xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision f49ca52b9d1ddf3c842a2ee89caa86ec2b059cfc)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's "
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 /// isNonConstantNegative - Return true if the specified scev is negated, but
291 /// not a constant.
292 bool SCEV::isNonConstantNegative() const {
293   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294   if (!Mul) return false;
295 
296   // If there is a constant factor, it will be first.
297   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298   if (!SC) return false;
299 
300   // Return true if the value is negative, this matches things like (-42 * V).
301   return SC->getAPInt().isNegative();
302 }
303 
304 SCEVCouldNotCompute::SCEVCouldNotCompute() :
305   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306 
307 bool SCEVCouldNotCompute::classof(const SCEV *S) {
308   return S->getSCEVType() == scCouldNotCompute;
309 }
310 
311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312   FoldingSetNodeID ID;
313   ID.AddInteger(scConstant);
314   ID.AddPointer(V);
315   void *IP = nullptr;
316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318   UniqueSCEVs.InsertNode(S, IP);
319   return S;
320 }
321 
322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323   return getConstant(ConstantInt::get(getContext(), Val));
324 }
325 
326 const SCEV *
327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329   return getConstant(ConstantInt::get(ITy, V, isSigned));
330 }
331 
332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333                            unsigned SCEVTy, const SCEV *op, Type *ty)
334   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335 
336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337                                    const SCEV *op, Type *ty)
338   : SCEVCastExpr(ID, scTruncate, op, ty) {
339   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
341          "Cannot truncate non-integer value!");
342 }
343 
344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345                                        const SCEV *op, Type *ty)
346   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
349          "Cannot zero extend non-integer value!");
350 }
351 
352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353                                        const SCEV *op, Type *ty)
354   : SCEVCastExpr(ID, scSignExtend, op, ty) {
355   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
357          "Cannot sign extend non-integer value!");
358 }
359 
360 void SCEVUnknown::deleted() {
361   // Clear this SCEVUnknown from various maps.
362   SE->forgetMemoizedResults(this);
363 
364   // Remove this SCEVUnknown from the uniquing map.
365   SE->UniqueSCEVs.RemoveNode(this);
366 
367   // Release the value.
368   setValPtr(nullptr);
369 }
370 
371 void SCEVUnknown::allUsesReplacedWith(Value *New) {
372   // Clear this SCEVUnknown from various maps.
373   SE->forgetMemoizedResults(this);
374 
375   // Remove this SCEVUnknown from the uniquing map.
376   SE->UniqueSCEVs.RemoveNode(this);
377 
378   // Update this SCEVUnknown to point to the new value. This is needed
379   // because there may still be outstanding SCEVs which still point to
380   // this SCEVUnknown.
381   setValPtr(New);
382 }
383 
384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386     if (VCE->getOpcode() == Instruction::PtrToInt)
387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388         if (CE->getOpcode() == Instruction::GetElementPtr &&
389             CE->getOperand(0)->isNullValue() &&
390             CE->getNumOperands() == 2)
391           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392             if (CI->isOne()) {
393               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394                                  ->getElementType();
395               return true;
396             }
397 
398   return false;
399 }
400 
401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403     if (VCE->getOpcode() == Instruction::PtrToInt)
404       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405         if (CE->getOpcode() == Instruction::GetElementPtr &&
406             CE->getOperand(0)->isNullValue()) {
407           Type *Ty =
408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409           if (StructType *STy = dyn_cast<StructType>(Ty))
410             if (!STy->isPacked() &&
411                 CE->getNumOperands() == 3 &&
412                 CE->getOperand(1)->isNullValue()) {
413               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414                 if (CI->isOne() &&
415                     STy->getNumElements() == 2 &&
416                     STy->getElementType(0)->isIntegerTy(1)) {
417                   AllocTy = STy->getElementType(1);
418                   return true;
419                 }
420             }
421         }
422 
423   return false;
424 }
425 
426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428     if (VCE->getOpcode() == Instruction::PtrToInt)
429       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430         if (CE->getOpcode() == Instruction::GetElementPtr &&
431             CE->getNumOperands() == 3 &&
432             CE->getOperand(0)->isNullValue() &&
433             CE->getOperand(1)->isNullValue()) {
434           Type *Ty =
435             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436           // Ignore vector types here so that ScalarEvolutionExpander doesn't
437           // emit getelementptrs that index into vectors.
438           if (Ty->isStructTy() || Ty->isArrayTy()) {
439             CTy = Ty;
440             FieldNo = CE->getOperand(2);
441             return true;
442           }
443         }
444 
445   return false;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                               SCEV Utilities
450 //===----------------------------------------------------------------------===//
451 
452 namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS.  This comparator is used to canonicalize
455 /// expressions.
456 class SCEVComplexityCompare {
457   const LoopInfo *const LI;
458 public:
459   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460 
461   // Return true or false if LHS is less than, or at least RHS, respectively.
462   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463     return compare(LHS, RHS) < 0;
464   }
465 
466   // Return negative, zero, or positive, if LHS is less than, equal to, or
467   // greater than RHS, respectively. A three-way result allows recursive
468   // comparisons to be more efficient.
469   int compare(const SCEV *LHS, const SCEV *RHS) const {
470     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471     if (LHS == RHS)
472       return 0;
473 
474     // Primarily, sort the SCEVs by their getSCEVType().
475     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476     if (LType != RType)
477       return (int)LType - (int)RType;
478 
479     // Aside from the getSCEVType() ordering, the particular ordering
480     // isn't very important except that it's beneficial to be consistent,
481     // so that (a + b) and (b + a) don't end up as different expressions.
482     switch (static_cast<SCEVTypes>(LType)) {
483     case scUnknown: {
484       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486 
487       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488       // not as complete as it could be.
489       const Value *LV = LU->getValue(), *RV = RU->getValue();
490 
491       // Order pointer values after integer values. This helps SCEVExpander
492       // form GEPs.
493       bool LIsPointer = LV->getType()->isPointerTy(),
494         RIsPointer = RV->getType()->isPointerTy();
495       if (LIsPointer != RIsPointer)
496         return (int)LIsPointer - (int)RIsPointer;
497 
498       // Compare getValueID values.
499       unsigned LID = LV->getValueID(),
500         RID = RV->getValueID();
501       if (LID != RID)
502         return (int)LID - (int)RID;
503 
504       // Sort arguments by their position.
505       if (const Argument *LA = dyn_cast<Argument>(LV)) {
506         const Argument *RA = cast<Argument>(RV);
507         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508         return (int)LArgNo - (int)RArgNo;
509       }
510 
511       // For instructions, compare their loop depth, and their operand
512       // count.  This is pretty loose.
513       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514         const Instruction *RInst = cast<Instruction>(RV);
515 
516         // Compare loop depths.
517         const BasicBlock *LParent = LInst->getParent(),
518           *RParent = RInst->getParent();
519         if (LParent != RParent) {
520           unsigned LDepth = LI->getLoopDepth(LParent),
521             RDepth = LI->getLoopDepth(RParent);
522           if (LDepth != RDepth)
523             return (int)LDepth - (int)RDepth;
524         }
525 
526         // Compare the number of operands.
527         unsigned LNumOps = LInst->getNumOperands(),
528           RNumOps = RInst->getNumOperands();
529         return (int)LNumOps - (int)RNumOps;
530       }
531 
532       return 0;
533     }
534 
535     case scConstant: {
536       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538 
539       // Compare constant values.
540       const APInt &LA = LC->getAPInt();
541       const APInt &RA = RC->getAPInt();
542       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543       if (LBitWidth != RBitWidth)
544         return (int)LBitWidth - (int)RBitWidth;
545       return LA.ult(RA) ? -1 : 1;
546     }
547 
548     case scAddRecExpr: {
549       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551 
552       // Compare addrec loop depths.
553       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554       if (LLoop != RLoop) {
555         unsigned LDepth = LLoop->getLoopDepth(),
556           RDepth = RLoop->getLoopDepth();
557         if (LDepth != RDepth)
558           return (int)LDepth - (int)RDepth;
559       }
560 
561       // Addrec complexity grows with operand count.
562       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563       if (LNumOps != RNumOps)
564         return (int)LNumOps - (int)RNumOps;
565 
566       // Lexicographically compare.
567       for (unsigned i = 0; i != LNumOps; ++i) {
568         long X = compare(LA->getOperand(i), RA->getOperand(i));
569         if (X != 0)
570           return X;
571       }
572 
573       return 0;
574     }
575 
576     case scAddExpr:
577     case scMulExpr:
578     case scSMaxExpr:
579     case scUMaxExpr: {
580       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582 
583       // Lexicographically compare n-ary expressions.
584       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585       if (LNumOps != RNumOps)
586         return (int)LNumOps - (int)RNumOps;
587 
588       for (unsigned i = 0; i != LNumOps; ++i) {
589         if (i >= RNumOps)
590           return 1;
591         long X = compare(LC->getOperand(i), RC->getOperand(i));
592         if (X != 0)
593           return X;
594       }
595       return (int)LNumOps - (int)RNumOps;
596     }
597 
598     case scUDivExpr: {
599       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601 
602       // Lexicographically compare udiv expressions.
603       long X = compare(LC->getLHS(), RC->getLHS());
604       if (X != 0)
605         return X;
606       return compare(LC->getRHS(), RC->getRHS());
607     }
608 
609     case scTruncate:
610     case scZeroExtend:
611     case scSignExtend: {
612       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614 
615       // Compare cast expressions by operand.
616       return compare(LC->getOperand(), RC->getOperand());
617     }
618 
619     case scCouldNotCompute:
620       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621     }
622     llvm_unreachable("Unknown SCEV kind!");
623   }
624 };
625 }  // end anonymous namespace
626 
627 /// GroupByComplexity - Given a list of SCEV objects, order them by their
628 /// complexity, and group objects of the same complexity together by value.
629 /// When this routine is finished, we know that any duplicates in the vector are
630 /// consecutive and that complexity is monotonically increasing.
631 ///
632 /// Note that we go take special precautions to ensure that we get deterministic
633 /// results from this routine.  In other words, we don't want the results of
634 /// this to depend on where the addresses of various SCEV objects happened to
635 /// land in memory.
636 ///
637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638                               LoopInfo *LI) {
639   if (Ops.size() < 2) return;  // Noop
640   if (Ops.size() == 2) {
641     // This is the common case, which also happens to be trivially simple.
642     // Special case it.
643     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644     if (SCEVComplexityCompare(LI)(RHS, LHS))
645       std::swap(LHS, RHS);
646     return;
647   }
648 
649   // Do the rough sort by complexity.
650   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651 
652   // Now that we are sorted by complexity, group elements of the same
653   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
654   // be extremely short in practice.  Note that we take this approach because we
655   // do not want to depend on the addresses of the objects we are grouping.
656   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657     const SCEV *S = Ops[i];
658     unsigned Complexity = S->getSCEVType();
659 
660     // If there are any objects of the same complexity and same value as this
661     // one, group them.
662     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663       if (Ops[j] == S) { // Found a duplicate.
664         // Move it to immediately after i'th element.
665         std::swap(Ops[i+1], Ops[j]);
666         ++i;   // no need to rescan it.
667         if (i == e-2) return;  // Done!
668       }
669     }
670   }
671 }
672 
673 // Returns the size of the SCEV S.
674 static inline int sizeOfSCEV(const SCEV *S) {
675   struct FindSCEVSize {
676     int Size;
677     FindSCEVSize() : Size(0) {}
678 
679     bool follow(const SCEV *S) {
680       ++Size;
681       // Keep looking at all operands of S.
682       return true;
683     }
684     bool isDone() const {
685       return false;
686     }
687   };
688 
689   FindSCEVSize F;
690   SCEVTraversal<FindSCEVSize> ST(F);
691   ST.visitAll(S);
692   return F.Size;
693 }
694 
695 namespace {
696 
697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698 public:
699   // Computes the Quotient and Remainder of the division of Numerator by
700   // Denominator.
701   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702                      const SCEV *Denominator, const SCEV **Quotient,
703                      const SCEV **Remainder) {
704     assert(Numerator && Denominator && "Uninitialized SCEV");
705 
706     SCEVDivision D(SE, Numerator, Denominator);
707 
708     // Check for the trivial case here to avoid having to check for it in the
709     // rest of the code.
710     if (Numerator == Denominator) {
711       *Quotient = D.One;
712       *Remainder = D.Zero;
713       return;
714     }
715 
716     if (Numerator->isZero()) {
717       *Quotient = D.Zero;
718       *Remainder = D.Zero;
719       return;
720     }
721 
722     // A simple case when N/1. The quotient is N.
723     if (Denominator->isOne()) {
724       *Quotient = Numerator;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getAPInt();
768       APInt DenominatorVal = D->getAPInt();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     if (!Numerator->isAffine())
789       return cannotDivide(Numerator);
790     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792     // Bail out if the types do not match.
793     Type *Ty = Denominator->getType();
794     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795         Ty != StepQ->getType() || Ty != StepR->getType())
796       return cannotDivide(Numerator);
797     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798                                 Numerator->getNoWrapFlags());
799     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800                                  Numerator->getNoWrapFlags());
801   }
802 
803   void visitAddExpr(const SCEVAddExpr *Numerator) {
804     SmallVector<const SCEV *, 2> Qs, Rs;
805     Type *Ty = Denominator->getType();
806 
807     for (const SCEV *Op : Numerator->operands()) {
808       const SCEV *Q, *R;
809       divide(SE, Op, Denominator, &Q, &R);
810 
811       // Bail out if types do not match.
812       if (Ty != Q->getType() || Ty != R->getType())
813         return cannotDivide(Numerator);
814 
815       Qs.push_back(Q);
816       Rs.push_back(R);
817     }
818 
819     if (Qs.size() == 1) {
820       Quotient = Qs[0];
821       Remainder = Rs[0];
822       return;
823     }
824 
825     Quotient = SE.getAddExpr(Qs);
826     Remainder = SE.getAddExpr(Rs);
827   }
828 
829   void visitMulExpr(const SCEVMulExpr *Numerator) {
830     SmallVector<const SCEV *, 2> Qs;
831     Type *Ty = Denominator->getType();
832 
833     bool FoundDenominatorTerm = false;
834     for (const SCEV *Op : Numerator->operands()) {
835       // Bail out if types do not match.
836       if (Ty != Op->getType())
837         return cannotDivide(Numerator);
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType())
854         return cannotDivide(Numerator);
855 
856       FoundDenominatorTerm = true;
857       Qs.push_back(Q);
858     }
859 
860     if (FoundDenominatorTerm) {
861       Remainder = Zero;
862       if (Qs.size() == 1)
863         Quotient = Qs[0];
864       else
865         Quotient = SE.getMulExpr(Qs);
866       return;
867     }
868 
869     if (!isa<SCEVUnknown>(Denominator))
870       return cannotDivide(Numerator);
871 
872     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873     ValueToValueMap RewriteMap;
874     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875         cast<SCEVConstant>(Zero)->getValue();
876     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877 
878     if (Remainder->isZero()) {
879       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881           cast<SCEVConstant>(One)->getValue();
882       Quotient =
883           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884       return;
885     }
886 
887     // Quotient is (Numerator - Remainder) divided by Denominator.
888     const SCEV *Q, *R;
889     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890     // This SCEV does not seem to simplify: fail the division here.
891     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892       return cannotDivide(Numerator);
893     divide(SE, Diff, Denominator, &Q, &R);
894     if (R != Zero)
895       return cannotDivide(Numerator);
896     Quotient = Q;
897   }
898 
899 private:
900   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901                const SCEV *Denominator)
902       : SE(S), Denominator(Denominator) {
903     Zero = SE.getZero(Denominator->getType());
904     One = SE.getOne(Denominator->getType());
905 
906     // We generally do not know how to divide Expr by Denominator. We
907     // initialize the division to a "cannot divide" state to simplify the rest
908     // of the code.
909     cannotDivide(Numerator);
910   }
911 
912   // Convenience function for giving up on the division. We set the quotient to
913   // be equal to zero and the remainder to be equal to the numerator.
914   void cannotDivide(const SCEV *Numerator) {
915     Quotient = Zero;
916     Remainder = Numerator;
917   }
918 
919   ScalarEvolution &SE;
920   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921 };
922 
923 }
924 
925 //===----------------------------------------------------------------------===//
926 //                      Simple SCEV method implementations
927 //===----------------------------------------------------------------------===//
928 
929 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
930 /// Assume, K > 0.
931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932                                        ScalarEvolution &SE,
933                                        Type *ResultTy) {
934   // Handle the simplest case efficiently.
935   if (K == 1)
936     return SE.getTruncateOrZeroExtend(It, ResultTy);
937 
938   // We are using the following formula for BC(It, K):
939   //
940   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941   //
942   // Suppose, W is the bitwidth of the return value.  We must be prepared for
943   // overflow.  Hence, we must assure that the result of our computation is
944   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
945   // safe in modular arithmetic.
946   //
947   // However, this code doesn't use exactly that formula; the formula it uses
948   // is something like the following, where T is the number of factors of 2 in
949   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950   // exponentiation:
951   //
952   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953   //
954   // This formula is trivially equivalent to the previous formula.  However,
955   // this formula can be implemented much more efficiently.  The trick is that
956   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957   // arithmetic.  To do exact division in modular arithmetic, all we have
958   // to do is multiply by the inverse.  Therefore, this step can be done at
959   // width W.
960   //
961   // The next issue is how to safely do the division by 2^T.  The way this
962   // is done is by doing the multiplication step at a width of at least W + T
963   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
964   // when we perform the division by 2^T (which is equivalent to a right shift
965   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
966   // truncated out after the division by 2^T.
967   //
968   // In comparison to just directly using the first formula, this technique
969   // is much more efficient; using the first formula requires W * K bits,
970   // but this formula less than W + K bits. Also, the first formula requires
971   // a division step, whereas this formula only requires multiplies and shifts.
972   //
973   // It doesn't matter whether the subtraction step is done in the calculation
974   // width or the input iteration count's width; if the subtraction overflows,
975   // the result must be zero anyway.  We prefer here to do it in the width of
976   // the induction variable because it helps a lot for certain cases; CodeGen
977   // isn't smart enough to ignore the overflow, which leads to much less
978   // efficient code if the width of the subtraction is wider than the native
979   // register width.
980   //
981   // (It's possible to not widen at all by pulling out factors of 2 before
982   // the multiplication; for example, K=2 can be calculated as
983   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984   // extra arithmetic, so it's not an obvious win, and it gets
985   // much more complicated for K > 3.)
986 
987   // Protection from insane SCEVs; this bound is conservative,
988   // but it probably doesn't matter.
989   if (K > 1000)
990     return SE.getCouldNotCompute();
991 
992   unsigned W = SE.getTypeSizeInBits(ResultTy);
993 
994   // Calculate K! / 2^T and T; we divide out the factors of two before
995   // multiplying for calculating K! / 2^T to avoid overflow.
996   // Other overflow doesn't matter because we only care about the bottom
997   // W bits of the result.
998   APInt OddFactorial(W, 1);
999   unsigned T = 1;
1000   for (unsigned i = 3; i <= K; ++i) {
1001     APInt Mult(W, i);
1002     unsigned TwoFactors = Mult.countTrailingZeros();
1003     T += TwoFactors;
1004     Mult = Mult.lshr(TwoFactors);
1005     OddFactorial *= Mult;
1006   }
1007 
1008   // We need at least W + T bits for the multiplication step
1009   unsigned CalculationBits = W + T;
1010 
1011   // Calculate 2^T, at width T+W.
1012   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013 
1014   // Calculate the multiplicative inverse of K! / 2^T;
1015   // this multiplication factor will perform the exact division by
1016   // K! / 2^T.
1017   APInt Mod = APInt::getSignedMinValue(W+1);
1018   APInt MultiplyFactor = OddFactorial.zext(W+1);
1019   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020   MultiplyFactor = MultiplyFactor.trunc(W);
1021 
1022   // Calculate the product, at width T+W
1023   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024                                                       CalculationBits);
1025   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026   for (unsigned i = 1; i != K; ++i) {
1027     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028     Dividend = SE.getMulExpr(Dividend,
1029                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1030   }
1031 
1032   // Divide by 2^T
1033   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034 
1035   // Truncate the result, and divide by K! / 2^T.
1036 
1037   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039 }
1040 
1041 /// evaluateAtIteration - Return the value of this chain of recurrences at
1042 /// the specified iteration number.  We can evaluate this recurrence by
1043 /// multiplying each element in the chain by the binomial coefficient
1044 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045 ///
1046 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047 ///
1048 /// where BC(It, k) stands for binomial coefficient.
1049 ///
1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051                                                 ScalarEvolution &SE) const {
1052   const SCEV *Result = getStart();
1053   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071                                              Type *Ty) {
1072   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1073          "This is not a truncating conversion!");
1074   assert(isSCEVable(Ty) &&
1075          "This is not a conversion to a SCEVable type!");
1076   Ty = getEffectiveSCEVType(Ty);
1077 
1078   FoldingSetNodeID ID;
1079   ID.AddInteger(scTruncate);
1080   ID.AddPointer(Op);
1081   ID.AddPointer(Ty);
1082   void *IP = nullptr;
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084 
1085   // Fold if the operand is constant.
1086   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087     return getConstant(
1088       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089 
1090   // trunc(trunc(x)) --> trunc(x)
1091   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092     return getTruncateExpr(ST->getOperand(), Ty);
1093 
1094   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097 
1098   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101 
1102   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103   // eliminate all the truncates, or we replace other casts with truncates.
1104   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105     SmallVector<const SCEV *, 4> Operands;
1106     bool hasTrunc = false;
1107     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110         hasTrunc = isa<SCEVTruncateExpr>(S);
1111       Operands.push_back(S);
1112     }
1113     if (!hasTrunc)
1114       return getAddExpr(Operands);
1115     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1116   }
1117 
1118   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119   // eliminate all the truncates, or we replace other casts with truncates.
1120   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     bool hasTrunc = false;
1123     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126         hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (const SCEV *Op : AddRec->operands())
1138       Operands.push_back(getTruncateExpr(Op, Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   auto PreStartFlags =
1274     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278 
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282 
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287 
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303 
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308 
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311     return PreStart;
1312 
1313   return nullptr;
1314 }
1315 
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321 
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325 
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329 
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377 
1378   APInt StartAI = StartC->getAPInt();
1379 
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382 
1383     FoldingSetNodeID ID;
1384     ID.AddInteger(scAddRecExpr);
1385     ID.AddPointer(PreStart);
1386     ID.AddPointer(Step);
1387     ID.AddPointer(L);
1388     void *IP = nullptr;
1389     const auto *PreAR =
1390       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391 
1392     // Give up if we don't already have the add recurrence we need because
1393     // actually constructing an add recurrence is relatively expensive.
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       if (!AR->hasNoUnsignedWrap()) {
1458         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1459         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1460       }
1461 
1462       // If we have special knowledge that this addrec won't overflow,
1463       // we don't need to do any further analysis.
1464       if (AR->hasNoUnsignedWrap())
1465         return getAddRecExpr(
1466             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1467             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1468 
1469       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1470       // Note that this serves two purposes: It filters out loops that are
1471       // simply not analyzable, and it covers the case where this code is
1472       // being called from within backedge-taken count analysis, such that
1473       // attempting to ask for the backedge-taken count would likely result
1474       // in infinite recursion. In the later case, the analysis code will
1475       // cope with a conservative value, and it will take care to purge
1476       // that value once it has finished.
1477       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1478       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1479         // Manually compute the final value for AR, checking for
1480         // overflow.
1481 
1482         // Check whether the backedge-taken count can be losslessly casted to
1483         // the addrec's type. The count is always unsigned.
1484         const SCEV *CastedMaxBECount =
1485           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1486         const SCEV *RecastedMaxBECount =
1487           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1488         if (MaxBECount == RecastedMaxBECount) {
1489           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1490           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1491           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1492           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1493           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1494           const SCEV *WideMaxBECount =
1495             getZeroExtendExpr(CastedMaxBECount, WideTy);
1496           const SCEV *OperandExtendedAdd =
1497             getAddExpr(WideStart,
1498                        getMulExpr(WideMaxBECount,
1499                                   getZeroExtendExpr(Step, WideTy)));
1500           if (ZAdd == OperandExtendedAdd) {
1501             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1502             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1503             // Return the expression with the addrec on the outside.
1504             return getAddRecExpr(
1505                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1507           }
1508           // Similar to above, only this time treat the step value as signed.
1509           // This covers loops that count down.
1510           OperandExtendedAdd =
1511             getAddExpr(WideStart,
1512                        getMulExpr(WideMaxBECount,
1513                                   getSignExtendExpr(Step, WideTy)));
1514           if (ZAdd == OperandExtendedAdd) {
1515             // Cache knowledge of AR NW, which is propagated to this AddRec.
1516             // Negative step causes unsigned wrap, but it still can't self-wrap.
1517             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1518             // Return the expression with the addrec on the outside.
1519             return getAddRecExpr(
1520                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1521                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1522           }
1523         }
1524       }
1525 
1526       // Normally, in the cases we can prove no-overflow via a
1527       // backedge guarding condition, we can also compute a backedge
1528       // taken count for the loop.  The exceptions are assumptions and
1529       // guards present in the loop -- SCEV is not great at exploiting
1530       // these to compute max backedge taken counts, but can still use
1531       // these to prove lack of overflow.  Use this fact to avoid
1532       // doing extra work that may not pay off.
1533       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1534           !AC.assumptions().empty()) {
1535         // If the backedge is guarded by a comparison with the pre-inc
1536         // value the addrec is safe. Also, if the entry is guarded by
1537         // a comparison with the start value and the backedge is
1538         // guarded by a comparison with the post-inc value, the addrec
1539         // is safe.
1540         if (isKnownPositive(Step)) {
1541           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1542                                       getUnsignedRange(Step).getUnsignedMax());
1543           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1544               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1545                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1546                                            AR->getPostIncExpr(*this), N))) {
1547             // Cache knowledge of AR NUW, which is propagated to this
1548             // AddRec.
1549             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1550             // Return the expression with the addrec on the outside.
1551             return getAddRecExpr(
1552                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1553                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1554           }
1555         } else if (isKnownNegative(Step)) {
1556           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1557                                       getSignedRange(Step).getSignedMin());
1558           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1559               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1560                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1561                                            AR->getPostIncExpr(*this), N))) {
1562             // Cache knowledge of AR NW, which is propagated to this
1563             // AddRec.  Negative step causes unsigned wrap, but it
1564             // still can't self-wrap.
1565             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1566             // Return the expression with the addrec on the outside.
1567             return getAddRecExpr(
1568                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1569                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1570           }
1571         }
1572       }
1573 
1574       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1575         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1576         return getAddRecExpr(
1577             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1578             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1579       }
1580     }
1581 
1582   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1583     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1584     if (SA->hasNoUnsignedWrap()) {
1585       // If the addition does not unsign overflow then we can, by definition,
1586       // commute the zero extension with the addition operation.
1587       SmallVector<const SCEV *, 4> Ops;
1588       for (const auto *Op : SA->operands())
1589         Ops.push_back(getZeroExtendExpr(Op, Ty));
1590       return getAddExpr(Ops, SCEV::FlagNUW);
1591     }
1592   }
1593 
1594   // The cast wasn't folded; create an explicit cast node.
1595   // Recompute the insert position, as it may have been invalidated.
1596   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1597   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1598                                                    Op, Ty);
1599   UniqueSCEVs.InsertNode(S, IP);
1600   return S;
1601 }
1602 
1603 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1604                                                Type *Ty) {
1605   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1606          "This is not an extending conversion!");
1607   assert(isSCEVable(Ty) &&
1608          "This is not a conversion to a SCEVable type!");
1609   Ty = getEffectiveSCEVType(Ty);
1610 
1611   // Fold if the operand is constant.
1612   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1613     return getConstant(
1614       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1615 
1616   // sext(sext(x)) --> sext(x)
1617   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1618     return getSignExtendExpr(SS->getOperand(), Ty);
1619 
1620   // sext(zext(x)) --> zext(x)
1621   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1622     return getZeroExtendExpr(SZ->getOperand(), Ty);
1623 
1624   // Before doing any expensive analysis, check to see if we've already
1625   // computed a SCEV for this Op and Ty.
1626   FoldingSetNodeID ID;
1627   ID.AddInteger(scSignExtend);
1628   ID.AddPointer(Op);
1629   ID.AddPointer(Ty);
1630   void *IP = nullptr;
1631   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1632 
1633   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1634   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1635     // It's possible the bits taken off by the truncate were all sign bits. If
1636     // so, we should be able to simplify this further.
1637     const SCEV *X = ST->getOperand();
1638     ConstantRange CR = getSignedRange(X);
1639     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1640     unsigned NewBits = getTypeSizeInBits(Ty);
1641     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1642             CR.sextOrTrunc(NewBits)))
1643       return getTruncateOrSignExtend(X, Ty);
1644   }
1645 
1646   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1647   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1648     if (SA->getNumOperands() == 2) {
1649       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1650       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1651       if (SMul && SC1) {
1652         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1653           const APInt &C1 = SC1->getAPInt();
1654           const APInt &C2 = SC2->getAPInt();
1655           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1656               C2.ugt(C1) && C2.isPowerOf2())
1657             return getAddExpr(getSignExtendExpr(SC1, Ty),
1658                               getSignExtendExpr(SMul, Ty));
1659         }
1660       }
1661     }
1662 
1663     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1664     if (SA->hasNoSignedWrap()) {
1665       // If the addition does not sign overflow then we can, by definition,
1666       // commute the sign extension with the addition operation.
1667       SmallVector<const SCEV *, 4> Ops;
1668       for (const auto *Op : SA->operands())
1669         Ops.push_back(getSignExtendExpr(Op, Ty));
1670       return getAddExpr(Ops, SCEV::FlagNSW);
1671     }
1672   }
1673   // If the input value is a chrec scev, and we can prove that the value
1674   // did not overflow the old, smaller, value, we can sign extend all of the
1675   // operands (often constants).  This allows analysis of something like
1676   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1677   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1678     if (AR->isAffine()) {
1679       const SCEV *Start = AR->getStart();
1680       const SCEV *Step = AR->getStepRecurrence(*this);
1681       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1682       const Loop *L = AR->getLoop();
1683 
1684       if (!AR->hasNoSignedWrap()) {
1685         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1686         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1687       }
1688 
1689       // If we have special knowledge that this addrec won't overflow,
1690       // we don't need to do any further analysis.
1691       if (AR->hasNoSignedWrap())
1692         return getAddRecExpr(
1693             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1694             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1695 
1696       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1697       // Note that this serves two purposes: It filters out loops that are
1698       // simply not analyzable, and it covers the case where this code is
1699       // being called from within backedge-taken count analysis, such that
1700       // attempting to ask for the backedge-taken count would likely result
1701       // in infinite recursion. In the later case, the analysis code will
1702       // cope with a conservative value, and it will take care to purge
1703       // that value once it has finished.
1704       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1705       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1706         // Manually compute the final value for AR, checking for
1707         // overflow.
1708 
1709         // Check whether the backedge-taken count can be losslessly casted to
1710         // the addrec's type. The count is always unsigned.
1711         const SCEV *CastedMaxBECount =
1712           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1713         const SCEV *RecastedMaxBECount =
1714           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1715         if (MaxBECount == RecastedMaxBECount) {
1716           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1717           // Check whether Start+Step*MaxBECount has no signed overflow.
1718           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1719           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1720           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1721           const SCEV *WideMaxBECount =
1722             getZeroExtendExpr(CastedMaxBECount, WideTy);
1723           const SCEV *OperandExtendedAdd =
1724             getAddExpr(WideStart,
1725                        getMulExpr(WideMaxBECount,
1726                                   getSignExtendExpr(Step, WideTy)));
1727           if (SAdd == OperandExtendedAdd) {
1728             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1729             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1730             // Return the expression with the addrec on the outside.
1731             return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1733                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1734           }
1735           // Similar to above, only this time treat the step value as unsigned.
1736           // This covers loops that count up with an unsigned step.
1737           OperandExtendedAdd =
1738             getAddExpr(WideStart,
1739                        getMulExpr(WideMaxBECount,
1740                                   getZeroExtendExpr(Step, WideTy)));
1741           if (SAdd == OperandExtendedAdd) {
1742             // If AR wraps around then
1743             //
1744             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1745             // => SAdd != OperandExtendedAdd
1746             //
1747             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1748             // (SAdd == OperandExtendedAdd => AR is NW)
1749 
1750             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1751 
1752             // Return the expression with the addrec on the outside.
1753             return getAddRecExpr(
1754                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1755                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1756           }
1757         }
1758       }
1759 
1760       // Normally, in the cases we can prove no-overflow via a
1761       // backedge guarding condition, we can also compute a backedge
1762       // taken count for the loop.  The exceptions are assumptions and
1763       // guards present in the loop -- SCEV is not great at exploiting
1764       // these to compute max backedge taken counts, but can still use
1765       // these to prove lack of overflow.  Use this fact to avoid
1766       // doing extra work that may not pay off.
1767 
1768       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1769           !AC.assumptions().empty()) {
1770         // If the backedge is guarded by a comparison with the pre-inc
1771         // value the addrec is safe. Also, if the entry is guarded by
1772         // a comparison with the start value and the backedge is
1773         // guarded by a comparison with the post-inc value, the addrec
1774         // is safe.
1775         ICmpInst::Predicate Pred;
1776         const SCEV *OverflowLimit =
1777             getSignedOverflowLimitForStep(Step, &Pred, this);
1778         if (OverflowLimit &&
1779             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1780              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1781               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1782                                           OverflowLimit)))) {
1783           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1784           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1785           return getAddRecExpr(
1786               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1787               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1788         }
1789       }
1790 
1791       // If Start and Step are constants, check if we can apply this
1792       // transformation:
1793       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1794       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1795       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1796       if (SC1 && SC2) {
1797         const APInt &C1 = SC1->getAPInt();
1798         const APInt &C2 = SC2->getAPInt();
1799         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1800             C2.isPowerOf2()) {
1801           Start = getSignExtendExpr(Start, Ty);
1802           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1803                                             AR->getNoWrapFlags());
1804           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1805         }
1806       }
1807 
1808       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1809         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1810         return getAddRecExpr(
1811             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1812             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1813       }
1814     }
1815 
1816   // If the input value is provably positive and we could not simplify
1817   // away the sext build a zext instead.
1818   if (isKnownNonNegative(Op))
1819     return getZeroExtendExpr(Op, Ty);
1820 
1821   // The cast wasn't folded; create an explicit cast node.
1822   // Recompute the insert position, as it may have been invalidated.
1823   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1824   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1825                                                    Op, Ty);
1826   UniqueSCEVs.InsertNode(S, IP);
1827   return S;
1828 }
1829 
1830 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1831 /// unspecified bits out to the given type.
1832 ///
1833 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1834                                               Type *Ty) {
1835   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1836          "This is not an extending conversion!");
1837   assert(isSCEVable(Ty) &&
1838          "This is not a conversion to a SCEVable type!");
1839   Ty = getEffectiveSCEVType(Ty);
1840 
1841   // Sign-extend negative constants.
1842   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1843     if (SC->getAPInt().isNegative())
1844       return getSignExtendExpr(Op, Ty);
1845 
1846   // Peel off a truncate cast.
1847   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1848     const SCEV *NewOp = T->getOperand();
1849     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1850       return getAnyExtendExpr(NewOp, Ty);
1851     return getTruncateOrNoop(NewOp, Ty);
1852   }
1853 
1854   // Next try a zext cast. If the cast is folded, use it.
1855   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1856   if (!isa<SCEVZeroExtendExpr>(ZExt))
1857     return ZExt;
1858 
1859   // Next try a sext cast. If the cast is folded, use it.
1860   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1861   if (!isa<SCEVSignExtendExpr>(SExt))
1862     return SExt;
1863 
1864   // Force the cast to be folded into the operands of an addrec.
1865   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1866     SmallVector<const SCEV *, 4> Ops;
1867     for (const SCEV *Op : AR->operands())
1868       Ops.push_back(getAnyExtendExpr(Op, Ty));
1869     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1870   }
1871 
1872   // If the expression is obviously signed, use the sext cast value.
1873   if (isa<SCEVSMaxExpr>(Op))
1874     return SExt;
1875 
1876   // Absent any other information, use the zext cast value.
1877   return ZExt;
1878 }
1879 
1880 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1881 /// a list of operands to be added under the given scale, update the given
1882 /// map. This is a helper function for getAddRecExpr. As an example of
1883 /// what it does, given a sequence of operands that would form an add
1884 /// expression like this:
1885 ///
1886 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1887 ///
1888 /// where A and B are constants, update the map with these values:
1889 ///
1890 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1891 ///
1892 /// and add 13 + A*B*29 to AccumulatedConstant.
1893 /// This will allow getAddRecExpr to produce this:
1894 ///
1895 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1896 ///
1897 /// This form often exposes folding opportunities that are hidden in
1898 /// the original operand list.
1899 ///
1900 /// Return true iff it appears that any interesting folding opportunities
1901 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1902 /// the common case where no interesting opportunities are present, and
1903 /// is also used as a check to avoid infinite recursion.
1904 ///
1905 static bool
1906 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1907                              SmallVectorImpl<const SCEV *> &NewOps,
1908                              APInt &AccumulatedConstant,
1909                              const SCEV *const *Ops, size_t NumOperands,
1910                              const APInt &Scale,
1911                              ScalarEvolution &SE) {
1912   bool Interesting = false;
1913 
1914   // Iterate over the add operands. They are sorted, with constants first.
1915   unsigned i = 0;
1916   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1917     ++i;
1918     // Pull a buried constant out to the outside.
1919     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1920       Interesting = true;
1921     AccumulatedConstant += Scale * C->getAPInt();
1922   }
1923 
1924   // Next comes everything else. We're especially interested in multiplies
1925   // here, but they're in the middle, so just visit the rest with one loop.
