ops.size() == 1) return Ops[0]; 2523 } 2524 2525 // Find the first UMax 2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2527 ++Idx; 2528 2529 // Check to see if one of the operands is a UMax. If so, expand its operands 2530 // onto our operand list, and recurse to simplify. 2531 if (Idx < Ops.size()) { 2532 bool DeletedUMax = false; 2533 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2534 Ops.erase(Ops.begin()+Idx); 2535 Ops.append(UMax->op_begin(), UMax->op_end()); 2536 DeletedUMax = true; 2537 } 2538 2539 if (DeletedUMax) 2540 return getUMaxExpr(Ops); 2541 } 2542 2543 // Okay, check to see if the same value occurs in the operand list twice. If 2544 // so, delete one. Since we sorted the list, these values are required to 2545 // be adjacent. 2546 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2547 // X umax Y umax Y --> X umax Y 2548 // X umax Y --> X, if X is always greater than Y 2549 if (Ops[i] == Ops[i+1] || 2550 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2551 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2552 --i; --e; 2553 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2554 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2555 --i; --e; 2556 } 2557 2558 if (Ops.size() == 1) return Ops[0]; 2559 2560 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2561 2562 // Okay, it looks like we really DO need a umax expr. Check to see if we 2563 // already have one, otherwise create a new one. 2564 FoldingSetNodeID ID; 2565 ID.AddInteger(scUMaxExpr); 2566 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2567 ID.AddPointer(Ops[i]); 2568 void *IP = 0; 2569 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2570 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2571 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2572 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2573 O, Ops.size()); 2574 UniqueSCEVs.InsertNode(S, IP); 2575 return S; 2576 } 2577 2578 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2579 const SCEV *RHS) { 2580 // ~smax(~x, ~y) == smin(x, y). 2581 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2582 } 2583 2584 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2585 const SCEV *RHS) { 2586 // ~umax(~x, ~y) == umin(x, y) 2587 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2588 } 2589 2590 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2591 // If we have DataLayout, we can bypass creating a target-independent 2592 // constant expression and then folding it back into a ConstantInt. 2593 // This is just a compile-time optimization. 2594 if (TD) 2595 return getConstant(TD->getIntPtrType(getContext()), 2596 TD->getTypeAllocSize(AllocTy)); 2597 2598 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2600 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2601 C = Folded; 2602 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2603 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2604 } 2605 2606 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2607 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2608 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2609 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2610 C = Folded; 2611 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2612 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2613 } 2614 2615 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2616 unsigned FieldNo) { 2617 // If we have DataLayout, we can bypass creating a target-independent 2618 // constant expression and then folding it back into a ConstantInt. 2619 // This is just a compile-time optimization. 2620 if (TD) 2621 return getConstant(TD->getIntPtrType(getContext()), 2622 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2623 2624 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2625 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2626 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2627 C = Folded; 2628 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2629 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2630 } 2631 2632 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2633 Constant *FieldNo) { 2634 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2636 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2637 C = Folded; 2638 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2639 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2640 } 2641 2642 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2643 // Don't attempt to do anything other than create a SCEVUnknown object 2644 // here. createSCEV only calls getUnknown after checking for all other 2645 // interesting possibilities, and any other code that calls getUnknown 2646 // is doing so in order to hide a value from SCEV canonicalization. 2647 2648 FoldingSetNodeID ID; 2649 ID.AddInteger(scUnknown); 2650 ID.AddPointer(V); 2651 void *IP = 0; 2652 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2653 assert(cast<SCEVUnknown>(S)->getValue() == V && 2654 "Stale SCEVUnknown in uniquing map!"); 2655 return S; 2656 } 2657 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2658 FirstUnknown); 2659 FirstUnknown = cast<SCEVUnknown>(S); 2660 UniqueSCEVs.InsertNode(S, IP); 2661 return S; 2662 } 2663 2664 //===----------------------------------------------------------------------===// 2665 // Basic SCEV Analysis and PHI Idiom Recognition Code 2666 // 2667 2668 /// isSCEVable - Test if values of the given type are analyzable within 2669 /// the SCEV framework. This primarily includes integer types, and it 2670 /// can optionally include pointer types if the ScalarEvolution class 2671 /// has access to target-specific information. 2672 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2673 // Integers and pointers are always SCEVable. 2674 return Ty->isIntegerTy() || Ty->isPointerTy(); 2675 } 2676 2677 /// getTypeSizeInBits - Return the size in bits of the specified type, 2678 /// for which isSCEVable must return true. 2679 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2680 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2681 2682 // If we have a DataLayout, use it! 2683 if (TD) 2684 return TD->getTypeSizeInBits(Ty); 2685 2686 // Integer types have fixed sizes. 2687 if (Ty->isIntegerTy()) 2688 return Ty->getPrimitiveSizeInBits(); 2689 2690 // The only other support type is pointer. Without DataLayout, conservatively 2691 // assume pointers are 64-bit. 2692 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2693 return 64; 2694 } 2695 2696 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2697 /// the given type and which represents how SCEV will treat the given 2698 /// type, for which isSCEVable must return true. For pointer types, 2699 /// this is the pointer-sized integer type. 2700 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2701 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2702 2703 if (Ty->isIntegerTy()) 2704 return Ty; 2705 2706 // The only other support type is pointer. 2707 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2708 if (TD) return TD->getIntPtrType(getContext()); 2709 2710 // Without DataLayout, conservatively assume pointers are 64-bit. 2711 return Type::getInt64Ty(getContext()); 2712 } 2713 2714 const SCEV *ScalarEvolution::getCouldNotCompute() { 2715 return &CouldNotCompute; 2716 } 2717 2718 namespace { 2719 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2720 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2721 // is set iff if find such SCEVUnknown. 2722 // 2723 struct FindInvalidSCEVUnknown { 2724 bool FindOne; 2725 FindInvalidSCEVUnknown() { FindOne = false; } 2726 bool follow(const SCEV *S) { 2727 switch (S->getSCEVType()) { 2728 case scConstant: 2729 return false; 2730 case scUnknown: 2731 if(!cast<SCEVUnknown>(S)->getValue()) 2732 FindOne = true; 2733 return false; 2734 default: 2735 return true; 2736 } 2737 } 2738 bool isDone() const { return FindOne; } 2739 }; 2740 } 2741 2742 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2743 FindInvalidSCEVUnknown F; 2744 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2745 ST.visitAll(S); 2746 2747 return !F.FindOne; 2748 } 2749 2750 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2751 /// expression and create a new one. 2752 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2753 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2754 2755 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2756 if (I != ValueExprMap.end()) { 2757 const SCEV *S = I->second; 2758 if(checkValidity(S)) 2759 return S; 2760 else 2761 ValueExprMap.erase(I); 2762 } 2763 const SCEV *S = createSCEV(V); 2764 2765 // The process of creating a SCEV for V may have caused other SCEVs 2766 // to have been created, so it's necessary to insert the new entry 2767 // from scratch, rather than trying to remember the insert position 2768 // above. 2769 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2770 return S; 2771 } 2772 2773 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2774 /// 2775 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2776 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2777 return getConstant( 2778 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2779 2780 Type *Ty = V->getType(); 2781 Ty = getEffectiveSCEVType(Ty); 2782 return getMulExpr(V, 2783 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2784 } 2785 2786 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2787 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2788 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2789 return getConstant( 2790 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2791 2792 Type *Ty = V->getType(); 2793 Ty = getEffectiveSCEVType(Ty); 2794 const SCEV *AllOnes = 2795 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2796 return getMinusSCEV(AllOnes, V); 2797 } 2798 2799 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2800 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2801 SCEV::NoWrapFlags Flags) { 2802 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2803 2804 // Fast path: X - X --> 0. 2805 if (LHS == RHS) 2806 return getConstant(LHS->getType(), 0); 2807 2808 // X - Y --> X + -Y 2809 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2810 } 2811 2812 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2813 /// input value to the specified type. If the type must be extended, it is zero 2814 /// extended. 2815 const SCEV * 2816 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2817 Type *SrcTy = V->getType(); 2818 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2819 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2820 "Cannot truncate or zero extend with non-integer arguments!"); 2821 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2822 return V; // No conversion 2823 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2824 return getTruncateExpr(V, Ty); 2825 return getZeroExtendExpr(V, Ty); 2826 } 2827 2828 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2829 /// input value to the specified type. If the type must be extended, it is sign 2830 /// extended. 2831 const SCEV * 2832 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2833 Type *Ty) { 2834 Type *SrcTy = V->getType(); 2835 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2836 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2837 "Cannot truncate or zero extend with non-integer arguments!"); 2838 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2839 return V; // No conversion 2840 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2841 return getTruncateExpr(V, Ty); 2842 return getSignExtendExpr(V, Ty); 2843 } 2844 2845 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2846 /// input value to the specified type. If the type must be extended, it is zero 2847 /// extended. The conversion must not be narrowing. 2848 const SCEV * 2849 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2850 Type *SrcTy = V->getType(); 2851 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2852 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2853 "Cannot noop or zero extend with non-integer arguments!"); 2854 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2855 "getNoopOrZeroExtend cannot truncate!"); 2856 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2857 return V; // No conversion 2858 return getZeroExtendExpr(V, Ty); 2859 } 2860 2861 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2862 /// input value to the specified type. If the type must be extended, it is sign 2863 /// extended. The conversion must not be narrowing. 2864 const SCEV * 2865 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2866 Type *SrcTy = V->getType(); 2867 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2868 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2869 "Cannot noop or sign extend with non-integer arguments!"); 2870 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2871 "getNoopOrSignExtend cannot truncate!"); 2872 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2873 return V; // No conversion 2874 return getSignExtendExpr(V, Ty); 2875 } 2876 2877 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2878 /// the input value to the specified type. If the type must be extended, 2879 /// it is extended with unspecified bits. The conversion must not be 2880 /// narrowing. 2881 const SCEV * 2882 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2883 Type *SrcTy = V->getType(); 2884 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2885 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2886 "Cannot noop or any extend with non-integer arguments!"); 2887 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2888 "getNoopOrAnyExtend cannot truncate!"); 2889 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2890 return V; // No conversion 2891 return getAnyExtendExpr(V, Ty); 2892 } 2893 2894 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2895 /// input value to the specified type. The conversion must not be widening. 2896 const SCEV * 2897 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2898 Type *SrcTy = V->getType(); 2899 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2900 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2901 "Cannot truncate or noop with non-integer arguments!"); 2902 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2903 "getTruncateOrNoop cannot extend!"); 2904 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2905 return V; // No conversion 2906 return getTruncateExpr(V, Ty); 2907 } 2908 2909 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2910 /// the types using zero-extension, and then perform a umax operation 2911 /// with them. 2912 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2913 const SCEV *RHS) { 2914 const SCEV *PromotedLHS = LHS; 2915 const SCEV *PromotedRHS = RHS; 2916 2917 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2918 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2919 else 2920 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2921 2922 return getUMaxExpr(PromotedLHS, PromotedRHS); 2923 } 2924 2925 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2926 /// the types using zero-extension, and then perform a umin operation 2927 /// with them. 2928 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2929 const SCEV *RHS) { 2930 const SCEV *PromotedLHS = LHS; 2931 const SCEV *PromotedRHS = RHS; 2932 2933 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2934 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2935 else 2936 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2937 2938 return getUMinExpr(PromotedLHS, PromotedRHS); 2939 } 2940 2941 /// getPointerBase - Transitively follow the chain of pointer-type operands 2942 /// until reaching a SCEV that does not have a single pointer operand. This 2943 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2944 /// but corner cases do exist. 2945 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2946 // A pointer operand may evaluate to a nonpointer expression, such as null. 2947 if (!V->getType()->isPointerTy()) 2948 return V; 2949 2950 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2951 return getPointerBase(Cast->getOperand()); 2952 } 2953 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2954 const SCEV *PtrOp = 0; 2955 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2956 I != E; ++I) { 2957 if ((*I)->getType()->isPointerTy()) { 2958 // Cannot find the base of an expression with multiple pointer operands. 2959 if (PtrOp) 2960 return V; 2961 PtrOp = *I; 2962 } 2963 } 2964 if (!PtrOp) 2965 return V; 2966 return getPointerBase(PtrOp); 2967 } 2968 return V; 2969 } 2970 2971 /// PushDefUseChildren - Push users of the given Instruction 2972 /// onto the given Worklist. 2973 static void 2974 PushDefUseChildren(Instruction *I, 2975 SmallVectorImpl<Instruction *> &Worklist) { 2976 // Push the def-use children onto the Worklist stack. 2977 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2978 UI != UE; ++UI) 2979 Worklist.push_back(cast<Instruction>(*UI)); 2980 } 2981 2982 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2983 /// instructions that depend on the given instruction and removes them from 2984 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2985 /// resolution. 2986 void 2987 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2988 SmallVector<Instruction *, 16> Worklist; 2989 PushDefUseChildren(PN, Worklist); 2990 2991 SmallPtrSet<Instruction *, 8> Visited; 2992 Visited.insert(PN); 2993 while (!Worklist.empty()) { 2994 Instruction *I = Worklist.pop_back_val(); 2995 if (!Visited.insert(I)) continue; 2996 2997 ValueExprMapType::iterator It = 2998 ValueExprMap.find_as(static_cast<Value *>(I)); 2999 if (It != ValueExprMap.end()) { 3000 const SCEV *Old = It->second; 3001 3002 // Short-circuit the def-use traversal if the symbolic name 3003 // ceases to appear in expressions. 3004 if (Old != SymName && !hasOperand(Old, SymName)) 3005 continue; 3006 3007 // SCEVUnknown for a PHI either means that it has an unrecognized 3008 // structure, it's a PHI that's in the progress of being computed 3009 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3010 // additional loop trip count information isn't going to change anything. 3011 // In the second case, createNodeForPHI will perform the necessary 3012 // updates on its own when it gets to that point. In the third, we do 3013 // want to forget the SCEVUnknown. 3014 if (!isa<PHINode>(I) || 3015 !isa<SCEVUnknown>(Old) || 3016 (I != PN && Old == SymName)) { 3017 forgetMemoizedResults(Old); 3018 ValueExprMap.erase(It); 3019 } 3020 } 3021 3022 PushDefUseChildren(I, Worklist); 3023 } 3024 } 3025 3026 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3027 /// a loop header, making it a potential recurrence, or it doesn't. 3028 /// 3029 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3030 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3031 if (L->getHeader() == PN->getParent()) { 3032 // The loop may have multiple entrances or multiple exits; we can analyze 3033 // this phi as an addrec if it has a unique entry value and a unique 3034 // backedge value. 3035 Value *BEValueV = 0, *StartValueV = 0; 3036 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3037 Value *V = PN->getIncomingValue(i); 3038 if (L->contains(PN->getIncomingBlock(i))) { 3039 if (!BEValueV) { 3040 BEValueV = V; 3041 } else if (BEValueV != V) { 3042 BEValueV = 0; 3043 break; 3044 } 3045 } else if (!StartValueV) { 3046 StartValueV = V; 3047 } else if (StartValueV != V) { 3048 StartValueV = 0; 3049 break; 3050 } 3051 } 3052 if (BEValueV && StartValueV) { 3053 // While we are analyzing this PHI node, handle its value symbolically. 3054 const SCEV *SymbolicName = getUnknown(PN); 3055 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3056 "PHI node already processed?"); 3057 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3058 3059 // Using this symbolic name for the PHI, analyze the value coming around 3060 // the back-edge. 3061 const SCEV *BEValue = getSCEV(BEValueV); 3062 3063 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3064 // has a special value for the first iteration of the loop. 3065 3066 // If the value coming around the backedge is an add with the symbolic 3067 // value we just inserted, then we found a simple induction variable! 3068 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3069 // If there is a single occurrence of the symbolic value, replace it 3070 // with a recurrence. 3071 unsigned FoundIndex = Add->getNumOperands(); 3072 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3073 if (Add->getOperand(i) == SymbolicName) 3074 if (FoundIndex == e) { 3075 FoundIndex = i; 3076 break; 3077 } 3078 3079 if (FoundIndex != Add->getNumOperands()) { 3080 // Create an add with everything but the specified operand. 3081 SmallVector<const SCEV *, 8> Ops; 3082 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3083 if (i != FoundIndex) 3084 Ops.push_back(Add->getOperand(i)); 3085 const SCEV *Accum = getAddExpr(Ops); 3086 3087 // This is not a valid addrec if the step amount is varying each 3088 // loop iteration, but is not itself an addrec in this loop. 3089 if (isLoopInvariant(Accum, L) || 3090 (isa<SCEVAddRecExpr>(Accum) && 3091 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3092 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3093 3094 // If the increment doesn't overflow, then neither the addrec nor 3095 // the post-increment will overflow. 