1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumBruteForceEvaluations, 87 "Number of brute force evaluations needed to " 88 "calculate high-order polynomial exit values"); 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant derived loop"), 102 cl::init(100)); 103 104 namespace { 105 RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis"); 107 } 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 SCEV::~SCEV() {} 118 void SCEV::dump() const { 119 print(cerr); 120 } 121 122 /// getValueRange - Return the tightest constant bounds that this value is 123 /// known to have. This method is only valid on integer SCEV objects. 124 ConstantRange SCEV::getValueRange() const { 125 const Type *Ty = getType(); 126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); 127 // Default to a full range if no better information is available. 128 return ConstantRange(getBitWidth()); 129 } 130 131 uint32_t SCEV::getBitWidth() const { 132 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 133 return ITy->getBitWidth(); 134 return 0; 135 } 136 137 138 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc, 158 ScalarEvolution &SE) const { 159 return this; 160 } 161 162 void SCEVCouldNotCompute::print(std::ostream &OS) const { 163 OS << "***COULDNOTCOMPUTE***"; 164 } 165 166 bool SCEVCouldNotCompute::classof(const SCEV *S) { 167 return S->getSCEVType() == scCouldNotCompute; 168 } 169 170 171 // SCEVConstants - Only allow the creation of one SCEVConstant for any 172 // particular value. Don't use a SCEVHandle here, or else the object will 173 // never be deleted! 174 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 175 176 177 SCEVConstant::~SCEVConstant() { 178 SCEVConstants->erase(V); 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 182 SCEVConstant *&R = (*SCEVConstants)[V]; 183 if (R == 0) R = new SCEVConstant(V); 184 return R; 185 } 186 187 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 188 return getConstant(ConstantInt::get(Val)); 189 } 190 191 ConstantRange SCEVConstant::getValueRange() const { 192 return ConstantRange(V->getValue()); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(std::ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 202 // particular input. Don't use a SCEVHandle here, or else the object will 203 // never be deleted! 204 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 205 SCEVTruncateExpr*> > SCEVTruncates; 206 207 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 208 : SCEV(scTruncate), Op(op), Ty(ty) { 209 assert(Op->getType()->isInteger() && Ty->isInteger() && 210 "Cannot truncate non-integer value!"); 211 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 212 && "This is not a truncating conversion!"); 213 } 214 215 SCEVTruncateExpr::~SCEVTruncateExpr() { 216 SCEVTruncates->erase(std::make_pair(Op, Ty)); 217 } 218 219 ConstantRange SCEVTruncateExpr::getValueRange() const { 220 return getOperand()->getValueRange().truncate(getBitWidth()); 221 } 222 223 void SCEVTruncateExpr::print(std::ostream &OS) const { 224 OS << "(truncate " << *Op << " to " << *Ty << ")"; 225 } 226 227 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 228 // particular input. Don't use a SCEVHandle here, or else the object will never 229 // be deleted! 230 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 231 SCEVZeroExtendExpr*> > SCEVZeroExtends; 232 233 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 234 : SCEV(scZeroExtend), Op(op), Ty(ty) { 235 assert(Op->getType()->isInteger() && Ty->isInteger() && 236 "Cannot zero extend non-integer value!"); 237 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 238 && "This is not an extending conversion!"); 239 } 240 241 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 242 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 243 } 244 245 ConstantRange SCEVZeroExtendExpr::getValueRange() const { 246 return getOperand()->getValueRange().zeroExtend(getBitWidth()); 247 } 248 249 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 250 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 251 } 252 253 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 254 // particular input. Don't use a SCEVHandle here, or else the object will never 255 // be deleted! 256 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 257 SCEVSignExtendExpr*> > SCEVSignExtends; 258 259 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 260 : SCEV(scSignExtend), Op(op), Ty(ty) { 261 assert(Op->getType()->isInteger() && Ty->isInteger() && 262 "Cannot sign extend non-integer value!"); 263 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 264 && "This is not an extending conversion!"); 265 } 266 267 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 268 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 269 } 270 271 ConstantRange SCEVSignExtendExpr::getValueRange() const { 272 return getOperand()->getValueRange().signExtend(getBitWidth()); 273 } 274 275 void SCEVSignExtendExpr::print(std::ostream &OS) const { 276 OS << "(signextend " << *Op << " to " << *Ty << ")"; 277 } 278 279 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 280 // particular input. Don't use a SCEVHandle here, or else the object will never 281 // be deleted! 282 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 283 SCEVCommutativeExpr*> > SCEVCommExprs; 284 285 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 286 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 287 std::vector<SCEV*>(Operands.begin(), 288 Operands.end()))); 289 } 290 291 void SCEVCommutativeExpr::print(std::ostream &OS) const { 292 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 293 const char *OpStr = getOperationStr(); 294 OS << "(" << *Operands[0]; 295 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 296 OS << OpStr << *Operands[i]; 297 OS << ")"; 298 } 299 300 SCEVHandle SCEVCommutativeExpr:: 301 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 302 const SCEVHandle &Conc, 303 ScalarEvolution &SE) const { 304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 305 SCEVHandle H = 306 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 307 if (H != getOperand(i)) { 308 std::vector<SCEVHandle> NewOps; 309 NewOps.reserve(getNumOperands()); 310 for (unsigned j = 0; j != i; ++j) 311 NewOps.push_back(getOperand(j)); 312 NewOps.push_back(H); 313 for (++i; i != e; ++i) 314 NewOps.push_back(getOperand(i)-> 315 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 316 317 if (isa<SCEVAddExpr>(this)) 318 return SE.getAddExpr(NewOps); 319 else if (isa<SCEVMulExpr>(this)) 320 return SE.getMulExpr(NewOps); 321 else 322 assert(0 && "Unknown commutative expr!"); 323 } 324 } 325 return this; 326 } 327 328 329 // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 333 SCEVSDivExpr*> > SCEVSDivs; 334 335 SCEVSDivExpr::~SCEVSDivExpr() { 336 SCEVSDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 void SCEVSDivExpr::print(std::ostream &OS) const { 340 OS << "(" << *LHS << " /s " << *RHS << ")"; 341 } 342 343 const Type *SCEVSDivExpr::getType() const { 344 return LHS->getType(); 345 } 346 347 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 348 // input. Don't use a SCEVHandle here, or else the object will never be 349 // deleted! 350 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 351 SCEVUDivExpr*> > SCEVUDivs; 352 353 SCEVUDivExpr::~SCEVUDivExpr() { 354 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 355 } 356 357 void SCEVUDivExpr::print(std::ostream &OS) const { 358 OS << "(" << *LHS << " /u " << *RHS << ")"; 359 } 360 361 const Type *SCEVUDivExpr::getType() const { 362 return LHS->getType(); 363 } 364 365 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 366 // particular input. Don't use a SCEVHandle here, or else the object will never 367 // be deleted! 368 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 369 SCEVAddRecExpr*> > SCEVAddRecExprs; 370 371 SCEVAddRecExpr::~SCEVAddRecExpr() { 372 SCEVAddRecExprs->erase(std::make_pair(L, 373 std::vector<SCEV*>(Operands.begin(), 374 Operands.end()))); 375 } 376 377 SCEVHandle SCEVAddRecExpr:: 378 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 379 const SCEVHandle &Conc, 380 ScalarEvolution &SE) const { 381 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 382 SCEVHandle H = 383 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 384 if (H != getOperand(i)) { 385 std::vector<SCEVHandle> NewOps; 386 NewOps.reserve(getNumOperands()); 387 for (unsigned j = 0; j != i; ++j) 388 NewOps.push_back(getOperand(j)); 389 NewOps.push_back(H); 390 for (++i; i != e; ++i) 391 NewOps.push_back(getOperand(i)-> 392 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 393 394 return SE.getAddRecExpr(NewOps, L); 395 } 396 } 397 return this; 398 } 399 400 401 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 402 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 403 // contain L and if the start is invariant. 404 return !QueryLoop->contains(L->getHeader()) && 405 getOperand(0)->isLoopInvariant(QueryLoop); 406 } 407 408 409 void SCEVAddRecExpr::print(std::ostream &OS) const { 410 OS << "{" << *Operands[0]; 411 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 412 OS << ",+," << *Operands[i]; 413 OS << "}<" << L->getHeader()->getName() + ">"; 414 } 415 416 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 417 // value. Don't use a SCEVHandle here, or else the object will never be 418 // deleted! 419 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 420 421 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 422 423 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 424 // All non-instruction values are loop invariant. All instructions are loop 425 // invariant if they are not contained in the specified loop. 426 if (Instruction *I = dyn_cast<Instruction>(V)) 427 return !L->contains(I->getParent()); 428 return true; 429 } 430 431 const Type *SCEVUnknown::getType() const { 432 return V->getType(); 433 } 434 435 void SCEVUnknown::print(std::ostream &OS) const { 436 WriteAsOperand(OS, V, false); 437 } 438 439 //===----------------------------------------------------------------------===// 440 // SCEV Utilities 441 //===----------------------------------------------------------------------===// 442 443 namespace { 444 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 445 /// than the complexity of the RHS. This comparator is used to canonicalize 446 /// expressions. 447 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 448 bool operator()(SCEV *LHS, SCEV *RHS) { 449 return LHS->getSCEVType() < RHS->getSCEVType(); 450 } 451 }; 452 } 453 454 /// GroupByComplexity - Given a list of SCEV objects, order them by their 455 /// complexity, and group objects of the same complexity together by value. 456 /// When this routine is finished, we know that any duplicates in the vector are 457 /// consecutive and that complexity is monotonically increasing. 458 /// 459 /// Note that we go take special precautions to ensure that we get determinstic 460 /// results from this routine. In other words, we don't want the results of 461 /// this to depend on where the addresses of various SCEV objects happened to 462 /// land in memory. 463 /// 464 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 465 if (Ops.size() < 2) return; // Noop 466 if (Ops.size() == 2) { 467 // This is the common case, which also happens to be trivially simple. 468 // Special case it. 469 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) 470 std::swap(Ops[0], Ops[1]); 471 return; 472 } 473 474 // Do the rough sort by complexity. 475 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 476 477 // Now that we are sorted by complexity, group elements of the same 478 // complexity. Note that this is, at worst, N^2, but the vector is likely to 479 // be extremely short in practice. Note that we take this approach because we 480 // do not want to depend on the addresses of the objects we are grouping. 481 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 482 SCEV *S = Ops[i]; 483 unsigned Complexity = S->getSCEVType(); 484 485 // If there are any objects of the same complexity and same value as this 486 // one, group them. 487 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 488 if (Ops[j] == S) { // Found a duplicate. 489 // Move it to immediately after i'th element. 