1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 static cl::opt<bool> 119 VerifySCEVMap("verify-scev-maps", 120 cl::desc("Verify no dangling value in ScalarEvolution's " 121 "ExprValueMap (slow)")); 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 LLVM_DUMP_METHOD 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->hasNoUnsignedWrap()) 170 OS << "nuw><"; 171 if (AR->hasNoSignedWrap()) 172 OS << "nsw><"; 173 if (AR->hasNoSelfWrap() && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = nullptr; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->hasNoUnsignedWrap()) 204 OS << "<nuw>"; 205 if (NAry->hasNoSignedWrap()) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getAPInt().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = nullptr; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(nullptr); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getAPInt(); 541 const APInt &RA = RC->getAPInt(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } // end anonymous namespace 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 // Returns the size of the SCEV S. 674 static inline int sizeOfSCEV(const SCEV *S) { 675 struct FindSCEVSize { 676 int Size; 677 FindSCEVSize() : Size(0) {} 678 679 bool follow(const SCEV *S) { 680 ++Size; 681 // Keep looking at all operands of S. 682 return true; 683 } 684 bool isDone() const { 685 return false; 686 } 687 }; 688 689 FindSCEVSize F; 690 SCEVTraversal<FindSCEVSize> ST(F); 691 ST.visitAll(S); 692 return F.Size; 693 } 694 695 namespace { 696 697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 698 public: 699 // Computes the Quotient and Remainder of the division of Numerator by 700 // Denominator. 701 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 702 const SCEV *Denominator, const SCEV **Quotient, 703 const SCEV **Remainder) { 704 assert(Numerator && Denominator && "Uninitialized SCEV"); 705 706 SCEVDivision D(SE, Numerator, Denominator); 707 708 // Check for the trivial case here to avoid having to check for it in the 709 // rest of the code. 710 if (Numerator == Denominator) { 711 *Quotient = D.One; 712 *Remainder = D.Zero; 713 return; 714 } 715 716 if (Numerator->isZero()) { 717 *Quotient = D.Zero; 718 *Remainder = D.Zero; 719 return; 720 } 721 722 // A simple case when N/1. The quotient is N. 723 if (Denominator->isOne()) { 724 *Quotient = Numerator; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getAPInt(); 768 APInt DenominatorVal = D->getAPInt(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 if (!Numerator->isAffine()) 789 return cannotDivide(Numerator); 790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 792 // Bail out if the types do not match. 793 Type *Ty = Denominator->getType(); 794 if (Ty != StartQ->getType() || Ty != StartR->getType() || 795 Ty != StepQ->getType() || Ty != StepR->getType()) 796 return cannotDivide(Numerator); 797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 800 Numerator->getNoWrapFlags()); 801 } 802 803 void visitAddExpr(const SCEVAddExpr *Numerator) { 804 SmallVector<const SCEV *, 2> Qs, Rs; 805 Type *Ty = Denominator->getType(); 806 807 for (const SCEV *Op : Numerator->operands()) { 808 const SCEV *Q, *R; 809 divide(SE, Op, Denominator, &Q, &R); 810 811 // Bail out if types do not match. 812 if (Ty != Q->getType() || Ty != R->getType()) 813 return cannotDivide(Numerator); 814 815 Qs.push_back(Q); 816 Rs.push_back(R); 817 } 818 819 if (Qs.size() == 1) { 820 Quotient = Qs[0]; 821 Remainder = Rs[0]; 822 return; 823 } 824 825 Quotient = SE.getAddExpr(Qs); 826 Remainder = SE.getAddExpr(Rs); 827 } 828 829 void visitMulExpr(const SCEVMulExpr *Numerator) { 830 SmallVector<const SCEV *, 2> Qs; 831 Type *Ty = Denominator->getType(); 832 833 bool FoundDenominatorTerm = false; 834 for (const SCEV *Op : Numerator->operands()) { 835 // Bail out if types do not match. 836 if (Ty != Op->getType()) 837 return cannotDivide(Numerator); 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) 854 return cannotDivide(Numerator); 855 856 FoundDenominatorTerm = true; 857 Qs.push_back(Q); 858 } 859 860 if (FoundDenominatorTerm) { 861 Remainder = Zero; 862 if (Qs.size() == 1) 863 Quotient = Qs[0]; 864 else 865 Quotient = SE.getMulExpr(Qs); 866 return; 867 } 868 869 if (!isa<SCEVUnknown>(Denominator)) 870 return cannotDivide(Numerator); 871 872 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 873 ValueToValueMap RewriteMap; 874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 875 cast<SCEVConstant>(Zero)->getValue(); 876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 877 878 if (Remainder->isZero()) { 879 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(One)->getValue(); 882 Quotient = 883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 884 return; 885 } 886 887 // Quotient is (Numerator - Remainder) divided by Denominator. 888 const SCEV *Q, *R; 889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 890 // This SCEV does not seem to simplify: fail the division here. 891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 892 return cannotDivide(Numerator); 893 divide(SE, Diff, Denominator, &Q, &R); 894 if (R != Zero) 895 return cannotDivide(Numerator); 896 Quotient = Q; 897 } 898 899 private: 900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 901 const SCEV *Denominator) 902 : SE(S), Denominator(Denominator) { 903 Zero = SE.getZero(Denominator->getType()); 904 One = SE.getOne(Denominator->getType()); 905 906 // We generally do not know how to divide Expr by Denominator. We 907 // initialize the division to a "cannot divide" state to simplify the rest 908 // of the code. 909 cannotDivide(Numerator); 910 } 911 912 // Convenience function for giving up on the division. We set the quotient to 913 // be equal to zero and the remainder to be equal to the numerator. 914 void cannotDivide(const SCEV *Numerator) { 915 Quotient = Zero; 916 Remainder = Numerator; 917 } 918 919 ScalarEvolution &SE; 920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 921 }; 922 923 } 924 925 //===----------------------------------------------------------------------===// 926 // Simple SCEV method implementations 927 //===----------------------------------------------------------------------===// 928 929 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 930 /// Assume, K > 0. 931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 932 ScalarEvolution &SE, 933 Type *ResultTy) { 934 // Handle the simplest case efficiently. 935 if (K == 1) 936 return SE.getTruncateOrZeroExtend(It, ResultTy); 937 938 // We are using the following formula for BC(It, K): 939 // 940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 941 // 942 // Suppose, W is the bitwidth of the return value. We must be prepared for 943 // overflow. Hence, we must assure that the result of our computation is 944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 945 // safe in modular arithmetic. 946 // 947 // However, this code doesn't use exactly that formula; the formula it uses 948 // is something like the following, where T is the number of factors of 2 in 949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 950 // exponentiation: 951 // 952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 953 // 954 // This formula is trivially equivalent to the previous formula. However, 955 // this formula can be implemented much more efficiently. The trick is that 956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 957 // arithmetic. To do exact division in modular arithmetic, all we have 958 // to do is multiply by the inverse. Therefore, this step can be done at 959 // width W. 960 // 961 // The next issue is how to safely do the division by 2^T. The way this 962 // is done is by doing the multiplication step at a width of at least W + T 963 // bits. This way, the bottom W+T bits of the product are accurate. Then, 964 // when we perform the division by 2^T (which is equivalent to a right shift 965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 966 // truncated out after the division by 2^T. 967 // 968 // In comparison to just directly using the first formula, this technique 969 // is much more efficient; using the first formula requires W * K bits, 970 // but this formula less than W + K bits. Also, the first formula requires 971 // a division step, whereas this formula only requires multiplies and shifts. 972 // 973 // It doesn't matter whether the subtraction step is done in the calculation 974 // width or the input iteration count's width; if the subtraction overflows, 975 // the result must be zero anyway. We prefer here to do it in the width of 976 // the induction variable because it helps a lot for certain cases; CodeGen 977 // isn't smart enough to ignore the overflow, which leads to much less 978 // efficient code if the width of the subtraction is wider than the native 979 // register width. 980 // 981 // (It's possible to not widen at all by pulling out factors of 2 before 982 // the multiplication; for example, K=2 can be calculated as 983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 984 // extra arithmetic, so it's not an obvious win, and it gets 985 // much more complicated for K > 3.) 986 987 // Protection from insane SCEVs; this bound is conservative, 988 // but it probably doesn't matter. 989 if (K > 1000) 990 return SE.getCouldNotCompute(); 991 992 unsigned W = SE.getTypeSizeInBits(ResultTy); 993 994 // Calculate K! / 2^T and T; we divide out the factors of two before 995 // multiplying for calculating K! / 2^T to avoid overflow. 996 // Other overflow doesn't matter because we only care about the bottom 997 // W bits of the result. 998 APInt OddFactorial(W, 1); 999 unsigned T = 1; 1000 for (unsigned i = 3; i <= K; ++i) { 1001 APInt Mult(W, i); 1002 unsigned TwoFactors = Mult.countTrailingZeros(); 1003 T += TwoFactors; 1004 Mult = Mult.lshr(TwoFactors); 1005 OddFactorial *= Mult; 1006 } 1007 1008 // We need at least W + T bits for the multiplication step 1009 unsigned CalculationBits = W + T; 1010 1011 // Calculate 2^T, at width T+W. 1012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1013 1014 // Calculate the multiplicative inverse of K! / 2^T; 1015 // this multiplication factor will perform the exact division by 1016 // K! / 2^T. 1017 APInt Mod = APInt::getSignedMinValue(W+1); 1018 APInt MultiplyFactor = OddFactorial.zext(W+1); 1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1020 MultiplyFactor = MultiplyFactor.trunc(W); 1021 1022 // Calculate the product, at width T+W 1023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1024 CalculationBits); 1025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1026 for (unsigned i = 1; i != K; ++i) { 1027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1028 Dividend = SE.getMulExpr(Dividend, 1029 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1030 } 1031 1032 // Divide by 2^T 1033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1034 1035 // Truncate the result, and divide by K! / 2^T. 1036 1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1039 } 1040 1041 /// evaluateAtIteration - Return the value of this chain of recurrences at 1042 /// the specified iteration number. We can evaluate this recurrence by 1043 /// multiplying each element in the chain by the binomial coefficient 1044 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1045 /// 1046 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1047 /// 1048 /// where BC(It, k) stands for binomial coefficient. 1049 /// 1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1051 ScalarEvolution &SE) const { 1052 const SCEV *Result = getStart(); 1053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1071 Type *Ty) { 1072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1073 "This is not a truncating conversion!"); 1074 assert(isSCEVable(Ty) && 1075 "This is not a conversion to a SCEVable type!"); 1076 Ty = getEffectiveSCEVType(Ty); 1077 1078 FoldingSetNodeID ID; 1079 ID.AddInteger(scTruncate); 1080 ID.AddPointer(Op); 1081 ID.AddPointer(Ty); 1082 void *IP = nullptr; 1083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1084 1085 // Fold if the operand is constant. 1086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1087 return getConstant( 1088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1089 1090 // trunc(trunc(x)) --> trunc(x) 1091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1092 return getTruncateExpr(ST->getOperand(), Ty); 1093 1094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1096 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1097 1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1101 1102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1103 // eliminate all the truncates, or we replace other casts with truncates. 1104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1105 SmallVector<const SCEV *, 4> Operands; 1106 bool hasTrunc = false; 1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1109 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1110 hasTrunc = isa<SCEVTruncateExpr>(S); 1111 Operands.push_back(S); 1112 } 1113 if (!hasTrunc) 1114 return getAddExpr(Operands); 1115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1116 } 1117 1118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1119 // eliminate all the truncates, or we replace other casts with truncates. 1120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1121 SmallVector<const SCEV *, 4> Operands; 1122 bool hasTrunc = false; 1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1125 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (const SCEV *Op : AddRec->operands()) 1138 Operands.push_back(getTruncateExpr(Op, Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 auto PreStartFlags = 1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1278 1279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1280 // "S+X does not sign/unsign-overflow". 1281 // 1282 1283 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1286 return PreStart; 1287 1288 // 2. Direct overflow check on the step operation's expression. 1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1291 const SCEV *OperandExtendedStart = 1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1293 (SE->*GetExtendExpr)(Step, WideTy)); 1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1295 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1300 } 1301 return PreStart; 1302 } 1303 1304 // 3. Loop precondition. 1305 ICmpInst::Predicate Pred; 1306 const SCEV *OverflowLimit = 1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1308 1309 if (OverflowLimit && 1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1311 return PreStart; 1312 1313 return nullptr; 1314 } 1315 1316 // Get the normalized zero or sign extended expression for this AddRec's Start. 1317 template <typename ExtendOpTy> 1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1319 ScalarEvolution *SE) { 1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1321 1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1323 if (!PreStart) 1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1325 1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1327 (SE->*GetExtendExpr)(PreStart, Ty)); 1328 } 1329 1330 // Try to prove away overflow by looking at "nearby" add recurrences. A 1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1333 // 1334 // Formally: 1335 // 1336 // {S,+,X} == {S-T,+,X} + T 1337 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1338 // 1339 // If ({S-T,+,X} + T) does not overflow ... (1) 1340 // 1341 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1342 // 1343 // If {S-T,+,X} does not overflow ... (2) 1344 // 1345 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1346 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1347 // 1348 // If (S-T)+T does not overflow ... (3) 1349 // 1350 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1351 // == {Ext(S),+,Ext(X)} == LHS 1352 // 1353 // Thus, if (1), (2) and (3) are true for some T, then 1354 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1355 // 1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1357 // does not overflow" restricted to the 0th iteration. Therefore we only need 1358 // to check for (1) and (2). 1359 // 1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1361 // is `Delta` (defined below). 1362 // 1363 template <typename ExtendOpTy> 1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1365 const SCEV *Step, 1366 const Loop *L) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 1369 // We restrict `Start` to a constant to prevent SCEV from spending too much 1370 // time here. It is correct (but more expensive) to continue with a 1371 // non-constant `Start` and do a general SCEV subtraction to compute 1372 // `PreStart` below. 1373 // 1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1375 if (!StartC) 1376 return false; 1377 1378 APInt StartAI = StartC->getAPInt(); 1379 1380 for (unsigned Delta : {-2, -1, 1, 2}) { 1381 const SCEV *PreStart = getConstant(StartAI - Delta); 1382 1383 FoldingSetNodeID ID; 1384 ID.AddInteger(scAddRecExpr); 1385 ID.AddPointer(PreStart); 1386 ID.AddPointer(Step); 1387 ID.AddPointer(L); 1388 void *IP = nullptr; 1389 const auto *PreAR = 1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1391 1392 // Give up if we don't already have the add recurrence we need because 1393 // actually constructing an add recurrence is relatively expensive. 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 if (!AR->hasNoUnsignedWrap()) { 1458 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1459 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1460 } 1461 1462 // If we have special knowledge that this addrec won't overflow, 1463 // we don't need to do any further analysis. 1464 if (AR->hasNoUnsignedWrap()) 1465 return getAddRecExpr( 1466 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1467 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1468 1469 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1470 // Note that this serves two purposes: It filters out loops that are 1471 // simply not analyzable, and it covers the case where this code is 1472 // being called from within backedge-taken count analysis, such that 1473 // attempting to ask for the backedge-taken count would likely result 1474 // in infinite recursion. In the later case, the analysis code will 1475 // cope with a conservative value, and it will take care to purge 1476 // that value once it has finished. 1477 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1478 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1479 // Manually compute the final value for AR, checking for 1480 // overflow. 1481 1482 // Check whether the backedge-taken count can be losslessly casted to 1483 // the addrec's type. The count is always unsigned. 1484 const SCEV *CastedMaxBECount = 1485 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1486 const SCEV *RecastedMaxBECount = 1487 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1488 if (MaxBECount == RecastedMaxBECount) { 1489 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1490 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1491 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1492 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1493 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1494 const SCEV *WideMaxBECount = 1495 getZeroExtendExpr(CastedMaxBECount, WideTy); 1496 const SCEV *OperandExtendedAdd = 1497 getAddExpr(WideStart, 1498 getMulExpr(WideMaxBECount, 1499 getZeroExtendExpr(Step, WideTy))); 1500 if (ZAdd == OperandExtendedAdd) { 1501 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1502 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1503 // Return the expression with the addrec on the outside. 1504 return getAddRecExpr( 1505 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1506 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1507 } 1508 // Similar to above, only this time treat the step value as signed. 1509 // This covers loops that count down. 1510 OperandExtendedAdd = 1511 getAddExpr(WideStart, 1512 getMulExpr(WideMaxBECount, 1513 getSignExtendExpr(Step, WideTy))); 1514 if (ZAdd == OperandExtendedAdd) { 1515 // Cache knowledge of AR NW, which is propagated to this AddRec. 1516 // Negative step causes unsigned wrap, but it still can't self-wrap. 1517 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1518 // Return the expression with the addrec on the outside. 1519 return getAddRecExpr( 1520 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1521 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1522 } 1523 } 1524 } 1525 1526 // Normally, in the cases we can prove no-overflow via a 1527 // backedge guarding condition, we can also compute a backedge 1528 // taken count for the loop. The exceptions are assumptions and 1529 // guards present in the loop -- SCEV is not great at exploiting 1530 // these to compute max backedge taken counts, but can still use 1531 // these to prove lack of overflow. Use this fact to avoid 1532 // doing extra work that may not pay off. 1533 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1534 !AC.assumptions().empty()) { 1535 // If the backedge is guarded by a comparison with the pre-inc 1536 // value the addrec is safe. Also, if the entry is guarded by 1537 // a comparison with the start value and the backedge is 1538 // guarded by a comparison with the post-inc value, the addrec 1539 // is safe. 1540 if (isKnownPositive(Step)) { 1541 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1542 getUnsignedRange(Step).getUnsignedMax()); 1543 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1544 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1545 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1546 AR->getPostIncExpr(*this), N))) { 1547 // Cache knowledge of AR NUW, which is propagated to this 1548 // AddRec. 1549 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1550 // Return the expression with the addrec on the outside. 1551 return getAddRecExpr( 1552 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1553 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1554 } 1555 } else if (isKnownNegative(Step)) { 1556 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1557 getSignedRange(Step).getSignedMin()); 1558 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1559 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1560 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1561 AR->getPostIncExpr(*this), N))) { 1562 // Cache knowledge of AR NW, which is propagated to this 1563 // AddRec. Negative step causes unsigned wrap, but it 1564 // still can't self-wrap. 1565 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1566 // Return the expression with the addrec on the outside. 1567 return getAddRecExpr( 1568 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1569 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1570 } 1571 } 1572 } 1573 1574 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1575 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1576 return getAddRecExpr( 1577 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1578 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1579 } 1580 } 1581 1582 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1583 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1584 if (SA->hasNoUnsignedWrap()) { 1585 // If the addition does not unsign overflow then we can, by definition, 1586 // commute the zero extension with the addition operation. 1587 SmallVector<const SCEV *, 4> Ops; 1588 for (const auto *Op : SA->operands()) 1589 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1590 return getAddExpr(Ops, SCEV::FlagNUW); 1591 } 1592 } 1593 1594 // The cast wasn't folded; create an explicit cast node. 1595 // Recompute the insert position, as it may have been invalidated. 1596 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1597 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1598 Op, Ty); 1599 UniqueSCEVs.InsertNode(S, IP); 1600 return S; 1601 } 1602 1603 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1604 Type *Ty) { 1605 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1606 "This is not an extending conversion!"); 1607 assert(isSCEVable(Ty) && 1608 "This is not a conversion to a SCEVable type!"); 1609 Ty = getEffectiveSCEVType(Ty); 1610 1611 // Fold if the operand is constant. 1612 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1613 return getConstant( 1614 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1615 1616 // sext(sext(x)) --> sext(x) 1617 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1618 return getSignExtendExpr(SS->getOperand(), Ty); 1619 1620 // sext(zext(x)) --> zext(x) 1621 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1622 return getZeroExtendExpr(SZ->getOperand(), Ty); 1623 1624 // Before doing any expensive analysis, check to see if we've already 1625 // computed a SCEV for this Op and Ty. 1626 FoldingSetNodeID ID; 1627 ID.AddInteger(scSignExtend); 1628 ID.AddPointer(Op); 1629 ID.AddPointer(Ty); 1630 void *IP = nullptr; 1631 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1632 1633 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1634 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1635 // It's possible the bits taken off by the truncate were all sign bits. If 1636 // so, we should be able to simplify this further. 1637 const SCEV *X = ST->getOperand(); 1638 ConstantRange CR = getSignedRange(X); 1639 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1640 unsigned NewBits = getTypeSizeInBits(Ty); 1641 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1642 CR.sextOrTrunc(NewBits))) 1643 return getTruncateOrSignExtend(X, Ty); 1644 } 1645 1646 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1647 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1648 if (SA->getNumOperands() == 2) { 1649 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1650 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1651 if (SMul && SC1) { 1652 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1653 const APInt &C1 = SC1->getAPInt(); 1654 const APInt &C2 = SC2->getAPInt(); 1655 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1656 C2.ugt(C1) && C2.isPowerOf2()) 1657 return getAddExpr(getSignExtendExpr(SC1, Ty), 1658 getSignExtendExpr(SMul, Ty)); 1659 } 1660 } 1661 } 1662 1663 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1664 if (SA->hasNoSignedWrap()) { 1665 // If the addition does not sign overflow then we can, by definition, 1666 // commute the sign extension with the addition operation. 1667 SmallVector<const SCEV *, 4> Ops; 1668 for (const auto *Op : SA->operands()) 1669 Ops.push_back(getSignExtendExpr(Op, Ty)); 1670 return getAddExpr(Ops, SCEV::FlagNSW); 1671 } 1672 } 1673 // If the input value is a chrec scev, and we can prove that the value 1674 // did not overflow the old, smaller, value, we can sign extend all of the 1675 // operands (often constants). This allows analysis of something like 1676 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1677 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1678 if (AR->isAffine()) { 1679 const SCEV *Start = AR->getStart(); 1680 const SCEV *Step = AR->getStepRecurrence(*this); 1681 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1682 const Loop *L = AR->getLoop(); 1683 1684 if (!AR->hasNoSignedWrap()) { 1685 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1687 } 1688 1689 // If we have special knowledge that this addrec won't overflow, 1690 // we don't need to do any further analysis. 1691 if (AR->hasNoSignedWrap()) 1692 return getAddRecExpr( 1693 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1694 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1695 1696 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1697 // Note that this serves two purposes: It filters out loops that are 1698 // simply not analyzable, and it covers the case where this code is 1699 // being called from within backedge-taken count analysis, such that 1700 // attempting to ask for the backedge-taken count would likely result 1701 // in infinite recursion. In the later case, the analysis code will 1702 // cope with a conservative value, and it will take care to purge 1703 // that value once it has finished. 1704 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1705 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1706 // Manually compute the final value for AR, checking for 1707 // overflow. 1708 1709 // Check whether the backedge-taken count can be losslessly casted to 1710 // the addrec's type. The count is always unsigned. 1711 const SCEV *CastedMaxBECount = 1712 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1713 const SCEV *RecastedMaxBECount = 1714 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1715 if (MaxBECount == RecastedMaxBECount) { 1716 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1717 // Check whether Start+Step*MaxBECount has no signed overflow. 1718 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1719 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1720 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1721 const SCEV *WideMaxBECount = 1722 getZeroExtendExpr(CastedMaxBECount, WideTy); 1723 const SCEV *OperandExtendedAdd = 1724 getAddExpr(WideStart, 1725 getMulExpr(WideMaxBECount, 1726 getSignExtendExpr(Step, WideTy))); 1727 if (SAdd == OperandExtendedAdd) { 1728 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1730 // Return the expression with the addrec on the outside. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1733 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1734 } 1735 // Similar to above, only this time treat the step value as unsigned. 1736 // This covers loops that count up with an unsigned step. 1737 OperandExtendedAdd = 1738 getAddExpr(WideStart, 1739 getMulExpr(WideMaxBECount, 1740 getZeroExtendExpr(Step, WideTy))); 1741 if (SAdd == OperandExtendedAdd) { 1742 // If AR wraps around then 1743 // 1744 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1745 // => SAdd != OperandExtendedAdd 1746 // 1747 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1748 // (SAdd == OperandExtendedAdd => AR is NW) 1749 1750 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1751 1752 // Return the expression with the addrec on the outside. 1753 return getAddRecExpr( 1754 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1755 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1756 } 1757 } 1758 } 1759 1760 // Normally, in the cases we can prove no-overflow via a 1761 // backedge guarding condition, we can also compute a backedge 1762 // taken count for the loop. The exceptions are assumptions and 1763 // guards present in the loop -- SCEV is not great at exploiting 1764 // these to compute max backedge taken counts, but can still use 1765 // these to prove lack of overflow. Use this fact to avoid 1766 // doing extra work that may not pay off. 1767 1768 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1769 !AC.assumptions().empty()) { 1770 // If the backedge is guarded by a comparison with the pre-inc 1771 // value the addrec is safe. Also, if the entry is guarded by 1772 // a comparison with the start value and the backedge is 1773 // guarded by a comparison with the post-inc value, the addrec 1774 // is safe. 1775 ICmpInst::Predicate Pred; 1776 const SCEV *OverflowLimit = 1777 getSignedOverflowLimitForStep(Step, &Pred, this); 1778 if (OverflowLimit && 1779 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1780 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1781 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1782 OverflowLimit)))) { 1783 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1784 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1785 return getAddRecExpr( 1786 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1787 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1788 } 1789 } 1790 1791 // If Start and Step are constants, check if we can apply this 1792 // transformation: 1793 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1794 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1795 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1796 if (SC1 && SC2) { 1797 const APInt &C1 = SC1->getAPInt(); 1798 const APInt &C2 = SC2->getAPInt(); 1799 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1800 C2.isPowerOf2()) { 1801 Start = getSignExtendExpr(Start, Ty); 1802 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1803 AR->getNoWrapFlags()); 1804 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1805 } 1806 } 1807 1808 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1809 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1810 return getAddRecExpr( 1811 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1812 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1813 } 1814 } 1815 1816 // If the input value is provably positive and we could not simplify 1817 // away the sext build a zext instead. 1818 if (isKnownNonNegative(Op)) 1819 return getZeroExtendExpr(Op, Ty); 1820 1821 // The cast wasn't folded; create an explicit cast node. 1822 // Recompute the insert position, as it may have been invalidated. 1823 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1824 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1825 Op, Ty); 1826 UniqueSCEVs.InsertNode(S, IP); 1827 return S; 1828 } 1829 1830 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1831 /// unspecified bits out to the given type. 1832 /// 1833 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1834 Type *Ty) { 1835 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1836 "This is not an extending conversion!"); 1837 assert(isSCEVable(Ty) && 1838 "This is not a conversion to a SCEVable type!"); 1839 Ty = getEffectiveSCEVType(Ty); 1840 1841 // Sign-extend negative constants. 1842 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1843 if (SC->getAPInt().isNegative()) 1844 return getSignExtendExpr(Op, Ty); 1845 1846 // Peel off a truncate cast. 1847 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1848 const SCEV *NewOp = T->getOperand(); 1849 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1850 return getAnyExtendExpr(NewOp, Ty); 1851 return getTruncateOrNoop(NewOp, Ty); 1852 } 1853 1854 // Next try a zext cast. If the cast is folded, use it. 1855 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1856 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1857 return ZExt; 1858 1859 // Next try a sext cast. If the cast is folded, use it. 1860 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1861 if (!isa<SCEVSignExtendExpr>(SExt)) 1862 return SExt; 1863 1864 // Force the cast to be folded into the operands of an addrec. 1865 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1866 SmallVector<const SCEV *, 4> Ops; 1867 for (const SCEV *Op : AR->operands()) 1868 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1869 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1870 } 1871 1872 // If the expression is obviously signed, use the sext cast value. 1873 if (isa<SCEVSMaxExpr>(Op)) 1874 return SExt; 1875 1876 // Absent any other information, use the zext cast value. 1877 return ZExt; 1878 } 1879 1880 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1881 /// a list of operands to be added under the given scale, update the given 1882 /// map. This is a helper function for getAddRecExpr. As an example of 1883 /// what it does, given a sequence of operands that would form an add 1884 /// expression like this: 1885 /// 1886 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1887 /// 1888 /// where A and B are constants, update the map with these values: 1889 /// 1890 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1891 /// 1892 /// and add 13 + A*B*29 to AccumulatedConstant. 1893 /// This will allow getAddRecExpr to produce this: 1894 /// 1895 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1896 /// 1897 /// This form often exposes folding opportunities that are hidden in 1898 /// the original operand list. 1899 /// 1900 /// Return true iff it appears that any interesting folding opportunities 1901 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1902 /// the common case where no interesting opportunities are present, and 1903 /// is also used as a check to avoid infinite recursion. 1904 /// 1905 static bool 1906 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1907 SmallVectorImpl<const SCEV *> &NewOps, 1908 APInt &AccumulatedConstant, 1909 const SCEV *const *Ops, size_t NumOperands, 1910 const APInt &Scale, 1911 ScalarEvolution &SE) { 1912 bool Interesting = false; 1913 1914 // Iterate over the add operands. They are sorted, with constants first. 1915 unsigned i = 0; 1916 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1917 ++i; 1918 // Pull a buried constant out to the outside. 1919 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1920 Interesting = true; 1921 AccumulatedConstant += Scale * C->getAPInt(); 1922 } 1923 1924 // Next comes everything else. We're especially interested in multiplies 1925 // here, but they're in the middle, so just visit the rest with one loop. 1926 for (; i != NumOperands; ++i) { 1927 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1928 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1929 APInt NewScale = 1930 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1931 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1932 // A multiplication of a constant with another add; recurse. 1933 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1934 Interesting |= 1935 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1936 Add->op_begin(), Add->getNumOperands(), 1937 NewScale, SE); 1938 } else { 1939 // A multiplication of a constant with some other value. Update 1940 // the map. 1941 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1942 const SCEV *Key = SE.getMulExpr(MulOps); 1943 auto Pair = M.insert({Key, NewScale}); 1944 if (Pair.second) { 1945 NewOps.push_back(Pair.first->first); 1946 } else { 1947 Pair.first->second += NewScale; 1948 // The map already had an entry for this value, which may indicate 1949 // a folding opportunity. 1950 Interesting = true; 1951 } 1952 } 1953 } else { 1954 // An ordinary operand. Update the map. 1955 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1956 M.insert({Ops[i], Scale}); 1957 if (Pair.second) { 1958 NewOps.push_back(Pair.first->first); 1959 } else { 1960 Pair.first->second += Scale; 1961 // The map already had an entry for this value, which may indicate 1962 // a folding opportunity. 1963 Interesting = true; 1964 } 1965 } 1966 } 1967 1968 return Interesting; 1969 } 1970 1971 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1972 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1973 // can't-overflow flags for the operation if possible. 1974 static SCEV::NoWrapFlags 1975 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1976 const SmallVectorImpl<const SCEV *> &Ops, 1977 SCEV::NoWrapFlags Flags) { 1978 using namespace std::placeholders; 1979 typedef OverflowingBinaryOperator OBO; 1980 1981 bool CanAnalyze = 1982 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1983 (void)CanAnalyze; 1984 assert(CanAnalyze && "don't call from other places!"); 1985 1986 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1987 SCEV::NoWrapFlags SignOrUnsignWrap = 1988 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1989 1990 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1991 auto IsKnownNonNegative = [&](const SCEV *S) { 1992 return SE->isKnownNonNegative(S); 1993 }; 1994 1995 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1996 Flags = 1997 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1998 1999 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2000 2001 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2002 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2003 2004 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2005 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2006 2007 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2008 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2009 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2010 Instruction::Add, C, OBO::NoSignedWrap); 2011 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2012 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2013 } 2014 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2015 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2016 Instruction::Add, C, OBO::NoUnsignedWrap); 2017 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2018 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2019 } 2020 } 2021 2022 return Flags; 2023 } 2024 2025 /// getAddExpr - Get a canonical add expression, or something simpler if 2026 /// possible. 2027 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2028 SCEV::NoWrapFlags Flags) { 2029 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2030 "only nuw or nsw allowed"); 2031 assert(!Ops.empty() && "Cannot get empty add!"); 2032 if (Ops.size() == 1) return Ops[0]; 2033 #ifndef NDEBUG 2034 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2035 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2036 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2037 "SCEVAddExpr operand types don't match!"); 2038 #endif 2039 2040 // Sort by complexity, this groups all similar expression types together. 2041 GroupByComplexity(Ops, &LI); 2042 2043 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2044 2045 // If there are any constants, fold them together. 2046 unsigned Idx = 0; 2047 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2048 ++Idx; 2049 assert(Idx < Ops.size()); 2050 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2051 // We found two constants, fold them together! 2052 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2053 if (Ops.size() == 2) return Ops[0]; 2054 Ops.erase(Ops.begin()+1); // Erase the folded element 2055 LHSC = cast<SCEVConstant>(Ops[0]); 2056 } 2057 2058 // If we are left with a constant zero being added, strip it off. 2059 if (LHSC->getValue()->isZero()) { 2060 Ops.erase(Ops.begin()); 2061 --Idx; 2062 } 2063 2064 if (Ops.size() == 1) return Ops[0]; 2065 } 2066 2067 // Okay, check to see if the same value occurs in the operand list more than 2068 // once. If so, merge them together into an multiply expression. Since we 2069 // sorted the list, these values are required to be adjacent. 2070 Type *Ty = Ops[0]->getType(); 2071 bool FoundMatch = false; 2072 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2073 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2074 // Scan ahead to count how many equal operands there are. 2075 unsigned Count = 2; 2076 while (i+Count != e && Ops[i+Count] == Ops[i]) 2077 ++Count; 2078 // Merge the values into a multiply. 