3096 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3097 if (OBO->hasNoUnsignedWrap()) 3098 Flags = setFlags(Flags, SCEV::FlagNUW); 3099 if (OBO->hasNoSignedWrap()) 3100 Flags = setFlags(Flags, SCEV::FlagNSW); 3101 } else if (const GEPOperator *GEP = 3102 dyn_cast<GEPOperator>(BEValueV)) { 3103 // If the increment is an inbounds GEP, then we know the address 3104 // space cannot be wrapped around. We cannot make any guarantee 3105 // about signed or unsigned overflow because pointers are 3106 // unsigned but we may have a negative index from the base 3107 // pointer. 3108 if (GEP->isInBounds()) 3109 Flags = setFlags(Flags, SCEV::FlagNW); 3110 } 3111 3112 const SCEV *StartVal = getSCEV(StartValueV); 3113 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3114 3115 // Since the no-wrap flags are on the increment, they apply to the 3116 // post-incremented value as well. 3117 if (isLoopInvariant(Accum, L)) 3118 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3119 Accum, L, Flags); 3120 3121 // Okay, for the entire analysis of this edge we assumed the PHI 3122 // to be symbolic. We now need to go back and purge all of the 3123 // entries for the scalars that use the symbolic expression. 3124 ForgetSymbolicName(PN, SymbolicName); 3125 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3126 return PHISCEV; 3127 } 3128 } 3129 } else if (const SCEVAddRecExpr *AddRec = 3130 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3131 // Otherwise, this could be a loop like this: 3132 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3133 // In this case, j = {1,+,1} and BEValue is j. 3134 // Because the other in-value of i (0) fits the evolution of BEValue 3135 // i really is an addrec evolution. 3136 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3137 const SCEV *StartVal = getSCEV(StartValueV); 3138 3139 // If StartVal = j.start - j.stride, we can use StartVal as the 3140 // initial step of the addrec evolution. 3141 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3142 AddRec->getOperand(1))) { 3143 // FIXME: For constant StartVal, we should be able to infer 3144 // no-wrap flags. 3145 const SCEV *PHISCEV = 3146 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3147 SCEV::FlagAnyWrap); 3148 3149 // Okay, for the entire analysis of this edge we assumed the PHI 3150 // to be symbolic. We now need to go back and purge all of the 3151 // entries for the scalars that use the symbolic expression. 3152 ForgetSymbolicName(PN, SymbolicName); 3153 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3154 return PHISCEV; 3155 } 3156 } 3157 } 3158 } 3159 } 3160 3161 // If the PHI has a single incoming value, follow that value, unless the 3162 // PHI's incoming blocks are in a different loop, in which case doing so 3163 // risks breaking LCSSA form. Instcombine would normally zap these, but 3164 // it doesn't have DominatorTree information, so it may miss cases. 3165 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3166 if (LI->replacementPreservesLCSSAForm(PN, V)) 3167 return getSCEV(V); 3168 3169 // If it's not a loop phi, we can't handle it yet. 3170 return getUnknown(PN); 3171 } 3172 3173 /// createNodeForGEP - Expand GEP instructions into add and multiply 3174 /// operations. This allows them to be analyzed by regular SCEV code. 3175 /// 3176 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3177 3178 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3179 // Add expression, because the Instruction may be guarded by control flow 3180 // and the no-overflow bits may not be valid for the expression in any 3181 // context. 3182 bool isInBounds = GEP->isInBounds(); 3183 3184 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3185 Value *Base = GEP->getOperand(0); 3186 // Don't attempt to analyze GEPs over unsized objects. 3187 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3188 return getUnknown(GEP); 3189 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3190 gep_type_iterator GTI = gep_type_begin(GEP); 3191 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3192 E = GEP->op_end(); 3193 I != E; ++I) { 3194 Value *Index = *I; 3195 // Compute the (potentially symbolic) offset in bytes for this index. 3196 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3197 // For a struct, add the member offset. 3198 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3199 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3200 3201 // Add the field offset to the running total offset. 3202 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3203 } else { 3204 // For an array, add the element offset, explicitly scaled. 3205 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3206 const SCEV *IndexS = getSCEV(Index); 3207 // Getelementptr indices are signed. 3208 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3209 3210 // Multiply the index by the element size to compute the element offset. 3211 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3212 isInBounds ? SCEV::FlagNSW : 3213 SCEV::FlagAnyWrap); 3214 3215 // Add the element offset to the running total offset. 3216 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3217 } 3218 } 3219 3220 // Get the SCEV for the GEP base. 3221 const SCEV *BaseS = getSCEV(Base); 3222 3223 // Add the total offset from all the GEP indices to the base. 3224 return getAddExpr(BaseS, TotalOffset, 3225 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3226 } 3227 3228 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3229 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3230 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3231 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3232 uint32_t 3233 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3234 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3235 return C->getValue()->getValue().countTrailingZeros(); 3236 3237 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3238 return std::min(GetMinTrailingZeros(T->getOperand()), 3239 (uint32_t)getTypeSizeInBits(T->getType())); 3240 3241 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3242 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3243 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3244 getTypeSizeInBits(E->getType()) : OpRes; 3245 } 3246 3247 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3248 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3249 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3250 getTypeSizeInBits(E->getType()) : OpRes; 3251 } 3252 3253 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3254 // The result is the min of all operands results. 3255 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3256 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3257 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3258 return MinOpRes; 3259 } 3260 3261 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3262 // The result is the sum of all operands results. 3263 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3264 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3265 for (unsigned i = 1, e = M->getNumOperands(); 3266 SumOpRes != BitWidth && i != e; ++i) 3267 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3268 BitWidth); 3269 return SumOpRes; 3270 } 3271 3272 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3273 // The result is the min of all operands results. 3274 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3275 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3276 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3277 return MinOpRes; 3278 } 3279 3280 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3281 // The result is the min of all operands results. 3282 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3283 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3284 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3285 return MinOpRes; 3286 } 3287 3288 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3289 // The result is the min of all operands results. 3290 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3291 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3292 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3293 return MinOpRes; 3294 } 3295 3296 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3297 // For a SCEVUnknown, ask ValueTracking. 3298 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3299 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3300 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3301 return Zeros.countTrailingOnes(); 3302 } 3303 3304 // SCEVUDivExpr 3305 return 0; 3306 } 3307 3308 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3309 /// 3310 ConstantRange 3311 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3312 // See if we've computed this range already. 3313 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3314 if (I != UnsignedRanges.end()) 3315 return I->second; 3316 3317 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3318 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3319 3320 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3321 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3322 3323 // If the value has known zeros, the maximum unsigned value will have those 3324 // known zeros as well. 3325 uint32_t TZ = GetMinTrailingZeros(S); 3326 if (TZ != 0) 3327 ConservativeResult = 3328 ConstantRange(APInt::getMinValue(BitWidth), 3329 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3330 3331 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3332 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3333 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3334 X = X.add(getUnsignedRange(Add->getOperand(i))); 3335 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3336 } 3337 3338 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3339 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3340 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3341 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3342 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3343 } 3344 3345 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3346 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3347 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3348 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3349 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3350 } 3351 3352 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3353 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3354 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3355 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3356 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3357 } 3358 3359 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3360 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3361 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3362 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3363 } 3364 3365 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3366 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3367 return setUnsignedRange(ZExt, 3368 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3369 } 3370 3371 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3372 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3373 return setUnsignedRange(SExt, 3374 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3375 } 3376 3377 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3378 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3379 return setUnsignedRange(Trunc, 3380 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3381 } 3382 3383 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3384 // If there's no unsigned wrap, the value will never be less than its 3385 // initial value. 3386 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3387 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3388 if (!C->getValue()->isZero()) 3389 ConservativeResult = 3390 ConservativeResult.intersectWith( 3391 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3392 3393 // TODO: non-affine addrec 3394 if (AddRec->isAffine()) { 3395 Type *Ty = AddRec->getType(); 3396 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3397 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3398 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3399 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3400 3401 const SCEV *Start = AddRec->getStart(); 3402 const SCEV *Step = AddRec->getStepRecurrence(*this); 3403 3404 ConstantRange StartRange = getUnsignedRange(Start); 3405 ConstantRange StepRange = getSignedRange(Step); 3406 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3407 ConstantRange EndRange = 3408 StartRange.add(MaxBECountRange.multiply(StepRange)); 3409 3410 // Check for overflow. This must be done with ConstantRange arithmetic 3411 // because we could be called from within the ScalarEvolution overflow 3412 // checking code. 3413 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3414 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3415 ConstantRange ExtMaxBECountRange = 3416 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3417 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3418 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3419 ExtEndRange) 3420 return setUnsignedRange(AddRec, ConservativeResult); 3421 3422 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3423 EndRange.getUnsignedMin()); 3424 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3425 EndRange.getUnsignedMax()); 3426 if (Min.isMinValue() && Max.isMaxValue()) 3427 return setUnsignedRange(AddRec, ConservativeResult); 3428 return setUnsignedRange(AddRec, 3429 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3430 } 3431 } 3432 3433 return setUnsignedRange(AddRec, ConservativeResult); 3434 } 3435 3436 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3437 // For a SCEVUnknown, ask ValueTracking. 3438 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3439 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3440 if (Ones == ~Zeros + 1) 3441 return setUnsignedRange(U, ConservativeResult); 3442 return setUnsignedRange(U, 3443 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3444 } 3445 3446 return setUnsignedRange(S, ConservativeResult); 3447 } 3448 3449 /// getSignedRange - Determine the signed range for a particular SCEV. 3450 /// 3451 ConstantRange 3452 ScalarEvolution::getSignedRange(const SCEV *S) { 3453 // See if we've computed this range already. 3454 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3455 if (I != SignedRanges.end()) 3456 return I->second; 3457 3458 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3459 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3460 3461 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3462 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3463 3464 // If the value has known zeros, the maximum signed value will have those 3465 // known zeros as well. 3466 uint32_t TZ = GetMinTrailingZeros(S); 3467 if (TZ != 0) 3468 ConservativeResult = 3469 ConstantRange(APInt::getSignedMinValue(BitWidth), 3470 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3471 3472 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3473 ConstantRange X = getSignedRange(Add->getOperand(0)); 3474 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3475 X = X.add(getSignedRange(Add->getOperand(i))); 3476 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3477 } 3478 3479 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3480 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3481 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3482 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3483 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3484 } 3485 3486 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3487 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3488 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3489 X = X.smax(getSignedRange(SMax->getOperand(i))); 3490 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3491 } 3492 3493 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3494 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3495 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3496 X = X.umax(getSignedRange(UMax->getOperand(i))); 3497 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3498 } 3499 3500 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3501 ConstantRange X = getSignedRange(UDiv->getLHS()); 3502 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3503 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3504 } 3505 3506 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3507 ConstantRange X = getSignedRange(ZExt->getOperand()); 3508 return setSignedRange(ZExt, 3509 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3510 } 3511 3512 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3513 ConstantRange X = getSignedRange(SExt->getOperand()); 3514 return setSignedRange(SExt, 3515 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3516 } 3517 3518 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3519 ConstantRange X = getSignedRange(Trunc->getOperand()); 3520 return setSignedRange(Trunc, 3521 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3522 } 3523 3524 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3525 // If there's no signed wrap, and all the operands have the same sign or 3526 // zero, the value won't ever change sign. 3527 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3528 bool AllNonNeg = true; 3529 bool AllNonPos = true; 3530 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3531 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3532 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3533 } 3534 if (AllNonNeg) 3535 ConservativeResult = ConservativeResult.intersectWith( 3536 ConstantRange(APInt(BitWidth, 0), 3537 APInt::getSignedMinValue(BitWidth))); 3538 else if (AllNonPos) 3539 ConservativeResult = ConservativeResult.intersectWith( 3540 ConstantRange(APInt::getSignedMinValue(BitWidth), 3541 APInt(BitWidth, 1))); 3542 } 3543 3544 // TODO: non-affine addrec 3545 if (AddRec->isAffine()) { 3546 Type *Ty = AddRec->getType(); 3547 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3548 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3549 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3550 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3551 3552 const SCEV *Start = AddRec->getStart(); 3553 const SCEV *Step = AddRec->getStepRecurrence(*this); 3554 3555 ConstantRange StartRange = getSignedRange(Start); 3556 ConstantRange StepRange = getSignedRange(Step); 3557 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3558 ConstantRange EndRange = 3559 StartRange.add(MaxBECountRange.multiply(StepRange)); 3560 3561 // Check for overflow. This must be done with ConstantRange arithmetic 3562 // because we could be called from within the ScalarEvolution overflow 3563 // checking code. 3564 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3565 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3566 ConstantRange ExtMaxBECountRange = 3567 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3568 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3569 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3570 ExtEndRange) 3571 return setSignedRange(AddRec, ConservativeResult); 3572 3573 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3574 EndRange.getSignedMin()); 3575 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3576 EndRange.getSignedMax()); 3577 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3578 return setSignedRange(AddRec, ConservativeResult); 3579 return setSignedRange(AddRec, 3580 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3581 } 3582 } 3583 3584 return setSignedRange(AddRec, ConservativeResult); 3585 } 3586 3587 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3588 // For a SCEVUnknown, ask ValueTracking. 3589 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3590 return setSignedRange(U, ConservativeResult); 3591 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3592 if (NS <= 1) 3593 return setSignedRange(U, ConservativeResult); 3594 return setSignedRange(U, ConservativeResult.intersectWith( 3595 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3596 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3597 } 3598 3599 return setSignedRange(S, ConservativeResult); 3600 } 3601 3602 /// createSCEV - We know that there is no SCEV for the specified value. 3603 /// Analyze the expression. 3604 /// 3605 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3606 if (!isSCEVable(V->getType())) 3607 return getUnknown(V); 3608 3609 unsigned Opcode = Instruction::UserOp1; 3610 if (Instruction *I = dyn_cast<Instruction>(V)) { 3611 Opcode = I->getOpcode(); 3612 3613 // Don't attempt to analyze instructions in blocks that aren't 3614 // reachable. Such instructions don't matter, and they aren't required 3615 // to obey basic rules for definitions dominating uses which this 3616 // analysis depends on. 3617 if (!DT->isReachableFromEntry(I->getParent())) 3618 return getUnknown(V); 3619 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3620 Opcode = CE->getOpcode(); 3621 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3622 return getConstant(CI); 3623 else if (isa<ConstantPointerNull>(V)) 3624 return getConstant(V->getType(), 0); 3625 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3626 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3627 else 3628 return getUnknown(V); 3629 3630 Operator *U = cast<Operator>(V); 3631 switch (Opcode) { 3632 case Instruction::Add: { 3633 // The simple thing to do would be to just call getSCEV on both operands 3634 // and call getAddExpr with the result. However if we're looking at a 3635 // bunch of things all added together, this can be quite inefficient, 3636 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3637 // Instead, gather up all the operands and make a single getAddExpr call. 3638 // LLVM IR canonical form means we need only traverse the left operands. 