1926   for (; i != NumOperands; ++i) {
1927     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1928     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1929       APInt NewScale =
1930           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1931       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1932         // A multiplication of a constant with another add; recurse.
1933         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1934         Interesting |=
1935           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1936                                        Add->op_begin(), Add->getNumOperands(),
1937                                        NewScale, SE);
1938       } else {
1939         // A multiplication of a constant with some other value. Update
1940         // the map.
1941         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1942         const SCEV *Key = SE.getMulExpr(MulOps);
1943         auto Pair = M.insert({Key, NewScale});
1944         if (Pair.second) {
1945           NewOps.push_back(Pair.first->first);
1946         } else {
1947           Pair.first->second += NewScale;
1948           // The map already had an entry for this value, which may indicate
1949           // a folding opportunity.
1950           Interesting = true;
1951         }
1952       }
1953     } else {
1954       // An ordinary operand. Update the map.
1955       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1956           M.insert({Ops[i], Scale});
1957       if (Pair.second) {
1958         NewOps.push_back(Pair.first->first);
1959       } else {
1960         Pair.first->second += Scale;
1961         // The map already had an entry for this value, which may indicate
1962         // a folding opportunity.
1963         Interesting = true;
1964       }
1965     }
1966   }
1967 
1968   return Interesting;
1969 }
1970 
1971 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1972 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1973 // can't-overflow flags for the operation if possible.
1974 static SCEV::NoWrapFlags
1975 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1976                       const SmallVectorImpl<const SCEV *> &Ops,
1977                       SCEV::NoWrapFlags Flags) {
1978   using namespace std::placeholders;
1979   typedef OverflowingBinaryOperator OBO;
1980 
1981   bool CanAnalyze =
1982       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1983   (void)CanAnalyze;
1984   assert(CanAnalyze && "don't call from other places!");
1985 
1986   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1987   SCEV::NoWrapFlags SignOrUnsignWrap =
1988       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1989 
1990   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1991   auto IsKnownNonNegative = [&](const SCEV *S) {
1992     return SE->isKnownNonNegative(S);
1993   };
1994 
1995   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1996     Flags =
1997         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1998 
1999   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2000 
2001   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2002       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2003 
2004     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2005     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2006 
2007     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2008     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2009       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2010           Instruction::Add, C, OBO::NoSignedWrap);
2011       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2012         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2013     }
2014     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2015       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2016           Instruction::Add, C, OBO::NoUnsignedWrap);
2017       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2018         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2019     }
2020   }
2021 
2022   return Flags;
2023 }
2024 
2025 /// getAddExpr - Get a canonical add expression, or something simpler if
2026 /// possible.
2027 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2028                                         SCEV::NoWrapFlags Flags) {
2029   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2030          "only nuw or nsw allowed");
2031   assert(!Ops.empty() && "Cannot get empty add!");
2032   if (Ops.size() == 1) return Ops[0];
2033 #ifndef NDEBUG
2034   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2035   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2036     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2037            "SCEVAddExpr operand types don't match!");
2038 #endif
2039 
2040   // Sort by complexity, this groups all similar expression types together.
2041   GroupByComplexity(Ops, &LI);
2042 
2043   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2044 
2045   // If there are any constants, fold them together.
2046   unsigned Idx = 0;
2047   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2048     ++Idx;
2049     assert(Idx < Ops.size());
2050     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2051       // We found two constants, fold them together!
2052       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2053       if (Ops.size() == 2) return Ops[0];
2054       Ops.erase(Ops.begin()+1);  // Erase the folded element
2055       LHSC = cast<SCEVConstant>(Ops[0]);
2056     }
2057 
2058     // If we are left with a constant zero being added, strip it off.
2059     if (LHSC->getValue()->isZero()) {
2060       Ops.erase(Ops.begin());
2061       --Idx;
2062     }
2063 
2064     if (Ops.size() == 1) return Ops[0];
2065   }
2066 
2067   // Okay, check to see if the same value occurs in the operand list more than
2068   // once.  If so, merge them together into an multiply expression.  Since we
2069   // sorted the list, these values are required to be adjacent.
2070   Type *Ty = Ops[0]->getType();
2071   bool FoundMatch = false;
2072   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2073     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2074       // Scan ahead to count how many equal operands there are.
2075       unsigned Count = 2;
2076       while (i+Count != e && Ops[i+Count] == Ops[i])
2077         ++Count;
2078       // Merge the values into a multiply.
2079       const SCEV *Scale = getConstant(Ty, Count);
2080       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2081       if (Ops.size() == Count)
2082         return Mul;
2083       Ops[i] = Mul;
2084       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2085       --i; e -= Count - 1;
2086       FoundMatch = true;
2087     }
2088   if (FoundMatch)
2089     return getAddExpr(Ops, Flags);
2090 
2091   // Check for truncates. If all the operands are truncated from the same
2092   // type, see if factoring out the truncate would permit the result to be
2093   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2094   // if the contents of the resulting outer trunc fold to something simple.
2095   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2096     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2097     Type *DstType = Trunc->getType();
2098     Type *SrcType = Trunc->getOperand()->getType();
2099     SmallVector<const SCEV *, 8> LargeOps;
2100     bool Ok = true;
2101     // Check all the operands to see if they can be represented in the
2102     // source type of the truncate.
2103     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2104       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2105         if (T->getOperand()->getType() != SrcType) {
2106           Ok = false;
2107           break;
2108         }
2109         LargeOps.push_back(T->getOperand());
2110       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2111         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2112       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2113         SmallVector<const SCEV *, 8> LargeMulOps;
2114         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2115           if (const SCEVTruncateExpr *T =
2116                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2117             if (T->getOperand()->getType() != SrcType) {
2118               Ok = false;
2119               break;
2120             }
2121             LargeMulOps.push_back(T->getOperand());
2122           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2123             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2124           } else {
2125             Ok = false;
2126             break;
2127           }
2128         }
2129         if (Ok)
2130           LargeOps.push_back(getMulExpr(LargeMulOps));
2131       } else {
2132         Ok = false;
2133         break;
2134       }
2135     }
2136     if (Ok) {
2137       // Evaluate the expression in the larger type.
2138       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2139       // If it folds to something simple, use it. Otherwise, don't.
2140       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2141         return getTruncateExpr(Fold, DstType);
2142     }
2143   }
2144 
2145   // Skip past any other cast SCEVs.
2146   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2147     ++Idx;
2148 
2149   // If there are add operands they would be next.
2150   if (Idx < Ops.size()) {
2151     bool DeletedAdd = false;
2152     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2153       // If we have an add, expand the add operands onto the end of the operands
2154       // list.
2155       Ops.erase(Ops.begin()+Idx);
2156       Ops.append(Add->op_begin(), Add->op_end());
2157       DeletedAdd = true;
2158     }
2159 
2160     // If we deleted at least one add, we added operands to the end of the list,
2161     // and they are not necessarily sorted.  Recurse to resort and resimplify
2162     // any operands we just acquired.
2163     if (DeletedAdd)
2164       return getAddExpr(Ops);
2165   }
2166 
2167   // Skip over the add expression until we get to a multiply.
2168   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2169     ++Idx;
2170 
2171   // Check to see if there are any folding opportunities present with
2172   // operands multiplied by constant values.
2173   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2174     uint64_t BitWidth = getTypeSizeInBits(Ty);
2175     DenseMap<const SCEV *, APInt> M;
2176     SmallVector<const SCEV *, 8> NewOps;
2177     APInt AccumulatedConstant(BitWidth, 0);
2178     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2179                                      Ops.data(), Ops.size(),
2180                                      APInt(BitWidth, 1), *this)) {
2181       struct APIntCompare {
2182         bool operator()(const APInt &LHS, const APInt &RHS) const {
2183           return LHS.ult(RHS);
2184         }
2185       };
2186 
2187       // Some interesting folding opportunity is present, so its worthwhile to
2188       // re-generate the operands list. Group the operands by constant scale,
2189       // to avoid multiplying by the same constant scale multiple times.
2190       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2191       for (const SCEV *NewOp : NewOps)
2192         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2193       // Re-generate the operands list.
2194       Ops.clear();
2195       if (AccumulatedConstant != 0)
2196         Ops.push_back(getConstant(AccumulatedConstant));
2197       for (auto &MulOp : MulOpLists)
2198         if (MulOp.first != 0)
2199           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2200                                    getAddExpr(MulOp.second)));
2201       if (Ops.empty())
2202         return getZero(Ty);
2203       if (Ops.size() == 1)
2204         return Ops[0];
2205       return getAddExpr(Ops);
2206     }
2207   }
2208 
2209   // If we are adding something to a multiply expression, make sure the
2210   // something is not already an operand of the multiply.  If so, merge it into
2211   // the multiply.
2212   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2213     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2214     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2215       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2216       if (isa<SCEVConstant>(MulOpSCEV))
2217         continue;
2218       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2219         if (MulOpSCEV == Ops[AddOp]) {
2220           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2221           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2222           if (Mul->getNumOperands() != 2) {
2223             // If the multiply has more than two operands, we must get the
2224             // Y*Z term.
2225             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2226                                                 Mul->op_begin()+MulOp);
2227             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2228             InnerMul = getMulExpr(MulOps);
2229           }
2230           const SCEV *One = getOne(Ty);
2231           const SCEV *AddOne = getAddExpr(One, InnerMul);
2232           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2233           if (Ops.size() == 2) return OuterMul;
2234           if (AddOp < Idx) {
2235             Ops.erase(Ops.begin()+AddOp);
2236             Ops.erase(Ops.begin()+Idx-1);
2237           } else {
2238             Ops.erase(Ops.begin()+Idx);
2239             Ops.erase(Ops.begin()+AddOp-1);
2240           }
2241           Ops.push_back(OuterMul);
2242           return getAddExpr(Ops);
2243         }
2244 
2245       // Check this multiply against other multiplies being added together.
2246       for (unsigned OtherMulIdx = Idx+1;
2247            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2248            ++OtherMulIdx) {
2249         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2250         // If MulOp occurs in OtherMul, we can fold the two multiplies
2251         // together.
2252         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2253              OMulOp != e; ++OMulOp)
2254           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2255             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2256             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2257             if (Mul->getNumOperands() != 2) {
2258               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2259                                                   Mul->op_begin()+MulOp);
2260               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2261               InnerMul1 = getMulExpr(MulOps);
2262             }
2263             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2264             if (OtherMul->getNumOperands() != 2) {
2265               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2266                                                   OtherMul->op_begin()+OMulOp);
2267               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2268               InnerMul2 = getMulExpr(MulOps);
2269             }
2270             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2271             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2272             if (Ops.size() == 2) return OuterMul;
2273             Ops.erase(Ops.begin()+Idx);
2274             Ops.erase(Ops.begin()+OtherMulIdx-1);
2275             Ops.push_back(OuterMul);
2276             return getAddExpr(Ops);
2277           }
2278       }
2279     }
2280   }
2281 
2282   // If there are any add recurrences in the operands list, see if any other
2283   // added values are loop invariant.  If so, we can fold them into the
2284   // recurrence.
2285   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2286     ++Idx;
2287 
2288   // Scan over all recurrences, trying to fold loop invariants into them.
2289   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2290     // Scan all of the other operands to this add and add them to the vector if
2291     // they are loop invariant w.r.t. the recurrence.
2292     SmallVector<const SCEV *, 8> LIOps;
2293     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2294     const Loop *AddRecLoop = AddRec->getLoop();
2295     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2296       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2297         LIOps.push_back(Ops[i]);
2298         Ops.erase(Ops.begin()+i);
2299         --i; --e;
2300       }
2301 
2302     // If we found some loop invariants, fold them into the recurrence.
2303     if (!LIOps.empty()) {
2304       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2305       LIOps.push_back(AddRec->getStart());
2306 
2307       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2308                                              AddRec->op_end());
2309       // This follows from the fact that the no-wrap flags on the outer add
2310       // expression are applicable on the 0th iteration, when the add recurrence
2311       // will be equal to its start value.
2312       AddRecOps[0] = getAddExpr(LIOps, Flags);
2313 
2314       // Build the new addrec. Propagate the NUW and NSW flags if both the
2315       // outer add and the inner addrec are guaranteed to have no overflow.
2316       // Always propagate NW.
2317       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2318       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2319 
2320       // If all of the other operands were loop invariant, we are done.
2321       if (Ops.size() == 1) return NewRec;
2322 
2323       // Otherwise, add the folded AddRec by the non-invariant parts.
2324       for (unsigned i = 0;; ++i)
2325         if (Ops[i] == AddRec) {
2326           Ops[i] = NewRec;
2327           break;
2328         }
2329       return getAddExpr(Ops);
2330     }
2331 
2332     // Okay, if there weren't any loop invariants to be folded, check to see if
2333     // there are multiple AddRec's with the same loop induction variable being
2334     // added together.  If so, we can fold them.
2335     for (unsigned OtherIdx = Idx+1;
2336          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2337          ++OtherIdx)
2338       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2339         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2340         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2341                                                AddRec->op_end());
2342         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2343              ++OtherIdx)
2344           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2345             if (OtherAddRec->getLoop() == AddRecLoop) {
2346               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2347                    i != e; ++i) {
2348                 if (i >= AddRecOps.size()) {
2349                   AddRecOps.append(OtherAddRec->op_begin()+i,
2350                                    OtherAddRec->op_end());
2351                   break;
2352                 }
2353                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2354                                           OtherAddRec->getOperand(i));
2355               }
2356               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2357             }
2358         // Step size has changed, so we cannot guarantee no self-wraparound.
2359         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2360         return getAddExpr(Ops);
2361       }
2362 
2363     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2364     // next one.
2365   }
2366 
2367   // Okay, it looks like we really DO need an add expr.  Check to see if we
2368   // already have one, otherwise create a new one.
2369   FoldingSetNodeID ID;
2370   ID.AddInteger(scAddExpr);
2371   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2372     ID.AddPointer(Ops[i]);
2373   void *IP = nullptr;
2374   SCEVAddExpr *S =
2375     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2376   if (!S) {
2377     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2378     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2379     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2380                                         O, Ops.size());
2381     UniqueSCEVs.InsertNode(S, IP);
2382   }
2383   S->setNoWrapFlags(Flags);
2384   return S;
2385 }
2386 
2387 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2388   uint64_t k = i*j;
2389   if (j > 1 && k / j != i) Overflow = true;
2390   return k;
2391 }
2392 
2393 /// Compute the result of "n choose k", the binomial coefficient.  If an
2394 /// intermediate computation overflows, Overflow will be set and the return will
2395 /// be garbage. Overflow is not cleared on absence of overflow.
2396 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2397   // We use the multiplicative formula:
2398   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2399   // At each iteration, we take the n-th term of the numeral and divide by the
2400   // (k-n)th term of the denominator.  This division will always produce an
2401   // integral result, and helps reduce the chance of overflow in the
2402   // intermediate computations. However, we can still overflow even when the
2403   // final result would fit.
2404 
2405   if (n == 0 || n == k) return 1;
2406   if (k > n) return 0;
2407 
2408   if (k > n/2)
2409     k = n-k;
2410 
2411   uint64_t r = 1;
2412   for (uint64_t i = 1; i <= k; ++i) {
2413     r = umul_ov(r, n-(i-1), Overflow);
2414     r /= i;
2415   }
2416   return r;
2417 }
2418 
2419 /// Determine if any of the operands in this SCEV are a constant or if
2420 /// any of the add or multiply expressions in this SCEV contain a constant.
2421 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2422   SmallVector<const SCEV *, 4> Ops;
2423   Ops.push_back(StartExpr);
2424   while (!Ops.empty()) {
2425     const SCEV *CurrentExpr = Ops.pop_back_val();
2426     if (isa<SCEVConstant>(*CurrentExpr))
2427       return true;
2428 
2429     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2430       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2431       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2432     }
2433   }
2434   return false;
2435 }
2436 
2437 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2438 /// possible.
2439 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2440                                         SCEV::NoWrapFlags Flags) {
2441   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2442          "only nuw or nsw allowed");
2443   assert(!Ops.empty() && "Cannot get empty mul!");
2444   if (Ops.size() == 1) return Ops[0];
2445 #ifndef NDEBUG
2446   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2447   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2448     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2449            "SCEVMulExpr operand types don't match!");
2450 #endif
2451 
2452   // Sort by complexity, this groups all similar expression types together.
2453   GroupByComplexity(Ops, &LI);
2454 
2455   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2456 
2457   // If there are any constants, fold them together.
2458   unsigned Idx = 0;
2459   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2460 
2461     // C1*(C2+V) -> C1*C2 + C1*V
2462     if (Ops.size() == 2)
2463         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2464           // If any of Add's ops are Adds or Muls with a constant,
2465           // apply this transformation as well.
2466           if (Add->getNumOperands() == 2)
2467             if (containsConstantSomewhere(Add))
2468               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2469                                 getMulExpr(LHSC, Add->getOperand(1)));
2470 
2471     ++Idx;
2472     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2473       // We found two constants, fold them together!
2474       ConstantInt *Fold =
2475           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2476       Ops[0] = getConstant(Fold);
2477       Ops.erase(Ops.begin()+1);  // Erase the folded element
2478       if (Ops.size() == 1) return Ops[0];
2479       LHSC = cast<SCEVConstant>(Ops[0]);
2480     }
2481 
2482     // If we are left with a constant one being multiplied, strip it off.
2483     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2484       Ops.erase(Ops.begin());
2485       --Idx;
2486     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2487       // If we have a multiply of zero, it will always be zero.
2488       return Ops[0];
2489     } else if (Ops[0]->isAllOnesValue()) {
2490       // If we have a mul by -1 of an add, try distributing the -1 among the
2491       // add operands.
2492       if (Ops.size() == 2) {
2493         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2494           SmallVector<const SCEV *, 4> NewOps;
2495           bool AnyFolded = false;
2496           for (const SCEV *AddOp : Add->operands()) {
2497             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2498             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2499             NewOps.push_back(Mul);
2500           }
2501           if (AnyFolded)
2502             return getAddExpr(NewOps);
2503         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2504           // Negation preserves a recurrence's no self-wrap property.
2505           SmallVector<const SCEV *, 4> Operands;
2506           for (const SCEV *AddRecOp : AddRec->operands())
2507             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2508 
2509           return getAddRecExpr(Operands, AddRec->getLoop(),
2510                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2511         }
2512       }
2513     }
2514 
2515     if (Ops.size() == 1)
2516       return Ops[0];
2517   }
2518 
2519   // Skip over the add expression until we get to a multiply.
2520   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2521     ++Idx;
2522 
2523   // If there are mul operands inline them all into this expression.
2524   if (Idx < Ops.size()) {
2525     bool DeletedMul = false;
2526     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2527       // If we have an mul, expand the mul operands onto the end of the operands
2528       // list.
2529       Ops.erase(Ops.begin()+Idx);
2530       Ops.append(Mul->op_begin(), Mul->op_end());
2531       DeletedMul = true;
2532     }
2533 
2534     // If we deleted at least one mul, we added operands to the end of the list,
2535     // and they are not necessarily sorted.  Recurse to resort and resimplify
2536     // any operands we just acquired.
2537     if (DeletedMul)
2538       return getMulExpr(Ops);
2539   }
2540 
2541   // If there are any add recurrences in the operands list, see if any other
2542   // added values are loop invariant.  If so, we can fold them into the
2543   // recurrence.
2544   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2545     ++Idx;
2546 
2547   // Scan over all recurrences, trying to fold loop invariants into them.
2548   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2549     // Scan all of the other operands to this mul and add them to the vector if
2550     // they are loop invariant w.r.t. the recurrence.
2551     SmallVector<const SCEV *, 8> LIOps;
2552     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2553     const Loop *AddRecLoop = AddRec->getLoop();
2554     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2555       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2556         LIOps.push_back(Ops[i]);
2557         Ops.erase(Ops.begin()+i);
2558         --i; --e;
2559       }
2560 
2561     // If we found some loop invariants, fold them into the recurrence.
2562     if (!LIOps.empty()) {
2563       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2564       SmallVector<const SCEV *, 4> NewOps;
2565       NewOps.reserve(AddRec->getNumOperands());
2566       const SCEV *Scale = getMulExpr(LIOps);
2567       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2568         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2569 
2570       // Build the new addrec. Propagate the NUW and NSW flags if both the
2571       // outer mul and the inner addrec are guaranteed to have no overflow.
2572       //
2573       // No self-wrap cannot be guaranteed after changing the step size, but
2574       // will be inferred if either NUW or NSW is true.
2575       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2576       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2577 
2578       // If all of the other operands were loop invariant, we are done.
2579       if (Ops.size() == 1) return NewRec;
2580 
2581       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2582       for (unsigned i = 0;; ++i)
2583         if (Ops[i] == AddRec) {
2584           Ops[i] = NewRec;
2585           break;
2586         }
2587       return getMulExpr(Ops);
2588     }
2589 
2590     // Okay, if there weren't any loop invariants to be folded, check to see if
2591     // there are multiple AddRec's with the same loop induction variable being
2592     // multiplied together.  If so, we can fold them.
2593 
2594     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2595     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2596     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2597     //   ]]],+,...up to x=2n}.
2598     // Note that the arguments to choose() are always integers with values
2599     // known at compile time, never SCEV objects.
2600     //
2601     // The implementation avoids pointless extra computations when the two
2602     // addrec's are of different length (mathematically, it's equivalent to
2603     // an infinite stream of zeros on the right).
2604     bool OpsModified = false;
2605     for (unsigned OtherIdx = Idx+1;
2606          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2607          ++OtherIdx) {
2608       const SCEVAddRecExpr *OtherAddRec =
2609         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2610       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2611         continue;
2612 
2613       bool Overflow = false;
2614       Type *Ty = AddRec->getType();
2615       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2616       SmallVector<const SCEV*, 7> AddRecOps;
2617       for (int x = 0, xe = AddRec->getNumOperands() +
2618              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2619         const SCEV *Term = getZero(Ty);
2620         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2621           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2622           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2623                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2624                z < ze && !Overflow; ++z) {
2625             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2626             uint64_t Coeff;
2627             if (LargerThan64Bits)
2628               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2629             else
2630               Coeff = Coeff1*Coeff2;
2631             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2632             const SCEV *Term1 = AddRec->getOperand(y-z);
2633             const SCEV *Term2 = OtherAddRec->getOperand(z);
2634             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2635           }
2636         }
2637         AddRecOps.push_back(Term);
2638       }
2639       if (!Overflow) {
2640         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2641                                               SCEV::FlagAnyWrap);
2642         if (Ops.size() == 2) return NewAddRec;
2643         Ops[Idx] = NewAddRec;
2644         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2645         OpsModified = true;
2646         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2647         if (!AddRec)
2648           break;
2649       }
2650     }
2651     if (OpsModified)
2652       return getMulExpr(Ops);
2653 
2654     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2655     // next one.
2656   }
2657 
2658   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2659   // already have one, otherwise create a new one.
2660   FoldingSetNodeID ID;
2661   ID.AddInteger(scMulExpr);
2662   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2663     ID.AddPointer(Ops[i]);
2664   void *IP = nullptr;
2665   SCEVMulExpr *S =
2666     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2667   if (!S) {
2668     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2669     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2670     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2671                                         O, Ops.size());
2672     UniqueSCEVs.InsertNode(S, IP);
2673   }
2674   S->setNoWrapFlags(Flags);
2675   return S;
2676 }
2677 
2678 /// getUDivExpr - Get a canonical unsigned division expression, or something
2679 /// simpler if possible.
2680 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2681                                          const SCEV *RHS) {
2682   assert(getEffectiveSCEVType(LHS->getType()) ==
2683          getEffectiveSCEVType(RHS->getType()) &&
2684          "SCEVUDivExpr operand types don't match!");
2685 
2686   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2687     if (RHSC->getValue()->equalsInt(1))
2688       return LHS;                               // X udiv 1 --> x
2689     // If the denominator is zero, the result of the udiv is undefined. Don't
2690     // try to analyze it, because the resolution chosen here may differ from
2691     // the resolution chosen in other parts of the compiler.
2692     if (!RHSC->getValue()->isZero()) {
2693       // Determine if the division can be folded into the operands of
2694       // its operands.
2695       // TODO: Generalize this to non-constants by using known-bits information.
2696       Type *Ty = LHS->getType();
2697       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2698       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2699       // For non-power-of-two values, effectively round the value up to the
2700       // nearest power of two.
2701       if (!RHSC->getAPInt().isPowerOf2())
2702         ++MaxShiftAmt;
2703       IntegerType *ExtTy =
2704         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2705       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2706         if (const SCEVConstant *Step =
2707             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2708           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2709           const APInt &StepInt = Step->getAPInt();
2710           const APInt &DivInt = RHSC->getAPInt();
2711           if (!StepInt.urem(DivInt) &&
2712               getZeroExtendExpr(AR, ExtTy) ==
2713               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2714                             getZeroExtendExpr(Step, ExtTy),
2715                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2716             SmallVector<const SCEV *, 4> Operands;
2717             for (const SCEV *Op : AR->operands())
2718               Operands.push_back(getUDivExpr(Op, RHS));
2719             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2720           }
2721           /// Get a canonical UDivExpr for a recurrence.
2722           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2723           // We can currently only fold X%N if X is constant.
2724           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2725           if (StartC && !DivInt.urem(StepInt) &&
2726               getZeroExtendExpr(AR, ExtTy) ==
2727               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2728                             getZeroExtendExpr(Step, ExtTy),
2729                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2730             const APInt &StartInt = StartC->getAPInt();
2731             const APInt &StartRem = StartInt.urem(StepInt);
2732             if (StartRem != 0)
2733               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2734                                   AR->getLoop(), SCEV::FlagNW);
2735           }
2736         }
2737       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2738       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2739         SmallVector<const SCEV *, 4> Operands;
2740         for (const SCEV *Op : M->operands())
2741           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2742         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2743           // Find an operand that's safely divisible.
2744           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2745             const SCEV *Op = M->getOperand(i);
2746             const SCEV *Div = getUDivExpr(Op, RHSC);
2747             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2748               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2749                                                       M->op_end());
2750               Operands[i] = Div;
2751               return getMulExpr(Operands);
2752             }
2753           }
2754       }
2755       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2756       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2757         SmallVector<const SCEV *, 4> Operands;
2758         for (const SCEV *Op : A->operands())
2759           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2760         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2761           Operands.clear();
2762           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2763             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2764             if (isa<SCEVUDivExpr>(Op) ||
2765                 getMulExpr(Op, RHS) != A->getOperand(i))
2766               break;
2767             Operands.push_back(Op);
2768           }
2769           if (Operands.size() == A->getNumOperands())
2770             return getAddExpr(Operands);
2771         }
2772       }
2773 
2774       // Fold if both operands are constant.
2775       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2776         Constant *LHSCV = LHSC->getValue();
2777         Constant *RHSCV = RHSC->getValue();
2778         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2779                                                                    RHSCV)));
2780       }
2781     }
2782   }
2783 
2784   FoldingSetNodeID ID;
2785   ID.AddInteger(scUDivExpr);
2786   ID.AddPointer(LHS);
2787   ID.AddPointer(RHS);
2788   void *IP = nullptr;
2789   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2790   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2791                                              LHS, RHS);
2792   UniqueSCEVs.InsertNode(S, IP);
2793   return S;
2794 }
2795 
2796 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2797   APInt A = C1->getAPInt().abs();
2798   APInt B = C2->getAPInt().abs();
2799   uint32_t ABW = A.getBitWidth();
2800   uint32_t BBW = B.getBitWidth();
2801 
2802   if (ABW > BBW)
2803     B = B.zext(ABW);
2804   else if (ABW < BBW)
2805     A = A.zext(BBW);
2806 
2807   return APIntOps::GreatestCommonDivisor(A, B);
2808 }
2809 
2810 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2811 /// something simpler if possible. There is no representation for an exact udiv
2812 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2813 /// We can't do this when it's not exact because the udiv may be clearing bits.
2814 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2815                                               const SCEV *RHS) {
2816   // TODO: we could try to find factors in all sorts of things, but for now we
2817   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2818   // end of this file for inspiration.
2819 
2820   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2821   if (!Mul)
2822     return getUDivExpr(LHS, RHS);
2823 
2824   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2825     // If the mulexpr multiplies by a constant, then that constant must be the
2826     // first element of the mulexpr.
2827     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2828       if (LHSCst == RHSCst) {
2829         SmallVector<const SCEV *, 2> Operands;
2830         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2831         return getMulExpr(Operands);
2832       }
2833 
2834       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2835       // that there's a factor provided by one of the other terms. We need to
2836       // check.
2837       APInt Factor = gcd(LHSCst, RHSCst);
2838       if (!Factor.isIntN(1)) {
2839         LHSCst =
2840             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2841         RHSCst =
2842             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2843         SmallVector<const SCEV *, 2> Operands;
2844         Operands.push_back(LHSCst);
2845         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2846         LHS = getMulExpr(Operands);
2847         RHS = RHSCst;
2848         Mul = dyn_cast<SCEVMulExpr>(LHS);
2849         if (!Mul)
2850           return getUDivExactExpr(LHS, RHS);
2851       }
2852     }
2853   }
2854 
2855   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2856     if (Mul->getOperand(i) == RHS) {
2857       SmallVector<const SCEV *, 2> Operands;
2858       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2859       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2860       return getMulExpr(Operands);
2861     }
2862   }
2863 
2864   return getUDivExpr(LHS, RHS);
2865 }
2866 
2867 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2868 /// Simplify the expression as much as possible.
2869 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2870                                            const Loop *L,
2871                                            SCEV::NoWrapFlags Flags) {
2872   SmallVector<const SCEV *, 4> Operands;
2873   Operands.push_back(Start);
2874   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2875     if (StepChrec->getLoop() == L) {
2876       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2877       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2878     }
2879 
2880   Operands.push_back(Step);
2881   return getAddRecExpr(Operands, L, Flags);
2882 }
2883 
2884 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2885 /// Simplify the expression as much as possible.
2886 const SCEV *
2887 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2888                                const Loop *L, SCEV::NoWrapFlags Flags) {
2889   if (Operands.size() == 1) return Operands[0];
2890 #ifndef NDEBUG
2891   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2892   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2893     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2894            "SCEVAddRecExpr operand types don't match!");
2895   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2896     assert(isLoopInvariant(Operands[i], L) &&
2897            "SCEVAddRecExpr operand is not loop-invariant!");
2898 #endif
2899 
2900   if (Operands.back()->isZero()) {
2901     Operands.pop_back();
2902     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2903   }
2904 
2905   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2906   // use that information to infer NUW and NSW flags. However, computing a
2907   // BE count requires calling getAddRecExpr, so we may not yet have a
2908   // meaningful BE count at this point (and if we don't, we'd be stuck
2909   // with a SCEVCouldNotCompute as the cached BE count).
2910 
2911   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2912 
2913   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2914   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2915     const Loop *NestedLoop = NestedAR->getLoop();
2916     if (L->contains(NestedLoop)
2917             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2918             : (!NestedLoop->contains(L) &&
2919                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2920       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2921                                                   NestedAR->op_end());
2922       Operands[0] = NestedAR->getStart();
2923       // AddRecs require their operands be loop-invariant with respect to their
2924       // loops. Don't perform this transformation if it would break this
2925       // requirement.
2926       bool AllInvariant = all_of(
2927           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2928 
2929       if (AllInvariant) {
2930         // Create a recurrence for the outer loop with the same step size.
2931         //
2932         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2933         // inner recurrence has the same property.
2934         SCEV::NoWrapFlags OuterFlags =
2935           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2936 
2937         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2938         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2939           return isLoopInvariant(Op, NestedLoop);
2940         });
2941 
2942         if (AllInvariant) {
2943           // Ok, both add recurrences are valid after the transformation.
2944           //
2945           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2946           // the outer recurrence has the same property.
2947           SCEV::NoWrapFlags InnerFlags =
2948             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2949           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2950         }
2951       }
2952       // Reset Operands to its original state.
2953       Operands[0] = NestedAR;
2954     }
2955   }
2956 
2957   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2958   // already have one, otherwise create a new one.
2959   FoldingSetNodeID ID;
2960   ID.AddInteger(scAddRecExpr);
2961   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2962     ID.AddPointer(Operands[i]);
2963   ID.AddPointer(L);
2964   void *IP = nullptr;
2965   SCEVAddRecExpr *S =
2966     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2967   if (!S) {
2968     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2969     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2970     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2971                                            O, Operands.size(), L);
2972     UniqueSCEVs.InsertNode(S, IP);
2973   }
2974   S->setNoWrapFlags(Flags);
2975   return S;
2976 }
2977 
2978 const SCEV *
2979 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2980                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2981                             bool InBounds) {
2982   // getSCEV(Base)->getType() has the same address space as Base->getType()
2983   // because SCEV::getType() preserves the address space.
2984   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2985   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2986   // instruction to its SCEV, because the Instruction may be guarded by control
2987   // flow and the no-overflow bits may not be valid for the expression in any
2988   // context. This can be fixed similarly to how these flags are handled for
2989   // adds.
2990   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2991 
2992   const SCEV *TotalOffset = getZero(IntPtrTy);
2993   // The address space is unimportant. The first thing we do on CurTy is getting
2994   // its element type.
2995   Type *CurTy = PointerType::getUnqual(PointeeType);
2996   for (const SCEV *IndexExpr : IndexExprs) {
2997     // Compute the (potentially symbolic) offset in bytes for this index.
2998     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2999       // For a struct, add the member offset.
3000       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3001       unsigned FieldNo = Index->getZExtValue();
3002       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3003 
3004       // Add the field offset to the running total offset.
3005       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3006 
3007       // Update CurTy to the type of the field at Index.
3008       CurTy = STy->getTypeAtIndex(Index);
3009     } else {
3010       // Update CurTy to its element type.
3011       CurTy = cast<SequentialType>(CurTy)->getElementType();
3012       // For an array, add the element offset, explicitly scaled.
3013       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3014       // Getelementptr indices are signed.
3015       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3016 
3017       // Multiply the index by the element size to compute the element offset.
3018       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3019 
3020       // Add the element offset to the running total offset.
3021       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3022     }
3023   }
3024 
3025   // Add the total offset from all the GEP indices to the base.
3026   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3027 }
3028 
3029 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3030                                          const SCEV *RHS) {
3031   SmallVector<const SCEV *, 2> Ops;
3032   Ops.push_back(LHS);
3033   Ops.push_back(RHS);
3034   return getSMaxExpr(Ops);
3035 }
3036 
3037 const SCEV *
3038 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3039   assert(!Ops.empty() && "Cannot get empty smax!");
3040   if (Ops.size() == 1) return Ops[0];
3041 #ifndef NDEBUG
3042   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3043   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3044     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3045            "SCEVSMaxExpr operand types don't match!");
3046 #endif
3047 
3048   // Sort by complexity, this groups all similar expression types together.
3049   GroupByComplexity(Ops, &LI);
3050 
3051   // If there are any constants, fold them together.
3052   unsigned Idx = 0;
3053   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3054     ++Idx;
3055     assert(Idx < Ops.size());
3056     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3057       // We found two constants, fold them together!
3058       ConstantInt *Fold = ConstantInt::get(
3059           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3060       Ops[0] = getConstant(Fold);
3061       Ops.erase(Ops.begin()+1);  // Erase the folded element
3062       if (Ops.size() == 1) return Ops[0];
3063       LHSC = cast<SCEVConstant>(Ops[0]);
3064     }
3065 
3066     // If we are left with a constant minimum-int, strip it off.
3067     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3068       Ops.erase(Ops.begin());
3069       --Idx;
3070     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3071       // If we have an smax with a constant maximum-int, it will always be
3072       // maximum-int.
3073       return Ops[0];
3074     }
3075 
3076     if (Ops.size() == 1) return Ops[0];
3077   }
3078 
3079   // Find the first SMax
3080   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3081     ++Idx;
3082 
3083   // Check to see if one of the operands is an SMax. If so, expand its operands
3084   // onto our operand list, and recurse to simplify.
3085   if (Idx < Ops.size()) {
3086     bool DeletedSMax = false;
3087     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3088       Ops.erase(Ops.begin()+Idx);
3089       Ops.append(SMax->op_begin(), SMax->op_end());
3090       DeletedSMax = true;
3091     }
3092 
3093     if (DeletedSMax)
3094       return getSMaxExpr(Ops);
3095   }
3096 
3097   // Okay, check to see if the same value occurs in the operand list twice.  If
3098   // so, delete one.  Since we sorted the list, these values are required to
3099   // be adjacent.
3100   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3101     //  X smax Y smax Y  -->  X smax Y
3102     //  X smax Y         -->  X, if X is always greater than Y
3103     if (Ops[i] == Ops[i+1] ||
3104         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3105       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3106       --i; --e;
3107     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3108       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3109       --i; --e;
3110     }
3111 
3112   if (Ops.size() == 1) return Ops[0];
3113 
3114   assert(!Ops.empty() && "Reduced smax down to nothing!");
3115 
3116   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3117   // already have one, otherwise create a new one.
3118   FoldingSetNodeID ID;
3119   ID.AddInteger(scSMaxExpr);
3120   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3121     ID.AddPointer(Ops[i]);
3122   void *IP = nullptr;
3123   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3124   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3125   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3126   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3127                                              O, Ops.size());
3128   UniqueSCEVs.InsertNode(S, IP);
3129   return S;
3130 }
3131 
3132 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3133                                          const SCEV *RHS) {
3134   SmallVector<const SCEV *, 2> Ops;
3135   Ops.push_back(LHS);
3136   Ops.push_back(RHS);
3137   return getUMaxExpr(Ops);
3138 }
3139 
3140 const SCEV *
3141 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3142   assert(!Ops.empty() && "Cannot get empty umax!");
3143   if (Ops.size() == 1) return Ops[0];
3144 #ifndef NDEBUG
3145   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3146   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3147     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3148            "SCEVUMaxExpr operand types don't match!");
3149 #endif
3150 
3151   // Sort by complexity, this groups all similar expression types together.