2079 const SCEV *Scale = getConstant(Ty, Count); 2080 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2081 if (Ops.size() == Count) 2082 return Mul; 2083 Ops[i] = Mul; 2084 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2085 --i; e -= Count - 1; 2086 FoundMatch = true; 2087 } 2088 if (FoundMatch) 2089 return getAddExpr(Ops, Flags); 2090 2091 // Check for truncates. If all the operands are truncated from the same 2092 // type, see if factoring out the truncate would permit the result to be 2093 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2094 // if the contents of the resulting outer trunc fold to something simple. 2095 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2096 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2097 Type *DstType = Trunc->getType(); 2098 Type *SrcType = Trunc->getOperand()->getType(); 2099 SmallVector<const SCEV *, 8> LargeOps; 2100 bool Ok = true; 2101 // Check all the operands to see if they can be represented in the 2102 // source type of the truncate. 2103 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2104 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2105 if (T->getOperand()->getType() != SrcType) { 2106 Ok = false; 2107 break; 2108 } 2109 LargeOps.push_back(T->getOperand()); 2110 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2111 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2112 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2113 SmallVector<const SCEV *, 8> LargeMulOps; 2114 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2115 if (const SCEVTruncateExpr *T = 2116 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2117 if (T->getOperand()->getType() != SrcType) { 2118 Ok = false; 2119 break; 2120 } 2121 LargeMulOps.push_back(T->getOperand()); 2122 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2123 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2124 } else { 2125 Ok = false; 2126 break; 2127 } 2128 } 2129 if (Ok) 2130 LargeOps.push_back(getMulExpr(LargeMulOps)); 2131 } else { 2132 Ok = false; 2133 break; 2134 } 2135 } 2136 if (Ok) { 2137 // Evaluate the expression in the larger type. 2138 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2139 // If it folds to something simple, use it. Otherwise, don't. 2140 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2141 return getTruncateExpr(Fold, DstType); 2142 } 2143 } 2144 2145 // Skip past any other cast SCEVs. 2146 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2147 ++Idx; 2148 2149 // If there are add operands they would be next. 2150 if (Idx < Ops.size()) { 2151 bool DeletedAdd = false; 2152 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2153 // If we have an add, expand the add operands onto the end of the operands 2154 // list. 2155 Ops.erase(Ops.begin()+Idx); 2156 Ops.append(Add->op_begin(), Add->op_end()); 2157 DeletedAdd = true; 2158 } 2159 2160 // If we deleted at least one add, we added operands to the end of the list, 2161 // and they are not necessarily sorted. Recurse to resort and resimplify 2162 // any operands we just acquired. 2163 if (DeletedAdd) 2164 return getAddExpr(Ops); 2165 } 2166 2167 // Skip over the add expression until we get to a multiply. 2168 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2169 ++Idx; 2170 2171 // Check to see if there are any folding opportunities present with 2172 // operands multiplied by constant values. 2173 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2174 uint64_t BitWidth = getTypeSizeInBits(Ty); 2175 DenseMap<const SCEV *, APInt> M; 2176 SmallVector<const SCEV *, 8> NewOps; 2177 APInt AccumulatedConstant(BitWidth, 0); 2178 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2179 Ops.data(), Ops.size(), 2180 APInt(BitWidth, 1), *this)) { 2181 struct APIntCompare { 2182 bool operator()(const APInt &LHS, const APInt &RHS) const { 2183 return LHS.ult(RHS); 2184 } 2185 }; 2186 2187 // Some interesting folding opportunity is present, so its worthwhile to 2188 // re-generate the operands list. Group the operands by constant scale, 2189 // to avoid multiplying by the same constant scale multiple times. 2190 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2191 for (const SCEV *NewOp : NewOps) 2192 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2193 // Re-generate the operands list. 2194 Ops.clear(); 2195 if (AccumulatedConstant != 0) 2196 Ops.push_back(getConstant(AccumulatedConstant)); 2197 for (auto &MulOp : MulOpLists) 2198 if (MulOp.first != 0) 2199 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2200 getAddExpr(MulOp.second))); 2201 if (Ops.empty()) 2202 return getZero(Ty); 2203 if (Ops.size() == 1) 2204 return Ops[0]; 2205 return getAddExpr(Ops); 2206 } 2207 } 2208 2209 // If we are adding something to a multiply expression, make sure the 2210 // something is not already an operand of the multiply. If so, merge it into 2211 // the multiply. 2212 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2213 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2214 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2215 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2216 if (isa<SCEVConstant>(MulOpSCEV)) 2217 continue; 2218 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2219 if (MulOpSCEV == Ops[AddOp]) { 2220 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2221 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2222 if (Mul->getNumOperands() != 2) { 2223 // If the multiply has more than two operands, we must get the 2224 // Y*Z term. 2225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2226 Mul->op_begin()+MulOp); 2227 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2228 InnerMul = getMulExpr(MulOps); 2229 } 2230 const SCEV *One = getOne(Ty); 2231 const SCEV *AddOne = getAddExpr(One, InnerMul); 2232 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2233 if (Ops.size() == 2) return OuterMul; 2234 if (AddOp < Idx) { 2235 Ops.erase(Ops.begin()+AddOp); 2236 Ops.erase(Ops.begin()+Idx-1); 2237 } else { 2238 Ops.erase(Ops.begin()+Idx); 2239 Ops.erase(Ops.begin()+AddOp-1); 2240 } 2241 Ops.push_back(OuterMul); 2242 return getAddExpr(Ops); 2243 } 2244 2245 // Check this multiply against other multiplies being added together. 2246 for (unsigned OtherMulIdx = Idx+1; 2247 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2248 ++OtherMulIdx) { 2249 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2250 // If MulOp occurs in OtherMul, we can fold the two multiplies 2251 // together. 2252 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2253 OMulOp != e; ++OMulOp) 2254 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2255 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2256 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2257 if (Mul->getNumOperands() != 2) { 2258 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2259 Mul->op_begin()+MulOp); 2260 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2261 InnerMul1 = getMulExpr(MulOps); 2262 } 2263 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2264 if (OtherMul->getNumOperands() != 2) { 2265 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2266 OtherMul->op_begin()+OMulOp); 2267 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2268 InnerMul2 = getMulExpr(MulOps); 2269 } 2270 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2271 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2272 if (Ops.size() == 2) return OuterMul; 2273 Ops.erase(Ops.begin()+Idx); 2274 Ops.erase(Ops.begin()+OtherMulIdx-1); 2275 Ops.push_back(OuterMul); 2276 return getAddExpr(Ops); 2277 } 2278 } 2279 } 2280 } 2281 2282 // If there are any add recurrences in the operands list, see if any other 2283 // added values are loop invariant. If so, we can fold them into the 2284 // recurrence. 2285 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2286 ++Idx; 2287 2288 // Scan over all recurrences, trying to fold loop invariants into them. 2289 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2290 // Scan all of the other operands to this add and add them to the vector if 2291 // they are loop invariant w.r.t. the recurrence. 2292 SmallVector<const SCEV *, 8> LIOps; 2293 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2294 const Loop *AddRecLoop = AddRec->getLoop(); 2295 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2296 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2297 LIOps.push_back(Ops[i]); 2298 Ops.erase(Ops.begin()+i); 2299 --i; --e; 2300 } 2301 2302 // If we found some loop invariants, fold them into the recurrence. 2303 if (!LIOps.empty()) { 2304 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2305 LIOps.push_back(AddRec->getStart()); 2306 2307 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2308 AddRec->op_end()); 2309 // This follows from the fact that the no-wrap flags on the outer add 2310 // expression are applicable on the 0th iteration, when the add recurrence 2311 // will be equal to its start value. 2312 AddRecOps[0] = getAddExpr(LIOps, Flags); 2313 2314 // Build the new addrec. Propagate the NUW and NSW flags if both the 2315 // outer add and the inner addrec are guaranteed to have no overflow. 2316 // Always propagate NW. 2317 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2318 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2319 2320 // If all of the other operands were loop invariant, we are done. 2321 if (Ops.size() == 1) return NewRec; 2322 2323 // Otherwise, add the folded AddRec by the non-invariant parts. 2324 for (unsigned i = 0;; ++i) 2325 if (Ops[i] == AddRec) { 2326 Ops[i] = NewRec; 2327 break; 2328 } 2329 return getAddExpr(Ops); 2330 } 2331 2332 // Okay, if there weren't any loop invariants to be folded, check to see if 2333 // there are multiple AddRec's with the same loop induction variable being 2334 // added together. If so, we can fold them. 2335 for (unsigned OtherIdx = Idx+1; 2336 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2337 ++OtherIdx) 2338 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2339 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2340 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2341 AddRec->op_end()); 2342 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2343 ++OtherIdx) 2344 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2345 if (OtherAddRec->getLoop() == AddRecLoop) { 2346 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2347 i != e; ++i) { 2348 if (i >= AddRecOps.size()) { 2349 AddRecOps.append(OtherAddRec->op_begin()+i, 2350 OtherAddRec->op_end()); 2351 break; 2352 } 2353 AddRecOps[i] = getAddExpr(AddRecOps[i], 2354 OtherAddRec->getOperand(i)); 2355 } 2356 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2357 } 2358 // Step size has changed, so we cannot guarantee no self-wraparound. 2359 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2360 return getAddExpr(Ops); 2361 } 2362 2363 // Otherwise couldn't fold anything into this recurrence. Move onto the 2364 // next one. 2365 } 2366 2367 // Okay, it looks like we really DO need an add expr. Check to see if we 2368 // already have one, otherwise create a new one. 2369 FoldingSetNodeID ID; 2370 ID.AddInteger(scAddExpr); 2371 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2372 ID.AddPointer(Ops[i]); 2373 void *IP = nullptr; 2374 SCEVAddExpr *S = 2375 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2376 if (!S) { 2377 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2378 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2379 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2380 O, Ops.size()); 2381 UniqueSCEVs.InsertNode(S, IP); 2382 } 2383 S->setNoWrapFlags(Flags); 2384 return S; 2385 } 2386 2387 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2388 uint64_t k = i*j; 2389 if (j > 1 && k / j != i) Overflow = true; 2390 return k; 2391 } 2392 2393 /// Compute the result of "n choose k", the binomial coefficient. If an 2394 /// intermediate computation overflows, Overflow will be set and the return will 2395 /// be garbage. Overflow is not cleared on absence of overflow. 2396 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2397 // We use the multiplicative formula: 2398 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2399 // At each iteration, we take the n-th term of the numeral and divide by the 2400 // (k-n)th term of the denominator. This division will always produce an 2401 // integral result, and helps reduce the chance of overflow in the 2402 // intermediate computations. However, we can still overflow even when the 2403 // final result would fit. 2404 2405 if (n == 0 || n == k) return 1; 2406 if (k > n) return 0; 2407 2408 if (k > n/2) 2409 k = n-k; 2410 2411 uint64_t r = 1; 2412 for (uint64_t i = 1; i <= k; ++i) { 2413 r = umul_ov(r, n-(i-1), Overflow); 2414 r /= i; 2415 } 2416 return r; 2417 } 2418 2419 /// Determine if any of the operands in this SCEV are a constant or if 2420 /// any of the add or multiply expressions in this SCEV contain a constant. 2421 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2422 SmallVector<const SCEV *, 4> Ops; 2423 Ops.push_back(StartExpr); 2424 while (!Ops.empty()) { 2425 const SCEV *CurrentExpr = Ops.pop_back_val(); 2426 if (isa<SCEVConstant>(*CurrentExpr)) 2427 return true; 2428 2429 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2430 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2431 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2432 } 2433 } 2434 return false; 2435 } 2436 2437 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2438 /// possible. 2439 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2440 SCEV::NoWrapFlags Flags) { 2441 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2442 "only nuw or nsw allowed"); 2443 assert(!Ops.empty() && "Cannot get empty mul!"); 2444 if (Ops.size() == 1) return Ops[0]; 2445 #ifndef NDEBUG 2446 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2447 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2448 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2449 "SCEVMulExpr operand types don't match!"); 2450 #endif 2451 2452 // Sort by complexity, this groups all similar expression types together. 2453 GroupByComplexity(Ops, &LI); 2454 2455 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2456 2457 // If there are any constants, fold them together. 2458 unsigned Idx = 0; 2459 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2460 2461 // C1*(C2+V) -> C1*C2 + C1*V 2462 if (Ops.size() == 2) 2463 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2464 // If any of Add's ops are Adds or Muls with a constant, 2465 // apply this transformation as well. 2466 if (Add->getNumOperands() == 2) 2467 if (containsConstantSomewhere(Add)) 2468 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2469 getMulExpr(LHSC, Add->getOperand(1))); 2470 2471 ++Idx; 2472 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2473 // We found two constants, fold them together! 2474 ConstantInt *Fold = 2475 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2476 Ops[0] = getConstant(Fold); 2477 Ops.erase(Ops.begin()+1); // Erase the folded element 2478 if (Ops.size() == 1) return Ops[0]; 2479 LHSC = cast<SCEVConstant>(Ops[0]); 2480 } 2481 2482 // If we are left with a constant one being multiplied, strip it off. 2483 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2484 Ops.erase(Ops.begin()); 2485 --Idx; 2486 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2487 // If we have a multiply of zero, it will always be zero. 2488 return Ops[0]; 2489 } else if (Ops[0]->isAllOnesValue()) { 2490 // If we have a mul by -1 of an add, try distributing the -1 among the 2491 // add operands. 2492 if (Ops.size() == 2) { 2493 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2494 SmallVector<const SCEV *, 4> NewOps; 2495 bool AnyFolded = false; 2496 for (const SCEV *AddOp : Add->operands()) { 2497 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2498 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2499 NewOps.push_back(Mul); 2500 } 2501 if (AnyFolded) 2502 return getAddExpr(NewOps); 2503 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2504 // Negation preserves a recurrence's no self-wrap property. 2505 SmallVector<const SCEV *, 4> Operands; 2506 for (const SCEV *AddRecOp : AddRec->operands()) 2507 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2508 2509 return getAddRecExpr(Operands, AddRec->getLoop(), 2510 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2511 } 2512 } 2513 } 2514 2515 if (Ops.size() == 1) 2516 return Ops[0]; 2517 } 2518 2519 // Skip over the add expression until we get to a multiply. 2520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2521 ++Idx; 2522 2523 // If there are mul operands inline them all into this expression. 2524 if (Idx < Ops.size()) { 2525 bool DeletedMul = false; 2526 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2527 // If we have an mul, expand the mul operands onto the end of the operands 2528 // list. 2529 Ops.erase(Ops.begin()+Idx); 2530 Ops.append(Mul->op_begin(), Mul->op_end()); 2531 DeletedMul = true; 2532 } 2533 2534 // If we deleted at least one mul, we added operands to the end of the list, 2535 // and they are not necessarily sorted. Recurse to resort and resimplify 2536 // any operands we just acquired. 2537 if (DeletedMul) 2538 return getMulExpr(Ops); 2539 } 2540 2541 // If there are any add recurrences in the operands list, see if any other 2542 // added values are loop invariant. If so, we can fold them into the 2543 // recurrence. 2544 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2545 ++Idx; 2546 2547 // Scan over all recurrences, trying to fold loop invariants into them. 2548 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2549 // Scan all of the other operands to this mul and add them to the vector if 2550 // they are loop invariant w.r.t. the recurrence. 2551 SmallVector<const SCEV *, 8> LIOps; 2552 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2553 const Loop *AddRecLoop = AddRec->getLoop(); 2554 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2555 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2556 LIOps.push_back(Ops[i]); 2557 Ops.erase(Ops.begin()+i); 2558 --i; --e; 2559 } 2560 2561 // If we found some loop invariants, fold them into the recurrence. 2562 if (!LIOps.empty()) { 2563 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2564 SmallVector<const SCEV *, 4> NewOps; 2565 NewOps.reserve(AddRec->getNumOperands()); 2566 const SCEV *Scale = getMulExpr(LIOps); 2567 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2568 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2569 2570 // Build the new addrec. Propagate the NUW and NSW flags if both the 2571 // outer mul and the inner addrec are guaranteed to have no overflow. 2572 // 2573 // No self-wrap cannot be guaranteed after changing the step size, but 2574 // will be inferred if either NUW or NSW is true. 2575 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2576 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2577 2578 // If all of the other operands were loop invariant, we are done. 2579 if (Ops.size() == 1) return NewRec; 2580 2581 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2582 for (unsigned i = 0;; ++i) 2583 if (Ops[i] == AddRec) { 2584 Ops[i] = NewRec; 2585 break; 2586 } 2587 return getMulExpr(Ops); 2588 } 2589 2590 // Okay, if there weren't any loop invariants to be folded, check to see if 2591 // there are multiple AddRec's with the same loop induction variable being 2592 // multiplied together. If so, we can fold them. 2593 2594 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2595 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2596 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2597 // ]]],+,...up to x=2n}. 2598 // Note that the arguments to choose() are always integers with values 2599 // known at compile time, never SCEV objects. 2600 // 2601 // The implementation avoids pointless extra computations when the two 2602 // addrec's are of different length (mathematically, it's equivalent to 2603 // an infinite stream of zeros on the right). 2604 bool OpsModified = false; 2605 for (unsigned OtherIdx = Idx+1; 2606 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2607 ++OtherIdx) { 2608 const SCEVAddRecExpr *OtherAddRec = 2609 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2610 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2611 continue; 2612 2613 bool Overflow = false; 2614 Type *Ty = AddRec->getType(); 2615 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2616 SmallVector<const SCEV*, 7> AddRecOps; 2617 for (int x = 0, xe = AddRec->getNumOperands() + 2618 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2619 const SCEV *Term = getZero(Ty); 2620 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2621 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2622 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2623 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2624 z < ze && !Overflow; ++z) { 2625 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2626 uint64_t Coeff; 2627 if (LargerThan64Bits) 2628 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2629 else 2630 Coeff = Coeff1*Coeff2; 2631 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2632 const SCEV *Term1 = AddRec->getOperand(y-z); 2633 const SCEV *Term2 = OtherAddRec->getOperand(z); 2634 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2635 } 2636 } 2637 AddRecOps.push_back(Term); 2638 } 2639 if (!Overflow) { 2640 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2641 SCEV::FlagAnyWrap); 2642 if (Ops.size() == 2) return NewAddRec; 2643 Ops[Idx] = NewAddRec; 2644 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2645 OpsModified = true; 2646 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2647 if (!AddRec) 2648 break; 2649 } 2650 } 2651 if (OpsModified) 2652 return getMulExpr(Ops); 2653 2654 // Otherwise couldn't fold anything into this recurrence. Move onto the 2655 // next one. 2656 } 2657 2658 // Okay, it looks like we really DO need an mul expr. Check to see if we 2659 // already have one, otherwise create a new one. 2660 FoldingSetNodeID ID; 2661 ID.AddInteger(scMulExpr); 2662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2663 ID.AddPointer(Ops[i]); 2664 void *IP = nullptr; 2665 SCEVMulExpr *S = 2666 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2667 if (!S) { 2668 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2669 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2670 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2671 O, Ops.size()); 2672 UniqueSCEVs.InsertNode(S, IP); 2673 } 2674 S->setNoWrapFlags(Flags); 2675 return S; 2676 } 2677 2678 /// getUDivExpr - Get a canonical unsigned division expression, or something 2679 /// simpler if possible. 2680 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2681 const SCEV *RHS) { 2682 assert(getEffectiveSCEVType(LHS->getType()) == 2683 getEffectiveSCEVType(RHS->getType()) && 2684 "SCEVUDivExpr operand types don't match!"); 2685 2686 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2687 if (RHSC->getValue()->equalsInt(1)) 2688 return LHS; // X udiv 1 --> x 2689 // If the denominator is zero, the result of the udiv is undefined. Don't 2690 // try to analyze it, because the resolution chosen here may differ from 2691 // the resolution chosen in other parts of the compiler. 2692 if (!RHSC->getValue()->isZero()) { 2693 // Determine if the division can be folded into the operands of 2694 // its operands. 2695 // TODO: Generalize this to non-constants by using known-bits information. 2696 Type *Ty = LHS->getType(); 2697 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2698 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2699 // For non-power-of-two values, effectively round the value up to the 2700 // nearest power of two. 2701 if (!RHSC->getAPInt().isPowerOf2()) 2702 ++MaxShiftAmt; 2703 IntegerType *ExtTy = 2704 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2705 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2706 if (const SCEVConstant *Step = 2707 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2708 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2709 const APInt &StepInt = Step->getAPInt(); 2710 const APInt &DivInt = RHSC->getAPInt(); 2711 if (!StepInt.urem(DivInt) && 2712 getZeroExtendExpr(AR, ExtTy) == 2713 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2714 getZeroExtendExpr(Step, ExtTy), 2715 AR->getLoop(), SCEV::FlagAnyWrap)) { 2716 SmallVector<const SCEV *, 4> Operands; 2717 for (const SCEV *Op : AR->operands()) 2718 Operands.push_back(getUDivExpr(Op, RHS)); 2719 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2720 } 2721 /// Get a canonical UDivExpr for a recurrence. 2722 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2723 // We can currently only fold X%N if X is constant. 2724 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2725 if (StartC && !DivInt.urem(StepInt) && 2726 getZeroExtendExpr(AR, ExtTy) == 2727 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2728 getZeroExtendExpr(Step, ExtTy), 2729 AR->getLoop(), SCEV::FlagAnyWrap)) { 2730 const APInt &StartInt = StartC->getAPInt(); 2731 const APInt &StartRem = StartInt.urem(StepInt); 2732 if (StartRem != 0) 2733 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2734 AR->getLoop(), SCEV::FlagNW); 2735 } 2736 } 2737 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2738 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2739 SmallVector<const SCEV *, 4> Operands; 2740 for (const SCEV *Op : M->operands()) 2741 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2742 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2743 // Find an operand that's safely divisible. 2744 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2745 const SCEV *Op = M->getOperand(i); 2746 const SCEV *Div = getUDivExpr(Op, RHSC); 2747 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2748 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2749 M->op_end()); 2750 Operands[i] = Div; 2751 return getMulExpr(Operands); 2752 } 2753 } 2754 } 2755 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2756 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2757 SmallVector<const SCEV *, 4> Operands; 2758 for (const SCEV *Op : A->operands()) 2759 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2760 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2761 Operands.clear(); 2762 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2763 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2764 if (isa<SCEVUDivExpr>(Op) || 2765 getMulExpr(Op, RHS) != A->getOperand(i)) 2766 break; 2767 Operands.push_back(Op); 2768 } 2769 if (Operands.size() == A->getNumOperands()) 2770 return getAddExpr(Operands); 2771 } 2772 } 2773 2774 // Fold if both operands are constant. 2775 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2776 Constant *LHSCV = LHSC->getValue(); 2777 Constant *RHSCV = RHSC->getValue(); 2778 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2779 RHSCV))); 2780 } 2781 } 2782 } 2783 2784 FoldingSetNodeID ID; 2785 ID.AddInteger(scUDivExpr); 2786 ID.AddPointer(LHS); 2787 ID.AddPointer(RHS); 2788 void *IP = nullptr; 2789 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2790 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2791 LHS, RHS); 2792 UniqueSCEVs.InsertNode(S, IP); 2793 return S; 2794 } 2795 2796 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2797 APInt A = C1->getAPInt().abs(); 2798 APInt B = C2->getAPInt().abs(); 2799 uint32_t ABW = A.getBitWidth(); 2800 uint32_t BBW = B.getBitWidth(); 2801 2802 if (ABW > BBW) 2803 B = B.zext(ABW); 2804 else if (ABW < BBW) 2805 A = A.zext(BBW); 2806 2807 return APIntOps::GreatestCommonDivisor(A, B); 2808 } 2809 2810 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2811 /// something simpler if possible. There is no representation for an exact udiv 2812 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2813 /// We can't do this when it's not exact because the udiv may be clearing bits. 2814 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2815 const SCEV *RHS) { 2816 // TODO: we could try to find factors in all sorts of things, but for now we 2817 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2818 // end of this file for inspiration. 2819 2820 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2821 if (!Mul) 2822 return getUDivExpr(LHS, RHS); 2823 2824 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2825 // If the mulexpr multiplies by a constant, then that constant must be the 2826 // first element of the mulexpr. 2827 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2828 if (LHSCst == RHSCst) { 2829 SmallVector<const SCEV *, 2> Operands; 2830 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2831 return getMulExpr(Operands); 2832 } 2833 2834 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2835 // that there's a factor provided by one of the other terms. We need to 2836 // check. 2837 APInt Factor = gcd(LHSCst, RHSCst); 2838 if (!Factor.isIntN(1)) { 2839 LHSCst = 2840 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2841 RHSCst = 2842 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2843 SmallVector<const SCEV *, 2> Operands; 2844 Operands.push_back(LHSCst); 2845 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2846 LHS = getMulExpr(Operands); 2847 RHS = RHSCst; 2848 Mul = dyn_cast<SCEVMulExpr>(LHS); 2849 if (!Mul) 2850 return getUDivExactExpr(LHS, RHS); 2851 } 2852 } 2853 } 2854 2855 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2856 if (Mul->getOperand(i) == RHS) { 2857 SmallVector<const SCEV *, 2> Operands; 2858 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2859 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2860 return getMulExpr(Operands); 2861 } 2862 } 2863 2864 return getUDivExpr(LHS, RHS); 2865 } 2866 2867 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2868 /// Simplify the expression as much as possible. 2869 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2870 const Loop *L, 2871 SCEV::NoWrapFlags Flags) { 2872 SmallVector<const SCEV *, 4> Operands; 2873 Operands.push_back(Start); 2874 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2875 if (StepChrec->getLoop() == L) { 2876 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2877 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2878 } 2879 2880 Operands.push_back(Step); 2881 return getAddRecExpr(Operands, L, Flags); 2882 } 2883 2884 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2885 /// Simplify the expression as much as possible. 2886 const SCEV * 2887 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2888 const Loop *L, SCEV::NoWrapFlags Flags) { 2889 if (Operands.size() == 1) return Operands[0]; 2890 #ifndef NDEBUG 2891 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2892 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2893 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2894 "SCEVAddRecExpr operand types don't match!"); 2895 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2896 assert(isLoopInvariant(Operands[i], L) && 2897 "SCEVAddRecExpr operand is not loop-invariant!"); 2898 #endif 2899 2900 if (Operands.back()->isZero()) { 2901 Operands.pop_back(); 2902 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2903 } 2904 2905 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2906 // use that information to infer NUW and NSW flags. However, computing a 2907 // BE count requires calling getAddRecExpr, so we may not yet have a 2908 // meaningful BE count at this point (and if we don't, we'd be stuck 2909 // with a SCEVCouldNotCompute as the cached BE count). 2910 2911 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2912 2913 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2914 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2915 const Loop *NestedLoop = NestedAR->getLoop(); 2916 if (L->contains(NestedLoop) 2917 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2918 : (!NestedLoop->contains(L) && 2919 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2920 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2921 NestedAR->op_end()); 2922 Operands[0] = NestedAR->getStart(); 2923 // AddRecs require their operands be loop-invariant with respect to their 2924 // loops. Don't perform this transformation if it would break this 2925 // requirement. 2926 bool AllInvariant = all_of( 2927 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2928 2929 if (AllInvariant) { 2930 // Create a recurrence for the outer loop with the same step size. 2931 // 2932 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2933 // inner recurrence has the same property. 2934 SCEV::NoWrapFlags OuterFlags = 2935 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2936 2937 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2938 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2939 return isLoopInvariant(Op, NestedLoop); 2940 }); 2941 2942 if (AllInvariant) { 2943 // Ok, both add recurrences are valid after the transformation. 2944 // 2945 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2946 // the outer recurrence has the same property. 2947 SCEV::NoWrapFlags InnerFlags = 2948 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2949 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2950 } 2951 } 2952 // Reset Operands to its original state. 2953 Operands[0] = NestedAR; 2954 } 2955 } 2956 2957 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2958 // already have one, otherwise create a new one. 2959 FoldingSetNodeID ID; 2960 ID.AddInteger(scAddRecExpr); 2961 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2962 ID.AddPointer(Operands[i]); 2963 ID.AddPointer(L); 2964 void *IP = nullptr; 2965 SCEVAddRecExpr *S = 2966 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2967 if (!S) { 2968 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2969 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2970 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2971 O, Operands.size(), L); 2972 UniqueSCEVs.InsertNode(S, IP); 2973 } 2974 S->setNoWrapFlags(Flags); 2975 return S; 2976 } 2977 2978 const SCEV * 2979 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2980 const SmallVectorImpl<const SCEV *> &IndexExprs, 2981 bool InBounds) { 2982 // getSCEV(Base)->getType() has the same address space as Base->getType() 2983 // because SCEV::getType() preserves the address space. 2984 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2985 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2986 // instruction to its SCEV, because the Instruction may be guarded by control 2987 // flow and the no-overflow bits may not be valid for the expression in any 2988 // context. This can be fixed similarly to how these flags are handled for 2989 // adds. 2990 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2991 2992 const SCEV *TotalOffset = getZero(IntPtrTy); 2993 // The address space is unimportant. The first thing we do on CurTy is getting 2994 // its element type. 2995 Type *CurTy = PointerType::getUnqual(PointeeType); 2996 for (const SCEV *IndexExpr : IndexExprs) { 2997 // Compute the (potentially symbolic) offset in bytes for this index. 2998 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2999 // For a struct, add the member offset. 3000 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3001 unsigned FieldNo = Index->getZExtValue(); 3002 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3003 3004 // Add the field offset to the running total offset. 3005 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3006 3007 // Update CurTy to the type of the field at Index. 3008 CurTy = STy->getTypeAtIndex(Index); 3009 } else { 3010 // Update CurTy to its element type. 3011 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3012 // For an array, add the element offset, explicitly scaled. 3013 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3014 // Getelementptr indices are signed. 3015 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3016 3017 // Multiply the index by the element size to compute the element offset. 3018 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3019 3020 // Add the element offset to the running total offset. 3021 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3022 } 3023 } 3024 3025 // Add the total offset from all the GEP indices to the base. 3026 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3027 } 3028 3029 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3030 const SCEV *RHS) { 3031 SmallVector<const SCEV *, 2> Ops; 3032 Ops.push_back(LHS); 3033 Ops.push_back(RHS); 3034 return getSMaxExpr(Ops); 3035 } 3036 3037 const SCEV * 3038 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3039 assert(!Ops.empty() && "Cannot get empty smax!"); 3040 if (Ops.size() == 1) return Ops[0]; 3041 #ifndef NDEBUG 3042 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3043 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3044 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3045 "SCEVSMaxExpr operand types don't match!"); 3046 #endif 3047 3048 // Sort by complexity, this groups all similar expression types together. 3049 GroupByComplexity(Ops, &LI); 3050 3051 // If there are any constants, fold them together. 3052 unsigned Idx = 0; 3053 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3054 ++Idx; 3055 assert(Idx < Ops.size()); 3056 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3057 // We found two constants, fold them together! 3058 ConstantInt *Fold = ConstantInt::get( 3059 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3060 Ops[0] = getConstant(Fold); 3061 Ops.erase(Ops.begin()+1); // Erase the folded element 3062 if (Ops.size() == 1) return Ops[0]; 3063 LHSC = cast<SCEVConstant>(Ops[0]); 3064 } 3065 3066 // If we are left with a constant minimum-int, strip it off. 3067 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3068 Ops.erase(Ops.begin()); 3069 --Idx; 3070 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3071 // If we have an smax with a constant maximum-int, it will always be 3072 // maximum-int. 3073 return Ops[0]; 3074 } 3075 3076 if (Ops.size() == 1) return Ops[0]; 3077 } 3078 3079 // Find the first SMax 3080 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3081 ++Idx; 3082 3083 // Check to see if one of the operands is an SMax. If so, expand its operands 3084 // onto our operand list, and recurse to simplify. 3085 if (Idx < Ops.size()) { 3086 bool DeletedSMax = false; 3087 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3088 Ops.erase(Ops.begin()+Idx); 3089 Ops.append(SMax->op_begin(), SMax->op_end()); 3090 DeletedSMax = true; 3091 } 3092 3093 if (DeletedSMax) 3094 return getSMaxExpr(Ops); 3095 } 3096 3097 // Okay, check to see if the same value occurs in the operand list twice. If 3098 // so, delete one. Since we sorted the list, these values are required to 3099 // be adjacent. 3100 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3101 // X smax Y smax Y --> X smax Y 3102 // X smax Y --> X, if X is always greater than Y 3103 if (Ops[i] == Ops[i+1] || 3104 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3105 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3106 --i; --e; 3107 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3108 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3109 --i; --e; 3110 } 3111 3112 if (Ops.size() == 1) return Ops[0]; 3113 3114 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3115 3116 // Okay, it looks like we really DO need an smax expr. Check to see if we 3117 // already have one, otherwise create a new one. 3118 FoldingSetNodeID ID; 3119 ID.AddInteger(scSMaxExpr); 3120 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3121 ID.AddPointer(Ops[i]); 3122 void *IP = nullptr; 3123 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3124 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3125 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3126 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3127 O, Ops.size()); 3128 UniqueSCEVs.InsertNode(S, IP); 3129 return S; 3130 } 3131 3132 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3133 const SCEV *RHS) { 3134 SmallVector<const SCEV *, 2> Ops; 3135 Ops.push_back(LHS); 3136 Ops.push_back(RHS); 3137 return getUMaxExpr(Ops); 3138 } 3139 3140 const SCEV * 3141 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3142 assert(!Ops.empty() && "Cannot get empty umax!"); 3143 if (Ops.size() == 1) return Ops[0]; 3144 #ifndef NDEBUG 3145 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3146 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3147 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3148 "SCEVUMaxExpr operand types don't match!"); 3149 #endif 3150 3151 // Sort by complexity, this groups all similar expression types together. 3152 GroupByComplexity(Ops, &LI); 3153 3154 // If there are any constants, fold them together. 3155 unsigned Idx = 0; 3156 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3157 ++Idx; 3158 assert(Idx < Ops.size()); 3159 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3160 // We found two constants, fold them together! 3161 ConstantInt *Fold = ConstantInt::get( 3162 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3163 Ops[0] = getConstant(Fold); 3164 Ops.erase(Ops.begin()+1); // Erase the folded element 3165 if (Ops.size() == 1) return Ops[0]; 3166 LHSC = cast<SCEVConstant>(Ops[0]); 3167 } 3168 3169 // If we are left with a constant minimum-int, strip it off. 3170 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3171 Ops.erase(Ops.begin()); 3172 --Idx; 3173 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3174 // If we have an umax with a constant maximum-int, it will always be 3175 // maximum-int. 3176 return Ops[0]; 3177 } 3178 3179 if (Ops.size() == 1) return Ops[0]; 3180 } 3181 3182 // Find the first UMax 3183 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3184 ++Idx; 3185 3186 // Check to see if one of the operands is a UMax. If so, expand its operands 3187 // onto our operand list, and recurse to simplify. 3188 if (Idx < Ops.size()) { 3189 bool DeletedUMax = false; 3190 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3191 Ops.erase(Ops.begin()+Idx); 3192 Ops.append(UMax->op_begin(), UMax->op_end()); 3193 DeletedUMax = true; 3194 } 3195 3196 if (DeletedUMax) 3197 return getUMaxExpr(Ops); 3198 } 3199 3200 // Okay, check to see if the same value occurs in the operand list twice. If 3201 // so, delete one. Since we sorted the list, these values are required to 3202 // be adjacent. 