3639 // 3640 // Don't apply this instruction's NSW or NUW flags to the new 3641 // expression. The instruction may be guarded by control flow that the 3642 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3643 // mapped to the same SCEV expression, and it would be incorrect to transfer 3644 // NSW/NUW semantics to those operations. 3645 SmallVector<const SCEV *, 4> AddOps; 3646 AddOps.push_back(getSCEV(U->getOperand(1))); 3647 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3648 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3649 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3650 break; 3651 U = cast<Operator>(Op); 3652 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3653 if (Opcode == Instruction::Sub) 3654 AddOps.push_back(getNegativeSCEV(Op1)); 3655 else 3656 AddOps.push_back(Op1); 3657 } 3658 AddOps.push_back(getSCEV(U->getOperand(0))); 3659 return getAddExpr(AddOps); 3660 } 3661 case Instruction::Mul: { 3662 // Don't transfer NSW/NUW for the same reason as AddExpr. 3663 SmallVector<const SCEV *, 4> MulOps; 3664 MulOps.push_back(getSCEV(U->getOperand(1))); 3665 for (Value *Op = U->getOperand(0); 3666 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3667 Op = U->getOperand(0)) { 3668 U = cast<Operator>(Op); 3669 MulOps.push_back(getSCEV(U->getOperand(1))); 3670 } 3671 MulOps.push_back(getSCEV(U->getOperand(0))); 3672 return getMulExpr(MulOps); 3673 } 3674 case Instruction::UDiv: 3675 return getUDivExpr(getSCEV(U->getOperand(0)), 3676 getSCEV(U->getOperand(1))); 3677 case Instruction::Sub: 3678 return getMinusSCEV(getSCEV(U->getOperand(0)), 3679 getSCEV(U->getOperand(1))); 3680 case Instruction::And: 3681 // For an expression like x&255 that merely masks off the high bits, 3682 // use zext(trunc(x)) as the SCEV expression. 3683 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3684 if (CI->isNullValue()) 3685 return getSCEV(U->getOperand(1)); 3686 if (CI->isAllOnesValue()) 3687 return getSCEV(U->getOperand(0)); 3688 const APInt &A = CI->getValue(); 3689 3690 // Instcombine's ShrinkDemandedConstant may strip bits out of 3691 // constants, obscuring what would otherwise be a low-bits mask. 3692 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3693 // knew about to reconstruct a low-bits mask value. 3694 unsigned LZ = A.countLeadingZeros(); 3695 unsigned BitWidth = A.getBitWidth(); 3696 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3697 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3698 3699 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3700 3701 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3702 return 3703 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3704 IntegerType::get(getContext(), BitWidth - LZ)), 3705 U->getType()); 3706 } 3707 break; 3708 3709 case Instruction::Or: 3710 // If the RHS of the Or is a constant, we may have something like: 3711 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3712 // optimizations will transparently handle this case. 3713 // 3714 // In order for this transformation to be safe, the LHS must be of the 3715 // form X*(2^n) and the Or constant must be less than 2^n. 3716 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3717 const SCEV *LHS = getSCEV(U->getOperand(0)); 3718 const APInt &CIVal = CI->getValue(); 3719 if (GetMinTrailingZeros(LHS) >= 3720 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3721 // Build a plain add SCEV. 3722 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3723 // If the LHS of the add was an addrec and it has no-wrap flags, 3724 // transfer the no-wrap flags, since an or won't introduce a wrap. 3725 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3726 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3727 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3728 OldAR->getNoWrapFlags()); 3729 } 3730 return S; 3731 } 3732 } 3733 break; 3734 case Instruction::Xor: 3735 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3736 // If the RHS of the xor is a signbit, then this is just an add. 3737 // Instcombine turns add of signbit into xor as a strength reduction step. 3738 if (CI->getValue().isSignBit()) 3739 return getAddExpr(getSCEV(U->getOperand(0)), 3740 getSCEV(U->getOperand(1))); 3741 3742 // If the RHS of xor is -1, then this is a not operation. 3743 if (CI->isAllOnesValue()) 3744 return getNotSCEV(getSCEV(U->getOperand(0))); 3745 3746 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3747 // This is a variant of the check for xor with -1, and it handles 3748 // the case where instcombine has trimmed non-demanded bits out 3749 // of an xor with -1. 3750 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3751 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3752 if (BO->getOpcode() == Instruction::And && 3753 LCI->getValue() == CI->getValue()) 3754 if (const SCEVZeroExtendExpr *Z = 3755 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3756 Type *UTy = U->getType(); 3757 const SCEV *Z0 = Z->getOperand(); 3758 Type *Z0Ty = Z0->getType(); 3759 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3760 3761 // If C is a low-bits mask, the zero extend is serving to 3762 // mask off the high bits. Complement the operand and 3763 // re-apply the zext. 3764 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3765 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3766 3767 // If C is a single bit, it may be in the sign-bit position 3768 // before the zero-extend. In this case, represent the xor 3769 // using an add, which is equivalent, and re-apply the zext. 3770 APInt Trunc = CI->getValue().trunc(Z0TySize); 3771 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3772 Trunc.isSignBit()) 3773 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3774 UTy); 3775 } 3776 } 3777 break; 3778 3779 case Instruction::Shl: 3780 // Turn shift left of a constant amount into a multiply. 3781 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3782 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3783 3784 // If the shift count is not less than the bitwidth, the result of 3785 // the shift is undefined. Don't try to analyze it, because the 3786 // resolution chosen here may differ from the resolution chosen in 3787 // other parts of the compiler. 3788 if (SA->getValue().uge(BitWidth)) 3789 break; 3790 3791 Constant *X = ConstantInt::get(getContext(), 3792 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3793 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3794 } 3795 break; 3796 3797 case Instruction::LShr: 3798 // Turn logical shift right of a constant into a unsigned divide. 3799 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3800 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3801 3802 // If the shift count is not less than the bitwidth, the result of 3803 // the shift is undefined. Don't try to analyze it, because the 3804 // resolution chosen here may differ from the resolution chosen in 3805 // other parts of the compiler. 3806 if (SA->getValue().uge(BitWidth)) 3807 break; 3808 3809 Constant *X = ConstantInt::get(getContext(), 3810 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3811 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3812 } 3813 break; 3814 3815 case Instruction::AShr: 3816 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3817 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3818 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3819 if (L->getOpcode() == Instruction::Shl && 3820 L->getOperand(1) == U->getOperand(1)) { 3821 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3822 3823 // If the shift count is not less than the bitwidth, the result of 3824 // the shift is undefined. Don't try to analyze it, because the 3825 // resolution chosen here may differ from the resolution chosen in 3826 // other parts of the compiler. 3827 if (CI->getValue().uge(BitWidth)) 3828 break; 3829 3830 uint64_t Amt = BitWidth - CI->getZExtValue(); 3831 if (Amt == BitWidth) 3832 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3833 return 3834 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3835 IntegerType::get(getContext(), 3836 Amt)), 3837 U->getType()); 3838 } 3839 break; 3840 3841 case Instruction::Trunc: 3842 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3843 3844 case Instruction::ZExt: 3845 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3846 3847 case Instruction::SExt: 3848 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3849 3850 case Instruction::BitCast: 3851 // BitCasts are no-op casts so we just eliminate the cast. 3852 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3853 return getSCEV(U->getOperand(0)); 3854 break; 3855 3856 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3857 // lead to pointer expressions which cannot safely be expanded to GEPs, 3858 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3859 // simplifying integer expressions. 3860 3861 case Instruction::GetElementPtr: 3862 return createNodeForGEP(cast<GEPOperator>(U)); 3863 3864 case Instruction::PHI: 3865 return createNodeForPHI(cast<PHINode>(U)); 3866 3867 case Instruction::Select: 3868 // This could be a smax or umax that was lowered earlier. 3869 // Try to recover it. 3870 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3871 Value *LHS = ICI->getOperand(0); 3872 Value *RHS = ICI->getOperand(1); 3873 switch (ICI->getPredicate()) { 3874 case ICmpInst::ICMP_SLT: 3875 case ICmpInst::ICMP_SLE: 3876 std::swap(LHS, RHS); 3877 // fall through 3878 case ICmpInst::ICMP_SGT: 3879 case ICmpInst::ICMP_SGE: 3880 // a >s b ? a+x : b+x -> smax(a, b)+x 3881 // a >s b ? b+x : a+x -> smin(a, b)+x 3882 if (LHS->getType() == U->getType()) { 3883 const SCEV *LS = getSCEV(LHS); 3884 const SCEV *RS = getSCEV(RHS); 3885 const SCEV *LA = getSCEV(U->getOperand(1)); 3886 const SCEV *RA = getSCEV(U->getOperand(2)); 3887 const SCEV *LDiff = getMinusSCEV(LA, LS); 3888 const SCEV *RDiff = getMinusSCEV(RA, RS); 3889 if (LDiff == RDiff) 3890 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3891 LDiff = getMinusSCEV(LA, RS); 3892 RDiff = getMinusSCEV(RA, LS); 3893 if (LDiff == RDiff) 3894 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3895 } 3896 break; 3897 case ICmpInst::ICMP_ULT: 3898 case ICmpInst::ICMP_ULE: 3899 std::swap(LHS, RHS); 3900 // fall through 3901 case ICmpInst::ICMP_UGT: 3902 case ICmpInst::ICMP_UGE: 3903 // a >u b ? a+x : b+x -> umax(a, b)+x 3904 // a >u b ? b+x : a+x -> umin(a, b)+x 3905 if (LHS->getType() == U->getType()) { 3906 const SCEV *LS = getSCEV(LHS); 3907 const SCEV *RS = getSCEV(RHS); 3908 const SCEV *LA = getSCEV(U->getOperand(1)); 3909 const SCEV *RA = getSCEV(U->getOperand(2)); 3910 const SCEV *LDiff = getMinusSCEV(LA, LS); 3911 const SCEV *RDiff = getMinusSCEV(RA, RS); 3912 if (LDiff == RDiff) 3913 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3914 LDiff = getMinusSCEV(LA, RS); 3915 RDiff = getMinusSCEV(RA, LS); 3916 if (LDiff == RDiff) 3917 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3918 } 3919 break; 3920 case ICmpInst::ICMP_NE: 3921 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3922 if (LHS->getType() == U->getType() && 3923 isa<ConstantInt>(RHS) && 3924 cast<ConstantInt>(RHS)->isZero()) { 3925 const SCEV *One = getConstant(LHS->getType(), 1); 3926 const SCEV *LS = getSCEV(LHS); 3927 const SCEV *LA = getSCEV(U->getOperand(1)); 3928 const SCEV *RA = getSCEV(U->getOperand(2)); 3929 const SCEV *LDiff = getMinusSCEV(LA, LS); 3930 const SCEV *RDiff = getMinusSCEV(RA, One); 3931 if (LDiff == RDiff) 3932 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3933 } 3934 break; 3935 case ICmpInst::ICMP_EQ: 3936 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3937 if (LHS->getType() == U->getType() && 3938 isa<ConstantInt>(RHS) && 3939 cast<ConstantInt>(RHS)->isZero()) { 3940 const SCEV *One = getConstant(LHS->getType(), 1); 3941 const SCEV *LS = getSCEV(LHS); 3942 const SCEV *LA = getSCEV(U->getOperand(1)); 3943 const SCEV *RA = getSCEV(U->getOperand(2)); 3944 const SCEV *LDiff = getMinusSCEV(LA, One); 3945 const SCEV *RDiff = getMinusSCEV(RA, LS); 3946 if (LDiff == RDiff) 3947 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3948 } 3949 break; 3950 default: 3951 break; 3952 } 3953 } 3954 3955 default: // We cannot analyze this expression. 3956 break; 3957 } 3958 3959 return getUnknown(V); 3960 } 3961 3962 3963 3964 //===----------------------------------------------------------------------===// 3965 // Iteration Count Computation Code 3966 // 3967 3968 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3969 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3970 /// constant. Will also return 0 if the maximum trip count is very large (>= 3971 /// 2^32). 3972 /// 3973 /// This "trip count" assumes that control exits via ExitingBlock. More 3974 /// precisely, it is the number of times that control may reach ExitingBlock 3975 /// before taking the branch. For loops with multiple exits, it may not be the 3976 /// number times that the loop header executes because the loop may exit 3977 /// prematurely via another branch. 3978 /// 3979 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 3980 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 3981 /// loop exits. getExitCount() may return an exact count for this branch 3982 /// assuming no-signed-wrap. The number of well-defined iterations may actually 3983 /// be higher than this trip count if this exit test is skipped and the loop 3984 /// exits via a different branch. Ideally, getExitCount() would know whether it 3985 /// depends on a NSW assumption, and we would only fall back to a conservative 3986 /// trip count in that case. 3987 unsigned ScalarEvolution:: 3988 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 3989 const SCEVConstant *ExitCount = 3990 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 3991 if (!ExitCount) 3992 return 0; 3993 3994 ConstantInt *ExitConst = ExitCount->getValue(); 3995 3996 // Guard against huge trip counts. 3997 if (ExitConst->getValue().getActiveBits() > 32) 3998 return 0; 3999 4000 // In case of integer overflow, this returns 0, which is correct. 4001 return ((unsigned)ExitConst->getZExtValue()) + 1; 4002 } 4003 4004 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4005 /// trip count of this loop as a normal unsigned value, if possible. This 4006 /// means that the actual trip count is always a multiple of the returned 4007 /// value (don't forget the trip count could very well be zero as well!). 4008 /// 4009 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4010 /// multiple of a constant (which is also the case if the trip count is simply 4011 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4012 /// if the trip count is very large (>= 2^32). 4013 /// 4014 /// As explained in the comments for getSmallConstantTripCount, this assumes 4015 /// that control exits the loop via ExitingBlock. 4016 unsigned ScalarEvolution:: 4017 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4018 const SCEV *ExitCount = getBackedgeTakenCount(L); 4019 if (ExitCount == getCouldNotCompute()) 4020 return 1; 4021 4022 // Get the trip count from the BE count by adding 1. 4023 const SCEV *TCMul = getAddExpr(ExitCount, 4024 getConstant(ExitCount->getType(), 1)); 4025 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4026 // to factor simple cases. 4027 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4028 TCMul = Mul->getOperand(0); 4029 4030 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4031 if (!MulC) 4032 return 1; 4033 4034 ConstantInt *Result = MulC->getValue(); 4035 4036 // Guard against huge trip counts (this requires checking 4037 // for zero to handle the case where the trip count == -1 and the 4038 // addition wraps). 4039 if (!Result || Result->getValue().getActiveBits() > 32 || 4040 Result->getValue().getActiveBits() == 0) 4041 return 1; 4042 4043 return (unsigned)Result->getZExtValue(); 4044 } 4045 4046 // getExitCount - Get the expression for the number of loop iterations for which 4047 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4048 // SCEVCouldNotCompute. 4049 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4050 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4051 } 4052 4053 /// getBackedgeTakenCount - If the specified loop has a predictable 4054 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4055 /// object. The backedge-taken count is the number of times the loop header 4056 /// will be branched to from within the loop. This is one less than the 4057 /// trip count of the loop, since it doesn't count the first iteration, 4058 /// when the header is branched to from outside the loop. 4059 /// 4060 /// Note that it is not valid to call this method on a loop without a 4061 /// loop-invariant backedge-taken count (see 4062 /// hasLoopInvariantBackedgeTakenCount). 4063 /// 4064 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4065 return getBackedgeTakenInfo(L).getExact(this); 4066 } 4067 4068 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4069 /// return the least SCEV value that is known never to be less than the 4070 /// actual backedge taken count. 4071 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4072 return getBackedgeTakenInfo(L).getMax(this); 4073 } 4074 4075 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4076 /// onto the given Worklist. 4077 static void 4078 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4079 BasicBlock *Header = L->getHeader(); 4080 4081 // Push all Loop-header PHIs onto the Worklist stack. 4082 for (BasicBlock::iterator I = Header->begin(); 4083 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4084 Worklist.push_back(PN); 4085 } 4086 4087 const ScalarEvolution::BackedgeTakenInfo & 4088 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4089 // Initially insert an invalid entry for this loop. If the insertion 4090 // succeeds, proceed to actually compute a backedge-taken count and 4091 // update the value. The temporary CouldNotCompute value tells SCEV 4092 // code elsewhere that it shouldn't attempt to request a new 4093 // backedge-taken count, which could result in infinite recursion. 4094 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4095 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4096 if (!Pair.second) 4097 return Pair.first->second; 4098 4099 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4100 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4101 // must be cleared in this scope. 4102 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4103 4104 if (Result.getExact(this) != getCouldNotCompute()) { 4105 assert(isLoopInvariant(Result.getExact(this), L) && 4106 isLoopInvariant(Result.getMax(this), L) && 4107 "Computed backedge-taken count isn't loop invariant for loop!"); 4108 ++NumTripCountsComputed; 4109 } 4110 else if (Result.getMax(this) == getCouldNotCompute() && 4111 isa<PHINode>(L->getHeader()->begin())) { 4112 // Only count loops that have phi nodes as not being computable. 4113 ++NumTripCountsNotComputed; 4114 } 4115 4116 // Now that we know more about the trip count for this loop, forget any 4117 // existing SCEV values for PHI nodes in this loop since they are only 4118 // conservative estimates made without the benefit of trip count 4119 // information. This is similar to the code in forgetLoop, except that 4120 // it handles SCEVUnknown PHI nodes specially. 4121 if (Result.hasAnyInfo()) { 4122 SmallVector<Instruction *, 16> Worklist; 4123 PushLoopPHIs(L, Worklist); 4124 4125 SmallPtrSet<Instruction *, 8> Visited; 4126 while (!Worklist.empty()) { 4127 Instruction *I = Worklist.pop_back_val(); 4128 if (!Visited.insert(I)) continue; 4129 4130 ValueExprMapType::iterator It = 4131 ValueExprMap.find_as(static_cast<Value *>(I)); 4132 if (It != ValueExprMap.end()) { 4133 const SCEV *Old = It->second; 4134 4135 // SCEVUnknown for a PHI either means that it has an unrecognized 4136 // structure, or it's a PHI that's in the progress of being computed 4137 // by createNodeForPHI. In the former case, additional loop trip 4138 // count information isn't going to change anything. In the later 4139 // case, createNodeForPHI will perform the necessary updates on its 4140 // own when it gets to that point. 4141 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4142 forgetMemoizedResults(Old); 4143 ValueExprMap.erase(It); 4144 } 4145 if (PHINode *PN = dyn_cast<PHINode>(I)) 4146 ConstantEvolutionLoopExitValue.erase(PN); 4147 } 4148 4149 PushDefUseChildren(I, Worklist); 4150 } 4151 } 4152 4153 // Re-lookup the insert position, since the call to 4154 // ComputeBackedgeTakenCount above could result in a 4155 // recusive call to getBackedgeTakenInfo (on a different 4156 // loop), which would invalidate the iterator computed 4157 // earlier. 4158 return BackedgeTakenCounts.find(L)->second = Result; 4159 } 4160 4161 /// forgetLoop - This method should be called by the client when it has 4162 /// changed a loop in a way that may effect ScalarEvolution's ability to 4163 /// compute a trip count, or if the loop is deleted. 4164 void ScalarEvolution::forgetLoop(const Loop *L) { 4165 // Drop any stored trip count value. 