3152   GroupByComplexity(Ops, &LI);
3153 
3154   // If there are any constants, fold them together.
3155   unsigned Idx = 0;
3156   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3157     ++Idx;
3158     assert(Idx < Ops.size());
3159     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3160       // We found two constants, fold them together!
3161       ConstantInt *Fold = ConstantInt::get(
3162           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3163       Ops[0] = getConstant(Fold);
3164       Ops.erase(Ops.begin()+1);  // Erase the folded element
3165       if (Ops.size() == 1) return Ops[0];
3166       LHSC = cast<SCEVConstant>(Ops[0]);
3167     }
3168 
3169     // If we are left with a constant minimum-int, strip it off.
3170     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3171       Ops.erase(Ops.begin());
3172       --Idx;
3173     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3174       // If we have an umax with a constant maximum-int, it will always be
3175       // maximum-int.
3176       return Ops[0];
3177     }
3178 
3179     if (Ops.size() == 1) return Ops[0];
3180   }
3181 
3182   // Find the first UMax
3183   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3184     ++Idx;
3185 
3186   // Check to see if one of the operands is a UMax. If so, expand its operands
3187   // onto our operand list, and recurse to simplify.
3188   if (Idx < Ops.size()) {
3189     bool DeletedUMax = false;
3190     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3191       Ops.erase(Ops.begin()+Idx);
3192       Ops.append(UMax->op_begin(), UMax->op_end());
3193       DeletedUMax = true;
3194     }
3195 
3196     if (DeletedUMax)
3197       return getUMaxExpr(Ops);
3198   }
3199 
3200   // Okay, check to see if the same value occurs in the operand list twice.  If
3201   // so, delete one.  Since we sorted the list, these values are required to
3202   // be adjacent.
3203   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3204     //  X umax Y umax Y  -->  X umax Y
3205     //  X umax Y         -->  X, if X is always greater than Y
3206     if (Ops[i] == Ops[i+1] ||
3207         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3208       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3209       --i; --e;
3210     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3211       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3212       --i; --e;
3213     }
3214 
3215   if (Ops.size() == 1) return Ops[0];
3216 
3217   assert(!Ops.empty() && "Reduced umax down to nothing!");
3218 
3219   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3220   // already have one, otherwise create a new one.
3221   FoldingSetNodeID ID;
3222   ID.AddInteger(scUMaxExpr);
3223   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3224     ID.AddPointer(Ops[i]);
3225   void *IP = nullptr;
3226   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3227   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3228   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3229   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3230                                              O, Ops.size());
3231   UniqueSCEVs.InsertNode(S, IP);
3232   return S;
3233 }
3234 
3235 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3236                                          const SCEV *RHS) {
3237   // ~smax(~x, ~y) == smin(x, y).
3238   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3239 }
3240 
3241 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3242                                          const SCEV *RHS) {
3243   // ~umax(~x, ~y) == umin(x, y)
3244   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3245 }
3246 
3247 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3248   // We can bypass creating a target-independent
3249   // constant expression and then folding it back into a ConstantInt.
3250   // This is just a compile-time optimization.
3251   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3252 }
3253 
3254 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3255                                              StructType *STy,
3256                                              unsigned FieldNo) {
3257   // We can bypass creating a target-independent
3258   // constant expression and then folding it back into a ConstantInt.
3259   // This is just a compile-time optimization.
3260   return getConstant(
3261       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3262 }
3263 
3264 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3265   // Don't attempt to do anything other than create a SCEVUnknown object
3266   // here.  createSCEV only calls getUnknown after checking for all other
3267   // interesting possibilities, and any other code that calls getUnknown
3268   // is doing so in order to hide a value from SCEV canonicalization.
3269 
3270   FoldingSetNodeID ID;
3271   ID.AddInteger(scUnknown);
3272   ID.AddPointer(V);
3273   void *IP = nullptr;
3274   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3275     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3276            "Stale SCEVUnknown in uniquing map!");
3277     return S;
3278   }
3279   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3280                                             FirstUnknown);
3281   FirstUnknown = cast<SCEVUnknown>(S);
3282   UniqueSCEVs.InsertNode(S, IP);
3283   return S;
3284 }
3285 
3286 //===----------------------------------------------------------------------===//
3287 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3288 //
3289 
3290 /// isSCEVable - Test if values of the given type are analyzable within
3291 /// the SCEV framework. This primarily includes integer types, and it
3292 /// can optionally include pointer types if the ScalarEvolution class
3293 /// has access to target-specific information.
3294 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3295   // Integers and pointers are always SCEVable.
3296   return Ty->isIntegerTy() || Ty->isPointerTy();
3297 }
3298 
3299 /// getTypeSizeInBits - Return the size in bits of the specified type,
3300 /// for which isSCEVable must return true.
3301 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3302   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3303   return getDataLayout().getTypeSizeInBits(Ty);
3304 }
3305 
3306 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3307 /// the given type and which represents how SCEV will treat the given
3308 /// type, for which isSCEVable must return true. For pointer types,
3309 /// this is the pointer-sized integer type.
3310 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3311   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3312 
3313   if (Ty->isIntegerTy())
3314     return Ty;
3315 
3316   // The only other support type is pointer.
3317   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3318   return getDataLayout().getIntPtrType(Ty);
3319 }
3320 
3321 const SCEV *ScalarEvolution::getCouldNotCompute() {
3322   return CouldNotCompute.get();
3323 }
3324 
3325 
3326 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3327   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3328   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3329   // is set iff if find such SCEVUnknown.
3330   //
3331   struct FindInvalidSCEVUnknown {
3332     bool FindOne;
3333     FindInvalidSCEVUnknown() { FindOne = false; }
3334     bool follow(const SCEV *S) {
3335       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3336       case scConstant:
3337         return false;
3338       case scUnknown:
3339         if (!cast<SCEVUnknown>(S)->getValue())
3340           FindOne = true;
3341         return false;
3342       default:
3343         return true;
3344       }
3345     }
3346     bool isDone() const { return FindOne; }
3347   };
3348 
3349   FindInvalidSCEVUnknown F;
3350   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3351   ST.visitAll(S);
3352 
3353   return !F.FindOne;
3354 }
3355 
3356 namespace {
3357 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3358 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3359 // iff if such sub scAddRecExpr type SCEV is found.
3360 struct FindAddRecurrence {
3361   bool FoundOne;
3362   FindAddRecurrence() : FoundOne(false) {}
3363 
3364   bool follow(const SCEV *S) {
3365     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3366     case scAddRecExpr:
3367       FoundOne = true;
3368     case scConstant:
3369     case scUnknown:
3370     case scCouldNotCompute:
3371       return false;
3372     default:
3373       return true;
3374     }
3375   }
3376   bool isDone() const { return FoundOne; }
3377 };
3378 }
3379 
3380 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3381   HasRecMapType::iterator I = HasRecMap.find_as(S);
3382   if (I != HasRecMap.end())
3383     return I->second;
3384 
3385   FindAddRecurrence F;
3386   SCEVTraversal<FindAddRecurrence> ST(F);
3387   ST.visitAll(S);
3388   HasRecMap.insert({S, F.FoundOne});
3389   return F.FoundOne;
3390 }
3391 
3392 /// getSCEVValues - Return the Value set from S.
3393 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3394   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3395   if (SI == ExprValueMap.end())
3396     return nullptr;
3397 #ifndef NDEBUG
3398   if (VerifySCEVMap) {
3399     // Check there is no dangling Value in the set returned.
3400     for (const auto &VE : SI->second)
3401       assert(ValueExprMap.count(VE));
3402   }
3403 #endif
3404   return &SI->second;
3405 }
3406 
3407 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3408 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3409 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3410 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3411 void ScalarEvolution::eraseValueFromMap(Value *V) {
3412   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3413   if (I != ValueExprMap.end()) {
3414     const SCEV *S = I->second;
3415     SetVector<Value *> *SV = getSCEVValues(S);
3416     // Remove V from the set of ExprValueMap[S]
3417     if (SV)
3418       SV->remove(V);
3419     ValueExprMap.erase(V);
3420   }
3421 }
3422 
3423 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3424 /// expression and create a new one.
3425 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3426   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3427 
3428   const SCEV *S = getExistingSCEV(V);
3429   if (S == nullptr) {
3430     S = createSCEV(V);
3431     // During PHI resolution, it is possible to create two SCEVs for the same
3432     // V, so it is needed to double check whether V->S is inserted into
3433     // ValueExprMap before insert S->V into ExprValueMap.
3434     std::pair<ValueExprMapType::iterator, bool> Pair =
3435         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3436     if (Pair.second)
3437       ExprValueMap[S].insert(V);
3438   }
3439   return S;
3440 }
3441 
3442 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3443   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3444 
3445   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3446   if (I != ValueExprMap.end()) {
3447     const SCEV *S = I->second;
3448     if (checkValidity(S))
3449       return S;
3450     forgetMemoizedResults(S);
3451     ValueExprMap.erase(I);
3452   }
3453   return nullptr;
3454 }
3455 
3456 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3457 ///
3458 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3459                                              SCEV::NoWrapFlags Flags) {
3460   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3461     return getConstant(
3462                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3463 
3464   Type *Ty = V->getType();
3465   Ty = getEffectiveSCEVType(Ty);
3466   return getMulExpr(
3467       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3468 }
3469 
3470 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3471 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3472   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3473     return getConstant(
3474                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3475 
3476   Type *Ty = V->getType();
3477   Ty = getEffectiveSCEVType(Ty);
3478   const SCEV *AllOnes =
3479                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3480   return getMinusSCEV(AllOnes, V);
3481 }
3482 
3483 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3484 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3485                                           SCEV::NoWrapFlags Flags) {
3486   // Fast path: X - X --> 0.
3487   if (LHS == RHS)
3488     return getZero(LHS->getType());
3489 
3490   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3491   // makes it so that we cannot make much use of NUW.
3492   auto AddFlags = SCEV::FlagAnyWrap;
3493   const bool RHSIsNotMinSigned =
3494       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3495   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3496     // Let M be the minimum representable signed value. Then (-1)*RHS
3497     // signed-wraps if and only if RHS is M. That can happen even for
3498     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3499     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3500     // (-1)*RHS, we need to prove that RHS != M.
3501     //
3502     // If LHS is non-negative and we know that LHS - RHS does not
3503     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3504     // either by proving that RHS > M or that LHS >= 0.
3505     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3506       AddFlags = SCEV::FlagNSW;
3507     }
3508   }
3509 
3510   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3511   // RHS is NSW and LHS >= 0.
3512   //
3513   // The difficulty here is that the NSW flag may have been proven
3514   // relative to a loop that is to be found in a recurrence in LHS and
3515   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3516   // larger scope than intended.
3517   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3518 
3519   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3520 }
3521 
3522 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3523 /// input value to the specified type.  If the type must be extended, it is zero
3524 /// extended.
3525 const SCEV *
3526 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3527   Type *SrcTy = V->getType();
3528   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3529          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3530          "Cannot truncate or zero extend with non-integer arguments!");
3531   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3532     return V;  // No conversion
3533   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3534     return getTruncateExpr(V, Ty);
3535   return getZeroExtendExpr(V, Ty);
3536 }
3537 
3538 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3539 /// input value to the specified type.  If the type must be extended, it is sign
3540 /// extended.
3541 const SCEV *
3542 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3543                                          Type *Ty) {
3544   Type *SrcTy = V->getType();
3545   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3546          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3547          "Cannot truncate or zero extend with non-integer arguments!");
3548   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3549     return V;  // No conversion
3550   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3551     return getTruncateExpr(V, Ty);
3552   return getSignExtendExpr(V, Ty);
3553 }
3554 
3555 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3556 /// input value to the specified type.  If the type must be extended, it is zero
3557 /// extended.  The conversion must not be narrowing.
3558 const SCEV *
3559 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3560   Type *SrcTy = V->getType();
3561   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3562          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3563          "Cannot noop or zero extend with non-integer arguments!");
3564   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3565          "getNoopOrZeroExtend cannot truncate!");
3566   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3567     return V;  // No conversion
3568   return getZeroExtendExpr(V, Ty);
3569 }
3570 
3571 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3572 /// input value to the specified type.  If the type must be extended, it is sign
3573 /// extended.  The conversion must not be narrowing.
3574 const SCEV *
3575 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3576   Type *SrcTy = V->getType();
3577   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3578          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3579          "Cannot noop or sign extend with non-integer arguments!");
3580   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3581          "getNoopOrSignExtend cannot truncate!");
3582   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3583     return V;  // No conversion
3584   return getSignExtendExpr(V, Ty);
3585 }
3586 
3587 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3588 /// the input value to the specified type. If the type must be extended,
3589 /// it is extended with unspecified bits. The conversion must not be
3590 /// narrowing.
3591 const SCEV *
3592 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3593   Type *SrcTy = V->getType();
3594   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3595          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3596          "Cannot noop or any extend with non-integer arguments!");
3597   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3598          "getNoopOrAnyExtend cannot truncate!");
3599   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3600     return V;  // No conversion
3601   return getAnyExtendExpr(V, Ty);
3602 }
3603 
3604 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3605 /// input value to the specified type.  The conversion must not be widening.
3606 const SCEV *
3607 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3608   Type *SrcTy = V->getType();
3609   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3610          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3611          "Cannot truncate or noop with non-integer arguments!");
3612   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3613          "getTruncateOrNoop cannot extend!");
3614   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3615     return V;  // No conversion
3616   return getTruncateExpr(V, Ty);
3617 }
3618 
3619 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3620 /// the types using zero-extension, and then perform a umax operation
3621 /// with them.
3622 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3623                                                         const SCEV *RHS) {
3624   const SCEV *PromotedLHS = LHS;
3625   const SCEV *PromotedRHS = RHS;
3626 
3627   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3628     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3629   else
3630     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3631 
3632   return getUMaxExpr(PromotedLHS, PromotedRHS);
3633 }
3634 
3635 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3636 /// the types using zero-extension, and then perform a umin operation
3637 /// with them.
3638 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3639                                                         const SCEV *RHS) {
3640   const SCEV *PromotedLHS = LHS;
3641   const SCEV *PromotedRHS = RHS;
3642 
3643   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3644     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3645   else
3646     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3647 
3648   return getUMinExpr(PromotedLHS, PromotedRHS);
3649 }
3650 
3651 /// getPointerBase - Transitively follow the chain of pointer-type operands
3652 /// until reaching a SCEV that does not have a single pointer operand. This
3653 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3654 /// but corner cases do exist.
3655 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3656   // A pointer operand may evaluate to a nonpointer expression, such as null.
3657   if (!V->getType()->isPointerTy())
3658     return V;
3659 
3660   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3661     return getPointerBase(Cast->getOperand());
3662   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3663     const SCEV *PtrOp = nullptr;
3664     for (const SCEV *NAryOp : NAry->operands()) {
3665       if (NAryOp->getType()->isPointerTy()) {
3666         // Cannot find the base of an expression with multiple pointer operands.
3667         if (PtrOp)
3668           return V;
3669         PtrOp = NAryOp;
3670       }
3671     }
3672     if (!PtrOp)
3673       return V;
3674     return getPointerBase(PtrOp);
3675   }
3676   return V;
3677 }
3678 
3679 /// PushDefUseChildren - Push users of the given Instruction
3680 /// onto the given Worklist.
3681 static void
3682 PushDefUseChildren(Instruction *I,
3683                    SmallVectorImpl<Instruction *> &Worklist) {
3684   // Push the def-use children onto the Worklist stack.
3685   for (User *U : I->users())
3686     Worklist.push_back(cast<Instruction>(U));
3687 }
3688 
3689 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3690 /// instructions that depend on the given instruction and removes them from
3691 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3692 /// resolution.
3693 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3694   SmallVector<Instruction *, 16> Worklist;
3695   PushDefUseChildren(PN, Worklist);
3696 
3697   SmallPtrSet<Instruction *, 8> Visited;
3698   Visited.insert(PN);
3699   while (!Worklist.empty()) {
3700     Instruction *I = Worklist.pop_back_val();
3701     if (!Visited.insert(I).second)
3702       continue;
3703 
3704     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3705     if (It != ValueExprMap.end()) {
3706       const SCEV *Old = It->second;
3707 
3708       // Short-circuit the def-use traversal if the symbolic name
3709       // ceases to appear in expressions.
3710       if (Old != SymName && !hasOperand(Old, SymName))
3711         continue;
3712 
3713       // SCEVUnknown for a PHI either means that it has an unrecognized
3714       // structure, it's a PHI that's in the progress of being computed
3715       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3716       // additional loop trip count information isn't going to change anything.
3717       // In the second case, createNodeForPHI will perform the necessary
3718       // updates on its own when it gets to that point. In the third, we do
3719       // want to forget the SCEVUnknown.
3720       if (!isa<PHINode>(I) ||
3721           !isa<SCEVUnknown>(Old) ||
3722           (I != PN && Old == SymName)) {
3723         forgetMemoizedResults(Old);
3724         ValueExprMap.erase(It);
3725       }
3726     }
3727 
3728     PushDefUseChildren(I, Worklist);
3729   }
3730 }
3731 
3732 namespace {
3733 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3734 public:
3735   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3736                              ScalarEvolution &SE) {
3737     SCEVInitRewriter Rewriter(L, SE);
3738     const SCEV *Result = Rewriter.visit(S);
3739     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3740   }
3741 
3742   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3743       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3744 
3745   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3746     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3747       Valid = false;
3748     return Expr;
3749   }
3750 
3751   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3752     // Only allow AddRecExprs for this loop.
3753     if (Expr->getLoop() == L)
3754       return Expr->getStart();
3755     Valid = false;
3756     return Expr;
3757   }
3758 
3759   bool isValid() { return Valid; }
3760 
3761 private:
3762   const Loop *L;
3763   bool Valid;
3764 };
3765 
3766 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3767 public:
3768   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3769                              ScalarEvolution &SE) {
3770     SCEVShiftRewriter Rewriter(L, SE);
3771     const SCEV *Result = Rewriter.visit(S);
3772     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3773   }
3774 
3775   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3776       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3777 
3778   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3779     // Only allow AddRecExprs for this loop.
3780     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3781       Valid = false;
3782     return Expr;
3783   }
3784 
3785   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3786     if (Expr->getLoop() == L && Expr->isAffine())
3787       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3788     Valid = false;
3789     return Expr;
3790   }
3791   bool isValid() { return Valid; }
3792 
3793 private:
3794   const Loop *L;
3795   bool Valid;
3796 };
3797 } // end anonymous namespace
3798 
3799 SCEV::NoWrapFlags
3800 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3801   if (!AR->isAffine())
3802     return SCEV::FlagAnyWrap;
3803 
3804   typedef OverflowingBinaryOperator OBO;
3805   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3806 
3807   if (!AR->hasNoSignedWrap()) {
3808     ConstantRange AddRecRange = getSignedRange(AR);
3809     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3810 
3811     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3812         Instruction::Add, IncRange, OBO::NoSignedWrap);
3813     if (NSWRegion.contains(AddRecRange))
3814       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3815   }
3816 
3817   if (!AR->hasNoUnsignedWrap()) {
3818     ConstantRange AddRecRange = getUnsignedRange(AR);
3819     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3820 
3821     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3822         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3823     if (NUWRegion.contains(AddRecRange))
3824       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3825   }
3826 
3827   return Result;
3828 }
3829 
3830 namespace {
3831 /// Represents an abstract binary operation.  This may exist as a
3832 /// normal instruction or constant expression, or may have been
3833 /// derived from an expression tree.
3834 struct BinaryOp {
3835   unsigned Opcode;
3836   Value *LHS;
3837   Value *RHS;
3838   bool IsNSW;
3839   bool IsNUW;
3840 
3841   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3842   /// constant expression.
3843   Operator *Op;
3844 
3845   explicit BinaryOp(Operator *Op)
3846       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3847         IsNSW(false), IsNUW(false), Op(Op) {
3848     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3849       IsNSW = OBO->hasNoSignedWrap();
3850       IsNUW = OBO->hasNoUnsignedWrap();
3851     }
3852   }
3853 
3854   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3855                     bool IsNUW = false)
3856       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3857         Op(nullptr) {}
3858 };
3859 }
3860 
3861 
3862 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3863 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3864   auto *Op = dyn_cast<Operator>(V);
3865   if (!Op)
3866     return None;
3867 
3868   // Implementation detail: all the cleverness here should happen without
3869   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3870   // SCEV expressions when possible, and we should not break that.
3871 
3872   switch (Op->getOpcode()) {
3873   case Instruction::Add:
3874   case Instruction::Sub:
3875   case Instruction::Mul:
3876   case Instruction::UDiv:
3877   case Instruction::And:
3878   case Instruction::Or:
3879   case Instruction::AShr:
3880   case Instruction::Shl:
3881     return BinaryOp(Op);
3882 
3883   case Instruction::Xor:
3884     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3885       // If the RHS of the xor is a signbit, then this is just an add.
3886       // Instcombine turns add of signbit into xor as a strength reduction step.
3887       if (RHSC->getValue().isSignBit())
3888         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3889     return BinaryOp(Op);
3890 
3891   case Instruction::LShr:
3892     // Turn logical shift right of a constant into a unsigned divide.
3893     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3894       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3895 
3896       // If the shift count is not less than the bitwidth, the result of
3897       // the shift is undefined. Don't try to analyze it, because the
3898       // resolution chosen here may differ from the resolution chosen in
3899       // other parts of the compiler.
3900       if (SA->getValue().ult(BitWidth)) {
3901         Constant *X =
3902             ConstantInt::get(SA->getContext(),
3903                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3904         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3905       }
3906     }
3907     return BinaryOp(Op);
3908 
3909   case Instruction::ExtractValue: {
3910     auto *EVI = cast<ExtractValueInst>(Op);
3911     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3912       break;
3913 
3914     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3915     if (!CI)
3916       break;
3917 
3918     if (auto *F = CI->getCalledFunction())
3919       switch (F->getIntrinsicID()) {
3920       case Intrinsic::sadd_with_overflow:
3921       case Intrinsic::uadd_with_overflow: {
3922         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3923           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3924                           CI->getArgOperand(1));
3925 
3926         // Now that we know that all uses of the arithmetic-result component of
3927         // CI are guarded by the overflow check, we can go ahead and pretend
3928         // that the arithmetic is non-overflowing.
3929         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3930           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3931                           CI->getArgOperand(1), /* IsNSW = */ true,
3932                           /* IsNUW = */ false);
3933         else
3934           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3935                           CI->getArgOperand(1), /* IsNSW = */ false,
3936                           /* IsNUW*/ true);
3937       }
3938 
3939       case Intrinsic::ssub_with_overflow:
3940       case Intrinsic::usub_with_overflow:
3941         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3942                         CI->getArgOperand(1));
3943 
3944       case Intrinsic::smul_with_overflow:
3945       case Intrinsic::umul_with_overflow:
3946         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3947                         CI->getArgOperand(1));
3948       default:
3949         break;
3950       }
3951   }
3952 
3953   default:
3954     break;
3955   }
3956 
3957   return None;
3958 }
3959 
3960 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3961   const Loop *L = LI.getLoopFor(PN->getParent());
3962   if (!L || L->getHeader() != PN->getParent())
3963     return nullptr;
3964 
3965   // The loop may have multiple entrances or multiple exits; we can analyze
3966   // this phi as an addrec if it has a unique entry value and a unique
3967   // backedge value.
3968   Value *BEValueV = nullptr, *StartValueV = nullptr;
3969   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3970     Value *V = PN->getIncomingValue(i);
3971     if (L->contains(PN->getIncomingBlock(i))) {
3972       if (!BEValueV) {
3973         BEValueV = V;
3974       } else if (BEValueV != V) {
3975         BEValueV = nullptr;
3976         break;
3977       }
3978     } else if (!StartValueV) {
3979       StartValueV = V;
3980     } else if (StartValueV != V) {
3981       StartValueV = nullptr;
3982       break;
3983     }
3984   }
3985   if (BEValueV && StartValueV) {
3986     // While we are analyzing this PHI node, handle its value symbolically.
3987     const SCEV *SymbolicName = getUnknown(PN);
3988     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3989            "PHI node already processed?");
3990     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3991 
3992     // Using this symbolic name for the PHI, analyze the value coming around
3993     // the back-edge.
3994     const SCEV *BEValue = getSCEV(BEValueV);
3995 
3996     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3997     // has a special value for the first iteration of the loop.
3998 
3999     // If the value coming around the backedge is an add with the symbolic
4000     // value we just inserted, then we found a simple induction variable!
4001     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4002       // If there is a single occurrence of the symbolic value, replace it
4003       // with a recurrence.
4004       unsigned FoundIndex = Add->getNumOperands();
4005       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4006         if (Add->getOperand(i) == SymbolicName)
4007           if (FoundIndex == e) {
4008             FoundIndex = i;
4009             break;
4010           }
4011 
4012       if (FoundIndex != Add->getNumOperands()) {
4013         // Create an add with everything but the specified operand.
4014         SmallVector<const SCEV *, 8> Ops;
4015         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4016           if (i != FoundIndex)
4017             Ops.push_back(Add->getOperand(i));
4018         const SCEV *Accum = getAddExpr(Ops);
4019 
4020         // This is not a valid addrec if the step amount is varying each
4021         // loop iteration, but is not itself an addrec in this loop.
4022         if (isLoopInvariant(Accum, L) ||
4023             (isa<SCEVAddRecExpr>(Accum) &&
4024              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4025           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4026 
4027           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4028             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4029               if (BO->IsNUW)
4030                 Flags = setFlags(Flags, SCEV::FlagNUW);
4031               if (BO->IsNSW)
4032                 Flags = setFlags(Flags, SCEV::FlagNSW);
4033             }
4034           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4035             // If the increment is an inbounds GEP, then we know the address
4036             // space cannot be wrapped around. We cannot make any guarantee
4037             // about signed or unsigned overflow because pointers are
4038             // unsigned but we may have a negative index from the base
4039             // pointer. We can guarantee that no unsigned wrap occurs if the
4040             // indices form a positive value.
4041             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4042               Flags = setFlags(Flags, SCEV::FlagNW);
4043 
4044               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4045               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4046                 Flags = setFlags(Flags, SCEV::FlagNUW);
4047             }
4048 
4049             // We cannot transfer nuw and nsw flags from subtraction
4050             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4051             // for instance.
4052           }
4053 
4054           const SCEV *StartVal = getSCEV(StartValueV);
4055           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4056 
4057           // Okay, for the entire analysis of this edge we assumed the PHI
4058           // to be symbolic.  We now need to go back and purge all of the
4059           // entries for the scalars that use the symbolic expression.
4060           forgetSymbolicName(PN, SymbolicName);
4061           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4062 
4063           // We can add Flags to the post-inc expression only if we
4064           // know that it us *undefined behavior* for BEValueV to
4065           // overflow.
4066           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4067             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4068               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4069 
4070           return PHISCEV;
4071         }
4072       }
4073     } else {
4074       // Otherwise, this could be a loop like this:
4075       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4076       // In this case, j = {1,+,1}  and BEValue is j.
4077       // Because the other in-value of i (0) fits the evolution of BEValue
4078       // i really is an addrec evolution.
4079       //
4080       // We can generalize this saying that i is the shifted value of BEValue
4081       // by one iteration:
4082       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4083       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4084       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4085       if (Shifted != getCouldNotCompute() &&
4086           Start != getCouldNotCompute()) {
4087         const SCEV *StartVal = getSCEV(StartValueV);
4088         if (Start == StartVal) {
4089           // Okay, for the entire analysis of this edge we assumed the PHI
4090           // to be symbolic.  We now need to go back and purge all of the
4091           // entries for the scalars that use the symbolic expression.
4092           forgetSymbolicName(PN, SymbolicName);
4093           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4094           return Shifted;
4095         }
4096       }
4097     }
4098 
4099     // Remove the temporary PHI node SCEV that has been inserted while intending
4100     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4101     // as it will prevent later (possibly simpler) SCEV expressions to be added
4102     // to the ValueExprMap.
4103     ValueExprMap.erase(PN);
4104   }
4105 
4106   return nullptr;
4107 }
4108 
4109 // Checks if the SCEV S is available at BB.  S is considered available at BB
4110 // if S can be materialized at BB without introducing a fault.
4111 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4112                                BasicBlock *BB) {
4113   struct CheckAvailable {
4114     bool TraversalDone = false;
4115     bool Available = true;
4116 
4117     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4118     BasicBlock *BB = nullptr;
4119     DominatorTree &DT;
4120 
4121     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4122       : L(L), BB(BB), DT(DT) {}
4123 
4124     bool setUnavailable() {
4125       TraversalDone = true;
4126       Available = false;
4127       return false;
4128     }
4129 
4130     bool follow(const SCEV *S) {
4131       switch (S->getSCEVType()) {
4132       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4133       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4134         // These expressions are available if their operand(s) is/are.
4135         return true;
4136 
4137       case scAddRecExpr: {
4138         // We allow add recurrences that are on the loop BB is in, or some
4139         // outer loop.  This guarantees availability because the value of the
4140         // add recurrence at BB is simply the "current" value of the induction
4141         // variable.  We can relax this in the future; for instance an add
4142         // recurrence on a sibling dominating loop is also available at BB.
4143         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4144         if (L && (ARLoop == L || ARLoop->contains(L)))
4145           return true;
4146 
4147         return setUnavailable();
4148       }
4149 
4150       case scUnknown: {
4151         // For SCEVUnknown, we check for simple dominance.
4152         const auto *SU = cast<SCEVUnknown>(S);
4153         Value *V = SU->getValue();
4154 
4155         if (isa<Argument>(V))
4156           return false;
4157 
4158         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4159           return false;
4160 
4161         return setUnavailable();
4162       }
4163 
4164       case scUDivExpr:
4165       case scCouldNotCompute:
4166         // We do not try to smart about these at all.
4167         return setUnavailable();
4168       }
4169       llvm_unreachable("switch should be fully covered!");
4170     }
4171 
4172     bool isDone() { return TraversalDone; }
4173   };
4174 
4175   CheckAvailable CA(L, BB, DT);
4176   SCEVTraversal<CheckAvailable> ST(CA);
4177 
4178   ST.visitAll(S);
4179   return CA.Available;
4180 }
4181 
4182 // Try to match a control flow sequence that branches out at BI and merges back
4183 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4184 // match.
4185 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4186                           Value *&C, Value *&LHS, Value *&RHS) {
4187   C = BI->getCondition();
4188 
4189   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4190   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4191 
4192   if (!LeftEdge.isSingleEdge())
4193     return false;
4194 
4195   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4196 
4197   Use &LeftUse = Merge->getOperandUse(0);
4198   Use &RightUse = Merge->getOperandUse(1);
4199 
4200   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4201     LHS = LeftUse;
4202     RHS = RightUse;
4203     return true;
4204   }
4205 
4206   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4207     LHS = RightUse;
4208     RHS = LeftUse;
4209     return true;
4210   }
4211 
4212   return false;
4213 }
4214 
4215 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4216   if (PN->getNumIncomingValues() == 2) {
4217     const Loop *L = LI.getLoopFor(PN->getParent());
4218 
4219     // We don't want to break LCSSA, even in a SCEV expression tree.
4220     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4221       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4222         return nullptr;
4223 
4224     // Try to match
4225     //
4226     //  br %cond, label %left, label %right
4227     // left:
4228     //  br label %merge
4229     // right:
4230     //  br label %merge
4231     // merge:
4232     //  V = phi [ %x, %left ], [ %y, %right ]
4233     //
4234     // as "select %cond, %x, %y"
4235 
4236     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4237     assert(IDom && "At least the entry block should dominate PN");
4238 
4239     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4240     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4241 
4242     if (BI && BI->isConditional() &&
4243         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4244         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4245         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4246       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4247   }
4248 
4249   return nullptr;
4250 }
4251 
4252 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4253   if (const SCEV *S = createAddRecFromPHI(PN))
4254     return S;
4255 
4256   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4257     return S;
4258 
4259   // If the PHI has a single incoming value, follow that value, unless the
4260   // PHI's incoming blocks are in a different loop, in which case doing so
4261   // risks breaking LCSSA form. Instcombine would normally zap these, but
4262   // it doesn't have DominatorTree information, so it may miss cases.
4263   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4264     if (LI.replacementPreservesLCSSAForm(PN, V))
4265       return getSCEV(V);
4266 
4267   // If it's not a loop phi, we can't handle it yet.
4268   return getUnknown(PN);
4269 }
4270 
4271 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4272                                                       Value *Cond,
4273                                                       Value *TrueVal,
4274                                                       Value *FalseVal) {
4275   // Handle "constant" branch or select. This can occur for instance when a
4276   // loop pass transforms an inner loop and moves on to process the outer loop.
4277   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4278     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4279 
4280   // Try to match some simple smax or umax patterns.
4281   auto *ICI = dyn_cast<ICmpInst>(Cond);
4282   if (!ICI)
4283     return getUnknown(I);
4284 
4285   Value *LHS = ICI->getOperand(0);
4286   Value *RHS = ICI->getOperand(1);
4287 
4288   switch (ICI->getPredicate()) {
4289   case ICmpInst::ICMP_SLT:
4290   case ICmpInst::ICMP_SLE:
4291     std::swap(LHS, RHS);
4292   // fall through
4293   case ICmpInst::ICMP_SGT:
4294   case ICmpInst::ICMP_SGE:
4295     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4296     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4297     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4298       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4299       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4300       const SCEV *LA = getSCEV(TrueVal);
4301       const SCEV *RA = getSCEV(FalseVal);
4302       const SCEV *LDiff = getMinusSCEV(LA, LS);
4303       const SCEV *RDiff = getMinusSCEV(RA, RS);
4304       if (LDiff == RDiff)
4305         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4306       LDiff = getMinusSCEV(LA, RS);
4307       RDiff = getMinusSCEV(RA, LS);
4308       if (LDiff == RDiff)
4309         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4310     }
4311     break;
4312   case ICmpInst::ICMP_ULT:
4313   case ICmpInst::ICMP_ULE:
4314     std::swap(LHS, RHS);
4315   // fall through
4316   case ICmpInst::ICMP_UGT:
4317   case ICmpInst::ICMP_UGE:
4318     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4319     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4320     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4321       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4322       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4323       const SCEV *LA = getSCEV(TrueVal);
4324       const SCEV *RA = getSCEV(FalseVal);
4325       const SCEV *LDiff = getMinusSCEV(LA, LS);
4326       const SCEV *RDiff = getMinusSCEV(RA, RS);
4327       if (LDiff == RDiff)
4328         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4329       LDiff = getMinusSCEV(LA, RS);
4330       RDiff = getMinusSCEV(RA, LS);
4331       if (LDiff == RDiff)
4332         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4333     }
4334     break;
4335   case ICmpInst::ICMP_NE:
4336     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4337     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4338         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4339       const SCEV *One = getOne(I->getType());
4340       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4341       const SCEV *LA = getSCEV(TrueVal);
4342       const SCEV *RA = getSCEV(FalseVal);
4343       const SCEV *LDiff = getMinusSCEV(LA, LS);
4344       const SCEV *RDiff = getMinusSCEV(RA, One);
4345       if (LDiff == RDiff)
4346         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4347     }
4348     break;
4349   case ICmpInst::ICMP_EQ:
4350     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4351     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4352         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4353       const SCEV *One = getOne(I->getType());
4354       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4355       const SCEV *LA = getSCEV(TrueVal);
4356       const SCEV *RA = getSCEV(FalseVal);
4357       const SCEV *LDiff = getMinusSCEV(LA, One);
4358       const SCEV *RDiff = getMinusSCEV(RA, LS);
4359       if (LDiff == RDiff)
4360         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4361     }
4362     break;
4363   default:
4364     break;
4365   }
4366 
4367   return getUnknown(I);
4368 }
4369 
4370 /// createNodeForGEP - Expand GEP instructions into add and multiply
4371 /// operations. This allows them to be analyzed by regular SCEV code.
4372 ///
4373 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4374   // Don't attempt to analyze GEPs over unsized objects.
4375   if (!GEP->getSourceElementType()->isSized())
4376     return getUnknown(GEP);
4377 
4378   SmallVector<const SCEV *, 4> IndexExprs;
4379   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4380     IndexExprs.push_back(getSCEV(*Index));
4381   return getGEPExpr(GEP->getSourceElementType(),
4382                     getSCEV(GEP->getPointerOperand()),
4383                     IndexExprs, GEP->isInBounds());
4384 }
4385 
4386 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4387 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4388 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4389 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4390 uint32_t
4391 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4392   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4393     return C->getAPInt().countTrailingZeros();
4394 
4395   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4396     return std::min(GetMinTrailingZeros(T->getOperand()),
4397                     (uint32_t)getTypeSizeInBits(T->getType()));
4398 
4399   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4400     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4401     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4402              getTypeSizeInBits(E->getType()) : OpRes;
4403   }
4404 
4405   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4406     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4407     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4408              getTypeSizeInBits(E->getType()) : OpRes;
4409   }
4410 
4411   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4412     // The result is the min of all operands results.
4413     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4414     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4415       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4416     return MinOpRes;
4417   }
4418 
4419   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4420     // The result is the sum of all operands results.
4421     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4422     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4423     for (unsigned i = 1, e = M->getNumOperands();
4424          SumOpRes != BitWidth && i != e; ++i)
4425       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4426                           BitWidth);
4427     return SumOpRes;
4428   }
4429 
4430   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4431     // The result is the min of all operands results.
4432     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4433     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4434       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4435     return MinOpRes;
4436   }
4437 
4438   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4439     // The result is the min of all operands results.
4440     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4441     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4442       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4443     return MinOpRes;
4444   }
4445 
4446   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4447     // The result is the min of all operands results.