490 std::swap(Ops[i+1], Ops[j]); 491 ++i; // no need to rescan it. 492 if (i == e-2) return; // Done! 493 } 494 } 495 } 496 } 497 498 499 500 //===----------------------------------------------------------------------===// 501 // Simple SCEV method implementations 502 //===----------------------------------------------------------------------===// 503 504 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 505 /// specified signed integer value and return a SCEV for the constant. 506 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 507 Constant *C; 508 if (Val == 0) 509 C = Constant::getNullValue(Ty); 510 else if (Ty->isFloatingPoint()) 511 C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 512 APFloat::IEEEdouble, Val)); 513 else 514 C = ConstantInt::get(Ty, Val); 515 return getUnknown(C); 516 } 517 518 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 519 /// input value to the specified type. If the type must be extended, it is zero 520 /// extended. 521 static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty, 522 ScalarEvolution &SE) { 523 const Type *SrcTy = V->getType(); 524 assert(SrcTy->isInteger() && Ty->isInteger() && 525 "Cannot truncate or zero extend with non-integer arguments!"); 526 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 527 return V; // No conversion 528 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 529 return SE.getTruncateExpr(V, Ty); 530 return SE.getZeroExtendExpr(V, Ty); 531 } 532 533 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 534 /// 535 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 536 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 537 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 538 539 return getMulExpr(V, getIntegerSCEV(-1, V->getType())); 540 } 541 542 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 543 /// 544 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 545 const SCEVHandle &RHS) { 546 // X - Y --> X + -Y 547 return getAddExpr(LHS, getNegativeSCEV(RHS)); 548 } 549 550 551 /// PartialFact - Compute V!/(V-NumSteps)! 552 static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps, 553 ScalarEvolution &SE) { 554 // Handle this case efficiently, it is common to have constant iteration 555 // counts while computing loop exit values. 556 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 557 const APInt& Val = SC->getValue()->getValue(); 558 APInt Result(Val.getBitWidth(), 1); 559 for (; NumSteps; --NumSteps) 560 Result *= Val-(NumSteps-1); 561 return SE.getConstant(Result); 562 } 563 564 const Type *Ty = V->getType(); 565 if (NumSteps == 0) 566 return SE.getIntegerSCEV(1, Ty); 567 568 SCEVHandle Result = V; 569 for (unsigned i = 1; i != NumSteps; ++i) 570 Result = SE.getMulExpr(Result, SE.getMinusSCEV(V, 571 SE.getIntegerSCEV(i, Ty))); 572 return Result; 573 } 574 575 576 /// evaluateAtIteration - Return the value of this chain of recurrences at 577 /// the specified iteration number. We can evaluate this recurrence by 578 /// multiplying each element in the chain by the binomial coefficient 579 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 580 /// 581 /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) 582 /// 583 /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. 584 /// Is the binomial equation safe using modular arithmetic?? 585 /// 586 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 587 ScalarEvolution &SE) const { 588 SCEVHandle Result = getStart(); 589 int Divisor = 1; 590 const Type *Ty = It->getType(); 591 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 592 SCEVHandle BC = PartialFact(It, i, SE); 593 Divisor *= i; 594 SCEVHandle Val = SE.getUDivExpr(SE.getMulExpr(BC, getOperand(i)), 595 SE.getIntegerSCEV(Divisor,Ty)); 596 Result = SE.getAddExpr(Result, Val); 597 } 598 return Result; 599 } 600 601 602 //===----------------------------------------------------------------------===// 603 // SCEV Expression folder implementations 604 //===----------------------------------------------------------------------===// 605 606 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 607 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 608 return getUnknown( 609 ConstantExpr::getTrunc(SC->getValue(), Ty)); 610 611 // If the input value is a chrec scev made out of constants, truncate 612 // all of the constants. 613 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 614 std::vector<SCEVHandle> Operands; 615 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 616 // FIXME: This should allow truncation of other expression types! 617 if (isa<SCEVConstant>(AddRec->getOperand(i))) 618 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 619 else 620 break; 621 if (Operands.size() == AddRec->getNumOperands()) 622 return getAddRecExpr(Operands, AddRec->getLoop()); 623 } 624 625 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 626 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 627 return Result; 628 } 629 630 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 631 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 632 return getUnknown( 633 ConstantExpr::getZExt(SC->getValue(), Ty)); 634 635 // FIXME: If the input value is a chrec scev, and we can prove that the value 636 // did not overflow the old, smaller, value, we can zero extend all of the 637 // operands (often constants). This would allow analysis of something like 638 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 639 640 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 641 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 642 return Result; 643 } 644 645 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 646 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 647 return getUnknown( 648 ConstantExpr::getSExt(SC->getValue(), Ty)); 649 650 // FIXME: If the input value is a chrec scev, and we can prove that the value 651 // did not overflow the old, smaller, value, we can sign extend all of the 652 // operands (often constants). This would allow analysis of something like 653 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 654 655 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 656 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 657 return Result; 658 } 659 660 // get - Get a canonical add expression, or something simpler if possible. 661 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 662 assert(!Ops.empty() && "Cannot get empty add!"); 663 if (Ops.size() == 1) return Ops[0]; 664 665 // Sort by complexity, this groups all similar expression types together. 666 GroupByComplexity(Ops); 667 668 // If there are any constants, fold them together. 669 unsigned Idx = 0; 670 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 671 ++Idx; 672 assert(Idx < Ops.size()); 673 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 674 // We found two constants, fold them together! 675 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 676 RHSC->getValue()->getValue()); 677 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 678 Ops[0] = getConstant(CI); 679 Ops.erase(Ops.begin()+1); // Erase the folded element 680 if (Ops.size() == 1) return Ops[0]; 681 LHSC = cast<SCEVConstant>(Ops[0]); 682 } else { 683 // If we couldn't fold the expression, move to the next constant. Note 684 // that this is impossible to happen in practice because we always 685 // constant fold constant ints to constant ints. 686 ++Idx; 687 } 688 } 689 690 // If we are left with a constant zero being added, strip it off. 691 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 692 Ops.erase(Ops.begin()); 693 --Idx; 694 } 695 } 696 697 if (Ops.size() == 1) return Ops[0]; 698 699 // Okay, check to see if the same value occurs in the operand list twice. If 700 // so, merge them together into an multiply expression. Since we sorted the 701 // list, these values are required to be adjacent. 702 const Type *Ty = Ops[0]->getType(); 703 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 704 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 705 // Found a match, merge the two values into a multiply, and add any 706 // remaining values to the result. 707 SCEVHandle Two = getIntegerSCEV(2, Ty); 708 SCEVHandle Mul = getMulExpr(Ops[i], Two); 709 if (Ops.size() == 2) 710 return Mul; 711 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 712 Ops.push_back(Mul); 713 return getAddExpr(Ops); 714 } 715 716 // Now we know the first non-constant operand. Skip past any cast SCEVs. 717 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 718 ++Idx; 719 720 // If there are add operands they would be next. 721 if (Idx < Ops.size()) { 722 bool DeletedAdd = false; 723 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 724 // If we have an add, expand the add operands onto the end of the operands 725 // list. 726 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 727 Ops.erase(Ops.begin()+Idx); 728 DeletedAdd = true; 729 } 730 731 // If we deleted at least one add, we added operands to the end of the list, 732 // and they are not necessarily sorted. Recurse to resort and resimplify 733 // any operands we just aquired. 734 if (DeletedAdd) 735 return getAddExpr(Ops); 736 } 737 738 // Skip over the add expression until we get to a multiply. 739 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 740 ++Idx; 741 742 // If we are adding something to a multiply expression, make sure the 743 // something is not already an operand of the multiply. If so, merge it into 744 // the multiply. 745 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 746 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 747 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 748 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 749 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 750 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 751 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 752 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 753 if (Mul->getNumOperands() != 2) { 754 // If the multiply has more than two operands, we must get the 755 // Y*Z term. 756 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 757 MulOps.erase(MulOps.begin()+MulOp); 758 InnerMul = getMulExpr(MulOps); 759 } 760 SCEVHandle One = getIntegerSCEV(1, Ty); 761 SCEVHandle AddOne = getAddExpr(InnerMul, One); 762 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 763 if (Ops.size() == 2) return OuterMul; 764 if (AddOp < Idx) { 765 Ops.erase(Ops.begin()+AddOp); 766 Ops.erase(Ops.begin()+Idx-1); 767 } else { 768 Ops.erase(Ops.begin()+Idx); 769 Ops.erase(Ops.begin()+AddOp-1); 770 } 771 Ops.push_back(OuterMul); 772 return getAddExpr(Ops); 773 } 774 775 // Check this multiply against other multiplies being added together. 776 for (unsigned OtherMulIdx = Idx+1; 777 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 778 ++OtherMulIdx) { 779 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 780 // If MulOp occurs in OtherMul, we can fold the two multiplies 781 // together. 782 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 783 OMulOp != e; ++OMulOp) 784 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 785 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 786 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 787 if (Mul->getNumOperands() != 2) { 788 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 789 MulOps.erase(MulOps.begin()+MulOp); 790 InnerMul1 = getMulExpr(MulOps); 791 } 792 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 793 if (OtherMul->getNumOperands() != 2) { 794 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 795 OtherMul->op_end()); 796 MulOps.erase(MulOps.begin()+OMulOp); 797 InnerMul2 = getMulExpr(MulOps); 798 } 799 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 800 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 801 if (Ops.size() == 2) return OuterMul; 802 Ops.erase(Ops.begin()+Idx); 803 Ops.erase(Ops.begin()+OtherMulIdx-1); 804 Ops.push_back(OuterMul); 805 return getAddExpr(Ops); 806 } 807 } 808 } 809 } 810 811 // If there are any add recurrences in the operands list, see if any other 812 // added values are loop invariant. If so, we can fold them into the 813 // recurrence. 814 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 815 ++Idx; 816 817 // Scan over all recurrences, trying to fold loop invariants into them. 818 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 819 // Scan all of the other operands to this add and add them to the vector if 820 // they are loop invariant w.r.t. the recurrence. 