4166 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4167 BackedgeTakenCounts.find(L); 4168 if (BTCPos != BackedgeTakenCounts.end()) { 4169 BTCPos->second.clear(); 4170 BackedgeTakenCounts.erase(BTCPos); 4171 } 4172 4173 // Drop information about expressions based on loop-header PHIs. 4174 SmallVector<Instruction *, 16> Worklist; 4175 PushLoopPHIs(L, Worklist); 4176 4177 SmallPtrSet<Instruction *, 8> Visited; 4178 while (!Worklist.empty()) { 4179 Instruction *I = Worklist.pop_back_val(); 4180 if (!Visited.insert(I)) continue; 4181 4182 ValueExprMapType::iterator It = 4183 ValueExprMap.find_as(static_cast<Value *>(I)); 4184 if (It != ValueExprMap.end()) { 4185 forgetMemoizedResults(It->second); 4186 ValueExprMap.erase(It); 4187 if (PHINode *PN = dyn_cast<PHINode>(I)) 4188 ConstantEvolutionLoopExitValue.erase(PN); 4189 } 4190 4191 PushDefUseChildren(I, Worklist); 4192 } 4193 4194 // Forget all contained loops too, to avoid dangling entries in the 4195 // ValuesAtScopes map. 4196 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4197 forgetLoop(*I); 4198 } 4199 4200 /// forgetValue - This method should be called by the client when it has 4201 /// changed a value in a way that may effect its value, or which may 4202 /// disconnect it from a def-use chain linking it to a loop. 4203 void ScalarEvolution::forgetValue(Value *V) { 4204 Instruction *I = dyn_cast<Instruction>(V); 4205 if (!I) return; 4206 4207 // Drop information about expressions based on loop-header PHIs. 4208 SmallVector<Instruction *, 16> Worklist; 4209 Worklist.push_back(I); 4210 4211 SmallPtrSet<Instruction *, 8> Visited; 4212 while (!Worklist.empty()) { 4213 I = Worklist.pop_back_val(); 4214 if (!Visited.insert(I)) continue; 4215 4216 ValueExprMapType::iterator It = 4217 ValueExprMap.find_as(static_cast<Value *>(I)); 4218 if (It != ValueExprMap.end()) { 4219 forgetMemoizedResults(It->second); 4220 ValueExprMap.erase(It); 4221 if (PHINode *PN = dyn_cast<PHINode>(I)) 4222 ConstantEvolutionLoopExitValue.erase(PN); 4223 } 4224 4225 PushDefUseChildren(I, Worklist); 4226 } 4227 } 4228 4229 /// getExact - Get the exact loop backedge taken count considering all loop 4230 /// exits. A computable result can only be return for loops with a single exit. 4231 /// Returning the minimum taken count among all exits is incorrect because one 4232 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4233 /// the limit of each loop test is never skipped. This is a valid assumption as 4234 /// long as the loop exits via that test. For precise results, it is the 4235 /// caller's responsibility to specify the relevant loop exit using 4236 /// getExact(ExitingBlock, SE). 4237 const SCEV * 4238 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4239 // If any exits were not computable, the loop is not computable. 4240 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4241 4242 // We need exactly one computable exit. 4243 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4244 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4245 4246 const SCEV *BECount = 0; 4247 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4248 ENT != 0; ENT = ENT->getNextExit()) { 4249 4250 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4251 4252 if (!BECount) 4253 BECount = ENT->ExactNotTaken; 4254 else if (BECount != ENT->ExactNotTaken) 4255 return SE->getCouldNotCompute(); 4256 } 4257 assert(BECount && "Invalid not taken count for loop exit"); 4258 return BECount; 4259 } 4260 4261 /// getExact - Get the exact not taken count for this loop exit. 4262 const SCEV * 4263 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4264 ScalarEvolution *SE) const { 4265 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4266 ENT != 0; ENT = ENT->getNextExit()) { 4267 4268 if (ENT->ExitingBlock == ExitingBlock) 4269 return ENT->ExactNotTaken; 4270 } 4271 return SE->getCouldNotCompute(); 4272 } 4273 4274 /// getMax - Get the max backedge taken count for the loop. 4275 const SCEV * 4276 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4277 return Max ? Max : SE->getCouldNotCompute(); 4278 } 4279 4280 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4281 ScalarEvolution *SE) const { 4282 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4283 return true; 4284 4285 if (!ExitNotTaken.ExitingBlock) 4286 return false; 4287 4288 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4289 ENT != 0; ENT = ENT->getNextExit()) { 4290 4291 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4292 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4293 return true; 4294 } 4295 } 4296 return false; 4297 } 4298 4299 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4300 /// computable exit into a persistent ExitNotTakenInfo array. 4301 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4302 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4303 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4304 4305 if (!Complete) 4306 ExitNotTaken.setIncomplete(); 4307 4308 unsigned NumExits = ExitCounts.size(); 4309 if (NumExits == 0) return; 4310 4311 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4312 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4313 if (NumExits == 1) return; 4314 4315 // Handle the rare case of multiple computable exits. 4316 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4317 4318 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4319 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4320 PrevENT->setNextExit(ENT); 4321 ENT->ExitingBlock = ExitCounts[i].first; 4322 ENT->ExactNotTaken = ExitCounts[i].second; 4323 } 4324 } 4325 4326 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4327 void ScalarEvolution::BackedgeTakenInfo::clear() { 4328 ExitNotTaken.ExitingBlock = 0; 4329 ExitNotTaken.ExactNotTaken = 0; 4330 delete[] ExitNotTaken.getNextExit(); 4331 } 4332 4333 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4334 /// of the specified loop will execute. 4335 ScalarEvolution::BackedgeTakenInfo 4336 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4337 SmallVector<BasicBlock *, 8> ExitingBlocks; 4338 L->getExitingBlocks(ExitingBlocks); 4339 4340 // Examine all exits and pick the most conservative values. 4341 const SCEV *MaxBECount = getCouldNotCompute(); 4342 bool CouldComputeBECount = true; 4343 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4344 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4345 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4346 if (EL.Exact == getCouldNotCompute()) 4347 // We couldn't compute an exact value for this exit, so 4348 // we won't be able to compute an exact value for the loop. 4349 CouldComputeBECount = false; 4350 else 4351 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4352 4353 if (MaxBECount == getCouldNotCompute()) 4354 MaxBECount = EL.Max; 4355 else if (EL.Max != getCouldNotCompute()) { 4356 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4357 // skip some loop tests. Taking the max over the exits is sufficiently 4358 // conservative. TODO: We could do better taking into consideration 4359 // that (1) the loop has unit stride (2) the last loop test is 4360 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4361 // falls-through some constant times less then the other tests. 4362 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4363 } 4364 } 4365 4366 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4367 } 4368 4369 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4370 /// loop will execute if it exits via the specified block. 4371 ScalarEvolution::ExitLimit 4372 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4373 4374 // Okay, we've chosen an exiting block. See what condition causes us to 4375 // exit at this block. 4376 // 4377 // FIXME: we should be able to handle switch instructions (with a single exit) 4378 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4379 if (ExitBr == 0) return getCouldNotCompute(); 4380 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4381 4382 // At this point, we know we have a conditional branch that determines whether 4383 // the loop is exited. However, we don't know if the branch is executed each 4384 // time through the loop. If not, then the execution count of the branch will 4385 // not be equal to the trip count of the loop. 4386 // 4387 // Currently we check for this by checking to see if the Exit branch goes to 4388 // the loop header. If so, we know it will always execute the same number of 4389 // times as the loop. We also handle the case where the exit block *is* the 4390 // loop header. This is common for un-rotated loops. 4391 // 4392 // If both of those tests fail, walk up the unique predecessor chain to the 4393 // header, stopping if there is an edge that doesn't exit the loop. If the 4394 // header is reached, the execution count of the branch will be equal to the 4395 // trip count of the loop. 4396 // 4397 // More extensive analysis could be done to handle more cases here. 4398 // 4399 if (ExitBr->getSuccessor(0) != L->getHeader() && 4400 ExitBr->getSuccessor(1) != L->getHeader() && 4401 ExitBr->getParent() != L->getHeader()) { 4402 // The simple checks failed, try climbing the unique predecessor chain 4403 // up to the header. 4404 bool Ok = false; 4405 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4406 BasicBlock *Pred = BB->getUniquePredecessor(); 4407 if (!Pred) 4408 return getCouldNotCompute(); 4409 TerminatorInst *PredTerm = Pred->getTerminator(); 4410 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4411 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4412 if (PredSucc == BB) 4413 continue; 4414 // If the predecessor has a successor that isn't BB and isn't 4415 // outside the loop, assume the worst. 4416 if (L->contains(PredSucc)) 4417 return getCouldNotCompute(); 4418 } 4419 if (Pred == L->getHeader()) { 4420 Ok = true; 4421 break; 4422 } 4423 BB = Pred; 4424 } 4425 if (!Ok) 4426 return getCouldNotCompute(); 4427 } 4428 4429 // Proceed to the next level to examine the exit condition expression. 4430 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4431 ExitBr->getSuccessor(0), 4432 ExitBr->getSuccessor(1), 4433 /*IsSubExpr=*/false); 4434 } 4435 4436 /// ComputeExitLimitFromCond - Compute the number of times the 4437 /// backedge of the specified loop will execute if its exit condition 4438 /// were a conditional branch of ExitCond, TBB, and FBB. 4439 /// 4440 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4441 /// branch. In this case, we cannot assume that the loop only exits when the 4442 /// condition is true and cannot infer that failing to meet the condition prior 4443 /// to integer wraparound results in undefined behavior. 4444 ScalarEvolution::ExitLimit 4445 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4446 Value *ExitCond, 4447 BasicBlock *TBB, 4448 BasicBlock *FBB, 4449 bool IsSubExpr) { 4450 // Check if the controlling expression for this loop is an And or Or. 4451 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4452 if (BO->getOpcode() == Instruction::And) { 4453 // Recurse on the operands of the and. 4454 bool EitherMayExit = L->contains(TBB); 4455 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4456 IsSubExpr || EitherMayExit); 4457 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4458 IsSubExpr || EitherMayExit); 4459 const SCEV *BECount = getCouldNotCompute(); 4460 const SCEV *MaxBECount = getCouldNotCompute(); 4461 if (EitherMayExit) { 4462 // Both conditions must be true for the loop to continue executing. 4463 // Choose the less conservative count. 4464 if (EL0.Exact == getCouldNotCompute() || 4465 EL1.Exact == getCouldNotCompute()) 4466 BECount = getCouldNotCompute(); 4467 else 4468 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4469 if (EL0.Max == getCouldNotCompute()) 4470 MaxBECount = EL1.Max; 4471 else if (EL1.Max == getCouldNotCompute()) 4472 MaxBECount = EL0.Max; 4473 else 4474 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4475 } else { 4476 // Both conditions must be true at the same time for the loop to exit. 4477 // For now, be conservative. 4478 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4479 if (EL0.Max == EL1.Max) 4480 MaxBECount = EL0.Max; 4481 if (EL0.Exact == EL1.Exact) 4482 BECount = EL0.Exact; 4483 } 4484 4485 return ExitLimit(BECount, MaxBECount); 4486 } 4487 if (BO->getOpcode() == Instruction::Or) { 4488 // Recurse on the operands of the or. 4489 bool EitherMayExit = L->contains(FBB); 4490 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4491 IsSubExpr || EitherMayExit); 4492 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4493 IsSubExpr || EitherMayExit); 4494 const SCEV *BECount = getCouldNotCompute(); 4495 const SCEV *MaxBECount = getCouldNotCompute(); 4496 if (EitherMayExit) { 4497 // Both conditions must be false for the loop to continue executing. 4498 // Choose the less conservative count. 4499 if (EL0.Exact == getCouldNotCompute() || 4500 EL1.Exact == getCouldNotCompute()) 4501 BECount = getCouldNotCompute(); 4502 else 4503 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4504 if (EL0.Max == getCouldNotCompute()) 4505 MaxBECount = EL1.Max; 4506 else if (EL1.Max == getCouldNotCompute()) 4507 MaxBECount = EL0.Max; 4508 else 4509 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4510 } else { 4511 // Both conditions must be false at the same time for the loop to exit. 4512 // For now, be conservative. 4513 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4514 if (EL0.Max == EL1.Max) 4515 MaxBECount = EL0.Max; 4516 if (EL0.Exact == EL1.Exact) 4517 BECount = EL0.Exact; 4518 } 4519 4520 return ExitLimit(BECount, MaxBECount); 4521 } 4522 } 4523 4524 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4525 // Proceed to the next level to examine the icmp. 4526 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4527 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4528 4529 // Check for a constant condition. These are normally stripped out by 4530 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4531 // preserve the CFG and is temporarily leaving constant conditions 4532 // in place. 4533 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4534 if (L->contains(FBB) == !CI->getZExtValue()) 4535 // The backedge is always taken. 4536 return getCouldNotCompute(); 4537 else 4538 // The backedge is never taken. 4539 return getConstant(CI->getType(), 0); 4540 } 4541 4542 // If it's not an integer or pointer comparison then compute it the hard way. 4543 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4544 } 4545 4546 /// ComputeExitLimitFromICmp - Compute the number of times the 4547 /// backedge of the specified loop will execute if its exit condition 4548 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4549 ScalarEvolution::ExitLimit 4550 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4551 ICmpInst *ExitCond, 4552 BasicBlock *TBB, 4553 BasicBlock *FBB, 4554 bool IsSubExpr) { 4555 4556 // If the condition was exit on true, convert the condition to exit on false 4557 ICmpInst::Predicate Cond; 4558 if (!L->contains(FBB)) 4559 Cond = ExitCond->getPredicate(); 4560 else 4561 Cond = ExitCond->getInversePredicate(); 4562 4563 // Handle common loops like: for (X = "string"; *X; ++X) 4564 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4565 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4566 ExitLimit ItCnt = 4567 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4568 if (ItCnt.hasAnyInfo()) 4569 return ItCnt; 4570 } 4571 4572 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4573 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4574 4575 // Try to evaluate any dependencies out of the loop. 4576 LHS = getSCEVAtScope(LHS, L); 4577 RHS = getSCEVAtScope(RHS, L); 4578 4579 // At this point, we would like to compute how many iterations of the 4580 // loop the predicate will return true for these inputs. 4581 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4582 // If there is a loop-invariant, force it into the RHS. 4583 std::swap(LHS, RHS); 4584 Cond = ICmpInst::getSwappedPredicate(Cond); 4585 } 4586 4587 // Simplify the operands before analyzing them. 4588 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4589 4590 // If we have a comparison of a chrec against a constant, try to use value 4591 // ranges to answer this query. 4592 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4593 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4594 if (AddRec->getLoop() == L) { 4595 // Form the constant range. 4596 ConstantRange CompRange( 4597 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4598 4599 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4600 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4601 } 4602 4603 switch (Cond) { 4604 case ICmpInst::ICMP_NE: { // while (X != Y) 4605 // Convert to: while (X-Y != 0) 4606 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4607 if (EL.hasAnyInfo()) return EL; 4608 break; 4609 } 4610 case ICmpInst::ICMP_EQ: { // while (X == Y) 4611 // Convert to: while (X-Y == 0) 4612 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4613 if (EL.hasAnyInfo()) return EL; 4614 break; 4615 } 4616 case ICmpInst::ICMP_SLT: { 4617 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr); 4618 if (EL.hasAnyInfo()) return EL; 4619 break; 4620 } 4621 case ICmpInst::ICMP_SGT: { 4622 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4623 getNotSCEV(RHS), L, true, IsSubExpr); 4624 if (EL.hasAnyInfo()) return EL; 4625 break; 4626 } 4627 case ICmpInst::ICMP_ULT: { 4628 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr); 4629 if (EL.hasAnyInfo()) return EL; 4630 break; 4631 } 4632 case ICmpInst::ICMP_UGT: { 4633 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4634 getNotSCEV(RHS), L, false, IsSubExpr); 4635 if (EL.hasAnyInfo()) return EL; 4636 break; 4637 } 4638 default: 4639 #if 0 4640 dbgs() << "ComputeBackedgeTakenCount "; 4641 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4642 dbgs() << "[unsigned] "; 4643 dbgs() << *LHS << " " 4644 << Instruction::getOpcodeName(Instruction::ICmp) 4645 << " " << *RHS << "\n"; 4646 #endif 4647 break; 4648 } 4649 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4650 } 4651 4652 static ConstantInt * 4653 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4654 ScalarEvolution &SE) { 4655 const SCEV *InVal = SE.getConstant(C); 4656 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4657 assert(isa<SCEVConstant>(Val) && 4658 "Evaluation of SCEV at constant didn't fold correctly?"); 4659 return cast<SCEVConstant>(Val)->getValue(); 4660 } 4661 4662 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4663 /// 'icmp op load X, cst', try to see if we can compute the backedge 4664 /// execution count. 4665 ScalarEvolution::ExitLimit 4666 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4667 LoadInst *LI, 4668 Constant *RHS, 4669 const Loop *L, 4670 ICmpInst::Predicate predicate) { 4671 4672 if (LI->isVolatile()) return getCouldNotCompute(); 4673 4674 // Check to see if the loaded pointer is a getelementptr of a global. 4675 // TODO: Use SCEV instead of manually grubbing with GEPs. 4676 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4677 if (!GEP) return getCouldNotCompute(); 4678 4679 // Make sure that it is really a constant global we are gepping, with an 4680 // initializer, and make sure the first IDX is really 0. 4681 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4682 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4683 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4684 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4685 return getCouldNotCompute(); 4686 4687 // Okay, we allow one non-constant index into the GEP instruction. 4688 Value *VarIdx = 0; 4689 std::vector<Constant*> Indexes; 4690 unsigned VarIdxNum = 0; 4691 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4692 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4693 Indexes.push_back(CI); 4694 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4695 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4696 VarIdx = GEP->getOperand(i); 4697 VarIdxNum = i-2; 4698 Indexes.push_back(0); 4699 } 4700 4701 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4702 if (!VarIdx) 4703 return getCouldNotCompute(); 4704 4705 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4706 // Check to see if X is a loop variant variable value now. 4707 const SCEV *Idx = getSCEV(VarIdx); 4708 Idx = getSCEVAtScope(Idx, L); 4709 4710 // We can only recognize very limited forms of loop index expressions, in 4711 // particular, only affine AddRec's like {C1,+,C2}. 4712 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4713 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4714 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4715 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4716 return getCouldNotCompute(); 4717 4718 unsigned MaxSteps = MaxBruteForceIterations; 4719 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4720 ConstantInt *ItCst = ConstantInt::get( 4721 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4722 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4723 4724 // Form the GEP offset. 4725 Indexes[VarIdxNum] = Val; 4726 4727 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4728 Indexes); 4729 if (Result == 0) break; // Cannot compute! 4730 4731 // Evaluate the condition for this iteration. 4732 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4733 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4734 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4735 #if 0 4736 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4737 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4738 << "***\n"; 4739 #endif 4740 ++NumArrayLenItCounts; 4741 return getConstant(ItCst); // Found terminating iteration! 4742 } 4743 } 4744 return getCouldNotCompute(); 4745 } 4746 4747 4748 /// CanConstantFold - Return true if we can constant fold an instruction of the 4749 /// specified type, assuming that all operands were constants. 4750 static bool CanConstantFold(const Instruction *I) { 4751 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4752 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4753 isa<LoadInst>(I)) 4754 return true; 4755 4756 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4757 if (const Function *F = CI->getCalledFunction()) 4758 return canConstantFoldCallTo(F); 4759 return false; 4760 } 4761 4762 /// Determine whether this instruction can constant evolve within this loop 4763 /// assuming its operands can all constant evolve. 