4448     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4449     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4450       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4451     return MinOpRes;
4452   }
4453 
4454   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4455     // For a SCEVUnknown, ask ValueTracking.
4456     unsigned BitWidth = getTypeSizeInBits(U->getType());
4457     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4458     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4459                      nullptr, &DT);
4460     return Zeros.countTrailingOnes();
4461   }
4462 
4463   // SCEVUDivExpr
4464   return 0;
4465 }
4466 
4467 /// GetRangeFromMetadata - Helper method to assign a range to V from
4468 /// metadata present in the IR.
4469 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4470   if (Instruction *I = dyn_cast<Instruction>(V))
4471     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4472       return getConstantRangeFromMetadata(*MD);
4473 
4474   return None;
4475 }
4476 
4477 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4478 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4479 /// with a "cleaner" unsigned (resp. signed) representation.
4480 ///
4481 ConstantRange
4482 ScalarEvolution::getRange(const SCEV *S,
4483                           ScalarEvolution::RangeSignHint SignHint) {
4484   DenseMap<const SCEV *, ConstantRange> &Cache =
4485       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4486                                                        : SignedRanges;
4487 
4488   // See if we've computed this range already.
4489   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4490   if (I != Cache.end())
4491     return I->second;
4492 
4493   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4494     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4495 
4496   unsigned BitWidth = getTypeSizeInBits(S->getType());
4497   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4498 
4499   // If the value has known zeros, the maximum value will have those known zeros
4500   // as well.
4501   uint32_t TZ = GetMinTrailingZeros(S);
4502   if (TZ != 0) {
4503     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4504       ConservativeResult =
4505           ConstantRange(APInt::getMinValue(BitWidth),
4506                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4507     else
4508       ConservativeResult = ConstantRange(
4509           APInt::getSignedMinValue(BitWidth),
4510           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4511   }
4512 
4513   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4514     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4515     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4516       X = X.add(getRange(Add->getOperand(i), SignHint));
4517     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4518   }
4519 
4520   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4521     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4522     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4523       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4524     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4525   }
4526 
4527   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4528     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4529     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4530       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4531     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4532   }
4533 
4534   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4535     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4536     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4537       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4538     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4539   }
4540 
4541   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4542     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4543     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4544     return setRange(UDiv, SignHint,
4545                     ConservativeResult.intersectWith(X.udiv(Y)));
4546   }
4547 
4548   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4549     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4550     return setRange(ZExt, SignHint,
4551                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4552   }
4553 
4554   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4555     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4556     return setRange(SExt, SignHint,
4557                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4558   }
4559 
4560   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4561     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4562     return setRange(Trunc, SignHint,
4563                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4564   }
4565 
4566   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4567     // If there's no unsigned wrap, the value will never be less than its
4568     // initial value.
4569     if (AddRec->hasNoUnsignedWrap())
4570       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4571         if (!C->getValue()->isZero())
4572           ConservativeResult = ConservativeResult.intersectWith(
4573               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4574 
4575     // If there's no signed wrap, and all the operands have the same sign or
4576     // zero, the value won't ever change sign.
4577     if (AddRec->hasNoSignedWrap()) {
4578       bool AllNonNeg = true;
4579       bool AllNonPos = true;
4580       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4581         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4582         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4583       }
4584       if (AllNonNeg)
4585         ConservativeResult = ConservativeResult.intersectWith(
4586           ConstantRange(APInt(BitWidth, 0),
4587                         APInt::getSignedMinValue(BitWidth)));
4588       else if (AllNonPos)
4589         ConservativeResult = ConservativeResult.intersectWith(
4590           ConstantRange(APInt::getSignedMinValue(BitWidth),
4591                         APInt(BitWidth, 1)));
4592     }
4593 
4594     // TODO: non-affine addrec
4595     if (AddRec->isAffine()) {
4596       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4597       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4598           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4599         auto RangeFromAffine = getRangeForAffineAR(
4600             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4601             BitWidth);
4602         if (!RangeFromAffine.isFullSet())
4603           ConservativeResult =
4604               ConservativeResult.intersectWith(RangeFromAffine);
4605 
4606         auto RangeFromFactoring = getRangeViaFactoring(
4607             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4608             BitWidth);
4609         if (!RangeFromFactoring.isFullSet())
4610           ConservativeResult =
4611               ConservativeResult.intersectWith(RangeFromFactoring);
4612       }
4613     }
4614 
4615     return setRange(AddRec, SignHint, ConservativeResult);
4616   }
4617 
4618   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4619     // Check if the IR explicitly contains !range metadata.
4620     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4621     if (MDRange.hasValue())
4622       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4623 
4624     // Split here to avoid paying the compile-time cost of calling both
4625     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4626     // if needed.
4627     const DataLayout &DL = getDataLayout();
4628     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4629       // For a SCEVUnknown, ask ValueTracking.
4630       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4631       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4632       if (Ones != ~Zeros + 1)
4633         ConservativeResult =
4634             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4635     } else {
4636       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4637              "generalize as needed!");
4638       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4639       if (NS > 1)
4640         ConservativeResult = ConservativeResult.intersectWith(
4641             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4642                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4643     }
4644 
4645     return setRange(U, SignHint, ConservativeResult);
4646   }
4647 
4648   return setRange(S, SignHint, ConservativeResult);
4649 }
4650 
4651 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4652                                                    const SCEV *Step,
4653                                                    const SCEV *MaxBECount,
4654                                                    unsigned BitWidth) {
4655   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4656          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4657          "Precondition!");
4658 
4659   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4660 
4661   // Check for overflow.  This must be done with ConstantRange arithmetic
4662   // because we could be called from within the ScalarEvolution overflow
4663   // checking code.
4664 
4665   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4666   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4667   ConstantRange ZExtMaxBECountRange =
4668       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4669 
4670   ConstantRange StepSRange = getSignedRange(Step);
4671   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4672 
4673   ConstantRange StartURange = getUnsignedRange(Start);
4674   ConstantRange EndURange =
4675       StartURange.add(MaxBECountRange.multiply(StepSRange));
4676 
4677   // Check for unsigned overflow.
4678   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4679   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4680   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4681       ZExtEndURange) {
4682     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4683                                EndURange.getUnsignedMin());
4684     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4685                                EndURange.getUnsignedMax());
4686     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4687     if (!IsFullRange)
4688       Result =
4689           Result.intersectWith(ConstantRange(Min, Max + 1));
4690   }
4691 
4692   ConstantRange StartSRange = getSignedRange(Start);
4693   ConstantRange EndSRange =
4694       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4695 
4696   // Check for signed overflow. This must be done with ConstantRange
4697   // arithmetic because we could be called from within the ScalarEvolution
4698   // overflow checking code.
4699   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4700   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4701   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4702       SExtEndSRange) {
4703     APInt Min =
4704         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4705     APInt Max =
4706         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4707     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4708     if (!IsFullRange)
4709       Result =
4710           Result.intersectWith(ConstantRange(Min, Max + 1));
4711   }
4712 
4713   return Result;
4714 }
4715 
4716 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4717                                                     const SCEV *Step,
4718                                                     const SCEV *MaxBECount,
4719                                                     unsigned BitWidth) {
4720   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4721   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4722 
4723   struct SelectPattern {
4724     Value *Condition = nullptr;
4725     APInt TrueValue;
4726     APInt FalseValue;
4727 
4728     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4729                            const SCEV *S) {
4730       Optional<unsigned> CastOp;
4731       APInt Offset(BitWidth, 0);
4732 
4733       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4734              "Should be!");
4735 
4736       // Peel off a constant offset:
4737       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4738         // In the future we could consider being smarter here and handle
4739         // {Start+Step,+,Step} too.
4740         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4741           return;
4742 
4743         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4744         S = SA->getOperand(1);
4745       }
4746 
4747       // Peel off a cast operation
4748       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4749         CastOp = SCast->getSCEVType();
4750         S = SCast->getOperand();
4751       }
4752 
4753       using namespace llvm::PatternMatch;
4754 
4755       auto *SU = dyn_cast<SCEVUnknown>(S);
4756       const APInt *TrueVal, *FalseVal;
4757       if (!SU ||
4758           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4759                                           m_APInt(FalseVal)))) {
4760         Condition = nullptr;
4761         return;
4762       }
4763 
4764       TrueValue = *TrueVal;
4765       FalseValue = *FalseVal;
4766 
4767       // Re-apply the cast we peeled off earlier
4768       if (CastOp.hasValue())
4769         switch (*CastOp) {
4770         default:
4771           llvm_unreachable("Unknown SCEV cast type!");
4772 
4773         case scTruncate:
4774           TrueValue = TrueValue.trunc(BitWidth);
4775           FalseValue = FalseValue.trunc(BitWidth);
4776           break;
4777         case scZeroExtend:
4778           TrueValue = TrueValue.zext(BitWidth);
4779           FalseValue = FalseValue.zext(BitWidth);
4780           break;
4781         case scSignExtend:
4782           TrueValue = TrueValue.sext(BitWidth);
4783           FalseValue = FalseValue.sext(BitWidth);
4784           break;
4785         }
4786 
4787       // Re-apply the constant offset we peeled off earlier
4788       TrueValue += Offset;
4789       FalseValue += Offset;
4790     }
4791 
4792     bool isRecognized() { return Condition != nullptr; }
4793   };
4794 
4795   SelectPattern StartPattern(*this, BitWidth, Start);
4796   if (!StartPattern.isRecognized())
4797     return ConstantRange(BitWidth, /* isFullSet = */ true);
4798 
4799   SelectPattern StepPattern(*this, BitWidth, Step);
4800   if (!StepPattern.isRecognized())
4801     return ConstantRange(BitWidth, /* isFullSet = */ true);
4802 
4803   if (StartPattern.Condition != StepPattern.Condition) {
4804     // We don't handle this case today; but we could, by considering four
4805     // possibilities below instead of two. I'm not sure if there are cases where
4806     // that will help over what getRange already does, though.
4807     return ConstantRange(BitWidth, /* isFullSet = */ true);
4808   }
4809 
4810   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4811   // construct arbitrary general SCEV expressions here.  This function is called
4812   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4813   // say) can end up caching a suboptimal value.
4814 
4815   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4816   // C2352 and C2512 (otherwise it isn't needed).
4817 
4818   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4819   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4820   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4821   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4822 
4823   ConstantRange TrueRange =
4824       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4825   ConstantRange FalseRange =
4826       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4827 
4828   return TrueRange.unionWith(FalseRange);
4829 }
4830 
4831 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4832   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4833   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4834 
4835   // Return early if there are no flags to propagate to the SCEV.
4836   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4837   if (BinOp->hasNoUnsignedWrap())
4838     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4839   if (BinOp->hasNoSignedWrap())
4840     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4841   if (Flags == SCEV::FlagAnyWrap)
4842     return SCEV::FlagAnyWrap;
4843 
4844   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4845 }
4846 
4847 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4848   // Here we check that I is in the header of the innermost loop containing I,
4849   // since we only deal with instructions in the loop header. The actual loop we
4850   // need to check later will come from an add recurrence, but getting that
4851   // requires computing the SCEV of the operands, which can be expensive. This
4852   // check we can do cheaply to rule out some cases early.
4853   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4854   if (InnermostContainingLoop == nullptr ||
4855       InnermostContainingLoop->getHeader() != I->getParent())
4856     return false;
4857 
4858   // Only proceed if we can prove that I does not yield poison.
4859   if (!isKnownNotFullPoison(I)) return false;
4860 
4861   // At this point we know that if I is executed, then it does not wrap
4862   // according to at least one of NSW or NUW. If I is not executed, then we do
4863   // not know if the calculation that I represents would wrap. Multiple
4864   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4865   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4866   // derived from other instructions that map to the same SCEV. We cannot make
4867   // that guarantee for cases where I is not executed. So we need to find the
4868   // loop that I is considered in relation to and prove that I is executed for
4869   // every iteration of that loop. That implies that the value that I
4870   // calculates does not wrap anywhere in the loop, so then we can apply the
4871   // flags to the SCEV.
4872   //
4873   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4874   // from different loops, so that we know which loop to prove that I is
4875   // executed in.
4876   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4877     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4878     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4879       bool AllOtherOpsLoopInvariant = true;
4880       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4881            ++OtherOpIndex) {
4882         if (OtherOpIndex != OpIndex) {
4883           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4884           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4885             AllOtherOpsLoopInvariant = false;
4886             break;
4887           }
4888         }
4889       }
4890       if (AllOtherOpsLoopInvariant &&
4891           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4892         return true;
4893     }
4894   }
4895   return false;
4896 }
4897 
4898 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4899   // If we know that \c I can never be poison period, then that's enough.
4900   if (isSCEVExprNeverPoison(I))
4901     return true;
4902 
4903   // For an add recurrence specifically, we assume that infinite loops without
4904   // side effects are undefined behavior, and then reason as follows:
4905   //
4906   // If the add recurrence is poison in any iteration, it is poison on all
4907   // future iterations (since incrementing poison yields poison). If the result
4908   // of the add recurrence is fed into the loop latch condition and the loop
4909   // does not contain any throws or exiting blocks other than the latch, we now
4910   // have the ability to "choose" whether the backedge is taken or not (by
4911   // choosing a sufficiently evil value for the poison feeding into the branch)
4912   // for every iteration including and after the one in which \p I first became
4913   // poison.  There are two possibilities (let's call the iteration in which \p
4914   // I first became poison as K):
4915   //
4916   //  1. In the set of iterations including and after K, the loop body executes
4917   //     no side effects.  In this case executing the backege an infinte number
4918   //     of times will yield undefined behavior.
4919   //
4920   //  2. In the set of iterations including and after K, the loop body executes
4921   //     at least one side effect.  In this case, that specific instance of side
4922   //     effect is control dependent on poison, which also yields undefined
4923   //     behavior.
4924 
4925   auto *ExitingBB = L->getExitingBlock();
4926   auto *LatchBB = L->getLoopLatch();
4927   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4928     return false;
4929 
4930   SmallPtrSet<const Instruction *, 16> Pushed;
4931   SmallVector<const Instruction *, 8> Stack;
4932 
4933   Pushed.insert(I);
4934   for (auto *U : I->users())
4935     if (Pushed.insert(cast<Instruction>(U)).second)
4936       Stack.push_back(cast<Instruction>(U));
4937 
4938   bool LatchControlDependentOnPoison = false;
4939   while (!Stack.empty()) {
4940     const Instruction *I = Stack.pop_back_val();
4941 
4942     for (auto *U : I->users()) {
4943       if (propagatesFullPoison(cast<Instruction>(U))) {
4944         if (Pushed.insert(cast<Instruction>(U)).second)
4945           Stack.push_back(cast<Instruction>(U));
4946       } else if (auto *BI = dyn_cast<BranchInst>(U)) {
4947         assert(BI->isConditional() && "Only possibility!");
4948         if (BI->getParent() == LatchBB) {
4949           LatchControlDependentOnPoison = true;
4950           break;
4951         }
4952       }
4953     }
4954   }
4955 
4956   if (!LatchControlDependentOnPoison)
4957     return false;
4958 
4959   // Now check if loop is no-throw, and cache the information.  In the future,
4960   // we can consider commoning this logic with LICMSafetyInfo into a separate
4961   // analysis pass.
4962 
4963   auto Itr = LoopMayThrow.find(L);
4964   if (Itr == LoopMayThrow.end()) {
4965     bool MayThrow = false;
4966     for (auto *BB : L->getBlocks()) {
4967       MayThrow = any_of(*BB, [](Instruction &I) { return I.mayThrow(); });
4968       if (MayThrow)
4969         break;
4970     }
4971     auto InsertPair = LoopMayThrow.insert({L, MayThrow});
4972     assert(InsertPair.second && "We just checked!");
4973     Itr = InsertPair.first;
4974   }
4975 
4976   return !Itr->second;
4977 }
4978 
4979 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4980 /// the expression.
4981 ///
4982 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4983   if (!isSCEVable(V->getType()))
4984     return getUnknown(V);
4985 
4986   if (Instruction *I = dyn_cast<Instruction>(V)) {
4987     // Don't attempt to analyze instructions in blocks that aren't
4988     // reachable. Such instructions don't matter, and they aren't required
4989     // to obey basic rules for definitions dominating uses which this
4990     // analysis depends on.
4991     if (!DT.isReachableFromEntry(I->getParent()))
4992       return getUnknown(V);
4993   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4994     return getConstant(CI);
4995   else if (isa<ConstantPointerNull>(V))
4996     return getZero(V->getType());
4997   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4998     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4999   else if (!isa<ConstantExpr>(V))
5000     return getUnknown(V);
5001 
5002   Operator *U = cast<Operator>(V);
5003   if (auto BO = MatchBinaryOp(U, DT)) {
5004     switch (BO->Opcode) {
5005     case Instruction::Add: {
5006       // The simple thing to do would be to just call getSCEV on both operands
5007       // and call getAddExpr with the result. However if we're looking at a
5008       // bunch of things all added together, this can be quite inefficient,
5009       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5010       // Instead, gather up all the operands and make a single getAddExpr call.
5011       // LLVM IR canonical form means we need only traverse the left operands.
5012       SmallVector<const SCEV *, 4> AddOps;
5013       do {
5014         if (BO->Op) {
5015           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5016             AddOps.push_back(OpSCEV);
5017             break;
5018           }
5019 
5020           // If a NUW or NSW flag can be applied to the SCEV for this
5021           // addition, then compute the SCEV for this addition by itself
5022           // with a separate call to getAddExpr. We need to do that
5023           // instead of pushing the operands of the addition onto AddOps,
5024           // since the flags are only known to apply to this particular
5025           // addition - they may not apply to other additions that can be
5026           // formed with operands from AddOps.
5027           const SCEV *RHS = getSCEV(BO->RHS);
5028           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5029           if (Flags != SCEV::FlagAnyWrap) {
5030             const SCEV *LHS = getSCEV(BO->LHS);
5031             if (BO->Opcode == Instruction::Sub)
5032               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5033             else
5034               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5035             break;
5036           }
5037         }
5038 
5039         if (BO->Opcode == Instruction::Sub)
5040           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5041         else
5042           AddOps.push_back(getSCEV(BO->RHS));
5043 
5044         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5045         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5046                        NewBO->Opcode != Instruction::Sub)) {
5047           AddOps.push_back(getSCEV(BO->LHS));
5048           break;
5049         }
5050         BO = NewBO;
5051       } while (true);
5052 
5053       return getAddExpr(AddOps);
5054     }
5055 
5056     case Instruction::Mul: {
5057       SmallVector<const SCEV *, 4> MulOps;
5058       do {
5059         if (BO->Op) {
5060           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5061             MulOps.push_back(OpSCEV);
5062             break;
5063           }
5064 
5065           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5066           if (Flags != SCEV::FlagAnyWrap) {
5067             MulOps.push_back(
5068                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5069             break;
5070           }
5071         }
5072 
5073         MulOps.push_back(getSCEV(BO->RHS));
5074         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5075         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5076           MulOps.push_back(getSCEV(BO->LHS));
5077           break;
5078         }
5079 	BO = NewBO;
5080       } while (true);
5081 
5082       return getMulExpr(MulOps);
5083     }
5084     case Instruction::UDiv:
5085       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5086     case Instruction::Sub: {
5087       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5088       if (BO->Op)
5089         Flags = getNoWrapFlagsFromUB(BO->Op);
5090       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5091     }
5092     case Instruction::And:
5093       // For an expression like x&255 that merely masks off the high bits,
5094       // use zext(trunc(x)) as the SCEV expression.
5095       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5096         if (CI->isNullValue())
5097           return getSCEV(BO->RHS);
5098         if (CI->isAllOnesValue())
5099           return getSCEV(BO->LHS);
5100         const APInt &A = CI->getValue();
5101 
5102         // Instcombine's ShrinkDemandedConstant may strip bits out of
5103         // constants, obscuring what would otherwise be a low-bits mask.
5104         // Use computeKnownBits to compute what ShrinkDemandedConstant
5105         // knew about to reconstruct a low-bits mask value.
5106         unsigned LZ = A.countLeadingZeros();
5107         unsigned TZ = A.countTrailingZeros();
5108         unsigned BitWidth = A.getBitWidth();
5109         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5110         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5111                          0, &AC, nullptr, &DT);
5112 
5113         APInt EffectiveMask =
5114             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5115         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5116           const SCEV *MulCount = getConstant(ConstantInt::get(
5117               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5118           return getMulExpr(
5119               getZeroExtendExpr(
5120                   getTruncateExpr(
5121                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5122                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5123                   BO->LHS->getType()),
5124               MulCount);
5125         }
5126       }
5127       break;
5128 
5129     case Instruction::Or:
5130       // If the RHS of the Or is a constant, we may have something like:
5131       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5132       // optimizations will transparently handle this case.
5133       //
5134       // In order for this transformation to be safe, the LHS must be of the
5135       // form X*(2^n) and the Or constant must be less than 2^n.
5136       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5137         const SCEV *LHS = getSCEV(BO->LHS);
5138         const APInt &CIVal = CI->getValue();
5139         if (GetMinTrailingZeros(LHS) >=
5140             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5141           // Build a plain add SCEV.
5142           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5143           // If the LHS of the add was an addrec and it has no-wrap flags,
5144           // transfer the no-wrap flags, since an or won't introduce a wrap.
5145           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5146             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5147             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5148                 OldAR->getNoWrapFlags());
5149           }
5150           return S;
5151         }
5152       }
5153       break;
5154 
5155     case Instruction::Xor:
5156       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5157         // If the RHS of xor is -1, then this is a not operation.
5158         if (CI->isAllOnesValue())
5159           return getNotSCEV(getSCEV(BO->LHS));
5160 
5161         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5162         // This is a variant of the check for xor with -1, and it handles
5163         // the case where instcombine has trimmed non-demanded bits out
5164         // of an xor with -1.
5165         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5166           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5167             if (LBO->getOpcode() == Instruction::And &&
5168                 LCI->getValue() == CI->getValue())
5169               if (const SCEVZeroExtendExpr *Z =
5170                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5171                 Type *UTy = BO->LHS->getType();
5172                 const SCEV *Z0 = Z->getOperand();
5173                 Type *Z0Ty = Z0->getType();
5174                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5175 
5176                 // If C is a low-bits mask, the zero extend is serving to
5177                 // mask off the high bits. Complement the operand and
5178                 // re-apply the zext.
5179                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5180                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5181 
5182                 // If C is a single bit, it may be in the sign-bit position
5183                 // before the zero-extend. In this case, represent the xor
5184                 // using an add, which is equivalent, and re-apply the zext.
5185                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5186                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5187                     Trunc.isSignBit())
5188                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5189                                            UTy);
5190               }
5191       }
5192       break;
5193 
5194   case Instruction::Shl:
5195     // Turn shift left of a constant amount into a multiply.
5196     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5197       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5198 
5199       // If the shift count is not less than the bitwidth, the result of
5200       // the shift is undefined. Don't try to analyze it, because the
5201       // resolution chosen here may differ from the resolution chosen in
5202       // other parts of the compiler.
5203       if (SA->getValue().uge(BitWidth))
5204         break;
5205 
5206       // It is currently not resolved how to interpret NSW for left
5207       // shift by BitWidth - 1, so we avoid applying flags in that
5208       // case. Remove this check (or this comment) once the situation
5209       // is resolved. See
5210       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5211       // and http://reviews.llvm.org/D8890 .
5212       auto Flags = SCEV::FlagAnyWrap;
5213       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5214         Flags = getNoWrapFlagsFromUB(BO->Op);
5215 
5216       Constant *X = ConstantInt::get(getContext(),
5217         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5218       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5219     }
5220     break;
5221 
5222     case Instruction::AShr:
5223       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5224       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5225         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5226           if (L->getOpcode() == Instruction::Shl &&
5227               L->getOperand(1) == BO->RHS) {
5228             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5229 
5230             // If the shift count is not less than the bitwidth, the result of
5231             // the shift is undefined. Don't try to analyze it, because the
5232             // resolution chosen here may differ from the resolution chosen in
5233             // other parts of the compiler.
5234             if (CI->getValue().uge(BitWidth))
5235               break;
5236 
5237             uint64_t Amt = BitWidth - CI->getZExtValue();
5238             if (Amt == BitWidth)
5239               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5240             return getSignExtendExpr(
5241                 getTruncateExpr(getSCEV(L->getOperand(0)),
5242                                 IntegerType::get(getContext(), Amt)),
5243                 BO->LHS->getType());
5244           }
5245       break;
5246     }
5247   }
5248 
5249   switch (U->getOpcode()) {
5250   case Instruction::Trunc:
5251     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5252 
5253   case Instruction::ZExt:
5254     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5255 
5256   case Instruction::SExt:
5257     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5258 
5259   case Instruction::BitCast:
5260     // BitCasts are no-op casts so we just eliminate the cast.
5261     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5262       return getSCEV(U->getOperand(0));
5263     break;
5264 
5265   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5266   // lead to pointer expressions which cannot safely be expanded to GEPs,
5267   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5268   // simplifying integer expressions.
5269 
5270   case Instruction::GetElementPtr:
5271     return createNodeForGEP(cast<GEPOperator>(U));
5272 
5273   case Instruction::PHI:
5274     return createNodeForPHI(cast<PHINode>(U));
5275 
5276   case Instruction::Select:
5277     // U can also be a select constant expr, which let fall through.  Since
5278     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5279     // constant expressions cannot have instructions as operands, we'd have
5280     // returned getUnknown for a select constant expressions anyway.
5281     if (isa<Instruction>(U))
5282       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5283                                       U->getOperand(1), U->getOperand(2));
5284   }
5285 
5286   return getUnknown(V);
5287 }
5288 
5289 
5290 
5291 //===----------------------------------------------------------------------===//
5292 //                   Iteration Count Computation Code
5293 //
5294 
5295 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5296   if (BasicBlock *ExitingBB = L->getExitingBlock())
5297     return getSmallConstantTripCount(L, ExitingBB);
5298 
5299   // No trip count information for multiple exits.
5300   return 0;
5301 }
5302 
5303 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
5304 /// normal unsigned value. Returns 0 if the trip count is unknown or not
5305 /// constant. Will also return 0 if the maximum trip count is very large (>=
5306 /// 2^32).
5307 ///
5308 /// This "trip count" assumes that control exits via ExitingBlock. More
5309 /// precisely, it is the number of times that control may reach ExitingBlock
5310 /// before taking the branch. For loops with multiple exits, it may not be the
5311 /// number times that the loop header executes because the loop may exit
5312 /// prematurely via another branch.
5313 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5314                                                     BasicBlock *ExitingBlock) {
5315   assert(ExitingBlock && "Must pass a non-null exiting block!");
5316   assert(L->isLoopExiting(ExitingBlock) &&
5317          "Exiting block must actually branch out of the loop!");
5318   const SCEVConstant *ExitCount =
5319       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5320   if (!ExitCount)
5321     return 0;
5322 
5323   ConstantInt *ExitConst = ExitCount->getValue();
5324 
5325   // Guard against huge trip counts.
5326   if (ExitConst->getValue().getActiveBits() > 32)
5327     return 0;
5328 
5329   // In case of integer overflow, this returns 0, which is correct.
5330   return ((unsigned)ExitConst->getZExtValue()) + 1;
5331 }
5332 
5333 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5334   if (BasicBlock *ExitingBB = L->getExitingBlock())
5335     return getSmallConstantTripMultiple(L, ExitingBB);
5336 
5337   // No trip multiple information for multiple exits.
5338   return 0;
5339 }
5340 
5341 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
5342 /// trip count of this loop as a normal unsigned value, if possible. This
5343 /// means that the actual trip count is always a multiple of the returned
5344 /// value (don't forget the trip count could very well be zero as well!).
5345 ///
5346 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5347 /// multiple of a constant (which is also the case if the trip count is simply
5348 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5349 /// if the trip count is very large (>= 2^32).
5350 ///
5351 /// As explained in the comments for getSmallConstantTripCount, this assumes
5352 /// that control exits the loop via ExitingBlock.
5353 unsigned
5354 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5355                                               BasicBlock *ExitingBlock) {
5356   assert(ExitingBlock && "Must pass a non-null exiting block!");
5357   assert(L->isLoopExiting(ExitingBlock) &&
5358          "Exiting block must actually branch out of the loop!");
5359   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5360   if (ExitCount == getCouldNotCompute())
5361     return 1;
5362 
5363   // Get the trip count from the BE count by adding 1.
5364   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5365   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5366   // to factor simple cases.
5367   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5368     TCMul = Mul->getOperand(0);
5369 
5370   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5371   if (!MulC)
5372     return 1;
5373 
5374   ConstantInt *Result = MulC->getValue();
5375 
5376   // Guard against huge trip counts (this requires checking
5377   // for zero to handle the case where the trip count == -1 and the
5378   // addition wraps).
5379   if (!Result || Result->getValue().getActiveBits() > 32 ||
5380       Result->getValue().getActiveBits() == 0)
5381     return 1;
5382 
5383   return (unsigned)Result->getZExtValue();
5384 }
5385 
5386 // getExitCount - Get the expression for the number of loop iterations for which
5387 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
5388 // SCEVCouldNotCompute.
5389 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5390   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5391 }
5392 
5393 const SCEV *
5394 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5395                                                  SCEVUnionPredicate &Preds) {
5396   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5397 }
5398 
5399 /// getBackedgeTakenCount - If the specified loop has a predictable
5400 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
5401 /// object. The backedge-taken count is the number of times the loop header
5402 /// will be branched to from within the loop. This is one less than the
5403 /// trip count of the loop, since it doesn't count the first iteration,
5404 /// when the header is branched to from outside the loop.
5405 ///
5406 /// Note that it is not valid to call this method on a loop without a
5407 /// loop-invariant backedge-taken count (see
5408 /// hasLoopInvariantBackedgeTakenCount).
5409 ///
5410 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5411   return getBackedgeTakenInfo(L).getExact(this);
5412 }
5413 
5414 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5415 /// return the least SCEV value that is known never to be less than the
5416 /// actual backedge taken count.
5417 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5418   return getBackedgeTakenInfo(L).getMax(this);
5419 }
5420 
5421 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
5422 /// onto the given Worklist.
5423 static void
5424 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5425   BasicBlock *Header = L->getHeader();
5426 
5427   // Push all Loop-header PHIs onto the Worklist stack.
5428   for (BasicBlock::iterator I = Header->begin();
5429        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5430     Worklist.push_back(PN);
5431 }
5432 
5433 const ScalarEvolution::BackedgeTakenInfo &
5434 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5435   auto &BTI = getBackedgeTakenInfo(L);
5436   if (BTI.hasFullInfo())
5437     return BTI;
5438 
5439   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5440 
5441   if (!Pair.second)
5442     return Pair.first->second;
5443 
5444   BackedgeTakenInfo Result =
5445       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5446 
5447   return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5448 }
5449 
5450 const ScalarEvolution::BackedgeTakenInfo &
5451 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5452   // Initially insert an invalid entry for this loop. If the insertion
5453   // succeeds, proceed to actually compute a backedge-taken count and
5454   // update the value. The temporary CouldNotCompute value tells SCEV
5455   // code elsewhere that it shouldn't attempt to request a new
5456   // backedge-taken count, which could result in infinite recursion.
5457   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5458       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5459   if (!Pair.second)
5460     return Pair.first->second;
5461 
5462   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5463   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5464   // must be cleared in this scope.
5465   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5466 
5467   if (Result.getExact(this) != getCouldNotCompute()) {
5468     assert(isLoopInvariant(Result.getExact(this), L) &&
5469            isLoopInvariant(Result.getMax(this), L) &&
5470            "Computed backedge-taken count isn't loop invariant for loop!");
5471     ++NumTripCountsComputed;
5472   }
5473   else if (Result.getMax(this) == getCouldNotCompute() &&
5474            isa<PHINode>(L->getHeader()->begin())) {
5475     // Only count loops that have phi nodes as not being computable.
5476     ++NumTripCountsNotComputed;
5477   }
5478 
5479   // Now that we know more about the trip count for this loop, forget any
5480   // existing SCEV values for PHI nodes in this loop since they are only
5481   // conservative estimates made without the benefit of trip count
5482   // information. This is similar to the code in forgetLoop, except that
5483   // it handles SCEVUnknown PHI nodes specially.
5484   if (Result.hasAnyInfo()) {
5485     SmallVector<Instruction *, 16> Worklist;
5486     PushLoopPHIs(L, Worklist);
5487 
5488     SmallPtrSet<Instruction *, 8> Visited;
5489     while (!Worklist.empty()) {
5490       Instruction *I = Worklist.pop_back_val();
5491       if (!Visited.insert(I).second)
5492         continue;
5493 
5494       ValueExprMapType::iterator It =
5495         ValueExprMap.find_as(static_cast<Value *>(I));
5496       if (It != ValueExprMap.end()) {
5497         const SCEV *Old = It->second;
5498 
5499         // SCEVUnknown for a PHI either means that it has an unrecognized
5500         // structure, or it's a PHI that's in the progress of being computed
5501         // by createNodeForPHI.  In the former case, additional loop trip
5502         // count information isn't going to change anything. In the later
5503         // case, createNodeForPHI will perform the necessary updates on its
5504         // own when it gets to that point.
5505         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5506           forgetMemoizedResults(Old);
5507           ValueExprMap.erase(It);
5508         }
5509         if (PHINode *PN = dyn_cast<PHINode>(I))
5510           ConstantEvolutionLoopExitValue.erase(PN);
5511       }
5512 
5513       PushDefUseChildren(I, Worklist);
5514     }
5515   }
5516 
5517   // Re-lookup the insert position, since the call to
5518   // computeBackedgeTakenCount above could result in a
5519   // recusive call to getBackedgeTakenInfo (on a different
5520   // loop), which would invalidate the iterator computed
5521   // earlier.
5522   return BackedgeTakenCounts.find(L)->second = Result;
5523 }
5524 
5525 /// forgetLoop - This method should be called by the client when it has
5526 /// changed a loop in a way that may effect ScalarEvolution's ability to
5527 /// compute a trip count, or if the loop is deleted.
5528 void ScalarEvolution::forgetLoop(const Loop *L) {
5529   // Drop any stored trip count value.
5530   auto RemoveLoopFromBackedgeMap =
5531       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5532         auto BTCPos = Map.find(L);
5533         if (BTCPos != Map.end()) {
5534           BTCPos->second.clear();
5535           Map.erase(BTCPos);
5536         }
5537       };
5538 
5539   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5540   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5541 
5542   // Drop information about expressions based on loop-header PHIs.
5543   SmallVector<Instruction *, 16> Worklist;
5544   PushLoopPHIs(L, Worklist);
5545 
5546   SmallPtrSet<Instruction *, 8> Visited;
5547   while (!Worklist.empty()) {
5548     Instruction *I = Worklist.pop_back_val();
5549     if (!Visited.insert(I).second)
5550       continue;
5551 
5552     ValueExprMapType::iterator It =
5553       ValueExprMap.find_as(static_cast<Value *>(I));
5554     if (It != ValueExprMap.end()) {
5555       forgetMemoizedResults(It->second);
5556       ValueExprMap.erase(It);
5557       if (PHINode *PN = dyn_cast<PHINode>(I))
5558         ConstantEvolutionLoopExitValue.erase(PN);
5559     }
5560 
5561     PushDefUseChildren(I, Worklist);
5562   }
5563 
5564   // Forget all contained loops too, to avoid dangling entries in the
5565   // ValuesAtScopes map.
5566   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5567     forgetLoop(*I);
5568 
5569   LoopMayThrow.erase(L);
5570 }
5571 
5572 /// forgetValue - This method should be called by the client when it has
5573 /// changed a value in a way that may effect its value, or which may
5574 /// disconnect it from a def-use chain linking it to a loop.
5575 void ScalarEvolution::forgetValue(Value *V) {
5576   Instruction *I = dyn_cast<Instruction>(V);
5577   if (!I) return;
5578 
5579   // Drop information about expressions based on loop-header PHIs.
5580   SmallVector<Instruction *, 16> Worklist;
5581   Worklist.push_back(I);
5582 
5583   SmallPtrSet<Instruction *, 8> Visited;
5584   while (!Worklist.empty()) {
5585     I = Worklist.pop_back_val();
5586     if (!Visited.insert(I).second)
5587       continue;
5588 
5589     ValueExprMapType::iterator It =
5590       ValueExprMap.find_as(static_cast<Value *>(I));
5591     if (It != ValueExprMap.end()) {
5592       forgetMemoizedResults(It->second);
5593       ValueExprMap.erase(It);
5594       if (PHINode *PN = dyn_cast<PHINode>(I))
5595         ConstantEvolutionLoopExitValue.erase(PN);
5596     }
5597 
5598     PushDefUseChildren(I, Worklist);
5599   }
5600 }
5601 
5602 /// getExact - Get the exact loop backedge taken count considering all loop
5603 /// exits. A computable result can only be returned for loops with a single
5604 /// exit.  Returning the minimum taken count among all exits is incorrect
5605 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5606 /// assumes that the limit of each loop test is never skipped. This is a valid
5607 /// assumption as long as the loop exits via that test. For precise results, it
5608 /// is the caller's responsibility to specify the relevant loop exit using
5609 /// getExact(ExitingBlock, SE).
5610 const SCEV *
5611 ScalarEvolution::BackedgeTakenInfo::getExact(
5612     ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5613   // If any exits were not computable, the loop is not computable.
5614   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5615 
5616   // We need exactly one computable exit.
5617   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5618   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5619 
5620   const SCEV *BECount = nullptr;
5621   for (auto &ENT : ExitNotTaken) {
5622     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5623 
5624     if (!BECount)
5625       BECount = ENT.ExactNotTaken;
5626     else if (BECount != ENT.ExactNotTaken)
5627       return SE->getCouldNotCompute();
5628     if (Preds && ENT.getPred())
5629       Preds->add(ENT.getPred());
5630 
5631     assert((Preds || ENT.hasAlwaysTruePred()) &&
5632            "Predicate should be always true!");
5633   }
5634 
5635   assert(BECount && "Invalid not taken count for loop exit");
5636   return BECount;
5637 }
5638 
5639 /// getExact - Get the exact not taken count for this loop exit.