821 std::vector<SCEVHandle> LIOps; 822 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 823 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 824 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 825 LIOps.push_back(Ops[i]); 826 Ops.erase(Ops.begin()+i); 827 --i; --e; 828 } 829 830 // If we found some loop invariants, fold them into the recurrence. 831 if (!LIOps.empty()) { 832 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } 833 LIOps.push_back(AddRec->getStart()); 834 835 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 836 AddRecOps[0] = getAddExpr(LIOps); 837 838 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 839 // If all of the other operands were loop invariant, we are done. 840 if (Ops.size() == 1) return NewRec; 841 842 // Otherwise, add the folded AddRec by the non-liv parts. 843 for (unsigned i = 0;; ++i) 844 if (Ops[i] == AddRec) { 845 Ops[i] = NewRec; 846 break; 847 } 848 return getAddExpr(Ops); 849 } 850 851 // Okay, if there weren't any loop invariants to be folded, check to see if 852 // there are multiple AddRec's with the same loop induction variable being 853 // added together. If so, we can fold them. 854 for (unsigned OtherIdx = Idx+1; 855 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 856 if (OtherIdx != Idx) { 857 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 858 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 859 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 860 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 861 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 862 if (i >= NewOps.size()) { 863 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 864 OtherAddRec->op_end()); 865 break; 866 } 867 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 868 } 869 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 870 871 if (Ops.size() == 2) return NewAddRec; 872 873 Ops.erase(Ops.begin()+Idx); 874 Ops.erase(Ops.begin()+OtherIdx-1); 875 Ops.push_back(NewAddRec); 876 return getAddExpr(Ops); 877 } 878 } 879 880 // Otherwise couldn't fold anything into this recurrence. Move onto the 881 // next one. 882 } 883 884 // Okay, it looks like we really DO need an add expr. Check to see if we 885 // already have one, otherwise create a new one. 886 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 887 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 888 SCEVOps)]; 889 if (Result == 0) Result = new SCEVAddExpr(Ops); 890 return Result; 891 } 892 893 894 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 895 assert(!Ops.empty() && "Cannot get empty mul!"); 896 897 // Sort by complexity, this groups all similar expression types together. 898 GroupByComplexity(Ops); 899 900 // If there are any constants, fold them together. 901 unsigned Idx = 0; 902 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 903 904 // C1*(C2+V) -> C1*C2 + C1*V 905 if (Ops.size() == 2) 906 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 907 if (Add->getNumOperands() == 2 && 908 isa<SCEVConstant>(Add->getOperand(0))) 909 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 910 getMulExpr(LHSC, Add->getOperand(1))); 911 912 913 ++Idx; 914 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 915 // We found two constants, fold them together! 916 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 917 RHSC->getValue()->getValue()); 918 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 919 Ops[0] = getConstant(CI); 920 Ops.erase(Ops.begin()+1); // Erase the folded element 921 if (Ops.size() == 1) return Ops[0]; 922 LHSC = cast<SCEVConstant>(Ops[0]); 923 } else { 924 // If we couldn't fold the expression, move to the next constant. Note 925 // that this is impossible to happen in practice because we always 926 // constant fold constant ints to constant ints. 927 ++Idx; 928 } 929 } 930 931 // If we are left with a constant one being multiplied, strip it off. 932 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 933 Ops.erase(Ops.begin()); 934 --Idx; 935 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 936 // If we have a multiply of zero, it will always be zero. 937 return Ops[0]; 938 } 939 } 940 941 // Skip over the add expression until we get to a multiply. 942 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 943 ++Idx; 944 945 if (Ops.size() == 1) 946 return Ops[0]; 947 948 // If there are mul operands inline them all into this expression. 949 if (Idx < Ops.size()) { 950 bool DeletedMul = false; 951 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 952 // If we have an mul, expand the mul operands onto the end of the operands 953 // list. 954 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 955 Ops.erase(Ops.begin()+Idx); 956 DeletedMul = true; 957 } 958 959 // If we deleted at least one mul, we added operands to the end of the list, 960 // and they are not necessarily sorted. Recurse to resort and resimplify 961 // any operands we just aquired. 962 if (DeletedMul) 963 return getMulExpr(Ops); 964 } 965 966 // If there are any add recurrences in the operands list, see if any other 967 // added values are loop invariant. If so, we can fold them into the 968 // recurrence. 969 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 970 ++Idx; 971 972 // Scan over all recurrences, trying to fold loop invariants into them. 973 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 974 // Scan all of the other operands to this mul and add them to the vector if 975 // they are loop invariant w.r.t. the recurrence. 976 std::vector<SCEVHandle> LIOps; 977 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 978 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 979 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 980 LIOps.push_back(Ops[i]); 981 Ops.erase(Ops.begin()+i); 982 --i; --e; 983 } 984 985 // If we found some loop invariants, fold them into the recurrence. 986 if (!LIOps.empty()) { 987 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } 988 std::vector<SCEVHandle> NewOps; 989 NewOps.reserve(AddRec->getNumOperands()); 990 if (LIOps.size() == 1) { 991 SCEV *Scale = LIOps[0]; 992 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 993 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 994 } else { 995 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 996 std::vector<SCEVHandle> MulOps(LIOps); 997 MulOps.push_back(AddRec->getOperand(i)); 998 NewOps.push_back(getMulExpr(MulOps)); 999 } 1000 } 1001 1002 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1003 1004 // If all of the other operands were loop invariant, we are done. 1005 if (Ops.size() == 1) return NewRec; 1006 1007 // Otherwise, multiply the folded AddRec by the non-liv parts. 1008 for (unsigned i = 0;; ++i) 1009 if (Ops[i] == AddRec) { 1010 Ops[i] = NewRec; 1011 break; 1012 } 1013 return getMulExpr(Ops); 1014 } 1015 1016 // Okay, if there weren't any loop invariants to be folded, check to see if 1017 // there are multiple AddRec's with the same loop induction variable being 1018 // multiplied together. If so, we can fold them. 1019 for (unsigned OtherIdx = Idx+1; 1020 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1021 if (OtherIdx != Idx) { 1022 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1023 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1024 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1025 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1026 SCEVHandle NewStart = getMulExpr(F->getStart(), 1027 G->getStart()); 1028 SCEVHandle B = F->getStepRecurrence(*this); 1029 SCEVHandle D = G->getStepRecurrence(*this); 1030 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1031 getMulExpr(G, B), 1032 getMulExpr(B, D)); 1033 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1034 F->getLoop()); 1035 if (Ops.size() == 2) return NewAddRec; 1036 1037 Ops.erase(Ops.begin()+Idx); 1038 Ops.erase(Ops.begin()+OtherIdx-1); 1039 Ops.push_back(NewAddRec); 1040 return getMulExpr(Ops); 1041 } 1042 } 1043 1044 // Otherwise couldn't fold anything into this recurrence. Move onto the 1045 // next one. 1046 } 1047 1048 // Okay, it looks like we really DO need an mul expr. Check to see if we 1049 // already have one, otherwise create a new one. 1050 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1051 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1052 SCEVOps)]; 1053 if (Result == 0) 1054 Result = new SCEVMulExpr(Ops); 1055 return Result; 1056 } 1057 1058 SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, 1059 const SCEVHandle &RHS) { 1060 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1061 if (RHSC->getValue()->equalsInt(1)) 1062 return LHS; // X sdiv 1 --> x 1063 if (RHSC->getValue()->isAllOnesValue()) 1064 return getNegativeSCEV(LHS); // X sdiv -1 --> -x 1065 1066 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1067 Constant *LHSCV = LHSC->getValue(); 1068 Constant *RHSCV = RHSC->getValue(); 1069 return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV)); 1070 } 1071 } 1072 1073 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1074 1075 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; 1076 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); 1077 return Result; 1078 } 1079 1080 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1081 const SCEVHandle &RHS) { 1082 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1083 if (RHSC->getValue()->equalsInt(1)) 1084 return LHS; // X udiv 1 --> x 1085 1086 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1087 Constant *LHSCV = LHSC->getValue(); 1088 Constant *RHSCV = RHSC->getValue(); 1089 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1090 } 1091 } 1092 1093 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1094 1095 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1096 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1097 return Result; 1098 } 1099 1100 1101 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1102 /// specified loop. Simplify the expression as much as possible. 1103 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1104 const SCEVHandle &Step, const Loop *L) { 1105 std::vector<SCEVHandle> Operands; 1106 Operands.push_back(Start); 1107 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1108 if (StepChrec->getLoop() == L) { 1109 Operands.insert(Operands.end(), StepChrec->op_begin(), 1110 StepChrec->op_end()); 1111 return getAddRecExpr(Operands, L); 1112 } 1113 1114 Operands.push_back(Step); 1115 return getAddRecExpr(Operands, L); 1116 } 1117 1118 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1119 /// specified loop. Simplify the expression as much as possible. 1120 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1121 const Loop *L) { 1122 if (Operands.size() == 1) return Operands[0]; 1123 1124 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) 1125 if (StepC->getValue()->isZero()) { 1126 Operands.pop_back(); 1127 return getAddRecExpr(Operands, L); // { X,+,0 } --> X 1128 } 1129 1130 SCEVAddRecExpr *&Result = 1131 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1132 Operands.end()))]; 1133 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1134 return Result; 1135 } 1136 1137 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1138 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1139 return getConstant(CI); 1140 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1141 if (Result == 0) Result = new SCEVUnknown(V); 1142 return Result; 1143 } 1144 1145 1146 //===----------------------------------------------------------------------===// 1147 // ScalarEvolutionsImpl Definition and Implementation 1148 //===----------------------------------------------------------------------===// 1149 // 1150 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1151 /// evolution code. 1152 /// 1153 namespace { 1154 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1155 /// SE - A reference to the public ScalarEvolution object. 1156 ScalarEvolution &SE; 1157 1158 /// F - The function we are analyzing. 1159 /// 1160 Function &F; 1161 1162 /// LI - The loop information for the function we are currently analyzing. 1163 /// 1164 LoopInfo &LI; 1165 1166 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1167 /// things. 1168 SCEVHandle UnknownValue; 1169 1170 /// Scalars - This is a cache of the scalars we have analyzed so far. 1171 /// 1172 std::map<Value*, SCEVHandle> Scalars; 1173 1174 /// IterationCounts - Cache the iteration count of the loops for this 1175 /// function as they are computed. 