4764 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4765 // An instruction outside of the loop can't be derived from a loop PHI. 4766 if (!L->contains(I)) return false; 4767 4768 if (isa<PHINode>(I)) { 4769 if (L->getHeader() == I->getParent()) 4770 return true; 4771 else 4772 // We don't currently keep track of the control flow needed to evaluate 4773 // PHIs, so we cannot handle PHIs inside of loops. 4774 return false; 4775 } 4776 4777 // If we won't be able to constant fold this expression even if the operands 4778 // are constants, bail early. 4779 return CanConstantFold(I); 4780 } 4781 4782 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4783 /// recursing through each instruction operand until reaching a loop header phi. 4784 static PHINode * 4785 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4786 DenseMap<Instruction *, PHINode *> &PHIMap) { 4787 4788 // Otherwise, we can evaluate this instruction if all of its operands are 4789 // constant or derived from a PHI node themselves. 4790 PHINode *PHI = 0; 4791 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4792 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4793 4794 if (isa<Constant>(*OpI)) continue; 4795 4796 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4797 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4798 4799 PHINode *P = dyn_cast<PHINode>(OpInst); 4800 if (!P) 4801 // If this operand is already visited, reuse the prior result. 4802 // We may have P != PHI if this is the deepest point at which the 4803 // inconsistent paths meet. 4804 P = PHIMap.lookup(OpInst); 4805 if (!P) { 4806 // Recurse and memoize the results, whether a phi is found or not. 4807 // This recursive call invalidates pointers into PHIMap. 4808 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4809 PHIMap[OpInst] = P; 4810 } 4811 if (P == 0) return 0; // Not evolving from PHI 4812 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4813 PHI = P; 4814 } 4815 // This is a expression evolving from a constant PHI! 4816 return PHI; 4817 } 4818 4819 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4820 /// in the loop that V is derived from. We allow arbitrary operations along the 4821 /// way, but the operands of an operation must either be constants or a value 4822 /// derived from a constant PHI. If this expression does not fit with these 4823 /// constraints, return null. 4824 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4825 Instruction *I = dyn_cast<Instruction>(V); 4826 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4827 4828 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4829 return PN; 4830 } 4831 4832 // Record non-constant instructions contained by the loop. 4833 DenseMap<Instruction *, PHINode *> PHIMap; 4834 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4835 } 4836 4837 /// EvaluateExpression - Given an expression that passes the 4838 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4839 /// in the loop has the value PHIVal. If we can't fold this expression for some 4840 /// reason, return null. 4841 static Constant *EvaluateExpression(Value *V, const Loop *L, 4842 DenseMap<Instruction *, Constant *> &Vals, 4843 const DataLayout *TD, 4844 const TargetLibraryInfo *TLI) { 4845 // Convenient constant check, but redundant for recursive calls. 4846 if (Constant *C = dyn_cast<Constant>(V)) return C; 4847 Instruction *I = dyn_cast<Instruction>(V); 4848 if (!I) return 0; 4849 4850 if (Constant *C = Vals.lookup(I)) return C; 4851 4852 // An instruction inside the loop depends on a value outside the loop that we 4853 // weren't given a mapping for, or a value such as a call inside the loop. 4854 if (!canConstantEvolve(I, L)) return 0; 4855 4856 // An unmapped PHI can be due to a branch or another loop inside this loop, 4857 // or due to this not being the initial iteration through a loop where we 4858 // couldn't compute the evolution of this particular PHI last time. 4859 if (isa<PHINode>(I)) return 0; 4860 4861 std::vector<Constant*> Operands(I->getNumOperands()); 4862 4863 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4864 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4865 if (!Operand) { 4866 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4867 if (!Operands[i]) return 0; 4868 continue; 4869 } 4870 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4871 Vals[Operand] = C; 4872 if (!C) return 0; 4873 Operands[i] = C; 4874 } 4875 4876 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4877 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4878 Operands[1], TD, TLI); 4879 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4880 if (!LI->isVolatile()) 4881 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4882 } 4883 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4884 TLI); 4885 } 4886 4887 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4888 /// in the header of its containing loop, we know the loop executes a 4889 /// constant number of times, and the PHI node is just a recurrence 4890 /// involving constants, fold it. 4891 Constant * 4892 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4893 const APInt &BEs, 4894 const Loop *L) { 4895 DenseMap<PHINode*, Constant*>::const_iterator I = 4896 ConstantEvolutionLoopExitValue.find(PN); 4897 if (I != ConstantEvolutionLoopExitValue.end()) 4898 return I->second; 4899 4900 if (BEs.ugt(MaxBruteForceIterations)) 4901 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4902 4903 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4904 4905 DenseMap<Instruction *, Constant *> CurrentIterVals; 4906 BasicBlock *Header = L->getHeader(); 4907 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4908 4909 // Since the loop is canonicalized, the PHI node must have two entries. One 4910 // entry must be a constant (coming in from outside of the loop), and the 4911 // second must be derived from the same PHI. 4912 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4913 PHINode *PHI = 0; 4914 for (BasicBlock::iterator I = Header->begin(); 4915 (PHI = dyn_cast<PHINode>(I)); ++I) { 4916 Constant *StartCST = 4917 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4918 if (StartCST == 0) continue; 4919 CurrentIterVals[PHI] = StartCST; 4920 } 4921 if (!CurrentIterVals.count(PN)) 4922 return RetVal = 0; 4923 4924 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4925 4926 // Execute the loop symbolically to determine the exit value. 4927 if (BEs.getActiveBits() >= 32) 4928 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4929 4930 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4931 unsigned IterationNum = 0; 4932 for (; ; ++IterationNum) { 4933 if (IterationNum == NumIterations) 4934 return RetVal = CurrentIterVals[PN]; // Got exit value! 4935 4936 // Compute the value of the PHIs for the next iteration. 4937 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4938 DenseMap<Instruction *, Constant *> NextIterVals; 4939 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4940 TLI); 4941 if (NextPHI == 0) 4942 return 0; // Couldn't evaluate! 4943 NextIterVals[PN] = NextPHI; 4944 4945 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4946 4947 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4948 // cease to be able to evaluate one of them or if they stop evolving, 4949 // because that doesn't necessarily prevent us from computing PN. 4950 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4951 for (DenseMap<Instruction *, Constant *>::const_iterator 4952 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4953 PHINode *PHI = dyn_cast<PHINode>(I->first); 4954 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4955 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4956 } 4957 // We use two distinct loops because EvaluateExpression may invalidate any 4958 // iterators into CurrentIterVals. 4959 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4960 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4961 PHINode *PHI = I->first; 4962 Constant *&NextPHI = NextIterVals[PHI]; 4963 if (!NextPHI) { // Not already computed. 4964 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4965 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4966 } 4967 if (NextPHI != I->second) 4968 StoppedEvolving = false; 4969 } 4970 4971 // If all entries in CurrentIterVals == NextIterVals then we can stop 4972 // iterating, the loop can't continue to change. 4973 if (StoppedEvolving) 4974 return RetVal = CurrentIterVals[PN]; 4975 4976 CurrentIterVals.swap(NextIterVals); 4977 } 4978 } 4979 4980 /// ComputeExitCountExhaustively - If the loop is known to execute a 4981 /// constant number of times (the condition evolves only from constants), 4982 /// try to evaluate a few iterations of the loop until we get the exit 4983 /// condition gets a value of ExitWhen (true or false). If we cannot 4984 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4985 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4986 Value *Cond, 4987 bool ExitWhen) { 4988 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4989 if (PN == 0) return getCouldNotCompute(); 4990 4991 // If the loop is canonicalized, the PHI will have exactly two entries. 4992 // That's the only form we support here. 4993 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4994 4995 DenseMap<Instruction *, Constant *> CurrentIterVals; 4996 BasicBlock *Header = L->getHeader(); 4997 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4998 4999 // One entry must be a constant (coming in from outside of the loop), and the 5000 // second must be derived from the same PHI. 5001 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5002 PHINode *PHI = 0; 5003 for (BasicBlock::iterator I = Header->begin(); 5004 (PHI = dyn_cast<PHINode>(I)); ++I) { 5005 Constant *StartCST = 5006 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5007 if (StartCST == 0) continue; 5008 CurrentIterVals[PHI] = StartCST; 5009 } 5010 if (!CurrentIterVals.count(PN)) 5011 return getCouldNotCompute(); 5012 5013 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5014 // the loop symbolically to determine when the condition gets a value of 5015 // "ExitWhen". 5016 5017 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5018 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5019 ConstantInt *CondVal = 5020 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5021 TD, TLI)); 5022 5023 // Couldn't symbolically evaluate. 5024 if (!CondVal) return getCouldNotCompute(); 5025 5026 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5027 ++NumBruteForceTripCountsComputed; 5028 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5029 } 5030 5031 // Update all the PHI nodes for the next iteration. 5032 DenseMap<Instruction *, Constant *> NextIterVals; 5033 5034 // Create a list of which PHIs we need to compute. We want to do this before 5035 // calling EvaluateExpression on them because that may invalidate iterators 5036 // into CurrentIterVals. 5037 SmallVector<PHINode *, 8> PHIsToCompute; 5038 for (DenseMap<Instruction *, Constant *>::const_iterator 5039 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5040 PHINode *PHI = dyn_cast<PHINode>(I->first); 5041 if (!PHI || PHI->getParent() != Header) continue; 5042 PHIsToCompute.push_back(PHI); 5043 } 5044 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5045 E = PHIsToCompute.end(); I != E; ++I) { 5046 PHINode *PHI = *I; 5047 Constant *&NextPHI = NextIterVals[PHI]; 5048 if (NextPHI) continue; // Already computed! 5049 5050 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5051 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 5052 } 5053 CurrentIterVals.swap(NextIterVals); 5054 } 5055 5056 // Too many iterations were needed to evaluate. 5057 return getCouldNotCompute(); 5058 } 5059 5060 /// getSCEVAtScope - Return a SCEV expression for the specified value 5061 /// at the specified scope in the program. The L value specifies a loop 5062 /// nest to evaluate the expression at, where null is the top-level or a 5063 /// specified loop is immediately inside of the loop. 5064 /// 5065 /// This method can be used to compute the exit value for a variable defined 5066 /// in a loop by querying what the value will hold in the parent loop. 5067 /// 5068 /// In the case that a relevant loop exit value cannot be computed, the 5069 /// original value V is returned. 5070 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5071 // Check to see if we've folded this expression at this loop before. 5072 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 5073 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 5074 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 5075 if (!Pair.second) 5076 return Pair.first->second ? Pair.first->second : V; 5077 5078 // Otherwise compute it. 5079 const SCEV *C = computeSCEVAtScope(V, L); 5080 ValuesAtScopes[V][L] = C; 5081 return C; 5082 } 5083 5084 /// This builds up a Constant using the ConstantExpr interface. That way, we 5085 /// will return Constants for objects which aren't represented by a 5086 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5087 /// Returns NULL if the SCEV isn't representable as a Constant. 5088 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5089 switch (V->getSCEVType()) { 5090 default: // TODO: smax, umax. 5091 case scCouldNotCompute: 5092 case scAddRecExpr: 5093 break; 5094 case scConstant: 5095 return cast<SCEVConstant>(V)->getValue(); 5096 case scUnknown: 5097 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5098 case scSignExtend: { 5099 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5100 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5101 return ConstantExpr::getSExt(CastOp, SS->getType()); 5102 break; 5103 } 5104 case scZeroExtend: { 5105 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5106 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5107 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5108 break; 5109 } 5110 case scTruncate: { 5111 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5112 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5113 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5114 break; 5115 } 5116 case scAddExpr: { 5117 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5118 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5119 if (C->getType()->isPointerTy()) 5120 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5121 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5122 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5123 if (!C2) return 0; 5124 5125 // First pointer! 5126 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5127 std::swap(C, C2); 5128 // The offsets have been converted to bytes. We can add bytes to an 5129 // i8* by GEP with the byte count in the first index. 5130 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5131 } 5132 5133 // Don't bother trying to sum two pointers. We probably can't 5134 // statically compute a load that results from it anyway. 5135 if (C2->getType()->isPointerTy()) 5136 return 0; 5137 5138 if (C->getType()->isPointerTy()) { 5139 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5140 C2 = ConstantExpr::getIntegerCast( 5141 C2, Type::getInt32Ty(C->getContext()), true); 5142 C = ConstantExpr::getGetElementPtr(C, C2); 5143 } else 5144 C = ConstantExpr::getAdd(C, C2); 5145 } 5146 return C; 5147 } 5148 break; 5149 } 5150 case scMulExpr: { 5151 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5152 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5153 // Don't bother with pointers at all. 5154 if (C->getType()->isPointerTy()) return 0; 5155 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5156 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5157 if (!C2 || C2->getType()->isPointerTy()) return 0; 5158 C = ConstantExpr::getMul(C, C2); 5159 } 5160 return C; 5161 } 5162 break; 5163 } 5164 case scUDivExpr: { 5165 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5166 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5167 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5168 if (LHS->getType() == RHS->getType()) 5169 return ConstantExpr::getUDiv(LHS, RHS); 5170 break; 5171 } 5172 } 5173 return 0; 5174 } 5175 5176 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5177 if (isa<SCEVConstant>(V)) return V; 5178 5179 // If this instruction is evolved from a constant-evolving PHI, compute the 5180 // exit value from the loop without using SCEVs. 5181 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5182 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5183 const Loop *LI = (*this->LI)[I->getParent()]; 5184 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5185 if (PHINode *PN = dyn_cast<PHINode>(I)) 5186 if (PN->getParent() == LI->getHeader()) { 5187 // Okay, there is no closed form solution for the PHI node. Check 5188 // to see if the loop that contains it has a known backedge-taken 5189 // count. If so, we may be able to force computation of the exit 5190 // value. 5191 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5192 if (const SCEVConstant *BTCC = 5193 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5194 // Okay, we know how many times the containing loop executes. If 5195 // this is a constant evolving PHI node, get the final value at 5196 // the specified iteration number. 5197 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5198 BTCC->getValue()->getValue(), 5199 LI); 5200 if (RV) return getSCEV(RV); 5201 } 5202 } 5203 5204 // Okay, this is an expression that we cannot symbolically evaluate 5205 // into a SCEV. Check to see if it's possible to symbolically evaluate 5206 // the arguments into constants, and if so, try to constant propagate the 5207 // result. This is particularly useful for computing loop exit values. 5208 if (CanConstantFold(I)) { 5209 SmallVector<Constant *, 4> Operands; 5210 bool MadeImprovement = false; 5211 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5212 Value *Op = I->getOperand(i); 5213 if (Constant *C = dyn_cast<Constant>(Op)) { 5214 Operands.push_back(C); 5215 continue; 5216 } 5217 5218 // If any of the operands is non-constant and if they are 5219 // non-integer and non-pointer, don't even try to analyze them 5220 // with scev techniques. 5221 if (!isSCEVable(Op->getType())) 5222 return V; 5223 5224 const SCEV *OrigV = getSCEV(Op); 5225 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5226 MadeImprovement |= OrigV != OpV; 5227 5228 Constant *C = BuildConstantFromSCEV(OpV); 5229 if (!C) return V; 5230 if (C->getType() != Op->getType()) 5231 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5232 Op->getType(), 5233 false), 5234 C, Op->getType()); 5235 Operands.push_back(C); 5236 } 5237 5238 // Check to see if getSCEVAtScope actually made an improvement. 5239 if (MadeImprovement) { 5240 Constant *C = 0; 5241 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5242 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5243 Operands[0], Operands[1], TD, 5244 TLI); 5245 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5246 if (!LI->isVolatile()) 5247 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5248 } else 5249 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5250 Operands, TD, TLI); 5251 if (!C) return V; 5252 return getSCEV(C); 5253 } 5254 } 5255 } 5256 5257 // This is some other type of SCEVUnknown, just return it. 5258 return V; 5259 } 5260 5261 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5262 // Avoid performing the look-up in the common case where the specified 5263 // expression has no loop-variant portions. 5264 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5265 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5266 if (OpAtScope != Comm->getOperand(i)) { 5267 // Okay, at least one of these operands is loop variant but might be 5268 // foldable. Build a new instance of the folded commutative expression. 5269 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5270 Comm->op_begin()+i); 5271 NewOps.push_back(OpAtScope); 5272 5273 for (++i; i != e; ++i) { 5274 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5275 NewOps.push_back(OpAtScope); 5276 } 5277 if (isa<SCEVAddExpr>(Comm)) 5278 return getAddExpr(NewOps); 5279 if (isa<SCEVMulExpr>(Comm)) 5280 return getMulExpr(NewOps); 5281 if (isa<SCEVSMaxExpr>(Comm)) 5282 return getSMaxExpr(NewOps); 5283 if (isa<SCEVUMaxExpr>(Comm)) 5284 return getUMaxExpr(NewOps); 5285 llvm_unreachable("Unknown commutative SCEV type!"); 5286 } 5287 } 5288 // If we got here, all operands are loop invariant. 5289 return Comm; 5290 } 5291 5292 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5293 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5294 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5295 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5296 return Div; // must be loop invariant 5297 return getUDivExpr(LHS, RHS); 5298 } 5299 5300 // If this is a loop recurrence for a loop that does not contain L, then we 5301 // are dealing with the final value computed by the loop. 5302 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5303 // First, attempt to evaluate each operand. 5304 // Avoid performing the look-up in the common case where the specified 5305 // expression has no loop-variant portions. 5306 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5307 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5308 if (OpAtScope == AddRec->getOperand(i)) 5309 continue; 5310 5311 // Okay, at least one of these operands is loop variant but might be 5312 // foldable. Build a new instance of the folded commutative expression. 