5640 const SCEV *
5641 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5642                                              ScalarEvolution *SE) const {
5643   for (auto &ENT : ExitNotTaken)
5644     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5645       return ENT.ExactNotTaken;
5646 
5647   return SE->getCouldNotCompute();
5648 }
5649 
5650 /// getMax - Get the max backedge taken count for the loop.
5651 const SCEV *
5652 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5653   for (auto &ENT : ExitNotTaken)
5654     if (!ENT.hasAlwaysTruePred())
5655       return SE->getCouldNotCompute();
5656 
5657   return Max ? Max : SE->getCouldNotCompute();
5658 }
5659 
5660 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5661                                                     ScalarEvolution *SE) const {
5662   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5663     return true;
5664 
5665   if (!ExitNotTaken.ExitingBlock)
5666     return false;
5667 
5668   for (auto &ENT : ExitNotTaken)
5669     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5670         SE->hasOperand(ENT.ExactNotTaken, S))
5671       return true;
5672 
5673   return false;
5674 }
5675 
5676 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5677 /// computable exit into a persistent ExitNotTakenInfo array.
5678 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5679     SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5680     : Max(MaxCount) {
5681 
5682   if (!Complete)
5683     ExitNotTaken.setIncomplete();
5684 
5685   unsigned NumExits = ExitCounts.size();
5686   if (NumExits == 0) return;
5687 
5688   ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5689   ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5690 
5691   // Determine the number of ExitNotTakenExtras structures that we need.
5692   unsigned ExtraInfoSize = 0;
5693   if (NumExits > 1)
5694     ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5695                                       ExitCounts.end(), [](EdgeInfo &Entry) {
5696                                         return !Entry.Pred.isAlwaysTrue();
5697                                       });
5698   else if (!ExitCounts[0].Pred.isAlwaysTrue())
5699     ExtraInfoSize = 1;
5700 
5701   ExitNotTakenExtras *ENT = nullptr;
5702 
5703   // Allocate the ExitNotTakenExtras structures and initialize the first
5704   // element (ExitNotTaken).
5705   if (ExtraInfoSize > 0) {
5706     ENT = new ExitNotTakenExtras[ExtraInfoSize];
5707     ExitNotTaken.ExtraInfo = &ENT[0];
5708     *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5709   }
5710 
5711   if (NumExits == 1)
5712     return;
5713 
5714   assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5715 
5716   auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5717 
5718   // Handle the rare case of multiple computable exits.
5719   for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5720     ExitNotTakenExtras *Ptr = nullptr;
5721     if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5722       Ptr = &ENT[PredPos++];
5723       Ptr->Pred = std::move(ExitCounts[i].Pred);
5724     }
5725 
5726     Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
5727   }
5728 }
5729 
5730 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5731 void ScalarEvolution::BackedgeTakenInfo::clear() {
5732   ExitNotTaken.ExitingBlock = nullptr;
5733   ExitNotTaken.ExactNotTaken = nullptr;
5734   delete[] ExitNotTaken.ExtraInfo;
5735 }
5736 
5737 /// computeBackedgeTakenCount - Compute the number of times the backedge
5738 /// of the specified loop will execute.
5739 ScalarEvolution::BackedgeTakenInfo
5740 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5741                                            bool AllowPredicates) {
5742   SmallVector<BasicBlock *, 8> ExitingBlocks;
5743   L->getExitingBlocks(ExitingBlocks);
5744 
5745   SmallVector<EdgeInfo, 4> ExitCounts;
5746   bool CouldComputeBECount = true;
5747   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5748   const SCEV *MustExitMaxBECount = nullptr;
5749   const SCEV *MayExitMaxBECount = nullptr;
5750 
5751   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5752   // and compute maxBECount.
5753   // Do a union of all the predicates here.
5754   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5755     BasicBlock *ExitBB = ExitingBlocks[i];
5756     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5757 
5758     assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5759            "Predicated exit limit when predicates are not allowed!");
5760 
5761     // 1. For each exit that can be computed, add an entry to ExitCounts.
5762     // CouldComputeBECount is true only if all exits can be computed.
5763     if (EL.Exact == getCouldNotCompute())
5764       // We couldn't compute an exact value for this exit, so
5765       // we won't be able to compute an exact value for the loop.
5766       CouldComputeBECount = false;
5767     else
5768       ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
5769 
5770     // 2. Derive the loop's MaxBECount from each exit's max number of
5771     // non-exiting iterations. Partition the loop exits into two kinds:
5772     // LoopMustExits and LoopMayExits.
5773     //
5774     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5775     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5776     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5777     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5778     // considered greater than any computable EL.Max.
5779     if (EL.Max != getCouldNotCompute() && Latch &&
5780         DT.dominates(ExitBB, Latch)) {
5781       if (!MustExitMaxBECount)
5782         MustExitMaxBECount = EL.Max;
5783       else {
5784         MustExitMaxBECount =
5785           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5786       }
5787     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5788       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5789         MayExitMaxBECount = EL.Max;
5790       else {
5791         MayExitMaxBECount =
5792           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5793       }
5794     }
5795   }
5796   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5797     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5798   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5799 }
5800 
5801 ScalarEvolution::ExitLimit
5802 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5803                                   bool AllowPredicates) {
5804 
5805   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5806   // at this block and remember the exit block and whether all other targets
5807   // lead to the loop header.
5808   bool MustExecuteLoopHeader = true;
5809   BasicBlock *Exit = nullptr;
5810   for (auto *SBB : successors(ExitingBlock))
5811     if (!L->contains(SBB)) {
5812       if (Exit) // Multiple exit successors.
5813         return getCouldNotCompute();
5814       Exit = SBB;
5815     } else if (SBB != L->getHeader()) {
5816       MustExecuteLoopHeader = false;
5817     }
5818 
5819   // At this point, we know we have a conditional branch that determines whether
5820   // the loop is exited.  However, we don't know if the branch is executed each
5821   // time through the loop.  If not, then the execution count of the branch will
5822   // not be equal to the trip count of the loop.
5823   //
5824   // Currently we check for this by checking to see if the Exit branch goes to
5825   // the loop header.  If so, we know it will always execute the same number of
5826   // times as the loop.  We also handle the case where the exit block *is* the
5827   // loop header.  This is common for un-rotated loops.
5828   //
5829   // If both of those tests fail, walk up the unique predecessor chain to the
5830   // header, stopping if there is an edge that doesn't exit the loop. If the
5831   // header is reached, the execution count of the branch will be equal to the
5832   // trip count of the loop.
5833   //
5834   //  More extensive analysis could be done to handle more cases here.
5835   //
5836   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5837     // The simple checks failed, try climbing the unique predecessor chain
5838     // up to the header.
5839     bool Ok = false;
5840     for (BasicBlock *BB = ExitingBlock; BB; ) {
5841       BasicBlock *Pred = BB->getUniquePredecessor();
5842       if (!Pred)
5843         return getCouldNotCompute();
5844       TerminatorInst *PredTerm = Pred->getTerminator();
5845       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5846         if (PredSucc == BB)
5847           continue;
5848         // If the predecessor has a successor that isn't BB and isn't
5849         // outside the loop, assume the worst.
5850         if (L->contains(PredSucc))
5851           return getCouldNotCompute();
5852       }
5853       if (Pred == L->getHeader()) {
5854         Ok = true;
5855         break;
5856       }
5857       BB = Pred;
5858     }
5859     if (!Ok)
5860       return getCouldNotCompute();
5861   }
5862 
5863   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5864   TerminatorInst *Term = ExitingBlock->getTerminator();
5865   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5866     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5867     // Proceed to the next level to examine the exit condition expression.
5868     return computeExitLimitFromCond(
5869         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5870         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5871   }
5872 
5873   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5874     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5875                                                 /*ControlsExit=*/IsOnlyExit);
5876 
5877   return getCouldNotCompute();
5878 }
5879 
5880 /// computeExitLimitFromCond - Compute the number of times the
5881 /// backedge of the specified loop will execute if its exit condition
5882 /// were a conditional branch of ExitCond, TBB, and FBB.
5883 ///
5884 /// @param ControlsExit is true if ExitCond directly controls the exit
5885 /// branch. In this case, we can assume that the loop exits only if the
5886 /// condition is true and can infer that failing to meet the condition prior to
5887 /// integer wraparound results in undefined behavior.
5888 ScalarEvolution::ExitLimit
5889 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5890                                           Value *ExitCond,
5891                                           BasicBlock *TBB,
5892                                           BasicBlock *FBB,
5893                                           bool ControlsExit,
5894                                           bool AllowPredicates) {
5895   // Check if the controlling expression for this loop is an And or Or.
5896   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5897     if (BO->getOpcode() == Instruction::And) {
5898       // Recurse on the operands of the and.
5899       bool EitherMayExit = L->contains(TBB);
5900       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5901                                                ControlsExit && !EitherMayExit,
5902                                                AllowPredicates);
5903       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5904                                                ControlsExit && !EitherMayExit,
5905                                                AllowPredicates);
5906       const SCEV *BECount = getCouldNotCompute();
5907       const SCEV *MaxBECount = getCouldNotCompute();
5908       if (EitherMayExit) {
5909         // Both conditions must be true for the loop to continue executing.
5910         // Choose the less conservative count.
5911         if (EL0.Exact == getCouldNotCompute() ||
5912             EL1.Exact == getCouldNotCompute())
5913           BECount = getCouldNotCompute();
5914         else
5915           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5916         if (EL0.Max == getCouldNotCompute())
5917           MaxBECount = EL1.Max;
5918         else if (EL1.Max == getCouldNotCompute())
5919           MaxBECount = EL0.Max;
5920         else
5921           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5922       } else {
5923         // Both conditions must be true at the same time for the loop to exit.
5924         // For now, be conservative.
5925         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5926         if (EL0.Max == EL1.Max)
5927           MaxBECount = EL0.Max;
5928         if (EL0.Exact == EL1.Exact)
5929           BECount = EL0.Exact;
5930       }
5931 
5932       SCEVUnionPredicate NP;
5933       NP.add(&EL0.Pred);
5934       NP.add(&EL1.Pred);
5935       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5936       // to be more aggressive when computing BECount than when computing
5937       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5938       // to match, but for EL0.Max and EL1.Max to not.
5939       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5940           !isa<SCEVCouldNotCompute>(BECount))
5941         MaxBECount = BECount;
5942 
5943       return ExitLimit(BECount, MaxBECount, NP);
5944     }
5945     if (BO->getOpcode() == Instruction::Or) {
5946       // Recurse on the operands of the or.
5947       bool EitherMayExit = L->contains(FBB);
5948       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5949                                                ControlsExit && !EitherMayExit,
5950                                                AllowPredicates);
5951       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5952                                                ControlsExit && !EitherMayExit,
5953                                                AllowPredicates);
5954       const SCEV *BECount = getCouldNotCompute();
5955       const SCEV *MaxBECount = getCouldNotCompute();
5956       if (EitherMayExit) {
5957         // Both conditions must be false for the loop to continue executing.
5958         // Choose the less conservative count.
5959         if (EL0.Exact == getCouldNotCompute() ||
5960             EL1.Exact == getCouldNotCompute())
5961           BECount = getCouldNotCompute();
5962         else
5963           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5964         if (EL0.Max == getCouldNotCompute())
5965           MaxBECount = EL1.Max;
5966         else if (EL1.Max == getCouldNotCompute())
5967           MaxBECount = EL0.Max;
5968         else
5969           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5970       } else {
5971         // Both conditions must be false at the same time for the loop to exit.
5972         // For now, be conservative.
5973         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5974         if (EL0.Max == EL1.Max)
5975           MaxBECount = EL0.Max;
5976         if (EL0.Exact == EL1.Exact)
5977           BECount = EL0.Exact;
5978       }
5979 
5980       SCEVUnionPredicate NP;
5981       NP.add(&EL0.Pred);
5982       NP.add(&EL1.Pred);
5983       return ExitLimit(BECount, MaxBECount, NP);
5984     }
5985   }
5986 
5987   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5988   // Proceed to the next level to examine the icmp.
5989   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5990     ExitLimit EL =
5991         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5992     if (EL.hasFullInfo() || !AllowPredicates)
5993       return EL;
5994 
5995     // Try again, but use SCEV predicates this time.
5996     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5997                                     /*AllowPredicates=*/true);
5998   }
5999 
6000   // Check for a constant condition. These are normally stripped out by
6001   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
6002   // preserve the CFG and is temporarily leaving constant conditions
6003   // in place.
6004   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
6005     if (L->contains(FBB) == !CI->getZExtValue())
6006       // The backedge is always taken.
6007       return getCouldNotCompute();
6008     else
6009       // The backedge is never taken.
6010       return getZero(CI->getType());
6011   }
6012 
6013   // If it's not an integer or pointer comparison then compute it the hard way.
6014   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6015 }
6016 
6017 ScalarEvolution::ExitLimit
6018 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
6019                                           ICmpInst *ExitCond,
6020                                           BasicBlock *TBB,
6021                                           BasicBlock *FBB,
6022                                           bool ControlsExit,
6023                                           bool AllowPredicates) {
6024 
6025   // If the condition was exit on true, convert the condition to exit on false
6026   ICmpInst::Predicate Cond;
6027   if (!L->contains(FBB))
6028     Cond = ExitCond->getPredicate();
6029   else
6030     Cond = ExitCond->getInversePredicate();
6031 
6032   // Handle common loops like: for (X = "string"; *X; ++X)
6033   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6034     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6035       ExitLimit ItCnt =
6036         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6037       if (ItCnt.hasAnyInfo())
6038         return ItCnt;
6039     }
6040 
6041   ExitLimit ShiftEL = computeShiftCompareExitLimit(
6042       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
6043   if (ShiftEL.hasAnyInfo())
6044     return ShiftEL;
6045 
6046   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6047   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6048 
6049   // Try to evaluate any dependencies out of the loop.
6050   LHS = getSCEVAtScope(LHS, L);
6051   RHS = getSCEVAtScope(RHS, L);
6052 
6053   // At this point, we would like to compute how many iterations of the
6054   // loop the predicate will return true for these inputs.
6055   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6056     // If there is a loop-invariant, force it into the RHS.
6057     std::swap(LHS, RHS);
6058     Cond = ICmpInst::getSwappedPredicate(Cond);
6059   }
6060 
6061   // Simplify the operands before analyzing them.
6062   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6063 
6064   // If we have a comparison of a chrec against a constant, try to use value
6065   // ranges to answer this query.
6066   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6067     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6068       if (AddRec->getLoop() == L) {
6069         // Form the constant range.
6070         ConstantRange CompRange(
6071             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
6072 
6073         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6074         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6075       }
6076 
6077   switch (Cond) {
6078   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6079     // Convert to: while (X-Y != 0)
6080     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6081                                 AllowPredicates);
6082     if (EL.hasAnyInfo()) return EL;
6083     break;
6084   }
6085   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6086     // Convert to: while (X-Y == 0)
6087     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
6088     if (EL.hasAnyInfo()) return EL;
6089     break;
6090   }
6091   case ICmpInst::ICMP_SLT:
6092   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6093     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6094     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6095                                     AllowPredicates);
6096     if (EL.hasAnyInfo()) return EL;
6097     break;
6098   }
6099   case ICmpInst::ICMP_SGT:
6100   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6101     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6102     ExitLimit EL =
6103         HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6104                             AllowPredicates);
6105     if (EL.hasAnyInfo()) return EL;
6106     break;
6107   }
6108   default:
6109     break;
6110   }
6111   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6112 }
6113 
6114 ScalarEvolution::ExitLimit
6115 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6116                                                       SwitchInst *Switch,
6117                                                       BasicBlock *ExitingBlock,
6118                                                       bool ControlsExit) {
6119   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6120 
6121   // Give up if the exit is the default dest of a switch.
6122   if (Switch->getDefaultDest() == ExitingBlock)
6123     return getCouldNotCompute();
6124 
6125   assert(L->contains(Switch->getDefaultDest()) &&
6126          "Default case must not exit the loop!");
6127   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6128   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6129 
6130   // while (X != Y) --> while (X-Y != 0)
6131   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6132   if (EL.hasAnyInfo())
6133     return EL;
6134 
6135   return getCouldNotCompute();
6136 }
6137 
6138 static ConstantInt *
6139 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6140                                 ScalarEvolution &SE) {
6141   const SCEV *InVal = SE.getConstant(C);
6142   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6143   assert(isa<SCEVConstant>(Val) &&
6144          "Evaluation of SCEV at constant didn't fold correctly?");
6145   return cast<SCEVConstant>(Val)->getValue();
6146 }
6147 
6148 /// computeLoadConstantCompareExitLimit - Given an exit condition of
6149 /// 'icmp op load X, cst', try to see if we can compute the backedge
6150 /// execution count.
6151 ScalarEvolution::ExitLimit
6152 ScalarEvolution::computeLoadConstantCompareExitLimit(
6153   LoadInst *LI,
6154   Constant *RHS,
6155   const Loop *L,
6156   ICmpInst::Predicate predicate) {
6157 
6158   if (LI->isVolatile()) return getCouldNotCompute();
6159 
6160   // Check to see if the loaded pointer is a getelementptr of a global.
6161   // TODO: Use SCEV instead of manually grubbing with GEPs.
6162   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6163   if (!GEP) return getCouldNotCompute();
6164 
6165   // Make sure that it is really a constant global we are gepping, with an
6166   // initializer, and make sure the first IDX is really 0.
6167   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6168   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6169       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6170       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6171     return getCouldNotCompute();
6172 
6173   // Okay, we allow one non-constant index into the GEP instruction.
6174   Value *VarIdx = nullptr;
6175   std::vector<Constant*> Indexes;
6176   unsigned VarIdxNum = 0;
6177   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6178     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6179       Indexes.push_back(CI);
6180     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6181       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6182       VarIdx = GEP->getOperand(i);
6183       VarIdxNum = i-2;
6184       Indexes.push_back(nullptr);
6185     }
6186 
6187   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6188   if (!VarIdx)
6189     return getCouldNotCompute();
6190 
6191   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6192   // Check to see if X is a loop variant variable value now.
6193   const SCEV *Idx = getSCEV(VarIdx);
6194   Idx = getSCEVAtScope(Idx, L);
6195 
6196   // We can only recognize very limited forms of loop index expressions, in
6197   // particular, only affine AddRec's like {C1,+,C2}.
6198   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6199   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6200       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6201       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6202     return getCouldNotCompute();
6203 
6204   unsigned MaxSteps = MaxBruteForceIterations;
6205   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6206     ConstantInt *ItCst = ConstantInt::get(
6207                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6208     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6209 
6210     // Form the GEP offset.
6211     Indexes[VarIdxNum] = Val;
6212 
6213     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6214                                                          Indexes);
6215     if (!Result) break;  // Cannot compute!
6216 
6217     // Evaluate the condition for this iteration.
6218     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6219     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6220     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6221       ++NumArrayLenItCounts;
6222       return getConstant(ItCst);   // Found terminating iteration!
6223     }
6224   }
6225   return getCouldNotCompute();
6226 }
6227 
6228 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6229     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6230   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6231   if (!RHS)
6232     return getCouldNotCompute();
6233 
6234   const BasicBlock *Latch = L->getLoopLatch();
6235   if (!Latch)
6236     return getCouldNotCompute();
6237 
6238   const BasicBlock *Predecessor = L->getLoopPredecessor();
6239   if (!Predecessor)
6240     return getCouldNotCompute();
6241 
6242   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6243   // Return LHS in OutLHS and shift_opt in OutOpCode.
6244   auto MatchPositiveShift =
6245       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6246 
6247     using namespace PatternMatch;
6248 
6249     ConstantInt *ShiftAmt;
6250     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6251       OutOpCode = Instruction::LShr;
6252     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6253       OutOpCode = Instruction::AShr;
6254     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6255       OutOpCode = Instruction::Shl;
6256     else
6257       return false;
6258 
6259     return ShiftAmt->getValue().isStrictlyPositive();
6260   };
6261 
6262   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6263   //
6264   // loop:
6265   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6266   //   %iv.shifted = lshr i32 %iv, <positive constant>
6267   //
6268   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6269   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6270   auto MatchShiftRecurrence =
6271       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6272     Optional<Instruction::BinaryOps> PostShiftOpCode;
6273 
6274     {
6275       Instruction::BinaryOps OpC;
6276       Value *V;
6277 
6278       // If we encounter a shift instruction, "peel off" the shift operation,
6279       // and remember that we did so.  Later when we inspect %iv's backedge
6280       // value, we will make sure that the backedge value uses the same
6281       // operation.
6282       //
6283       // Note: the peeled shift operation does not have to be the same
6284       // instruction as the one feeding into the PHI's backedge value.  We only
6285       // really care about it being the same *kind* of shift instruction --
6286       // that's all that is required for our later inferences to hold.
6287       if (MatchPositiveShift(LHS, V, OpC)) {
6288         PostShiftOpCode = OpC;
6289         LHS = V;
6290       }
6291     }
6292 
6293     PNOut = dyn_cast<PHINode>(LHS);
6294     if (!PNOut || PNOut->getParent() != L->getHeader())
6295       return false;
6296 
6297     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6298     Value *OpLHS;
6299 
6300     return
6301         // The backedge value for the PHI node must be a shift by a positive
6302         // amount
6303         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6304 
6305         // of the PHI node itself
6306         OpLHS == PNOut &&
6307 
6308         // and the kind of shift should be match the kind of shift we peeled
6309         // off, if any.
6310         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6311   };
6312 
6313   PHINode *PN;
6314   Instruction::BinaryOps OpCode;
6315   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6316     return getCouldNotCompute();
6317 
6318   const DataLayout &DL = getDataLayout();
6319 
6320   // The key rationale for this optimization is that for some kinds of shift
6321   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6322   // within a finite number of iterations.  If the condition guarding the
6323   // backedge (in the sense that the backedge is taken if the condition is true)
6324   // is false for the value the shift recurrence stabilizes to, then we know
6325   // that the backedge is taken only a finite number of times.
6326 
6327   ConstantInt *StableValue = nullptr;
6328   switch (OpCode) {
6329   default:
6330     llvm_unreachable("Impossible case!");
6331 
6332   case Instruction::AShr: {
6333     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6334     // bitwidth(K) iterations.
6335     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6336     bool KnownZero, KnownOne;
6337     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6338                    Predecessor->getTerminator(), &DT);
6339     auto *Ty = cast<IntegerType>(RHS->getType());
6340     if (KnownZero)
6341       StableValue = ConstantInt::get(Ty, 0);
6342     else if (KnownOne)
6343       StableValue = ConstantInt::get(Ty, -1, true);
6344     else
6345       return getCouldNotCompute();
6346 
6347     break;
6348   }
6349   case Instruction::LShr:
6350   case Instruction::Shl:
6351     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6352     // stabilize to 0 in at most bitwidth(K) iterations.
6353     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6354     break;
6355   }
6356 
6357   auto *Result =
6358       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6359   assert(Result->getType()->isIntegerTy(1) &&
6360          "Otherwise cannot be an operand to a branch instruction");
6361 
6362   if (Result->isZeroValue()) {
6363     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6364     const SCEV *UpperBound =
6365         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6366     SCEVUnionPredicate P;
6367     return ExitLimit(getCouldNotCompute(), UpperBound, P);
6368   }
6369 
6370   return getCouldNotCompute();
6371 }
6372 
6373 /// CanConstantFold - Return true if we can constant fold an instruction of the
6374 /// specified type, assuming that all operands were constants.
6375 static bool CanConstantFold(const Instruction *I) {
6376   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6377       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6378       isa<LoadInst>(I))
6379     return true;
6380 
6381   if (const CallInst *CI = dyn_cast<CallInst>(I))
6382     if (const Function *F = CI->getCalledFunction())
6383       return canConstantFoldCallTo(F);
6384   return false;
6385 }
6386 
6387 /// Determine whether this instruction can constant evolve within this loop
6388 /// assuming its operands can all constant evolve.
6389 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6390   // An instruction outside of the loop can't be derived from a loop PHI.
6391   if (!L->contains(I)) return false;
6392 
6393   if (isa<PHINode>(I)) {
6394     // We don't currently keep track of the control flow needed to evaluate
6395     // PHIs, so we cannot handle PHIs inside of loops.
6396     return L->getHeader() == I->getParent();
6397   }
6398 
6399   // If we won't be able to constant fold this expression even if the operands
6400   // are constants, bail early.
6401   return CanConstantFold(I);
6402 }
6403 
6404 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6405 /// recursing through each instruction operand until reaching a loop header phi.
6406 static PHINode *
6407 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6408                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6409 
6410   // Otherwise, we can evaluate this instruction if all of its operands are
6411   // constant or derived from a PHI node themselves.
6412   PHINode *PHI = nullptr;
6413   for (Value *Op : UseInst->operands()) {
6414     if (isa<Constant>(Op)) continue;
6415 
6416     Instruction *OpInst = dyn_cast<Instruction>(Op);
6417     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6418 
6419     PHINode *P = dyn_cast<PHINode>(OpInst);
6420     if (!P)
6421       // If this operand is already visited, reuse the prior result.
6422       // We may have P != PHI if this is the deepest point at which the
6423       // inconsistent paths meet.
6424       P = PHIMap.lookup(OpInst);
6425     if (!P) {
6426       // Recurse and memoize the results, whether a phi is found or not.
6427       // This recursive call invalidates pointers into PHIMap.
6428       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6429       PHIMap[OpInst] = P;
6430     }
6431     if (!P)
6432       return nullptr;  // Not evolving from PHI
6433     if (PHI && PHI != P)
6434       return nullptr;  // Evolving from multiple different PHIs.
6435     PHI = P;
6436   }
6437   // This is a expression evolving from a constant PHI!
6438   return PHI;
6439 }
6440 
6441 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6442 /// in the loop that V is derived from.  We allow arbitrary operations along the
6443 /// way, but the operands of an operation must either be constants or a value
6444 /// derived from a constant PHI.  If this expression does not fit with these
6445 /// constraints, return null.
6446 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6447   Instruction *I = dyn_cast<Instruction>(V);
6448   if (!I || !canConstantEvolve(I, L)) return nullptr;
6449 
6450   if (PHINode *PN = dyn_cast<PHINode>(I))
6451     return PN;
6452 
6453   // Record non-constant instructions contained by the loop.
6454   DenseMap<Instruction *, PHINode *> PHIMap;
6455   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6456 }
6457 
6458 /// EvaluateExpression - Given an expression that passes the
6459 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6460 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6461 /// reason, return null.
6462 static Constant *EvaluateExpression(Value *V, const Loop *L,
6463                                     DenseMap<Instruction *, Constant *> &Vals,
6464                                     const DataLayout &DL,
6465                                     const TargetLibraryInfo *TLI) {
6466   // Convenient constant check, but redundant for recursive calls.
6467   if (Constant *C = dyn_cast<Constant>(V)) return C;
6468   Instruction *I = dyn_cast<Instruction>(V);
6469   if (!I) return nullptr;
6470 
6471   if (Constant *C = Vals.lookup(I)) return C;
6472 
6473   // An instruction inside the loop depends on a value outside the loop that we
6474   // weren't given a mapping for, or a value such as a call inside the loop.
6475   if (!canConstantEvolve(I, L)) return nullptr;
6476 
6477   // An unmapped PHI can be due to a branch or another loop inside this loop,
6478   // or due to this not being the initial iteration through a loop where we
6479   // couldn't compute the evolution of this particular PHI last time.
6480   if (isa<PHINode>(I)) return nullptr;
6481 
6482   std::vector<Constant*> Operands(I->getNumOperands());
6483 
6484   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6485     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6486     if (!Operand) {
6487       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6488       if (!Operands[i]) return nullptr;
6489       continue;
6490     }
6491     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6492     Vals[Operand] = C;
6493     if (!C) return nullptr;
6494     Operands[i] = C;
6495   }
6496 
6497   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6498     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6499                                            Operands[1], DL, TLI);
6500   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6501     if (!LI->isVolatile())
6502       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6503   }
6504   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6505 }
6506 
6507 
6508 // If every incoming value to PN except the one for BB is a specific Constant,
6509 // return that, else return nullptr.
6510 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6511   Constant *IncomingVal = nullptr;
6512 
6513   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6514     if (PN->getIncomingBlock(i) == BB)
6515       continue;
6516 
6517     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6518     if (!CurrentVal)
6519       return nullptr;
6520 
6521     if (IncomingVal != CurrentVal) {
6522       if (IncomingVal)
6523         return nullptr;
6524       IncomingVal = CurrentVal;
6525     }
6526   }
6527 
6528   return IncomingVal;
6529 }
6530 
6531 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6532 /// in the header of its containing loop, we know the loop executes a
6533 /// constant number of times, and the PHI node is just a recurrence
6534 /// involving constants, fold it.
6535 Constant *
6536 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6537                                                    const APInt &BEs,
6538                                                    const Loop *L) {
6539   auto I = ConstantEvolutionLoopExitValue.find(PN);
6540   if (I != ConstantEvolutionLoopExitValue.end())
6541     return I->second;
6542 
6543   if (BEs.ugt(MaxBruteForceIterations))
6544     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6545 
6546   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6547 
6548   DenseMap<Instruction *, Constant *> CurrentIterVals;
6549   BasicBlock *Header = L->getHeader();
6550   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6551 
6552   BasicBlock *Latch = L->getLoopLatch();
6553   if (!Latch)
6554     return nullptr;
6555 
6556   for (auto &I : *Header) {
6557     PHINode *PHI = dyn_cast<PHINode>(&I);
6558     if (!PHI) break;
6559     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6560     if (!StartCST) continue;
6561     CurrentIterVals[PHI] = StartCST;
6562   }
6563   if (!CurrentIterVals.count(PN))
6564     return RetVal = nullptr;
6565 
6566   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6567 
6568   // Execute the loop symbolically to determine the exit value.
6569   if (BEs.getActiveBits() >= 32)
6570     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6571 
6572   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6573   unsigned IterationNum = 0;
6574   const DataLayout &DL = getDataLayout();
6575   for (; ; ++IterationNum) {
6576     if (IterationNum == NumIterations)
6577       return RetVal = CurrentIterVals[PN];  // Got exit value!
6578 
6579     // Compute the value of the PHIs for the next iteration.
6580     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6581     DenseMap<Instruction *, Constant *> NextIterVals;
6582     Constant *NextPHI =
6583         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6584     if (!NextPHI)
6585       return nullptr;        // Couldn't evaluate!
6586     NextIterVals[PN] = NextPHI;
6587 
6588     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6589 
6590     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6591     // cease to be able to evaluate one of them or if they stop evolving,
6592     // because that doesn't necessarily prevent us from computing PN.
6593     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6594     for (const auto &I : CurrentIterVals) {
6595       PHINode *PHI = dyn_cast<PHINode>(I.first);
6596       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6597       PHIsToCompute.emplace_back(PHI, I.second);
6598     }
6599     // We use two distinct loops because EvaluateExpression may invalidate any
6600     // iterators into CurrentIterVals.
6601     for (const auto &I : PHIsToCompute) {
6602       PHINode *PHI = I.first;
6603       Constant *&NextPHI = NextIterVals[PHI];
6604       if (!NextPHI) {   // Not already computed.
6605         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6606         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6607       }
6608       if (NextPHI != I.second)
6609         StoppedEvolving = false;
6610     }
6611 
6612     // If all entries in CurrentIterVals == NextIterVals then we can stop
6613     // iterating, the loop can't continue to change.
6614     if (StoppedEvolving)
6615       return RetVal = CurrentIterVals[PN];
6616 
6617     CurrentIterVals.swap(NextIterVals);
6618   }
6619 }
6620 
6621 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6622                                                           Value *Cond,
6623                                                           bool ExitWhen) {
6624   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6625   if (!PN) return getCouldNotCompute();
6626 
6627   // If the loop is canonicalized, the PHI will have exactly two entries.
6628   // That's the only form we support here.
6629   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6630 
6631   DenseMap<Instruction *, Constant *> CurrentIterVals;
6632   BasicBlock *Header = L->getHeader();
6633   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6634 
6635   BasicBlock *Latch = L->getLoopLatch();
6636   assert(Latch && "Should follow from NumIncomingValues == 2!");
6637 
6638   for (auto &I : *Header) {
6639     PHINode *PHI = dyn_cast<PHINode>(&I);
6640     if (!PHI)
6641       break;
6642     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6643     if (!StartCST) continue;
6644     CurrentIterVals[PHI] = StartCST;
6645   }
6646   if (!CurrentIterVals.count(PN))
6647     return getCouldNotCompute();
6648 
6649   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6650   // the loop symbolically to determine when the condition gets a value of
6651   // "ExitWhen".
6652   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6653   const DataLayout &DL = getDataLayout();
6654   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6655     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6656         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6657 
6658     // Couldn't symbolically evaluate.
6659     if (!CondVal) return getCouldNotCompute();
6660 
6661     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6662       ++NumBruteForceTripCountsComputed;
6663       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6664     }
6665 
6666     // Update all the PHI nodes for the next iteration.
6667     DenseMap<Instruction *, Constant *> NextIterVals;
6668 
6669     // Create a list of which PHIs we need to compute. We want to do this before
6670     // calling EvaluateExpression on them because that may invalidate iterators
6671     // into CurrentIterVals.
6672     SmallVector<PHINode *, 8> PHIsToCompute;
6673     for (const auto &I : CurrentIterVals) {
6674       PHINode *PHI = dyn_cast<PHINode>(I.first);
6675       if (!PHI || PHI->getParent() != Header) continue;
6676       PHIsToCompute.push_back(PHI);
6677     }
6678     for (PHINode *PHI : PHIsToCompute) {
6679       Constant *&NextPHI = NextIterVals[PHI];
6680       if (NextPHI) continue;    // Already computed!
6681 
6682       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6683       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6684     }
6685     CurrentIterVals.swap(NextIterVals);
6686   }
6687 
6688   // Too many iterations were needed to evaluate.
6689   return getCouldNotCompute();
6690 }
6691 
6692 /// getSCEVAtScope - Return a SCEV expression for the specified value
6693 /// at the specified scope in the program.  The L value specifies a loop
6694 /// nest to evaluate the expression at, where null is the top-level or a
6695 /// specified loop is immediately inside of the loop.
6696 ///
6697 /// This method can be used to compute the exit value for a variable defined
6698 /// in a loop by querying what the value will hold in the parent loop.
6699 ///
6700 /// In the case that a relevant loop exit value cannot be computed, the
6701 /// original value V is returned.
6702 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6703   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6704       ValuesAtScopes[V];
6705   // Check to see if we've folded this expression at this loop before.
6706   for (auto &LS : Values)
6707     if (LS.first == L)
6708       return LS.second ? LS.second : V;
6709 
6710   Values.emplace_back(L, nullptr);
6711 
6712   // Otherwise compute it.
6713   const SCEV *C = computeSCEVAtScope(V, L);
6714   for (auto &LS : reverse(ValuesAtScopes[V]))
6715     if (LS.first == L) {
6716       LS.second = C;
6717       break;
6718     }
6719   return C;
6720 }
6721 
6722 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6723 /// will return Constants for objects which aren't represented by a
6724 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6725 /// Returns NULL if the SCEV isn't representable as a Constant.
6726 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6727   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6728     case scCouldNotCompute:
6729     case scAddRecExpr:
6730       break;
6731     case scConstant:
6732       return cast<SCEVConstant>(V)->getValue();
6733     case scUnknown:
6734       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6735     case scSignExtend: {
6736       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6737       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6738         return ConstantExpr::getSExt(CastOp, SS->getType());
6739       break;
6740     }
6741     case scZeroExtend: {
6742       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6743       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6744         return ConstantExpr::getZExt(CastOp, SZ->getType());
6745       break;
6746     }
6747     case scTruncate: {
6748       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6749       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6750         return ConstantExpr::getTrunc(CastOp, ST->getType());
6751       break;
6752     }
6753     case scAddExpr: {
6754       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6755       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6756         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6757           unsigned AS = PTy->getAddressSpace();
6758           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6759           C = ConstantExpr::getBitCast(C, DestPtrTy);
6760         }
6761         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6762           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6763           if (!C2) return nullptr;
6764 
6765           // First pointer!
6766           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6767             unsigned AS = C2->getType()->getPointerAddressSpace();
6768             std::swap(C, C2);
6769             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6770             // The offsets have been converted to bytes.  We can add bytes to an
6771             // i8* by GEP with the byte count in the first index.
6772             C = ConstantExpr::getBitCast(C, DestPtrTy);
6773           }
6774 
6775           // Don't bother trying to sum two pointers. We probably can't
6776           // statically compute a load that results from it anyway.
6777           if (C2->getType()->isPointerTy())
6778             return nullptr;
6779 
6780           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6781             if (PTy->getElementType()->isStructTy())
6782               C2 = ConstantExpr::getIntegerCast(
6783                   C2, Type::getInt32Ty(C->getContext()), true);
6784             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6785           } else
6786             C = ConstantExpr::getAdd(C, C2);
6787         }
6788         return C;
6789       }
6790       break;
6791     }
6792     case scMulExpr: {
6793       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6794       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6795         // Don't bother with pointers at all.
6796         if (C->getType()->isPointerTy()) return nullptr;
6797         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6798           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6799           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6800           C = ConstantExpr::getMul(C, C2);
6801         }
6802         return C;
6803       }
6804       break;
6805     }
6806     case scUDivExpr: {
6807       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6808       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6809         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6810           if (LHS->getType() == RHS->getType())
6811             return ConstantExpr::getUDiv(LHS, RHS);
6812       break;
6813     }
6814     case scSMaxExpr:
6815     case scUMaxExpr:
6816       break; // TODO: smax, umax.