1176 std::map<const Loop*, SCEVHandle> IterationCounts; 1177 1178 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1179 /// the PHI instructions that we attempt to compute constant evolutions for. 1180 /// This allows us to avoid potentially expensive recomputation of these 1181 /// properties. An instruction maps to null if we are unable to compute its 1182 /// exit value. 1183 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1184 1185 public: 1186 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li) 1187 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1188 1189 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1190 /// expression and create a new one. 1191 SCEVHandle getSCEV(Value *V); 1192 1193 /// hasSCEV - Return true if the SCEV for this value has already been 1194 /// computed. 1195 bool hasSCEV(Value *V) const { 1196 return Scalars.count(V); 1197 } 1198 1199 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1200 /// the specified value. 1201 void setSCEV(Value *V, const SCEVHandle &H) { 1202 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1203 assert(isNew && "This entry already existed!"); 1204 } 1205 1206 1207 /// getSCEVAtScope - Compute the value of the specified expression within 1208 /// the indicated loop (which may be null to indicate in no loop). If the 1209 /// expression cannot be evaluated, return UnknownValue itself. 1210 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1211 1212 1213 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1214 /// an analyzable loop-invariant iteration count. 1215 bool hasLoopInvariantIterationCount(const Loop *L); 1216 1217 /// getIterationCount - If the specified loop has a predictable iteration 1218 /// count, return it. Note that it is not valid to call this method on a 1219 /// loop without a loop-invariant iteration count. 1220 SCEVHandle getIterationCount(const Loop *L); 1221 1222 /// deleteValueFromRecords - This method should be called by the 1223 /// client before it removes a value from the program, to make sure 1224 /// that no dangling references are left around. 1225 void deleteValueFromRecords(Value *V); 1226 1227 private: 1228 /// createSCEV - We know that there is no SCEV for the specified value. 1229 /// Analyze the expression. 1230 SCEVHandle createSCEV(Value *V); 1231 1232 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1233 /// SCEVs. 1234 SCEVHandle createNodeForPHI(PHINode *PN); 1235 1236 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1237 /// for the specified instruction and replaces any references to the 1238 /// symbolic value SymName with the specified value. This is used during 1239 /// PHI resolution. 1240 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1241 const SCEVHandle &SymName, 1242 const SCEVHandle &NewVal); 1243 1244 /// ComputeIterationCount - Compute the number of times the specified loop 1245 /// will iterate. 1246 SCEVHandle ComputeIterationCount(const Loop *L); 1247 1248 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1249 /// 'setcc load X, cst', try to see if we can compute the trip count. 1250 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1251 Constant *RHS, 1252 const Loop *L, 1253 ICmpInst::Predicate p); 1254 1255 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1256 /// constant number of times (the condition evolves only from constants), 1257 /// try to evaluate a few iterations of the loop until we get the exit 1258 /// condition gets a value of ExitWhen (true or false). If we cannot 1259 /// evaluate the trip count of the loop, return UnknownValue. 1260 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1261 bool ExitWhen); 1262 1263 /// HowFarToZero - Return the number of times a backedge comparing the 1264 /// specified value to zero will execute. If not computable, return 1265 /// UnknownValue. 1266 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1267 1268 /// HowFarToNonZero - Return the number of times a backedge checking the 1269 /// specified value for nonzero will execute. If not computable, return 1270 /// UnknownValue. 1271 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1272 1273 /// HowManyLessThans - Return the number of times a backedge containing the 1274 /// specified less-than comparison will execute. If not computable, return 1275 /// UnknownValue. isSigned specifies whether the less-than is signed. 1276 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1277 bool isSigned); 1278 1279 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1280 /// in the header of its containing loop, we know the loop executes a 1281 /// constant number of times, and the PHI node is just a recurrence 1282 /// involving constants, fold it. 1283 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1284 const Loop *L); 1285 }; 1286 } 1287 1288 //===----------------------------------------------------------------------===// 1289 // Basic SCEV Analysis and PHI Idiom Recognition Code 1290 // 1291 1292 /// deleteValueFromRecords - This method should be called by the 1293 /// client before it removes an instruction from the program, to make sure 1294 /// that no dangling references are left around. 1295 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1296 SmallVector<Value *, 16> Worklist; 1297 1298 if (Scalars.erase(V)) { 1299 if (PHINode *PN = dyn_cast<PHINode>(V)) 1300 ConstantEvolutionLoopExitValue.erase(PN); 1301 Worklist.push_back(V); 1302 } 1303 1304 while (!Worklist.empty()) { 1305 Value *VV = Worklist.back(); 1306 Worklist.pop_back(); 1307 1308 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1309 UI != UE; ++UI) { 1310 Instruction *Inst = cast<Instruction>(*UI); 1311 if (Scalars.erase(Inst)) { 1312 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1313 ConstantEvolutionLoopExitValue.erase(PN); 1314 Worklist.push_back(Inst); 1315 } 1316 } 1317 } 1318 } 1319 1320 1321 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1322 /// expression and create a new one. 1323 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1324 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1325 1326 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1327 if (I != Scalars.end()) return I->second; 1328 SCEVHandle S = createSCEV(V); 1329 Scalars.insert(std::make_pair(V, S)); 1330 return S; 1331 } 1332 1333 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1334 /// the specified instruction and replaces any references to the symbolic value 1335 /// SymName with the specified value. This is used during PHI resolution. 1336 void ScalarEvolutionsImpl:: 1337 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1338 const SCEVHandle &NewVal) { 1339 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1340 if (SI == Scalars.end()) return; 1341 1342 SCEVHandle NV = 1343 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1344 if (NV == SI->second) return; // No change. 1345 1346 SI->second = NV; // Update the scalars map! 1347 1348 // Any instruction values that use this instruction might also need to be 1349 // updated! 1350 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1351 UI != E; ++UI) 1352 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1353 } 1354 1355 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1356 /// a loop header, making it a potential recurrence, or it doesn't. 1357 /// 1358 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1359 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1360 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1361 if (L->getHeader() == PN->getParent()) { 1362 // If it lives in the loop header, it has two incoming values, one 1363 // from outside the loop, and one from inside. 1364 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1365 unsigned BackEdge = IncomingEdge^1; 1366 1367 // While we are analyzing this PHI node, handle its value symbolically. 1368 SCEVHandle SymbolicName = SE.getUnknown(PN); 1369 assert(Scalars.find(PN) == Scalars.end() && 1370 "PHI node already processed?"); 1371 Scalars.insert(std::make_pair(PN, SymbolicName)); 1372 1373 // Using this symbolic name for the PHI, analyze the value coming around 1374 // the back-edge. 1375 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1376 1377 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1378 // has a special value for the first iteration of the loop. 1379 1380 // If the value coming around the backedge is an add with the symbolic 1381 // value we just inserted, then we found a simple induction variable! 1382 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1383 // If there is a single occurrence of the symbolic value, replace it 1384 // with a recurrence. 1385 unsigned FoundIndex = Add->getNumOperands(); 1386 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1387 if (Add->getOperand(i) == SymbolicName) 1388 if (FoundIndex == e) { 1389 FoundIndex = i; 1390 break; 1391 } 1392 1393 if (FoundIndex != Add->getNumOperands()) { 1394 // Create an add with everything but the specified operand. 1395 std::vector<SCEVHandle> Ops; 1396 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1397 if (i != FoundIndex) 1398 Ops.push_back(Add->getOperand(i)); 1399 SCEVHandle Accum = SE.getAddExpr(Ops); 1400 1401 // This is not a valid addrec if the step amount is varying each 1402 // loop iteration, but is not itself an addrec in this loop. 1403 if (Accum->isLoopInvariant(L) || 1404 (isa<SCEVAddRecExpr>(Accum) && 1405 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1406 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1407 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1408 1409 // Okay, for the entire analysis of this edge we assumed the PHI 1410 // to be symbolic. We now need to go back and update all of the 1411 // entries for the scalars that use the PHI (except for the PHI 1412 // itself) to use the new analyzed value instead of the "symbolic" 1413 // value. 1414 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1415 return PHISCEV; 1416 } 1417 } 1418 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1419 // Otherwise, this could be a loop like this: 1420 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1421 // In this case, j = {1,+,1} and BEValue is j. 1422 // Because the other in-value of i (0) fits the evolution of BEValue 1423 // i really is an addrec evolution. 1424 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1425 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1426 1427 // If StartVal = j.start - j.stride, we can use StartVal as the 1428 // initial step of the addrec evolution. 1429 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1430 AddRec->getOperand(1))) { 1431 SCEVHandle PHISCEV = 1432 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1433 1434 // Okay, for the entire analysis of this edge we assumed the PHI 1435 // to be symbolic. We now need to go back and update all of the 1436 // entries for the scalars that use the PHI (except for the PHI 1437 // itself) to use the new analyzed value instead of the "symbolic" 1438 // value. 1439 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1440 return PHISCEV; 1441 } 1442 } 1443 } 1444 1445 return SymbolicName; 1446 } 1447 1448 // If it's not a loop phi, we can't handle it yet. 1449 return SE.getUnknown(PN); 1450 } 1451 1452 /// GetConstantFactor - Determine the largest constant factor that S has. For 1453 /// example, turn {4,+,8} -> 4. (S umod result) should always equal zero. 1454 static APInt GetConstantFactor(SCEVHandle S) { 1455 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 1456 const APInt& V = C->getValue()->getValue(); 1457 if (!V.isMinValue()) 1458 return V; 1459 else // Zero is a multiple of everything. 1460 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1); 1461 } 1462 1463 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) { 1464 return GetConstantFactor(T->getOperand()).trunc( 1465 cast<IntegerType>(T->getType())->getBitWidth()); 1466 } 1467 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) 1468 return GetConstantFactor(E->getOperand()).zext( 1469 cast<IntegerType>(E->getType())->getBitWidth()); 1470 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) 1471 return GetConstantFactor(E->getOperand()).sext( 1472 cast<IntegerType>(E->getType())->getBitWidth()); 1473 1474 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1475 // The result is the min of all operands. 