5313 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5314 AddRec->op_begin()+i); 5315 NewOps.push_back(OpAtScope); 5316 for (++i; i != e; ++i) 5317 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5318 5319 const SCEV *FoldedRec = 5320 getAddRecExpr(NewOps, AddRec->getLoop(), 5321 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5322 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5323 // The addrec may be folded to a nonrecurrence, for example, if the 5324 // induction variable is multiplied by zero after constant folding. Go 5325 // ahead and return the folded value. 5326 if (!AddRec) 5327 return FoldedRec; 5328 break; 5329 } 5330 5331 // If the scope is outside the addrec's loop, evaluate it by using the 5332 // loop exit value of the addrec. 5333 if (!AddRec->getLoop()->contains(L)) { 5334 // To evaluate this recurrence, we need to know how many times the AddRec 5335 // loop iterates. Compute this now. 5336 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5337 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5338 5339 // Then, evaluate the AddRec. 5340 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5341 } 5342 5343 return AddRec; 5344 } 5345 5346 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5347 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5348 if (Op == Cast->getOperand()) 5349 return Cast; // must be loop invariant 5350 return getZeroExtendExpr(Op, Cast->getType()); 5351 } 5352 5353 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5354 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5355 if (Op == Cast->getOperand()) 5356 return Cast; // must be loop invariant 5357 return getSignExtendExpr(Op, Cast->getType()); 5358 } 5359 5360 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5361 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5362 if (Op == Cast->getOperand()) 5363 return Cast; // must be loop invariant 5364 return getTruncateExpr(Op, Cast->getType()); 5365 } 5366 5367 llvm_unreachable("Unknown SCEV type!"); 5368 } 5369 5370 /// getSCEVAtScope - This is a convenience function which does 5371 /// getSCEVAtScope(getSCEV(V), L). 5372 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5373 return getSCEVAtScope(getSCEV(V), L); 5374 } 5375 5376 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5377 /// following equation: 5378 /// 5379 /// A * X = B (mod N) 5380 /// 5381 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5382 /// A and B isn't important. 5383 /// 5384 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5385 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5386 ScalarEvolution &SE) { 5387 uint32_t BW = A.getBitWidth(); 5388 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5389 assert(A != 0 && "A must be non-zero."); 5390 5391 // 1. D = gcd(A, N) 5392 // 5393 // The gcd of A and N may have only one prime factor: 2. The number of 5394 // trailing zeros in A is its multiplicity 5395 uint32_t Mult2 = A.countTrailingZeros(); 5396 // D = 2^Mult2 5397 5398 // 2. Check if B is divisible by D. 5399 // 5400 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5401 // is not less than multiplicity of this prime factor for D. 5402 if (B.countTrailingZeros() < Mult2) 5403 return SE.getCouldNotCompute(); 5404 5405 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5406 // modulo (N / D). 5407 // 5408 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5409 // bit width during computations. 5410 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5411 APInt Mod(BW + 1, 0); 5412 Mod.setBit(BW - Mult2); // Mod = N / D 5413 APInt I = AD.multiplicativeInverse(Mod); 5414 5415 // 4. Compute the minimum unsigned root of the equation: 5416 // I * (B / D) mod (N / D) 5417 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5418 5419 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5420 // bits. 5421 return SE.getConstant(Result.trunc(BW)); 5422 } 5423 5424 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5425 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5426 /// might be the same) or two SCEVCouldNotCompute objects. 5427 /// 5428 static std::pair<const SCEV *,const SCEV *> 5429 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5430 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5431 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5432 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5433 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5434 5435 // We currently can only solve this if the coefficients are constants. 5436 if (!LC || !MC || !NC) { 5437 const SCEV *CNC = SE.getCouldNotCompute(); 5438 return std::make_pair(CNC, CNC); 5439 } 5440 5441 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5442 const APInt &L = LC->getValue()->getValue(); 5443 const APInt &M = MC->getValue()->getValue(); 5444 const APInt &N = NC->getValue()->getValue(); 5445 APInt Two(BitWidth, 2); 5446 APInt Four(BitWidth, 4); 5447 5448 { 5449 using namespace APIntOps; 5450 const APInt& C = L; 5451 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5452 // The B coefficient is M-N/2 5453 APInt B(M); 5454 B -= sdiv(N,Two); 5455 5456 // The A coefficient is N/2 5457 APInt A(N.sdiv(Two)); 5458 5459 // Compute the B^2-4ac term. 5460 APInt SqrtTerm(B); 5461 SqrtTerm *= B; 5462 SqrtTerm -= Four * (A * C); 5463 5464 if (SqrtTerm.isNegative()) { 5465 // The loop is provably infinite. 5466 const SCEV *CNC = SE.getCouldNotCompute(); 5467 return std::make_pair(CNC, CNC); 5468 } 5469 5470 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5471 // integer value or else APInt::sqrt() will assert. 5472 APInt SqrtVal(SqrtTerm.sqrt()); 5473 5474 // Compute the two solutions for the quadratic formula. 5475 // The divisions must be performed as signed divisions. 5476 APInt NegB(-B); 5477 APInt TwoA(A << 1); 5478 if (TwoA.isMinValue()) { 5479 const SCEV *CNC = SE.getCouldNotCompute(); 5480 return std::make_pair(CNC, CNC); 5481 } 5482 5483 LLVMContext &Context = SE.getContext(); 5484 5485 ConstantInt *Solution1 = 5486 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5487 ConstantInt *Solution2 = 5488 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5489 5490 return std::make_pair(SE.getConstant(Solution1), 5491 SE.getConstant(Solution2)); 5492 } // end APIntOps namespace 5493 } 5494 5495 /// HowFarToZero - Return the number of times a backedge comparing the specified 5496 /// value to zero will execute. If not computable, return CouldNotCompute. 5497 /// 5498 /// This is only used for loops with a "x != y" exit test. The exit condition is 5499 /// now expressed as a single expression, V = x-y. So the exit test is 5500 /// effectively V != 0. We know and take advantage of the fact that this 5501 /// expression only being used in a comparison by zero context. 5502 ScalarEvolution::ExitLimit 5503 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5504 // If the value is a constant 5505 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5506 // If the value is already zero, the branch will execute zero times. 5507 if (C->getValue()->isZero()) return C; 5508 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5509 } 5510 5511 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5512 if (!AddRec || AddRec->getLoop() != L) 5513 return getCouldNotCompute(); 5514 5515 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5516 // the quadratic equation to solve it. 5517 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5518 std::pair<const SCEV *,const SCEV *> Roots = 5519 SolveQuadraticEquation(AddRec, *this); 5520 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5521 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5522 if (R1 && R2) { 5523 #if 0 5524 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5525 << " sol#2: " << *R2 << "\n"; 5526 #endif 5527 // Pick the smallest positive root value. 5528 if (ConstantInt *CB = 5529 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5530 R1->getValue(), 5531 R2->getValue()))) { 5532 if (CB->getZExtValue() == false) 5533 std::swap(R1, R2); // R1 is the minimum root now. 5534 5535 // We can only use this value if the chrec ends up with an exact zero 5536 // value at this index. When solving for "X*X != 5", for example, we 5537 // should not accept a root of 2. 5538 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5539 if (Val->isZero()) 5540 return R1; // We found a quadratic root! 5541 } 5542 } 5543 return getCouldNotCompute(); 5544 } 5545 5546 // Otherwise we can only handle this if it is affine. 5547 if (!AddRec->isAffine()) 5548 return getCouldNotCompute(); 5549 5550 // If this is an affine expression, the execution count of this branch is 5551 // the minimum unsigned root of the following equation: 5552 // 5553 // Start + Step*N = 0 (mod 2^BW) 5554 // 5555 // equivalent to: 5556 // 5557 // Step*N = -Start (mod 2^BW) 5558 // 5559 // where BW is the common bit width of Start and Step. 5560 5561 // Get the initial value for the loop. 5562 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5563 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5564 5565 // For now we handle only constant steps. 5566 // 5567 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5568 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5569 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5570 // We have not yet seen any such cases. 5571 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5572 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5573 return getCouldNotCompute(); 5574 5575 // For positive steps (counting up until unsigned overflow): 5576 // N = -Start/Step (as unsigned) 5577 // For negative steps (counting down to zero): 5578 // N = Start/-Step 5579 // First compute the unsigned distance from zero in the direction of Step. 5580 bool CountDown = StepC->getValue()->getValue().isNegative(); 5581 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5582 5583 // Handle unitary steps, which cannot wraparound. 5584 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5585 // N = Distance (as unsigned) 5586 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5587 ConstantRange CR = getUnsignedRange(Start); 5588 const SCEV *MaxBECount; 5589 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5590 // When counting up, the worst starting value is 1, not 0. 5591 MaxBECount = CR.getUnsignedMax().isMinValue() 5592 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5593 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5594 else 5595 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5596 : -CR.getUnsignedMin()); 5597 return ExitLimit(Distance, MaxBECount); 5598 } 5599 5600 // If the recurrence is known not to wraparound, unsigned divide computes the 5601 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5602 // that the value will either become zero (and thus the loop terminates), that 5603 // the loop will terminate through some other exit condition first, or that 5604 // the loop has undefined behavior. This means we can't "miss" the exit 5605 // value, even with nonunit stride. 5606 // 5607 // This is only valid for expressions that directly compute the loop exit. It 5608 // is invalid for subexpressions in which the loop may exit through this 5609 // branch even if this subexpression is false. In that case, the trip count 5610 // computed by this udiv could be smaller than the number of well-defined 5611 // iterations. 5612 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) 5613 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5614 5615 // Then, try to solve the above equation provided that Start is constant. 5616 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5617 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5618 -StartC->getValue()->getValue(), 5619 *this); 5620 return getCouldNotCompute(); 5621 } 5622 5623 /// HowFarToNonZero - Return the number of times a backedge checking the 5624 /// specified value for nonzero will execute. If not computable, return 5625 /// CouldNotCompute 5626 ScalarEvolution::ExitLimit 5627 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5628 // Loops that look like: while (X == 0) are very strange indeed. We don't 5629 // handle them yet except for the trivial case. This could be expanded in the 5630 // future as needed. 5631 5632 // If the value is a constant, check to see if it is known to be non-zero 5633 // already. If so, the backedge will execute zero times. 5634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5635 if (!C->getValue()->isNullValue()) 5636 return getConstant(C->getType(), 0); 5637 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5638 } 5639 5640 // We could implement others, but I really doubt anyone writes loops like 5641 // this, and if they did, they would already be constant folded. 5642 return getCouldNotCompute(); 5643 } 5644 5645 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5646 /// (which may not be an immediate predecessor) which has exactly one 5647 /// successor from which BB is reachable, or null if no such block is 5648 /// found. 5649 /// 5650 std::pair<BasicBlock *, BasicBlock *> 5651 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5652 // If the block has a unique predecessor, then there is no path from the 5653 // predecessor to the block that does not go through the direct edge 5654 // from the predecessor to the block. 5655 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5656 return std::make_pair(Pred, BB); 5657 5658 // A loop's header is defined to be a block that dominates the loop. 5659 // If the header has a unique predecessor outside the loop, it must be 5660 // a block that has exactly one successor that can reach the loop. 5661 if (Loop *L = LI->getLoopFor(BB)) 5662 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5663 5664 return std::pair<BasicBlock *, BasicBlock *>(); 5665 } 5666 5667 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5668 /// testing whether two expressions are equal, however for the purposes of 5669 /// looking for a condition guarding a loop, it can be useful to be a little 5670 /// more general, since a front-end may have replicated the controlling 5671 /// expression. 5672 /// 5673 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5674 // Quick check to see if they are the same SCEV. 5675 if (A == B) return true; 5676 5677 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5678 // two different instructions with the same value. Check for this case. 5679 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5680 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5681 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5682 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5683 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5684 return true; 5685 5686 // Otherwise assume they may have a different value. 5687 return false; 5688 } 5689 5690 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5691 /// predicate Pred. Return true iff any changes were made. 5692 /// 5693 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5694 const SCEV *&LHS, const SCEV *&RHS, 5695 unsigned Depth) { 5696 bool Changed = false; 5697 5698 // If we hit the max recursion limit bail out. 5699 if (Depth >= 3) 5700 return false; 5701 5702 // Canonicalize a constant to the right side. 5703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5704 // Check for both operands constant. 5705 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5706 if (ConstantExpr::getICmp(Pred, 5707 LHSC->getValue(), 5708 RHSC->getValue())->isNullValue()) 5709 goto trivially_false; 5710 else 5711 goto trivially_true; 5712 } 5713 // Otherwise swap the operands to put the constant on the right. 5714 std::swap(LHS, RHS); 5715 Pred = ICmpInst::getSwappedPredicate(Pred); 5716 Changed = true; 5717 } 5718 5719 // If we're comparing an addrec with a value which is loop-invariant in the 5720 // addrec's loop, put the addrec on the left. Also make a dominance check, 5721 // as both operands could be addrecs loop-invariant in each other's loop. 5722 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5723 const Loop *L = AR->getLoop(); 5724 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5725 std::swap(LHS, RHS); 5726 Pred = ICmpInst::getSwappedPredicate(Pred); 5727 Changed = true; 5728 } 5729 } 5730 5731 // If there's a constant operand, canonicalize comparisons with boundary 5732 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5733 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5734 const APInt &RA = RC->getValue()->getValue(); 5735 switch (Pred) { 5736 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5737 case ICmpInst::ICMP_EQ: 5738 case ICmpInst::ICMP_NE: 5739 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5740 if (!RA) 5741 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5742 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5743 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5744 ME->getOperand(0)->isAllOnesValue()) { 5745 RHS = AE->getOperand(1); 5746 LHS = ME->getOperand(1); 5747 Changed = true; 5748 } 5749 break; 5750 case ICmpInst::ICMP_UGE: 5751 if ((RA - 1).isMinValue()) { 5752 Pred = ICmpInst::ICMP_NE; 5753 RHS = getConstant(RA - 1); 5754 Changed = true; 5755 break; 5756 } 5757 if (RA.isMaxValue()) { 5758 Pred = ICmpInst::ICMP_EQ; 5759 Changed = true; 5760 break; 5761 } 5762 if (RA.isMinValue()) goto trivially_true; 5763 5764 Pred = ICmpInst::ICMP_UGT; 5765 RHS = getConstant(RA - 1); 5766 Changed = true; 5767 break; 5768 case ICmpInst::ICMP_ULE: 5769 if ((RA + 1).isMaxValue()) { 5770 Pred = ICmpInst::ICMP_NE; 5771 RHS = getConstant(RA + 1); 5772 Changed = true; 5773 break; 5774 } 5775 if (RA.isMinValue()) { 5776 Pred = ICmpInst::ICMP_EQ; 5777 Changed = true; 5778 break; 5779 } 5780 if (RA.isMaxValue()) goto trivially_true; 5781 5782 Pred = ICmpInst::ICMP_ULT; 5783 RHS = getConstant(RA + 1); 5784 Changed = true; 5785 break; 5786 case ICmpInst::ICMP_SGE: 5787 if ((RA - 1).isMinSignedValue()) { 5788 Pred = ICmpInst::ICMP_NE; 5789 RHS = getConstant(RA - 1); 5790 Changed = true; 5791 break; 5792 } 5793 if (RA.isMaxSignedValue()) { 5794 Pred = ICmpInst::ICMP_EQ; 5795 Changed = true; 5796 break; 5797 } 5798 if (RA.isMinSignedValue()) goto trivially_true; 5799 5800 Pred = ICmpInst::ICMP_SGT; 5801 RHS = getConstant(RA - 1); 5802 Changed = true; 5803 break; 5804 case ICmpInst::ICMP_SLE: 5805 if ((RA + 1).isMaxSignedValue()) { 5806 Pred = ICmpInst::ICMP_NE; 5807 RHS = getConstant(RA + 1); 5808 Changed = true; 5809 break; 5810 } 5811 if (RA.isMinSignedValue()) { 5812 Pred = ICmpInst::ICMP_EQ; 5813 Changed = true; 5814 break; 5815 } 5816 if (RA.isMaxSignedValue()) goto trivially_true; 5817 5818 Pred = ICmpInst::ICMP_SLT; 5819 RHS = getConstant(RA + 1); 5820 Changed = true; 5821 break; 5822 case ICmpInst::ICMP_UGT: 5823 if (RA.isMinValue()) { 5824 Pred = ICmpInst::ICMP_NE; 5825 Changed = true; 5826 break; 5827 } 5828 if ((RA + 1).isMaxValue()) { 5829 Pred = ICmpInst::ICMP_EQ; 5830 RHS = getConstant(RA + 1); 5831 Changed = true; 5832 break; 5833 } 5834 if (RA.isMaxValue()) goto trivially_false; 5835 break; 5836 case ICmpInst::ICMP_ULT: 5837 if (RA.isMaxValue()) { 5838 Pred = ICmpInst::ICMP_NE; 5839 Changed = true; 5840 break; 5841 } 5842 if ((RA - 1).isMinValue()) { 5843 Pred = ICmpInst::ICMP_EQ; 5844 RHS = getConstant(RA - 1); 5845 Changed = true; 5846 break; 5847 } 5848 if (RA.isMinValue()) goto trivially_false; 5849 break; 5850 case ICmpInst::ICMP_SGT: 5851 if (RA.isMinSignedValue()) { 5852 Pred = ICmpInst::ICMP_NE; 5853 Changed = true; 5854 break; 5855 } 5856 if ((RA + 1).isMaxSignedValue()) { 5857 Pred = ICmpInst::ICMP_EQ; 5858 RHS = getConstant(RA + 1); 5859 Changed = true; 5860 break; 5861 } 5862 if (RA.isMaxSignedValue()) goto trivially_false; 5863 break; 5864 case ICmpInst::ICMP_SLT: 5865 if (RA.isMaxSignedValue()) { 5866 Pred = ICmpInst::ICMP_NE; 5867 Changed = true; 5868 break; 5869 } 5870 if ((RA - 1).isMinSignedValue()) { 5871 Pred = ICmpInst::ICMP_EQ; 5872 RHS = getConstant(RA - 1); 5873 Changed = true; 5874 break; 5875 } 5876 if (RA.isMinSignedValue()) goto trivially_false; 5877 break; 5878 } 5879 } 5880 5881 // Check for obvious equality. 5882 if (HasSameValue(LHS, RHS)) { 5883 if (ICmpInst::isTrueWhenEqual(Pred)) 5884 goto trivially_true; 5885 if (ICmpInst::isFalseWhenEqual(Pred)) 5886 goto trivially_false; 5887 } 5888 5889 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5890 // adding or subtracting 1 from one of the operands. 5891 switch (Pred) { 5892 case ICmpInst::ICMP_SLE: 5893 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5894 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5895 SCEV::FlagNSW); 5896 Pred = ICmpInst::ICMP_SLT; 5897 Changed = true; 5898 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5899 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5900 SCEV::FlagNSW); 5901 Pred = ICmpInst::ICMP_SLT; 5902 Changed = true; 5903 } 5904 break; 5905 case ICmpInst::ICMP_SGE: 5906 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5907 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5908 SCEV::FlagNSW); 5909 Pred = ICmpInst::ICMP_SGT; 5910 Changed = true; 5911 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5912 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5913 SCEV::FlagNSW); 5914 Pred = ICmpInst::ICMP_SGT; 5915 Changed = true; 5916 } 5917 break; 5918 case ICmpInst::ICMP_ULE: 5919 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5920 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5921 SCEV::FlagNUW); 5922 Pred = ICmpInst::ICMP_ULT; 5923 Changed = true; 5924 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5925 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5926 SCEV::FlagNUW); 5927 Pred = ICmpInst::ICMP_ULT; 5928 Changed = true; 5929 } 5930 break; 5931 case ICmpInst::ICMP_UGE: 5932 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5933 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5934 SCEV::FlagNUW); 5935 Pred = ICmpInst::ICMP_UGT; 5936 Changed = true; 5937 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5938 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5939 SCEV::FlagNUW); 5940 Pred = ICmpInst::ICMP_UGT; 5941 Changed = true; 5942 } 5943 break; 5944 default: 5945 break; 5946 } 5947 5948 // TODO: More simplifications are possible here. 5949 5950 // Recursively simplify until we either hit a recursion limit or nothing 5951 // changes. 