3203 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3204 // X umax Y umax Y --> X umax Y 3205 // X umax Y --> X, if X is always greater than Y 3206 if (Ops[i] == Ops[i+1] || 3207 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3208 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3209 --i; --e; 3210 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3211 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3212 --i; --e; 3213 } 3214 3215 if (Ops.size() == 1) return Ops[0]; 3216 3217 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3218 3219 // Okay, it looks like we really DO need a umax expr. Check to see if we 3220 // already have one, otherwise create a new one. 3221 FoldingSetNodeID ID; 3222 ID.AddInteger(scUMaxExpr); 3223 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3224 ID.AddPointer(Ops[i]); 3225 void *IP = nullptr; 3226 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3227 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3228 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3229 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3230 O, Ops.size()); 3231 UniqueSCEVs.InsertNode(S, IP); 3232 return S; 3233 } 3234 3235 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3236 const SCEV *RHS) { 3237 // ~smax(~x, ~y) == smin(x, y). 3238 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3239 } 3240 3241 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3242 const SCEV *RHS) { 3243 // ~umax(~x, ~y) == umin(x, y) 3244 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3245 } 3246 3247 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3248 // We can bypass creating a target-independent 3249 // constant expression and then folding it back into a ConstantInt. 3250 // This is just a compile-time optimization. 3251 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3252 } 3253 3254 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3255 StructType *STy, 3256 unsigned FieldNo) { 3257 // We can bypass creating a target-independent 3258 // constant expression and then folding it back into a ConstantInt. 3259 // This is just a compile-time optimization. 3260 return getConstant( 3261 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3262 } 3263 3264 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3265 // Don't attempt to do anything other than create a SCEVUnknown object 3266 // here. createSCEV only calls getUnknown after checking for all other 3267 // interesting possibilities, and any other code that calls getUnknown 3268 // is doing so in order to hide a value from SCEV canonicalization. 3269 3270 FoldingSetNodeID ID; 3271 ID.AddInteger(scUnknown); 3272 ID.AddPointer(V); 3273 void *IP = nullptr; 3274 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3275 assert(cast<SCEVUnknown>(S)->getValue() == V && 3276 "Stale SCEVUnknown in uniquing map!"); 3277 return S; 3278 } 3279 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3280 FirstUnknown); 3281 FirstUnknown = cast<SCEVUnknown>(S); 3282 UniqueSCEVs.InsertNode(S, IP); 3283 return S; 3284 } 3285 3286 //===----------------------------------------------------------------------===// 3287 // Basic SCEV Analysis and PHI Idiom Recognition Code 3288 // 3289 3290 /// isSCEVable - Test if values of the given type are analyzable within 3291 /// the SCEV framework. This primarily includes integer types, and it 3292 /// can optionally include pointer types if the ScalarEvolution class 3293 /// has access to target-specific information. 3294 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3295 // Integers and pointers are always SCEVable. 3296 return Ty->isIntegerTy() || Ty->isPointerTy(); 3297 } 3298 3299 /// getTypeSizeInBits - Return the size in bits of the specified type, 3300 /// for which isSCEVable must return true. 3301 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3302 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3303 return getDataLayout().getTypeSizeInBits(Ty); 3304 } 3305 3306 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3307 /// the given type and which represents how SCEV will treat the given 3308 /// type, for which isSCEVable must return true. For pointer types, 3309 /// this is the pointer-sized integer type. 3310 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3311 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3312 3313 if (Ty->isIntegerTy()) 3314 return Ty; 3315 3316 // The only other support type is pointer. 3317 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3318 return getDataLayout().getIntPtrType(Ty); 3319 } 3320 3321 const SCEV *ScalarEvolution::getCouldNotCompute() { 3322 return CouldNotCompute.get(); 3323 } 3324 3325 3326 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3327 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3328 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3329 // is set iff if find such SCEVUnknown. 3330 // 3331 struct FindInvalidSCEVUnknown { 3332 bool FindOne; 3333 FindInvalidSCEVUnknown() { FindOne = false; } 3334 bool follow(const SCEV *S) { 3335 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3336 case scConstant: 3337 return false; 3338 case scUnknown: 3339 if (!cast<SCEVUnknown>(S)->getValue()) 3340 FindOne = true; 3341 return false; 3342 default: 3343 return true; 3344 } 3345 } 3346 bool isDone() const { return FindOne; } 3347 }; 3348 3349 FindInvalidSCEVUnknown F; 3350 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3351 ST.visitAll(S); 3352 3353 return !F.FindOne; 3354 } 3355 3356 namespace { 3357 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3358 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set 3359 // iff if such sub scAddRecExpr type SCEV is found. 3360 struct FindAddRecurrence { 3361 bool FoundOne; 3362 FindAddRecurrence() : FoundOne(false) {} 3363 3364 bool follow(const SCEV *S) { 3365 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3366 case scAddRecExpr: 3367 FoundOne = true; 3368 case scConstant: 3369 case scUnknown: 3370 case scCouldNotCompute: 3371 return false; 3372 default: 3373 return true; 3374 } 3375 } 3376 bool isDone() const { return FoundOne; } 3377 }; 3378 } 3379 3380 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3381 HasRecMapType::iterator I = HasRecMap.find_as(S); 3382 if (I != HasRecMap.end()) 3383 return I->second; 3384 3385 FindAddRecurrence F; 3386 SCEVTraversal<FindAddRecurrence> ST(F); 3387 ST.visitAll(S); 3388 HasRecMap.insert({S, F.FoundOne}); 3389 return F.FoundOne; 3390 } 3391 3392 /// getSCEVValues - Return the Value set from S. 3393 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) { 3394 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3395 if (SI == ExprValueMap.end()) 3396 return nullptr; 3397 #ifndef NDEBUG 3398 if (VerifySCEVMap) { 3399 // Check there is no dangling Value in the set returned. 3400 for (const auto &VE : SI->second) 3401 assert(ValueExprMap.count(VE)); 3402 } 3403 #endif 3404 return &SI->second; 3405 } 3406 3407 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap. 3408 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S), 3409 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed 3410 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S]. 3411 void ScalarEvolution::eraseValueFromMap(Value *V) { 3412 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3413 if (I != ValueExprMap.end()) { 3414 const SCEV *S = I->second; 3415 SetVector<Value *> *SV = getSCEVValues(S); 3416 // Remove V from the set of ExprValueMap[S] 3417 if (SV) 3418 SV->remove(V); 3419 ValueExprMap.erase(V); 3420 } 3421 } 3422 3423 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3424 /// expression and create a new one. 3425 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3426 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3427 3428 const SCEV *S = getExistingSCEV(V); 3429 if (S == nullptr) { 3430 S = createSCEV(V); 3431 // During PHI resolution, it is possible to create two SCEVs for the same 3432 // V, so it is needed to double check whether V->S is inserted into 3433 // ValueExprMap before insert S->V into ExprValueMap. 3434 std::pair<ValueExprMapType::iterator, bool> Pair = 3435 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3436 if (Pair.second) 3437 ExprValueMap[S].insert(V); 3438 } 3439 return S; 3440 } 3441 3442 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3443 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3444 3445 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3446 if (I != ValueExprMap.end()) { 3447 const SCEV *S = I->second; 3448 if (checkValidity(S)) 3449 return S; 3450 forgetMemoizedResults(S); 3451 ValueExprMap.erase(I); 3452 } 3453 return nullptr; 3454 } 3455 3456 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3457 /// 3458 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3459 SCEV::NoWrapFlags Flags) { 3460 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3461 return getConstant( 3462 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3463 3464 Type *Ty = V->getType(); 3465 Ty = getEffectiveSCEVType(Ty); 3466 return getMulExpr( 3467 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3468 } 3469 3470 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3471 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3472 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3473 return getConstant( 3474 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3475 3476 Type *Ty = V->getType(); 3477 Ty = getEffectiveSCEVType(Ty); 3478 const SCEV *AllOnes = 3479 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3480 return getMinusSCEV(AllOnes, V); 3481 } 3482 3483 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3484 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3485 SCEV::NoWrapFlags Flags) { 3486 // Fast path: X - X --> 0. 3487 if (LHS == RHS) 3488 return getZero(LHS->getType()); 3489 3490 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3491 // makes it so that we cannot make much use of NUW. 3492 auto AddFlags = SCEV::FlagAnyWrap; 3493 const bool RHSIsNotMinSigned = 3494 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3495 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3496 // Let M be the minimum representable signed value. Then (-1)*RHS 3497 // signed-wraps if and only if RHS is M. That can happen even for 3498 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3499 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3500 // (-1)*RHS, we need to prove that RHS != M. 3501 // 3502 // If LHS is non-negative and we know that LHS - RHS does not 3503 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3504 // either by proving that RHS > M or that LHS >= 0. 3505 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3506 AddFlags = SCEV::FlagNSW; 3507 } 3508 } 3509 3510 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3511 // RHS is NSW and LHS >= 0. 3512 // 3513 // The difficulty here is that the NSW flag may have been proven 3514 // relative to a loop that is to be found in a recurrence in LHS and 3515 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3516 // larger scope than intended. 3517 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3518 3519 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3520 } 3521 3522 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3523 /// input value to the specified type. If the type must be extended, it is zero 3524 /// extended. 3525 const SCEV * 3526 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3527 Type *SrcTy = V->getType(); 3528 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3529 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3530 "Cannot truncate or zero extend with non-integer arguments!"); 3531 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3532 return V; // No conversion 3533 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3534 return getTruncateExpr(V, Ty); 3535 return getZeroExtendExpr(V, Ty); 3536 } 3537 3538 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3539 /// input value to the specified type. If the type must be extended, it is sign 3540 /// extended. 3541 const SCEV * 3542 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3543 Type *Ty) { 3544 Type *SrcTy = V->getType(); 3545 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3546 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3547 "Cannot truncate or zero extend with non-integer arguments!"); 3548 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3549 return V; // No conversion 3550 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3551 return getTruncateExpr(V, Ty); 3552 return getSignExtendExpr(V, Ty); 3553 } 3554 3555 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3556 /// input value to the specified type. If the type must be extended, it is zero 3557 /// extended. The conversion must not be narrowing. 3558 const SCEV * 3559 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3560 Type *SrcTy = V->getType(); 3561 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3562 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3563 "Cannot noop or zero extend with non-integer arguments!"); 3564 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3565 "getNoopOrZeroExtend cannot truncate!"); 3566 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3567 return V; // No conversion 3568 return getZeroExtendExpr(V, Ty); 3569 } 3570 3571 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3572 /// input value to the specified type. If the type must be extended, it is sign 3573 /// extended. The conversion must not be narrowing. 3574 const SCEV * 3575 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3576 Type *SrcTy = V->getType(); 3577 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3578 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3579 "Cannot noop or sign extend with non-integer arguments!"); 3580 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3581 "getNoopOrSignExtend cannot truncate!"); 3582 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3583 return V; // No conversion 3584 return getSignExtendExpr(V, Ty); 3585 } 3586 3587 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3588 /// the input value to the specified type. If the type must be extended, 3589 /// it is extended with unspecified bits. The conversion must not be 3590 /// narrowing. 3591 const SCEV * 3592 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3593 Type *SrcTy = V->getType(); 3594 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3595 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3596 "Cannot noop or any extend with non-integer arguments!"); 3597 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3598 "getNoopOrAnyExtend cannot truncate!"); 3599 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3600 return V; // No conversion 3601 return getAnyExtendExpr(V, Ty); 3602 } 3603 3604 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3605 /// input value to the specified type. The conversion must not be widening. 3606 const SCEV * 3607 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3608 Type *SrcTy = V->getType(); 3609 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3610 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3611 "Cannot truncate or noop with non-integer arguments!"); 3612 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3613 "getTruncateOrNoop cannot extend!"); 3614 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3615 return V; // No conversion 3616 return getTruncateExpr(V, Ty); 3617 } 3618 3619 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3620 /// the types using zero-extension, and then perform a umax operation 3621 /// with them. 3622 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3623 const SCEV *RHS) { 3624 const SCEV *PromotedLHS = LHS; 3625 const SCEV *PromotedRHS = RHS; 3626 3627 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3628 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3629 else 3630 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3631 3632 return getUMaxExpr(PromotedLHS, PromotedRHS); 3633 } 3634 3635 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3636 /// the types using zero-extension, and then perform a umin operation 3637 /// with them. 3638 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3639 const SCEV *RHS) { 3640 const SCEV *PromotedLHS = LHS; 3641 const SCEV *PromotedRHS = RHS; 3642 3643 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3644 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3645 else 3646 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3647 3648 return getUMinExpr(PromotedLHS, PromotedRHS); 3649 } 3650 3651 /// getPointerBase - Transitively follow the chain of pointer-type operands 3652 /// until reaching a SCEV that does not have a single pointer operand. This 3653 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3654 /// but corner cases do exist. 3655 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3656 // A pointer operand may evaluate to a nonpointer expression, such as null. 3657 if (!V->getType()->isPointerTy()) 3658 return V; 3659 3660 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3661 return getPointerBase(Cast->getOperand()); 3662 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3663 const SCEV *PtrOp = nullptr; 3664 for (const SCEV *NAryOp : NAry->operands()) { 3665 if (NAryOp->getType()->isPointerTy()) { 3666 // Cannot find the base of an expression with multiple pointer operands. 3667 if (PtrOp) 3668 return V; 3669 PtrOp = NAryOp; 3670 } 3671 } 3672 if (!PtrOp) 3673 return V; 3674 return getPointerBase(PtrOp); 3675 } 3676 return V; 3677 } 3678 3679 /// PushDefUseChildren - Push users of the given Instruction 3680 /// onto the given Worklist. 3681 static void 3682 PushDefUseChildren(Instruction *I, 3683 SmallVectorImpl<Instruction *> &Worklist) { 3684 // Push the def-use children onto the Worklist stack. 3685 for (User *U : I->users()) 3686 Worklist.push_back(cast<Instruction>(U)); 3687 } 3688 3689 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3690 /// instructions that depend on the given instruction and removes them from 3691 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3692 /// resolution. 3693 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3694 SmallVector<Instruction *, 16> Worklist; 3695 PushDefUseChildren(PN, Worklist); 3696 3697 SmallPtrSet<Instruction *, 8> Visited; 3698 Visited.insert(PN); 3699 while (!Worklist.empty()) { 3700 Instruction *I = Worklist.pop_back_val(); 3701 if (!Visited.insert(I).second) 3702 continue; 3703 3704 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3705 if (It != ValueExprMap.end()) { 3706 const SCEV *Old = It->second; 3707 3708 // Short-circuit the def-use traversal if the symbolic name 3709 // ceases to appear in expressions. 3710 if (Old != SymName && !hasOperand(Old, SymName)) 3711 continue; 3712 3713 // SCEVUnknown for a PHI either means that it has an unrecognized 3714 // structure, it's a PHI that's in the progress of being computed 3715 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3716 // additional loop trip count information isn't going to change anything. 3717 // In the second case, createNodeForPHI will perform the necessary 3718 // updates on its own when it gets to that point. In the third, we do 3719 // want to forget the SCEVUnknown. 3720 if (!isa<PHINode>(I) || 3721 !isa<SCEVUnknown>(Old) || 3722 (I != PN && Old == SymName)) { 3723 forgetMemoizedResults(Old); 3724 ValueExprMap.erase(It); 3725 } 3726 } 3727 3728 PushDefUseChildren(I, Worklist); 3729 } 3730 } 3731 3732 namespace { 3733 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3734 public: 3735 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3736 ScalarEvolution &SE) { 3737 SCEVInitRewriter Rewriter(L, SE); 3738 const SCEV *Result = Rewriter.visit(S); 3739 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3740 } 3741 3742 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3743 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3744 3745 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3746 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3747 Valid = false; 3748 return Expr; 3749 } 3750 3751 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3752 // Only allow AddRecExprs for this loop. 3753 if (Expr->getLoop() == L) 3754 return Expr->getStart(); 3755 Valid = false; 3756 return Expr; 3757 } 3758 3759 bool isValid() { return Valid; } 3760 3761 private: 3762 const Loop *L; 3763 bool Valid; 3764 }; 3765 3766 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3767 public: 3768 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3769 ScalarEvolution &SE) { 3770 SCEVShiftRewriter Rewriter(L, SE); 3771 const SCEV *Result = Rewriter.visit(S); 3772 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3773 } 3774 3775 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3776 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3777 3778 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3779 // Only allow AddRecExprs for this loop. 3780 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3781 Valid = false; 3782 return Expr; 3783 } 3784 3785 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3786 if (Expr->getLoop() == L && Expr->isAffine()) 3787 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3788 Valid = false; 3789 return Expr; 3790 } 3791 bool isValid() { return Valid; } 3792 3793 private: 3794 const Loop *L; 3795 bool Valid; 3796 }; 3797 } // end anonymous namespace 3798 3799 SCEV::NoWrapFlags 3800 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3801 if (!AR->isAffine()) 3802 return SCEV::FlagAnyWrap; 3803 3804 typedef OverflowingBinaryOperator OBO; 3805 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3806 3807 if (!AR->hasNoSignedWrap()) { 3808 ConstantRange AddRecRange = getSignedRange(AR); 3809 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3810 3811 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3812 Instruction::Add, IncRange, OBO::NoSignedWrap); 3813 if (NSWRegion.contains(AddRecRange)) 3814 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3815 } 3816 3817 if (!AR->hasNoUnsignedWrap()) { 3818 ConstantRange AddRecRange = getUnsignedRange(AR); 3819 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3820 3821 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3822 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3823 if (NUWRegion.contains(AddRecRange)) 3824 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3825 } 3826 3827 return Result; 3828 } 3829 3830 namespace { 3831 /// Represents an abstract binary operation. This may exist as a 3832 /// normal instruction or constant expression, or may have been 3833 /// derived from an expression tree. 3834 struct BinaryOp { 3835 unsigned Opcode; 3836 Value *LHS; 3837 Value *RHS; 3838 bool IsNSW; 3839 bool IsNUW; 3840 3841 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3842 /// constant expression. 3843 Operator *Op; 3844 3845 explicit BinaryOp(Operator *Op) 3846 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3847 IsNSW(false), IsNUW(false), Op(Op) { 3848 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3849 IsNSW = OBO->hasNoSignedWrap(); 3850 IsNUW = OBO->hasNoUnsignedWrap(); 3851 } 3852 } 3853 3854 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3855 bool IsNUW = false) 3856 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3857 Op(nullptr) {} 3858 }; 3859 } 3860 3861 3862 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3863 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3864 auto *Op = dyn_cast<Operator>(V); 3865 if (!Op) 3866 return None; 3867 3868 // Implementation detail: all the cleverness here should happen without 3869 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3870 // SCEV expressions when possible, and we should not break that. 3871 3872 switch (Op->getOpcode()) { 3873 case Instruction::Add: 3874 case Instruction::Sub: 3875 case Instruction::Mul: 3876 case Instruction::UDiv: 3877 case Instruction::And: 3878 case Instruction::Or: 3879 case Instruction::AShr: 3880 case Instruction::Shl: 3881 return BinaryOp(Op); 3882 3883 case Instruction::Xor: 3884 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 3885 // If the RHS of the xor is a signbit, then this is just an add. 3886 // Instcombine turns add of signbit into xor as a strength reduction step. 3887 if (RHSC->getValue().isSignBit()) 3888 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 3889 return BinaryOp(Op); 3890 3891 case Instruction::LShr: 3892 // Turn logical shift right of a constant into a unsigned divide. 3893 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 3894 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 3895 3896 // If the shift count is not less than the bitwidth, the result of 3897 // the shift is undefined. Don't try to analyze it, because the 3898 // resolution chosen here may differ from the resolution chosen in 3899 // other parts of the compiler. 3900 if (SA->getValue().ult(BitWidth)) { 3901 Constant *X = 3902 ConstantInt::get(SA->getContext(), 3903 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3904 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 3905 } 3906 } 3907 return BinaryOp(Op); 3908 3909 case Instruction::ExtractValue: { 3910 auto *EVI = cast<ExtractValueInst>(Op); 3911 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 3912 break; 3913 3914 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 3915 if (!CI) 3916 break; 3917 3918 if (auto *F = CI->getCalledFunction()) 3919 switch (F->getIntrinsicID()) { 3920 case Intrinsic::sadd_with_overflow: 3921 case Intrinsic::uadd_with_overflow: { 3922 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 3923 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3924 CI->getArgOperand(1)); 3925 3926 // Now that we know that all uses of the arithmetic-result component of 3927 // CI are guarded by the overflow check, we can go ahead and pretend 3928 // that the arithmetic is non-overflowing. 3929 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 3930 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3931 CI->getArgOperand(1), /* IsNSW = */ true, 3932 /* IsNUW = */ false); 3933 else 3934 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3935 CI->getArgOperand(1), /* IsNSW = */ false, 3936 /* IsNUW*/ true); 3937 } 3938 3939 case Intrinsic::ssub_with_overflow: 3940 case Intrinsic::usub_with_overflow: 3941 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 3942 CI->getArgOperand(1)); 3943 3944 case Intrinsic::smul_with_overflow: 3945 case Intrinsic::umul_with_overflow: 3946 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 3947 CI->getArgOperand(1)); 3948 default: 3949 break; 3950 } 3951 } 3952 3953 default: 3954 break; 3955 } 3956 3957 return None; 3958 } 3959 3960 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3961 const Loop *L = LI.getLoopFor(PN->getParent()); 3962 if (!L || L->getHeader() != PN->getParent()) 3963 return nullptr; 3964 3965 // The loop may have multiple entrances or multiple exits; we can analyze 3966 // this phi as an addrec if it has a unique entry value and a unique 3967 // backedge value. 3968 Value *BEValueV = nullptr, *StartValueV = nullptr; 3969 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3970 Value *V = PN->getIncomingValue(i); 3971 if (L->contains(PN->getIncomingBlock(i))) { 3972 if (!BEValueV) { 3973 BEValueV = V; 3974 } else if (BEValueV != V) { 3975 BEValueV = nullptr; 3976 break; 3977 } 3978 } else if (!StartValueV) { 3979 StartValueV = V; 3980 } else if (StartValueV != V) { 3981 StartValueV = nullptr; 3982 break; 3983 } 3984 } 3985 if (BEValueV && StartValueV) { 3986 // While we are analyzing this PHI node, handle its value symbolically. 3987 const SCEV *SymbolicName = getUnknown(PN); 3988 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3989 "PHI node already processed?"); 3990 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3991 3992 // Using this symbolic name for the PHI, analyze the value coming around 3993 // the back-edge. 3994 const SCEV *BEValue = getSCEV(BEValueV); 3995 3996 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3997 // has a special value for the first iteration of the loop. 3998 3999 // If the value coming around the backedge is an add with the symbolic 4000 // value we just inserted, then we found a simple induction variable! 4001 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4002 // If there is a single occurrence of the symbolic value, replace it 4003 // with a recurrence. 4004 unsigned FoundIndex = Add->getNumOperands(); 4005 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4006 if (Add->getOperand(i) == SymbolicName) 4007 if (FoundIndex == e) { 4008 FoundIndex = i; 4009 break; 4010 } 4011 4012 if (FoundIndex != Add->getNumOperands()) { 4013 // Create an add with everything but the specified operand. 4014 SmallVector<const SCEV *, 8> Ops; 4015 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4016 if (i != FoundIndex) 4017 Ops.push_back(Add->getOperand(i)); 4018 const SCEV *Accum = getAddExpr(Ops); 4019 4020 // This is not a valid addrec if the step amount is varying each 4021 // loop iteration, but is not itself an addrec in this loop. 4022 if (isLoopInvariant(Accum, L) || 4023 (isa<SCEVAddRecExpr>(Accum) && 4024 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4025 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4026 4027 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4028 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4029 if (BO->IsNUW) 4030 Flags = setFlags(Flags, SCEV::FlagNUW); 4031 if (BO->IsNSW) 4032 Flags = setFlags(Flags, SCEV::FlagNSW); 4033 } 4034 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4035 // If the increment is an inbounds GEP, then we know the address 4036 // space cannot be wrapped around. We cannot make any guarantee 4037 // about signed or unsigned overflow because pointers are 4038 // unsigned but we may have a negative index from the base 4039 // pointer. We can guarantee that no unsigned wrap occurs if the 4040 // indices form a positive value. 4041 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4042 Flags = setFlags(Flags, SCEV::FlagNW); 4043 4044 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4045 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4046 Flags = setFlags(Flags, SCEV::FlagNUW); 4047 } 4048 4049 // We cannot transfer nuw and nsw flags from subtraction 4050 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4051 // for instance. 4052 } 4053 4054 const SCEV *StartVal = getSCEV(StartValueV); 4055 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4056 4057 // Okay, for the entire analysis of this edge we assumed the PHI 4058 // to be symbolic. We now need to go back and purge all of the 4059 // entries for the scalars that use the symbolic expression. 4060 forgetSymbolicName(PN, SymbolicName); 4061 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4062 4063 // We can add Flags to the post-inc expression only if we 4064 // know that it us *undefined behavior* for BEValueV to 4065 // overflow. 4066 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4067 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4068 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4069 4070 return PHISCEV; 4071 } 4072 } 4073 } else { 4074 // Otherwise, this could be a loop like this: 4075 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4076 // In this case, j = {1,+,1} and BEValue is j. 4077 // Because the other in-value of i (0) fits the evolution of BEValue 4078 // i really is an addrec evolution. 4079 // 4080 // We can generalize this saying that i is the shifted value of BEValue 4081 // by one iteration: 4082 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4083 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4084 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4085 if (Shifted != getCouldNotCompute() && 4086 Start != getCouldNotCompute()) { 4087 const SCEV *StartVal = getSCEV(StartValueV); 4088 if (Start == StartVal) { 4089 // Okay, for the entire analysis of this edge we assumed the PHI 4090 // to be symbolic. We now need to go back and purge all of the 4091 // entries for the scalars that use the symbolic expression. 4092 forgetSymbolicName(PN, SymbolicName); 4093 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4094 return Shifted; 4095 } 4096 } 4097 } 4098 4099 // Remove the temporary PHI node SCEV that has been inserted while intending 4100 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4101 // as it will prevent later (possibly simpler) SCEV expressions to be added 4102 // to the ValueExprMap. 4103 ValueExprMap.erase(PN); 4104 } 4105 4106 return nullptr; 4107 } 4108 4109 // Checks if the SCEV S is available at BB. S is considered available at BB 4110 // if S can be materialized at BB without introducing a fault. 4111 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4112 BasicBlock *BB) { 4113 struct CheckAvailable { 4114 bool TraversalDone = false; 4115 bool Available = true; 4116 4117 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4118 BasicBlock *BB = nullptr; 4119 DominatorTree &DT; 4120 4121 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4122 : L(L), BB(BB), DT(DT) {} 4123 4124 bool setUnavailable() { 4125 TraversalDone = true; 4126 Available = false; 4127 return false; 4128 } 4129 4130 bool follow(const SCEV *S) { 4131 switch (S->getSCEVType()) { 4132 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4133 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4134 // These expressions are available if their operand(s) is/are. 4135 return true; 4136 4137 case scAddRecExpr: { 4138 // We allow add recurrences that are on the loop BB is in, or some 4139 // outer loop. This guarantees availability because the value of the 4140 // add recurrence at BB is simply the "current" value of the induction 4141 // variable. We can relax this in the future; for instance an add 4142 // recurrence on a sibling dominating loop is also available at BB. 4143 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4144 if (L && (ARLoop == L || ARLoop->contains(L))) 4145 return true; 4146 4147 return setUnavailable(); 4148 } 4149 4150 case scUnknown: { 4151 // For SCEVUnknown, we check for simple dominance. 4152 const auto *SU = cast<SCEVUnknown>(S); 4153 Value *V = SU->getValue(); 4154 4155 if (isa<Argument>(V)) 4156 return false; 4157 4158 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4159 return false; 4160 4161 return setUnavailable(); 4162 } 4163 4164 case scUDivExpr: 4165 case scCouldNotCompute: 4166 // We do not try to smart about these at all. 4167 return setUnavailable(); 4168 } 4169 llvm_unreachable("switch should be fully covered!"); 4170 } 4171 4172 bool isDone() { return TraversalDone; } 4173 }; 4174 4175 CheckAvailable CA(L, BB, DT); 4176 SCEVTraversal<CheckAvailable> ST(CA); 4177 4178 ST.visitAll(S); 4179 return CA.Available; 4180 } 4181 4182 // Try to match a control flow sequence that branches out at BI and merges back 4183 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4184 // match. 4185 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4186 Value *&C, Value *&LHS, Value *&RHS) { 4187 C = BI->getCondition(); 4188 4189 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4190 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4191 4192 if (!LeftEdge.isSingleEdge()) 4193 return false; 4194 4195 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4196 4197 Use &LeftUse = Merge->getOperandUse(0); 4198 Use &RightUse = Merge->getOperandUse(1); 4199 4200 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4201 LHS = LeftUse; 4202 RHS = RightUse; 4203 return true; 4204 } 4205 4206 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4207 LHS = RightUse; 4208 RHS = LeftUse; 4209 return true; 4210 } 4211 4212 return false; 4213 } 4214 4215 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4216 if (PN->getNumIncomingValues() == 2) { 4217 const Loop *L = LI.getLoopFor(PN->getParent()); 4218 4219 // We don't want to break LCSSA, even in a SCEV expression tree. 4220 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4221 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4222 return nullptr; 4223 4224 // Try to match 4225 // 4226 // br %cond, label %left, label %right 4227 // left: 4228 // br label %merge 4229 // right: 4230 // br label %merge 4231 // merge: 4232 // V = phi [ %x, %left ], [ %y, %right ] 4233 // 4234 // as "select %cond, %x, %y" 4235 4236 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4237 assert(IDom && "At least the entry block should dominate PN"); 4238 4239 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4240 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4241 4242 if (BI && BI->isConditional() && 4243 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4244 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4245 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4246 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4247 } 4248 4249 return nullptr; 4250 } 4251 4252 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4253 if (const SCEV *S = createAddRecFromPHI(PN)) 4254 return S; 4255 4256 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4257 return S; 4258 4259 // If the PHI has a single incoming value, follow that value, unless the 4260 // PHI's incoming blocks are in a different loop, in which case doing so 4261 // risks breaking LCSSA form. Instcombine would normally zap these, but 4262 // it doesn't have DominatorTree information, so it may miss cases. 4263 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4264 if (LI.replacementPreservesLCSSAForm(PN, V)) 4265 return getSCEV(V); 4266 4267 // If it's not a loop phi, we can't handle it yet. 4268 return getUnknown(PN); 4269 } 4270 4271 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4272 Value *Cond, 4273 Value *TrueVal, 4274 Value *FalseVal) { 4275 // Handle "constant" branch or select. This can occur for instance when a 4276 // loop pass transforms an inner loop and moves on to process the outer loop. 4277 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4278 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4279 4280 // Try to match some simple smax or umax patterns. 4281 auto *ICI = dyn_cast<ICmpInst>(Cond); 4282 if (!ICI) 4283 return getUnknown(I); 4284 4285 Value *LHS = ICI->getOperand(0); 4286 Value *RHS = ICI->getOperand(1); 4287 4288 switch (ICI->getPredicate()) { 4289 case ICmpInst::ICMP_SLT: 4290 case ICmpInst::ICMP_SLE: 4291 std::swap(LHS, RHS); 4292 // fall through 4293 case ICmpInst::ICMP_SGT: 4294 case ICmpInst::ICMP_SGE: 4295 // a >s b ? a+x : b+x -> smax(a, b)+x 4296 // a >s b ? b+x : a+x -> smin(a, b)+x 4297 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4298 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4299 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4300 const SCEV *LA = getSCEV(TrueVal); 4301 const SCEV *RA = getSCEV(FalseVal); 4302 const SCEV *LDiff = getMinusSCEV(LA, LS); 4303 const SCEV *RDiff = getMinusSCEV(RA, RS); 4304 if (LDiff == RDiff) 4305 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4306 LDiff = getMinusSCEV(LA, RS); 4307 RDiff = getMinusSCEV(RA, LS); 4308 if (LDiff == RDiff) 4309 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4310 } 4311 break; 4312 case ICmpInst::ICMP_ULT: 4313 case ICmpInst::ICMP_ULE: 4314 std::swap(LHS, RHS); 4315 // fall through 4316 case ICmpInst::ICMP_UGT: 4317 case ICmpInst::ICMP_UGE: 4318 // a >u b ? a+x : b+x -> umax(a, b)+x 4319 // a >u b ? b+x : a+x -> umin(a, b)+x 4320 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4321 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4322 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4323 const SCEV *LA = getSCEV(TrueVal); 4324 const SCEV *RA = getSCEV(FalseVal); 4325 const SCEV *LDiff = getMinusSCEV(LA, LS); 4326 const SCEV *RDiff = getMinusSCEV(RA, RS); 4327 if (LDiff == RDiff) 4328 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4329 LDiff = getMinusSCEV(LA, RS); 4330 RDiff = getMinusSCEV(RA, LS); 4331 if (LDiff == RDiff) 4332 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4333 } 4334 break; 4335 case ICmpInst::ICMP_NE: 4336 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4337 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4338 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4339 const SCEV *One = getOne(I->getType()); 4340 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4341 const SCEV *LA = getSCEV(TrueVal); 4342 const SCEV *RA = getSCEV(FalseVal); 4343 const SCEV *LDiff = getMinusSCEV(LA, LS); 4344 const SCEV *RDiff = getMinusSCEV(RA, One); 4345 if (LDiff == RDiff) 4346 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4347 } 4348 break; 4349 case ICmpInst::ICMP_EQ: 4350 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4351 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4352 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4353 const SCEV *One = getOne(I->getType()); 4354 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4355 const SCEV *LA = getSCEV(TrueVal); 4356 const SCEV *RA = getSCEV(FalseVal); 4357 const SCEV *LDiff = getMinusSCEV(LA, One); 4358 const SCEV *RDiff = getMinusSCEV(RA, LS); 4359 if (LDiff == RDiff) 4360 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4361 } 4362 break; 4363 default: 4364 break; 4365 } 4366 4367 return getUnknown(I); 4368 } 4369 4370 /// createNodeForGEP - Expand GEP instructions into add and multiply 4371 /// operations. This allows them to be analyzed by regular SCEV code. 4372 /// 4373 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4374 // Don't attempt to analyze GEPs over unsized objects. 4375 if (!GEP->getSourceElementType()->isSized()) 4376 return getUnknown(GEP); 4377 4378 SmallVector<const SCEV *, 4> IndexExprs; 4379 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4380 IndexExprs.push_back(getSCEV(*Index)); 4381 return getGEPExpr(GEP->getSourceElementType(), 4382 getSCEV(GEP->getPointerOperand()), 4383 IndexExprs, GEP->isInBounds()); 4384 } 4385 4386 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4387 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4388 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4389 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4390 uint32_t 4391 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4392 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4393 return C->getAPInt().countTrailingZeros(); 4394 4395 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4396 return std::min(GetMinTrailingZeros(T->getOperand()), 4397 (uint32_t)getTypeSizeInBits(T->getType())); 4398 4399 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4400 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4401 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4402 getTypeSizeInBits(E->getType()) : OpRes; 4403 } 4404 4405 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4406 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4407 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4408 getTypeSizeInBits(E->getType()) : OpRes; 4409 } 4410 4411 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4412 // The result is the min of all operands results. 