1476 APInt Res(GetConstantFactor(A->getOperand(0))); 1477 for (unsigned i = 1, e = A->getNumOperands(); 1478 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) { 1479 APInt Tmp(GetConstantFactor(A->getOperand(i))); 1480 Res = APIntOps::umin(Res, Tmp); 1481 } 1482 return Res; 1483 } 1484 1485 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1486 // The result is the product of all the operands. 1487 APInt Res(GetConstantFactor(M->getOperand(0))); 1488 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) { 1489 APInt Tmp(GetConstantFactor(M->getOperand(i))); 1490 Res *= Tmp; 1491 } 1492 return Res; 1493 } 1494 1495 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1496 // For now, we just handle linear expressions. 1497 if (A->getNumOperands() == 2) { 1498 // We want the GCD between the start and the stride value. 1499 APInt Start(GetConstantFactor(A->getOperand(0))); 1500 if (Start == 1) 1501 return Start; 1502 APInt Stride(GetConstantFactor(A->getOperand(1))); 1503 return APIntOps::GreatestCommonDivisor(Start, Stride); 1504 } 1505 } 1506 1507 // SCEVSDivExpr, SCEVUnknown. 1508 return APInt(S->getBitWidth(), 1); 1509 } 1510 1511 /// createSCEV - We know that there is no SCEV for the specified value. 1512 /// Analyze the expression. 1513 /// 1514 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1515 if (Instruction *I = dyn_cast<Instruction>(V)) { 1516 switch (I->getOpcode()) { 1517 case Instruction::Add: 1518 return SE.getAddExpr(getSCEV(I->getOperand(0)), 1519 getSCEV(I->getOperand(1))); 1520 case Instruction::Mul: 1521 return SE.getMulExpr(getSCEV(I->getOperand(0)), 1522 getSCEV(I->getOperand(1))); 1523 case Instruction::SDiv: 1524 return SE.getSDivExpr(getSCEV(I->getOperand(0)), 1525 getSCEV(I->getOperand(1))); 1526 case Instruction::Sub: 1527 return SE.getMinusSCEV(getSCEV(I->getOperand(0)), 1528 getSCEV(I->getOperand(1))); 1529 case Instruction::Or: 1530 // If the RHS of the Or is a constant, we may have something like: 1531 // X*4+1 which got turned into X*4|1. Handle this as an add so loop 1532 // optimizations will transparently handle this case. 1533 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1534 SCEVHandle LHS = getSCEV(I->getOperand(0)); 1535 APInt CommonFact(GetConstantFactor(LHS)); 1536 assert(!CommonFact.isMinValue() && 1537 "Common factor should at least be 1!"); 1538 if (CommonFact.ugt(CI->getValue())) { 1539 // If the LHS is a multiple that is larger than the RHS, use +. 1540 return SE.getAddExpr(LHS, 1541 getSCEV(I->getOperand(1))); 1542 } 1543 } 1544 break; 1545 case Instruction::Xor: 1546 // If the RHS of the xor is a signbit, then this is just an add. 1547 // Instcombine turns add of signbit into xor as a strength reduction step. 1548 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1549 if (CI->getValue().isSignBit()) 1550 return SE.getAddExpr(getSCEV(I->getOperand(0)), 1551 getSCEV(I->getOperand(1))); 1552 } 1553 break; 1554 1555 case Instruction::Shl: 1556 // Turn shift left of a constant amount into a multiply. 1557 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1558 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1559 Constant *X = ConstantInt::get( 1560 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1561 return SE.getMulExpr(getSCEV(I->getOperand(0)), getSCEV(X)); 1562 } 1563 break; 1564 1565 case Instruction::Trunc: 1566 return SE.getTruncateExpr(getSCEV(I->getOperand(0)), I->getType()); 1567 1568 case Instruction::ZExt: 1569 return SE.getZeroExtendExpr(getSCEV(I->getOperand(0)), I->getType()); 1570 1571 case Instruction::SExt: 1572 return SE.getSignExtendExpr(getSCEV(I->getOperand(0)), I->getType()); 1573 1574 case Instruction::BitCast: 1575 // BitCasts are no-op casts so we just eliminate the cast. 1576 if (I->getType()->isInteger() && 1577 I->getOperand(0)->getType()->isInteger()) 1578 return getSCEV(I->getOperand(0)); 1579 break; 1580 1581 case Instruction::PHI: 1582 return createNodeForPHI(cast<PHINode>(I)); 1583 1584 default: // We cannot analyze this expression. 1585 break; 1586 } 1587 } 1588 1589 return SE.getUnknown(V); 1590 } 1591 1592 1593 1594 //===----------------------------------------------------------------------===// 1595 // Iteration Count Computation Code 1596 // 1597 1598 /// getIterationCount - If the specified loop has a predictable iteration 1599 /// count, return it. Note that it is not valid to call this method on a 1600 /// loop without a loop-invariant iteration count. 1601 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1602 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1603 if (I == IterationCounts.end()) { 1604 SCEVHandle ItCount = ComputeIterationCount(L); 1605 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1606 if (ItCount != UnknownValue) { 1607 assert(ItCount->isLoopInvariant(L) && 1608 "Computed trip count isn't loop invariant for loop!"); 1609 ++NumTripCountsComputed; 1610 } else if (isa<PHINode>(L->getHeader()->begin())) { 1611 // Only count loops that have phi nodes as not being computable. 1612 ++NumTripCountsNotComputed; 1613 } 1614 } 1615 return I->second; 1616 } 1617 1618 /// ComputeIterationCount - Compute the number of times the specified loop 1619 /// will iterate. 1620 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1621 // If the loop has a non-one exit block count, we can't analyze it. 1622 SmallVector<BasicBlock*, 8> ExitBlocks; 1623 L->getExitBlocks(ExitBlocks); 1624 if (ExitBlocks.size() != 1) return UnknownValue; 1625 1626 // Okay, there is one exit block. Try to find the condition that causes the 1627 // loop to be exited. 1628 BasicBlock *ExitBlock = ExitBlocks[0]; 1629 1630 BasicBlock *ExitingBlock = 0; 1631 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1632 PI != E; ++PI) 1633 if (L->contains(*PI)) { 1634 if (ExitingBlock == 0) 1635 ExitingBlock = *PI; 1636 else 1637 return UnknownValue; // More than one block exiting! 1638 } 1639 assert(ExitingBlock && "No exits from loop, something is broken!"); 1640 1641 // Okay, we've computed the exiting block. See what condition causes us to 1642 // exit. 1643 // 1644 // FIXME: we should be able to handle switch instructions (with a single exit) 1645 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1646 if (ExitBr == 0) return UnknownValue; 1647 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1648 1649 // At this point, we know we have a conditional branch that determines whether 1650 // the loop is exited. However, we don't know if the branch is executed each 1651 // time through the loop. If not, then the execution count of the branch will 1652 // not be equal to the trip count of the loop. 1653 // 1654 // Currently we check for this by checking to see if the Exit branch goes to 1655 // the loop header. If so, we know it will always execute the same number of 1656 // times as the loop. We also handle the case where the exit block *is* the 1657 // loop header. This is common for un-rotated loops. More extensive analysis 1658 // could be done to handle more cases here. 1659 if (ExitBr->getSuccessor(0) != L->getHeader() && 1660 ExitBr->getSuccessor(1) != L->getHeader() && 1661 ExitBr->getParent() != L->getHeader()) 1662 return UnknownValue; 1663 1664 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 1665 1666 // If its not an integer comparison then compute it the hard way. 1667 // Note that ICmpInst deals with pointer comparisons too so we must check 1668 // the type of the operand. 1669 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 1670 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 1671 ExitBr->getSuccessor(0) == ExitBlock); 1672 1673 // If the condition was exit on true, convert the condition to exit on false 1674 ICmpInst::Predicate Cond; 1675 if (ExitBr->getSuccessor(1) == ExitBlock) 1676 Cond = ExitCond->getPredicate(); 1677 else 1678 Cond = ExitCond->getInversePredicate(); 1679 1680 // Handle common loops like: for (X = "string"; *X; ++X) 1681 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 1682 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 1683 SCEVHandle ItCnt = 1684 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 1685 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 1686 } 1687 1688 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 1689 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 1690 1691 // Try to evaluate any dependencies out of the loop. 1692 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 1693 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 1694 Tmp = getSCEVAtScope(RHS, L); 1695 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 1696 1697 // At this point, we would like to compute how many iterations of the 1698 // loop the predicate will return true for these inputs. 1699 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { 1700 // If there is a constant, force it into the RHS. 1701 std::swap(LHS, RHS); 1702 Cond = ICmpInst::getSwappedPredicate(Cond); 1703 } 1704 1705 // FIXME: think about handling pointer comparisons! i.e.: 1706 // while (P != P+100) ++P; 1707 1708 // If we have a comparison of a chrec against a constant, try to use value 1709 // ranges to answer this query. 1710 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 1711 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 1712 if (AddRec->getLoop() == L) { 1713 // Form the comparison range using the constant of the correct type so 1714 // that the ConstantRange class knows to do a signed or unsigned 1715 // comparison. 1716 ConstantInt *CompVal = RHSC->getValue(); 1717 const Type *RealTy = ExitCond->getOperand(0)->getType(); 1718 CompVal = dyn_cast<ConstantInt>( 1719 ConstantExpr::getBitCast(CompVal, RealTy)); 1720 if (CompVal) { 1721 // Form the constant range. 1722 ConstantRange CompRange( 1723 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 1724 1725 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 1726 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 1727 } 1728 } 1729 1730 switch (Cond) { 1731 case ICmpInst::ICMP_NE: { // while (X != Y) 1732 // Convert to: while (X-Y != 0) 1733 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 1734 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1735 break; 1736 } 1737 case ICmpInst::ICMP_EQ: { 1738 // Convert to: while (X-Y == 0) // while (X == Y) 1739 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 1740 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1741 break; 1742 } 1743 case ICmpInst::ICMP_SLT: { 1744 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 1745 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1746 break; 1747 } 1748 case ICmpInst::ICMP_SGT: { 1749 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS), 1750 SE.getNegativeSCEV(RHS), L, true); 1751 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1752 break; 1753 } 1754 case ICmpInst::ICMP_ULT: { 1755 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 1756 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1757 break; 1758 } 1759 case ICmpInst::ICMP_UGT: { 1760 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS), 1761 SE.getNegativeSCEV(RHS), L, false); 1762 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1763 break; 1764 } 1765 default: 1766 #if 0 1767 cerr << "ComputeIterationCount "; 1768 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 1769 cerr << "[unsigned] "; 1770 cerr << *LHS << " " 1771 << Instruction::getOpcodeName(Instruction::ICmp) 1772 << " " << *RHS << "\n"; 1773 #endif 1774 break; 1775 } 1776 return ComputeIterationCountExhaustively(L, ExitCond, 1777 ExitBr->getSuccessor(0) == ExitBlock); 1778 } 1779 1780 static ConstantInt * 1781 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 1782 ScalarEvolution &SE) { 1783 SCEVHandle InVal = SE.getConstant(C); 1784 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 1785 assert(isa<SCEVConstant>(Val) && 1786 "Evaluation of SCEV at constant didn't fold correctly?"); 1787 return cast<SCEVConstant>(Val)->getValue(); 1788 } 1789 1790 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 1791 /// and a GEP expression (missing the pointer index) indexing into it, return 1792 /// the addressed element of the initializer or null if the index expression is 1793 /// invalid. 