5952 if (Changed) 5953 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 5954 5955 return Changed; 5956 5957 trivially_true: 5958 // Return 0 == 0. 5959 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5960 Pred = ICmpInst::ICMP_EQ; 5961 return true; 5962 5963 trivially_false: 5964 // Return 0 != 0. 5965 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5966 Pred = ICmpInst::ICMP_NE; 5967 return true; 5968 } 5969 5970 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5971 return getSignedRange(S).getSignedMax().isNegative(); 5972 } 5973 5974 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5975 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5976 } 5977 5978 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5979 return !getSignedRange(S).getSignedMin().isNegative(); 5980 } 5981 5982 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5983 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5984 } 5985 5986 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5987 return isKnownNegative(S) || isKnownPositive(S); 5988 } 5989 5990 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5991 const SCEV *LHS, const SCEV *RHS) { 5992 // Canonicalize the inputs first. 5993 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5994 5995 // If LHS or RHS is an addrec, check to see if the condition is true in 5996 // every iteration of the loop. 5997 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5998 if (isLoopEntryGuardedByCond( 5999 AR->getLoop(), Pred, AR->getStart(), RHS) && 6000 isLoopBackedgeGuardedByCond( 6001 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 6002 return true; 6003 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 6004 if (isLoopEntryGuardedByCond( 6005 AR->getLoop(), Pred, LHS, AR->getStart()) && 6006 isLoopBackedgeGuardedByCond( 6007 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 6008 return true; 6009 6010 // Otherwise see what can be done with known constant ranges. 6011 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6012 } 6013 6014 bool 6015 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6016 const SCEV *LHS, const SCEV *RHS) { 6017 if (HasSameValue(LHS, RHS)) 6018 return ICmpInst::isTrueWhenEqual(Pred); 6019 6020 // This code is split out from isKnownPredicate because it is called from 6021 // within isLoopEntryGuardedByCond. 6022 switch (Pred) { 6023 default: 6024 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6025 case ICmpInst::ICMP_SGT: 6026 Pred = ICmpInst::ICMP_SLT; 6027 std::swap(LHS, RHS); 6028 case ICmpInst::ICMP_SLT: { 6029 ConstantRange LHSRange = getSignedRange(LHS); 6030 ConstantRange RHSRange = getSignedRange(RHS); 6031 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6032 return true; 6033 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6034 return false; 6035 break; 6036 } 6037 case ICmpInst::ICMP_SGE: 6038 Pred = ICmpInst::ICMP_SLE; 6039 std::swap(LHS, RHS); 6040 case ICmpInst::ICMP_SLE: { 6041 ConstantRange LHSRange = getSignedRange(LHS); 6042 ConstantRange RHSRange = getSignedRange(RHS); 6043 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6044 return true; 6045 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6046 return false; 6047 break; 6048 } 6049 case ICmpInst::ICMP_UGT: 6050 Pred = ICmpInst::ICMP_ULT; 6051 std::swap(LHS, RHS); 6052 case ICmpInst::ICMP_ULT: { 6053 ConstantRange LHSRange = getUnsignedRange(LHS); 6054 ConstantRange RHSRange = getUnsignedRange(RHS); 6055 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6056 return true; 6057 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6058 return false; 6059 break; 6060 } 6061 case ICmpInst::ICMP_UGE: 6062 Pred = ICmpInst::ICMP_ULE; 6063 std::swap(LHS, RHS); 6064 case ICmpInst::ICMP_ULE: { 6065 ConstantRange LHSRange = getUnsignedRange(LHS); 6066 ConstantRange RHSRange = getUnsignedRange(RHS); 6067 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6068 return true; 6069 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6070 return false; 6071 break; 6072 } 6073 case ICmpInst::ICMP_NE: { 6074 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6075 return true; 6076 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6077 return true; 6078 6079 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6080 if (isKnownNonZero(Diff)) 6081 return true; 6082 break; 6083 } 6084 case ICmpInst::ICMP_EQ: 6085 // The check at the top of the function catches the case where 6086 // the values are known to be equal. 6087 break; 6088 } 6089 return false; 6090 } 6091 6092 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6093 /// protected by a conditional between LHS and RHS. This is used to 6094 /// to eliminate casts. 6095 bool 6096 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6097 ICmpInst::Predicate Pred, 6098 const SCEV *LHS, const SCEV *RHS) { 6099 // Interpret a null as meaning no loop, where there is obviously no guard 6100 // (interprocedural conditions notwithstanding). 6101 if (!L) return true; 6102 6103 BasicBlock *Latch = L->getLoopLatch(); 6104 if (!Latch) 6105 return false; 6106 6107 BranchInst *LoopContinuePredicate = 6108 dyn_cast<BranchInst>(Latch->getTerminator()); 6109 if (!LoopContinuePredicate || 6110 LoopContinuePredicate->isUnconditional()) 6111 return false; 6112 6113 return isImpliedCond(Pred, LHS, RHS, 6114 LoopContinuePredicate->getCondition(), 6115 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6116 } 6117 6118 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6119 /// by a conditional between LHS and RHS. This is used to help avoid max 6120 /// expressions in loop trip counts, and to eliminate casts. 6121 bool 6122 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6123 ICmpInst::Predicate Pred, 6124 const SCEV *LHS, const SCEV *RHS) { 6125 // Interpret a null as meaning no loop, where there is obviously no guard 6126 // (interprocedural conditions notwithstanding). 6127 if (!L) return false; 6128 6129 // Starting at the loop predecessor, climb up the predecessor chain, as long 6130 // as there are predecessors that can be found that have unique successors 6131 // leading to the original header. 6132 for (std::pair<BasicBlock *, BasicBlock *> 6133 Pair(L->getLoopPredecessor(), L->getHeader()); 6134 Pair.first; 6135 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6136 6137 BranchInst *LoopEntryPredicate = 6138 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6139 if (!LoopEntryPredicate || 6140 LoopEntryPredicate->isUnconditional()) 6141 continue; 6142 6143 if (isImpliedCond(Pred, LHS, RHS, 6144 LoopEntryPredicate->getCondition(), 6145 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6146 return true; 6147 } 6148 6149 return false; 6150 } 6151 6152 /// RAII wrapper to prevent recursive application of isImpliedCond. 6153 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6154 /// currently evaluating isImpliedCond. 6155 struct MarkPendingLoopPredicate { 6156 Value *Cond; 6157 DenseSet<Value*> &LoopPreds; 6158 bool Pending; 6159 6160 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6161 : Cond(C), LoopPreds(LP) { 6162 Pending = !LoopPreds.insert(Cond).second; 6163 } 6164 ~MarkPendingLoopPredicate() { 6165 if (!Pending) 6166 LoopPreds.erase(Cond); 6167 } 6168 }; 6169 6170 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6171 /// and RHS is true whenever the given Cond value evaluates to true. 6172 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6173 const SCEV *LHS, const SCEV *RHS, 6174 Value *FoundCondValue, 6175 bool Inverse) { 6176 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6177 if (Mark.Pending) 6178 return false; 6179 6180 // Recursively handle And and Or conditions. 6181 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6182 if (BO->getOpcode() == Instruction::And) { 6183 if (!Inverse) 6184 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6185 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6186 } else if (BO->getOpcode() == Instruction::Or) { 6187 if (Inverse) 6188 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6189 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6190 } 6191 } 6192 6193 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6194 if (!ICI) return false; 6195 6196 // Bail if the ICmp's operands' types are wider than the needed type 6197 // before attempting to call getSCEV on them. This avoids infinite 6198 // recursion, since the analysis of widening casts can require loop 6199 // exit condition information for overflow checking, which would 6200 // lead back here. 6201 if (getTypeSizeInBits(LHS->getType()) < 6202 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6203 return false; 6204 6205 // Now that we found a conditional branch that dominates the loop or controls 6206 // the loop latch. Check to see if it is the comparison we are looking for. 6207 ICmpInst::Predicate FoundPred; 6208 if (Inverse) 6209 FoundPred = ICI->getInversePredicate(); 6210 else 6211 FoundPred = ICI->getPredicate(); 6212 6213 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6214 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6215 6216 // Balance the types. The case where FoundLHS' type is wider than 6217 // LHS' type is checked for above. 6218 if (getTypeSizeInBits(LHS->getType()) > 6219 getTypeSizeInBits(FoundLHS->getType())) { 6220 if (CmpInst::isSigned(Pred)) { 6221 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6222 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6223 } else { 6224 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6225 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6226 } 6227 } 6228 6229 // Canonicalize the query to match the way instcombine will have 6230 // canonicalized the comparison. 6231 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6232 if (LHS == RHS) 6233 return CmpInst::isTrueWhenEqual(Pred); 6234 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6235 if (FoundLHS == FoundRHS) 6236 return CmpInst::isFalseWhenEqual(FoundPred); 6237 6238 // Check to see if we can make the LHS or RHS match. 6239 if (LHS == FoundRHS || RHS == FoundLHS) { 6240 if (isa<SCEVConstant>(RHS)) { 6241 std::swap(FoundLHS, FoundRHS); 6242 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6243 } else { 6244 std::swap(LHS, RHS); 6245 Pred = ICmpInst::getSwappedPredicate(Pred); 6246 } 6247 } 6248 6249 // Check whether the found predicate is the same as the desired predicate. 6250 if (FoundPred == Pred) 6251 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6252 6253 // Check whether swapping the found predicate makes it the same as the 6254 // desired predicate. 6255 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6256 if (isa<SCEVConstant>(RHS)) 6257 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6258 else 6259 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6260 RHS, LHS, FoundLHS, FoundRHS); 6261 } 6262 6263 // Check whether the actual condition is beyond sufficient. 6264 if (FoundPred == ICmpInst::ICMP_EQ) 6265 if (ICmpInst::isTrueWhenEqual(Pred)) 6266 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6267 return true; 6268 if (Pred == ICmpInst::ICMP_NE) 6269 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6270 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6271 return true; 6272 6273 // Otherwise assume the worst. 6274 return false; 6275 } 6276 6277 /// isImpliedCondOperands - Test whether the condition described by Pred, 6278 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6279 /// and FoundRHS is true. 6280 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6281 const SCEV *LHS, const SCEV *RHS, 6282 const SCEV *FoundLHS, 6283 const SCEV *FoundRHS) { 6284 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6285 FoundLHS, FoundRHS) || 6286 // ~x < ~y --> x > y 6287 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6288 getNotSCEV(FoundRHS), 6289 getNotSCEV(FoundLHS)); 6290 } 6291 6292 /// isImpliedCondOperandsHelper - Test whether the condition described by 6293 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6294 /// FoundLHS, and FoundRHS is true. 6295 bool 6296 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6297 const SCEV *LHS, const SCEV *RHS, 6298 const SCEV *FoundLHS, 6299 const SCEV *FoundRHS) { 6300 switch (Pred) { 6301 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6302 case ICmpInst::ICMP_EQ: 6303 case ICmpInst::ICMP_NE: 6304 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6305 return true; 6306 break; 6307 case ICmpInst::ICMP_SLT: 6308 case ICmpInst::ICMP_SLE: 6309 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6310 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6311 return true; 6312 break; 6313 case ICmpInst::ICMP_SGT: 6314 case ICmpInst::ICMP_SGE: 6315 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6316 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6317 return true; 6318 break; 6319 case ICmpInst::ICMP_ULT: 6320 case ICmpInst::ICMP_ULE: 6321 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6322 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6323 return true; 6324 break; 6325 case ICmpInst::ICMP_UGT: 6326 case ICmpInst::ICMP_UGE: 6327 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6328 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6329 return true; 6330 break; 6331 } 6332 6333 return false; 6334 } 6335 6336 /// getBECount - Subtract the end and start values and divide by the step, 6337 /// rounding up, to get the number of times the backedge is executed. Return 6338 /// CouldNotCompute if an intermediate computation overflows. 6339 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6340 const SCEV *End, 6341 const SCEV *Step, 6342 bool NoWrap) { 6343 assert(!isKnownNegative(Step) && 6344 "This code doesn't handle negative strides yet!"); 6345 6346 Type *Ty = Start->getType(); 6347 6348 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6349 // here because SCEV may not be able to determine that the unsigned division 6350 // after rounding is zero. 6351 if (Start == End) 6352 return getConstant(Ty, 0); 6353 6354 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6355 const SCEV *Diff = getMinusSCEV(End, Start); 6356 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6357 6358 // Add an adjustment to the difference between End and Start so that 6359 // the division will effectively round up. 6360 const SCEV *Add = getAddExpr(Diff, RoundUp); 6361 6362 if (!NoWrap) { 6363 // Check Add for unsigned overflow. 6364 // TODO: More sophisticated things could be done here. 6365 Type *WideTy = IntegerType::get(getContext(), 6366 getTypeSizeInBits(Ty) + 1); 6367 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6368 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6369 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6370 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6371 return getCouldNotCompute(); 6372 } 6373 6374 return getUDivExpr(Add, Step); 6375 } 6376 6377 /// HowManyLessThans - Return the number of times a backedge containing the 6378 /// specified less-than comparison will execute. If not computable, return 6379 /// CouldNotCompute. 6380 /// 6381 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6382 /// control the branch. In this case, we can only compute an iteration count for 6383 /// a subexpression that cannot overflow before evaluating true. 6384 ScalarEvolution::ExitLimit 6385 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6386 const Loop *L, bool isSigned, 6387 bool IsSubExpr) { 6388 // Only handle: "ADDREC < LoopInvariant". 6389 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6390 6391 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6392 if (!AddRec || AddRec->getLoop() != L) 6393 return getCouldNotCompute(); 6394 6395 // Check to see if we have a flag which makes analysis easy. 6396 bool NoWrap = false; 6397 if (!IsSubExpr) { 6398 NoWrap = AddRec->getNoWrapFlags( 6399 (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW)) 6400 | SCEV::FlagNW)); 6401 } 6402 if (AddRec->isAffine()) { 6403 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6404 const SCEV *Step = AddRec->getStepRecurrence(*this); 6405 6406 if (Step->isZero()) 6407 return getCouldNotCompute(); 6408 if (Step->isOne()) { 6409 // With unit stride, the iteration never steps past the limit value. 6410 } else if (isKnownPositive(Step)) { 6411 // Test whether a positive iteration can step past the limit 6412 // value and past the maximum value for its type in a single step. 6413 // Note that it's not sufficient to check NoWrap here, because even 6414 // though the value after a wrap is undefined, it's not undefined 6415 // behavior, so if wrap does occur, the loop could either terminate or 6416 // loop infinitely, but in either case, the loop is guaranteed to 6417 // iterate at least until the iteration where the wrapping occurs. 6418 const SCEV *One = getConstant(Step->getType(), 1); 6419 if (isSigned) { 6420 APInt Max = APInt::getSignedMaxValue(BitWidth); 6421 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6422 .slt(getSignedRange(RHS).getSignedMax())) 6423 return getCouldNotCompute(); 6424 } else { 6425 APInt Max = APInt::getMaxValue(BitWidth); 6426 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6427 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6428 return getCouldNotCompute(); 6429 } 6430 } else 6431 // TODO: Handle negative strides here and below. 6432 return getCouldNotCompute(); 6433 6434 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6435 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6436 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6437 // treat m-n as signed nor unsigned due to overflow possibility. 6438 6439 // First, we get the value of the LHS in the first iteration: n 6440 const SCEV *Start = AddRec->getOperand(0); 6441 6442 // Determine the minimum constant start value. 6443 const SCEV *MinStart = getConstant(isSigned ? 6444 getSignedRange(Start).getSignedMin() : 6445 getUnsignedRange(Start).getUnsignedMin()); 6446 6447 // If we know that the condition is true in order to enter the loop, 6448 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6449 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6450 // the division must round up. 6451 const SCEV *End = RHS; 6452 if (!isLoopEntryGuardedByCond(L, 6453 isSigned ? ICmpInst::ICMP_SLT : 6454 ICmpInst::ICMP_ULT, 6455 getMinusSCEV(Start, Step), RHS)) 6456 End = isSigned ? getSMaxExpr(RHS, Start) 6457 : getUMaxExpr(RHS, Start); 6458 6459 // Determine the maximum constant end value. 6460 const SCEV *MaxEnd = getConstant(isSigned ? 6461 getSignedRange(End).getSignedMax() : 6462 getUnsignedRange(End).getUnsignedMax()); 6463 6464 // If MaxEnd is within a step of the maximum integer value in its type, 6465 // adjust it down to the minimum value which would produce the same effect. 6466 // This allows the subsequent ceiling division of (N+(step-1))/step to 6467 // compute the correct value. 6468 const SCEV *StepMinusOne = getMinusSCEV(Step, 6469 getConstant(Step->getType(), 1)); 6470 MaxEnd = isSigned ? 6471 getSMinExpr(MaxEnd, 6472 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6473 StepMinusOne)) : 6474 getUMinExpr(MaxEnd, 6475 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6476 StepMinusOne)); 6477 6478 // Finally, we subtract these two values and divide, rounding up, to get 6479 // the number of times the backedge is executed. 6480 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6481 6482 // The maximum backedge count is similar, except using the minimum start 6483 // value and the maximum end value. 6484 // If we already have an exact constant BECount, use it instead. 6485 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6486 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6487 6488 // If the stride is nonconstant, and NoWrap == true, then 6489 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6490 // exact BECount and invalid MaxBECount, which should be avoided to catch 6491 // more optimization opportunities. 6492 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6493 MaxBECount = BECount; 6494 6495 return ExitLimit(BECount, MaxBECount); 6496 } 6497 6498 return getCouldNotCompute(); 6499 } 6500 6501 /// getNumIterationsInRange - Return the number of iterations of this loop that 6502 /// produce values in the specified constant range. Another way of looking at 6503 /// this is that it returns the first iteration number where the value is not in 6504 /// the condition, thus computing the exit count. If the iteration count can't 6505 /// be computed, an instance of SCEVCouldNotCompute is returned. 6506 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6507 ScalarEvolution &SE) const { 6508 if (Range.isFullSet()) // Infinite loop. 6509 return SE.getCouldNotCompute(); 6510 6511 // If the start is a non-zero constant, shift the range to simplify things. 