6817   }
6818   return nullptr;
6819 }
6820 
6821 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6822   if (isa<SCEVConstant>(V)) return V;
6823 
6824   // If this instruction is evolved from a constant-evolving PHI, compute the
6825   // exit value from the loop without using SCEVs.
6826   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6827     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6828       const Loop *LI = this->LI[I->getParent()];
6829       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6830         if (PHINode *PN = dyn_cast<PHINode>(I))
6831           if (PN->getParent() == LI->getHeader()) {
6832             // Okay, there is no closed form solution for the PHI node.  Check
6833             // to see if the loop that contains it has a known backedge-taken
6834             // count.  If so, we may be able to force computation of the exit
6835             // value.
6836             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6837             if (const SCEVConstant *BTCC =
6838                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6839               // Okay, we know how many times the containing loop executes.  If
6840               // this is a constant evolving PHI node, get the final value at
6841               // the specified iteration number.
6842               Constant *RV =
6843                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6844               if (RV) return getSCEV(RV);
6845             }
6846           }
6847 
6848       // Okay, this is an expression that we cannot symbolically evaluate
6849       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6850       // the arguments into constants, and if so, try to constant propagate the
6851       // result.  This is particularly useful for computing loop exit values.
6852       if (CanConstantFold(I)) {
6853         SmallVector<Constant *, 4> Operands;
6854         bool MadeImprovement = false;
6855         for (Value *Op : I->operands()) {
6856           if (Constant *C = dyn_cast<Constant>(Op)) {
6857             Operands.push_back(C);
6858             continue;
6859           }
6860 
6861           // If any of the operands is non-constant and if they are
6862           // non-integer and non-pointer, don't even try to analyze them
6863           // with scev techniques.
6864           if (!isSCEVable(Op->getType()))
6865             return V;
6866 
6867           const SCEV *OrigV = getSCEV(Op);
6868           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6869           MadeImprovement |= OrigV != OpV;
6870 
6871           Constant *C = BuildConstantFromSCEV(OpV);
6872           if (!C) return V;
6873           if (C->getType() != Op->getType())
6874             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6875                                                               Op->getType(),
6876                                                               false),
6877                                       C, Op->getType());
6878           Operands.push_back(C);
6879         }
6880 
6881         // Check to see if getSCEVAtScope actually made an improvement.
6882         if (MadeImprovement) {
6883           Constant *C = nullptr;
6884           const DataLayout &DL = getDataLayout();
6885           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6886             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6887                                                 Operands[1], DL, &TLI);
6888           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6889             if (!LI->isVolatile())
6890               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6891           } else
6892             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6893           if (!C) return V;
6894           return getSCEV(C);
6895         }
6896       }
6897     }
6898 
6899     // This is some other type of SCEVUnknown, just return it.
6900     return V;
6901   }
6902 
6903   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6904     // Avoid performing the look-up in the common case where the specified
6905     // expression has no loop-variant portions.
6906     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6907       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6908       if (OpAtScope != Comm->getOperand(i)) {
6909         // Okay, at least one of these operands is loop variant but might be
6910         // foldable.  Build a new instance of the folded commutative expression.
6911         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6912                                             Comm->op_begin()+i);
6913         NewOps.push_back(OpAtScope);
6914 
6915         for (++i; i != e; ++i) {
6916           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6917           NewOps.push_back(OpAtScope);
6918         }
6919         if (isa<SCEVAddExpr>(Comm))
6920           return getAddExpr(NewOps);
6921         if (isa<SCEVMulExpr>(Comm))
6922           return getMulExpr(NewOps);
6923         if (isa<SCEVSMaxExpr>(Comm))
6924           return getSMaxExpr(NewOps);
6925         if (isa<SCEVUMaxExpr>(Comm))
6926           return getUMaxExpr(NewOps);
6927         llvm_unreachable("Unknown commutative SCEV type!");
6928       }
6929     }
6930     // If we got here, all operands are loop invariant.
6931     return Comm;
6932   }
6933 
6934   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6935     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6936     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6937     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6938       return Div;   // must be loop invariant
6939     return getUDivExpr(LHS, RHS);
6940   }
6941 
6942   // If this is a loop recurrence for a loop that does not contain L, then we
6943   // are dealing with the final value computed by the loop.
6944   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6945     // First, attempt to evaluate each operand.
6946     // Avoid performing the look-up in the common case where the specified
6947     // expression has no loop-variant portions.
6948     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6949       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6950       if (OpAtScope == AddRec->getOperand(i))
6951         continue;
6952 
6953       // Okay, at least one of these operands is loop variant but might be
6954       // foldable.  Build a new instance of the folded commutative expression.
6955       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6956                                           AddRec->op_begin()+i);
6957       NewOps.push_back(OpAtScope);
6958       for (++i; i != e; ++i)
6959         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6960 
6961       const SCEV *FoldedRec =
6962         getAddRecExpr(NewOps, AddRec->getLoop(),
6963                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6964       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6965       // The addrec may be folded to a nonrecurrence, for example, if the
6966       // induction variable is multiplied by zero after constant folding. Go
6967       // ahead and return the folded value.
6968       if (!AddRec)
6969         return FoldedRec;
6970       break;
6971     }
6972 
6973     // If the scope is outside the addrec's loop, evaluate it by using the
6974     // loop exit value of the addrec.
6975     if (!AddRec->getLoop()->contains(L)) {
6976       // To evaluate this recurrence, we need to know how many times the AddRec
6977       // loop iterates.  Compute this now.
6978       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6979       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6980 
6981       // Then, evaluate the AddRec.
6982       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6983     }
6984 
6985     return AddRec;
6986   }
6987 
6988   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6989     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6990     if (Op == Cast->getOperand())
6991       return Cast;  // must be loop invariant
6992     return getZeroExtendExpr(Op, Cast->getType());
6993   }
6994 
6995   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6996     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6997     if (Op == Cast->getOperand())
6998       return Cast;  // must be loop invariant
6999     return getSignExtendExpr(Op, Cast->getType());
7000   }
7001 
7002   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
7003     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7004     if (Op == Cast->getOperand())
7005       return Cast;  // must be loop invariant
7006     return getTruncateExpr(Op, Cast->getType());
7007   }
7008 
7009   llvm_unreachable("Unknown SCEV type!");
7010 }
7011 
7012 /// getSCEVAtScope - This is a convenience function which does
7013 /// getSCEVAtScope(getSCEV(V), L).
7014 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
7015   return getSCEVAtScope(getSCEV(V), L);
7016 }
7017 
7018 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
7019 /// following equation:
7020 ///
7021 ///     A * X = B (mod N)
7022 ///
7023 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7024 /// A and B isn't important.
7025 ///
7026 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
7027 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
7028                                                ScalarEvolution &SE) {
7029   uint32_t BW = A.getBitWidth();
7030   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
7031   assert(A != 0 && "A must be non-zero.");
7032 
7033   // 1. D = gcd(A, N)
7034   //
7035   // The gcd of A and N may have only one prime factor: 2. The number of
7036   // trailing zeros in A is its multiplicity
7037   uint32_t Mult2 = A.countTrailingZeros();
7038   // D = 2^Mult2
7039 
7040   // 2. Check if B is divisible by D.
7041   //
7042   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7043   // is not less than multiplicity of this prime factor for D.
7044   if (B.countTrailingZeros() < Mult2)
7045     return SE.getCouldNotCompute();
7046 
7047   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7048   // modulo (N / D).
7049   //
7050   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
7051   // bit width during computations.
7052   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
7053   APInt Mod(BW + 1, 0);
7054   Mod.setBit(BW - Mult2);  // Mod = N / D
7055   APInt I = AD.multiplicativeInverse(Mod);
7056 
7057   // 4. Compute the minimum unsigned root of the equation:
7058   // I * (B / D) mod (N / D)
7059   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
7060 
7061   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
7062   // bits.
7063   return SE.getConstant(Result.trunc(BW));
7064 }
7065 
7066 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
7067 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
7068 /// might be the same) or two SCEVCouldNotCompute objects.
7069 ///
7070 static std::pair<const SCEV *,const SCEV *>
7071 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7072   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7073   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7074   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7075   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7076 
7077   // We currently can only solve this if the coefficients are constants.
7078   if (!LC || !MC || !NC) {
7079     const SCEV *CNC = SE.getCouldNotCompute();
7080     return {CNC, CNC};
7081   }
7082 
7083   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7084   const APInt &L = LC->getAPInt();
7085   const APInt &M = MC->getAPInt();
7086   const APInt &N = NC->getAPInt();
7087   APInt Two(BitWidth, 2);
7088   APInt Four(BitWidth, 4);
7089 
7090   {
7091     using namespace APIntOps;
7092     const APInt& C = L;
7093     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7094     // The B coefficient is M-N/2
7095     APInt B(M);
7096     B -= sdiv(N,Two);
7097 
7098     // The A coefficient is N/2
7099     APInt A(N.sdiv(Two));
7100 
7101     // Compute the B^2-4ac term.
7102     APInt SqrtTerm(B);
7103     SqrtTerm *= B;
7104     SqrtTerm -= Four * (A * C);
7105 
7106     if (SqrtTerm.isNegative()) {
7107       // The loop is provably infinite.
7108       const SCEV *CNC = SE.getCouldNotCompute();
7109       return {CNC, CNC};
7110     }
7111 
7112     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7113     // integer value or else APInt::sqrt() will assert.
7114     APInt SqrtVal(SqrtTerm.sqrt());
7115 
7116     // Compute the two solutions for the quadratic formula.
7117     // The divisions must be performed as signed divisions.
7118     APInt NegB(-B);
7119     APInt TwoA(A << 1);
7120     if (TwoA.isMinValue()) {
7121       const SCEV *CNC = SE.getCouldNotCompute();
7122       return {CNC, CNC};
7123     }
7124 
7125     LLVMContext &Context = SE.getContext();
7126 
7127     ConstantInt *Solution1 =
7128       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7129     ConstantInt *Solution2 =
7130       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7131 
7132     return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
7133   } // end APIntOps namespace
7134 }
7135 
7136 /// HowFarToZero - Return the number of times a backedge comparing the specified
7137 /// value to zero will execute.  If not computable, return CouldNotCompute.
7138 ///
7139 /// This is only used for loops with a "x != y" exit test. The exit condition is
7140 /// now expressed as a single expression, V = x-y. So the exit test is
7141 /// effectively V != 0.  We know and take advantage of the fact that this
7142 /// expression only being used in a comparison by zero context.
7143 ScalarEvolution::ExitLimit
7144 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7145                               bool AllowPredicates) {
7146   SCEVUnionPredicate P;
7147   // If the value is a constant
7148   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7149     // If the value is already zero, the branch will execute zero times.
7150     if (C->getValue()->isZero()) return C;
7151     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7152   }
7153 
7154   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7155   if (!AddRec && AllowPredicates)
7156     // Try to make this an AddRec using runtime tests, in the first X
7157     // iterations of this loop, where X is the SCEV expression found by the
7158     // algorithm below.
7159     AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7160 
7161   if (!AddRec || AddRec->getLoop() != L)
7162     return getCouldNotCompute();
7163 
7164   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7165   // the quadratic equation to solve it.
7166   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7167     std::pair<const SCEV *,const SCEV *> Roots =
7168       SolveQuadraticEquation(AddRec, *this);
7169     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7170     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7171     if (R1 && R2) {
7172       // Pick the smallest positive root value.
7173       if (ConstantInt *CB =
7174           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
7175                                                       R1->getValue(),
7176                                                       R2->getValue()))) {
7177         if (!CB->getZExtValue())
7178           std::swap(R1, R2);   // R1 is the minimum root now.
7179 
7180         // We can only use this value if the chrec ends up with an exact zero
7181         // value at this index.  When solving for "X*X != 5", for example, we
7182         // should not accept a root of 2.
7183         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7184         if (Val->isZero())
7185           return ExitLimit(R1, R1, P); // We found a quadratic root!
7186       }
7187     }
7188     return getCouldNotCompute();
7189   }
7190 
7191   // Otherwise we can only handle this if it is affine.
7192   if (!AddRec->isAffine())
7193     return getCouldNotCompute();
7194 
7195   // If this is an affine expression, the execution count of this branch is
7196   // the minimum unsigned root of the following equation:
7197   //
7198   //     Start + Step*N = 0 (mod 2^BW)
7199   //
7200   // equivalent to:
7201   //
7202   //             Step*N = -Start (mod 2^BW)
7203   //
7204   // where BW is the common bit width of Start and Step.
7205 
7206   // Get the initial value for the loop.
7207   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7208   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7209 
7210   // For now we handle only constant steps.
7211   //
7212   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7213   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7214   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7215   // We have not yet seen any such cases.
7216   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7217   if (!StepC || StepC->getValue()->equalsInt(0))
7218     return getCouldNotCompute();
7219 
7220   // For positive steps (counting up until unsigned overflow):
7221   //   N = -Start/Step (as unsigned)
7222   // For negative steps (counting down to zero):
7223   //   N = Start/-Step
7224   // First compute the unsigned distance from zero in the direction of Step.
7225   bool CountDown = StepC->getAPInt().isNegative();
7226   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7227 
7228   // Handle unitary steps, which cannot wraparound.
7229   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7230   //   N = Distance (as unsigned)
7231   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7232     ConstantRange CR = getUnsignedRange(Start);
7233     const SCEV *MaxBECount;
7234     if (!CountDown && CR.getUnsignedMin().isMinValue())
7235       // When counting up, the worst starting value is 1, not 0.
7236       MaxBECount = CR.getUnsignedMax().isMinValue()
7237         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7238         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7239     else
7240       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7241                                          : -CR.getUnsignedMin());
7242     return ExitLimit(Distance, MaxBECount, P);
7243   }
7244 
7245   // As a special case, handle the instance where Step is a positive power of
7246   // two. In this case, determining whether Step divides Distance evenly can be
7247   // done by counting and comparing the number of trailing zeros of Step and
7248   // Distance.
7249   if (!CountDown) {
7250     const APInt &StepV = StepC->getAPInt();
7251     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7252     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7253     // case is not handled as this code is guarded by !CountDown.
7254     if (StepV.isPowerOf2() &&
7255         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7256       // Here we've constrained the equation to be of the form
7257       //
7258       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7259       //
7260       // where we're operating on a W bit wide integer domain and k is
7261       // non-negative.  The smallest unsigned solution for X is the trip count.
7262       //
7263       // (0) is equivalent to:
7264       //
7265       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7266       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7267       // <=>  2^k * Distance' - X = L * 2^(W - N)
7268       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7269       //
7270       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7271       // by 2^(W - N).
7272       //
7273       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7274       //
7275       // E.g. say we're solving
7276       //
7277       //   2 * Val = 2 * X  (in i8)   ... (3)
7278       //
7279       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7280       //
7281       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7282       // necessarily the smallest unsigned value of X that satisfies (3).
7283       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7284       // is i8 1, not i8 -127
7285 
7286       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7287 
7288       // Since SCEV does not have a URem node, we construct one using a truncate
7289       // and a zero extend.
7290 
7291       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7292       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7293       auto *WideTy = Distance->getType();
7294 
7295       const SCEV *Limit =
7296           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7297       return ExitLimit(Limit, Limit, P);
7298     }
7299   }
7300 
7301   // If the condition controls loop exit (the loop exits only if the expression
7302   // is true) and the addition is no-wrap we can use unsigned divide to
7303   // compute the backedge count.  In this case, the step may not divide the
7304   // distance, but we don't care because if the condition is "missed" the loop
7305   // will have undefined behavior due to wrapping.
7306   if (ControlsExit && AddRec->hasNoSelfWrap()) {
7307     const SCEV *Exact =
7308         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7309     return ExitLimit(Exact, Exact, P);
7310   }
7311 
7312   // Then, try to solve the above equation provided that Start is constant.
7313   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7314     const SCEV *E = SolveLinEquationWithOverflow(
7315         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7316     return ExitLimit(E, E, P);
7317   }
7318   return getCouldNotCompute();
7319 }
7320 
7321 /// HowFarToNonZero - Return the number of times a backedge checking the
7322 /// specified value for nonzero will execute.  If not computable, return
7323 /// CouldNotCompute
7324 ScalarEvolution::ExitLimit
7325 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
7326   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7327   // handle them yet except for the trivial case.  This could be expanded in the
7328   // future as needed.
7329 
7330   // If the value is a constant, check to see if it is known to be non-zero
7331   // already.  If so, the backedge will execute zero times.
7332   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7333     if (!C->getValue()->isNullValue())
7334       return getZero(C->getType());
7335     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7336   }
7337 
7338   // We could implement others, but I really doubt anyone writes loops like
7339   // this, and if they did, they would already be constant folded.
7340   return getCouldNotCompute();
7341 }
7342 
7343 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
7344 /// (which may not be an immediate predecessor) which has exactly one
7345 /// successor from which BB is reachable, or null if no such block is
7346 /// found.
7347 ///
7348 std::pair<BasicBlock *, BasicBlock *>
7349 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7350   // If the block has a unique predecessor, then there is no path from the
7351   // predecessor to the block that does not go through the direct edge
7352   // from the predecessor to the block.
7353   if (BasicBlock *Pred = BB->getSinglePredecessor())
7354     return {Pred, BB};
7355 
7356   // A loop's header is defined to be a block that dominates the loop.
7357   // If the header has a unique predecessor outside the loop, it must be
7358   // a block that has exactly one successor that can reach the loop.
7359   if (Loop *L = LI.getLoopFor(BB))
7360     return {L->getLoopPredecessor(), L->getHeader()};
7361 
7362   return {nullptr, nullptr};
7363 }
7364 
7365 /// HasSameValue - SCEV structural equivalence is usually sufficient for
7366 /// testing whether two expressions are equal, however for the purposes of
7367 /// looking for a condition guarding a loop, it can be useful to be a little
7368 /// more general, since a front-end may have replicated the controlling
7369 /// expression.
7370 ///
7371 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7372   // Quick check to see if they are the same SCEV.
7373   if (A == B) return true;
7374 
7375   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7376     // Not all instructions that are "identical" compute the same value.  For
7377     // instance, two distinct alloca instructions allocating the same type are
7378     // identical and do not read memory; but compute distinct values.
7379     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7380   };
7381 
7382   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7383   // two different instructions with the same value. Check for this case.
7384   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7385     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7386       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7387         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7388           if (ComputesEqualValues(AI, BI))
7389             return true;
7390 
7391   // Otherwise assume they may have a different value.
7392   return false;
7393 }
7394 
7395 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
7396 /// predicate Pred. Return true iff any changes were made.
7397 ///
7398 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7399                                            const SCEV *&LHS, const SCEV *&RHS,
7400                                            unsigned Depth) {
7401   bool Changed = false;
7402 
7403   // If we hit the max recursion limit bail out.
7404   if (Depth >= 3)
7405     return false;
7406 
7407   // Canonicalize a constant to the right side.
7408   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7409     // Check for both operands constant.
7410     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7411       if (ConstantExpr::getICmp(Pred,
7412                                 LHSC->getValue(),
7413                                 RHSC->getValue())->isNullValue())
7414         goto trivially_false;
7415       else
7416         goto trivially_true;
7417     }
7418     // Otherwise swap the operands to put the constant on the right.
7419     std::swap(LHS, RHS);
7420     Pred = ICmpInst::getSwappedPredicate(Pred);
7421     Changed = true;
7422   }
7423 
7424   // If we're comparing an addrec with a value which is loop-invariant in the
7425   // addrec's loop, put the addrec on the left. Also make a dominance check,
7426   // as both operands could be addrecs loop-invariant in each other's loop.
7427   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7428     const Loop *L = AR->getLoop();
7429     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7430       std::swap(LHS, RHS);
7431       Pred = ICmpInst::getSwappedPredicate(Pred);
7432       Changed = true;
7433     }
7434   }
7435 
7436   // If there's a constant operand, canonicalize comparisons with boundary
7437   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7438   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7439     const APInt &RA = RC->getAPInt();
7440     switch (Pred) {
7441     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7442     case ICmpInst::ICMP_EQ:
7443     case ICmpInst::ICMP_NE:
7444       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7445       if (!RA)
7446         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7447           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7448             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7449                 ME->getOperand(0)->isAllOnesValue()) {
7450               RHS = AE->getOperand(1);
7451               LHS = ME->getOperand(1);
7452               Changed = true;
7453             }
7454       break;
7455     case ICmpInst::ICMP_UGE:
7456       if ((RA - 1).isMinValue()) {
7457         Pred = ICmpInst::ICMP_NE;
7458         RHS = getConstant(RA - 1);
7459         Changed = true;
7460         break;
7461       }
7462       if (RA.isMaxValue()) {
7463         Pred = ICmpInst::ICMP_EQ;
7464         Changed = true;
7465         break;
7466       }
7467       if (RA.isMinValue()) goto trivially_true;
7468 
7469       Pred = ICmpInst::ICMP_UGT;
7470       RHS = getConstant(RA - 1);
7471       Changed = true;
7472       break;
7473     case ICmpInst::ICMP_ULE:
7474       if ((RA + 1).isMaxValue()) {
7475         Pred = ICmpInst::ICMP_NE;
7476         RHS = getConstant(RA + 1);
7477         Changed = true;
7478         break;
7479       }
7480       if (RA.isMinValue()) {
7481         Pred = ICmpInst::ICMP_EQ;
7482         Changed = true;
7483         break;
7484       }
7485       if (RA.isMaxValue()) goto trivially_true;
7486 
7487       Pred = ICmpInst::ICMP_ULT;
7488       RHS = getConstant(RA + 1);
7489       Changed = true;
7490       break;
7491     case ICmpInst::ICMP_SGE:
7492       if ((RA - 1).isMinSignedValue()) {
7493         Pred = ICmpInst::ICMP_NE;
7494         RHS = getConstant(RA - 1);
7495         Changed = true;
7496         break;
7497       }
7498       if (RA.isMaxSignedValue()) {
7499         Pred = ICmpInst::ICMP_EQ;
7500         Changed = true;
7501         break;
7502       }
7503       if (RA.isMinSignedValue()) goto trivially_true;
7504 
7505       Pred = ICmpInst::ICMP_SGT;
7506       RHS = getConstant(RA - 1);
7507       Changed = true;
7508       break;
7509     case ICmpInst::ICMP_SLE:
7510       if ((RA + 1).isMaxSignedValue()) {
7511         Pred = ICmpInst::ICMP_NE;
7512         RHS = getConstant(RA + 1);
7513         Changed = true;
7514         break;
7515       }
7516       if (RA.isMinSignedValue()) {
7517         Pred = ICmpInst::ICMP_EQ;
7518         Changed = true;
7519         break;
7520       }
7521       if (RA.isMaxSignedValue()) goto trivially_true;
7522 
7523       Pred = ICmpInst::ICMP_SLT;
7524       RHS = getConstant(RA + 1);
7525       Changed = true;
7526       break;
7527     case ICmpInst::ICMP_UGT:
7528       if (RA.isMinValue()) {
7529         Pred = ICmpInst::ICMP_NE;
7530         Changed = true;
7531         break;
7532       }
7533       if ((RA + 1).isMaxValue()) {
7534         Pred = ICmpInst::ICMP_EQ;
7535         RHS = getConstant(RA + 1);
7536         Changed = true;
7537         break;
7538       }
7539       if (RA.isMaxValue()) goto trivially_false;
7540       break;
7541     case ICmpInst::ICMP_ULT:
7542       if (RA.isMaxValue()) {
7543         Pred = ICmpInst::ICMP_NE;
7544         Changed = true;
7545         break;
7546       }
7547       if ((RA - 1).isMinValue()) {
7548         Pred = ICmpInst::ICMP_EQ;
7549         RHS = getConstant(RA - 1);
7550         Changed = true;
7551         break;
7552       }
7553       if (RA.isMinValue()) goto trivially_false;
7554       break;
7555     case ICmpInst::ICMP_SGT:
7556       if (RA.isMinSignedValue()) {
7557         Pred = ICmpInst::ICMP_NE;
7558         Changed = true;
7559         break;
7560       }
7561       if ((RA + 1).isMaxSignedValue()) {
7562         Pred = ICmpInst::ICMP_EQ;
7563         RHS = getConstant(RA + 1);
7564         Changed = true;
7565         break;
7566       }
7567       if (RA.isMaxSignedValue()) goto trivially_false;
7568       break;
7569     case ICmpInst::ICMP_SLT:
7570       if (RA.isMaxSignedValue()) {
7571         Pred = ICmpInst::ICMP_NE;
7572         Changed = true;
7573         break;
7574       }
7575       if ((RA - 1).isMinSignedValue()) {
7576        Pred = ICmpInst::ICMP_EQ;
7577        RHS = getConstant(RA - 1);
7578         Changed = true;
7579        break;
7580       }
7581       if (RA.isMinSignedValue()) goto trivially_false;
7582       break;
7583     }
7584   }
7585 
7586   // Check for obvious equality.
7587   if (HasSameValue(LHS, RHS)) {
7588     if (ICmpInst::isTrueWhenEqual(Pred))
7589       goto trivially_true;
7590     if (ICmpInst::isFalseWhenEqual(Pred))
7591       goto trivially_false;
7592   }
7593 
7594   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7595   // adding or subtracting 1 from one of the operands.
7596   switch (Pred) {
7597   case ICmpInst::ICMP_SLE:
7598     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7599       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7600                        SCEV::FlagNSW);
7601       Pred = ICmpInst::ICMP_SLT;
7602       Changed = true;
7603     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7604       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7605                        SCEV::FlagNSW);
7606       Pred = ICmpInst::ICMP_SLT;
7607       Changed = true;
7608     }
7609     break;
7610   case ICmpInst::ICMP_SGE:
7611     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7612       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7613                        SCEV::FlagNSW);
7614       Pred = ICmpInst::ICMP_SGT;
7615       Changed = true;
7616     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7617       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7618                        SCEV::FlagNSW);
7619       Pred = ICmpInst::ICMP_SGT;
7620       Changed = true;
7621     }
7622     break;
7623   case ICmpInst::ICMP_ULE:
7624     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7625       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7626                        SCEV::FlagNUW);
7627       Pred = ICmpInst::ICMP_ULT;
7628       Changed = true;
7629     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7630       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7631       Pred = ICmpInst::ICMP_ULT;
7632       Changed = true;
7633     }
7634     break;
7635   case ICmpInst::ICMP_UGE:
7636     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7637       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7638       Pred = ICmpInst::ICMP_UGT;
7639       Changed = true;
7640     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7641       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7642                        SCEV::FlagNUW);
7643       Pred = ICmpInst::ICMP_UGT;
7644       Changed = true;
7645     }
7646     break;
7647   default:
7648     break;
7649   }
7650 
7651   // TODO: More simplifications are possible here.
7652 
7653   // Recursively simplify until we either hit a recursion limit or nothing
7654   // changes.
7655   if (Changed)
7656     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7657 
7658   return Changed;
7659 
7660 trivially_true:
7661   // Return 0 == 0.
7662   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7663   Pred = ICmpInst::ICMP_EQ;
7664   return true;
7665 
7666 trivially_false:
7667   // Return 0 != 0.
7668   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7669   Pred = ICmpInst::ICMP_NE;
7670   return true;
7671 }
7672 
7673 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7674   return getSignedRange(S).getSignedMax().isNegative();
7675 }
7676 
7677 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7678   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7679 }
7680 
7681 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7682   return !getSignedRange(S).getSignedMin().isNegative();
7683 }
7684 
7685 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7686   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7687 }
7688 
7689 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7690   return isKnownNegative(S) || isKnownPositive(S);
7691 }
7692 
7693 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7694                                        const SCEV *LHS, const SCEV *RHS) {
7695   // Canonicalize the inputs first.
7696   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7697 
7698   // If LHS or RHS is an addrec, check to see if the condition is true in
7699   // every iteration of the loop.
7700   // If LHS and RHS are both addrec, both conditions must be true in
7701   // every iteration of the loop.
7702   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7703   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7704   bool LeftGuarded = false;
7705   bool RightGuarded = false;
7706   if (LAR) {
7707     const Loop *L = LAR->getLoop();
7708     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7709         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7710       if (!RAR) return true;
7711       LeftGuarded = true;
7712     }
7713   }
7714   if (RAR) {
7715     const Loop *L = RAR->getLoop();
7716     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7717         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7718       if (!LAR) return true;
7719       RightGuarded = true;
7720     }
7721   }
7722   if (LeftGuarded && RightGuarded)
7723     return true;
7724 
7725   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7726     return true;
7727 
7728   // Otherwise see what can be done with known constant ranges.
7729   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7730 }
7731 
7732 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7733                                            ICmpInst::Predicate Pred,
7734                                            bool &Increasing) {
7735   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7736 
7737 #ifndef NDEBUG
7738   // Verify an invariant: inverting the predicate should turn a monotonically
7739   // increasing change to a monotonically decreasing one, and vice versa.
7740   bool IncreasingSwapped;
7741   bool ResultSwapped = isMonotonicPredicateImpl(
7742       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7743 
7744   assert(Result == ResultSwapped && "should be able to analyze both!");
7745   if (ResultSwapped)
7746     assert(Increasing == !IncreasingSwapped &&
7747            "monotonicity should flip as we flip the predicate");
7748 #endif
7749 
7750   return Result;
7751 }
7752 
7753 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7754                                                ICmpInst::Predicate Pred,
7755                                                bool &Increasing) {
7756 
7757   // A zero step value for LHS means the induction variable is essentially a
7758   // loop invariant value. We don't really depend on the predicate actually
7759   // flipping from false to true (for increasing predicates, and the other way
7760   // around for decreasing predicates), all we care about is that *if* the
7761   // predicate changes then it only changes from false to true.
7762   //
7763   // A zero step value in itself is not very useful, but there may be places
7764   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7765   // as general as possible.
7766 
7767   switch (Pred) {
7768   default:
7769     return false; // Conservative answer
7770 
7771   case ICmpInst::ICMP_UGT:
7772   case ICmpInst::ICMP_UGE:
7773   case ICmpInst::ICMP_ULT:
7774   case ICmpInst::ICMP_ULE:
7775     if (!LHS->hasNoUnsignedWrap())
7776       return false;
7777 
7778     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7779     return true;
7780 
7781   case ICmpInst::ICMP_SGT:
7782   case ICmpInst::ICMP_SGE:
7783   case ICmpInst::ICMP_SLT:
7784   case ICmpInst::ICMP_SLE: {
7785     if (!LHS->hasNoSignedWrap())
7786       return false;
7787 
7788     const SCEV *Step = LHS->getStepRecurrence(*this);
7789 
7790     if (isKnownNonNegative(Step)) {
7791       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7792       return true;
7793     }
7794 
7795     if (isKnownNonPositive(Step)) {
7796       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7797       return true;
7798     }
7799 
7800     return false;
7801   }
7802 
7803   }
7804 
7805   llvm_unreachable("switch has default clause!");
7806 }
7807 
7808 bool ScalarEvolution::isLoopInvariantPredicate(
7809     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7810     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7811     const SCEV *&InvariantRHS) {
7812 
7813   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7814   if (!isLoopInvariant(RHS, L)) {
7815     if (!isLoopInvariant(LHS, L))
7816       return false;
7817 
7818     std::swap(LHS, RHS);
7819     Pred = ICmpInst::getSwappedPredicate(Pred);
7820   }
7821 
7822   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7823   if (!ArLHS || ArLHS->getLoop() != L)
7824     return false;
7825 
7826   bool Increasing;
7827   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7828     return false;
7829 
7830   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7831   // true as the loop iterates, and the backedge is control dependent on
7832   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7833   //
7834   //   * if the predicate was false in the first iteration then the predicate
7835   //     is never evaluated again, since the loop exits without taking the
7836   //     backedge.
7837   //   * if the predicate was true in the first iteration then it will
7838   //     continue to be true for all future iterations since it is
7839   //     monotonically increasing.
7840   //
7841   // For both the above possibilities, we can replace the loop varying
7842   // predicate with its value on the first iteration of the loop (which is
7843   // loop invariant).
7844   //
7845   // A similar reasoning applies for a monotonically decreasing predicate, by
7846   // replacing true with false and false with true in the above two bullets.
7847 
7848   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7849 
7850   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7851     return false;
7852 
7853   InvariantPred = Pred;
7854   InvariantLHS = ArLHS->getStart();
7855   InvariantRHS = RHS;
7856   return true;
7857 }
7858 
7859 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7860     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7861   if (HasSameValue(LHS, RHS))
7862     return ICmpInst::isTrueWhenEqual(Pred);
7863 
7864   // This code is split out from isKnownPredicate because it is called from
7865   // within isLoopEntryGuardedByCond.
7866 
7867   auto CheckRanges =
7868       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7869     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7870         .contains(RangeLHS);
7871   };
7872 
7873   // The check at the top of the function catches the case where the values are
7874   // known to be equal.
7875   if (Pred == CmpInst::ICMP_EQ)
7876     return false;
7877 
7878   if (Pred == CmpInst::ICMP_NE)
7879     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7880            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7881            isKnownNonZero(getMinusSCEV(LHS, RHS));
7882 
7883   if (CmpInst::isSigned(Pred))
7884     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7885 
7886   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7887 }
7888 
7889 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7890                                                     const SCEV *LHS,
7891                                                     const SCEV *RHS) {
7892 
7893   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7894   // Return Y via OutY.
7895   auto MatchBinaryAddToConst =
7896       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7897              SCEV::NoWrapFlags ExpectedFlags) {
7898     const SCEV *NonConstOp, *ConstOp;
7899     SCEV::NoWrapFlags FlagsPresent;
7900 
7901     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7902         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7903       return false;
7904 
7905     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7906     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7907   };
7908 
7909   APInt C;
7910 
7911   switch (Pred) {
7912   default:
7913     break;
7914 
7915   case ICmpInst::ICMP_SGE:
7916     std::swap(LHS, RHS);
7917   case ICmpInst::ICMP_SLE:
7918     // X s<= (X + C)<nsw> if C >= 0
7919     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7920       return true;
7921 
7922     // (X + C)<nsw> s<= X if C <= 0
7923     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7924         !C.isStrictlyPositive())
7925       return true;
7926     break;
7927 
7928   case ICmpInst::ICMP_SGT:
7929     std::swap(LHS, RHS);
7930   case ICmpInst::ICMP_SLT:
7931     // X s< (X + C)<nsw> if C > 0
7932     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7933         C.isStrictlyPositive())
7934       return true;
7935 
7936     // (X + C)<nsw> s< X if C < 0
7937     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7938       return true;
7939     break;
7940   }
7941 
7942   return false;
7943 }
7944 
7945 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7946                                                    const SCEV *LHS,
7947                                                    const SCEV *RHS) {
7948   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7949     return false;
7950 
7951   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7952   // the stack can result in exponential time complexity.
7953   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7954 
7955   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7956   //
7957   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7958   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7959   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7960   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7961   // use isKnownPredicate later if needed.
7962   return isKnownNonNegative(RHS) &&
7963          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7964          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7965 }
7966 
7967 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7968                                         ICmpInst::Predicate Pred,
7969                                         const SCEV *LHS, const SCEV *RHS) {
7970   // No need to even try if we know the module has no guards.
7971   if (!HasGuards)
7972     return false;
7973 
7974   return any_of(*BB, [&](Instruction &I) {
7975     using namespace llvm::PatternMatch;
7976 
7977     Value *Condition;
7978     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7979                          m_Value(Condition))) &&
7980            isImpliedCond(Pred, LHS, RHS, Condition, false);
7981   });
7982 }
7983 
7984 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7985 /// protected by a conditional between LHS and RHS.  This is used to
7986 /// to eliminate casts.
7987 bool
7988 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7989                                              ICmpInst::Predicate Pred,
7990                                              const SCEV *LHS, const SCEV *RHS) {
7991   // Interpret a null as meaning no loop, where there is obviously no guard
7992   // (interprocedural conditions notwithstanding).
7993   if (!L) return true;
7994 
7995   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7996     return true;
7997 
7998   BasicBlock *Latch = L->getLoopLatch();
7999   if (!Latch)
8000     return false;
8001 
8002   BranchInst *LoopContinuePredicate =
8003     dyn_cast<BranchInst>(Latch->getTerminator());
8004   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
8005       isImpliedCond(Pred, LHS, RHS,
8006                     LoopContinuePredicate->getCondition(),
8007                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
8008     return true;
8009 
8010   // We don't want more than one activation of the following loops on the stack
8011   // -- that can lead to O(n!) time complexity.
8012   if (WalkingBEDominatingConds)
8013     return false;
8014 
8015   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
8016 
8017   // See if we can exploit a trip count to prove the predicate.
8018   const auto &BETakenInfo = getBackedgeTakenInfo(L);
8019   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
8020   if (LatchBECount != getCouldNotCompute()) {
8021     // We know that Latch branches back to the loop header exactly
8022     // LatchBECount times.  This means the backdege condition at Latch is
8023     // equivalent to  "{0,+,1} u< LatchBECount".
8024     Type *Ty = LatchBECount->getType();
8025     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
8026     const SCEV *LoopCounter =
8027       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
8028     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
8029                       LatchBECount))
8030       return true;
8031   }
8032 
8033   // Check conditions due to any @llvm.assume intrinsics.
8034   for (auto &AssumeVH : AC.assumptions()) {
8035     if (!AssumeVH)
8036       continue;
8037     auto *CI = cast<CallInst>(AssumeVH);
8038     if (!DT.dominates(CI, Latch->getTerminator()))
8039       continue;
8040 
8041     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8042       return true;
8043   }
8044 
8045   // If the loop is not reachable from the entry block, we risk running into an
8046   // infinite loop as we walk up into the dom tree.  These loops do not matter
8047   // anyway, so we just return a conservative answer when we see them.