1794 static Constant * 1795 GetAddressedElementFromGlobal(GlobalVariable *GV, 1796 const std::vector<ConstantInt*> &Indices) { 1797 Constant *Init = GV->getInitializer(); 1798 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1799 uint64_t Idx = Indices[i]->getZExtValue(); 1800 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 1801 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 1802 Init = cast<Constant>(CS->getOperand(Idx)); 1803 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 1804 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 1805 Init = cast<Constant>(CA->getOperand(Idx)); 1806 } else if (isa<ConstantAggregateZero>(Init)) { 1807 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 1808 assert(Idx < STy->getNumElements() && "Bad struct index!"); 1809 Init = Constant::getNullValue(STy->getElementType(Idx)); 1810 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 1811 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 1812 Init = Constant::getNullValue(ATy->getElementType()); 1813 } else { 1814 assert(0 && "Unknown constant aggregate type!"); 1815 } 1816 return 0; 1817 } else { 1818 return 0; // Unknown initializer type 1819 } 1820 } 1821 return Init; 1822 } 1823 1824 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1825 /// 'setcc load X, cst', try to se if we can compute the trip count. 1826 SCEVHandle ScalarEvolutionsImpl:: 1827 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 1828 const Loop *L, 1829 ICmpInst::Predicate predicate) { 1830 if (LI->isVolatile()) return UnknownValue; 1831 1832 // Check to see if the loaded pointer is a getelementptr of a global. 1833 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 1834 if (!GEP) return UnknownValue; 1835 1836 // Make sure that it is really a constant global we are gepping, with an 1837 // initializer, and make sure the first IDX is really 0. 1838 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1839 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1840 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 1841 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 1842 return UnknownValue; 1843 1844 // Okay, we allow one non-constant index into the GEP instruction. 1845 Value *VarIdx = 0; 1846 std::vector<ConstantInt*> Indexes; 1847 unsigned VarIdxNum = 0; 1848 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 1849 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 1850 Indexes.push_back(CI); 1851 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 1852 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 1853 VarIdx = GEP->getOperand(i); 1854 VarIdxNum = i-2; 1855 Indexes.push_back(0); 1856 } 1857 1858 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 1859 // Check to see if X is a loop variant variable value now. 1860 SCEVHandle Idx = getSCEV(VarIdx); 1861 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 1862 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 1863 1864 // We can only recognize very limited forms of loop index expressions, in 1865 // particular, only affine AddRec's like {C1,+,C2}. 1866 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 1867 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 1868 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 1869 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 1870 return UnknownValue; 1871 1872 unsigned MaxSteps = MaxBruteForceIterations; 1873 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 1874 ConstantInt *ItCst = 1875 ConstantInt::get(IdxExpr->getType(), IterationNum); 1876 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 1877 1878 // Form the GEP offset. 1879 Indexes[VarIdxNum] = Val; 1880 1881 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 1882 if (Result == 0) break; // Cannot compute! 1883 1884 // Evaluate the condition for this iteration. 1885 Result = ConstantExpr::getICmp(predicate, Result, RHS); 1886 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 1887 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 1888 #if 0 1889 cerr << "\n***\n*** Computed loop count " << *ItCst 1890 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 1891 << "***\n"; 1892 #endif 1893 ++NumArrayLenItCounts; 1894 return SE.getConstant(ItCst); // Found terminating iteration! 1895 } 1896 } 1897 return UnknownValue; 1898 } 1899 1900 1901 /// CanConstantFold - Return true if we can constant fold an instruction of the 1902 /// specified type, assuming that all operands were constants. 1903 static bool CanConstantFold(const Instruction *I) { 1904 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 1905 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 1906 return true; 1907 1908 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1909 if (const Function *F = CI->getCalledFunction()) 1910 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast 1911 return false; 1912 } 1913 1914 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 1915 /// in the loop that V is derived from. We allow arbitrary operations along the 1916 /// way, but the operands of an operation must either be constants or a value 1917 /// derived from a constant PHI. If this expression does not fit with these 1918 /// constraints, return null. 1919 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 1920 // If this is not an instruction, or if this is an instruction outside of the 1921 // loop, it can't be derived from a loop PHI. 1922 Instruction *I = dyn_cast<Instruction>(V); 1923 if (I == 0 || !L->contains(I->getParent())) return 0; 1924 1925 if (PHINode *PN = dyn_cast<PHINode>(I)) 1926 if (L->getHeader() == I->getParent()) 1927 return PN; 1928 else 1929 // We don't currently keep track of the control flow needed to evaluate 1930 // PHIs, so we cannot handle PHIs inside of loops. 1931 return 0; 1932 1933 // If we won't be able to constant fold this expression even if the operands 1934 // are constants, return early. 1935 if (!CanConstantFold(I)) return 0; 1936 1937 // Otherwise, we can evaluate this instruction if all of its operands are 1938 // constant or derived from a PHI node themselves. 1939 PHINode *PHI = 0; 1940 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 1941 if (!(isa<Constant>(I->getOperand(Op)) || 1942 isa<GlobalValue>(I->getOperand(Op)))) { 1943 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 1944 if (P == 0) return 0; // Not evolving from PHI 1945 if (PHI == 0) 1946 PHI = P; 1947 else if (PHI != P) 1948 return 0; // Evolving from multiple different PHIs. 1949 } 1950 1951 // This is a expression evolving from a constant PHI! 1952 return PHI; 1953 } 1954 1955 /// EvaluateExpression - Given an expression that passes the 1956 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 1957 /// in the loop has the value PHIVal. If we can't fold this expression for some 1958 /// reason, return null. 1959 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 1960 if (isa<PHINode>(V)) return PHIVal; 1961 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) 1962 return GV; 1963 if (Constant *C = dyn_cast<Constant>(V)) return C; 1964 Instruction *I = cast<Instruction>(V); 1965 1966 std::vector<Constant*> Operands; 1967 Operands.resize(I->getNumOperands()); 1968 1969 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 1970 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 1971 if (Operands[i] == 0) return 0; 1972 } 1973 1974 return ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 1975 } 1976 1977 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1978 /// in the header of its containing loop, we know the loop executes a 1979 /// constant number of times, and the PHI node is just a recurrence 1980 /// involving constants, fold it. 1981 Constant *ScalarEvolutionsImpl:: 1982 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 1983 std::map<PHINode*, Constant*>::iterator I = 1984 ConstantEvolutionLoopExitValue.find(PN); 1985 if (I != ConstantEvolutionLoopExitValue.end()) 1986 return I->second; 1987 1988 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 1989 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 1990 1991 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 1992 1993 // Since the loop is canonicalized, the PHI node must have two entries. One 1994 // entry must be a constant (coming in from outside of the loop), and the 1995 // second must be derived from the same PHI. 1996 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1997 Constant *StartCST = 1998 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1999 if (StartCST == 0) 2000 return RetVal = 0; // Must be a constant. 2001 2002 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2003 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2004 if (PN2 != PN) 2005 return RetVal = 0; // Not derived from same PHI. 2006 2007 // Execute the loop symbolically to determine the exit value. 2008 if (Its.getActiveBits() >= 32) 2009 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2010 2011 unsigned NumIterations = Its.getZExtValue(); // must be in range 2012 unsigned IterationNum = 0; 2013 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2014 if (IterationNum == NumIterations) 2015 return RetVal = PHIVal; // Got exit value! 2016 2017 // Compute the value of the PHI node for the next iteration. 2018 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2019 if (NextPHI == PHIVal) 2020 return RetVal = NextPHI; // Stopped evolving! 2021 if (NextPHI == 0) 2022 return 0; // Couldn't evaluate! 2023 PHIVal = NextPHI; 2024 } 2025 } 2026 2027 /// ComputeIterationCountExhaustively - If the trip is known to execute a 2028 /// constant number of times (the condition evolves only from constants), 2029 /// try to evaluate a few iterations of the loop until we get the exit 2030 /// condition gets a value of ExitWhen (true or false). If we cannot 2031 /// evaluate the trip count of the loop, return UnknownValue. 2032 SCEVHandle ScalarEvolutionsImpl:: 2033 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2034 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2035 if (PN == 0) return UnknownValue; 2036 2037 // Since the loop is canonicalized, the PHI node must have two entries. One 2038 // entry must be a constant (coming in from outside of the loop), and the 2039 // second must be derived from the same PHI. 2040 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2041 Constant *StartCST = 2042 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2043 if (StartCST == 0) return UnknownValue; // Must be a constant. 2044 2045 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2046 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2047 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2048 2049 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2050 // the loop symbolically to determine when the condition gets a value of 2051 // "ExitWhen". 2052 unsigned IterationNum = 0; 2053 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2054 for (Constant *PHIVal = StartCST; 2055 IterationNum != MaxIterations; ++IterationNum) { 2056 ConstantInt *CondVal = 2057 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2058 2059 // Couldn't symbolically evaluate. 2060 if (!CondVal) return UnknownValue; 2061 2062 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2063 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2064 ++NumBruteForceTripCountsComputed; 2065 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2066 } 2067 2068 // Compute the value of the PHI node for the next iteration. 2069 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2070 if (NextPHI == 0 || NextPHI == PHIVal) 2071 return UnknownValue; // Couldn't evaluate or not making progress... 2072 PHIVal = NextPHI; 2073 } 2074 2075 // Too many iterations were needed to evaluate. 2076 return UnknownValue; 2077 } 2078 2079 /// getSCEVAtScope - Compute the value of the specified expression within the 2080 /// indicated loop (which may be null to indicate in no loop). If the 2081 /// expression cannot be evaluated, return UnknownValue. 2082 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2083 // FIXME: this should be turned into a virtual method on SCEV! 2084 2085 if (isa<SCEVConstant>(V)) return V; 2086 2087 // If this instruction is evolves from a constant-evolving PHI, compute the 2088 // exit value from the loop without using SCEVs. 2089 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2090 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2091 const Loop *LI = this->LI[I->getParent()]; 2092 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2093 if (PHINode *PN = dyn_cast<PHINode>(I)) 2094 if (PN->getParent() == LI->getHeader()) { 2095 // Okay, there is no closed form solution for the PHI node. Check 2096 // to see if the loop that contains it has a known iteration count. 