6512 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6513 if (!SC->getValue()->isZero()) { 6514 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6515 Operands[0] = SE.getConstant(SC->getType(), 0); 6516 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6517 getNoWrapFlags(FlagNW)); 6518 if (const SCEVAddRecExpr *ShiftedAddRec = 6519 dyn_cast<SCEVAddRecExpr>(Shifted)) 6520 return ShiftedAddRec->getNumIterationsInRange( 6521 Range.subtract(SC->getValue()->getValue()), SE); 6522 // This is strange and shouldn't happen. 6523 return SE.getCouldNotCompute(); 6524 } 6525 6526 // The only time we can solve this is when we have all constant indices. 6527 // Otherwise, we cannot determine the overflow conditions. 6528 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6529 if (!isa<SCEVConstant>(getOperand(i))) 6530 return SE.getCouldNotCompute(); 6531 6532 6533 // Okay at this point we know that all elements of the chrec are constants and 6534 // that the start element is zero. 6535 6536 // First check to see if the range contains zero. If not, the first 6537 // iteration exits. 6538 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6539 if (!Range.contains(APInt(BitWidth, 0))) 6540 return SE.getConstant(getType(), 0); 6541 6542 if (isAffine()) { 6543 // If this is an affine expression then we have this situation: 6544 // Solve {0,+,A} in Range === Ax in Range 6545 6546 // We know that zero is in the range. If A is positive then we know that 6547 // the upper value of the range must be the first possible exit value. 6548 // If A is negative then the lower of the range is the last possible loop 6549 // value. Also note that we already checked for a full range. 6550 APInt One(BitWidth,1); 6551 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6552 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6553 6554 // The exit value should be (End+A)/A. 6555 APInt ExitVal = (End + A).udiv(A); 6556 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6557 6558 // Evaluate at the exit value. If we really did fall out of the valid 6559 // range, then we computed our trip count, otherwise wrap around or other 6560 // things must have happened. 6561 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6562 if (Range.contains(Val->getValue())) 6563 return SE.getCouldNotCompute(); // Something strange happened 6564 6565 // Ensure that the previous value is in the range. This is a sanity check. 6566 assert(Range.contains( 6567 EvaluateConstantChrecAtConstant(this, 6568 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6569 "Linear scev computation is off in a bad way!"); 6570 return SE.getConstant(ExitValue); 6571 } else if (isQuadratic()) { 6572 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6573 // quadratic equation to solve it. To do this, we must frame our problem in 6574 // terms of figuring out when zero is crossed, instead of when 6575 // Range.getUpper() is crossed. 6576 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6577 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6578 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6579 // getNoWrapFlags(FlagNW) 6580 FlagAnyWrap); 6581 6582 // Next, solve the constructed addrec 6583 std::pair<const SCEV *,const SCEV *> Roots = 6584 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6585 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6586 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6587 if (R1) { 6588 // Pick the smallest positive root value. 6589 if (ConstantInt *CB = 6590 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6591 R1->getValue(), R2->getValue()))) { 6592 if (CB->getZExtValue() == false) 6593 std::swap(R1, R2); // R1 is the minimum root now. 6594 6595 // Make sure the root is not off by one. The returned iteration should 6596 // not be in the range, but the previous one should be. When solving 6597 // for "X*X < 5", for example, we should not return a root of 2. 6598 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6599 R1->getValue(), 6600 SE); 6601 if (Range.contains(R1Val->getValue())) { 6602 // The next iteration must be out of the range... 6603 ConstantInt *NextVal = 6604 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6605 6606 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6607 if (!Range.contains(R1Val->getValue())) 6608 return SE.getConstant(NextVal); 6609 return SE.getCouldNotCompute(); // Something strange happened 6610 } 6611 6612 // If R1 was not in the range, then it is a good return value. Make 6613 // sure that R1-1 WAS in the range though, just in case. 6614 ConstantInt *NextVal = 6615 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6616 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6617 if (Range.contains(R1Val->getValue())) 6618 return R1; 6619 return SE.getCouldNotCompute(); // Something strange happened 6620 } 6621 } 6622 } 6623 6624 return SE.getCouldNotCompute(); 6625 } 6626 6627 6628 6629 //===----------------------------------------------------------------------===// 6630 // SCEVCallbackVH Class Implementation 6631 //===----------------------------------------------------------------------===// 6632 6633 void ScalarEvolution::SCEVCallbackVH::deleted() { 6634 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6635 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6636 SE->ConstantEvolutionLoopExitValue.erase(PN); 6637 SE->ValueExprMap.erase(getValPtr()); 6638 // this now dangles! 6639 } 6640 6641 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6642 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6643 6644 // Forget all the expressions associated with users of the old value, 6645 // so that future queries will recompute the expressions using the new 6646 // value. 6647 Value *Old = getValPtr(); 6648 SmallVector<User *, 16> Worklist; 6649 SmallPtrSet<User *, 8> Visited; 6650 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6651 UI != UE; ++UI) 6652 Worklist.push_back(*UI); 6653 while (!Worklist.empty()) { 6654 User *U = Worklist.pop_back_val(); 6655 // Deleting the Old value will cause this to dangle. Postpone 6656 // that until everything else is done. 6657 if (U == Old) 6658 continue; 6659 if (!Visited.insert(U)) 6660 continue; 6661 if (PHINode *PN = dyn_cast<PHINode>(U)) 6662 SE->ConstantEvolutionLoopExitValue.erase(PN); 6663 SE->ValueExprMap.erase(U); 6664 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6665 UI != UE; ++UI) 6666 Worklist.push_back(*UI); 6667 } 6668 // Delete the Old value. 6669 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6670 SE->ConstantEvolutionLoopExitValue.erase(PN); 6671 SE->ValueExprMap.erase(Old); 6672 // this now dangles! 6673 } 6674 6675 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6676 : CallbackVH(V), SE(se) {} 6677 6678 //===----------------------------------------------------------------------===// 6679 // ScalarEvolution Class Implementation 6680 //===----------------------------------------------------------------------===// 6681 6682 ScalarEvolution::ScalarEvolution() 6683 : FunctionPass(ID), FirstUnknown(0) { 6684 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6685 } 6686 6687 bool ScalarEvolution::runOnFunction(Function &F) { 6688 this->F = &F; 6689 LI = &getAnalysis<LoopInfo>(); 6690 TD = getAnalysisIfAvailable<DataLayout>(); 6691 TLI = &getAnalysis<TargetLibraryInfo>(); 6692 DT = &getAnalysis<DominatorTree>(); 6693 return false; 6694 } 6695 6696 void ScalarEvolution::releaseMemory() { 6697 // Iterate through all the SCEVUnknown instances and call their 6698 // destructors, so that they release their references to their values. 6699 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6700 U->~SCEVUnknown(); 6701 FirstUnknown = 0; 6702 6703 ValueExprMap.clear(); 6704 6705 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6706 // that a loop had multiple computable exits. 6707 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6708 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6709 I != E; ++I) { 6710 I->second.clear(); 6711 } 6712 6713 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 6714 6715 BackedgeTakenCounts.clear(); 6716 ConstantEvolutionLoopExitValue.clear(); 6717 ValuesAtScopes.clear(); 6718 LoopDispositions.clear(); 6719 BlockDispositions.clear(); 6720 UnsignedRanges.clear(); 6721 SignedRanges.clear(); 6722 UniqueSCEVs.clear(); 6723 SCEVAllocator.Reset(); 6724 } 6725 6726 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6727 AU.setPreservesAll(); 6728 AU.addRequiredTransitive<LoopInfo>(); 6729 AU.addRequiredTransitive<DominatorTree>(); 6730 AU.addRequired<TargetLibraryInfo>(); 6731 } 6732 6733 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6734 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6735 } 6736 6737 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6738 const Loop *L) { 6739 // Print all inner loops first 6740 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6741 PrintLoopInfo(OS, SE, *I); 6742 6743 OS << "Loop "; 6744 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6745 OS << ": "; 6746 6747 SmallVector<BasicBlock *, 8> ExitBlocks; 6748 L->getExitBlocks(ExitBlocks); 6749 if (ExitBlocks.size() != 1) 6750 OS << "<multiple exits> "; 6751 6752 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6753 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6754 } else { 6755 OS << "Unpredictable backedge-taken count. "; 6756 } 6757 6758 OS << "\n" 6759 "Loop "; 6760 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6761 OS << ": "; 6762 6763 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6764 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6765 } else { 6766 OS << "Unpredictable max backedge-taken count. "; 6767 } 6768 6769 OS << "\n"; 6770 } 6771 6772 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6773 // ScalarEvolution's implementation of the print method is to print 6774 // out SCEV values of all instructions that are interesting. Doing 6775 // this potentially causes it to create new SCEV objects though, 6776 // which technically conflicts with the const qualifier. This isn't 6777 // observable from outside the class though, so casting away the 6778 // const isn't dangerous. 6779 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6780 6781 OS << "Classifying expressions for: "; 6782 WriteAsOperand(OS, F, /*PrintType=*/false); 6783 OS << "\n"; 6784 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6785 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6786 OS << *I << '\n'; 6787 OS << " --> "; 6788 const SCEV *SV = SE.getSCEV(&*I); 6789 SV->print(OS); 6790 6791 const Loop *L = LI->getLoopFor((*I).getParent()); 6792 6793 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6794 if (AtUse != SV) { 6795 OS << " --> "; 6796 AtUse->print(OS); 6797 } 6798 6799 if (L) { 6800 OS << "\t\t" "Exits: "; 6801 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6802 if (!SE.isLoopInvariant(ExitValue, L)) { 6803 OS << "<<Unknown>>"; 6804 } else { 6805 OS << *ExitValue; 6806 } 6807 } 6808 6809 OS << "\n"; 6810 } 6811 6812 OS << "Determining loop execution counts for: "; 6813 WriteAsOperand(OS, F, /*PrintType=*/false); 6814 OS << "\n"; 6815 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6816 PrintLoopInfo(OS, &SE, *I); 6817 } 6818 6819 ScalarEvolution::LoopDisposition 6820 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6821 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6822 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6823 Values.insert(std::make_pair(L, LoopVariant)); 6824 if (!Pair.second) 6825 return Pair.first->second; 6826 6827 LoopDisposition D = computeLoopDisposition(S, L); 6828 return LoopDispositions[S][L] = D; 6829 } 6830 6831 ScalarEvolution::LoopDisposition 6832 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6833 switch (S->getSCEVType()) { 6834 case scConstant: 6835 return LoopInvariant; 6836 case scTruncate: 6837 case scZeroExtend: 6838 case scSignExtend: 6839 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6840 case scAddRecExpr: { 6841 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6842 6843 // If L is the addrec's loop, it's computable. 6844 if (AR->getLoop() == L) 6845 return LoopComputable; 6846 6847 // Add recurrences are never invariant in the function-body (null loop). 6848 if (!L) 6849 return LoopVariant; 6850 6851 // This recurrence is variant w.r.t. L if L contains AR's loop. 6852 if (L->contains(AR->getLoop())) 6853 return LoopVariant; 6854 6855 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6856 if (AR->getLoop()->contains(L)) 6857 return LoopInvariant; 6858 6859 // This recurrence is variant w.r.t. L if any of its operands 6860 // are variant. 6861 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6862 I != E; ++I) 6863 if (!isLoopInvariant(*I, L)) 6864 return LoopVariant; 6865 6866 // Otherwise it's loop-invariant. 6867 return LoopInvariant; 6868 } 6869 case scAddExpr: 6870 case scMulExpr: 6871 case scUMaxExpr: 6872 case scSMaxExpr: { 6873 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6874 bool HasVarying = false; 6875 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6876 I != E; ++I) { 6877 LoopDisposition D = getLoopDisposition(*I, L); 6878 if (D == LoopVariant) 6879 return LoopVariant; 6880 if (D == LoopComputable) 6881 HasVarying = true; 6882 } 6883 return HasVarying ? LoopComputable : LoopInvariant; 6884 } 6885 case scUDivExpr: { 6886 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6887 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6888 if (LD == LoopVariant) 6889 return LoopVariant; 6890 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6891 if (RD == LoopVariant) 6892 return LoopVariant; 6893 return (LD == LoopInvariant && RD == LoopInvariant) ? 6894 LoopInvariant : LoopComputable; 6895 } 6896 case scUnknown: 6897 // All non-instruction values are loop invariant. All instructions are loop 6898 // invariant if they are not contained in the specified loop. 6899 // Instructions are never considered invariant in the function body 6900 // (null loop) because they are defined within the "loop". 6901 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6902 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6903 return LoopInvariant; 6904 case scCouldNotCompute: 6905 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6906 default: llvm_unreachable("Unknown SCEV kind!"); 6907 } 6908 } 6909 6910 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6911 return getLoopDisposition(S, L) == LoopInvariant; 6912 } 6913 6914 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6915 return getLoopDisposition(S, L) == LoopComputable; 6916 } 6917 6918 ScalarEvolution::BlockDisposition 6919 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6920 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6921 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6922 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6923 if (!Pair.second) 6924 return Pair.first->second; 6925 6926 BlockDisposition D = computeBlockDisposition(S, BB); 6927 return BlockDispositions[S][BB] = D; 6928 } 6929 6930 ScalarEvolution::BlockDisposition 6931 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6932 switch (S->getSCEVType()) { 6933 case scConstant: 6934 return ProperlyDominatesBlock; 6935 case scTruncate: 6936 case scZeroExtend: 6937 case scSignExtend: 6938 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6939 case scAddRecExpr: { 6940 // This uses a "dominates" query instead of "properly dominates" query 6941 // to test for proper dominance too, because the instruction which 6942 // produces the addrec's value is a PHI, and a PHI effectively properly 6943 // dominates its entire containing block. 6944 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6945 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6946 return DoesNotDominateBlock; 6947 } 6948 // FALL THROUGH into SCEVNAryExpr handling. 6949 case scAddExpr: 6950 case scMulExpr: 6951 case scUMaxExpr: 6952 case scSMaxExpr: { 6953 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6954 bool Proper = true; 6955 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6956 I != E; ++I) { 6957 BlockDisposition D = getBlockDisposition(*I, BB); 6958 if (D == DoesNotDominateBlock) 6959 return DoesNotDominateBlock; 6960 if (D == DominatesBlock) 6961 Proper = false; 6962 } 6963 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6964 } 6965 case scUDivExpr: { 6966 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6967 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6968 BlockDisposition LD = getBlockDisposition(LHS, BB); 6969 if (LD == DoesNotDominateBlock) 6970 return DoesNotDominateBlock; 6971 BlockDisposition RD = getBlockDisposition(RHS, BB); 6972 if (RD == DoesNotDominateBlock) 6973 return DoesNotDominateBlock; 6974 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6975 ProperlyDominatesBlock : DominatesBlock; 6976 } 6977 case scUnknown: 6978 if (Instruction *I = 6979 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6980 if (I->getParent() == BB) 6981 return DominatesBlock; 6982 if (DT->properlyDominates(I->getParent(), BB)) 6983 return ProperlyDominatesBlock; 6984 return DoesNotDominateBlock; 6985 } 6986 return ProperlyDominatesBlock; 6987 case scCouldNotCompute: 6988 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6989 default: 6990 llvm_unreachable("Unknown SCEV kind!"); 6991 } 6992 } 6993 6994 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6995 return getBlockDisposition(S, BB) >= DominatesBlock; 6996 } 6997 6998 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6999 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7000 } 7001 7002 namespace { 7003 // Search for a SCEV expression node within an expression tree. 7004 // Implements SCEVTraversal::Visitor. 7005 struct SCEVSearch { 7006 const SCEV *Node; 7007 bool IsFound; 7008 7009 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7010 7011 bool follow(const SCEV *S) { 7012 IsFound |= (S == Node); 7013 return !IsFound; 7014 } 7015 bool isDone() const { return IsFound; } 7016 }; 7017 } 7018 7019 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7020 SCEVSearch Search(Op); 7021 visitAll(S, Search); 7022 return Search.IsFound; 7023 } 7024 7025 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7026 ValuesAtScopes.erase(S); 7027 LoopDispositions.erase(S); 7028 BlockDispositions.erase(S); 7029 UnsignedRanges.erase(S); 7030 SignedRanges.erase(S); 7031 7032 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7033 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7034 BackedgeTakenInfo &BEInfo = I->second; 7035 if (BEInfo.hasOperand(S, this)) { 7036 BEInfo.clear(); 7037 BackedgeTakenCounts.erase(I++); 7038 } 7039 else 7040 ++I; 7041 } 7042 } 7043 7044 typedef DenseMap<const Loop *, std::string> VerifyMap; 7045 7046 /// replaceSubString - Replaces all occurences of From in Str with To. 7047 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7048 size_t Pos = 0; 7049 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7050 Str.replace(Pos, From.size(), To.data(), To.size()); 7051 Pos += To.size(); 7052 } 7053 } 7054 7055 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7056 static void 7057 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7058 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7059 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7060 7061 std::string &S = Map[L]; 7062 if (S.empty()) { 7063 raw_string_ostream OS(S); 7064 SE.getBackedgeTakenCount(L)->print(OS); 7065 7066 // false and 0 are semantically equivalent. This can happen in dead loops. 7067 replaceSubString(OS.str(), "false", "0"); 7068 // Remove wrap flags, their use in SCEV is highly fragile. 7069 // FIXME: Remove this when SCEV gets smarter about them. 7070 replaceSubString(OS.str(), "<nw>", ""); 7071 replaceSubString(OS.str(), "<nsw>", ""); 7072 replaceSubString(OS.str(), "<nuw>", ""); 7073 } 7074 } 7075 } 7076 7077 void ScalarEvolution::verifyAnalysis() const { 7078 if (!VerifySCEV) 7079 return; 7080 7081 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7082 7083 // Gather stringified backedge taken counts for all loops using SCEV's caches. 7084 // FIXME: It would be much better to store actual values instead of strings, 7085 // but SCEV pointers will change if we drop the caches. 7086 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 7087 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7088 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 7089 7090 // Gather stringified backedge taken counts for all loops without using 7091 // SCEV's caches. 7092 SE.releaseMemory(); 7093 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7094 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 7095 7096 // Now compare whether they're the same with and without caches. This allows 7097 // verifying that no pass changed the cache. 7098 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7099 "New loops suddenly appeared!"); 7100 7101 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7102 OldE = BackedgeDumpsOld.end(), 7103 NewI = BackedgeDumpsNew.begin(); 7104 OldI != OldE; ++OldI, ++NewI) { 7105 assert(OldI->first == NewI->first && "Loop order changed!"); 7106 7107 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7108 // changes. 7109 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7110 // means that a pass is buggy or SCEV has to learn a new pattern but is 7111 // usually not harmful. 7112 if (OldI->second != NewI->second && 7113 OldI->second.find("undef") == std::string::npos && 7114 NewI->second.find("undef") == std::string::npos && 7115 OldI->second != "***COULDNOTCOMPUTE***" && 7116 NewI->second != "***COULDNOTCOMPUTE***") { 7117 dbgs() << "SCEVValidator: SCEV for loop '" 7118 << OldI->first->getHeader()->getName() 7119 << "' changed from '" << OldI->second 7120 << "' to '" << NewI->second << "'!\n"; 7121 std::abort(); 7122 } 7123 } 7124 7125 // TODO: Verify more things. 7126 } 7127