4413 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4414 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4415 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4416 return MinOpRes; 4417 } 4418 4419 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4420 // The result is the sum of all operands results. 4421 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4422 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4423 for (unsigned i = 1, e = M->getNumOperands(); 4424 SumOpRes != BitWidth && i != e; ++i) 4425 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4426 BitWidth); 4427 return SumOpRes; 4428 } 4429 4430 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4431 // The result is the min of all operands results. 4432 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4433 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4434 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4435 return MinOpRes; 4436 } 4437 4438 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4439 // The result is the min of all operands results. 4440 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4441 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4442 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4443 return MinOpRes; 4444 } 4445 4446 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4447 // The result is the min of all operands results. 4448 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4449 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4450 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4451 return MinOpRes; 4452 } 4453 4454 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4455 // For a SCEVUnknown, ask ValueTracking. 4456 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4457 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4458 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4459 nullptr, &DT); 4460 return Zeros.countTrailingOnes(); 4461 } 4462 4463 // SCEVUDivExpr 4464 return 0; 4465 } 4466 4467 /// GetRangeFromMetadata - Helper method to assign a range to V from 4468 /// metadata present in the IR. 4469 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4470 if (Instruction *I = dyn_cast<Instruction>(V)) 4471 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4472 return getConstantRangeFromMetadata(*MD); 4473 4474 return None; 4475 } 4476 4477 /// getRange - Determine the range for a particular SCEV. If SignHint is 4478 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4479 /// with a "cleaner" unsigned (resp. signed) representation. 4480 /// 4481 ConstantRange 4482 ScalarEvolution::getRange(const SCEV *S, 4483 ScalarEvolution::RangeSignHint SignHint) { 4484 DenseMap<const SCEV *, ConstantRange> &Cache = 4485 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4486 : SignedRanges; 4487 4488 // See if we've computed this range already. 4489 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4490 if (I != Cache.end()) 4491 return I->second; 4492 4493 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4494 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4495 4496 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4497 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4498 4499 // If the value has known zeros, the maximum value will have those known zeros 4500 // as well. 4501 uint32_t TZ = GetMinTrailingZeros(S); 4502 if (TZ != 0) { 4503 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4504 ConservativeResult = 4505 ConstantRange(APInt::getMinValue(BitWidth), 4506 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4507 else 4508 ConservativeResult = ConstantRange( 4509 APInt::getSignedMinValue(BitWidth), 4510 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4511 } 4512 4513 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4514 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4515 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4516 X = X.add(getRange(Add->getOperand(i), SignHint)); 4517 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4518 } 4519 4520 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4521 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4522 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4523 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4524 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4525 } 4526 4527 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4528 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4529 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4530 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4531 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4532 } 4533 4534 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4535 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4536 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4537 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4538 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4539 } 4540 4541 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4542 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4543 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4544 return setRange(UDiv, SignHint, 4545 ConservativeResult.intersectWith(X.udiv(Y))); 4546 } 4547 4548 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4549 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4550 return setRange(ZExt, SignHint, 4551 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4552 } 4553 4554 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4555 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4556 return setRange(SExt, SignHint, 4557 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4558 } 4559 4560 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4561 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4562 return setRange(Trunc, SignHint, 4563 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4564 } 4565 4566 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4567 // If there's no unsigned wrap, the value will never be less than its 4568 // initial value. 4569 if (AddRec->hasNoUnsignedWrap()) 4570 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4571 if (!C->getValue()->isZero()) 4572 ConservativeResult = ConservativeResult.intersectWith( 4573 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4574 4575 // If there's no signed wrap, and all the operands have the same sign or 4576 // zero, the value won't ever change sign. 4577 if (AddRec->hasNoSignedWrap()) { 4578 bool AllNonNeg = true; 4579 bool AllNonPos = true; 4580 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4581 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4582 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4583 } 4584 if (AllNonNeg) 4585 ConservativeResult = ConservativeResult.intersectWith( 4586 ConstantRange(APInt(BitWidth, 0), 4587 APInt::getSignedMinValue(BitWidth))); 4588 else if (AllNonPos) 4589 ConservativeResult = ConservativeResult.intersectWith( 4590 ConstantRange(APInt::getSignedMinValue(BitWidth), 4591 APInt(BitWidth, 1))); 4592 } 4593 4594 // TODO: non-affine addrec 4595 if (AddRec->isAffine()) { 4596 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4597 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4598 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4599 auto RangeFromAffine = getRangeForAffineAR( 4600 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4601 BitWidth); 4602 if (!RangeFromAffine.isFullSet()) 4603 ConservativeResult = 4604 ConservativeResult.intersectWith(RangeFromAffine); 4605 4606 auto RangeFromFactoring = getRangeViaFactoring( 4607 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4608 BitWidth); 4609 if (!RangeFromFactoring.isFullSet()) 4610 ConservativeResult = 4611 ConservativeResult.intersectWith(RangeFromFactoring); 4612 } 4613 } 4614 4615 return setRange(AddRec, SignHint, ConservativeResult); 4616 } 4617 4618 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4619 // Check if the IR explicitly contains !range metadata. 4620 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4621 if (MDRange.hasValue()) 4622 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4623 4624 // Split here to avoid paying the compile-time cost of calling both 4625 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4626 // if needed. 4627 const DataLayout &DL = getDataLayout(); 4628 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4629 // For a SCEVUnknown, ask ValueTracking. 4630 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4631 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4632 if (Ones != ~Zeros + 1) 4633 ConservativeResult = 4634 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4635 } else { 4636 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4637 "generalize as needed!"); 4638 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4639 if (NS > 1) 4640 ConservativeResult = ConservativeResult.intersectWith( 4641 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4642 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4643 } 4644 4645 return setRange(U, SignHint, ConservativeResult); 4646 } 4647 4648 return setRange(S, SignHint, ConservativeResult); 4649 } 4650 4651 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4652 const SCEV *Step, 4653 const SCEV *MaxBECount, 4654 unsigned BitWidth) { 4655 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4656 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4657 "Precondition!"); 4658 4659 ConstantRange Result(BitWidth, /* isFullSet = */ true); 4660 4661 // Check for overflow. This must be done with ConstantRange arithmetic 4662 // because we could be called from within the ScalarEvolution overflow 4663 // checking code. 4664 4665 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4666 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4667 ConstantRange ZExtMaxBECountRange = 4668 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4669 4670 ConstantRange StepSRange = getSignedRange(Step); 4671 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4672 4673 ConstantRange StartURange = getUnsignedRange(Start); 4674 ConstantRange EndURange = 4675 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4676 4677 // Check for unsigned overflow. 4678 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1); 4679 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4680 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4681 ZExtEndURange) { 4682 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4683 EndURange.getUnsignedMin()); 4684 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4685 EndURange.getUnsignedMax()); 4686 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4687 if (!IsFullRange) 4688 Result = 4689 Result.intersectWith(ConstantRange(Min, Max + 1)); 4690 } 4691 4692 ConstantRange StartSRange = getSignedRange(Start); 4693 ConstantRange EndSRange = 4694 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4695 4696 // Check for signed overflow. This must be done with ConstantRange 4697 // arithmetic because we could be called from within the ScalarEvolution 4698 // overflow checking code. 4699 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4700 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4701 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4702 SExtEndSRange) { 4703 APInt Min = 4704 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin()); 4705 APInt Max = 4706 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax()); 4707 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4708 if (!IsFullRange) 4709 Result = 4710 Result.intersectWith(ConstantRange(Min, Max + 1)); 4711 } 4712 4713 return Result; 4714 } 4715 4716 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4717 const SCEV *Step, 4718 const SCEV *MaxBECount, 4719 unsigned BitWidth) { 4720 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4721 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4722 4723 struct SelectPattern { 4724 Value *Condition = nullptr; 4725 APInt TrueValue; 4726 APInt FalseValue; 4727 4728 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4729 const SCEV *S) { 4730 Optional<unsigned> CastOp; 4731 APInt Offset(BitWidth, 0); 4732 4733 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4734 "Should be!"); 4735 4736 // Peel off a constant offset: 4737 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4738 // In the future we could consider being smarter here and handle 4739 // {Start+Step,+,Step} too. 4740 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4741 return; 4742 4743 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4744 S = SA->getOperand(1); 4745 } 4746 4747 // Peel off a cast operation 4748 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4749 CastOp = SCast->getSCEVType(); 4750 S = SCast->getOperand(); 4751 } 4752 4753 using namespace llvm::PatternMatch; 4754 4755 auto *SU = dyn_cast<SCEVUnknown>(S); 4756 const APInt *TrueVal, *FalseVal; 4757 if (!SU || 4758 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4759 m_APInt(FalseVal)))) { 4760 Condition = nullptr; 4761 return; 4762 } 4763 4764 TrueValue = *TrueVal; 4765 FalseValue = *FalseVal; 4766 4767 // Re-apply the cast we peeled off earlier 4768 if (CastOp.hasValue()) 4769 switch (*CastOp) { 4770 default: 4771 llvm_unreachable("Unknown SCEV cast type!"); 4772 4773 case scTruncate: 4774 TrueValue = TrueValue.trunc(BitWidth); 4775 FalseValue = FalseValue.trunc(BitWidth); 4776 break; 4777 case scZeroExtend: 4778 TrueValue = TrueValue.zext(BitWidth); 4779 FalseValue = FalseValue.zext(BitWidth); 4780 break; 4781 case scSignExtend: 4782 TrueValue = TrueValue.sext(BitWidth); 4783 FalseValue = FalseValue.sext(BitWidth); 4784 break; 4785 } 4786 4787 // Re-apply the constant offset we peeled off earlier 4788 TrueValue += Offset; 4789 FalseValue += Offset; 4790 } 4791 4792 bool isRecognized() { return Condition != nullptr; } 4793 }; 4794 4795 SelectPattern StartPattern(*this, BitWidth, Start); 4796 if (!StartPattern.isRecognized()) 4797 return ConstantRange(BitWidth, /* isFullSet = */ true); 4798 4799 SelectPattern StepPattern(*this, BitWidth, Step); 4800 if (!StepPattern.isRecognized()) 4801 return ConstantRange(BitWidth, /* isFullSet = */ true); 4802 4803 if (StartPattern.Condition != StepPattern.Condition) { 4804 // We don't handle this case today; but we could, by considering four 4805 // possibilities below instead of two. I'm not sure if there are cases where 4806 // that will help over what getRange already does, though. 4807 return ConstantRange(BitWidth, /* isFullSet = */ true); 4808 } 4809 4810 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4811 // construct arbitrary general SCEV expressions here. This function is called 4812 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4813 // say) can end up caching a suboptimal value. 4814 4815 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4816 // C2352 and C2512 (otherwise it isn't needed). 4817 4818 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4819 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4820 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4821 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4822 4823 ConstantRange TrueRange = 4824 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4825 ConstantRange FalseRange = 4826 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4827 4828 return TrueRange.unionWith(FalseRange); 4829 } 4830 4831 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4832 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4833 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4834 4835 // Return early if there are no flags to propagate to the SCEV. 4836 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4837 if (BinOp->hasNoUnsignedWrap()) 4838 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4839 if (BinOp->hasNoSignedWrap()) 4840 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4841 if (Flags == SCEV::FlagAnyWrap) 4842 return SCEV::FlagAnyWrap; 4843 4844 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 4845 } 4846 4847 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 4848 // Here we check that I is in the header of the innermost loop containing I, 4849 // since we only deal with instructions in the loop header. The actual loop we 4850 // need to check later will come from an add recurrence, but getting that 4851 // requires computing the SCEV of the operands, which can be expensive. This 4852 // check we can do cheaply to rule out some cases early. 4853 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 4854 if (InnermostContainingLoop == nullptr || 4855 InnermostContainingLoop->getHeader() != I->getParent()) 4856 return false; 4857 4858 // Only proceed if we can prove that I does not yield poison. 4859 if (!isKnownNotFullPoison(I)) return false; 4860 4861 // At this point we know that if I is executed, then it does not wrap 4862 // according to at least one of NSW or NUW. If I is not executed, then we do 4863 // not know if the calculation that I represents would wrap. Multiple 4864 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 4865 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4866 // derived from other instructions that map to the same SCEV. We cannot make 4867 // that guarantee for cases where I is not executed. So we need to find the 4868 // loop that I is considered in relation to and prove that I is executed for 4869 // every iteration of that loop. That implies that the value that I 4870 // calculates does not wrap anywhere in the loop, so then we can apply the 4871 // flags to the SCEV. 4872 // 4873 // We check isLoopInvariant to disambiguate in case we are adding recurrences 4874 // from different loops, so that we know which loop to prove that I is 4875 // executed in. 4876 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 4877 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 4878 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4879 bool AllOtherOpsLoopInvariant = true; 4880 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 4881 ++OtherOpIndex) { 4882 if (OtherOpIndex != OpIndex) { 4883 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 4884 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 4885 AllOtherOpsLoopInvariant = false; 4886 break; 4887 } 4888 } 4889 } 4890 if (AllOtherOpsLoopInvariant && 4891 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 4892 return true; 4893 } 4894 } 4895 return false; 4896 } 4897 4898 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 4899 // If we know that \c I can never be poison period, then that's enough. 4900 if (isSCEVExprNeverPoison(I)) 4901 return true; 4902 4903 // For an add recurrence specifically, we assume that infinite loops without 4904 // side effects are undefined behavior, and then reason as follows: 4905 // 4906 // If the add recurrence is poison in any iteration, it is poison on all 4907 // future iterations (since incrementing poison yields poison). If the result 4908 // of the add recurrence is fed into the loop latch condition and the loop 4909 // does not contain any throws or exiting blocks other than the latch, we now 4910 // have the ability to "choose" whether the backedge is taken or not (by 4911 // choosing a sufficiently evil value for the poison feeding into the branch) 4912 // for every iteration including and after the one in which \p I first became 4913 // poison. There are two possibilities (let's call the iteration in which \p 4914 // I first became poison as K): 4915 // 4916 // 1. In the set of iterations including and after K, the loop body executes 4917 // no side effects. In this case executing the backege an infinte number 4918 // of times will yield undefined behavior. 4919 // 4920 // 2. In the set of iterations including and after K, the loop body executes 4921 // at least one side effect. In this case, that specific instance of side 4922 // effect is control dependent on poison, which also yields undefined 4923 // behavior. 4924 4925 auto *ExitingBB = L->getExitingBlock(); 4926 auto *LatchBB = L->getLoopLatch(); 4927 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 4928 return false; 4929 4930 SmallPtrSet<const Instruction *, 16> Pushed; 4931 SmallVector<const Instruction *, 8> Stack; 4932 4933 Pushed.insert(I); 4934 for (auto *U : I->users()) 4935 if (Pushed.insert(cast<Instruction>(U)).second) 4936 Stack.push_back(cast<Instruction>(U)); 4937 4938 bool LatchControlDependentOnPoison = false; 4939 while (!Stack.empty()) { 4940 const Instruction *I = Stack.pop_back_val(); 4941 4942 for (auto *U : I->users()) { 4943 if (propagatesFullPoison(cast<Instruction>(U))) { 4944 if (Pushed.insert(cast<Instruction>(U)).second) 4945 Stack.push_back(cast<Instruction>(U)); 4946 } else if (auto *BI = dyn_cast<BranchInst>(U)) { 4947 assert(BI->isConditional() && "Only possibility!"); 4948 if (BI->getParent() == LatchBB) { 4949 LatchControlDependentOnPoison = true; 4950 break; 4951 } 4952 } 4953 } 4954 } 4955 4956 if (!LatchControlDependentOnPoison) 4957 return false; 4958 4959 // Now check if loop is no-throw, and cache the information. In the future, 4960 // we can consider commoning this logic with LICMSafetyInfo into a separate 4961 // analysis pass. 4962 4963 auto Itr = LoopMayThrow.find(L); 4964 if (Itr == LoopMayThrow.end()) { 4965 bool MayThrow = false; 4966 for (auto *BB : L->getBlocks()) { 4967 MayThrow = any_of(*BB, [](Instruction &I) { return I.mayThrow(); }); 4968 if (MayThrow) 4969 break; 4970 } 4971 auto InsertPair = LoopMayThrow.insert({L, MayThrow}); 4972 assert(InsertPair.second && "We just checked!"); 4973 Itr = InsertPair.first; 4974 } 4975 4976 return !Itr->second; 4977 } 4978 4979 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4980 /// the expression. 4981 /// 4982 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4983 if (!isSCEVable(V->getType())) 4984 return getUnknown(V); 4985 4986 if (Instruction *I = dyn_cast<Instruction>(V)) { 4987 // Don't attempt to analyze instructions in blocks that aren't 4988 // reachable. Such instructions don't matter, and they aren't required 4989 // to obey basic rules for definitions dominating uses which this 4990 // analysis depends on. 4991 if (!DT.isReachableFromEntry(I->getParent())) 4992 return getUnknown(V); 4993 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4994 return getConstant(CI); 4995 else if (isa<ConstantPointerNull>(V)) 4996 return getZero(V->getType()); 4997 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4998 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4999 else if (!isa<ConstantExpr>(V)) 5000 return getUnknown(V); 5001 5002 Operator *U = cast<Operator>(V); 5003 if (auto BO = MatchBinaryOp(U, DT)) { 5004 switch (BO->Opcode) { 5005 case Instruction::Add: { 5006 // The simple thing to do would be to just call getSCEV on both operands 5007 // and call getAddExpr with the result. However if we're looking at a 5008 // bunch of things all added together, this can be quite inefficient, 5009 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5010 // Instead, gather up all the operands and make a single getAddExpr call. 5011 // LLVM IR canonical form means we need only traverse the left operands. 5012 SmallVector<const SCEV *, 4> AddOps; 5013 do { 5014 if (BO->Op) { 5015 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5016 AddOps.push_back(OpSCEV); 5017 break; 5018 } 5019 5020 // If a NUW or NSW flag can be applied to the SCEV for this 5021 // addition, then compute the SCEV for this addition by itself 5022 // with a separate call to getAddExpr. We need to do that 5023 // instead of pushing the operands of the addition onto AddOps, 5024 // since the flags are only known to apply to this particular 5025 // addition - they may not apply to other additions that can be 5026 // formed with operands from AddOps. 5027 const SCEV *RHS = getSCEV(BO->RHS); 5028 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5029 if (Flags != SCEV::FlagAnyWrap) { 5030 const SCEV *LHS = getSCEV(BO->LHS); 5031 if (BO->Opcode == Instruction::Sub) 5032 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5033 else 5034 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5035 break; 5036 } 5037 } 5038 5039 if (BO->Opcode == Instruction::Sub) 5040 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5041 else 5042 AddOps.push_back(getSCEV(BO->RHS)); 5043 5044 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5045 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5046 NewBO->Opcode != Instruction::Sub)) { 5047 AddOps.push_back(getSCEV(BO->LHS)); 5048 break; 5049 } 5050 BO = NewBO; 5051 } while (true); 5052 5053 return getAddExpr(AddOps); 5054 } 5055 5056 case Instruction::Mul: { 5057 SmallVector<const SCEV *, 4> MulOps; 5058 do { 5059 if (BO->Op) { 5060 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5061 MulOps.push_back(OpSCEV); 5062 break; 5063 } 5064 5065 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5066 if (Flags != SCEV::FlagAnyWrap) { 5067 MulOps.push_back( 5068 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5069 break; 5070 } 5071 } 5072 5073 MulOps.push_back(getSCEV(BO->RHS)); 5074 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5075 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5076 MulOps.push_back(getSCEV(BO->LHS)); 5077 break; 5078 } 5079 BO = NewBO; 5080 } while (true); 5081 5082 return getMulExpr(MulOps); 5083 } 5084 case Instruction::UDiv: 5085 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5086 case Instruction::Sub: { 5087 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5088 if (BO->Op) 5089 Flags = getNoWrapFlagsFromUB(BO->Op); 5090 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5091 } 5092 case Instruction::And: 5093 // For an expression like x&255 that merely masks off the high bits, 5094 // use zext(trunc(x)) as the SCEV expression. 5095 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5096 if (CI->isNullValue()) 5097 return getSCEV(BO->RHS); 5098 if (CI->isAllOnesValue()) 5099 return getSCEV(BO->LHS); 5100 const APInt &A = CI->getValue(); 5101 5102 // Instcombine's ShrinkDemandedConstant may strip bits out of 5103 // constants, obscuring what would otherwise be a low-bits mask. 5104 // Use computeKnownBits to compute what ShrinkDemandedConstant 5105 // knew about to reconstruct a low-bits mask value. 5106 unsigned LZ = A.countLeadingZeros(); 5107 unsigned TZ = A.countTrailingZeros(); 5108 unsigned BitWidth = A.getBitWidth(); 5109 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5110 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5111 0, &AC, nullptr, &DT); 5112 5113 APInt EffectiveMask = 5114 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5115 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5116 const SCEV *MulCount = getConstant(ConstantInt::get( 5117 getContext(), APInt::getOneBitSet(BitWidth, TZ))); 5118 return getMulExpr( 5119 getZeroExtendExpr( 5120 getTruncateExpr( 5121 getUDivExactExpr(getSCEV(BO->LHS), MulCount), 5122 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5123 BO->LHS->getType()), 5124 MulCount); 5125 } 5126 } 5127 break; 5128 5129 case Instruction::Or: 5130 // If the RHS of the Or is a constant, we may have something like: 5131 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5132 // optimizations will transparently handle this case. 5133 // 5134 // In order for this transformation to be safe, the LHS must be of the 5135 // form X*(2^n) and the Or constant must be less than 2^n. 5136 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5137 const SCEV *LHS = getSCEV(BO->LHS); 5138 const APInt &CIVal = CI->getValue(); 5139 if (GetMinTrailingZeros(LHS) >= 5140 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5141 // Build a plain add SCEV. 5142 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5143 // If the LHS of the add was an addrec and it has no-wrap flags, 5144 // transfer the no-wrap flags, since an or won't introduce a wrap. 5145 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5146 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5147 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5148 OldAR->getNoWrapFlags()); 5149 } 5150 return S; 5151 } 5152 } 5153 break; 5154 5155 case Instruction::Xor: 5156 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5157 // If the RHS of xor is -1, then this is a not operation. 5158 if (CI->isAllOnesValue()) 5159 return getNotSCEV(getSCEV(BO->LHS)); 5160 5161 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5162 // This is a variant of the check for xor with -1, and it handles 5163 // the case where instcombine has trimmed non-demanded bits out 5164 // of an xor with -1. 5165 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5166 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5167 if (LBO->getOpcode() == Instruction::And && 5168 LCI->getValue() == CI->getValue()) 5169 if (const SCEVZeroExtendExpr *Z = 5170 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5171 Type *UTy = BO->LHS->getType(); 5172 const SCEV *Z0 = Z->getOperand(); 5173 Type *Z0Ty = Z0->getType(); 5174 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5175 5176 // If C is a low-bits mask, the zero extend is serving to 5177 // mask off the high bits. Complement the operand and 5178 // re-apply the zext. 5179 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5180 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5181 5182 // If C is a single bit, it may be in the sign-bit position 5183 // before the zero-extend. In this case, represent the xor 5184 // using an add, which is equivalent, and re-apply the zext. 5185 APInt Trunc = CI->getValue().trunc(Z0TySize); 5186 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5187 Trunc.isSignBit()) 5188 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5189 UTy); 5190 } 5191 } 5192 break; 5193 5194 case Instruction::Shl: 5195 // Turn shift left of a constant amount into a multiply. 5196 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5197 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5198 5199 // If the shift count is not less than the bitwidth, the result of 5200 // the shift is undefined. Don't try to analyze it, because the 5201 // resolution chosen here may differ from the resolution chosen in 5202 // other parts of the compiler. 5203 if (SA->getValue().uge(BitWidth)) 5204 break; 5205 5206 // It is currently not resolved how to interpret NSW for left 5207 // shift by BitWidth - 1, so we avoid applying flags in that 5208 // case. Remove this check (or this comment) once the situation 5209 // is resolved. See 5210 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5211 // and http://reviews.llvm.org/D8890 . 5212 auto Flags = SCEV::FlagAnyWrap; 5213 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5214 Flags = getNoWrapFlagsFromUB(BO->Op); 5215 5216 Constant *X = ConstantInt::get(getContext(), 5217 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5218 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5219 } 5220 break; 5221 5222 case Instruction::AShr: 5223 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5224 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5225 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5226 if (L->getOpcode() == Instruction::Shl && 5227 L->getOperand(1) == BO->RHS) { 5228 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5229 5230 // If the shift count is not less than the bitwidth, the result of 5231 // the shift is undefined. Don't try to analyze it, because the 5232 // resolution chosen here may differ from the resolution chosen in 5233 // other parts of the compiler. 5234 if (CI->getValue().uge(BitWidth)) 5235 break; 5236 5237 uint64_t Amt = BitWidth - CI->getZExtValue(); 5238 if (Amt == BitWidth) 5239 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5240 return getSignExtendExpr( 5241 getTruncateExpr(getSCEV(L->getOperand(0)), 5242 IntegerType::get(getContext(), Amt)), 5243 BO->LHS->getType()); 5244 } 5245 break; 5246 } 5247 } 5248 5249 switch (U->getOpcode()) { 5250 case Instruction::Trunc: 5251 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5252 5253 case Instruction::ZExt: 5254 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5255 5256 case Instruction::SExt: 5257 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5258 5259 case Instruction::BitCast: 5260 // BitCasts are no-op casts so we just eliminate the cast. 5261 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5262 return getSCEV(U->getOperand(0)); 5263 break; 5264 5265 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5266 // lead to pointer expressions which cannot safely be expanded to GEPs, 5267 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5268 // simplifying integer expressions. 5269 5270 case Instruction::GetElementPtr: 5271 return createNodeForGEP(cast<GEPOperator>(U)); 5272 5273 case Instruction::PHI: 5274 return createNodeForPHI(cast<PHINode>(U)); 5275 5276 case Instruction::Select: 5277 // U can also be a select constant expr, which let fall through. Since 5278 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5279 // constant expressions cannot have instructions as operands, we'd have 5280 // returned getUnknown for a select constant expressions anyway. 5281 if (isa<Instruction>(U)) 5282 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5283 U->getOperand(1), U->getOperand(2)); 5284 } 5285 5286 return getUnknown(V); 5287 } 5288 5289 5290 5291 //===----------------------------------------------------------------------===// 5292 // Iteration Count Computation Code 5293 // 5294 5295 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 5296 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5297 return getSmallConstantTripCount(L, ExitingBB); 5298 5299 // No trip count information for multiple exits. 5300 return 0; 5301 } 5302 5303 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 5304 /// normal unsigned value. Returns 0 if the trip count is unknown or not 5305 /// constant. Will also return 0 if the maximum trip count is very large (>= 5306 /// 2^32). 5307 /// 5308 /// This "trip count" assumes that control exits via ExitingBlock. More 5309 /// precisely, it is the number of times that control may reach ExitingBlock 5310 /// before taking the branch. For loops with multiple exits, it may not be the 5311 /// number times that the loop header executes because the loop may exit 5312 /// prematurely via another branch. 5313 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 5314 BasicBlock *ExitingBlock) { 5315 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5316 assert(L->isLoopExiting(ExitingBlock) && 5317 "Exiting block must actually branch out of the loop!"); 5318 const SCEVConstant *ExitCount = 5319 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5320 if (!ExitCount) 5321 return 0; 5322 5323 ConstantInt *ExitConst = ExitCount->getValue(); 5324 5325 // Guard against huge trip counts. 5326 if (ExitConst->getValue().getActiveBits() > 32) 5327 return 0; 5328 5329 // In case of integer overflow, this returns 0, which is correct. 5330 return ((unsigned)ExitConst->getZExtValue()) + 1; 5331 } 5332 5333 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 5334 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5335 return getSmallConstantTripMultiple(L, ExitingBB); 5336 5337 // No trip multiple information for multiple exits. 5338 return 0; 5339 } 5340 5341 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 5342 /// trip count of this loop as a normal unsigned value, if possible. This 5343 /// means that the actual trip count is always a multiple of the returned 5344 /// value (don't forget the trip count could very well be zero as well!). 5345 /// 5346 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5347 /// multiple of a constant (which is also the case if the trip count is simply 5348 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5349 /// if the trip count is very large (>= 2^32). 5350 /// 5351 /// As explained in the comments for getSmallConstantTripCount, this assumes 5352 /// that control exits the loop via ExitingBlock. 5353 unsigned 5354 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 5355 BasicBlock *ExitingBlock) { 5356 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5357 assert(L->isLoopExiting(ExitingBlock) && 5358 "Exiting block must actually branch out of the loop!"); 5359 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5360 if (ExitCount == getCouldNotCompute()) 5361 return 1; 5362 5363 // Get the trip count from the BE count by adding 1. 5364 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5365 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 5366 // to factor simple cases. 5367 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 5368 TCMul = Mul->getOperand(0); 5369 5370 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 5371 if (!MulC) 5372 return 1; 5373 5374 ConstantInt *Result = MulC->getValue(); 5375 5376 // Guard against huge trip counts (this requires checking 5377 // for zero to handle the case where the trip count == -1 and the 5378 // addition wraps). 5379 if (!Result || Result->getValue().getActiveBits() > 32 || 5380 Result->getValue().getActiveBits() == 0) 5381 return 1; 5382 5383 return (unsigned)Result->getZExtValue(); 5384 } 5385 5386 // getExitCount - Get the expression for the number of loop iterations for which 5387 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 5388 // SCEVCouldNotCompute. 5389 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 5390 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5391 } 5392 5393 const SCEV * 5394 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5395 SCEVUnionPredicate &Preds) { 5396 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5397 } 5398 5399 /// getBackedgeTakenCount - If the specified loop has a predictable 5400 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 5401 /// object. The backedge-taken count is the number of times the loop header 5402 /// will be branched to from within the loop. This is one less than the 5403 /// trip count of the loop, since it doesn't count the first iteration, 5404 /// when the header is branched to from outside the loop. 5405 /// 5406 /// Note that it is not valid to call this method on a loop without a 5407 /// loop-invariant backedge-taken count (see 5408 /// hasLoopInvariantBackedgeTakenCount). 5409 /// 5410 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5411 return getBackedgeTakenInfo(L).getExact(this); 5412 } 5413 5414 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 5415 /// return the least SCEV value that is known never to be less than the 5416 /// actual backedge taken count. 5417 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5418 return getBackedgeTakenInfo(L).getMax(this); 5419 } 5420 5421 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 5422 /// onto the given Worklist. 5423 static void 5424 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5425 BasicBlock *Header = L->getHeader(); 5426 5427 // Push all Loop-header PHIs onto the Worklist stack. 5428 for (BasicBlock::iterator I = Header->begin(); 5429 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5430 Worklist.push_back(PN); 5431 } 5432 5433 const ScalarEvolution::BackedgeTakenInfo & 5434 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5435 auto &BTI = getBackedgeTakenInfo(L); 5436 if (BTI.hasFullInfo()) 5437 return BTI; 5438 5439 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5440 5441 if (!Pair.second) 5442 return Pair.first->second; 5443 5444 BackedgeTakenInfo Result = 5445 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5446 5447 return PredicatedBackedgeTakenCounts.find(L)->second = Result; 5448 } 5449 5450 const ScalarEvolution::BackedgeTakenInfo & 5451 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5452 // Initially insert an invalid entry for this loop. If the insertion 5453 // succeeds, proceed to actually compute a backedge-taken count and 5454 // update the value. The temporary CouldNotCompute value tells SCEV 5455 // code elsewhere that it shouldn't attempt to request a new 5456 // backedge-taken count, which could result in infinite recursion. 5457 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5458 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5459 if (!Pair.second) 5460 return Pair.first->second; 5461 5462 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5463 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5464 // must be cleared in this scope. 5465 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5466 5467 if (Result.getExact(this) != getCouldNotCompute()) { 5468 assert(isLoopInvariant(Result.getExact(this), L) && 5469 isLoopInvariant(Result.getMax(this), L) && 5470 "Computed backedge-taken count isn't loop invariant for loop!"); 5471 ++NumTripCountsComputed; 5472 } 5473 else if (Result.getMax(this) == getCouldNotCompute() && 5474 isa<PHINode>(L->getHeader()->begin())) { 5475 // Only count loops that have phi nodes as not being computable. 5476 ++NumTripCountsNotComputed; 5477 } 5478 5479 // Now that we know more about the trip count for this loop, forget any 5480 // existing SCEV values for PHI nodes in this loop since they are only 5481 // conservative estimates made without the benefit of trip count 5482 // information. This is similar to the code in forgetLoop, except that 5483 // it handles SCEVUnknown PHI nodes specially. 5484 if (Result.hasAnyInfo()) { 5485 SmallVector<Instruction *, 16> Worklist; 5486 PushLoopPHIs(L, Worklist); 5487 5488 SmallPtrSet<Instruction *, 8> Visited; 5489 while (!Worklist.empty()) { 5490 Instruction *I = Worklist.pop_back_val(); 5491 if (!Visited.insert(I).second) 5492 continue; 5493 5494 ValueExprMapType::iterator It = 5495 ValueExprMap.find_as(static_cast<Value *>(I)); 5496 if (It != ValueExprMap.end()) { 5497 const SCEV *Old = It->second; 5498 5499 // SCEVUnknown for a PHI either means that it has an unrecognized 5500 // structure, or it's a PHI that's in the progress of being computed 5501 // by createNodeForPHI. In the former case, additional loop trip 5502 // count information isn't going to change anything. In the later 5503 // case, createNodeForPHI will perform the necessary updates on its 5504 // own when it gets to that point. 