2097 // If so, we may be able to force computation of the exit value. 2098 SCEVHandle IterationCount = getIterationCount(LI); 2099 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2100 // Okay, we know how many times the containing loop executes. If 2101 // this is a constant evolving PHI node, get the final value at 2102 // the specified iteration number. 2103 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2104 ICC->getValue()->getValue(), 2105 LI); 2106 if (RV) return SE.getUnknown(RV); 2107 } 2108 } 2109 2110 // Okay, this is an expression that we cannot symbolically evaluate 2111 // into a SCEV. Check to see if it's possible to symbolically evaluate 2112 // the arguments into constants, and if so, try to constant propagate the 2113 // result. This is particularly useful for computing loop exit values. 2114 if (CanConstantFold(I)) { 2115 std::vector<Constant*> Operands; 2116 Operands.reserve(I->getNumOperands()); 2117 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2118 Value *Op = I->getOperand(i); 2119 if (Constant *C = dyn_cast<Constant>(Op)) { 2120 Operands.push_back(C); 2121 } else { 2122 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2123 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2124 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2125 Op->getType(), 2126 false)); 2127 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2128 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2129 Operands.push_back(ConstantExpr::getIntegerCast(C, 2130 Op->getType(), 2131 false)); 2132 else 2133 return V; 2134 } else { 2135 return V; 2136 } 2137 } 2138 } 2139 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 2140 return SE.getUnknown(C); 2141 } 2142 } 2143 2144 // This is some other type of SCEVUnknown, just return it. 2145 return V; 2146 } 2147 2148 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2149 // Avoid performing the look-up in the common case where the specified 2150 // expression has no loop-variant portions. 2151 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2152 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2153 if (OpAtScope != Comm->getOperand(i)) { 2154 if (OpAtScope == UnknownValue) return UnknownValue; 2155 // Okay, at least one of these operands is loop variant but might be 2156 // foldable. Build a new instance of the folded commutative expression. 2157 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2158 NewOps.push_back(OpAtScope); 2159 2160 for (++i; i != e; ++i) { 2161 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2162 if (OpAtScope == UnknownValue) return UnknownValue; 2163 NewOps.push_back(OpAtScope); 2164 } 2165 if (isa<SCEVAddExpr>(Comm)) 2166 return SE.getAddExpr(NewOps); 2167 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); 2168 return SE.getMulExpr(NewOps); 2169 } 2170 } 2171 // If we got here, all operands are loop invariant. 2172 return Comm; 2173 } 2174 2175 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) { 2176 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2177 if (LHS == UnknownValue) return LHS; 2178 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2179 if (RHS == UnknownValue) return RHS; 2180 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2181 return Div; // must be loop invariant 2182 return SE.getSDivExpr(LHS, RHS); 2183 } 2184 2185 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2186 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2187 if (LHS == UnknownValue) return LHS; 2188 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2189 if (RHS == UnknownValue) return RHS; 2190 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2191 return Div; // must be loop invariant 2192 return SE.getUDivExpr(LHS, RHS); 2193 } 2194 2195 // If this is a loop recurrence for a loop that does not contain L, then we 2196 // are dealing with the final value computed by the loop. 2197 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2198 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2199 // To evaluate this recurrence, we need to know how many times the AddRec 2200 // loop iterates. Compute this now. 2201 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2202 if (IterationCount == UnknownValue) return UnknownValue; 2203 IterationCount = getTruncateOrZeroExtend(IterationCount, 2204 AddRec->getType(), SE); 2205 2206 // If the value is affine, simplify the expression evaluation to just 2207 // Start + Step*IterationCount. 2208 if (AddRec->isAffine()) 2209 return SE.getAddExpr(AddRec->getStart(), 2210 SE.getMulExpr(IterationCount, 2211 AddRec->getOperand(1))); 2212 2213 // Otherwise, evaluate it the hard way. 2214 return AddRec->evaluateAtIteration(IterationCount, SE); 2215 } 2216 return UnknownValue; 2217 } 2218 2219 //assert(0 && "Unknown SCEV type!"); 2220 return UnknownValue; 2221 } 2222 2223 2224 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2225 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2226 /// might be the same) or two SCEVCouldNotCompute objects. 2227 /// 2228 static std::pair<SCEVHandle,SCEVHandle> 2229 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2230 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2231 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2232 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2233 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2234 2235 // We currently can only solve this if the coefficients are constants. 2236 if (!LC || !MC || !NC) { 2237 SCEV *CNC = new SCEVCouldNotCompute(); 2238 return std::make_pair(CNC, CNC); 2239 } 2240 2241 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2242 const APInt &L = LC->getValue()->getValue(); 2243 const APInt &M = MC->getValue()->getValue(); 2244 const APInt &N = NC->getValue()->getValue(); 2245 APInt Two(BitWidth, 2); 2246 APInt Four(BitWidth, 4); 2247 2248 { 2249 using namespace APIntOps; 2250 const APInt& C = L; 2251 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2252 // The B coefficient is M-N/2 2253 APInt B(M); 2254 B -= sdiv(N,Two); 2255 2256 // The A coefficient is N/2 2257 APInt A(N.sdiv(Two)); 2258 2259 // Compute the B^2-4ac term. 2260 APInt SqrtTerm(B); 2261 SqrtTerm *= B; 2262 SqrtTerm -= Four * (A * C); 2263 2264 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2265 // integer value or else APInt::sqrt() will assert. 2266 APInt SqrtVal(SqrtTerm.sqrt()); 2267 2268 // Compute the two solutions for the quadratic formula. 2269 // The divisions must be performed as signed divisions. 2270 APInt NegB(-B); 2271 APInt TwoA( A << 1 ); 2272 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2273 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2274 2275 return std::make_pair(SE.getConstant(Solution1), 2276 SE.getConstant(Solution2)); 2277 } // end APIntOps namespace 2278 } 2279 2280 /// HowFarToZero - Return the number of times a backedge comparing the specified 2281 /// value to zero will execute. If not computable, return UnknownValue 2282 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2283 // If the value is a constant 2284 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2285 // If the value is already zero, the branch will execute zero times. 2286 if (C->getValue()->isZero()) return C; 2287 return UnknownValue; // Otherwise it will loop infinitely. 2288 } 2289 2290 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2291 if (!AddRec || AddRec->getLoop() != L) 2292 return UnknownValue; 2293 2294 if (AddRec->isAffine()) { 2295 // If this is an affine expression the execution count of this branch is 2296 // equal to: 2297 // 2298 // (0 - Start/Step) iff Start % Step == 0 2299 // 2300 // Get the initial value for the loop. 2301 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2302 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2303 SCEVHandle Step = AddRec->getOperand(1); 2304 2305 Step = getSCEVAtScope(Step, L->getParentLoop()); 2306 2307 // Figure out if Start % Step == 0. 2308 // FIXME: We should add DivExpr and RemExpr operations to our AST. 2309 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2310 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 2311 return SE.getNegativeSCEV(Start); // 0 - Start/1 == -Start 2312 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 2313 return Start; // 0 - Start/-1 == Start 2314 2315 // Check to see if Start is divisible by SC with no remainder. 2316 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 2317 ConstantInt *StartCC = StartC->getValue(); 2318 Constant *StartNegC = ConstantExpr::getNeg(StartCC); 2319 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue()); 2320 if (Rem->isNullValue()) { 2321 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue()); 2322 return SE.getUnknown(Result); 2323 } 2324 } 2325 } 2326 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2327 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2328 // the quadratic equation to solve it. 2329 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2330 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2331 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2332 if (R1) { 2333 #if 0 2334 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2335 << " sol#2: " << *R2 << "\n"; 2336 #endif 2337 // Pick the smallest positive root value. 2338 if (ConstantInt *CB = 2339 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2340 R1->getValue(), R2->getValue()))) { 2341 if (CB->getZExtValue() == false) 2342 std::swap(R1, R2); // R1 is the minimum root now. 2343 2344 // We can only use this value if the chrec ends up with an exact zero 2345 // value at this index. When solving for "X*X != 5", for example, we 2346 // should not accept a root of 2. 2347 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2348 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) 2349 if (EvalVal->getValue()->isZero()) 2350 return R1; // We found a quadratic root! 2351 } 2352 } 2353 } 2354 2355 return UnknownValue; 2356 } 2357 2358 /// HowFarToNonZero - Return the number of times a backedge checking the 2359 /// specified value for nonzero will execute. If not computable, return 2360 /// UnknownValue 2361 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2362 // Loops that look like: while (X == 0) are very strange indeed. We don't 2363 // handle them yet except for the trivial case. This could be expanded in the 2364 // future as needed. 2365 2366 // If the value is a constant, check to see if it is known to be non-zero 2367 // already. If so, the backedge will execute zero times. 2368 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2369 Constant *Zero = Constant::getNullValue(C->getValue()->getType()); 2370 Constant *NonZero = 2371 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero); 2372 if (NonZero == ConstantInt::getTrue()) 2373 return getSCEV(Zero); 2374 return UnknownValue; // Otherwise it will loop infinitely. 2375 } 2376 2377 // We could implement others, but I really doubt anyone writes loops like 2378 // this, and if they did, they would already be constant folded. 2379 return UnknownValue; 2380 } 2381 2382 /// HowManyLessThans - Return the number of times a backedge containing the 2383 /// specified less-than comparison will execute. If not computable, return 2384 /// UnknownValue. 2385 SCEVHandle ScalarEvolutionsImpl:: 2386 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 2387 // Only handle: "ADDREC < LoopInvariant". 2388 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2389 2390 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2391 if (!AddRec || AddRec->getLoop() != L) 2392 return UnknownValue; 2393 2394 if (AddRec->isAffine()) { 2395 // FORNOW: We only support unit strides. 2396 SCEVHandle Zero = SE.getIntegerSCEV(0, RHS->getType()); 2397 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 2398 if (AddRec->getOperand(1) != One) 2399 return UnknownValue; 2400 2401 // The number of iterations for "{n,+,1} < m", is m-n. However, we don't 2402 // know that m is >= n on input to the loop. If it is, the condition return 2403 // true zero times. What we really should return, for full generality, is 2404 // SMAX(0, m-n). Since we cannot check this, we will instead check for a 2405 // canonical loop form: most do-loops will have a check that dominates the 2406 // loop, that only enters the loop if (n-1)<m. If we can find this check, 2407 // we know that the SMAX will evaluate to m-n, because we know that m >= n. 2408 2409 // Search for the check. 