8048   if (!DT.isReachableFromEntry(L->getHeader()))
8049     return false;
8050 
8051   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
8052     return true;
8053 
8054   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
8055        DTN != HeaderDTN; DTN = DTN->getIDom()) {
8056 
8057     assert(DTN && "should reach the loop header before reaching the root!");
8058 
8059     BasicBlock *BB = DTN->getBlock();
8060     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
8061       return true;
8062 
8063     BasicBlock *PBB = BB->getSinglePredecessor();
8064     if (!PBB)
8065       continue;
8066 
8067     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
8068     if (!ContinuePredicate || !ContinuePredicate->isConditional())
8069       continue;
8070 
8071     Value *Condition = ContinuePredicate->getCondition();
8072 
8073     // If we have an edge `E` within the loop body that dominates the only
8074     // latch, the condition guarding `E` also guards the backedge.  This
8075     // reasoning works only for loops with a single latch.
8076 
8077     BasicBlockEdge DominatingEdge(PBB, BB);
8078     if (DominatingEdge.isSingleEdge()) {
8079       // We're constructively (and conservatively) enumerating edges within the
8080       // loop body that dominate the latch.  The dominator tree better agree
8081       // with us on this:
8082       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
8083 
8084       if (isImpliedCond(Pred, LHS, RHS, Condition,
8085                         BB != ContinuePredicate->getSuccessor(0)))
8086         return true;
8087     }
8088   }
8089 
8090   return false;
8091 }
8092 
8093 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
8094 /// by a conditional between LHS and RHS.  This is used to help avoid max
8095 /// expressions in loop trip counts, and to eliminate casts.
8096 bool
8097 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8098                                           ICmpInst::Predicate Pred,
8099                                           const SCEV *LHS, const SCEV *RHS) {
8100   // Interpret a null as meaning no loop, where there is obviously no guard
8101   // (interprocedural conditions notwithstanding).
8102   if (!L) return false;
8103 
8104   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8105     return true;
8106 
8107   // Starting at the loop predecessor, climb up the predecessor chain, as long
8108   // as there are predecessors that can be found that have unique successors
8109   // leading to the original header.
8110   for (std::pair<BasicBlock *, BasicBlock *>
8111          Pair(L->getLoopPredecessor(), L->getHeader());
8112        Pair.first;
8113        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8114 
8115     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8116       return true;
8117 
8118     BranchInst *LoopEntryPredicate =
8119       dyn_cast<BranchInst>(Pair.first->getTerminator());
8120     if (!LoopEntryPredicate ||
8121         LoopEntryPredicate->isUnconditional())
8122       continue;
8123 
8124     if (isImpliedCond(Pred, LHS, RHS,
8125                       LoopEntryPredicate->getCondition(),
8126                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8127       return true;
8128   }
8129 
8130   // Check conditions due to any @llvm.assume intrinsics.
8131   for (auto &AssumeVH : AC.assumptions()) {
8132     if (!AssumeVH)
8133       continue;
8134     auto *CI = cast<CallInst>(AssumeVH);
8135     if (!DT.dominates(CI, L->getHeader()))
8136       continue;
8137 
8138     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8139       return true;
8140   }
8141 
8142   return false;
8143 }
8144 
8145 namespace {
8146 /// RAII wrapper to prevent recursive application of isImpliedCond.
8147 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8148 /// currently evaluating isImpliedCond.
8149 struct MarkPendingLoopPredicate {
8150   Value *Cond;
8151   DenseSet<Value*> &LoopPreds;
8152   bool Pending;
8153 
8154   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8155     : Cond(C), LoopPreds(LP) {
8156     Pending = !LoopPreds.insert(Cond).second;
8157   }
8158   ~MarkPendingLoopPredicate() {
8159     if (!Pending)
8160       LoopPreds.erase(Cond);
8161   }
8162 };
8163 } // end anonymous namespace
8164 
8165 /// isImpliedCond - Test whether the condition described by Pred, LHS,
8166 /// and RHS is true whenever the given Cond value evaluates to true.
8167 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8168                                     const SCEV *LHS, const SCEV *RHS,
8169                                     Value *FoundCondValue,
8170                                     bool Inverse) {
8171   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8172   if (Mark.Pending)
8173     return false;
8174 
8175   // Recursively handle And and Or conditions.
8176   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8177     if (BO->getOpcode() == Instruction::And) {
8178       if (!Inverse)
8179         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8180                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8181     } else if (BO->getOpcode() == Instruction::Or) {
8182       if (Inverse)
8183         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8184                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8185     }
8186   }
8187 
8188   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8189   if (!ICI) return false;
8190 
8191   // Now that we found a conditional branch that dominates the loop or controls
8192   // the loop latch. Check to see if it is the comparison we are looking for.
8193   ICmpInst::Predicate FoundPred;
8194   if (Inverse)
8195     FoundPred = ICI->getInversePredicate();
8196   else
8197     FoundPred = ICI->getPredicate();
8198 
8199   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8200   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8201 
8202   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8203 }
8204 
8205 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8206                                     const SCEV *RHS,
8207                                     ICmpInst::Predicate FoundPred,
8208                                     const SCEV *FoundLHS,
8209                                     const SCEV *FoundRHS) {
8210   // Balance the types.
8211   if (getTypeSizeInBits(LHS->getType()) <
8212       getTypeSizeInBits(FoundLHS->getType())) {
8213     if (CmpInst::isSigned(Pred)) {
8214       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8215       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8216     } else {
8217       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8218       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8219     }
8220   } else if (getTypeSizeInBits(LHS->getType()) >
8221       getTypeSizeInBits(FoundLHS->getType())) {
8222     if (CmpInst::isSigned(FoundPred)) {
8223       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8224       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8225     } else {
8226       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8227       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8228     }
8229   }
8230 
8231   // Canonicalize the query to match the way instcombine will have
8232   // canonicalized the comparison.
8233   if (SimplifyICmpOperands(Pred, LHS, RHS))
8234     if (LHS == RHS)
8235       return CmpInst::isTrueWhenEqual(Pred);
8236   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8237     if (FoundLHS == FoundRHS)
8238       return CmpInst::isFalseWhenEqual(FoundPred);
8239 
8240   // Check to see if we can make the LHS or RHS match.
8241   if (LHS == FoundRHS || RHS == FoundLHS) {
8242     if (isa<SCEVConstant>(RHS)) {
8243       std::swap(FoundLHS, FoundRHS);
8244       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8245     } else {
8246       std::swap(LHS, RHS);
8247       Pred = ICmpInst::getSwappedPredicate(Pred);
8248     }
8249   }
8250 
8251   // Check whether the found predicate is the same as the desired predicate.
8252   if (FoundPred == Pred)
8253     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8254 
8255   // Check whether swapping the found predicate makes it the same as the
8256   // desired predicate.
8257   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8258     if (isa<SCEVConstant>(RHS))
8259       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8260     else
8261       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8262                                    RHS, LHS, FoundLHS, FoundRHS);
8263   }
8264 
8265   // Unsigned comparison is the same as signed comparison when both the operands
8266   // are non-negative.
8267   if (CmpInst::isUnsigned(FoundPred) &&
8268       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8269       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8270     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8271 
8272   // Check if we can make progress by sharpening ranges.
8273   if (FoundPred == ICmpInst::ICMP_NE &&
8274       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8275 
8276     const SCEVConstant *C = nullptr;
8277     const SCEV *V = nullptr;
8278 
8279     if (isa<SCEVConstant>(FoundLHS)) {
8280       C = cast<SCEVConstant>(FoundLHS);
8281       V = FoundRHS;
8282     } else {
8283       C = cast<SCEVConstant>(FoundRHS);
8284       V = FoundLHS;
8285     }
8286 
8287     // The guarding predicate tells us that C != V. If the known range
8288     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8289     // range we consider has to correspond to same signedness as the
8290     // predicate we're interested in folding.
8291 
8292     APInt Min = ICmpInst::isSigned(Pred) ?
8293         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8294 
8295     if (Min == C->getAPInt()) {
8296       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8297       // This is true even if (Min + 1) wraps around -- in case of
8298       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8299 
8300       APInt SharperMin = Min + 1;
8301 
8302       switch (Pred) {
8303         case ICmpInst::ICMP_SGE:
8304         case ICmpInst::ICMP_UGE:
8305           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8306           // RHS, we're done.
8307           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8308                                     getConstant(SharperMin)))
8309             return true;
8310 
8311         case ICmpInst::ICMP_SGT:
8312         case ICmpInst::ICMP_UGT:
8313           // We know from the range information that (V `Pred` Min ||
8314           // V == Min).  We know from the guarding condition that !(V
8315           // == Min).  This gives us
8316           //
8317           //       V `Pred` Min || V == Min && !(V == Min)
8318           //   =>  V `Pred` Min
8319           //
8320           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8321 
8322           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8323             return true;
8324 
8325         default:
8326           // No change
8327           break;
8328       }
8329     }
8330   }
8331 
8332   // Check whether the actual condition is beyond sufficient.
8333   if (FoundPred == ICmpInst::ICMP_EQ)
8334     if (ICmpInst::isTrueWhenEqual(Pred))
8335       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8336         return true;
8337   if (Pred == ICmpInst::ICMP_NE)
8338     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8339       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8340         return true;
8341 
8342   // Otherwise assume the worst.
8343   return false;
8344 }
8345 
8346 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8347                                      const SCEV *&L, const SCEV *&R,
8348                                      SCEV::NoWrapFlags &Flags) {
8349   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8350   if (!AE || AE->getNumOperands() != 2)
8351     return false;
8352 
8353   L = AE->getOperand(0);
8354   R = AE->getOperand(1);
8355   Flags = AE->getNoWrapFlags();
8356   return true;
8357 }
8358 
8359 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8360                                                 const SCEV *More,
8361                                                 APInt &C) {
8362   // We avoid subtracting expressions here because this function is usually
8363   // fairly deep in the call stack (i.e. is called many times).
8364 
8365   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8366     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8367     const auto *MAR = cast<SCEVAddRecExpr>(More);
8368 
8369     if (LAR->getLoop() != MAR->getLoop())
8370       return false;
8371 
8372     // We look at affine expressions only; not for correctness but to keep
8373     // getStepRecurrence cheap.
8374     if (!LAR->isAffine() || !MAR->isAffine())
8375       return false;
8376 
8377     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8378       return false;
8379 
8380     Less = LAR->getStart();
8381     More = MAR->getStart();
8382 
8383     // fall through
8384   }
8385 
8386   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8387     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8388     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8389     C = M - L;
8390     return true;
8391   }
8392 
8393   const SCEV *L, *R;
8394   SCEV::NoWrapFlags Flags;
8395   if (splitBinaryAdd(Less, L, R, Flags))
8396     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8397       if (R == More) {
8398         C = -(LC->getAPInt());
8399         return true;
8400       }
8401 
8402   if (splitBinaryAdd(More, L, R, Flags))
8403     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8404       if (R == Less) {
8405         C = LC->getAPInt();
8406         return true;
8407       }
8408 
8409   return false;
8410 }
8411 
8412 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8413     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8414     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8415   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8416     return false;
8417 
8418   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8419   if (!AddRecLHS)
8420     return false;
8421 
8422   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8423   if (!AddRecFoundLHS)
8424     return false;
8425 
8426   // We'd like to let SCEV reason about control dependencies, so we constrain
8427   // both the inequalities to be about add recurrences on the same loop.  This
8428   // way we can use isLoopEntryGuardedByCond later.
8429 
8430   const Loop *L = AddRecFoundLHS->getLoop();
8431   if (L != AddRecLHS->getLoop())
8432     return false;
8433 
8434   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8435   //
8436   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8437   //                                                                  ... (2)
8438   //
8439   // Informal proof for (2), assuming (1) [*]:
8440   //
8441   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8442   //
8443   // Then
8444   //
8445   //       FoundLHS s< FoundRHS s< INT_MIN - C
8446   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8447   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8448   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8449   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8450   // <=>  FoundLHS + C s< FoundRHS + C
8451   //
8452   // [*]: (1) can be proved by ruling out overflow.
8453   //
8454   // [**]: This can be proved by analyzing all the four possibilities:
8455   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8456   //    (A s>= 0, B s>= 0).
8457   //
8458   // Note:
8459   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8460   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8461   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8462   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8463   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8464   // C)".
8465 
8466   APInt LDiff, RDiff;
8467   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8468       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8469       LDiff != RDiff)
8470     return false;
8471 
8472   if (LDiff == 0)
8473     return true;
8474 
8475   APInt FoundRHSLimit;
8476 
8477   if (Pred == CmpInst::ICMP_ULT) {
8478     FoundRHSLimit = -RDiff;
8479   } else {
8480     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8481     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8482   }
8483 
8484   // Try to prove (1) or (2), as needed.
8485   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8486                                   getConstant(FoundRHSLimit));
8487 }
8488 
8489 /// isImpliedCondOperands - Test whether the condition described by Pred,
8490 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
8491 /// and FoundRHS is true.
8492 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8493                                             const SCEV *LHS, const SCEV *RHS,
8494                                             const SCEV *FoundLHS,
8495                                             const SCEV *FoundRHS) {
8496   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8497     return true;
8498 
8499   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8500     return true;
8501 
8502   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8503                                      FoundLHS, FoundRHS) ||
8504          // ~x < ~y --> x > y
8505          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8506                                      getNotSCEV(FoundRHS),
8507                                      getNotSCEV(FoundLHS));
8508 }
8509 
8510 
8511 /// If Expr computes ~A, return A else return nullptr
8512 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8513   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8514   if (!Add || Add->getNumOperands() != 2 ||
8515       !Add->getOperand(0)->isAllOnesValue())
8516     return nullptr;
8517 
8518   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8519   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8520       !AddRHS->getOperand(0)->isAllOnesValue())
8521     return nullptr;
8522 
8523   return AddRHS->getOperand(1);
8524 }
8525 
8526 
8527 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8528 template<typename MaxExprType>
8529 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8530                               const SCEV *Candidate) {
8531   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8532   if (!MaxExpr) return false;
8533 
8534   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8535 }
8536 
8537 
8538 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8539 template<typename MaxExprType>
8540 static bool IsMinConsistingOf(ScalarEvolution &SE,
8541                               const SCEV *MaybeMinExpr,
8542                               const SCEV *Candidate) {
8543   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8544   if (!MaybeMaxExpr)
8545     return false;
8546 
8547   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8548 }
8549 
8550 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8551                                            ICmpInst::Predicate Pred,
8552                                            const SCEV *LHS, const SCEV *RHS) {
8553 
8554   // If both sides are affine addrecs for the same loop, with equal
8555   // steps, and we know the recurrences don't wrap, then we only
8556   // need to check the predicate on the starting values.
8557 
8558   if (!ICmpInst::isRelational(Pred))
8559     return false;
8560 
8561   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8562   if (!LAR)
8563     return false;
8564   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8565   if (!RAR)
8566     return false;
8567   if (LAR->getLoop() != RAR->getLoop())
8568     return false;
8569   if (!LAR->isAffine() || !RAR->isAffine())
8570     return false;
8571 
8572   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8573     return false;
8574 
8575   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8576                          SCEV::FlagNSW : SCEV::FlagNUW;
8577   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8578     return false;
8579 
8580   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8581 }
8582 
8583 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8584 /// expression?
8585 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8586                                         ICmpInst::Predicate Pred,
8587                                         const SCEV *LHS, const SCEV *RHS) {
8588   switch (Pred) {
8589   default:
8590     return false;
8591 
8592   case ICmpInst::ICMP_SGE:
8593     std::swap(LHS, RHS);
8594     // fall through
8595   case ICmpInst::ICMP_SLE:
8596     return
8597       // min(A, ...) <= A
8598       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8599       // A <= max(A, ...)
8600       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8601 
8602   case ICmpInst::ICMP_UGE:
8603     std::swap(LHS, RHS);
8604     // fall through
8605   case ICmpInst::ICMP_ULE:
8606     return
8607       // min(A, ...) <= A
8608       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8609       // A <= max(A, ...)
8610       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8611   }
8612 
8613   llvm_unreachable("covered switch fell through?!");
8614 }
8615 
8616 /// isImpliedCondOperandsHelper - Test whether the condition described by
8617 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8618 /// FoundLHS, and FoundRHS is true.
8619 bool
8620 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8621                                              const SCEV *LHS, const SCEV *RHS,
8622                                              const SCEV *FoundLHS,
8623                                              const SCEV *FoundRHS) {
8624   auto IsKnownPredicateFull =
8625       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8626     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8627            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8628            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8629            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8630   };
8631 
8632   switch (Pred) {
8633   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8634   case ICmpInst::ICMP_EQ:
8635   case ICmpInst::ICMP_NE:
8636     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8637       return true;
8638     break;
8639   case ICmpInst::ICMP_SLT:
8640   case ICmpInst::ICMP_SLE:
8641     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8642         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8643       return true;
8644     break;
8645   case ICmpInst::ICMP_SGT:
8646   case ICmpInst::ICMP_SGE:
8647     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8648         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8649       return true;
8650     break;
8651   case ICmpInst::ICMP_ULT:
8652   case ICmpInst::ICMP_ULE:
8653     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8654         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8655       return true;
8656     break;
8657   case ICmpInst::ICMP_UGT:
8658   case ICmpInst::ICMP_UGE:
8659     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8660         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8661       return true;
8662     break;
8663   }
8664 
8665   return false;
8666 }
8667 
8668 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8669 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8670 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8671                                                      const SCEV *LHS,
8672                                                      const SCEV *RHS,
8673                                                      const SCEV *FoundLHS,
8674                                                      const SCEV *FoundRHS) {
8675   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8676     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8677     // reduce the compile time impact of this optimization.
8678     return false;
8679 
8680   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8681   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8682       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8683     return false;
8684 
8685   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8686 
8687   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8688   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8689   ConstantRange FoundLHSRange =
8690       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8691 
8692   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8693   // for `LHS`:
8694   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8695   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8696 
8697   // We can also compute the range of values for `LHS` that satisfy the
8698   // consequent, "`LHS` `Pred` `RHS`":
8699   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8700   ConstantRange SatisfyingLHSRange =
8701       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8702 
8703   // The antecedent implies the consequent if every value of `LHS` that
8704   // satisfies the antecedent also satisfies the consequent.
8705   return SatisfyingLHSRange.contains(LHSRange);
8706 }
8707 
8708 // Verify if an linear IV with positive stride can overflow when in a
8709 // less-than comparison, knowing the invariant term of the comparison, the
8710 // stride and the knowledge of NSW/NUW flags on the recurrence.
8711 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8712                                          bool IsSigned, bool NoWrap) {
8713   if (NoWrap) return false;
8714 
8715   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8716   const SCEV *One = getOne(Stride->getType());
8717 
8718   if (IsSigned) {
8719     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8720     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8721     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8722                                 .getSignedMax();
8723 
8724     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8725     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8726   }
8727 
8728   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8729   APInt MaxValue = APInt::getMaxValue(BitWidth);
8730   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8731                               .getUnsignedMax();
8732 
8733   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8734   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8735 }
8736 
8737 // Verify if an linear IV with negative stride can overflow when in a
8738 // greater-than comparison, knowing the invariant term of the comparison,
8739 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8740 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8741                                          bool IsSigned, bool NoWrap) {
8742   if (NoWrap) return false;
8743 
8744   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8745   const SCEV *One = getOne(Stride->getType());
8746 
8747   if (IsSigned) {
8748     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8749     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8750     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8751                                .getSignedMax();
8752 
8753     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8754     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8755   }
8756 
8757   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8758   APInt MinValue = APInt::getMinValue(BitWidth);
8759   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8760                             .getUnsignedMax();
8761 
8762   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8763   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8764 }
8765 
8766 // Compute the backedge taken count knowing the interval difference, the
8767 // stride and presence of the equality in the comparison.
8768 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8769                                             bool Equality) {
8770   const SCEV *One = getOne(Step->getType());
8771   Delta = Equality ? getAddExpr(Delta, Step)
8772                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8773   return getUDivExpr(Delta, Step);
8774 }
8775 
8776 /// HowManyLessThans - Return the number of times a backedge containing the
8777 /// specified less-than comparison will execute.  If not computable, return
8778 /// CouldNotCompute.
8779 ///
8780 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8781 /// the branch (loops exits only if condition is true). In this case, we can use
8782 /// NoWrapFlags to skip overflow checks.
8783 ScalarEvolution::ExitLimit
8784 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8785                                   const Loop *L, bool IsSigned,
8786                                   bool ControlsExit, bool AllowPredicates) {
8787   SCEVUnionPredicate P;
8788   // We handle only IV < Invariant
8789   if (!isLoopInvariant(RHS, L))
8790     return getCouldNotCompute();
8791 
8792   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8793   if (!IV && AllowPredicates)
8794     // Try to make this an AddRec using runtime tests, in the first X
8795     // iterations of this loop, where X is the SCEV expression found by the
8796     // algorithm below.
8797     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8798 
8799   // Avoid weird loops
8800   if (!IV || IV->getLoop() != L || !IV->isAffine())
8801     return getCouldNotCompute();
8802 
8803   bool NoWrap = ControlsExit &&
8804                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8805 
8806   const SCEV *Stride = IV->getStepRecurrence(*this);
8807 
8808   // Avoid negative or zero stride values
8809   if (!isKnownPositive(Stride))
8810     return getCouldNotCompute();
8811 
8812   // Avoid proven overflow cases: this will ensure that the backedge taken count
8813   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8814   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8815   // behaviors like the case of C language.
8816   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8817     return getCouldNotCompute();
8818 
8819   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8820                                       : ICmpInst::ICMP_ULT;
8821   const SCEV *Start = IV->getStart();
8822   const SCEV *End = RHS;
8823   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8824     const SCEV *Diff = getMinusSCEV(RHS, Start);
8825     // If we have NoWrap set, then we can assume that the increment won't
8826     // overflow, in which case if RHS - Start is a constant, we don't need to
8827     // do a max operation since we can just figure it out statically
8828     if (NoWrap && isa<SCEVConstant>(Diff)) {
8829       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8830       if (D.isNegative())
8831         End = Start;
8832     } else
8833       End = IsSigned ? getSMaxExpr(RHS, Start)
8834                      : getUMaxExpr(RHS, Start);
8835   }
8836 
8837   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8838 
8839   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8840                             : getUnsignedRange(Start).getUnsignedMin();
8841 
8842   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8843                              : getUnsignedRange(Stride).getUnsignedMin();
8844 
8845   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8846   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8847                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8848 
8849   // Although End can be a MAX expression we estimate MaxEnd considering only
8850   // the case End = RHS. This is safe because in the other case (End - Start)
8851   // is zero, leading to a zero maximum backedge taken count.
8852   APInt MaxEnd =
8853     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8854              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8855 
8856   const SCEV *MaxBECount;
8857   if (isa<SCEVConstant>(BECount))
8858     MaxBECount = BECount;
8859   else
8860     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8861                                 getConstant(MinStride), false);
8862 
8863   if (isa<SCEVCouldNotCompute>(MaxBECount))
8864     MaxBECount = BECount;
8865 
8866   return ExitLimit(BECount, MaxBECount, P);
8867 }
8868 
8869 ScalarEvolution::ExitLimit
8870 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8871                                      const Loop *L, bool IsSigned,
8872                                      bool ControlsExit, bool AllowPredicates) {
8873   SCEVUnionPredicate P;
8874   // We handle only IV > Invariant
8875   if (!isLoopInvariant(RHS, L))
8876     return getCouldNotCompute();
8877 
8878   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8879   if (!IV && AllowPredicates)
8880     // Try to make this an AddRec using runtime tests, in the first X
8881     // iterations of this loop, where X is the SCEV expression found by the
8882     // algorithm below.
8883     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8884 
8885   // Avoid weird loops
8886   if (!IV || IV->getLoop() != L || !IV->isAffine())
8887     return getCouldNotCompute();
8888 
8889   bool NoWrap = ControlsExit &&
8890                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8891 
8892   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8893 
8894   // Avoid negative or zero stride values
8895   if (!isKnownPositive(Stride))
8896     return getCouldNotCompute();
8897 
8898   // Avoid proven overflow cases: this will ensure that the backedge taken count
8899   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8900   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8901   // behaviors like the case of C language.
8902   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8903     return getCouldNotCompute();
8904 
8905   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8906                                       : ICmpInst::ICMP_UGT;
8907 
8908   const SCEV *Start = IV->getStart();
8909   const SCEV *End = RHS;
8910   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8911     const SCEV *Diff = getMinusSCEV(RHS, Start);
8912     // If we have NoWrap set, then we can assume that the increment won't
8913     // overflow, in which case if RHS - Start is a constant, we don't need to
8914     // do a max operation since we can just figure it out statically
8915     if (NoWrap && isa<SCEVConstant>(Diff)) {
8916       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8917       if (!D.isNegative())
8918         End = Start;
8919     } else
8920       End = IsSigned ? getSMinExpr(RHS, Start)
8921                      : getUMinExpr(RHS, Start);
8922   }
8923 
8924   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8925 
8926   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8927                             : getUnsignedRange(Start).getUnsignedMax();
8928 
8929   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8930                              : getUnsignedRange(Stride).getUnsignedMin();
8931 
8932   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8933   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8934                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8935 
8936   // Although End can be a MIN expression we estimate MinEnd considering only
8937   // the case End = RHS. This is safe because in the other case (Start - End)
8938   // is zero, leading to a zero maximum backedge taken count.
8939   APInt MinEnd =
8940     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8941              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8942 
8943 
8944   const SCEV *MaxBECount = getCouldNotCompute();
8945   if (isa<SCEVConstant>(BECount))
8946     MaxBECount = BECount;
8947   else
8948     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8949                                 getConstant(MinStride), false);
8950 
8951   if (isa<SCEVCouldNotCompute>(MaxBECount))
8952     MaxBECount = BECount;
8953 
8954   return ExitLimit(BECount, MaxBECount, P);
8955 }
8956 
8957 /// getNumIterationsInRange - Return the number of iterations of this loop that
8958 /// produce values in the specified constant range.  Another way of looking at
8959 /// this is that it returns the first iteration number where the value is not in
8960 /// the condition, thus computing the exit count. If the iteration count can't
8961 /// be computed, an instance of SCEVCouldNotCompute is returned.
8962 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8963                                                     ScalarEvolution &SE) const {
8964   if (Range.isFullSet())  // Infinite loop.
8965     return SE.getCouldNotCompute();
8966 
8967   // If the start is a non-zero constant, shift the range to simplify things.
8968   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8969     if (!SC->getValue()->isZero()) {
8970       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8971       Operands[0] = SE.getZero(SC->getType());
8972       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8973                                              getNoWrapFlags(FlagNW));
8974       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8975         return ShiftedAddRec->getNumIterationsInRange(
8976             Range.subtract(SC->getAPInt()), SE);
8977       // This is strange and shouldn't happen.
8978       return SE.getCouldNotCompute();
8979     }
8980 
8981   // The only time we can solve this is when we have all constant indices.
8982   // Otherwise, we cannot determine the overflow conditions.
8983   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8984     return SE.getCouldNotCompute();
8985 
8986   // Okay at this point we know that all elements of the chrec are constants and
8987   // that the start element is zero.
8988 
8989   // First check to see if the range contains zero.  If not, the first
8990   // iteration exits.
8991   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8992   if (!Range.contains(APInt(BitWidth, 0)))
8993     return SE.getZero(getType());
8994 
8995   if (isAffine()) {
8996     // If this is an affine expression then we have this situation:
8997     //   Solve {0,+,A} in Range  ===  Ax in Range
8998 
8999     // We know that zero is in the range.  If A is positive then we know that
9000     // the upper value of the range must be the first possible exit value.
9001     // If A is negative then the lower of the range is the last possible loop
9002     // value.  Also note that we already checked for a full range.
9003     APInt One(BitWidth,1);
9004     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
9005     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
9006 
9007     // The exit value should be (End+A)/A.
9008     APInt ExitVal = (End + A).udiv(A);
9009     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
9010 
9011     // Evaluate at the exit value.  If we really did fall out of the valid
9012     // range, then we computed our trip count, otherwise wrap around or other
9013     // things must have happened.
9014     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
9015     if (Range.contains(Val->getValue()))
9016       return SE.getCouldNotCompute();  // Something strange happened
9017 
9018     // Ensure that the previous value is in the range.  This is a sanity check.
9019     assert(Range.contains(
9020            EvaluateConstantChrecAtConstant(this,
9021            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
9022            "Linear scev computation is off in a bad way!");
9023     return SE.getConstant(ExitValue);
9024   } else if (isQuadratic()) {
9025     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
9026     // quadratic equation to solve it.  To do this, we must frame our problem in
9027     // terms of figuring out when zero is crossed, instead of when
9028     // Range.getUpper() is crossed.
9029     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
9030     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
9031     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
9032                                              // getNoWrapFlags(FlagNW)
9033                                              FlagAnyWrap);
9034 
9035     // Next, solve the constructed addrec
9036     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
9037     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
9038     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
9039     if (R1) {
9040       // Pick the smallest positive root value.
9041       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
9042               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
9043         if (!CB->getZExtValue())
9044           std::swap(R1, R2);   // R1 is the minimum root now.
9045 
9046         // Make sure the root is not off by one.  The returned iteration should
9047         // not be in the range, but the previous one should be.  When solving
9048         // for "X*X < 5", for example, we should not return a root of 2.
9049         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
9050                                                              R1->getValue(),
9051                                                              SE);
9052         if (Range.contains(R1Val->getValue())) {
9053           // The next iteration must be out of the range...
9054           ConstantInt *NextVal =
9055               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
9056 
9057           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9058           if (!Range.contains(R1Val->getValue()))
9059             return SE.getConstant(NextVal);
9060           return SE.getCouldNotCompute();  // Something strange happened
9061         }
9062 
9063         // If R1 was not in the range, then it is a good return value.  Make
9064         // sure that R1-1 WAS in the range though, just in case.
9065         ConstantInt *NextVal =
9066             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
9067         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9068         if (Range.contains(R1Val->getValue()))
9069           return R1;
9070         return SE.getCouldNotCompute();  // Something strange happened
9071       }
9072     }
9073   }
9074 
9075   return SE.getCouldNotCompute();
9076 }
9077 
9078 namespace {
9079 struct FindUndefs {
9080   bool Found;
9081   FindUndefs() : Found(false) {}
9082 
9083   bool follow(const SCEV *S) {
9084     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
9085       if (isa<UndefValue>(C->getValue()))
9086         Found = true;
9087     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
9088       if (isa<UndefValue>(C->getValue()))
9089         Found = true;
9090     }
9091 
9092     // Keep looking if we haven't found it yet.
9093     return !Found;
9094   }
9095   bool isDone() const {
9096     // Stop recursion if we have found an undef.
9097     return Found;
9098   }
9099 };
9100 }
9101 
9102 // Return true when S contains at least an undef value.
9103 static inline bool
9104 containsUndefs(const SCEV *S) {
9105   FindUndefs F;
9106   SCEVTraversal<FindUndefs> ST(F);
9107   ST.visitAll(S);
9108 
9109   return F.Found;
9110 }
9111 
9112 namespace {
9113 // Collect all steps of SCEV expressions.
9114 struct SCEVCollectStrides {
9115   ScalarEvolution &SE;
9116   SmallVectorImpl<const SCEV *> &Strides;
9117 
9118   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
9119       : SE(SE), Strides(S) {}
9120 
9121   bool follow(const SCEV *S) {
9122     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
9123       Strides.push_back(AR->getStepRecurrence(SE));
9124     return true;
9125   }
9126   bool isDone() const { return false; }
9127 };
9128 
9129 // Collect all SCEVUnknown and SCEVMulExpr expressions.
9130 struct SCEVCollectTerms {
9131   SmallVectorImpl<const SCEV *> &Terms;
9132 
9133   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
9134       : Terms(T) {}
9135 
9136   bool follow(const SCEV *S) {
9137     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
9138       if (!containsUndefs(S))
9139         Terms.push_back(S);
9140 
9141       // Stop recursion: once we collected a term, do not walk its operands.
9142       return false;
9143     }
9144 
9145     // Keep looking.
9146     return true;
9147   }
9148   bool isDone() const { return false; }
9149 };
9150 
9151 // Check if a SCEV contains an AddRecExpr.
9152 struct SCEVHasAddRec {
9153   bool &ContainsAddRec;
9154 
9155   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9156    ContainsAddRec = false;
9157   }
9158 
9159   bool follow(const SCEV *S) {
9160     if (isa<SCEVAddRecExpr>(S)) {
9161       ContainsAddRec = true;
9162 
9163       // Stop recursion: once we collected a term, do not walk its operands.
9164       return false;
9165     }
9166 
9167     // Keep looking.
9168     return true;
9169   }
9170   bool isDone() const { return false; }
9171 };
9172 
9173 // Find factors that are multiplied with an expression that (possibly as a
9174 // subexpression) contains an AddRecExpr. In the expression:
9175 //
9176 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9177 //
9178 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9179 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9180 // parameters as they form a product with an induction variable.
9181 //
9182 // This collector expects all array size parameters to be in the same MulExpr.
9183 // It might be necessary to later add support for collecting parameters that are
9184 // spread over different nested MulExpr.
9185 struct SCEVCollectAddRecMultiplies {
9186   SmallVectorImpl<const SCEV *> &Terms;
9187   ScalarEvolution &SE;
9188 
9189   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9190       : Terms(T), SE(SE) {}
9191 
9192   bool follow(const SCEV *S) {
9193     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9194       bool HasAddRec = false;
9195       SmallVector<const SCEV *, 0> Operands;
9196       for (auto Op : Mul->operands()) {
9197         if (isa<SCEVUnknown>(Op)) {
9198           Operands.push_back(Op);
9199         } else {
9200           bool ContainsAddRec;
9201           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9202           visitAll(Op, ContiansAddRec);
9203           HasAddRec |= ContainsAddRec;
9204         }
9205       }
9206       if (Operands.size() == 0)
9207         return true;
9208 
9209       if (!HasAddRec)
9210         return false;
9211 
9212       Terms.push_back(SE.getMulExpr(Operands));
9213       // Stop recursion: once we collected a term, do not walk its operands.
9214       return false;
9215     }
9216 
9217     // Keep looking.
9218     return true;
9219   }
9220   bool isDone() const { return false; }
9221 };
9222 }
9223 
9224 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9225 /// two places:
9226 ///   1) The strides of AddRec expressions.
9227 ///   2) Unknowns that are multiplied with AddRec expressions.
9228 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9229     SmallVectorImpl<const SCEV *> &Terms) {
9230   SmallVector<const SCEV *, 4> Strides;
9231   SCEVCollectStrides StrideCollector(*this, Strides);
9232   visitAll(Expr, StrideCollector);
9233 
9234   DEBUG({
9235       dbgs() << "Strides:\n";
9236       for (const SCEV *S : Strides)
9237         dbgs() << *S << "\n";
9238     });
9239 
9240   for (const SCEV *S : Strides) {
9241     SCEVCollectTerms TermCollector(Terms);
9242     visitAll(S, TermCollector);
9243   }
9244 
9245   DEBUG({
9246       dbgs() << "Terms:\n";
9247       for (const SCEV *T : Terms)
9248         dbgs() << *T << "\n";
9249     });
9250 
9251   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9252   visitAll(Expr, MulCollector);
9253 }
9254 
9255 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9256                                    SmallVectorImpl<const SCEV *> &Terms,
9257                                    SmallVectorImpl<const SCEV *> &Sizes) {
9258   int Last = Terms.size() - 1;
9259   const SCEV *Step = Terms[Last];
9260 
9261   // End of recursion.
9262   if (Last == 0) {
9263     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9264       SmallVector<const SCEV *, 2> Qs;
9265       for (const SCEV *Op : M->operands())
9266         if (!isa<SCEVConstant>(Op))
9267           Qs.push_back(Op);
9268 
9269       Step = SE.getMulExpr(Qs);
9270     }
9271 
9272     Sizes.push_back(Step);
9273     return true;
9274   }
9275 
9276   for (const SCEV *&Term : Terms) {
9277     // Normalize the terms before the next call to findArrayDimensionsRec.
9278     const SCEV *Q, *R;
9279     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9280 
9281     // Bail out when GCD does not evenly divide one of the terms.
9282     if (!R->isZero())
9283       return false;
9284 
9285     Term = Q;
9286   }
9287 
9288   // Remove all SCEVConstants.
9289   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9290                 return isa<SCEVConstant>(E);
9291               }),
9292               Terms.end());
9293 
9294   if (Terms.size() > 0)
9295     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9296       return false;
9297 
9298   Sizes.push_back(Step);
9299   return true;
9300 }
9301 
9302 // Returns true when S contains at least a SCEVUnknown parameter.
9303 static inline bool
9304 containsParameters(const SCEV *S) {
9305   struct FindParameter {
9306     bool FoundParameter;
9307     FindParameter() : FoundParameter(false) {}
9308 
9309     bool follow(const SCEV *S) {
9310       if (isa<SCEVUnknown>(S)) {
9311         FoundParameter = true;
9312         // Stop recursion: we found a parameter.
9313         return false;
9314       }
9315       // Keep looking.
9316       return true;
9317     }
9318     bool isDone() const {
9319       // Stop recursion if we have found a parameter.
9320       return FoundParameter;
9321     }
9322   };
9323 
9324   FindParameter F;
9325   SCEVTraversal<FindParameter> ST(F);
9326   ST.visitAll(S);
9327 
9328   return F.FoundParameter;
9329 }
9330 
9331 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9332 static inline bool
9333 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9334   for (const SCEV *T : Terms)
9335     if (containsParameters(T))
9336       return true;
9337   return false;
9338 }
9339 
9340 // Return the number of product terms in S.