5505 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5506 forgetMemoizedResults(Old); 5507 ValueExprMap.erase(It); 5508 } 5509 if (PHINode *PN = dyn_cast<PHINode>(I)) 5510 ConstantEvolutionLoopExitValue.erase(PN); 5511 } 5512 5513 PushDefUseChildren(I, Worklist); 5514 } 5515 } 5516 5517 // Re-lookup the insert position, since the call to 5518 // computeBackedgeTakenCount above could result in a 5519 // recusive call to getBackedgeTakenInfo (on a different 5520 // loop), which would invalidate the iterator computed 5521 // earlier. 5522 return BackedgeTakenCounts.find(L)->second = Result; 5523 } 5524 5525 /// forgetLoop - This method should be called by the client when it has 5526 /// changed a loop in a way that may effect ScalarEvolution's ability to 5527 /// compute a trip count, or if the loop is deleted. 5528 void ScalarEvolution::forgetLoop(const Loop *L) { 5529 // Drop any stored trip count value. 5530 auto RemoveLoopFromBackedgeMap = 5531 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5532 auto BTCPos = Map.find(L); 5533 if (BTCPos != Map.end()) { 5534 BTCPos->second.clear(); 5535 Map.erase(BTCPos); 5536 } 5537 }; 5538 5539 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5540 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5541 5542 // Drop information about expressions based on loop-header PHIs. 5543 SmallVector<Instruction *, 16> Worklist; 5544 PushLoopPHIs(L, Worklist); 5545 5546 SmallPtrSet<Instruction *, 8> Visited; 5547 while (!Worklist.empty()) { 5548 Instruction *I = Worklist.pop_back_val(); 5549 if (!Visited.insert(I).second) 5550 continue; 5551 5552 ValueExprMapType::iterator It = 5553 ValueExprMap.find_as(static_cast<Value *>(I)); 5554 if (It != ValueExprMap.end()) { 5555 forgetMemoizedResults(It->second); 5556 ValueExprMap.erase(It); 5557 if (PHINode *PN = dyn_cast<PHINode>(I)) 5558 ConstantEvolutionLoopExitValue.erase(PN); 5559 } 5560 5561 PushDefUseChildren(I, Worklist); 5562 } 5563 5564 // Forget all contained loops too, to avoid dangling entries in the 5565 // ValuesAtScopes map. 5566 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5567 forgetLoop(*I); 5568 5569 LoopMayThrow.erase(L); 5570 } 5571 5572 /// forgetValue - This method should be called by the client when it has 5573 /// changed a value in a way that may effect its value, or which may 5574 /// disconnect it from a def-use chain linking it to a loop. 5575 void ScalarEvolution::forgetValue(Value *V) { 5576 Instruction *I = dyn_cast<Instruction>(V); 5577 if (!I) return; 5578 5579 // Drop information about expressions based on loop-header PHIs. 5580 SmallVector<Instruction *, 16> Worklist; 5581 Worklist.push_back(I); 5582 5583 SmallPtrSet<Instruction *, 8> Visited; 5584 while (!Worklist.empty()) { 5585 I = Worklist.pop_back_val(); 5586 if (!Visited.insert(I).second) 5587 continue; 5588 5589 ValueExprMapType::iterator It = 5590 ValueExprMap.find_as(static_cast<Value *>(I)); 5591 if (It != ValueExprMap.end()) { 5592 forgetMemoizedResults(It->second); 5593 ValueExprMap.erase(It); 5594 if (PHINode *PN = dyn_cast<PHINode>(I)) 5595 ConstantEvolutionLoopExitValue.erase(PN); 5596 } 5597 5598 PushDefUseChildren(I, Worklist); 5599 } 5600 } 5601 5602 /// getExact - Get the exact loop backedge taken count considering all loop 5603 /// exits. A computable result can only be returned for loops with a single 5604 /// exit. Returning the minimum taken count among all exits is incorrect 5605 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5606 /// assumes that the limit of each loop test is never skipped. This is a valid 5607 /// assumption as long as the loop exits via that test. For precise results, it 5608 /// is the caller's responsibility to specify the relevant loop exit using 5609 /// getExact(ExitingBlock, SE). 5610 const SCEV * 5611 ScalarEvolution::BackedgeTakenInfo::getExact( 5612 ScalarEvolution *SE, SCEVUnionPredicate *Preds) const { 5613 // If any exits were not computable, the loop is not computable. 5614 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5615 5616 // We need exactly one computable exit. 5617 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5618 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5619 5620 const SCEV *BECount = nullptr; 5621 for (auto &ENT : ExitNotTaken) { 5622 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5623 5624 if (!BECount) 5625 BECount = ENT.ExactNotTaken; 5626 else if (BECount != ENT.ExactNotTaken) 5627 return SE->getCouldNotCompute(); 5628 if (Preds && ENT.getPred()) 5629 Preds->add(ENT.getPred()); 5630 5631 assert((Preds || ENT.hasAlwaysTruePred()) && 5632 "Predicate should be always true!"); 5633 } 5634 5635 assert(BECount && "Invalid not taken count for loop exit"); 5636 return BECount; 5637 } 5638 5639 /// getExact - Get the exact not taken count for this loop exit. 5640 const SCEV * 5641 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5642 ScalarEvolution *SE) const { 5643 for (auto &ENT : ExitNotTaken) 5644 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred()) 5645 return ENT.ExactNotTaken; 5646 5647 return SE->getCouldNotCompute(); 5648 } 5649 5650 /// getMax - Get the max backedge taken count for the loop. 5651 const SCEV * 5652 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5653 for (auto &ENT : ExitNotTaken) 5654 if (!ENT.hasAlwaysTruePred()) 5655 return SE->getCouldNotCompute(); 5656 5657 return Max ? Max : SE->getCouldNotCompute(); 5658 } 5659 5660 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5661 ScalarEvolution *SE) const { 5662 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5663 return true; 5664 5665 if (!ExitNotTaken.ExitingBlock) 5666 return false; 5667 5668 for (auto &ENT : ExitNotTaken) 5669 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5670 SE->hasOperand(ENT.ExactNotTaken, S)) 5671 return true; 5672 5673 return false; 5674 } 5675 5676 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5677 /// computable exit into a persistent ExitNotTakenInfo array. 5678 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5679 SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount) 5680 : Max(MaxCount) { 5681 5682 if (!Complete) 5683 ExitNotTaken.setIncomplete(); 5684 5685 unsigned NumExits = ExitCounts.size(); 5686 if (NumExits == 0) return; 5687 5688 ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock; 5689 ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken; 5690 5691 // Determine the number of ExitNotTakenExtras structures that we need. 5692 unsigned ExtraInfoSize = 0; 5693 if (NumExits > 1) 5694 ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()), 5695 ExitCounts.end(), [](EdgeInfo &Entry) { 5696 return !Entry.Pred.isAlwaysTrue(); 5697 }); 5698 else if (!ExitCounts[0].Pred.isAlwaysTrue()) 5699 ExtraInfoSize = 1; 5700 5701 ExitNotTakenExtras *ENT = nullptr; 5702 5703 // Allocate the ExitNotTakenExtras structures and initialize the first 5704 // element (ExitNotTaken). 5705 if (ExtraInfoSize > 0) { 5706 ENT = new ExitNotTakenExtras[ExtraInfoSize]; 5707 ExitNotTaken.ExtraInfo = &ENT[0]; 5708 *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred); 5709 } 5710 5711 if (NumExits == 1) 5712 return; 5713 5714 assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit"); 5715 5716 auto &Exits = ExitNotTaken.ExtraInfo->Exits; 5717 5718 // Handle the rare case of multiple computable exits. 5719 for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) { 5720 ExitNotTakenExtras *Ptr = nullptr; 5721 if (!ExitCounts[i].Pred.isAlwaysTrue()) { 5722 Ptr = &ENT[PredPos++]; 5723 Ptr->Pred = std::move(ExitCounts[i].Pred); 5724 } 5725 5726 Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr); 5727 } 5728 } 5729 5730 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5731 void ScalarEvolution::BackedgeTakenInfo::clear() { 5732 ExitNotTaken.ExitingBlock = nullptr; 5733 ExitNotTaken.ExactNotTaken = nullptr; 5734 delete[] ExitNotTaken.ExtraInfo; 5735 } 5736 5737 /// computeBackedgeTakenCount - Compute the number of times the backedge 5738 /// of the specified loop will execute. 5739 ScalarEvolution::BackedgeTakenInfo 5740 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5741 bool AllowPredicates) { 5742 SmallVector<BasicBlock *, 8> ExitingBlocks; 5743 L->getExitingBlocks(ExitingBlocks); 5744 5745 SmallVector<EdgeInfo, 4> ExitCounts; 5746 bool CouldComputeBECount = true; 5747 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5748 const SCEV *MustExitMaxBECount = nullptr; 5749 const SCEV *MayExitMaxBECount = nullptr; 5750 5751 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5752 // and compute maxBECount. 5753 // Do a union of all the predicates here. 5754 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5755 BasicBlock *ExitBB = ExitingBlocks[i]; 5756 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5757 5758 assert((AllowPredicates || EL.Pred.isAlwaysTrue()) && 5759 "Predicated exit limit when predicates are not allowed!"); 5760 5761 // 1. For each exit that can be computed, add an entry to ExitCounts. 5762 // CouldComputeBECount is true only if all exits can be computed. 5763 if (EL.Exact == getCouldNotCompute()) 5764 // We couldn't compute an exact value for this exit, so 5765 // we won't be able to compute an exact value for the loop. 5766 CouldComputeBECount = false; 5767 else 5768 ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred)); 5769 5770 // 2. Derive the loop's MaxBECount from each exit's max number of 5771 // non-exiting iterations. Partition the loop exits into two kinds: 5772 // LoopMustExits and LoopMayExits. 5773 // 5774 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5775 // is a LoopMayExit. If any computable LoopMustExit is found, then 5776 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5777 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5778 // considered greater than any computable EL.Max. 5779 if (EL.Max != getCouldNotCompute() && Latch && 5780 DT.dominates(ExitBB, Latch)) { 5781 if (!MustExitMaxBECount) 5782 MustExitMaxBECount = EL.Max; 5783 else { 5784 MustExitMaxBECount = 5785 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5786 } 5787 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5788 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5789 MayExitMaxBECount = EL.Max; 5790 else { 5791 MayExitMaxBECount = 5792 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5793 } 5794 } 5795 } 5796 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5797 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5798 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5799 } 5800 5801 ScalarEvolution::ExitLimit 5802 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 5803 bool AllowPredicates) { 5804 5805 // Okay, we've chosen an exiting block. See what condition causes us to exit 5806 // at this block and remember the exit block and whether all other targets 5807 // lead to the loop header. 5808 bool MustExecuteLoopHeader = true; 5809 BasicBlock *Exit = nullptr; 5810 for (auto *SBB : successors(ExitingBlock)) 5811 if (!L->contains(SBB)) { 5812 if (Exit) // Multiple exit successors. 5813 return getCouldNotCompute(); 5814 Exit = SBB; 5815 } else if (SBB != L->getHeader()) { 5816 MustExecuteLoopHeader = false; 5817 } 5818 5819 // At this point, we know we have a conditional branch that determines whether 5820 // the loop is exited. However, we don't know if the branch is executed each 5821 // time through the loop. If not, then the execution count of the branch will 5822 // not be equal to the trip count of the loop. 5823 // 5824 // Currently we check for this by checking to see if the Exit branch goes to 5825 // the loop header. If so, we know it will always execute the same number of 5826 // times as the loop. We also handle the case where the exit block *is* the 5827 // loop header. This is common for un-rotated loops. 5828 // 5829 // If both of those tests fail, walk up the unique predecessor chain to the 5830 // header, stopping if there is an edge that doesn't exit the loop. If the 5831 // header is reached, the execution count of the branch will be equal to the 5832 // trip count of the loop. 5833 // 5834 // More extensive analysis could be done to handle more cases here. 5835 // 5836 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5837 // The simple checks failed, try climbing the unique predecessor chain 5838 // up to the header. 5839 bool Ok = false; 5840 for (BasicBlock *BB = ExitingBlock; BB; ) { 5841 BasicBlock *Pred = BB->getUniquePredecessor(); 5842 if (!Pred) 5843 return getCouldNotCompute(); 5844 TerminatorInst *PredTerm = Pred->getTerminator(); 5845 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5846 if (PredSucc == BB) 5847 continue; 5848 // If the predecessor has a successor that isn't BB and isn't 5849 // outside the loop, assume the worst. 5850 if (L->contains(PredSucc)) 5851 return getCouldNotCompute(); 5852 } 5853 if (Pred == L->getHeader()) { 5854 Ok = true; 5855 break; 5856 } 5857 BB = Pred; 5858 } 5859 if (!Ok) 5860 return getCouldNotCompute(); 5861 } 5862 5863 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5864 TerminatorInst *Term = ExitingBlock->getTerminator(); 5865 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5866 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5867 // Proceed to the next level to examine the exit condition expression. 5868 return computeExitLimitFromCond( 5869 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 5870 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 5871 } 5872 5873 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5874 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5875 /*ControlsExit=*/IsOnlyExit); 5876 5877 return getCouldNotCompute(); 5878 } 5879 5880 /// computeExitLimitFromCond - Compute the number of times the 5881 /// backedge of the specified loop will execute if its exit condition 5882 /// were a conditional branch of ExitCond, TBB, and FBB. 5883 /// 5884 /// @param ControlsExit is true if ExitCond directly controls the exit 5885 /// branch. In this case, we can assume that the loop exits only if the 5886 /// condition is true and can infer that failing to meet the condition prior to 5887 /// integer wraparound results in undefined behavior. 5888 ScalarEvolution::ExitLimit 5889 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5890 Value *ExitCond, 5891 BasicBlock *TBB, 5892 BasicBlock *FBB, 5893 bool ControlsExit, 5894 bool AllowPredicates) { 5895 // Check if the controlling expression for this loop is an And or Or. 5896 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5897 if (BO->getOpcode() == Instruction::And) { 5898 // Recurse on the operands of the and. 5899 bool EitherMayExit = L->contains(TBB); 5900 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5901 ControlsExit && !EitherMayExit, 5902 AllowPredicates); 5903 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5904 ControlsExit && !EitherMayExit, 5905 AllowPredicates); 5906 const SCEV *BECount = getCouldNotCompute(); 5907 const SCEV *MaxBECount = getCouldNotCompute(); 5908 if (EitherMayExit) { 5909 // Both conditions must be true for the loop to continue executing. 5910 // Choose the less conservative count. 5911 if (EL0.Exact == getCouldNotCompute() || 5912 EL1.Exact == getCouldNotCompute()) 5913 BECount = getCouldNotCompute(); 5914 else 5915 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5916 if (EL0.Max == getCouldNotCompute()) 5917 MaxBECount = EL1.Max; 5918 else if (EL1.Max == getCouldNotCompute()) 5919 MaxBECount = EL0.Max; 5920 else 5921 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5922 } else { 5923 // Both conditions must be true at the same time for the loop to exit. 5924 // For now, be conservative. 5925 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5926 if (EL0.Max == EL1.Max) 5927 MaxBECount = EL0.Max; 5928 if (EL0.Exact == EL1.Exact) 5929 BECount = EL0.Exact; 5930 } 5931 5932 SCEVUnionPredicate NP; 5933 NP.add(&EL0.Pred); 5934 NP.add(&EL1.Pred); 5935 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5936 // to be more aggressive when computing BECount than when computing 5937 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact 5938 // to match, but for EL0.Max and EL1.Max to not. 5939 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5940 !isa<SCEVCouldNotCompute>(BECount)) 5941 MaxBECount = BECount; 5942 5943 return ExitLimit(BECount, MaxBECount, NP); 5944 } 5945 if (BO->getOpcode() == Instruction::Or) { 5946 // Recurse on the operands of the or. 5947 bool EitherMayExit = L->contains(FBB); 5948 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5949 ControlsExit && !EitherMayExit, 5950 AllowPredicates); 5951 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5952 ControlsExit && !EitherMayExit, 5953 AllowPredicates); 5954 const SCEV *BECount = getCouldNotCompute(); 5955 const SCEV *MaxBECount = getCouldNotCompute(); 5956 if (EitherMayExit) { 5957 // Both conditions must be false for the loop to continue executing. 5958 // Choose the less conservative count. 5959 if (EL0.Exact == getCouldNotCompute() || 5960 EL1.Exact == getCouldNotCompute()) 5961 BECount = getCouldNotCompute(); 5962 else 5963 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5964 if (EL0.Max == getCouldNotCompute()) 5965 MaxBECount = EL1.Max; 5966 else if (EL1.Max == getCouldNotCompute()) 5967 MaxBECount = EL0.Max; 5968 else 5969 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5970 } else { 5971 // Both conditions must be false at the same time for the loop to exit. 5972 // For now, be conservative. 5973 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5974 if (EL0.Max == EL1.Max) 5975 MaxBECount = EL0.Max; 5976 if (EL0.Exact == EL1.Exact) 5977 BECount = EL0.Exact; 5978 } 5979 5980 SCEVUnionPredicate NP; 5981 NP.add(&EL0.Pred); 5982 NP.add(&EL1.Pred); 5983 return ExitLimit(BECount, MaxBECount, NP); 5984 } 5985 } 5986 5987 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5988 // Proceed to the next level to examine the icmp. 5989 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 5990 ExitLimit EL = 5991 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5992 if (EL.hasFullInfo() || !AllowPredicates) 5993 return EL; 5994 5995 // Try again, but use SCEV predicates this time. 5996 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 5997 /*AllowPredicates=*/true); 5998 } 5999 6000 // Check for a constant condition. These are normally stripped out by 6001 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6002 // preserve the CFG and is temporarily leaving constant conditions 6003 // in place. 6004 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6005 if (L->contains(FBB) == !CI->getZExtValue()) 6006 // The backedge is always taken. 6007 return getCouldNotCompute(); 6008 else 6009 // The backedge is never taken. 6010 return getZero(CI->getType()); 6011 } 6012 6013 // If it's not an integer or pointer comparison then compute it the hard way. 6014 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6015 } 6016 6017 ScalarEvolution::ExitLimit 6018 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6019 ICmpInst *ExitCond, 6020 BasicBlock *TBB, 6021 BasicBlock *FBB, 6022 bool ControlsExit, 6023 bool AllowPredicates) { 6024 6025 // If the condition was exit on true, convert the condition to exit on false 6026 ICmpInst::Predicate Cond; 6027 if (!L->contains(FBB)) 6028 Cond = ExitCond->getPredicate(); 6029 else 6030 Cond = ExitCond->getInversePredicate(); 6031 6032 // Handle common loops like: for (X = "string"; *X; ++X) 6033 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6034 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6035 ExitLimit ItCnt = 6036 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6037 if (ItCnt.hasAnyInfo()) 6038 return ItCnt; 6039 } 6040 6041 ExitLimit ShiftEL = computeShiftCompareExitLimit( 6042 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 6043 if (ShiftEL.hasAnyInfo()) 6044 return ShiftEL; 6045 6046 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6047 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6048 6049 // Try to evaluate any dependencies out of the loop. 6050 LHS = getSCEVAtScope(LHS, L); 6051 RHS = getSCEVAtScope(RHS, L); 6052 6053 // At this point, we would like to compute how many iterations of the 6054 // loop the predicate will return true for these inputs. 6055 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6056 // If there is a loop-invariant, force it into the RHS. 6057 std::swap(LHS, RHS); 6058 Cond = ICmpInst::getSwappedPredicate(Cond); 6059 } 6060 6061 // Simplify the operands before analyzing them. 6062 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6063 6064 // If we have a comparison of a chrec against a constant, try to use value 6065 // ranges to answer this query. 6066 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6067 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6068 if (AddRec->getLoop() == L) { 6069 // Form the constant range. 6070 ConstantRange CompRange( 6071 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 6072 6073 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6074 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6075 } 6076 6077 switch (Cond) { 6078 case ICmpInst::ICMP_NE: { // while (X != Y) 6079 // Convert to: while (X-Y != 0) 6080 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6081 AllowPredicates); 6082 if (EL.hasAnyInfo()) return EL; 6083 break; 6084 } 6085 case ICmpInst::ICMP_EQ: { // while (X == Y) 6086 // Convert to: while (X-Y == 0) 6087 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 6088 if (EL.hasAnyInfo()) return EL; 6089 break; 6090 } 6091 case ICmpInst::ICMP_SLT: 6092 case ICmpInst::ICMP_ULT: { // while (X < Y) 6093 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6094 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6095 AllowPredicates); 6096 if (EL.hasAnyInfo()) return EL; 6097 break; 6098 } 6099 case ICmpInst::ICMP_SGT: 6100 case ICmpInst::ICMP_UGT: { // while (X > Y) 6101 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6102 ExitLimit EL = 6103 HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6104 AllowPredicates); 6105 if (EL.hasAnyInfo()) return EL; 6106 break; 6107 } 6108 default: 6109 break; 6110 } 6111 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6112 } 6113 6114 ScalarEvolution::ExitLimit 6115 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6116 SwitchInst *Switch, 6117 BasicBlock *ExitingBlock, 6118 bool ControlsExit) { 6119 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6120 6121 // Give up if the exit is the default dest of a switch. 6122 if (Switch->getDefaultDest() == ExitingBlock) 6123 return getCouldNotCompute(); 6124 6125 assert(L->contains(Switch->getDefaultDest()) && 6126 "Default case must not exit the loop!"); 6127 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6128 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6129 6130 // while (X != Y) --> while (X-Y != 0) 6131 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6132 if (EL.hasAnyInfo()) 6133 return EL; 6134 6135 return getCouldNotCompute(); 6136 } 6137 6138 static ConstantInt * 6139 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6140 ScalarEvolution &SE) { 6141 const SCEV *InVal = SE.getConstant(C); 6142 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6143 assert(isa<SCEVConstant>(Val) && 6144 "Evaluation of SCEV at constant didn't fold correctly?"); 6145 return cast<SCEVConstant>(Val)->getValue(); 6146 } 6147 6148 /// computeLoadConstantCompareExitLimit - Given an exit condition of 6149 /// 'icmp op load X, cst', try to see if we can compute the backedge 6150 /// execution count. 6151 ScalarEvolution::ExitLimit 6152 ScalarEvolution::computeLoadConstantCompareExitLimit( 6153 LoadInst *LI, 6154 Constant *RHS, 6155 const Loop *L, 6156 ICmpInst::Predicate predicate) { 6157 6158 if (LI->isVolatile()) return getCouldNotCompute(); 6159 6160 // Check to see if the loaded pointer is a getelementptr of a global. 6161 // TODO: Use SCEV instead of manually grubbing with GEPs. 6162 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6163 if (!GEP) return getCouldNotCompute(); 6164 6165 // Make sure that it is really a constant global we are gepping, with an 6166 // initializer, and make sure the first IDX is really 0. 6167 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6168 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6169 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6170 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6171 return getCouldNotCompute(); 6172 6173 // Okay, we allow one non-constant index into the GEP instruction. 6174 Value *VarIdx = nullptr; 6175 std::vector<Constant*> Indexes; 6176 unsigned VarIdxNum = 0; 6177 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6178 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6179 Indexes.push_back(CI); 6180 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6181 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6182 VarIdx = GEP->getOperand(i); 6183 VarIdxNum = i-2; 6184 Indexes.push_back(nullptr); 6185 } 6186 6187 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6188 if (!VarIdx) 6189 return getCouldNotCompute(); 6190 6191 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6192 // Check to see if X is a loop variant variable value now. 6193 const SCEV *Idx = getSCEV(VarIdx); 6194 Idx = getSCEVAtScope(Idx, L); 6195 6196 // We can only recognize very limited forms of loop index expressions, in 6197 // particular, only affine AddRec's like {C1,+,C2}. 6198 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6199 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6200 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6201 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6202 return getCouldNotCompute(); 6203 6204 unsigned MaxSteps = MaxBruteForceIterations; 6205 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6206 ConstantInt *ItCst = ConstantInt::get( 6207 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6208 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6209 6210 // Form the GEP offset. 6211 Indexes[VarIdxNum] = Val; 6212 6213 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6214 Indexes); 6215 if (!Result) break; // Cannot compute! 6216 6217 // Evaluate the condition for this iteration. 6218 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6219 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6220 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6221 ++NumArrayLenItCounts; 6222 return getConstant(ItCst); // Found terminating iteration! 6223 } 6224 } 6225 return getCouldNotCompute(); 6226 } 6227 6228 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6229 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6230 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6231 if (!RHS) 6232 return getCouldNotCompute(); 6233 6234 const BasicBlock *Latch = L->getLoopLatch(); 6235 if (!Latch) 6236 return getCouldNotCompute(); 6237 6238 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6239 if (!Predecessor) 6240 return getCouldNotCompute(); 6241 6242 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6243 // Return LHS in OutLHS and shift_opt in OutOpCode. 6244 auto MatchPositiveShift = 6245 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6246 6247 using namespace PatternMatch; 6248 6249 ConstantInt *ShiftAmt; 6250 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6251 OutOpCode = Instruction::LShr; 6252 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6253 OutOpCode = Instruction::AShr; 6254 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6255 OutOpCode = Instruction::Shl; 6256 else 6257 return false; 6258 6259 return ShiftAmt->getValue().isStrictlyPositive(); 6260 }; 6261 6262 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6263 // 6264 // loop: 6265 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6266 // %iv.shifted = lshr i32 %iv, <positive constant> 6267 // 6268 // Return true on a succesful match. Return the corresponding PHI node (%iv 6269 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6270 auto MatchShiftRecurrence = 6271 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6272 Optional<Instruction::BinaryOps> PostShiftOpCode; 6273 6274 { 6275 Instruction::BinaryOps OpC; 6276 Value *V; 6277 6278 // If we encounter a shift instruction, "peel off" the shift operation, 6279 // and remember that we did so. Later when we inspect %iv's backedge 6280 // value, we will make sure that the backedge value uses the same 6281 // operation. 6282 // 6283 // Note: the peeled shift operation does not have to be the same 6284 // instruction as the one feeding into the PHI's backedge value. We only 6285 // really care about it being the same *kind* of shift instruction -- 6286 // that's all that is required for our later inferences to hold. 6287 if (MatchPositiveShift(LHS, V, OpC)) { 6288 PostShiftOpCode = OpC; 6289 LHS = V; 6290 } 6291 } 6292 6293 PNOut = dyn_cast<PHINode>(LHS); 6294 if (!PNOut || PNOut->getParent() != L->getHeader()) 6295 return false; 6296 6297 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6298 Value *OpLHS; 6299 6300 return 6301 // The backedge value for the PHI node must be a shift by a positive 6302 // amount 6303 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6304 6305 // of the PHI node itself 6306 OpLHS == PNOut && 6307 6308 // and the kind of shift should be match the kind of shift we peeled 6309 // off, if any. 6310 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6311 }; 6312 6313 PHINode *PN; 6314 Instruction::BinaryOps OpCode; 6315 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6316 return getCouldNotCompute(); 6317 6318 const DataLayout &DL = getDataLayout(); 6319 6320 // The key rationale for this optimization is that for some kinds of shift 6321 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6322 // within a finite number of iterations. If the condition guarding the 6323 // backedge (in the sense that the backedge is taken if the condition is true) 6324 // is false for the value the shift recurrence stabilizes to, then we know 6325 // that the backedge is taken only a finite number of times. 6326 6327 ConstantInt *StableValue = nullptr; 6328 switch (OpCode) { 6329 default: 6330 llvm_unreachable("Impossible case!"); 6331 6332 case Instruction::AShr: { 6333 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6334 // bitwidth(K) iterations. 6335 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6336 bool KnownZero, KnownOne; 6337 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6338 Predecessor->getTerminator(), &DT); 6339 auto *Ty = cast<IntegerType>(RHS->getType()); 6340 if (KnownZero) 6341 StableValue = ConstantInt::get(Ty, 0); 6342 else if (KnownOne) 6343 StableValue = ConstantInt::get(Ty, -1, true); 6344 else 6345 return getCouldNotCompute(); 6346 6347 break; 6348 } 6349 case Instruction::LShr: 6350 case Instruction::Shl: 6351 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6352 // stabilize to 0 in at most bitwidth(K) iterations. 6353 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6354 break; 6355 } 6356 6357 auto *Result = 6358 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6359 assert(Result->getType()->isIntegerTy(1) && 6360 "Otherwise cannot be an operand to a branch instruction"); 6361 6362 if (Result->isZeroValue()) { 6363 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6364 const SCEV *UpperBound = 6365 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6366 SCEVUnionPredicate P; 6367 return ExitLimit(getCouldNotCompute(), UpperBound, P); 6368 } 6369 6370 return getCouldNotCompute(); 6371 } 6372 6373 /// CanConstantFold - Return true if we can constant fold an instruction of the 6374 /// specified type, assuming that all operands were constants. 6375 static bool CanConstantFold(const Instruction *I) { 6376 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6377 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6378 isa<LoadInst>(I)) 6379 return true; 6380 6381 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6382 if (const Function *F = CI->getCalledFunction()) 6383 return canConstantFoldCallTo(F); 6384 return false; 6385 } 6386 6387 /// Determine whether this instruction can constant evolve within this loop 6388 /// assuming its operands can all constant evolve. 6389 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6390 // An instruction outside of the loop can't be derived from a loop PHI. 6391 if (!L->contains(I)) return false; 6392 6393 if (isa<PHINode>(I)) { 6394 // We don't currently keep track of the control flow needed to evaluate 6395 // PHIs, so we cannot handle PHIs inside of loops. 6396 return L->getHeader() == I->getParent(); 6397 } 6398 6399 // If we won't be able to constant fold this expression even if the operands 6400 // are constants, bail early. 6401 return CanConstantFold(I); 6402 } 6403 6404 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6405 /// recursing through each instruction operand until reaching a loop header phi. 6406 static PHINode * 6407 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6408 DenseMap<Instruction *, PHINode *> &PHIMap) { 6409 6410 // Otherwise, we can evaluate this instruction if all of its operands are 6411 // constant or derived from a PHI node themselves. 6412 PHINode *PHI = nullptr; 6413 for (Value *Op : UseInst->operands()) { 6414 if (isa<Constant>(Op)) continue; 6415 6416 Instruction *OpInst = dyn_cast<Instruction>(Op); 6417 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6418 6419 PHINode *P = dyn_cast<PHINode>(OpInst); 6420 if (!P) 6421 // If this operand is already visited, reuse the prior result. 6422 // We may have P != PHI if this is the deepest point at which the 6423 // inconsistent paths meet. 6424 P = PHIMap.lookup(OpInst); 6425 if (!P) { 6426 // Recurse and memoize the results, whether a phi is found or not. 6427 // This recursive call invalidates pointers into PHIMap. 6428 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 6429 PHIMap[OpInst] = P; 6430 } 6431 if (!P) 6432 return nullptr; // Not evolving from PHI 6433 if (PHI && PHI != P) 6434 return nullptr; // Evolving from multiple different PHIs. 6435 PHI = P; 6436 } 6437 // This is a expression evolving from a constant PHI! 6438 return PHI; 6439 } 6440 6441 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6442 /// in the loop that V is derived from. We allow arbitrary operations along the 6443 /// way, but the operands of an operation must either be constants or a value 6444 /// derived from a constant PHI. If this expression does not fit with these 6445 /// constraints, return null. 6446 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6447 Instruction *I = dyn_cast<Instruction>(V); 6448 if (!I || !canConstantEvolve(I, L)) return nullptr; 6449 6450 if (PHINode *PN = dyn_cast<PHINode>(I)) 6451 return PN; 6452 6453 // Record non-constant instructions contained by the loop. 6454 DenseMap<Instruction *, PHINode *> PHIMap; 6455 return getConstantEvolvingPHIOperands(I, L, PHIMap); 6456 } 6457 6458 /// EvaluateExpression - Given an expression that passes the 6459 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6460 /// in the loop has the value PHIVal. If we can't fold this expression for some 6461 /// reason, return null. 6462 static Constant *EvaluateExpression(Value *V, const Loop *L, 6463 DenseMap<Instruction *, Constant *> &Vals, 6464 const DataLayout &DL, 6465 const TargetLibraryInfo *TLI) { 6466 // Convenient constant check, but redundant for recursive calls. 6467 if (Constant *C = dyn_cast<Constant>(V)) return C; 6468 Instruction *I = dyn_cast<Instruction>(V); 6469 if (!I) return nullptr; 6470 6471 if (Constant *C = Vals.lookup(I)) return C; 6472 6473 // An instruction inside the loop depends on a value outside the loop that we 6474 // weren't given a mapping for, or a value such as a call inside the loop. 6475 if (!canConstantEvolve(I, L)) return nullptr; 6476 6477 // An unmapped PHI can be due to a branch or another loop inside this loop, 6478 // or due to this not being the initial iteration through a loop where we 6479 // couldn't compute the evolution of this particular PHI last time. 6480 if (isa<PHINode>(I)) return nullptr; 6481 6482 std::vector<Constant*> Operands(I->getNumOperands()); 6483 6484 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6485 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6486 if (!Operand) { 6487 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6488 if (!Operands[i]) return nullptr; 6489 continue; 6490 } 6491 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6492 Vals[Operand] = C; 6493 if (!C) return nullptr; 6494 Operands[i] = C; 6495 } 6496 6497 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6498 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6499 Operands[1], DL, TLI); 6500 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6501 if (!LI->isVolatile()) 6502 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6503 } 6504 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6505 } 6506 6507 6508 // If every incoming value to PN except the one for BB is a specific Constant, 6509 // return that, else return nullptr. 6510 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6511 Constant *IncomingVal = nullptr; 6512 6513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6514 if (PN->getIncomingBlock(i) == BB) 6515 continue; 6516 6517 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6518 if (!CurrentVal) 6519 return nullptr; 6520 6521 if (IncomingVal != CurrentVal) { 6522 if (IncomingVal) 6523 return nullptr; 6524 IncomingVal = CurrentVal; 6525 } 6526 } 6527 6528 return IncomingVal; 6529 } 6530 6531 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6532 /// in the header of its containing loop, we know the loop executes a 6533 /// constant number of times, and the PHI node is just a recurrence 6534 /// involving constants, fold it. 6535 Constant * 6536 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6537 const APInt &BEs, 6538 const Loop *L) { 6539 auto I = ConstantEvolutionLoopExitValue.find(PN); 6540 if (I != ConstantEvolutionLoopExitValue.end()) 6541 return I->second; 6542 6543 if (BEs.ugt(MaxBruteForceIterations)) 6544 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6545 6546 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6547 6548 DenseMap<Instruction *, Constant *> CurrentIterVals; 6549 BasicBlock *Header = L->getHeader(); 6550 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6551 6552 BasicBlock *Latch = L->getLoopLatch(); 6553 if (!Latch) 6554 return nullptr; 6555 6556 for (auto &I : *Header) { 6557 PHINode *PHI = dyn_cast<PHINode>(&I); 6558 if (!PHI) break; 6559 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6560 if (!StartCST) continue; 6561 CurrentIterVals[PHI] = StartCST; 6562 } 6563 if (!CurrentIterVals.count(PN)) 6564 return RetVal = nullptr; 6565 6566 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6567 6568 // Execute the loop symbolically to determine the exit value. 6569 if (BEs.getActiveBits() >= 32) 6570 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6571 6572 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6573 unsigned IterationNum = 0; 6574 const DataLayout &DL = getDataLayout(); 6575 for (; ; ++IterationNum) { 6576 if (IterationNum == NumIterations) 6577 return RetVal = CurrentIterVals[PN]; // Got exit value! 6578 6579 // Compute the value of the PHIs for the next iteration. 6580 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6581 DenseMap<Instruction *, Constant *> NextIterVals; 6582 Constant *NextPHI = 6583 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6584 if (!NextPHI) 6585 return nullptr; // Couldn't evaluate! 6586 NextIterVals[PN] = NextPHI; 6587 6588 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6589 6590 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6591 // cease to be able to evaluate one of them or if they stop evolving, 6592 // because that doesn't necessarily prevent us from computing PN. 6593 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6594 for (const auto &I : CurrentIterVals) { 6595 PHINode *PHI = dyn_cast<PHINode>(I.first); 6596 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6597 PHIsToCompute.emplace_back(PHI, I.second); 6598 } 6599 // We use two distinct loops because EvaluateExpression may invalidate any 6600 // iterators into CurrentIterVals. 6601 for (const auto &I : PHIsToCompute) { 6602 PHINode *PHI = I.first; 6603 Constant *&NextPHI = NextIterVals[PHI]; 6604 if (!NextPHI) { // Not already computed. 6605 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6606 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6607 } 6608 if (NextPHI != I.second) 6609 StoppedEvolving = false; 6610 } 6611 6612 // If all entries in CurrentIterVals == NextIterVals then we can stop 6613 // iterating, the loop can't continue to change. 6614 if (StoppedEvolving) 6615 return RetVal = CurrentIterVals[PN]; 6616 6617 CurrentIterVals.swap(NextIterVals); 6618 } 6619 } 6620 6621 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6622 Value *Cond, 6623 bool ExitWhen) { 6624 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6625 if (!PN) return getCouldNotCompute(); 6626 6627 // If the loop is canonicalized, the PHI will have exactly two entries. 6628 // That's the only form we support here. 6629 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6630 6631 DenseMap<Instruction *, Constant *> CurrentIterVals; 6632 BasicBlock *Header = L->getHeader(); 6633 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6634 6635 BasicBlock *Latch = L->getLoopLatch(); 6636 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6637 6638 for (auto &I : *Header) { 6639 PHINode *PHI = dyn_cast<PHINode>(&I); 6640 if (!PHI) 6641 break; 6642 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6643 if (!StartCST) continue; 6644 CurrentIterVals[PHI] = StartCST; 6645 } 6646 if (!CurrentIterVals.count(PN)) 6647 return getCouldNotCompute(); 6648 6649 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6650 // the loop symbolically to determine when the condition gets a value of 6651 // "ExitWhen". 6652 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6653 const DataLayout &DL = getDataLayout(); 6654 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6655 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6656 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6657 6658 // Couldn't symbolically evaluate. 6659 if (!CondVal) return getCouldNotCompute(); 6660 6661 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6662 ++NumBruteForceTripCountsComputed; 6663 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6664 } 6665 6666 // Update all the PHI nodes for the next iteration. 