2410 BasicBlock *Preheader = L->getLoopPreheader(); 2411 BasicBlock *PreheaderDest = L->getHeader(); 2412 if (Preheader == 0) return UnknownValue; 2413 2414 BranchInst *LoopEntryPredicate = 2415 dyn_cast<BranchInst>(Preheader->getTerminator()); 2416 if (!LoopEntryPredicate) return UnknownValue; 2417 2418 // This might be a critical edge broken out. If the loop preheader ends in 2419 // an unconditional branch to the loop, check to see if the preheader has a 2420 // single predecessor, and if so, look for its terminator. 2421 while (LoopEntryPredicate->isUnconditional()) { 2422 PreheaderDest = Preheader; 2423 Preheader = Preheader->getSinglePredecessor(); 2424 if (!Preheader) return UnknownValue; // Multiple preds. 2425 2426 LoopEntryPredicate = 2427 dyn_cast<BranchInst>(Preheader->getTerminator()); 2428 if (!LoopEntryPredicate) return UnknownValue; 2429 } 2430 2431 // Now that we found a conditional branch that dominates the loop, check to 2432 // see if it is the comparison we are looking for. 2433 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){ 2434 Value *PreCondLHS = ICI->getOperand(0); 2435 Value *PreCondRHS = ICI->getOperand(1); 2436 ICmpInst::Predicate Cond; 2437 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2438 Cond = ICI->getPredicate(); 2439 else 2440 Cond = ICI->getInversePredicate(); 2441 2442 switch (Cond) { 2443 case ICmpInst::ICMP_UGT: 2444 if (isSigned) return UnknownValue; 2445 std::swap(PreCondLHS, PreCondRHS); 2446 Cond = ICmpInst::ICMP_ULT; 2447 break; 2448 case ICmpInst::ICMP_SGT: 2449 if (!isSigned) return UnknownValue; 2450 std::swap(PreCondLHS, PreCondRHS); 2451 Cond = ICmpInst::ICMP_SLT; 2452 break; 2453 case ICmpInst::ICMP_ULT: 2454 if (isSigned) return UnknownValue; 2455 break; 2456 case ICmpInst::ICMP_SLT: 2457 if (!isSigned) return UnknownValue; 2458 break; 2459 default: 2460 return UnknownValue; 2461 } 2462 2463 if (PreCondLHS->getType()->isInteger()) { 2464 if (RHS != getSCEV(PreCondRHS)) 2465 return UnknownValue; // Not a comparison against 'm'. 2466 2467 if (SE.getMinusSCEV(AddRec->getOperand(0), One) 2468 != getSCEV(PreCondLHS)) 2469 return UnknownValue; // Not a comparison against 'n-1'. 2470 } 2471 else return UnknownValue; 2472 2473 // cerr << "Computed Loop Trip Count as: " 2474 // << // *SE.getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; 2475 return SE.getMinusSCEV(RHS, AddRec->getOperand(0)); 2476 } 2477 else 2478 return UnknownValue; 2479 } 2480 2481 return UnknownValue; 2482 } 2483 2484 /// getNumIterationsInRange - Return the number of iterations of this loop that 2485 /// produce values in the specified constant range. Another way of looking at 2486 /// this is that it returns the first iteration number where the value is not in 2487 /// the condition, thus computing the exit count. If the iteration count can't 2488 /// be computed, an instance of SCEVCouldNotCompute is returned. 2489 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2490 ScalarEvolution &SE) const { 2491 if (Range.isFullSet()) // Infinite loop. 2492 return new SCEVCouldNotCompute(); 2493 2494 // If the start is a non-zero constant, shift the range to simplify things. 2495 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2496 if (!SC->getValue()->isZero()) { 2497 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2498 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 2499 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 2500 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2501 return ShiftedAddRec->getNumIterationsInRange( 2502 Range.subtract(SC->getValue()->getValue()), SE); 2503 // This is strange and shouldn't happen. 2504 return new SCEVCouldNotCompute(); 2505 } 2506 2507 // The only time we can solve this is when we have all constant indices. 2508 // Otherwise, we cannot determine the overflow conditions. 2509 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2510 if (!isa<SCEVConstant>(getOperand(i))) 2511 return new SCEVCouldNotCompute(); 2512 2513 2514 // Okay at this point we know that all elements of the chrec are constants and 2515 // that the start element is zero. 2516 2517 // First check to see if the range contains zero. If not, the first 2518 // iteration exits. 2519 if (!Range.contains(APInt(getBitWidth(),0))) 2520 return SE.getConstant(ConstantInt::get(getType(),0)); 2521 2522 if (isAffine()) { 2523 // If this is an affine expression then we have this situation: 2524 // Solve {0,+,A} in Range === Ax in Range 2525 2526 // We know that zero is in the range. If A is positive then we know that 2527 // the upper value of the range must be the first possible exit value. 2528 // If A is negative then the lower of the range is the last possible loop 2529 // value. Also note that we already checked for a full range. 2530 APInt One(getBitWidth(),1); 2531 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2532 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 2533 2534 // The exit value should be (End+A)/A. 2535 APInt ExitVal = (End + A).udiv(A); 2536 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2537 2538 // Evaluate at the exit value. If we really did fall out of the valid 2539 // range, then we computed our trip count, otherwise wrap around or other 2540 // things must have happened. 2541 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 2542 if (Range.contains(Val->getValue())) 2543 return new SCEVCouldNotCompute(); // Something strange happened 2544 2545 // Ensure that the previous value is in the range. This is a sanity check. 2546 assert(Range.contains( 2547 EvaluateConstantChrecAtConstant(this, 2548 ConstantInt::get(ExitVal - One), SE)->getValue()) && 2549 "Linear scev computation is off in a bad way!"); 2550 return SE.getConstant(ExitValue); 2551 } else if (isQuadratic()) { 2552 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2553 // quadratic equation to solve it. To do this, we must frame our problem in 2554 // terms of figuring out when zero is crossed, instead of when 2555 // Range.getUpper() is crossed. 2556 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2557 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 2558 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 2559 2560 // Next, solve the constructed addrec 2561 std::pair<SCEVHandle,SCEVHandle> Roots = 2562 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 2563 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2564 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2565 if (R1) { 2566 // Pick the smallest positive root value. 2567 if (ConstantInt *CB = 2568 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2569 R1->getValue(), R2->getValue()))) { 2570 if (CB->getZExtValue() == false) 2571 std::swap(R1, R2); // R1 is the minimum root now. 2572 2573 // Make sure the root is not off by one. The returned iteration should 2574 // not be in the range, but the previous one should be. When solving 2575 // for "X*X < 5", for example, we should not return a root of 2. 2576 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 2577 R1->getValue(), 2578 SE); 2579 if (Range.contains(R1Val->getValue())) { 2580 // The next iteration must be out of the range... 2581 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 2582 2583 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2584 if (!Range.contains(R1Val->getValue())) 2585 return SE.getConstant(NextVal); 2586 return new SCEVCouldNotCompute(); // Something strange happened 2587 } 2588 2589 // If R1 was not in the range, then it is a good return value. Make 2590 // sure that R1-1 WAS in the range though, just in case. 2591 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 2592 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2593 if (Range.contains(R1Val->getValue())) 2594 return R1; 2595 return new SCEVCouldNotCompute(); // Something strange happened 2596 } 2597 } 2598 } 2599 2600 // Fallback, if this is a general polynomial, figure out the progression 2601 // through brute force: evaluate until we find an iteration that fails the 2602 // test. This is likely to be slow, but getting an accurate trip count is 2603 // incredibly important, we will be able to simplify the exit test a lot, and 2604 // we are almost guaranteed to get a trip count in this case. 2605 ConstantInt *TestVal = ConstantInt::get(getType(), 0); 2606 ConstantInt *EndVal = TestVal; // Stop when we wrap around. 2607 do { 2608 ++NumBruteForceEvaluations; 2609 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE); 2610 if (!isa<SCEVConstant>(Val)) // This shouldn't happen. 2611 return new SCEVCouldNotCompute(); 2612 2613 // Check to see if we found the value! 2614 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) 2615 return SE.getConstant(TestVal); 2616 2617 // Increment to test the next index. 2618 TestVal = ConstantInt::get(TestVal->getValue()+1); 2619 } while (TestVal != EndVal); 2620 2621 return new SCEVCouldNotCompute(); 2622 } 2623 2624 2625 2626 //===----------------------------------------------------------------------===// 2627 // ScalarEvolution Class Implementation 2628 //===----------------------------------------------------------------------===// 2629 2630 bool ScalarEvolution::runOnFunction(Function &F) { 2631 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>()); 2632 return false; 2633 } 2634 2635 void ScalarEvolution::releaseMemory() { 2636 delete (ScalarEvolutionsImpl*)Impl; 2637 Impl = 0; 2638 } 2639 2640 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 2641 AU.setPreservesAll(); 2642 AU.addRequiredTransitive<LoopInfo>(); 2643 } 2644 2645 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 2646 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 2647 } 2648 2649 /// hasSCEV - Return true if the SCEV for this value has already been 2650 /// computed. 2651 bool ScalarEvolution::hasSCEV(Value *V) const { 2652 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 2653 } 2654 2655 2656 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 2657 /// the specified value. 2658 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 2659 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 2660 } 2661 2662 2663 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 2664 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 2665 } 2666 2667 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 2668 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 2669 } 2670 2671 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 2672 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 2673 } 2674 2675 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 2676 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 2677 } 2678 2679 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 2680 const Loop *L) { 2681 // Print all inner loops first 2682 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 2683 PrintLoopInfo(OS, SE, *I); 2684 2685 cerr << "Loop " << L->getHeader()->getName() << ": "; 2686 2687 SmallVector<BasicBlock*, 8> ExitBlocks; 2688 L->getExitBlocks(ExitBlocks); 2689 if (ExitBlocks.size() != 1) 2690 cerr << "<multiple exits> "; 2691 2692 if (SE->hasLoopInvariantIterationCount(L)) { 2693 cerr << *SE->getIterationCount(L) << " iterations! "; 2694 } else { 2695 cerr << "Unpredictable iteration count. "; 2696 } 2697 2698 cerr << "\n"; 2699 } 2700 2701 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 2702 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 2703 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 2704 2705 OS << "Classifying expressions for: " << F.getName() << "\n"; 2706 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 2707 if (I->getType()->isInteger()) { 2708 OS << *I; 2709 OS << " --> "; 2710 SCEVHandle SV = getSCEV(&*I); 2711 SV->print(OS); 2712 OS << "\t\t"; 2713 2714 if ((*I).getType()->isInteger()) { 2715 ConstantRange Bounds = SV->getValueRange(); 2716 if (!Bounds.isFullSet()) 2717 OS << "Bounds: " << Bounds << " "; 2718 } 2719 2720 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 2721 OS << "Exits: "; 2722 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 2723 if (isa<SCEVCouldNotCompute>(ExitValue)) { 2724 OS << "<<Unknown>>"; 2725 } else { 2726 OS << *ExitValue; 2727 } 2728 } 2729 2730 2731 OS << "\n"; 2732 } 2733 2734 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 2735 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 2736 PrintLoopInfo(OS, this, *I); 2737 } 2738 2739