9341 static inline int numberOfTerms(const SCEV *S) {
9342   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9343     return Expr->getNumOperands();
9344   return 1;
9345 }
9346 
9347 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9348   if (isa<SCEVConstant>(T))
9349     return nullptr;
9350 
9351   if (isa<SCEVUnknown>(T))
9352     return T;
9353 
9354   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9355     SmallVector<const SCEV *, 2> Factors;
9356     for (const SCEV *Op : M->operands())
9357       if (!isa<SCEVConstant>(Op))
9358         Factors.push_back(Op);
9359 
9360     return SE.getMulExpr(Factors);
9361   }
9362 
9363   return T;
9364 }
9365 
9366 /// Return the size of an element read or written by Inst.
9367 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9368   Type *Ty;
9369   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9370     Ty = Store->getValueOperand()->getType();
9371   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9372     Ty = Load->getType();
9373   else
9374     return nullptr;
9375 
9376   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9377   return getSizeOfExpr(ETy, Ty);
9378 }
9379 
9380 /// Second step of delinearization: compute the array dimensions Sizes from the
9381 /// set of Terms extracted from the memory access function of this SCEVAddRec.
9382 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9383                                           SmallVectorImpl<const SCEV *> &Sizes,
9384                                           const SCEV *ElementSize) const {
9385 
9386   if (Terms.size() < 1 || !ElementSize)
9387     return;
9388 
9389   // Early return when Terms do not contain parameters: we do not delinearize
9390   // non parametric SCEVs.
9391   if (!containsParameters(Terms))
9392     return;
9393 
9394   DEBUG({
9395       dbgs() << "Terms:\n";
9396       for (const SCEV *T : Terms)
9397         dbgs() << *T << "\n";
9398     });
9399 
9400   // Remove duplicates.
9401   std::sort(Terms.begin(), Terms.end());
9402   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9403 
9404   // Put larger terms first.
9405   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9406     return numberOfTerms(LHS) > numberOfTerms(RHS);
9407   });
9408 
9409   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9410 
9411   // Try to divide all terms by the element size. If term is not divisible by
9412   // element size, proceed with the original term.
9413   for (const SCEV *&Term : Terms) {
9414     const SCEV *Q, *R;
9415     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9416     if (!Q->isZero())
9417       Term = Q;
9418   }
9419 
9420   SmallVector<const SCEV *, 4> NewTerms;
9421 
9422   // Remove constant factors.
9423   for (const SCEV *T : Terms)
9424     if (const SCEV *NewT = removeConstantFactors(SE, T))
9425       NewTerms.push_back(NewT);
9426 
9427   DEBUG({
9428       dbgs() << "Terms after sorting:\n";
9429       for (const SCEV *T : NewTerms)
9430         dbgs() << *T << "\n";
9431     });
9432 
9433   if (NewTerms.empty() ||
9434       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9435     Sizes.clear();
9436     return;
9437   }
9438 
9439   // The last element to be pushed into Sizes is the size of an element.
9440   Sizes.push_back(ElementSize);
9441 
9442   DEBUG({
9443       dbgs() << "Sizes:\n";
9444       for (const SCEV *S : Sizes)
9445         dbgs() << *S << "\n";
9446     });
9447 }
9448 
9449 /// Third step of delinearization: compute the access functions for the
9450 /// Subscripts based on the dimensions in Sizes.
9451 void ScalarEvolution::computeAccessFunctions(
9452     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9453     SmallVectorImpl<const SCEV *> &Sizes) {
9454 
9455   // Early exit in case this SCEV is not an affine multivariate function.
9456   if (Sizes.empty())
9457     return;
9458 
9459   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9460     if (!AR->isAffine())
9461       return;
9462 
9463   const SCEV *Res = Expr;
9464   int Last = Sizes.size() - 1;
9465   for (int i = Last; i >= 0; i--) {
9466     const SCEV *Q, *R;
9467     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9468 
9469     DEBUG({
9470         dbgs() << "Res: " << *Res << "\n";
9471         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9472         dbgs() << "Res divided by Sizes[i]:\n";
9473         dbgs() << "Quotient: " << *Q << "\n";
9474         dbgs() << "Remainder: " << *R << "\n";
9475       });
9476 
9477     Res = Q;
9478 
9479     // Do not record the last subscript corresponding to the size of elements in
9480     // the array.
9481     if (i == Last) {
9482 
9483       // Bail out if the remainder is too complex.
9484       if (isa<SCEVAddRecExpr>(R)) {
9485         Subscripts.clear();
9486         Sizes.clear();
9487         return;
9488       }
9489 
9490       continue;
9491     }
9492 
9493     // Record the access function for the current subscript.
9494     Subscripts.push_back(R);
9495   }
9496 
9497   // Also push in last position the remainder of the last division: it will be
9498   // the access function of the innermost dimension.
9499   Subscripts.push_back(Res);
9500 
9501   std::reverse(Subscripts.begin(), Subscripts.end());
9502 
9503   DEBUG({
9504       dbgs() << "Subscripts:\n";
9505       for (const SCEV *S : Subscripts)
9506         dbgs() << *S << "\n";
9507     });
9508 }
9509 
9510 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9511 /// sizes of an array access. Returns the remainder of the delinearization that
9512 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9513 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9514 /// expressions in the stride and base of a SCEV corresponding to the
9515 /// computation of a GCD (greatest common divisor) of base and stride.  When
9516 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9517 ///
9518 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9519 ///
9520 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9521 ///
9522 ///    for (long i = 0; i < n; i++)
9523 ///      for (long j = 0; j < m; j++)
9524 ///        for (long k = 0; k < o; k++)
9525 ///          A[i][j][k] = 1.0;
9526 ///  }
9527 ///
9528 /// the delinearization input is the following AddRec SCEV:
9529 ///
9530 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9531 ///
9532 /// From this SCEV, we are able to say that the base offset of the access is %A
9533 /// because it appears as an offset that does not divide any of the strides in
9534 /// the loops:
9535 ///
9536 ///  CHECK: Base offset: %A
9537 ///
9538 /// and then SCEV->delinearize determines the size of some of the dimensions of
9539 /// the array as these are the multiples by which the strides are happening:
9540 ///
9541 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9542 ///
9543 /// Note that the outermost dimension remains of UnknownSize because there are
9544 /// no strides that would help identifying the size of the last dimension: when
9545 /// the array has been statically allocated, one could compute the size of that
9546 /// dimension by dividing the overall size of the array by the size of the known
9547 /// dimensions: %m * %o * 8.
9548 ///
9549 /// Finally delinearize provides the access functions for the array reference
9550 /// that does correspond to A[i][j][k] of the above C testcase:
9551 ///
9552 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9553 ///
9554 /// The testcases are checking the output of a function pass:
9555 /// DelinearizationPass that walks through all loads and stores of a function
9556 /// asking for the SCEV of the memory access with respect to all enclosing
9557 /// loops, calling SCEV->delinearize on that and printing the results.
9558 
9559 void ScalarEvolution::delinearize(const SCEV *Expr,
9560                                  SmallVectorImpl<const SCEV *> &Subscripts,
9561                                  SmallVectorImpl<const SCEV *> &Sizes,
9562                                  const SCEV *ElementSize) {
9563   // First step: collect parametric terms.
9564   SmallVector<const SCEV *, 4> Terms;
9565   collectParametricTerms(Expr, Terms);
9566 
9567   if (Terms.empty())
9568     return;
9569 
9570   // Second step: find subscript sizes.
9571   findArrayDimensions(Terms, Sizes, ElementSize);
9572 
9573   if (Sizes.empty())
9574     return;
9575 
9576   // Third step: compute the access functions for each subscript.
9577   computeAccessFunctions(Expr, Subscripts, Sizes);
9578 
9579   if (Subscripts.empty())
9580     return;
9581 
9582   DEBUG({
9583       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9584       dbgs() << "ArrayDecl[UnknownSize]";
9585       for (const SCEV *S : Sizes)
9586         dbgs() << "[" << *S << "]";
9587 
9588       dbgs() << "\nArrayRef";
9589       for (const SCEV *S : Subscripts)
9590         dbgs() << "[" << *S << "]";
9591       dbgs() << "\n";
9592     });
9593 }
9594 
9595 //===----------------------------------------------------------------------===//
9596 //                   SCEVCallbackVH Class Implementation
9597 //===----------------------------------------------------------------------===//
9598 
9599 void ScalarEvolution::SCEVCallbackVH::deleted() {
9600   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9601   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9602     SE->ConstantEvolutionLoopExitValue.erase(PN);
9603   SE->eraseValueFromMap(getValPtr());
9604   // this now dangles!
9605 }
9606 
9607 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9608   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9609 
9610   // Forget all the expressions associated with users of the old value,
9611   // so that future queries will recompute the expressions using the new
9612   // value.
9613   Value *Old = getValPtr();
9614   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9615   SmallPtrSet<User *, 8> Visited;
9616   while (!Worklist.empty()) {
9617     User *U = Worklist.pop_back_val();
9618     // Deleting the Old value will cause this to dangle. Postpone
9619     // that until everything else is done.
9620     if (U == Old)
9621       continue;
9622     if (!Visited.insert(U).second)
9623       continue;
9624     if (PHINode *PN = dyn_cast<PHINode>(U))
9625       SE->ConstantEvolutionLoopExitValue.erase(PN);
9626     SE->eraseValueFromMap(U);
9627     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9628   }
9629   // Delete the Old value.
9630   if (PHINode *PN = dyn_cast<PHINode>(Old))
9631     SE->ConstantEvolutionLoopExitValue.erase(PN);
9632   SE->eraseValueFromMap(Old);
9633   // this now dangles!
9634 }
9635 
9636 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9637   : CallbackVH(V), SE(se) {}
9638 
9639 //===----------------------------------------------------------------------===//
9640 //                   ScalarEvolution Class Implementation
9641 //===----------------------------------------------------------------------===//
9642 
9643 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9644                                  AssumptionCache &AC, DominatorTree &DT,
9645                                  LoopInfo &LI)
9646     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9647       CouldNotCompute(new SCEVCouldNotCompute()),
9648       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9649       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9650       FirstUnknown(nullptr) {
9651 
9652   // To use guards for proving predicates, we need to scan every instruction in
9653   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9654   // time if the IR does not actually contain any calls to
9655   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9656   //
9657   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9658   // to _add_ guards to the module when there weren't any before, and wants
9659   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9660   // efficient in lieu of being smart in that rather obscure case.
9661 
9662   auto *GuardDecl = F.getParent()->getFunction(
9663       Intrinsic::getName(Intrinsic::experimental_guard));
9664   HasGuards = GuardDecl && !GuardDecl->use_empty();
9665 }
9666 
9667 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9668     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9669       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9670       ValueExprMap(std::move(Arg.ValueExprMap)),
9671       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9672       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9673       PredicatedBackedgeTakenCounts(
9674           std::move(Arg.PredicatedBackedgeTakenCounts)),
9675       ConstantEvolutionLoopExitValue(
9676           std::move(Arg.ConstantEvolutionLoopExitValue)),
9677       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9678       LoopDispositions(std::move(Arg.LoopDispositions)),
9679       BlockDispositions(std::move(Arg.BlockDispositions)),
9680       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9681       SignedRanges(std::move(Arg.SignedRanges)),
9682       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9683       UniquePreds(std::move(Arg.UniquePreds)),
9684       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9685       FirstUnknown(Arg.FirstUnknown) {
9686   Arg.FirstUnknown = nullptr;
9687 }
9688 
9689 ScalarEvolution::~ScalarEvolution() {
9690   // Iterate through all the SCEVUnknown instances and call their
9691   // destructors, so that they release their references to their values.
9692   for (SCEVUnknown *U = FirstUnknown; U;) {
9693     SCEVUnknown *Tmp = U;
9694     U = U->Next;
9695     Tmp->~SCEVUnknown();
9696   }
9697   FirstUnknown = nullptr;
9698 
9699   ExprValueMap.clear();
9700   ValueExprMap.clear();
9701   HasRecMap.clear();
9702 
9703   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9704   // that a loop had multiple computable exits.
9705   for (auto &BTCI : BackedgeTakenCounts)
9706     BTCI.second.clear();
9707   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9708     BTCI.second.clear();
9709 
9710   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9711   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9712   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9713 }
9714 
9715 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9716   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9717 }
9718 
9719 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9720                           const Loop *L) {
9721   // Print all inner loops first
9722   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9723     PrintLoopInfo(OS, SE, *I);
9724 
9725   OS << "Loop ";
9726   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9727   OS << ": ";
9728 
9729   SmallVector<BasicBlock *, 8> ExitBlocks;
9730   L->getExitBlocks(ExitBlocks);
9731   if (ExitBlocks.size() != 1)
9732     OS << "<multiple exits> ";
9733 
9734   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9735     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9736   } else {
9737     OS << "Unpredictable backedge-taken count. ";
9738   }
9739 
9740   OS << "\n"
9741         "Loop ";
9742   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9743   OS << ": ";
9744 
9745   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9746     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9747   } else {
9748     OS << "Unpredictable max backedge-taken count. ";
9749   }
9750 
9751   OS << "\n"
9752         "Loop ";
9753   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9754   OS << ": ";
9755 
9756   SCEVUnionPredicate Pred;
9757   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9758   if (!isa<SCEVCouldNotCompute>(PBT)) {
9759     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9760     OS << " Predicates:\n";
9761     Pred.print(OS, 4);
9762   } else {
9763     OS << "Unpredictable predicated backedge-taken count. ";
9764   }
9765   OS << "\n";
9766 }
9767 
9768 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9769   switch (LD) {
9770   case ScalarEvolution::LoopVariant:
9771     return "Variant";
9772   case ScalarEvolution::LoopInvariant:
9773     return "Invariant";
9774   case ScalarEvolution::LoopComputable:
9775     return "Computable";
9776   }
9777   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9778 }
9779 
9780 void ScalarEvolution::print(raw_ostream &OS) const {
9781   // ScalarEvolution's implementation of the print method is to print
9782   // out SCEV values of all instructions that are interesting. Doing
9783   // this potentially causes it to create new SCEV objects though,
9784   // which technically conflicts with the const qualifier. This isn't
9785   // observable from outside the class though, so casting away the
9786   // const isn't dangerous.
9787   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9788 
9789   OS << "Classifying expressions for: ";
9790   F.printAsOperand(OS, /*PrintType=*/false);
9791   OS << "\n";
9792   for (Instruction &I : instructions(F))
9793     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9794       OS << I << '\n';
9795       OS << "  -->  ";
9796       const SCEV *SV = SE.getSCEV(&I);
9797       SV->print(OS);
9798       if (!isa<SCEVCouldNotCompute>(SV)) {
9799         OS << " U: ";
9800         SE.getUnsignedRange(SV).print(OS);
9801         OS << " S: ";
9802         SE.getSignedRange(SV).print(OS);
9803       }
9804 
9805       const Loop *L = LI.getLoopFor(I.getParent());
9806 
9807       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9808       if (AtUse != SV) {
9809         OS << "  -->  ";
9810         AtUse->print(OS);
9811         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9812           OS << " U: ";
9813           SE.getUnsignedRange(AtUse).print(OS);
9814           OS << " S: ";
9815           SE.getSignedRange(AtUse).print(OS);
9816         }
9817       }
9818 
9819       if (L) {
9820         OS << "\t\t" "Exits: ";
9821         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9822         if (!SE.isLoopInvariant(ExitValue, L)) {
9823           OS << "<<Unknown>>";
9824         } else {
9825           OS << *ExitValue;
9826         }
9827 
9828         bool First = true;
9829         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9830           if (First) {
9831             OS << "\t\t" "LoopDispositions: { ";
9832             First = false;
9833           } else {
9834             OS << ", ";
9835           }
9836 
9837           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9838           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9839         }
9840 
9841         for (auto *InnerL : depth_first(L)) {
9842           if (InnerL == L)
9843             continue;
9844           if (First) {
9845             OS << "\t\t" "LoopDispositions: { ";
9846             First = false;
9847           } else {
9848             OS << ", ";
9849           }
9850 
9851           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9852           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9853         }
9854 
9855         OS << " }";
9856       }
9857 
9858       OS << "\n";
9859     }
9860 
9861   OS << "Determining loop execution counts for: ";
9862   F.printAsOperand(OS, /*PrintType=*/false);
9863   OS << "\n";
9864   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9865     PrintLoopInfo(OS, &SE, *I);
9866 }
9867 
9868 ScalarEvolution::LoopDisposition
9869 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9870   auto &Values = LoopDispositions[S];
9871   for (auto &V : Values) {
9872     if (V.getPointer() == L)
9873       return V.getInt();
9874   }
9875   Values.emplace_back(L, LoopVariant);
9876   LoopDisposition D = computeLoopDisposition(S, L);
9877   auto &Values2 = LoopDispositions[S];
9878   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9879     if (V.getPointer() == L) {
9880       V.setInt(D);
9881       break;
9882     }
9883   }
9884   return D;
9885 }
9886 
9887 ScalarEvolution::LoopDisposition
9888 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9889   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9890   case scConstant:
9891     return LoopInvariant;
9892   case scTruncate:
9893   case scZeroExtend:
9894   case scSignExtend:
9895     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9896   case scAddRecExpr: {
9897     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9898 
9899     // If L is the addrec's loop, it's computable.
9900     if (AR->getLoop() == L)
9901       return LoopComputable;
9902 
9903     // Add recurrences are never invariant in the function-body (null loop).
9904     if (!L)
9905       return LoopVariant;
9906 
9907     // This recurrence is variant w.r.t. L if L contains AR's loop.
9908     if (L->contains(AR->getLoop()))
9909       return LoopVariant;
9910 
9911     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9912     if (AR->getLoop()->contains(L))
9913       return LoopInvariant;
9914 
9915     // This recurrence is variant w.r.t. L if any of its operands
9916     // are variant.
9917     for (auto *Op : AR->operands())
9918       if (!isLoopInvariant(Op, L))
9919         return LoopVariant;
9920 
9921     // Otherwise it's loop-invariant.
9922     return LoopInvariant;
9923   }
9924   case scAddExpr:
9925   case scMulExpr:
9926   case scUMaxExpr:
9927   case scSMaxExpr: {
9928     bool HasVarying = false;
9929     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9930       LoopDisposition D = getLoopDisposition(Op, L);
9931       if (D == LoopVariant)
9932         return LoopVariant;
9933       if (D == LoopComputable)
9934         HasVarying = true;
9935     }
9936     return HasVarying ? LoopComputable : LoopInvariant;
9937   }
9938   case scUDivExpr: {
9939     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9940     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9941     if (LD == LoopVariant)
9942       return LoopVariant;
9943     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9944     if (RD == LoopVariant)
9945       return LoopVariant;
9946     return (LD == LoopInvariant && RD == LoopInvariant) ?
9947            LoopInvariant : LoopComputable;
9948   }
9949   case scUnknown:
9950     // All non-instruction values are loop invariant.  All instructions are loop
9951     // invariant if they are not contained in the specified loop.
9952     // Instructions are never considered invariant in the function body
9953     // (null loop) because they are defined within the "loop".
9954     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9955       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9956     return LoopInvariant;
9957   case scCouldNotCompute:
9958     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9959   }
9960   llvm_unreachable("Unknown SCEV kind!");
9961 }
9962 
9963 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9964   return getLoopDisposition(S, L) == LoopInvariant;
9965 }
9966 
9967 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9968   return getLoopDisposition(S, L) == LoopComputable;
9969 }
9970 
9971 ScalarEvolution::BlockDisposition
9972 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9973   auto &Values = BlockDispositions[S];
9974   for (auto &V : Values) {
9975     if (V.getPointer() == BB)
9976       return V.getInt();
9977   }
9978   Values.emplace_back(BB, DoesNotDominateBlock);
9979   BlockDisposition D = computeBlockDisposition(S, BB);
9980   auto &Values2 = BlockDispositions[S];
9981   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9982     if (V.getPointer() == BB) {
9983       V.setInt(D);
9984       break;
9985     }
9986   }
9987   return D;
9988 }
9989 
9990 ScalarEvolution::BlockDisposition
9991 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9992   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9993   case scConstant:
9994     return ProperlyDominatesBlock;
9995   case scTruncate:
9996   case scZeroExtend:
9997   case scSignExtend:
9998     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9999   case scAddRecExpr: {
10000     // This uses a "dominates" query instead of "properly dominates" query
10001     // to test for proper dominance too, because the instruction which
10002     // produces the addrec's value is a PHI, and a PHI effectively properly
10003     // dominates its entire containing block.
10004     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10005     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
10006       return DoesNotDominateBlock;
10007   }
10008   // FALL THROUGH into SCEVNAryExpr handling.
10009   case scAddExpr:
10010   case scMulExpr:
10011   case scUMaxExpr:
10012   case scSMaxExpr: {
10013     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
10014     bool Proper = true;
10015     for (const SCEV *NAryOp : NAry->operands()) {
10016       BlockDisposition D = getBlockDisposition(NAryOp, BB);
10017       if (D == DoesNotDominateBlock)
10018         return DoesNotDominateBlock;
10019       if (D == DominatesBlock)
10020         Proper = false;
10021     }
10022     return Proper ? ProperlyDominatesBlock : DominatesBlock;
10023   }
10024   case scUDivExpr: {
10025     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10026     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
10027     BlockDisposition LD = getBlockDisposition(LHS, BB);
10028     if (LD == DoesNotDominateBlock)
10029       return DoesNotDominateBlock;
10030     BlockDisposition RD = getBlockDisposition(RHS, BB);
10031     if (RD == DoesNotDominateBlock)
10032       return DoesNotDominateBlock;
10033     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
10034       ProperlyDominatesBlock : DominatesBlock;
10035   }
10036   case scUnknown:
10037     if (Instruction *I =
10038           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
10039       if (I->getParent() == BB)
10040         return DominatesBlock;
10041       if (DT.properlyDominates(I->getParent(), BB))
10042         return ProperlyDominatesBlock;
10043       return DoesNotDominateBlock;
10044     }
10045     return ProperlyDominatesBlock;
10046   case scCouldNotCompute:
10047     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10048   }
10049   llvm_unreachable("Unknown SCEV kind!");
10050 }
10051 
10052 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
10053   return getBlockDisposition(S, BB) >= DominatesBlock;
10054 }
10055 
10056 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
10057   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
10058 }
10059 
10060 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
10061   // Search for a SCEV expression node within an expression tree.
10062   // Implements SCEVTraversal::Visitor.
10063   struct SCEVSearch {
10064     const SCEV *Node;
10065     bool IsFound;
10066 
10067     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
10068 
10069     bool follow(const SCEV *S) {
10070       IsFound |= (S == Node);
10071       return !IsFound;
10072     }
10073     bool isDone() const { return IsFound; }
10074   };
10075 
10076   SCEVSearch Search(Op);
10077   visitAll(S, Search);
10078   return Search.IsFound;
10079 }
10080 
10081 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
10082   ValuesAtScopes.erase(S);
10083   LoopDispositions.erase(S);
10084   BlockDispositions.erase(S);
10085   UnsignedRanges.erase(S);
10086   SignedRanges.erase(S);
10087   ExprValueMap.erase(S);
10088   HasRecMap.erase(S);
10089 
10090   auto RemoveSCEVFromBackedgeMap =
10091       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
10092         for (auto I = Map.begin(), E = Map.end(); I != E;) {
10093           BackedgeTakenInfo &BEInfo = I->second;
10094           if (BEInfo.hasOperand(S, this)) {
10095             BEInfo.clear();
10096             Map.erase(I++);
10097           } else
10098             ++I;
10099         }
10100       };
10101 
10102   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
10103   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
10104 }
10105 
10106 typedef DenseMap<const Loop *, std::string> VerifyMap;
10107 
10108 /// replaceSubString - Replaces all occurrences of From in Str with To.
10109 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
10110   size_t Pos = 0;
10111   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
10112     Str.replace(Pos, From.size(), To.data(), To.size());
10113     Pos += To.size();
10114   }
10115 }
10116 
10117 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
10118 static void
10119 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
10120   std::string &S = Map[L];
10121   if (S.empty()) {
10122     raw_string_ostream OS(S);
10123     SE.getBackedgeTakenCount(L)->print(OS);
10124 
10125     // false and 0 are semantically equivalent. This can happen in dead loops.
10126     replaceSubString(OS.str(), "false", "0");
10127     // Remove wrap flags, their use in SCEV is highly fragile.
10128     // FIXME: Remove this when SCEV gets smarter about them.
10129     replaceSubString(OS.str(), "<nw>", "");
10130     replaceSubString(OS.str(), "<nsw>", "");
10131     replaceSubString(OS.str(), "<nuw>", "");
10132   }
10133 
10134   for (auto *R : reverse(*L))
10135     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
10136 }
10137 
10138 void ScalarEvolution::verify() const {
10139   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10140 
10141   // Gather stringified backedge taken counts for all loops using SCEV's caches.
10142   // FIXME: It would be much better to store actual values instead of strings,
10143   //        but SCEV pointers will change if we drop the caches.
10144   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
10145   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10146     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
10147 
10148   // Gather stringified backedge taken counts for all loops using a fresh
10149   // ScalarEvolution object.
10150   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10151   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10152     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
10153 
10154   // Now compare whether they're the same with and without caches. This allows
10155   // verifying that no pass changed the cache.
10156   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10157          "New loops suddenly appeared!");
10158 
10159   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10160                            OldE = BackedgeDumpsOld.end(),
10161                            NewI = BackedgeDumpsNew.begin();
10162        OldI != OldE; ++OldI, ++NewI) {
10163     assert(OldI->first == NewI->first && "Loop order changed!");
10164 
10165     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10166     // changes.
10167     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10168     // means that a pass is buggy or SCEV has to learn a new pattern but is
10169     // usually not harmful.
10170     if (OldI->second != NewI->second &&
10171         OldI->second.find("undef") == std::string::npos &&
10172         NewI->second.find("undef") == std::string::npos &&
10173         OldI->second != "***COULDNOTCOMPUTE***" &&
10174         NewI->second != "***COULDNOTCOMPUTE***") {
10175       dbgs() << "SCEVValidator: SCEV for loop '"
10176              << OldI->first->getHeader()->getName()
10177              << "' changed from '" << OldI->second
10178              << "' to '" << NewI->second << "'!\n";
10179       std::abort();
10180     }
10181   }
10182 
10183   // TODO: Verify more things.
10184 }
10185 
10186 char ScalarEvolutionAnalysis::PassID;
10187 
10188 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10189                                              AnalysisManager<Function> &AM) {
10190   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10191                          AM.getResult<AssumptionAnalysis>(F),
10192                          AM.getResult<DominatorTreeAnalysis>(F),
10193                          AM.getResult<LoopAnalysis>(F));
10194 }
10195 
10196 PreservedAnalyses
10197 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10198   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10199   return PreservedAnalyses::all();
10200 }
10201 
10202 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10203                       "Scalar Evolution Analysis", false, true)
10204 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10205 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10206 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10207 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10208 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10209                     "Scalar Evolution Analysis", false, true)
10210 char ScalarEvolutionWrapperPass::ID = 0;
10211 
10212 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10213   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10214 }
10215 
10216 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10217   SE.reset(new ScalarEvolution(
10218       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10219       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10220       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10221       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10222   return false;
10223 }
10224 
10225 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10226 
10227 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10228   SE->print(OS);
10229 }
10230 
10231 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10232   if (!VerifySCEV)
10233     return;
10234 
10235   SE->verify();
10236 }
10237 
10238 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10239   AU.setPreservesAll();
10240   AU.addRequiredTransitive<AssumptionCacheTracker>();
10241   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10242   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10243   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10244 }
10245 
10246 const SCEVPredicate *
10247 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10248                                    const SCEVConstant *RHS) {
10249   FoldingSetNodeID ID;
10250   // Unique this node based on the arguments
10251   ID.AddInteger(SCEVPredicate::P_Equal);
10252   ID.AddPointer(LHS);
10253   ID.AddPointer(RHS);
10254   void *IP = nullptr;
10255   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10256     return S;
10257   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10258       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10259   UniquePreds.InsertNode(Eq, IP);
10260   return Eq;
10261 }
10262 
10263 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10264     const SCEVAddRecExpr *AR,
10265     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10266   FoldingSetNodeID ID;
10267   // Unique this node based on the arguments
10268   ID.AddInteger(SCEVPredicate::P_Wrap);
10269   ID.AddPointer(AR);
10270   ID.AddInteger(AddedFlags);
10271   void *IP = nullptr;
10272   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10273     return S;
10274   auto *OF = new (SCEVAllocator)
10275       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10276   UniquePreds.InsertNode(OF, IP);
10277   return OF;
10278 }
10279 
10280 namespace {
10281 
10282 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10283 public:
10284   // Rewrites \p S in the context of a loop L and the predicate A.
10285   // If Assume is true, rewrite is free to add further predicates to A
10286   // such that the result will be an AddRecExpr.
10287   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10288                              SCEVUnionPredicate &A, bool Assume) {
10289     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10290     return Rewriter.visit(S);
10291   }
10292 
10293   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10294                         SCEVUnionPredicate &P, bool Assume)
10295       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10296 
10297   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10298     auto ExprPreds = P.getPredicatesForExpr(Expr);
10299     for (auto *Pred : ExprPreds)
10300       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10301         if (IPred->getLHS() == Expr)
10302           return IPred->getRHS();
10303 
10304     return Expr;
10305   }
10306 
10307   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10308     const SCEV *Operand = visit(Expr->getOperand());
10309     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10310     if (AR && AR->getLoop() == L && AR->isAffine()) {
10311       // This couldn't be folded because the operand didn't have the nuw
10312       // flag. Add the nusw flag as an assumption that we could make.
10313       const SCEV *Step = AR->getStepRecurrence(SE);
10314       Type *Ty = Expr->getType();
10315       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10316         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10317                                 SE.getSignExtendExpr(Step, Ty), L,
10318                                 AR->getNoWrapFlags());
10319     }
10320     return SE.getZeroExtendExpr(Operand, Expr->getType());
10321   }
10322 
10323   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10324     const SCEV *Operand = visit(Expr->getOperand());
10325     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10326     if (AR && AR->getLoop() == L && AR->isAffine()) {
10327       // This couldn't be folded because the operand didn't have the nsw
10328       // flag. Add the nssw flag as an assumption that we could make.
10329       const SCEV *Step = AR->getStepRecurrence(SE);
10330       Type *Ty = Expr->getType();
10331       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10332         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10333                                 SE.getSignExtendExpr(Step, Ty), L,
10334                                 AR->getNoWrapFlags());
10335     }
10336     return SE.getSignExtendExpr(Operand, Expr->getType());
10337   }
10338 
10339 private:
10340   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10341                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10342     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10343     if (!Assume) {
10344       // Check if we've already made this assumption.
10345       if (P.implies(A))
10346         return true;
10347       return false;
10348     }
10349     P.add(A);
10350     return true;
10351   }
10352 
10353   SCEVUnionPredicate &P;
10354   const Loop *L;
10355   bool Assume;
10356 };
10357 } // end anonymous namespace
10358 
10359 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10360                                                    SCEVUnionPredicate &Preds) {
10361   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10362 }
10363 
10364 const SCEVAddRecExpr *
10365 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10366                                                    SCEVUnionPredicate &Preds) {
10367   SCEVUnionPredicate TransformPreds;
10368   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10369   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10370 
10371   if (!AddRec)
10372     return nullptr;
10373 
10374   // Since the transformation was successful, we can now transfer the SCEV
10375   // predicates.
10376   Preds.add(&TransformPreds);
10377   return AddRec;
10378 }
10379 
10380 /// SCEV predicates
10381 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10382                              SCEVPredicateKind Kind)
10383     : FastID(ID), Kind(Kind) {}
10384 
10385 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10386                                        const SCEVUnknown *LHS,
10387                                        const SCEVConstant *RHS)
10388     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10389 
10390 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10391   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10392 
10393   if (!Op)
10394     return false;
10395 
10396   return Op->LHS == LHS && Op->RHS == RHS;
10397 }
10398 
10399 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10400 
10401 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10402 
10403 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10404   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10405 }
10406 
10407 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10408                                      const SCEVAddRecExpr *AR,
10409                                      IncrementWrapFlags Flags)
10410     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10411 
10412 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10413 
10414 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10415   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10416 
10417   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10418 }
10419 
10420 bool SCEVWrapPredicate::isAlwaysTrue() const {
10421   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10422   IncrementWrapFlags IFlags = Flags;
10423 
10424   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10425     IFlags = clearFlags(IFlags, IncrementNSSW);
10426 
10427   return IFlags == IncrementAnyWrap;
10428 }
10429 
10430 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10431   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10432   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10433     OS << "<nusw>";
10434   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10435     OS << "<nssw>";
10436   OS << "\n";
10437 }
10438 
10439 SCEVWrapPredicate::IncrementWrapFlags
10440 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10441                                    ScalarEvolution &SE) {
10442   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10443   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10444 
10445   // We can safely transfer the NSW flag as NSSW.
10446   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10447     ImpliedFlags = IncrementNSSW;
10448 
10449   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10450     // If the increment is positive, the SCEV NUW flag will also imply the
10451     // WrapPredicate NUSW flag.
10452     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10453       if (Step->getValue()->getValue().isNonNegative())
10454         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10455   }
10456 
10457   return ImpliedFlags;
10458 }
10459 
10460 /// Union predicates don't get cached so create a dummy set ID for it.
10461 SCEVUnionPredicate::SCEVUnionPredicate()
10462     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10463 
10464 bool SCEVUnionPredicate::isAlwaysTrue() const {
10465   return all_of(Preds,
10466                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10467 }
10468 
10469 ArrayRef<const SCEVPredicate *>
10470 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10471   auto I = SCEVToPreds.find(Expr);
10472   if (I == SCEVToPreds.end())
10473     return ArrayRef<const SCEVPredicate *>();
10474   return I->second;
10475 }
10476 
10477 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10478   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
10479     return all_of(Set->Preds,
10480                   [this](const SCEVPredicate *I) { return this->implies(I); });
10481 
10482   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10483   if (ScevPredsIt == SCEVToPreds.end())
10484     return false;
10485   auto &SCEVPreds = ScevPredsIt->second;
10486 
10487   return any_of(SCEVPreds,
10488                 [N](const SCEVPredicate *I) { return I->implies(N); });
10489 }
10490 
10491 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10492 
10493 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10494   for (auto Pred : Preds)
10495     Pred->print(OS, Depth);
10496 }
10497 
10498 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10499   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10500     for (auto Pred : Set->Preds)
10501       add(Pred);
10502     return;
10503   }
10504 
10505   if (implies(N))
10506     return;
10507 
10508   const SCEV *Key = N->getExpr();
10509   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10510                 " associated expression!");
10511 
10512   SCEVToPreds[Key].push_back(N);
10513   Preds.push_back(N);
10514 }
10515 
10516 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10517                                                      Loop &L)
10518     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10519 
10520 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10521   const SCEV *Expr = SE.getSCEV(V);
10522   RewriteEntry &Entry = RewriteMap[Expr];
10523 
10524   // If we already have an entry and the version matches, return it.
10525   if (Entry.second && Generation == Entry.first)
10526     return Entry.second;
10527 
10528   // We found an entry but it's stale. Rewrite the stale entry
10529   // acording to the current predicate.
10530   if (Entry.second)
10531     Expr = Entry.second;
10532 
10533   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10534   Entry = {Generation, NewSCEV};
10535 
10536   return NewSCEV;
10537 }
10538 
10539 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10540   if (!BackedgeCount) {
10541     SCEVUnionPredicate BackedgePred;
10542     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10543     addPredicate(BackedgePred);
10544   }
10545   return BackedgeCount;
10546 }
10547 
10548 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10549   if (Preds.implies(&Pred))
10550     return;
10551   Preds.add(&Pred);
10552   updateGeneration();
10553 }
10554 
10555 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10556   return Preds;
10557 }
10558 
10559 void PredicatedScalarEvolution::updateGeneration() {
10560   // If the generation number wrapped recompute everything.
10561   if (++Generation == 0) {
10562     for (auto &II : RewriteMap) {
10563       const SCEV *Rewritten = II.second.second;
10564       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10565     }
10566   }
10567 }
10568 
10569 void PredicatedScalarEvolution::setNoOverflow(
10570     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10571   const SCEV *Expr = getSCEV(V);
10572   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10573 
10574   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10575 
10576   // Clear the statically implied flags.
10577   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10578   addPredicate(*SE.getWrapPredicate(AR, Flags));
10579 
10580   auto II = FlagsMap.insert({V, Flags});
10581   if (!II.second)
10582     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10583 }
10584 
10585 bool PredicatedScalarEvolution::hasNoOverflow(
10586     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10587   const SCEV *Expr = getSCEV(V);
10588   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10589 
10590   Flags = SCEVWrapPredicate::clearFlags(
10591       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10592 
10593   auto II = FlagsMap.find(V);
10594 
10595   if (II != FlagsMap.end())
10596     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10597 
10598   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10599 }
10600 
10601 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10602   const SCEV *Expr = this->getSCEV(V);
10603   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10604 
10605   if (!New)
10606     return nullptr;
10607 
10608   updateGeneration();
10609   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10610   return New;
10611 }
10612 
10613 PredicatedScalarEvolution::PredicatedScalarEvolution(
10614     const PredicatedScalarEvolution &Init)
10615     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10616       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10617   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10618     FlagsMap.insert(*I);
10619 }
10620 
10621 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10622   // For each block.
10623   for (auto *BB : L.getBlocks())
10624     for (auto &I : *BB) {
10625       if (!SE.isSCEVable(I.getType()))
10626         continue;
10627 
10628       auto *Expr = SE.getSCEV(&I);
10629       auto II = RewriteMap.find(Expr);
10630 
10631       if (II == RewriteMap.end())
10632         continue;
10633 
10634       // Don't print things that are not interesting.
10635       if (II->second.second == Expr)
10636         continue;
10637 
10638       OS.indent(Depth) << "[PSE]" << I << ":\n";
10639       OS.indent(Depth + 2) << *Expr << "\n";
10640       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10641     }
10642 }
10643