6667 DenseMap<Instruction *, Constant *> NextIterVals; 6668 6669 // Create a list of which PHIs we need to compute. We want to do this before 6670 // calling EvaluateExpression on them because that may invalidate iterators 6671 // into CurrentIterVals. 6672 SmallVector<PHINode *, 8> PHIsToCompute; 6673 for (const auto &I : CurrentIterVals) { 6674 PHINode *PHI = dyn_cast<PHINode>(I.first); 6675 if (!PHI || PHI->getParent() != Header) continue; 6676 PHIsToCompute.push_back(PHI); 6677 } 6678 for (PHINode *PHI : PHIsToCompute) { 6679 Constant *&NextPHI = NextIterVals[PHI]; 6680 if (NextPHI) continue; // Already computed! 6681 6682 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6683 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6684 } 6685 CurrentIterVals.swap(NextIterVals); 6686 } 6687 6688 // Too many iterations were needed to evaluate. 6689 return getCouldNotCompute(); 6690 } 6691 6692 /// getSCEVAtScope - Return a SCEV expression for the specified value 6693 /// at the specified scope in the program. The L value specifies a loop 6694 /// nest to evaluate the expression at, where null is the top-level or a 6695 /// specified loop is immediately inside of the loop. 6696 /// 6697 /// This method can be used to compute the exit value for a variable defined 6698 /// in a loop by querying what the value will hold in the parent loop. 6699 /// 6700 /// In the case that a relevant loop exit value cannot be computed, the 6701 /// original value V is returned. 6702 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6703 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6704 ValuesAtScopes[V]; 6705 // Check to see if we've folded this expression at this loop before. 6706 for (auto &LS : Values) 6707 if (LS.first == L) 6708 return LS.second ? LS.second : V; 6709 6710 Values.emplace_back(L, nullptr); 6711 6712 // Otherwise compute it. 6713 const SCEV *C = computeSCEVAtScope(V, L); 6714 for (auto &LS : reverse(ValuesAtScopes[V])) 6715 if (LS.first == L) { 6716 LS.second = C; 6717 break; 6718 } 6719 return C; 6720 } 6721 6722 /// This builds up a Constant using the ConstantExpr interface. That way, we 6723 /// will return Constants for objects which aren't represented by a 6724 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6725 /// Returns NULL if the SCEV isn't representable as a Constant. 6726 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6727 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6728 case scCouldNotCompute: 6729 case scAddRecExpr: 6730 break; 6731 case scConstant: 6732 return cast<SCEVConstant>(V)->getValue(); 6733 case scUnknown: 6734 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6735 case scSignExtend: { 6736 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6737 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6738 return ConstantExpr::getSExt(CastOp, SS->getType()); 6739 break; 6740 } 6741 case scZeroExtend: { 6742 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6743 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6744 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6745 break; 6746 } 6747 case scTruncate: { 6748 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6749 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6750 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6751 break; 6752 } 6753 case scAddExpr: { 6754 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6755 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6756 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6757 unsigned AS = PTy->getAddressSpace(); 6758 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6759 C = ConstantExpr::getBitCast(C, DestPtrTy); 6760 } 6761 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6762 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6763 if (!C2) return nullptr; 6764 6765 // First pointer! 6766 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6767 unsigned AS = C2->getType()->getPointerAddressSpace(); 6768 std::swap(C, C2); 6769 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6770 // The offsets have been converted to bytes. We can add bytes to an 6771 // i8* by GEP with the byte count in the first index. 6772 C = ConstantExpr::getBitCast(C, DestPtrTy); 6773 } 6774 6775 // Don't bother trying to sum two pointers. We probably can't 6776 // statically compute a load that results from it anyway. 6777 if (C2->getType()->isPointerTy()) 6778 return nullptr; 6779 6780 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6781 if (PTy->getElementType()->isStructTy()) 6782 C2 = ConstantExpr::getIntegerCast( 6783 C2, Type::getInt32Ty(C->getContext()), true); 6784 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6785 } else 6786 C = ConstantExpr::getAdd(C, C2); 6787 } 6788 return C; 6789 } 6790 break; 6791 } 6792 case scMulExpr: { 6793 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6794 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6795 // Don't bother with pointers at all. 6796 if (C->getType()->isPointerTy()) return nullptr; 6797 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6798 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6799 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6800 C = ConstantExpr::getMul(C, C2); 6801 } 6802 return C; 6803 } 6804 break; 6805 } 6806 case scUDivExpr: { 6807 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6808 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6809 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6810 if (LHS->getType() == RHS->getType()) 6811 return ConstantExpr::getUDiv(LHS, RHS); 6812 break; 6813 } 6814 case scSMaxExpr: 6815 case scUMaxExpr: 6816 break; // TODO: smax, umax. 6817 } 6818 return nullptr; 6819 } 6820 6821 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6822 if (isa<SCEVConstant>(V)) return V; 6823 6824 // If this instruction is evolved from a constant-evolving PHI, compute the 6825 // exit value from the loop without using SCEVs. 6826 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6827 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6828 const Loop *LI = this->LI[I->getParent()]; 6829 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6830 if (PHINode *PN = dyn_cast<PHINode>(I)) 6831 if (PN->getParent() == LI->getHeader()) { 6832 // Okay, there is no closed form solution for the PHI node. Check 6833 // to see if the loop that contains it has a known backedge-taken 6834 // count. If so, we may be able to force computation of the exit 6835 // value. 6836 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6837 if (const SCEVConstant *BTCC = 6838 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6839 // Okay, we know how many times the containing loop executes. If 6840 // this is a constant evolving PHI node, get the final value at 6841 // the specified iteration number. 6842 Constant *RV = 6843 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6844 if (RV) return getSCEV(RV); 6845 } 6846 } 6847 6848 // Okay, this is an expression that we cannot symbolically evaluate 6849 // into a SCEV. Check to see if it's possible to symbolically evaluate 6850 // the arguments into constants, and if so, try to constant propagate the 6851 // result. This is particularly useful for computing loop exit values. 6852 if (CanConstantFold(I)) { 6853 SmallVector<Constant *, 4> Operands; 6854 bool MadeImprovement = false; 6855 for (Value *Op : I->operands()) { 6856 if (Constant *C = dyn_cast<Constant>(Op)) { 6857 Operands.push_back(C); 6858 continue; 6859 } 6860 6861 // If any of the operands is non-constant and if they are 6862 // non-integer and non-pointer, don't even try to analyze them 6863 // with scev techniques. 6864 if (!isSCEVable(Op->getType())) 6865 return V; 6866 6867 const SCEV *OrigV = getSCEV(Op); 6868 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6869 MadeImprovement |= OrigV != OpV; 6870 6871 Constant *C = BuildConstantFromSCEV(OpV); 6872 if (!C) return V; 6873 if (C->getType() != Op->getType()) 6874 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6875 Op->getType(), 6876 false), 6877 C, Op->getType()); 6878 Operands.push_back(C); 6879 } 6880 6881 // Check to see if getSCEVAtScope actually made an improvement. 6882 if (MadeImprovement) { 6883 Constant *C = nullptr; 6884 const DataLayout &DL = getDataLayout(); 6885 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6886 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6887 Operands[1], DL, &TLI); 6888 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6889 if (!LI->isVolatile()) 6890 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6891 } else 6892 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6893 if (!C) return V; 6894 return getSCEV(C); 6895 } 6896 } 6897 } 6898 6899 // This is some other type of SCEVUnknown, just return it. 6900 return V; 6901 } 6902 6903 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6904 // Avoid performing the look-up in the common case where the specified 6905 // expression has no loop-variant portions. 6906 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6907 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6908 if (OpAtScope != Comm->getOperand(i)) { 6909 // Okay, at least one of these operands is loop variant but might be 6910 // foldable. Build a new instance of the folded commutative expression. 6911 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6912 Comm->op_begin()+i); 6913 NewOps.push_back(OpAtScope); 6914 6915 for (++i; i != e; ++i) { 6916 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6917 NewOps.push_back(OpAtScope); 6918 } 6919 if (isa<SCEVAddExpr>(Comm)) 6920 return getAddExpr(NewOps); 6921 if (isa<SCEVMulExpr>(Comm)) 6922 return getMulExpr(NewOps); 6923 if (isa<SCEVSMaxExpr>(Comm)) 6924 return getSMaxExpr(NewOps); 6925 if (isa<SCEVUMaxExpr>(Comm)) 6926 return getUMaxExpr(NewOps); 6927 llvm_unreachable("Unknown commutative SCEV type!"); 6928 } 6929 } 6930 // If we got here, all operands are loop invariant. 6931 return Comm; 6932 } 6933 6934 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6935 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6936 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6937 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6938 return Div; // must be loop invariant 6939 return getUDivExpr(LHS, RHS); 6940 } 6941 6942 // If this is a loop recurrence for a loop that does not contain L, then we 6943 // are dealing with the final value computed by the loop. 6944 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6945 // First, attempt to evaluate each operand. 6946 // Avoid performing the look-up in the common case where the specified 6947 // expression has no loop-variant portions. 6948 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6949 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6950 if (OpAtScope == AddRec->getOperand(i)) 6951 continue; 6952 6953 // Okay, at least one of these operands is loop variant but might be 6954 // foldable. Build a new instance of the folded commutative expression. 6955 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6956 AddRec->op_begin()+i); 6957 NewOps.push_back(OpAtScope); 6958 for (++i; i != e; ++i) 6959 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6960 6961 const SCEV *FoldedRec = 6962 getAddRecExpr(NewOps, AddRec->getLoop(), 6963 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6964 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6965 // The addrec may be folded to a nonrecurrence, for example, if the 6966 // induction variable is multiplied by zero after constant folding. Go 6967 // ahead and return the folded value. 6968 if (!AddRec) 6969 return FoldedRec; 6970 break; 6971 } 6972 6973 // If the scope is outside the addrec's loop, evaluate it by using the 6974 // loop exit value of the addrec. 6975 if (!AddRec->getLoop()->contains(L)) { 6976 // To evaluate this recurrence, we need to know how many times the AddRec 6977 // loop iterates. Compute this now. 6978 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6979 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6980 6981 // Then, evaluate the AddRec. 6982 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6983 } 6984 6985 return AddRec; 6986 } 6987 6988 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6989 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6990 if (Op == Cast->getOperand()) 6991 return Cast; // must be loop invariant 6992 return getZeroExtendExpr(Op, Cast->getType()); 6993 } 6994 6995 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6996 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6997 if (Op == Cast->getOperand()) 6998 return Cast; // must be loop invariant 6999 return getSignExtendExpr(Op, Cast->getType()); 7000 } 7001 7002 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7003 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7004 if (Op == Cast->getOperand()) 7005 return Cast; // must be loop invariant 7006 return getTruncateExpr(Op, Cast->getType()); 7007 } 7008 7009 llvm_unreachable("Unknown SCEV type!"); 7010 } 7011 7012 /// getSCEVAtScope - This is a convenience function which does 7013 /// getSCEVAtScope(getSCEV(V), L). 7014 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7015 return getSCEVAtScope(getSCEV(V), L); 7016 } 7017 7018 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 7019 /// following equation: 7020 /// 7021 /// A * X = B (mod N) 7022 /// 7023 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7024 /// A and B isn't important. 7025 /// 7026 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7027 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 7028 ScalarEvolution &SE) { 7029 uint32_t BW = A.getBitWidth(); 7030 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 7031 assert(A != 0 && "A must be non-zero."); 7032 7033 // 1. D = gcd(A, N) 7034 // 7035 // The gcd of A and N may have only one prime factor: 2. The number of 7036 // trailing zeros in A is its multiplicity 7037 uint32_t Mult2 = A.countTrailingZeros(); 7038 // D = 2^Mult2 7039 7040 // 2. Check if B is divisible by D. 7041 // 7042 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7043 // is not less than multiplicity of this prime factor for D. 7044 if (B.countTrailingZeros() < Mult2) 7045 return SE.getCouldNotCompute(); 7046 7047 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7048 // modulo (N / D). 7049 // 7050 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 7051 // bit width during computations. 7052 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7053 APInt Mod(BW + 1, 0); 7054 Mod.setBit(BW - Mult2); // Mod = N / D 7055 APInt I = AD.multiplicativeInverse(Mod); 7056 7057 // 4. Compute the minimum unsigned root of the equation: 7058 // I * (B / D) mod (N / D) 7059 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 7060 7061 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 7062 // bits. 7063 return SE.getConstant(Result.trunc(BW)); 7064 } 7065 7066 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 7067 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 7068 /// might be the same) or two SCEVCouldNotCompute objects. 7069 /// 7070 static std::pair<const SCEV *,const SCEV *> 7071 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7072 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7073 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7074 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7075 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7076 7077 // We currently can only solve this if the coefficients are constants. 7078 if (!LC || !MC || !NC) { 7079 const SCEV *CNC = SE.getCouldNotCompute(); 7080 return {CNC, CNC}; 7081 } 7082 7083 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7084 const APInt &L = LC->getAPInt(); 7085 const APInt &M = MC->getAPInt(); 7086 const APInt &N = NC->getAPInt(); 7087 APInt Two(BitWidth, 2); 7088 APInt Four(BitWidth, 4); 7089 7090 { 7091 using namespace APIntOps; 7092 const APInt& C = L; 7093 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7094 // The B coefficient is M-N/2 7095 APInt B(M); 7096 B -= sdiv(N,Two); 7097 7098 // The A coefficient is N/2 7099 APInt A(N.sdiv(Two)); 7100 7101 // Compute the B^2-4ac term. 7102 APInt SqrtTerm(B); 7103 SqrtTerm *= B; 7104 SqrtTerm -= Four * (A * C); 7105 7106 if (SqrtTerm.isNegative()) { 7107 // The loop is provably infinite. 7108 const SCEV *CNC = SE.getCouldNotCompute(); 7109 return {CNC, CNC}; 7110 } 7111 7112 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7113 // integer value or else APInt::sqrt() will assert. 7114 APInt SqrtVal(SqrtTerm.sqrt()); 7115 7116 // Compute the two solutions for the quadratic formula. 7117 // The divisions must be performed as signed divisions. 7118 APInt NegB(-B); 7119 APInt TwoA(A << 1); 7120 if (TwoA.isMinValue()) { 7121 const SCEV *CNC = SE.getCouldNotCompute(); 7122 return {CNC, CNC}; 7123 } 7124 7125 LLVMContext &Context = SE.getContext(); 7126 7127 ConstantInt *Solution1 = 7128 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7129 ConstantInt *Solution2 = 7130 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7131 7132 return {SE.getConstant(Solution1), SE.getConstant(Solution2)}; 7133 } // end APIntOps namespace 7134 } 7135 7136 /// HowFarToZero - Return the number of times a backedge comparing the specified 7137 /// value to zero will execute. If not computable, return CouldNotCompute. 7138 /// 7139 /// This is only used for loops with a "x != y" exit test. The exit condition is 7140 /// now expressed as a single expression, V = x-y. So the exit test is 7141 /// effectively V != 0. We know and take advantage of the fact that this 7142 /// expression only being used in a comparison by zero context. 7143 ScalarEvolution::ExitLimit 7144 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7145 bool AllowPredicates) { 7146 SCEVUnionPredicate P; 7147 // If the value is a constant 7148 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7149 // If the value is already zero, the branch will execute zero times. 7150 if (C->getValue()->isZero()) return C; 7151 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7152 } 7153 7154 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7155 if (!AddRec && AllowPredicates) 7156 // Try to make this an AddRec using runtime tests, in the first X 7157 // iterations of this loop, where X is the SCEV expression found by the 7158 // algorithm below. 7159 AddRec = convertSCEVToAddRecWithPredicates(V, L, P); 7160 7161 if (!AddRec || AddRec->getLoop() != L) 7162 return getCouldNotCompute(); 7163 7164 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7165 // the quadratic equation to solve it. 7166 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7167 std::pair<const SCEV *,const SCEV *> Roots = 7168 SolveQuadraticEquation(AddRec, *this); 7169 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7170 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7171 if (R1 && R2) { 7172 // Pick the smallest positive root value. 7173 if (ConstantInt *CB = 7174 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 7175 R1->getValue(), 7176 R2->getValue()))) { 7177 if (!CB->getZExtValue()) 7178 std::swap(R1, R2); // R1 is the minimum root now. 7179 7180 // We can only use this value if the chrec ends up with an exact zero 7181 // value at this index. When solving for "X*X != 5", for example, we 7182 // should not accept a root of 2. 7183 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7184 if (Val->isZero()) 7185 return ExitLimit(R1, R1, P); // We found a quadratic root! 7186 } 7187 } 7188 return getCouldNotCompute(); 7189 } 7190 7191 // Otherwise we can only handle this if it is affine. 7192 if (!AddRec->isAffine()) 7193 return getCouldNotCompute(); 7194 7195 // If this is an affine expression, the execution count of this branch is 7196 // the minimum unsigned root of the following equation: 7197 // 7198 // Start + Step*N = 0 (mod 2^BW) 7199 // 7200 // equivalent to: 7201 // 7202 // Step*N = -Start (mod 2^BW) 7203 // 7204 // where BW is the common bit width of Start and Step. 7205 7206 // Get the initial value for the loop. 7207 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7208 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7209 7210 // For now we handle only constant steps. 7211 // 7212 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7213 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7214 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7215 // We have not yet seen any such cases. 7216 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7217 if (!StepC || StepC->getValue()->equalsInt(0)) 7218 return getCouldNotCompute(); 7219 7220 // For positive steps (counting up until unsigned overflow): 7221 // N = -Start/Step (as unsigned) 7222 // For negative steps (counting down to zero): 7223 // N = Start/-Step 7224 // First compute the unsigned distance from zero in the direction of Step. 7225 bool CountDown = StepC->getAPInt().isNegative(); 7226 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7227 7228 // Handle unitary steps, which cannot wraparound. 7229 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7230 // N = Distance (as unsigned) 7231 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7232 ConstantRange CR = getUnsignedRange(Start); 7233 const SCEV *MaxBECount; 7234 if (!CountDown && CR.getUnsignedMin().isMinValue()) 7235 // When counting up, the worst starting value is 1, not 0. 7236 MaxBECount = CR.getUnsignedMax().isMinValue() 7237 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 7238 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 7239 else 7240 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 7241 : -CR.getUnsignedMin()); 7242 return ExitLimit(Distance, MaxBECount, P); 7243 } 7244 7245 // As a special case, handle the instance where Step is a positive power of 7246 // two. In this case, determining whether Step divides Distance evenly can be 7247 // done by counting and comparing the number of trailing zeros of Step and 7248 // Distance. 7249 if (!CountDown) { 7250 const APInt &StepV = StepC->getAPInt(); 7251 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 7252 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 7253 // case is not handled as this code is guarded by !CountDown. 7254 if (StepV.isPowerOf2() && 7255 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 7256 // Here we've constrained the equation to be of the form 7257 // 7258 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 7259 // 7260 // where we're operating on a W bit wide integer domain and k is 7261 // non-negative. The smallest unsigned solution for X is the trip count. 7262 // 7263 // (0) is equivalent to: 7264 // 7265 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 7266 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 7267 // <=> 2^k * Distance' - X = L * 2^(W - N) 7268 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 7269 // 7270 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 7271 // by 2^(W - N). 7272 // 7273 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 7274 // 7275 // E.g. say we're solving 7276 // 7277 // 2 * Val = 2 * X (in i8) ... (3) 7278 // 7279 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 7280 // 7281 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 7282 // necessarily the smallest unsigned value of X that satisfies (3). 7283 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 7284 // is i8 1, not i8 -127 7285 7286 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 7287 7288 // Since SCEV does not have a URem node, we construct one using a truncate 7289 // and a zero extend. 7290 7291 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 7292 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 7293 auto *WideTy = Distance->getType(); 7294 7295 const SCEV *Limit = 7296 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 7297 return ExitLimit(Limit, Limit, P); 7298 } 7299 } 7300 7301 // If the condition controls loop exit (the loop exits only if the expression 7302 // is true) and the addition is no-wrap we can use unsigned divide to 7303 // compute the backedge count. In this case, the step may not divide the 7304 // distance, but we don't care because if the condition is "missed" the loop 7305 // will have undefined behavior due to wrapping. 7306 if (ControlsExit && AddRec->hasNoSelfWrap()) { 7307 const SCEV *Exact = 7308 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7309 return ExitLimit(Exact, Exact, P); 7310 } 7311 7312 // Then, try to solve the above equation provided that Start is constant. 7313 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 7314 const SCEV *E = SolveLinEquationWithOverflow( 7315 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this); 7316 return ExitLimit(E, E, P); 7317 } 7318 return getCouldNotCompute(); 7319 } 7320 7321 /// HowFarToNonZero - Return the number of times a backedge checking the 7322 /// specified value for nonzero will execute. If not computable, return 7323 /// CouldNotCompute 7324 ScalarEvolution::ExitLimit 7325 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 7326 // Loops that look like: while (X == 0) are very strange indeed. We don't 7327 // handle them yet except for the trivial case. This could be expanded in the 7328 // future as needed. 7329 7330 // If the value is a constant, check to see if it is known to be non-zero 7331 // already. If so, the backedge will execute zero times. 7332 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7333 if (!C->getValue()->isNullValue()) 7334 return getZero(C->getType()); 7335 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7336 } 7337 7338 // We could implement others, but I really doubt anyone writes loops like 7339 // this, and if they did, they would already be constant folded. 7340 return getCouldNotCompute(); 7341 } 7342 7343 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 7344 /// (which may not be an immediate predecessor) which has exactly one 7345 /// successor from which BB is reachable, or null if no such block is 7346 /// found. 7347 /// 7348 std::pair<BasicBlock *, BasicBlock *> 7349 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7350 // If the block has a unique predecessor, then there is no path from the 7351 // predecessor to the block that does not go through the direct edge 7352 // from the predecessor to the block. 7353 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7354 return {Pred, BB}; 7355 7356 // A loop's header is defined to be a block that dominates the loop. 7357 // If the header has a unique predecessor outside the loop, it must be 7358 // a block that has exactly one successor that can reach the loop. 7359 if (Loop *L = LI.getLoopFor(BB)) 7360 return {L->getLoopPredecessor(), L->getHeader()}; 7361 7362 return {nullptr, nullptr}; 7363 } 7364 7365 /// HasSameValue - SCEV structural equivalence is usually sufficient for 7366 /// testing whether two expressions are equal, however for the purposes of 7367 /// looking for a condition guarding a loop, it can be useful to be a little 7368 /// more general, since a front-end may have replicated the controlling 7369 /// expression. 7370 /// 7371 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7372 // Quick check to see if they are the same SCEV. 7373 if (A == B) return true; 7374 7375 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7376 // Not all instructions that are "identical" compute the same value. For 7377 // instance, two distinct alloca instructions allocating the same type are 7378 // identical and do not read memory; but compute distinct values. 7379 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7380 }; 7381 7382 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7383 // two different instructions with the same value. Check for this case. 7384 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7385 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7386 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7387 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7388 if (ComputesEqualValues(AI, BI)) 7389 return true; 7390 7391 // Otherwise assume they may have a different value. 7392 return false; 7393 } 7394 7395 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 7396 /// predicate Pred. Return true iff any changes were made. 7397 /// 7398 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7399 const SCEV *&LHS, const SCEV *&RHS, 7400 unsigned Depth) { 7401 bool Changed = false; 7402 7403 // If we hit the max recursion limit bail out. 7404 if (Depth >= 3) 7405 return false; 7406 7407 // Canonicalize a constant to the right side. 7408 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7409 // Check for both operands constant. 7410 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7411 if (ConstantExpr::getICmp(Pred, 7412 LHSC->getValue(), 7413 RHSC->getValue())->isNullValue()) 7414 goto trivially_false; 7415 else 7416 goto trivially_true; 7417 } 7418 // Otherwise swap the operands to put the constant on the right. 7419 std::swap(LHS, RHS); 7420 Pred = ICmpInst::getSwappedPredicate(Pred); 7421 Changed = true; 7422 } 7423 7424 // If we're comparing an addrec with a value which is loop-invariant in the 7425 // addrec's loop, put the addrec on the left. Also make a dominance check, 7426 // as both operands could be addrecs loop-invariant in each other's loop. 7427 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7428 const Loop *L = AR->getLoop(); 7429 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7430 std::swap(LHS, RHS); 7431 Pred = ICmpInst::getSwappedPredicate(Pred); 7432 Changed = true; 7433 } 7434 } 7435 7436 // If there's a constant operand, canonicalize comparisons with boundary 7437 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7438 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7439 const APInt &RA = RC->getAPInt(); 7440 switch (Pred) { 7441 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7442 case ICmpInst::ICMP_EQ: 7443 case ICmpInst::ICMP_NE: 7444 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7445 if (!RA) 7446 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7447 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7448 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7449 ME->getOperand(0)->isAllOnesValue()) { 7450 RHS = AE->getOperand(1); 7451 LHS = ME->getOperand(1); 7452 Changed = true; 7453 } 7454 break; 7455 case ICmpInst::ICMP_UGE: 7456 if ((RA - 1).isMinValue()) { 7457 Pred = ICmpInst::ICMP_NE; 7458 RHS = getConstant(RA - 1); 7459 Changed = true; 7460 break; 7461 } 7462 if (RA.isMaxValue()) { 7463 Pred = ICmpInst::ICMP_EQ; 7464 Changed = true; 7465 break; 7466 } 7467 if (RA.isMinValue()) goto trivially_true; 7468 7469 Pred = ICmpInst::ICMP_UGT; 7470 RHS = getConstant(RA - 1); 7471 Changed = true; 7472 break; 7473 case ICmpInst::ICMP_ULE: 7474 if ((RA + 1).isMaxValue()) { 7475 Pred = ICmpInst::ICMP_NE; 7476 RHS = getConstant(RA + 1); 7477 Changed = true; 7478 break; 7479 } 7480 if (RA.isMinValue()) { 7481 Pred = ICmpInst::ICMP_EQ; 7482 Changed = true; 7483 break; 7484 } 7485 if (RA.isMaxValue()) goto trivially_true; 7486 7487 Pred = ICmpInst::ICMP_ULT; 7488 RHS = getConstant(RA + 1); 7489 Changed = true; 7490 break; 7491 case ICmpInst::ICMP_SGE: 7492 if ((RA - 1).isMinSignedValue()) { 7493 Pred = ICmpInst::ICMP_NE; 7494 RHS = getConstant(RA - 1); 7495 Changed = true; 7496 break; 7497 } 7498 if (RA.isMaxSignedValue()) { 7499 Pred = ICmpInst::ICMP_EQ; 7500 Changed = true; 7501 break; 7502 } 7503 if (RA.isMinSignedValue()) goto trivially_true; 7504 7505 Pred = ICmpInst::ICMP_SGT; 7506 RHS = getConstant(RA - 1); 7507 Changed = true; 7508 break; 7509 case ICmpInst::ICMP_SLE: 7510 if ((RA + 1).isMaxSignedValue()) { 7511 Pred = ICmpInst::ICMP_NE; 7512 RHS = getConstant(RA + 1); 7513 Changed = true; 7514 break; 7515 } 7516 if (RA.isMinSignedValue()) { 7517 Pred = ICmpInst::ICMP_EQ; 7518 Changed = true; 7519 break; 7520 } 7521 if (RA.isMaxSignedValue()) goto trivially_true; 7522 7523 Pred = ICmpInst::ICMP_SLT; 7524 RHS = getConstant(RA + 1); 7525 Changed = true; 7526 break; 7527 case ICmpInst::ICMP_UGT: 7528 if (RA.isMinValue()) { 7529 Pred = ICmpInst::ICMP_NE; 7530 Changed = true; 7531 break; 7532 } 7533 if ((RA + 1).isMaxValue()) { 7534 Pred = ICmpInst::ICMP_EQ; 7535 RHS = getConstant(RA + 1); 7536 Changed = true; 7537 break; 7538 } 7539 if (RA.isMaxValue()) goto trivially_false; 7540 break; 7541 case ICmpInst::ICMP_ULT: 7542 if (RA.isMaxValue()) { 7543 Pred = ICmpInst::ICMP_NE; 7544 Changed = true; 7545 break; 7546 } 7547 if ((RA - 1).isMinValue()) { 7548 Pred = ICmpInst::ICMP_EQ; 7549 RHS = getConstant(RA - 1); 7550 Changed = true; 7551 break; 7552 } 7553 if (RA.isMinValue()) goto trivially_false; 7554 break; 7555 case ICmpInst::ICMP_SGT: 7556 if (RA.isMinSignedValue()) { 7557 Pred = ICmpInst::ICMP_NE; 7558 Changed = true; 7559 break; 7560 } 7561 if ((RA + 1).isMaxSignedValue()) { 7562 Pred = ICmpInst::ICMP_EQ; 7563 RHS = getConstant(RA + 1); 7564 Changed = true; 7565 break; 7566 } 7567 if (RA.isMaxSignedValue()) goto trivially_false; 7568 break; 7569 case ICmpInst::ICMP_SLT: 7570 if (RA.isMaxSignedValue()) { 7571 Pred = ICmpInst::ICMP_NE; 7572 Changed = true; 7573 break; 7574 } 7575 if ((RA - 1).isMinSignedValue()) { 7576 Pred = ICmpInst::ICMP_EQ; 7577 RHS = getConstant(RA - 1); 7578 Changed = true; 7579 break; 7580 } 7581 if (RA.isMinSignedValue()) goto trivially_false; 7582 break; 7583 } 7584 } 7585 7586 // Check for obvious equality. 7587 if (HasSameValue(LHS, RHS)) { 7588 if (ICmpInst::isTrueWhenEqual(Pred)) 7589 goto trivially_true; 7590 if (ICmpInst::isFalseWhenEqual(Pred)) 7591 goto trivially_false; 7592 } 7593 7594 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7595 // adding or subtracting 1 from one of the operands. 7596 switch (Pred) { 7597 case ICmpInst::ICMP_SLE: 7598 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7599 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7600 SCEV::FlagNSW); 7601 Pred = ICmpInst::ICMP_SLT; 7602 Changed = true; 7603 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7604 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7605 SCEV::FlagNSW); 7606 Pred = ICmpInst::ICMP_SLT; 7607 Changed = true; 7608 } 7609 break; 7610 case ICmpInst::ICMP_SGE: 7611 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7612 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7613 SCEV::FlagNSW); 7614 Pred = ICmpInst::ICMP_SGT; 7615 Changed = true; 7616 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7617 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7618 SCEV::FlagNSW); 7619 Pred = ICmpInst::ICMP_SGT; 7620 Changed = true; 7621 } 7622 break; 7623 case ICmpInst::ICMP_ULE: 7624 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7625 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7626 SCEV::FlagNUW); 7627 Pred = ICmpInst::ICMP_ULT; 7628 Changed = true; 7629 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7630 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7631 Pred = ICmpInst::ICMP_ULT; 7632 Changed = true; 7633 } 7634 break; 7635 case ICmpInst::ICMP_UGE: 7636 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7637 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7638 Pred = ICmpInst::ICMP_UGT; 7639 Changed = true; 7640 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7641 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7642 SCEV::FlagNUW); 7643 Pred = ICmpInst::ICMP_UGT; 7644 Changed = true; 7645 } 7646 break; 7647 default: 7648 break; 7649 } 7650 7651 // TODO: More simplifications are possible here. 7652 7653 // Recursively simplify until we either hit a recursion limit or nothing 7654 // changes. 7655 if (Changed) 7656 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7657 7658 return Changed; 7659 7660 trivially_true: 7661 // Return 0 == 0. 7662 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7663 Pred = ICmpInst::ICMP_EQ; 7664 return true; 7665 7666 trivially_false: 7667 // Return 0 != 0. 7668 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7669 Pred = ICmpInst::ICMP_NE; 7670 return true; 7671 } 7672 7673 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7674 return getSignedRange(S).getSignedMax().isNegative(); 7675 } 7676 7677 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7678 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7679 } 7680 7681 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7682 return !getSignedRange(S).getSignedMin().isNegative(); 7683 } 7684 7685 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7686 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7687 } 7688 7689 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7690 return isKnownNegative(S) || isKnownPositive(S); 7691 } 7692 7693 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7694 const SCEV *LHS, const SCEV *RHS) { 7695 // Canonicalize the inputs first. 7696 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7697 7698 // If LHS or RHS is an addrec, check to see if the condition is true in 7699 // every iteration of the loop. 7700 // If LHS and RHS are both addrec, both conditions must be true in 7701 // every iteration of the loop. 7702 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7703 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7704 bool LeftGuarded = false; 7705 bool RightGuarded = false; 7706 if (LAR) { 7707 const Loop *L = LAR->getLoop(); 7708 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7709 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7710 if (!RAR) return true; 7711 LeftGuarded = true; 7712 } 7713 } 7714 if (RAR) { 7715 const Loop *L = RAR->getLoop(); 7716 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7717 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7718 if (!LAR) return true; 7719 RightGuarded = true; 7720 } 7721 } 7722 if (LeftGuarded && RightGuarded) 7723 return true; 7724 7725 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7726 return true; 7727 7728 // Otherwise see what can be done with known constant ranges. 7729 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7730 } 7731 7732 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7733 ICmpInst::Predicate Pred, 7734 bool &Increasing) { 7735 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7736 7737 #ifndef NDEBUG 7738 // Verify an invariant: inverting the predicate should turn a monotonically 7739 // increasing change to a monotonically decreasing one, and vice versa. 7740 bool IncreasingSwapped; 7741 bool ResultSwapped = isMonotonicPredicateImpl( 7742 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7743 7744 assert(Result == ResultSwapped && "should be able to analyze both!"); 7745 if (ResultSwapped) 7746 assert(Increasing == !IncreasingSwapped && 7747 "monotonicity should flip as we flip the predicate"); 7748 #endif 7749 7750 return Result; 7751 } 7752 7753 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7754 ICmpInst::Predicate Pred, 7755 bool &Increasing) { 7756 7757 // A zero step value for LHS means the induction variable is essentially a 7758 // loop invariant value. We don't really depend on the predicate actually 7759 // flipping from false to true (for increasing predicates, and the other way 7760 // around for decreasing predicates), all we care about is that *if* the 7761 // predicate changes then it only changes from false to true. 7762 // 7763 // A zero step value in itself is not very useful, but there may be places 7764 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7765 // as general as possible. 7766 7767 switch (Pred) { 7768 default: 7769 return false; // Conservative answer 7770 7771 case ICmpInst::ICMP_UGT: 7772 case ICmpInst::ICMP_UGE: 7773 case ICmpInst::ICMP_ULT: 7774 case ICmpInst::ICMP_ULE: 7775 if (!LHS->hasNoUnsignedWrap()) 7776 return false; 7777 7778 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7779 return true; 7780 7781 case ICmpInst::ICMP_SGT: 7782 case ICmpInst::ICMP_SGE: 7783 case ICmpInst::ICMP_SLT: 7784 case ICmpInst::ICMP_SLE: { 7785 if (!LHS->hasNoSignedWrap()) 7786 return false; 7787 7788 const SCEV *Step = LHS->getStepRecurrence(*this); 7789 7790 if (isKnownNonNegative(Step)) { 7791 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7792 return true; 7793 } 7794 7795 if (isKnownNonPositive(Step)) { 7796 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7797 return true; 7798 } 7799 7800 return false; 7801 } 7802 7803 } 7804 7805 llvm_unreachable("switch has default clause!"); 7806 } 7807 7808 bool ScalarEvolution::isLoopInvariantPredicate( 7809 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7810 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7811 const SCEV *&InvariantRHS) { 7812 7813 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7814 if (!isLoopInvariant(RHS, L)) { 7815 if (!isLoopInvariant(LHS, L)) 7816 return false; 7817 7818 std::swap(LHS, RHS); 7819 Pred = ICmpInst::getSwappedPredicate(Pred); 7820 } 7821 7822 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7823 if (!ArLHS || ArLHS->getLoop() != L) 7824 return false; 7825 7826 bool Increasing; 7827 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7828 return false; 7829 7830 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7831 // true as the loop iterates, and the backedge is control dependent on 7832 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7833 // 7834 // * if the predicate was false in the first iteration then the predicate 7835 // is never evaluated again, since the loop exits without taking the 7836 // backedge. 7837 // * if the predicate was true in the first iteration then it will 7838 // continue to be true for all future iterations since it is 7839 // monotonically increasing. 7840 // 7841 // For both the above possibilities, we can replace the loop varying 7842 // predicate with its value on the first iteration of the loop (which is 7843 // loop invariant). 7844 // 7845 // A similar reasoning applies for a monotonically decreasing predicate, by 7846 // replacing true with false and false with true in the above two bullets. 7847 7848 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7849 7850 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7851 return false; 7852 7853 InvariantPred = Pred; 7854 InvariantLHS = ArLHS->getStart(); 7855 InvariantRHS = RHS; 7856 return true; 7857 } 7858 7859 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7860 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7861 if (HasSameValue(LHS, RHS)) 7862 return ICmpInst::isTrueWhenEqual(Pred); 7863 7864 // This code is split out from isKnownPredicate because it is called from 7865 // within isLoopEntryGuardedByCond. 7866 7867 auto CheckRanges = 7868 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7869 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7870 .contains(RangeLHS); 7871 }; 7872 7873 // The check at the top of the function catches the case where the values are 7874 // known to be equal. 7875 if (Pred == CmpInst::ICMP_EQ) 7876 return false; 7877 7878 if (Pred == CmpInst::ICMP_NE) 7879 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7880 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7881 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7882 7883 if (CmpInst::isSigned(Pred)) 7884 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7885 7886 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7887 } 7888 7889 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7890 const SCEV *LHS, 7891 const SCEV *RHS) { 7892 7893 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7894 // Return Y via OutY. 7895 auto MatchBinaryAddToConst = 7896 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7897 SCEV::NoWrapFlags ExpectedFlags) { 7898 const SCEV *NonConstOp, *ConstOp; 7899 SCEV::NoWrapFlags FlagsPresent; 7900 7901 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7902 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7903 return false; 7904 7905 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7906 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7907 }; 7908 7909 APInt C; 7910 7911 switch (Pred) { 7912 default: 7913 break; 7914 7915 case ICmpInst::ICMP_SGE: 7916 std::swap(LHS, RHS); 7917 case ICmpInst::ICMP_SLE: 7918 // X s<= (X + C)<nsw> if C >= 0 7919 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7920 return true; 7921 7922 // (X + C)<nsw> s<= X if C <= 0 7923 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7924 !C.isStrictlyPositive()) 7925 return true; 7926 break; 7927 7928 case ICmpInst::ICMP_SGT: 7929 std::swap(LHS, RHS); 7930 case ICmpInst::ICMP_SLT: 7931 // X s< (X + C)<nsw> if C > 0 7932 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7933 C.isStrictlyPositive()) 7934 return true; 7935 7936 // (X + C)<nsw> s< X if C < 0 7937 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7938 return true; 7939 break; 7940 } 7941 7942 return false; 7943 } 7944 7945 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7946 const SCEV *LHS, 7947 const SCEV *RHS) { 7948 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7949 return false; 7950 7951 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7952 // the stack can result in exponential time complexity. 7953 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7954 7955 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7956 // 7957 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7958 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7959 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7960 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7961 // use isKnownPredicate later if needed. 7962 return isKnownNonNegative(RHS) && 7963 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7964 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7965 } 7966 7967 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 7968 ICmpInst::Predicate Pred, 7969 const SCEV *LHS, const SCEV *RHS) { 7970 // No need to even try if we know the module has no guards. 7971 if (!HasGuards) 7972 return false; 7973 7974 return any_of(*BB, [&](Instruction &I) { 7975 using namespace llvm::PatternMatch; 7976 7977 Value *Condition; 7978 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 7979 m_Value(Condition))) && 7980 isImpliedCond(Pred, LHS, RHS, Condition, false); 7981 }); 7982 } 7983 7984 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7985 /// protected by a conditional between LHS and RHS. This is used to 7986 /// to eliminate casts. 7987 bool 7988 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7989 ICmpInst::Predicate Pred, 7990 const SCEV *LHS, const SCEV *RHS) { 7991 // Interpret a null as meaning no loop, where there is obviously no guard 7992 // (interprocedural conditions notwithstanding). 7993 if (!L) return true; 7994 7995 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7996 return true; 7997 7998 BasicBlock *Latch = L->getLoopLatch(); 7999 if (!Latch) 8000 return false; 8001 8002 BranchInst *LoopContinuePredicate = 8003 dyn_cast<BranchInst>(Latch->getTerminator()); 8004 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 8005 isImpliedCond(Pred, LHS, RHS, 8006 LoopContinuePredicate->getCondition(), 8007 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 8008 return true; 8009 8010 // We don't want more than one activation of the following loops on the stack 8011 // -- that can lead to O(n!) time complexity. 8012 if (WalkingBEDominatingConds) 8013 return false; 8014 8015 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 8016 8017 // See if we can exploit a trip count to prove the predicate. 8018 const auto &BETakenInfo = getBackedgeTakenInfo(L); 8019 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 8020 if (LatchBECount != getCouldNotCompute()) { 8021 // We know that Latch branches back to the loop header exactly 8022 // LatchBECount times. This means the backdege condition at Latch is 8023 // equivalent to "{0,+,1} u< LatchBECount". 8024 Type *Ty = LatchBECount->getType(); 8025 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 8026 const SCEV *LoopCounter = 8027 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 8028 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 8029 LatchBECount)) 8030 return true; 8031 } 8032 8033 // Check conditions due to any @llvm.assume intrinsics. 8034 for (auto &AssumeVH : AC.assumptions()) { 8035 if (!AssumeVH) 8036 continue; 8037 auto *CI = cast<CallInst>(AssumeVH); 8038 if (!DT.dominates(CI, Latch->getTerminator())) 8039 continue; 8040 8041 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8042 return true; 8043 } 8044 8045 // If the loop is not reachable from the entry block, we risk running into an 8046 // infinite loop as we walk up into the dom tree. These loops do not matter 8047 // anyway, so we just return a conservative answer when we see them. 8048 if (!DT.isReachableFromEntry(L->getHeader())) 8049 return false; 8050 8051 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8052 return true; 8053 8054 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8055 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8056 8057 assert(DTN && "should reach the loop header before reaching the root!"); 8058 8059 BasicBlock *BB = DTN->getBlock(); 8060 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8061 return true; 8062 8063 BasicBlock *PBB = BB->getSinglePredecessor(); 8064 if (!PBB) 8065 continue; 8066 8067 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8068 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8069 continue; 8070 8071 Value *Condition = ContinuePredicate->getCondition(); 8072 8073 // If we have an edge `E` within the loop body that dominates the only 8074 // latch, the condition guarding `E` also guards the backedge. This 8075 // reasoning works only for loops with a single latch. 8076 8077 BasicBlockEdge DominatingEdge(PBB, BB); 8078 if (DominatingEdge.isSingleEdge()) { 8079 // We're constructively (and conservatively) enumerating edges within the 8080 // loop body that dominate the latch. The dominator tree better agree 8081 // with us on this: 8082 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8083 8084 if (isImpliedCond(Pred, LHS, RHS, Condition, 8085 BB != ContinuePredicate->getSuccessor(0))) 8086 return true; 8087 } 8088 } 8089 8090 return false; 8091 } 8092 8093 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 8094 /// by a conditional between LHS and RHS. This is used to help avoid max 8095 /// expressions in loop trip counts, and to eliminate casts. 8096 bool 8097 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8098 ICmpInst::Predicate Pred, 8099 const SCEV *LHS, const SCEV *RHS) { 8100 // Interpret a null as meaning no loop, where there is obviously no guard 8101 // (interprocedural conditions notwithstanding). 8102 if (!L) return false; 8103 8104 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8105 return true; 8106 8107 // Starting at the loop predecessor, climb up the predecessor chain, as long 8108 // as there are predecessors that can be found that have unique successors 8109 // leading to the original header. 8110 for (std::pair<BasicBlock *, BasicBlock *> 8111 Pair(L->getLoopPredecessor(), L->getHeader()); 8112 Pair.first; 8113 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8114 8115 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8116 return true; 8117 8118 BranchInst *LoopEntryPredicate = 8119 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8120 if (!LoopEntryPredicate || 8121 LoopEntryPredicate->isUnconditional()) 8122 continue; 8123 8124 if (isImpliedCond(Pred, LHS, RHS, 8125 LoopEntryPredicate->getCondition(), 8126 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8127 return true; 8128 } 8129 8130 // Check conditions due to any @llvm.assume intrinsics. 8131 for (auto &AssumeVH : AC.assumptions()) { 8132 if (!AssumeVH) 8133 continue; 8134 auto *CI = cast<CallInst>(AssumeVH); 8135 if (!DT.dominates(CI, L->getHeader())) 8136 continue; 8137 8138 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8139 return true; 8140 } 8141 8142 return false; 8143 } 8144 8145 namespace { 8146 /// RAII wrapper to prevent recursive application of isImpliedCond. 8147 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 8148 /// currently evaluating isImpliedCond. 8149 struct MarkPendingLoopPredicate { 8150 Value *Cond; 8151 DenseSet<Value*> &LoopPreds; 8152 bool Pending; 8153 8154 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 8155 : Cond(C), LoopPreds(LP) { 8156 Pending = !LoopPreds.insert(Cond).second; 8157 } 8158 ~MarkPendingLoopPredicate() { 8159 if (!Pending) 8160 LoopPreds.erase(Cond); 8161 } 8162 }; 8163 } // end anonymous namespace 8164 8165 /// isImpliedCond - Test whether the condition described by Pred, LHS, 8166 /// and RHS is true whenever the given Cond value evaluates to true. 8167 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8168 const SCEV *LHS, const SCEV *RHS, 8169 Value *FoundCondValue, 8170 bool Inverse) { 8171 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 8172 if (Mark.Pending) 8173 return false; 8174 8175 // Recursively handle And and Or conditions. 8176 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8177 if (BO->getOpcode() == Instruction::And) { 8178 if (!Inverse) 8179 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8180 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8181 } else if (BO->getOpcode() == Instruction::Or) { 8182 if (Inverse) 8183 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8184 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8185 } 8186 } 8187 8188 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8189 if (!ICI) return false; 8190 8191 // Now that we found a conditional branch that dominates the loop or controls 8192 // the loop latch. Check to see if it is the comparison we are looking for. 8193 ICmpInst::Predicate FoundPred; 8194 if (Inverse) 8195 FoundPred = ICI->getInversePredicate(); 8196 else 8197 FoundPred = ICI->getPredicate(); 8198 8199 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8200 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8201 8202 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8203 } 8204 8205 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8206 const SCEV *RHS, 8207 ICmpInst::Predicate FoundPred, 8208 const SCEV *FoundLHS, 8209 const SCEV *FoundRHS) { 8210 // Balance the types. 8211 if (getTypeSizeInBits(LHS->getType()) < 8212 getTypeSizeInBits(FoundLHS->getType())) { 8213 if (CmpInst::isSigned(Pred)) { 8214 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8215 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8216 } else { 8217 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8218 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8219 } 8220 } else if (getTypeSizeInBits(LHS->getType()) > 8221 getTypeSizeInBits(FoundLHS->getType())) { 8222 if (CmpInst::isSigned(FoundPred)) { 8223 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8224 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8225 } else { 8226 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8227 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8228 } 8229 } 8230 8231 // Canonicalize the query to match the way instcombine will have 8232 // canonicalized the comparison. 8233 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8234 if (LHS == RHS) 8235 return CmpInst::isTrueWhenEqual(Pred); 8236 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8237 if (FoundLHS == FoundRHS) 8238 return CmpInst::isFalseWhenEqual(FoundPred); 8239 8240 // Check to see if we can make the LHS or RHS match. 8241 if (LHS == FoundRHS || RHS == FoundLHS) { 8242 if (isa<SCEVConstant>(RHS)) { 8243 std::swap(FoundLHS, FoundRHS); 8244 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8245 } else { 8246 std::swap(LHS, RHS); 8247 Pred = ICmpInst::getSwappedPredicate(Pred); 8248 } 8249 } 8250 8251 // Check whether the found predicate is the same as the desired predicate. 8252 if (FoundPred == Pred) 8253 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8254 8255 // Check whether swapping the found predicate makes it the same as the 8256 // desired predicate. 8257 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8258 if (isa<SCEVConstant>(RHS)) 8259 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8260 else 8261 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8262 RHS, LHS, FoundLHS, FoundRHS); 8263 } 8264 8265 // Unsigned comparison is the same as signed comparison when both the operands 8266 // are non-negative. 8267 if (CmpInst::isUnsigned(FoundPred) && 8268 CmpInst::getSignedPredicate(FoundPred) == Pred && 8269 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8270 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8271 8272 // Check if we can make progress by sharpening ranges. 8273 if (FoundPred == ICmpInst::ICMP_NE && 8274 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8275 8276 const SCEVConstant *C = nullptr; 8277 const SCEV *V = nullptr; 8278 8279 if (isa<SCEVConstant>(FoundLHS)) { 8280 C = cast<SCEVConstant>(FoundLHS); 8281 V = FoundRHS; 8282 } else { 8283 C = cast<SCEVConstant>(FoundRHS); 8284 V = FoundLHS; 8285 } 8286 8287 // The guarding predicate tells us that C != V. If the known range 8288 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8289 // range we consider has to correspond to same signedness as the 8290 // predicate we're interested in folding. 8291 8292 APInt Min = ICmpInst::isSigned(Pred) ? 8293 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8294 8295 if (Min == C->getAPInt()) { 8296 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8297 // This is true even if (Min + 1) wraps around -- in case of 8298 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8299 8300 APInt SharperMin = Min + 1; 8301 8302 switch (Pred) { 8303 case ICmpInst::ICMP_SGE: 8304 case ICmpInst::ICMP_UGE: 8305 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8306 // RHS, we're done. 8307 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8308 getConstant(SharperMin))) 8309 return true; 8310 8311 case ICmpInst::ICMP_SGT: 8312 case ICmpInst::ICMP_UGT: 8313 // We know from the range information that (V `Pred` Min || 8314 // V == Min). We know from the guarding condition that !(V 8315 // == Min). This gives us 8316 // 8317 // V `Pred` Min || V == Min && !(V == Min) 8318 // => V `Pred` Min 8319 // 8320 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8321 8322 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8323 return true; 8324 8325 default: 8326 // No change 8327 break; 8328 } 8329 } 8330 } 8331 8332 // Check whether the actual condition is beyond sufficient. 8333 if (FoundPred == ICmpInst::ICMP_EQ) 8334 if (ICmpInst::isTrueWhenEqual(Pred)) 8335 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8336 return true; 8337 if (Pred == ICmpInst::ICMP_NE) 8338 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8339 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8340 return true; 8341 8342 // Otherwise assume the worst. 8343 return false; 8344 } 8345 8346 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8347 const SCEV *&L, const SCEV *&R, 8348 SCEV::NoWrapFlags &Flags) { 8349 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8350 if (!AE || AE->getNumOperands() != 2) 8351 return false; 8352 8353 L = AE->getOperand(0); 8354 R = AE->getOperand(1); 8355 Flags = AE->getNoWrapFlags(); 8356 return true; 8357 } 8358 8359 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 8360 const SCEV *More, 8361 APInt &C) { 8362 // We avoid subtracting expressions here because this function is usually 8363 // fairly deep in the call stack (i.e. is called many times). 8364 8365 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8366 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8367 const auto *MAR = cast<SCEVAddRecExpr>(More); 8368 8369 if (LAR->getLoop() != MAR->getLoop()) 8370 return false; 8371 8372 // We look at affine expressions only; not for correctness but to keep 8373 // getStepRecurrence cheap. 8374 if (!LAR->isAffine() || !MAR->isAffine()) 8375 return false; 8376 8377 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8378 return false; 8379 8380 Less = LAR->getStart(); 8381 More = MAR->getStart(); 8382 8383 // fall through 8384 } 8385 8386 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8387 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8388 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8389 C = M - L; 8390 return true; 8391 } 8392 8393 const SCEV *L, *R; 8394 SCEV::NoWrapFlags Flags; 8395 if (splitBinaryAdd(Less, L, R, Flags)) 8396 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8397 if (R == More) { 8398 C = -(LC->getAPInt()); 8399 return true; 8400 } 8401 8402 if (splitBinaryAdd(More, L, R, Flags)) 8403 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8404 if (R == Less) { 8405 C = LC->getAPInt(); 8406 return true; 8407 } 8408 8409 return false; 8410 } 8411 8412 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8413 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8414 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8415 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8416 return false; 8417 8418 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8419 if (!AddRecLHS) 8420 return false; 8421 8422 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8423 if (!AddRecFoundLHS) 8424 return false; 8425 8426 // We'd like to let SCEV reason about control dependencies, so we constrain 8427 // both the inequalities to be about add recurrences on the same loop. This 8428 // way we can use isLoopEntryGuardedByCond later. 8429 8430 const Loop *L = AddRecFoundLHS->getLoop(); 8431 if (L != AddRecLHS->getLoop()) 8432 return false; 8433 8434 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8435 // 8436 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8437 // ... (2) 8438 // 8439 // Informal proof for (2), assuming (1) [*]: 8440 // 8441 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8442 // 8443 // Then 8444 // 8445 // FoundLHS s< FoundRHS s< INT_MIN - C 8446 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8447 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8448 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8449 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8450 // <=> FoundLHS + C s< FoundRHS + C 8451 // 8452 // [*]: (1) can be proved by ruling out overflow. 8453 // 8454 // [**]: This can be proved by analyzing all the four possibilities: 8455 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8456 // (A s>= 0, B s>= 0). 8457 // 8458 // Note: 8459 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8460 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8461 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8462 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8463 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8464 // C)". 8465 8466 APInt LDiff, RDiff; 8467 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 8468 !computeConstantDifference(FoundRHS, RHS, RDiff) || 8469 LDiff != RDiff) 8470 return false; 8471 8472 if (LDiff == 0) 8473 return true; 8474 8475 APInt FoundRHSLimit; 8476 8477 if (Pred == CmpInst::ICMP_ULT) { 8478 FoundRHSLimit = -RDiff; 8479 } else { 8480 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8481 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 8482 } 8483 8484 // Try to prove (1) or (2), as needed. 8485 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8486 getConstant(FoundRHSLimit)); 8487 } 8488 8489 /// isImpliedCondOperands - Test whether the condition described by Pred, 8490 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 8491 /// and FoundRHS is true. 8492 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8493 const SCEV *LHS, const SCEV *RHS, 8494 const SCEV *FoundLHS, 8495 const SCEV *FoundRHS) { 8496 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8497 return true; 8498 8499 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8500 return true; 8501 8502 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8503 FoundLHS, FoundRHS) || 8504 // ~x < ~y --> x > y 8505 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8506 getNotSCEV(FoundRHS), 8507 getNotSCEV(FoundLHS)); 8508 } 8509 8510 8511 /// If Expr computes ~A, return A else return nullptr 8512 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8513 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8514 if (!Add || Add->getNumOperands() != 2 || 8515 !Add->getOperand(0)->isAllOnesValue()) 8516 return nullptr; 8517 8518 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8519 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8520 !AddRHS->getOperand(0)->isAllOnesValue()) 8521 return nullptr; 8522 8523 return AddRHS->getOperand(1); 8524 } 8525 8526 8527 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8528 template<typename MaxExprType> 8529 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8530 const SCEV *Candidate) { 8531 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8532 if (!MaxExpr) return false; 8533 8534 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8535 } 8536 8537 8538 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8539 template<typename MaxExprType> 8540 static bool IsMinConsistingOf(ScalarEvolution &SE, 8541 const SCEV *MaybeMinExpr, 8542 const SCEV *Candidate) { 8543 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8544 if (!MaybeMaxExpr) 8545 return false; 8546 8547 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8548 } 8549 8550 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8551 ICmpInst::Predicate Pred, 8552 const SCEV *LHS, const SCEV *RHS) { 8553 8554 // If both sides are affine addrecs for the same loop, with equal 8555 // steps, and we know the recurrences don't wrap, then we only 8556 // need to check the predicate on the starting values. 8557 8558 if (!ICmpInst::isRelational(Pred)) 8559 return false; 8560 8561 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8562 if (!LAR) 8563 return false; 8564 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8565 if (!RAR) 8566 return false; 8567 if (LAR->getLoop() != RAR->getLoop()) 8568 return false; 8569 if (!LAR->isAffine() || !RAR->isAffine()) 8570 return false; 8571 8572 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8573 return false; 8574 8575 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8576 SCEV::FlagNSW : SCEV::FlagNUW; 8577 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8578 return false; 8579 8580 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8581 } 8582 8583 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8584 /// expression? 8585 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8586 ICmpInst::Predicate Pred, 8587 const SCEV *LHS, const SCEV *RHS) { 8588 switch (Pred) { 8589 default: 8590 return false; 8591 8592 case ICmpInst::ICMP_SGE: 8593 std::swap(LHS, RHS); 8594 // fall through 8595 case ICmpInst::ICMP_SLE: 8596 return 8597 // min(A, ...) <= A 8598 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8599 // A <= max(A, ...) 8600 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8601 8602 case ICmpInst::ICMP_UGE: 8603 std::swap(LHS, RHS); 8604 // fall through 8605 case ICmpInst::ICMP_ULE: 8606 return 8607 // min(A, ...) <= A 8608 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8609 // A <= max(A, ...) 8610 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8611 } 8612 8613 llvm_unreachable("covered switch fell through?!"); 8614 } 8615 8616 /// isImpliedCondOperandsHelper - Test whether the condition described by 8617 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8618 /// FoundLHS, and FoundRHS is true. 8619 bool 8620 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8621 const SCEV *LHS, const SCEV *RHS, 8622 const SCEV *FoundLHS, 8623 const SCEV *FoundRHS) { 8624 auto IsKnownPredicateFull = 8625 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8626 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8627 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8628 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8629 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8630 }; 8631 8632 switch (Pred) { 8633 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8634 case ICmpInst::ICMP_EQ: 8635 case ICmpInst::ICMP_NE: 8636 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8637 return true; 8638 break; 8639 case ICmpInst::ICMP_SLT: 8640 case ICmpInst::ICMP_SLE: 8641 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8642 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8643 return true; 8644 break; 8645 case ICmpInst::ICMP_SGT: 8646 case ICmpInst::ICMP_SGE: 8647 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8648 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8649 return true; 8650 break; 8651 case ICmpInst::ICMP_ULT: 8652 case ICmpInst::ICMP_ULE: 8653 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8654 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8655 return true; 8656 break; 8657 case ICmpInst::ICMP_UGT: 8658 case ICmpInst::ICMP_UGE: 8659 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8660 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8661 return true; 8662 break; 8663 } 8664 8665 return false; 8666 } 8667 8668 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8669 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8670 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8671 const SCEV *LHS, 8672 const SCEV *RHS, 8673 const SCEV *FoundLHS, 8674 const SCEV *FoundRHS) { 8675 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8676 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8677 // reduce the compile time impact of this optimization. 8678 return false; 8679 8680 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8681 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8682 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8683 return false; 8684 8685 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8686 8687 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8688 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8689 ConstantRange FoundLHSRange = 8690 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8691 8692 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8693 // for `LHS`: 8694 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8695 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8696 8697 // We can also compute the range of values for `LHS` that satisfy the 8698 // consequent, "`LHS` `Pred` `RHS`": 8699 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8700 ConstantRange SatisfyingLHSRange = 8701 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8702 8703 // The antecedent implies the consequent if every value of `LHS` that 8704 // satisfies the antecedent also satisfies the consequent. 8705 return SatisfyingLHSRange.contains(LHSRange); 8706 } 8707 8708 // Verify if an linear IV with positive stride can overflow when in a 8709 // less-than comparison, knowing the invariant term of the comparison, the 8710 // stride and the knowledge of NSW/NUW flags on the recurrence. 8711 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8712 bool IsSigned, bool NoWrap) { 8713 if (NoWrap) return false; 8714 8715 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8716 const SCEV *One = getOne(Stride->getType()); 8717 8718 if (IsSigned) { 8719 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8720 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8721 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8722 .getSignedMax(); 8723 8724 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8725 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8726 } 8727 8728 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8729 APInt MaxValue = APInt::getMaxValue(BitWidth); 8730 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8731 .getUnsignedMax(); 8732 8733 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8734 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8735 } 8736 8737 // Verify if an linear IV with negative stride can overflow when in a 8738 // greater-than comparison, knowing the invariant term of the comparison, 8739 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8740 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8741 bool IsSigned, bool NoWrap) { 8742 if (NoWrap) return false; 8743 8744 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8745 const SCEV *One = getOne(Stride->getType()); 8746 8747 if (IsSigned) { 8748 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8749 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8750 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8751 .getSignedMax(); 8752 8753 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8754 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8755 } 8756 8757 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8758 APInt MinValue = APInt::getMinValue(BitWidth); 8759 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8760 .getUnsignedMax(); 8761 8762 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8763 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8764 } 8765 8766 // Compute the backedge taken count knowing the interval difference, the 8767 // stride and presence of the equality in the comparison. 8768 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8769 bool Equality) { 8770 const SCEV *One = getOne(Step->getType()); 8771 Delta = Equality ? getAddExpr(Delta, Step) 8772 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8773 return getUDivExpr(Delta, Step); 8774 } 8775 8776 /// HowManyLessThans - Return the number of times a backedge containing the 8777 /// specified less-than comparison will execute. If not computable, return 8778 /// CouldNotCompute. 8779 /// 8780 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8781 /// the branch (loops exits only if condition is true). In this case, we can use 8782 /// NoWrapFlags to skip overflow checks. 8783 ScalarEvolution::ExitLimit 8784 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8785 const Loop *L, bool IsSigned, 8786 bool ControlsExit, bool AllowPredicates) { 8787 SCEVUnionPredicate P; 8788 // We handle only IV < Invariant 8789 if (!isLoopInvariant(RHS, L)) 8790 return getCouldNotCompute(); 8791 8792 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8793 if (!IV && AllowPredicates) 8794 // Try to make this an AddRec using runtime tests, in the first X 8795 // iterations of this loop, where X is the SCEV expression found by the 8796 // algorithm below. 8797 IV = convertSCEVToAddRecWithPredicates(LHS, L, P); 8798 8799 // Avoid weird loops 8800 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8801 return getCouldNotCompute(); 8802 8803 bool NoWrap = ControlsExit && 8804 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8805 8806 const SCEV *Stride = IV->getStepRecurrence(*this); 8807 8808 // Avoid negative or zero stride values 8809 if (!isKnownPositive(Stride)) 8810 return getCouldNotCompute(); 8811 8812 // Avoid proven overflow cases: this will ensure that the backedge taken count 8813 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8814 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8815 // behaviors like the case of C language. 8816 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8817 return getCouldNotCompute(); 8818 8819 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8820 : ICmpInst::ICMP_ULT; 8821 const SCEV *Start = IV->getStart(); 8822 const SCEV *End = RHS; 8823 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8824 const SCEV *Diff = getMinusSCEV(RHS, Start); 8825 // If we have NoWrap set, then we can assume that the increment won't 8826 // overflow, in which case if RHS - Start is a constant, we don't need to 8827 // do a max operation since we can just figure it out statically 8828 if (NoWrap && isa<SCEVConstant>(Diff)) { 8829 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8830 if (D.isNegative()) 8831 End = Start; 8832 } else 8833 End = IsSigned ? getSMaxExpr(RHS, Start) 8834 : getUMaxExpr(RHS, Start); 8835 } 8836 8837 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8838 8839 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8840 : getUnsignedRange(Start).getUnsignedMin(); 8841 8842 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8843 : getUnsignedRange(Stride).getUnsignedMin(); 8844 8845 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8846 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8847 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8848 8849 // Although End can be a MAX expression we estimate MaxEnd considering only 8850 // the case End = RHS. This is safe because in the other case (End - Start) 8851 // is zero, leading to a zero maximum backedge taken count. 8852 APInt MaxEnd = 8853 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8854 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8855 8856 const SCEV *MaxBECount; 8857 if (isa<SCEVConstant>(BECount)) 8858 MaxBECount = BECount; 8859 else 8860 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8861 getConstant(MinStride), false); 8862 8863 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8864 MaxBECount = BECount; 8865 8866 return ExitLimit(BECount, MaxBECount, P); 8867 } 8868 8869 ScalarEvolution::ExitLimit 8870 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8871 const Loop *L, bool IsSigned, 8872 bool ControlsExit, bool AllowPredicates) { 8873 SCEVUnionPredicate P; 8874 // We handle only IV > Invariant 8875 if (!isLoopInvariant(RHS, L)) 8876 return getCouldNotCompute(); 8877 8878 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8879 if (!IV && AllowPredicates) 8880 // Try to make this an AddRec using runtime tests, in the first X 8881 // iterations of this loop, where X is the SCEV expression found by the 8882 // algorithm below. 8883 IV = convertSCEVToAddRecWithPredicates(LHS, L, P); 8884 8885 // Avoid weird loops 8886 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8887 return getCouldNotCompute(); 8888 8889 bool NoWrap = ControlsExit && 8890 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8891 8892 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8893 8894 // Avoid negative or zero stride values 8895 if (!isKnownPositive(Stride)) 8896 return getCouldNotCompute(); 8897 8898 // Avoid proven overflow cases: this will ensure that the backedge taken count 8899 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8900 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8901 // behaviors like the case of C language. 8902 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8903 return getCouldNotCompute(); 8904 8905 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8906 : ICmpInst::ICMP_UGT; 8907 8908 const SCEV *Start = IV->getStart(); 8909 const SCEV *End = RHS; 8910 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8911 const SCEV *Diff = getMinusSCEV(RHS, Start); 8912 // If we have NoWrap set, then we can assume that the increment won't 8913 // overflow, in which case if RHS - Start is a constant, we don't need to 8914 // do a max operation since we can just figure it out statically 8915 if (NoWrap && isa<SCEVConstant>(Diff)) { 8916 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8917 if (!D.isNegative()) 8918 End = Start; 8919 } else 8920 End = IsSigned ? getSMinExpr(RHS, Start) 8921 : getUMinExpr(RHS, Start); 8922 } 8923 8924 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8925 8926 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8927 : getUnsignedRange(Start).getUnsignedMax(); 8928 8929 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8930 : getUnsignedRange(Stride).getUnsignedMin(); 8931 8932 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8933 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8934 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8935 8936 // Although End can be a MIN expression we estimate MinEnd considering only 8937 // the case End = RHS. This is safe because in the other case (Start - End) 8938 // is zero, leading to a zero maximum backedge taken count. 8939 APInt MinEnd = 8940 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8941 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8942 8943 8944 const SCEV *MaxBECount = getCouldNotCompute(); 8945 if (isa<SCEVConstant>(BECount)) 8946 MaxBECount = BECount; 8947 else 8948 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8949 getConstant(MinStride), false); 8950 8951 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8952 MaxBECount = BECount; 8953 8954 return ExitLimit(BECount, MaxBECount, P); 8955 } 8956 8957 /// getNumIterationsInRange - Return the number of iterations of this loop that 8958 /// produce values in the specified constant range. Another way of looking at 8959 /// this is that it returns the first iteration number where the value is not in 8960 /// the condition, thus computing the exit count. If the iteration count can't 8961 /// be computed, an instance of SCEVCouldNotCompute is returned. 8962 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8963 ScalarEvolution &SE) const { 8964 if (Range.isFullSet()) // Infinite loop. 8965 return SE.getCouldNotCompute(); 8966 8967 // If the start is a non-zero constant, shift the range to simplify things. 8968 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8969 if (!SC->getValue()->isZero()) { 8970 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8971 Operands[0] = SE.getZero(SC->getType()); 8972 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8973 getNoWrapFlags(FlagNW)); 8974 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8975 return ShiftedAddRec->getNumIterationsInRange( 8976 Range.subtract(SC->getAPInt()), SE); 8977 // This is strange and shouldn't happen. 8978 return SE.getCouldNotCompute(); 8979 } 8980 8981 // The only time we can solve this is when we have all constant indices. 8982 // Otherwise, we cannot determine the overflow conditions. 8983 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8984 return SE.getCouldNotCompute(); 8985 8986 // Okay at this point we know that all elements of the chrec are constants and 8987 // that the start element is zero. 8988 8989 // First check to see if the range contains zero. If not, the first 8990 // iteration exits. 8991 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8992 if (!Range.contains(APInt(BitWidth, 0))) 8993 return SE.getZero(getType()); 8994 8995 if (isAffine()) { 8996 // If this is an affine expression then we have this situation: 8997 // Solve {0,+,A} in Range === Ax in Range 8998 8999 // We know that zero is in the range. If A is positive then we know that 9000 // the upper value of the range must be the first possible exit value. 9001 // If A is negative then the lower of the range is the last possible loop 9002 // value. Also note that we already checked for a full range. 9003 APInt One(BitWidth,1); 9004 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 9005 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 9006 9007 // The exit value should be (End+A)/A. 9008 APInt ExitVal = (End + A).udiv(A); 9009 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 9010 9011 // Evaluate at the exit value. If we really did fall out of the valid 9012 // range, then we computed our trip count, otherwise wrap around or other 9013 // things must have happened. 9014 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 9015 if (Range.contains(Val->getValue())) 9016 return SE.getCouldNotCompute(); // Something strange happened 9017 9018 // Ensure that the previous value is in the range. This is a sanity check. 9019 assert(Range.contains( 9020 EvaluateConstantChrecAtConstant(this, 9021 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 9022 "Linear scev computation is off in a bad way!"); 9023 return SE.getConstant(ExitValue); 9024 } else if (isQuadratic()) { 9025 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 9026 // quadratic equation to solve it. To do this, we must frame our problem in 9027 // terms of figuring out when zero is crossed, instead of when 9028 // Range.getUpper() is crossed. 9029 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 9030 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 9031 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 9032 // getNoWrapFlags(FlagNW) 9033 FlagAnyWrap); 9034 9035 // Next, solve the constructed addrec 9036 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 9037 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 9038 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 9039 if (R1) { 9040 // Pick the smallest positive root value. 9041 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 9042 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 9043 if (!CB->getZExtValue()) 9044 std::swap(R1, R2); // R1 is the minimum root now. 9045 9046 // Make sure the root is not off by one. The returned iteration should 9047 // not be in the range, but the previous one should be. When solving 9048 // for "X*X < 5", for example, we should not return a root of 2. 9049 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 9050 R1->getValue(), 9051 SE); 9052 if (Range.contains(R1Val->getValue())) { 9053 // The next iteration must be out of the range... 9054 ConstantInt *NextVal = 9055 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 9056 9057 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9058 if (!Range.contains(R1Val->getValue())) 9059 return SE.getConstant(NextVal); 9060 return SE.getCouldNotCompute(); // Something strange happened 9061 } 9062 9063 // If R1 was not in the range, then it is a good return value. Make 9064 // sure that R1-1 WAS in the range though, just in case. 9065 ConstantInt *NextVal = 9066 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 9067 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9068 if (Range.contains(R1Val->getValue())) 9069 return R1; 9070 return SE.getCouldNotCompute(); // Something strange happened 9071 } 9072 } 9073 } 9074 9075 return SE.getCouldNotCompute(); 9076 } 9077 9078 namespace { 9079 struct FindUndefs { 9080 bool Found; 9081 FindUndefs() : Found(false) {} 9082 9083 bool follow(const SCEV *S) { 9084 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 9085 if (isa<UndefValue>(C->getValue())) 9086 Found = true; 9087 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 9088 if (isa<UndefValue>(C->getValue())) 9089 Found = true; 9090 } 9091 9092 // Keep looking if we haven't found it yet. 9093 return !Found; 9094 } 9095 bool isDone() const { 9096 // Stop recursion if we have found an undef. 9097 return Found; 9098 } 9099 }; 9100 } 9101 9102 // Return true when S contains at least an undef value. 9103 static inline bool 9104 containsUndefs(const SCEV *S) { 9105 FindUndefs F; 9106 SCEVTraversal<FindUndefs> ST(F); 9107 ST.visitAll(S); 9108 9109 return F.Found; 9110 } 9111 9112 namespace { 9113 // Collect all steps of SCEV expressions. 9114 struct SCEVCollectStrides { 9115 ScalarEvolution &SE; 9116 SmallVectorImpl<const SCEV *> &Strides; 9117 9118 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9119 : SE(SE), Strides(S) {} 9120 9121 bool follow(const SCEV *S) { 9122 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9123 Strides.push_back(AR->getStepRecurrence(SE)); 9124 return true; 9125 } 9126 bool isDone() const { return false; } 9127 }; 9128 9129 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9130 struct SCEVCollectTerms { 9131 SmallVectorImpl<const SCEV *> &Terms; 9132 9133 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9134 : Terms(T) {} 9135 9136 bool follow(const SCEV *S) { 9137 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 9138 if (!containsUndefs(S)) 9139 Terms.push_back(S); 9140 9141 // Stop recursion: once we collected a term, do not walk its operands. 9142 return false; 9143 } 9144 9145 // Keep looking. 9146 return true; 9147 } 9148 bool isDone() const { return false; } 9149 }; 9150 9151 // Check if a SCEV contains an AddRecExpr. 9152 struct SCEVHasAddRec { 9153 bool &ContainsAddRec; 9154 9155 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9156 ContainsAddRec = false; 9157 } 9158 9159 bool follow(const SCEV *S) { 9160 if (isa<SCEVAddRecExpr>(S)) { 9161 ContainsAddRec = true; 9162 9163 // Stop recursion: once we collected a term, do not walk its operands. 9164 return false; 9165 } 9166 9167 // Keep looking. 9168 return true; 9169 } 9170 bool isDone() const { return false; } 9171 }; 9172 9173 // Find factors that are multiplied with an expression that (possibly as a 9174 // subexpression) contains an AddRecExpr. In the expression: 9175 // 9176 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9177 // 9178 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9179 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9180 // parameters as they form a product with an induction variable. 9181 // 9182 // This collector expects all array size parameters to be in the same MulExpr. 9183 // It might be necessary to later add support for collecting parameters that are 9184 // spread over different nested MulExpr. 9185 struct SCEVCollectAddRecMultiplies { 9186 SmallVectorImpl<const SCEV *> &Terms; 9187 ScalarEvolution &SE; 9188 9189 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9190 : Terms(T), SE(SE) {} 9191 9192 bool follow(const SCEV *S) { 9193 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9194 bool HasAddRec = false; 9195 SmallVector<const SCEV *, 0> Operands; 9196 for (auto Op : Mul->operands()) { 9197 if (isa<SCEVUnknown>(Op)) { 9198 Operands.push_back(Op); 9199 } else { 9200 bool ContainsAddRec; 9201 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9202 visitAll(Op, ContiansAddRec); 9203 HasAddRec |= ContainsAddRec; 9204 } 9205 } 9206 if (Operands.size() == 0) 9207 return true; 9208 9209 if (!HasAddRec) 9210 return false; 9211 9212 Terms.push_back(SE.getMulExpr(Operands)); 9213 // Stop recursion: once we collected a term, do not walk its operands. 9214 return false; 9215 } 9216 9217 // Keep looking. 9218 return true; 9219 } 9220 bool isDone() const { return false; } 9221 }; 9222 } 9223 9224 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9225 /// two places: 9226 /// 1) The strides of AddRec expressions. 9227 /// 2) Unknowns that are multiplied with AddRec expressions. 9228 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9229 SmallVectorImpl<const SCEV *> &Terms) { 9230 SmallVector<const SCEV *, 4> Strides; 9231 SCEVCollectStrides StrideCollector(*this, Strides); 9232 visitAll(Expr, StrideCollector); 9233 9234 DEBUG({ 9235 dbgs() << "Strides:\n"; 9236 for (const SCEV *S : Strides) 9237 dbgs() << *S << "\n"; 9238 }); 9239 9240 for (const SCEV *S : Strides) { 9241 SCEVCollectTerms TermCollector(Terms); 9242 visitAll(S, TermCollector); 9243 } 9244 9245 DEBUG({ 9246 dbgs() << "Terms:\n"; 9247 for (const SCEV *T : Terms) 9248 dbgs() << *T << "\n"; 9249 }); 9250 9251 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9252 visitAll(Expr, MulCollector); 9253 } 9254 9255 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9256 SmallVectorImpl<const SCEV *> &Terms, 9257 SmallVectorImpl<const SCEV *> &Sizes) { 9258 int Last = Terms.size() - 1; 9259 const SCEV *Step = Terms[Last]; 9260 9261 // End of recursion. 9262 if (Last == 0) { 9263 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9264 SmallVector<const SCEV *, 2> Qs; 9265 for (const SCEV *Op : M->operands()) 9266 if (!isa<SCEVConstant>(Op)) 9267 Qs.push_back(Op); 9268 9269 Step = SE.getMulExpr(Qs); 9270 } 9271 9272 Sizes.push_back(Step); 9273 return true; 9274 } 9275 9276 for (const SCEV *&Term : Terms) { 9277 // Normalize the terms before the next call to findArrayDimensionsRec. 9278 const SCEV *Q, *R; 9279 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9280 9281 // Bail out when GCD does not evenly divide one of the terms. 9282 if (!R->isZero()) 9283 return false; 9284 9285 Term = Q; 9286 } 9287 9288 // Remove all SCEVConstants. 9289 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 9290 return isa<SCEVConstant>(E); 9291 }), 9292 Terms.end()); 9293 9294 if (Terms.size() > 0) 9295 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9296 return false; 9297 9298 Sizes.push_back(Step); 9299 return true; 9300 } 9301 9302 // Returns true when S contains at least a SCEVUnknown parameter. 9303 static inline bool 9304 containsParameters(const SCEV *S) { 9305 struct FindParameter { 9306 bool FoundParameter; 9307 FindParameter() : FoundParameter(false) {} 9308 9309 bool follow(const SCEV *S) { 9310 if (isa<SCEVUnknown>(S)) { 9311 FoundParameter = true; 9312 // Stop recursion: we found a parameter. 9313 return false; 9314 } 9315 // Keep looking. 9316 return true; 9317 } 9318 bool isDone() const { 9319 // Stop recursion if we have found a parameter. 9320 return FoundParameter; 9321 } 9322 }; 9323 9324 FindParameter F; 9325 SCEVTraversal<FindParameter> ST(F); 9326 ST.visitAll(S); 9327 9328 return F.FoundParameter; 9329 } 9330 9331 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9332 static inline bool 9333 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9334 for (const SCEV *T : Terms) 9335 if (containsParameters(T)) 9336 return true; 9337 return false; 9338 } 9339 9340 // Return the number of product terms in S. 9341 static inline int numberOfTerms(const SCEV *S) { 9342 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9343 return Expr->getNumOperands(); 9344 return 1; 9345 } 9346 9347 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9348 if (isa<SCEVConstant>(T)) 9349 return nullptr; 9350 9351 if (isa<SCEVUnknown>(T)) 9352 return T; 9353 9354 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9355 SmallVector<const SCEV *, 2> Factors; 9356 for (const SCEV *Op : M->operands()) 9357 if (!isa<SCEVConstant>(Op)) 9358 Factors.push_back(Op); 9359 9360 return SE.getMulExpr(Factors); 9361 } 9362 9363 return T; 9364 } 9365 9366 /// Return the size of an element read or written by Inst. 9367 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9368 Type *Ty; 9369 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9370 Ty = Store->getValueOperand()->getType(); 9371 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9372 Ty = Load->getType(); 9373 else 9374 return nullptr; 9375 9376 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9377 return getSizeOfExpr(ETy, Ty); 9378 } 9379 9380 /// Second step of delinearization: compute the array dimensions Sizes from the 9381 /// set of Terms extracted from the memory access function of this SCEVAddRec. 9382 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9383 SmallVectorImpl<const SCEV *> &Sizes, 9384 const SCEV *ElementSize) const { 9385 9386 if (Terms.size() < 1 || !ElementSize) 9387 return; 9388 9389 // Early return when Terms do not contain parameters: we do not delinearize 9390 // non parametric SCEVs. 9391 if (!containsParameters(Terms)) 9392 return; 9393 9394 DEBUG({ 9395 dbgs() << "Terms:\n"; 9396 for (const SCEV *T : Terms) 9397 dbgs() << *T << "\n"; 9398 }); 9399 9400 // Remove duplicates. 9401 std::sort(Terms.begin(), Terms.end()); 9402 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9403 9404 // Put larger terms first. 9405 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9406 return numberOfTerms(LHS) > numberOfTerms(RHS); 9407 }); 9408 9409 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9410 9411 // Try to divide all terms by the element size. If term is not divisible by 9412 // element size, proceed with the original term. 9413 for (const SCEV *&Term : Terms) { 9414 const SCEV *Q, *R; 9415 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9416 if (!Q->isZero()) 9417 Term = Q; 9418 } 9419 9420 SmallVector<const SCEV *, 4> NewTerms; 9421 9422 // Remove constant factors. 9423 for (const SCEV *T : Terms) 9424 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9425 NewTerms.push_back(NewT); 9426 9427 DEBUG({ 9428 dbgs() << "Terms after sorting:\n"; 9429 for (const SCEV *T : NewTerms) 9430 dbgs() << *T << "\n"; 9431 }); 9432 9433 if (NewTerms.empty() || 9434 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9435 Sizes.clear(); 9436 return; 9437 } 9438 9439 // The last element to be pushed into Sizes is the size of an element. 9440 Sizes.push_back(ElementSize); 9441 9442 DEBUG({ 9443 dbgs() << "Sizes:\n"; 9444 for (const SCEV *S : Sizes) 9445 dbgs() << *S << "\n"; 9446 }); 9447 } 9448 9449 /// Third step of delinearization: compute the access functions for the 9450 /// Subscripts based on the dimensions in Sizes. 9451 void ScalarEvolution::computeAccessFunctions( 9452 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9453 SmallVectorImpl<const SCEV *> &Sizes) { 9454 9455 // Early exit in case this SCEV is not an affine multivariate function. 9456 if (Sizes.empty()) 9457 return; 9458 9459 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9460 if (!AR->isAffine()) 9461 return; 9462 9463 const SCEV *Res = Expr; 9464 int Last = Sizes.size() - 1; 9465 for (int i = Last; i >= 0; i--) { 9466 const SCEV *Q, *R; 9467 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9468 9469 DEBUG({ 9470 dbgs() << "Res: " << *Res << "\n"; 9471 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9472 dbgs() << "Res divided by Sizes[i]:\n"; 9473 dbgs() << "Quotient: " << *Q << "\n"; 9474 dbgs() << "Remainder: " << *R << "\n"; 9475 }); 9476 9477 Res = Q; 9478 9479 // Do not record the last subscript corresponding to the size of elements in 9480 // the array. 9481 if (i == Last) { 9482 9483 // Bail out if the remainder is too complex. 9484 if (isa<SCEVAddRecExpr>(R)) { 9485 Subscripts.clear(); 9486 Sizes.clear(); 9487 return; 9488 } 9489 9490 continue; 9491 } 9492 9493 // Record the access function for the current subscript. 9494 Subscripts.push_back(R); 9495 } 9496 9497 // Also push in last position the remainder of the last division: it will be 9498 // the access function of the innermost dimension. 9499 Subscripts.push_back(Res); 9500 9501 std::reverse(Subscripts.begin(), Subscripts.end()); 9502 9503 DEBUG({ 9504 dbgs() << "Subscripts:\n"; 9505 for (const SCEV *S : Subscripts) 9506 dbgs() << *S << "\n"; 9507 }); 9508 } 9509 9510 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9511 /// sizes of an array access. Returns the remainder of the delinearization that 9512 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9513 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9514 /// expressions in the stride and base of a SCEV corresponding to the 9515 /// computation of a GCD (greatest common divisor) of base and stride. When 9516 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9517 /// 9518 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9519 /// 9520 /// void foo(long n, long m, long o, double A[n][m][o]) { 9521 /// 9522 /// for (long i = 0; i < n; i++) 9523 /// for (long j = 0; j < m; j++) 9524 /// for (long k = 0; k < o; k++) 9525 /// A[i][j][k] = 1.0; 9526 /// } 9527 /// 9528 /// the delinearization input is the following AddRec SCEV: 9529 /// 9530 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9531 /// 9532 /// From this SCEV, we are able to say that the base offset of the access is %A 9533 /// because it appears as an offset that does not divide any of the strides in 9534 /// the loops: 9535 /// 9536 /// CHECK: Base offset: %A 9537 /// 9538 /// and then SCEV->delinearize determines the size of some of the dimensions of 9539 /// the array as these are the multiples by which the strides are happening: 9540 /// 9541 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9542 /// 9543 /// Note that the outermost dimension remains of UnknownSize because there are 9544 /// no strides that would help identifying the size of the last dimension: when 9545 /// the array has been statically allocated, one could compute the size of that 9546 /// dimension by dividing the overall size of the array by the size of the known 9547 /// dimensions: %m * %o * 8. 9548 /// 9549 /// Finally delinearize provides the access functions for the array reference 9550 /// that does correspond to A[i][j][k] of the above C testcase: 9551 /// 9552 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9553 /// 9554 /// The testcases are checking the output of a function pass: 9555 /// DelinearizationPass that walks through all loads and stores of a function 9556 /// asking for the SCEV of the memory access with respect to all enclosing 9557 /// loops, calling SCEV->delinearize on that and printing the results. 9558 9559 void ScalarEvolution::delinearize(const SCEV *Expr, 9560 SmallVectorImpl<const SCEV *> &Subscripts, 9561 SmallVectorImpl<const SCEV *> &Sizes, 9562 const SCEV *ElementSize) { 9563 // First step: collect parametric terms. 9564 SmallVector<const SCEV *, 4> Terms; 9565 collectParametricTerms(Expr, Terms); 9566 9567 if (Terms.empty()) 9568 return; 9569 9570 // Second step: find subscript sizes. 9571 findArrayDimensions(Terms, Sizes, ElementSize); 9572 9573 if (Sizes.empty()) 9574 return; 9575 9576 // Third step: compute the access functions for each subscript. 9577 computeAccessFunctions(Expr, Subscripts, Sizes); 9578 9579 if (Subscripts.empty()) 9580 return; 9581 9582 DEBUG({ 9583 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9584 dbgs() << "ArrayDecl[UnknownSize]"; 9585 for (const SCEV *S : Sizes) 9586 dbgs() << "[" << *S << "]"; 9587 9588 dbgs() << "\nArrayRef"; 9589 for (const SCEV *S : Subscripts) 9590 dbgs() << "[" << *S << "]"; 9591 dbgs() << "\n"; 9592 }); 9593 } 9594 9595 //===----------------------------------------------------------------------===// 9596 // SCEVCallbackVH Class Implementation 9597 //===----------------------------------------------------------------------===// 9598 9599 void ScalarEvolution::SCEVCallbackVH::deleted() { 9600 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9601 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9602 SE->ConstantEvolutionLoopExitValue.erase(PN); 9603 SE->eraseValueFromMap(getValPtr()); 9604 // this now dangles! 9605 } 9606 9607 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9608 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9609 9610 // Forget all the expressions associated with users of the old value, 9611 // so that future queries will recompute the expressions using the new 9612 // value. 9613 Value *Old = getValPtr(); 9614 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9615 SmallPtrSet<User *, 8> Visited; 9616 while (!Worklist.empty()) { 9617 User *U = Worklist.pop_back_val(); 9618 // Deleting the Old value will cause this to dangle. Postpone 9619 // that until everything else is done. 9620 if (U == Old) 9621 continue; 9622 if (!Visited.insert(U).second) 9623 continue; 9624 if (PHINode *PN = dyn_cast<PHINode>(U)) 9625 SE->ConstantEvolutionLoopExitValue.erase(PN); 9626 SE->eraseValueFromMap(U); 9627 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9628 } 9629 // Delete the Old value. 9630 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9631 SE->ConstantEvolutionLoopExitValue.erase(PN); 9632 SE->eraseValueFromMap(Old); 9633 // this now dangles! 9634 } 9635 9636 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9637 : CallbackVH(V), SE(se) {} 9638 9639 //===----------------------------------------------------------------------===// 9640 // ScalarEvolution Class Implementation 9641 //===----------------------------------------------------------------------===// 9642 9643 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9644 AssumptionCache &AC, DominatorTree &DT, 9645 LoopInfo &LI) 9646 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9647 CouldNotCompute(new SCEVCouldNotCompute()), 9648 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9649 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9650 FirstUnknown(nullptr) { 9651 9652 // To use guards for proving predicates, we need to scan every instruction in 9653 // relevant basic blocks, and not just terminators. Doing this is a waste of 9654 // time if the IR does not actually contain any calls to 9655 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9656 // 9657 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9658 // to _add_ guards to the module when there weren't any before, and wants 9659 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9660 // efficient in lieu of being smart in that rather obscure case. 9661 9662 auto *GuardDecl = F.getParent()->getFunction( 9663 Intrinsic::getName(Intrinsic::experimental_guard)); 9664 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9665 } 9666 9667 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9668 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9669 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9670 ValueExprMap(std::move(Arg.ValueExprMap)), 9671 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9672 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9673 PredicatedBackedgeTakenCounts( 9674 std::move(Arg.PredicatedBackedgeTakenCounts)), 9675 ConstantEvolutionLoopExitValue( 9676 std::move(Arg.ConstantEvolutionLoopExitValue)), 9677 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9678 LoopDispositions(std::move(Arg.LoopDispositions)), 9679 BlockDispositions(std::move(Arg.BlockDispositions)), 9680 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9681 SignedRanges(std::move(Arg.SignedRanges)), 9682 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9683 UniquePreds(std::move(Arg.UniquePreds)), 9684 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9685 FirstUnknown(Arg.FirstUnknown) { 9686 Arg.FirstUnknown = nullptr; 9687 } 9688 9689 ScalarEvolution::~ScalarEvolution() { 9690 // Iterate through all the SCEVUnknown instances and call their 9691 // destructors, so that they release their references to their values. 9692 for (SCEVUnknown *U = FirstUnknown; U;) { 9693 SCEVUnknown *Tmp = U; 9694 U = U->Next; 9695 Tmp->~SCEVUnknown(); 9696 } 9697 FirstUnknown = nullptr; 9698 9699 ExprValueMap.clear(); 9700 ValueExprMap.clear(); 9701 HasRecMap.clear(); 9702 9703 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9704 // that a loop had multiple computable exits. 9705 for (auto &BTCI : BackedgeTakenCounts) 9706 BTCI.second.clear(); 9707 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9708 BTCI.second.clear(); 9709 9710 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9711 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9712 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9713 } 9714 9715 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9716 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9717 } 9718 9719 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9720 const Loop *L) { 9721 // Print all inner loops first 9722 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9723 PrintLoopInfo(OS, SE, *I); 9724 9725 OS << "Loop "; 9726 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9727 OS << ": "; 9728 9729 SmallVector<BasicBlock *, 8> ExitBlocks; 9730 L->getExitBlocks(ExitBlocks); 9731 if (ExitBlocks.size() != 1) 9732 OS << "<multiple exits> "; 9733 9734 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9735 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9736 } else { 9737 OS << "Unpredictable backedge-taken count. "; 9738 } 9739 9740 OS << "\n" 9741 "Loop "; 9742 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9743 OS << ": "; 9744 9745 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9746 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9747 } else { 9748 OS << "Unpredictable max backedge-taken count. "; 9749 } 9750 9751 OS << "\n" 9752 "Loop "; 9753 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9754 OS << ": "; 9755 9756 SCEVUnionPredicate Pred; 9757 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9758 if (!isa<SCEVCouldNotCompute>(PBT)) { 9759 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9760 OS << " Predicates:\n"; 9761 Pred.print(OS, 4); 9762 } else { 9763 OS << "Unpredictable predicated backedge-taken count. "; 9764 } 9765 OS << "\n"; 9766 } 9767 9768 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9769 switch (LD) { 9770 case ScalarEvolution::LoopVariant: 9771 return "Variant"; 9772 case ScalarEvolution::LoopInvariant: 9773 return "Invariant"; 9774 case ScalarEvolution::LoopComputable: 9775 return "Computable"; 9776 } 9777 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9778 } 9779 9780 void ScalarEvolution::print(raw_ostream &OS) const { 9781 // ScalarEvolution's implementation of the print method is to print 9782 // out SCEV values of all instructions that are interesting. Doing 9783 // this potentially causes it to create new SCEV objects though, 9784 // which technically conflicts with the const qualifier. This isn't 9785 // observable from outside the class though, so casting away the 9786 // const isn't dangerous. 9787 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9788 9789 OS << "Classifying expressions for: "; 9790 F.printAsOperand(OS, /*PrintType=*/false); 9791 OS << "\n"; 9792 for (Instruction &I : instructions(F)) 9793 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9794 OS << I << '\n'; 9795 OS << " --> "; 9796 const SCEV *SV = SE.getSCEV(&I); 9797 SV->print(OS); 9798 if (!isa<SCEVCouldNotCompute>(SV)) { 9799 OS << " U: "; 9800 SE.getUnsignedRange(SV).print(OS); 9801 OS << " S: "; 9802 SE.getSignedRange(SV).print(OS); 9803 } 9804 9805 const Loop *L = LI.getLoopFor(I.getParent()); 9806 9807 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9808 if (AtUse != SV) { 9809 OS << " --> "; 9810 AtUse->print(OS); 9811 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9812 OS << " U: "; 9813 SE.getUnsignedRange(AtUse).print(OS); 9814 OS << " S: "; 9815 SE.getSignedRange(AtUse).print(OS); 9816 } 9817 } 9818 9819 if (L) { 9820 OS << "\t\t" "Exits: "; 9821 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9822 if (!SE.isLoopInvariant(ExitValue, L)) { 9823 OS << "<<Unknown>>"; 9824 } else { 9825 OS << *ExitValue; 9826 } 9827 9828 bool First = true; 9829 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9830 if (First) { 9831 OS << "\t\t" "LoopDispositions: { "; 9832 First = false; 9833 } else { 9834 OS << ", "; 9835 } 9836 9837 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9838 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9839 } 9840 9841 for (auto *InnerL : depth_first(L)) { 9842 if (InnerL == L) 9843 continue; 9844 if (First) { 9845 OS << "\t\t" "LoopDispositions: { "; 9846 First = false; 9847 } else { 9848 OS << ", "; 9849 } 9850 9851 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9852 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 9853 } 9854 9855 OS << " }"; 9856 } 9857 9858 OS << "\n"; 9859 } 9860 9861 OS << "Determining loop execution counts for: "; 9862 F.printAsOperand(OS, /*PrintType=*/false); 9863 OS << "\n"; 9864 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9865 PrintLoopInfo(OS, &SE, *I); 9866 } 9867 9868 ScalarEvolution::LoopDisposition 9869 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9870 auto &Values = LoopDispositions[S]; 9871 for (auto &V : Values) { 9872 if (V.getPointer() == L) 9873 return V.getInt(); 9874 } 9875 Values.emplace_back(L, LoopVariant); 9876 LoopDisposition D = computeLoopDisposition(S, L); 9877 auto &Values2 = LoopDispositions[S]; 9878 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9879 if (V.getPointer() == L) { 9880 V.setInt(D); 9881 break; 9882 } 9883 } 9884 return D; 9885 } 9886 9887 ScalarEvolution::LoopDisposition 9888 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9889 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9890 case scConstant: 9891 return LoopInvariant; 9892 case scTruncate: 9893 case scZeroExtend: 9894 case scSignExtend: 9895 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9896 case scAddRecExpr: { 9897 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9898 9899 // If L is the addrec's loop, it's computable. 9900 if (AR->getLoop() == L) 9901 return LoopComputable; 9902 9903 // Add recurrences are never invariant in the function-body (null loop). 9904 if (!L) 9905 return LoopVariant; 9906 9907 // This recurrence is variant w.r.t. L if L contains AR's loop. 9908 if (L->contains(AR->getLoop())) 9909 return LoopVariant; 9910 9911 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9912 if (AR->getLoop()->contains(L)) 9913 return LoopInvariant; 9914 9915 // This recurrence is variant w.r.t. L if any of its operands 9916 // are variant. 9917 for (auto *Op : AR->operands()) 9918 if (!isLoopInvariant(Op, L)) 9919 return LoopVariant; 9920 9921 // Otherwise it's loop-invariant. 9922 return LoopInvariant; 9923 } 9924 case scAddExpr: 9925 case scMulExpr: 9926 case scUMaxExpr: 9927 case scSMaxExpr: { 9928 bool HasVarying = false; 9929 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9930 LoopDisposition D = getLoopDisposition(Op, L); 9931 if (D == LoopVariant) 9932 return LoopVariant; 9933 if (D == LoopComputable) 9934 HasVarying = true; 9935 } 9936 return HasVarying ? LoopComputable : LoopInvariant; 9937 } 9938 case scUDivExpr: { 9939 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9940 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9941 if (LD == LoopVariant) 9942 return LoopVariant; 9943 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9944 if (RD == LoopVariant) 9945 return LoopVariant; 9946 return (LD == LoopInvariant && RD == LoopInvariant) ? 9947 LoopInvariant : LoopComputable; 9948 } 9949 case scUnknown: 9950 // All non-instruction values are loop invariant. All instructions are loop 9951 // invariant if they are not contained in the specified loop. 9952 // Instructions are never considered invariant in the function body 9953 // (null loop) because they are defined within the "loop". 9954 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9955 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9956 return LoopInvariant; 9957 case scCouldNotCompute: 9958 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9959 } 9960 llvm_unreachable("Unknown SCEV kind!"); 9961 } 9962 9963 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9964 return getLoopDisposition(S, L) == LoopInvariant; 9965 } 9966 9967 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9968 return getLoopDisposition(S, L) == LoopComputable; 9969 } 9970 9971 ScalarEvolution::BlockDisposition 9972 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9973 auto &Values = BlockDispositions[S]; 9974 for (auto &V : Values) { 9975 if (V.getPointer() == BB) 9976 return V.getInt(); 9977 } 9978 Values.emplace_back(BB, DoesNotDominateBlock); 9979 BlockDisposition D = computeBlockDisposition(S, BB); 9980 auto &Values2 = BlockDispositions[S]; 9981 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9982 if (V.getPointer() == BB) { 9983 V.setInt(D); 9984 break; 9985 } 9986 } 9987 return D; 9988 } 9989 9990 ScalarEvolution::BlockDisposition 9991 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9992 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9993 case scConstant: 9994 return ProperlyDominatesBlock; 9995 case scTruncate: 9996 case scZeroExtend: 9997 case scSignExtend: 9998 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9999 case scAddRecExpr: { 10000 // This uses a "dominates" query instead of "properly dominates" query 10001 // to test for proper dominance too, because the instruction which 10002 // produces the addrec's value is a PHI, and a PHI effectively properly 10003 // dominates its entire containing block. 10004 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10005 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 10006 return DoesNotDominateBlock; 10007 } 10008 // FALL THROUGH into SCEVNAryExpr handling. 10009 case scAddExpr: 10010 case scMulExpr: 10011 case scUMaxExpr: 10012 case scSMaxExpr: { 10013 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 10014 bool Proper = true; 10015 for (const SCEV *NAryOp : NAry->operands()) { 10016 BlockDisposition D = getBlockDisposition(NAryOp, BB); 10017 if (D == DoesNotDominateBlock) 10018 return DoesNotDominateBlock; 10019 if (D == DominatesBlock) 10020 Proper = false; 10021 } 10022 return Proper ? ProperlyDominatesBlock : DominatesBlock; 10023 } 10024 case scUDivExpr: { 10025 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10026 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 10027 BlockDisposition LD = getBlockDisposition(LHS, BB); 10028 if (LD == DoesNotDominateBlock) 10029 return DoesNotDominateBlock; 10030 BlockDisposition RD = getBlockDisposition(RHS, BB); 10031 if (RD == DoesNotDominateBlock) 10032 return DoesNotDominateBlock; 10033 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 10034 ProperlyDominatesBlock : DominatesBlock; 10035 } 10036 case scUnknown: 10037 if (Instruction *I = 10038 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 10039 if (I->getParent() == BB) 10040 return DominatesBlock; 10041 if (DT.properlyDominates(I->getParent(), BB)) 10042 return ProperlyDominatesBlock; 10043 return DoesNotDominateBlock; 10044 } 10045 return ProperlyDominatesBlock; 10046 case scCouldNotCompute: 10047 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10048 } 10049 llvm_unreachable("Unknown SCEV kind!"); 10050 } 10051 10052 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 10053 return getBlockDisposition(S, BB) >= DominatesBlock; 10054 } 10055 10056 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 10057 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 10058 } 10059 10060 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 10061 // Search for a SCEV expression node within an expression tree. 10062 // Implements SCEVTraversal::Visitor. 10063 struct SCEVSearch { 10064 const SCEV *Node; 10065 bool IsFound; 10066 10067 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 10068 10069 bool follow(const SCEV *S) { 10070 IsFound |= (S == Node); 10071 return !IsFound; 10072 } 10073 bool isDone() const { return IsFound; } 10074 }; 10075 10076 SCEVSearch Search(Op); 10077 visitAll(S, Search); 10078 return Search.IsFound; 10079 } 10080 10081 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 10082 ValuesAtScopes.erase(S); 10083 LoopDispositions.erase(S); 10084 BlockDispositions.erase(S); 10085 UnsignedRanges.erase(S); 10086 SignedRanges.erase(S); 10087 ExprValueMap.erase(S); 10088 HasRecMap.erase(S); 10089 10090 auto RemoveSCEVFromBackedgeMap = 10091 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 10092 for (auto I = Map.begin(), E = Map.end(); I != E;) { 10093 BackedgeTakenInfo &BEInfo = I->second; 10094 if (BEInfo.hasOperand(S, this)) { 10095 BEInfo.clear(); 10096 Map.erase(I++); 10097 } else 10098 ++I; 10099 } 10100 }; 10101 10102 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 10103 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10104 } 10105 10106 typedef DenseMap<const Loop *, std::string> VerifyMap; 10107 10108 /// replaceSubString - Replaces all occurrences of From in Str with To. 10109 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 10110 size_t Pos = 0; 10111 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 10112 Str.replace(Pos, From.size(), To.data(), To.size()); 10113 Pos += To.size(); 10114 } 10115 } 10116 10117 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 10118 static void 10119 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 10120 std::string &S = Map[L]; 10121 if (S.empty()) { 10122 raw_string_ostream OS(S); 10123 SE.getBackedgeTakenCount(L)->print(OS); 10124 10125 // false and 0 are semantically equivalent. This can happen in dead loops. 10126 replaceSubString(OS.str(), "false", "0"); 10127 // Remove wrap flags, their use in SCEV is highly fragile. 10128 // FIXME: Remove this when SCEV gets smarter about them. 10129 replaceSubString(OS.str(), "<nw>", ""); 10130 replaceSubString(OS.str(), "<nsw>", ""); 10131 replaceSubString(OS.str(), "<nuw>", ""); 10132 } 10133 10134 for (auto *R : reverse(*L)) 10135 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 10136 } 10137 10138 void ScalarEvolution::verify() const { 10139 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10140 10141 // Gather stringified backedge taken counts for all loops using SCEV's caches. 10142 // FIXME: It would be much better to store actual values instead of strings, 10143 // but SCEV pointers will change if we drop the caches. 10144 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 10145 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10146 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 10147 10148 // Gather stringified backedge taken counts for all loops using a fresh 10149 // ScalarEvolution object. 10150 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10151 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10152 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10153 10154 // Now compare whether they're the same with and without caches. This allows 10155 // verifying that no pass changed the cache. 10156 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10157 "New loops suddenly appeared!"); 10158 10159 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10160 OldE = BackedgeDumpsOld.end(), 10161 NewI = BackedgeDumpsNew.begin(); 10162 OldI != OldE; ++OldI, ++NewI) { 10163 assert(OldI->first == NewI->first && "Loop order changed!"); 10164 10165 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10166 // changes. 10167 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10168 // means that a pass is buggy or SCEV has to learn a new pattern but is 10169 // usually not harmful. 10170 if (OldI->second != NewI->second && 10171 OldI->second.find("undef") == std::string::npos && 10172 NewI->second.find("undef") == std::string::npos && 10173 OldI->second != "***COULDNOTCOMPUTE***" && 10174 NewI->second != "***COULDNOTCOMPUTE***") { 10175 dbgs() << "SCEVValidator: SCEV for loop '" 10176 << OldI->first->getHeader()->getName() 10177 << "' changed from '" << OldI->second 10178 << "' to '" << NewI->second << "'!\n"; 10179 std::abort(); 10180 } 10181 } 10182 10183 // TODO: Verify more things. 10184 } 10185 10186 char ScalarEvolutionAnalysis::PassID; 10187 10188 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10189 AnalysisManager<Function> &AM) { 10190 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10191 AM.getResult<AssumptionAnalysis>(F), 10192 AM.getResult<DominatorTreeAnalysis>(F), 10193 AM.getResult<LoopAnalysis>(F)); 10194 } 10195 10196 PreservedAnalyses 10197 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) { 10198 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10199 return PreservedAnalyses::all(); 10200 } 10201 10202 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10203 "Scalar Evolution Analysis", false, true) 10204 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10205 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10206 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10207 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10208 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10209 "Scalar Evolution Analysis", false, true) 10210 char ScalarEvolutionWrapperPass::ID = 0; 10211 10212 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10213 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10214 } 10215 10216 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10217 SE.reset(new ScalarEvolution( 10218 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10219 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10220 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10221 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10222 return false; 10223 } 10224 10225 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10226 10227 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10228 SE->print(OS); 10229 } 10230 10231 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10232 if (!VerifySCEV) 10233 return; 10234 10235 SE->verify(); 10236 } 10237 10238 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10239 AU.setPreservesAll(); 10240 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10241 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10242 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10243 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10244 } 10245 10246 const SCEVPredicate * 10247 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10248 const SCEVConstant *RHS) { 10249 FoldingSetNodeID ID; 10250 // Unique this node based on the arguments 10251 ID.AddInteger(SCEVPredicate::P_Equal); 10252 ID.AddPointer(LHS); 10253 ID.AddPointer(RHS); 10254 void *IP = nullptr; 10255 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10256 return S; 10257 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10258 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10259 UniquePreds.InsertNode(Eq, IP); 10260 return Eq; 10261 } 10262 10263 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10264 const SCEVAddRecExpr *AR, 10265 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10266 FoldingSetNodeID ID; 10267 // Unique this node based on the arguments 10268 ID.AddInteger(SCEVPredicate::P_Wrap); 10269 ID.AddPointer(AR); 10270 ID.AddInteger(AddedFlags); 10271 void *IP = nullptr; 10272 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10273 return S; 10274 auto *OF = new (SCEVAllocator) 10275 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10276 UniquePreds.InsertNode(OF, IP); 10277 return OF; 10278 } 10279 10280 namespace { 10281 10282 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10283 public: 10284 // Rewrites \p S in the context of a loop L and the predicate A. 10285 // If Assume is true, rewrite is free to add further predicates to A 10286 // such that the result will be an AddRecExpr. 10287 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10288 SCEVUnionPredicate &A, bool Assume) { 10289 SCEVPredicateRewriter Rewriter(L, SE, A, Assume); 10290 return Rewriter.visit(S); 10291 } 10292 10293 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10294 SCEVUnionPredicate &P, bool Assume) 10295 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {} 10296 10297 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10298 auto ExprPreds = P.getPredicatesForExpr(Expr); 10299 for (auto *Pred : ExprPreds) 10300 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 10301 if (IPred->getLHS() == Expr) 10302 return IPred->getRHS(); 10303 10304 return Expr; 10305 } 10306 10307 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10308 const SCEV *Operand = visit(Expr->getOperand()); 10309 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 10310 if (AR && AR->getLoop() == L && AR->isAffine()) { 10311 // This couldn't be folded because the operand didn't have the nuw 10312 // flag. Add the nusw flag as an assumption that we could make. 10313 const SCEV *Step = AR->getStepRecurrence(SE); 10314 Type *Ty = Expr->getType(); 10315 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10316 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10317 SE.getSignExtendExpr(Step, Ty), L, 10318 AR->getNoWrapFlags()); 10319 } 10320 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10321 } 10322 10323 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10324 const SCEV *Operand = visit(Expr->getOperand()); 10325 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 10326 if (AR && AR->getLoop() == L && AR->isAffine()) { 10327 // This couldn't be folded because the operand didn't have the nsw 10328 // flag. Add the nssw flag as an assumption that we could make. 10329 const SCEV *Step = AR->getStepRecurrence(SE); 10330 Type *Ty = Expr->getType(); 10331 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10332 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10333 SE.getSignExtendExpr(Step, Ty), L, 10334 AR->getNoWrapFlags()); 10335 } 10336 return SE.getSignExtendExpr(Operand, Expr->getType()); 10337 } 10338 10339 private: 10340 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10341 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10342 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10343 if (!Assume) { 10344 // Check if we've already made this assumption. 10345 if (P.implies(A)) 10346 return true; 10347 return false; 10348 } 10349 P.add(A); 10350 return true; 10351 } 10352 10353 SCEVUnionPredicate &P; 10354 const Loop *L; 10355 bool Assume; 10356 }; 10357 } // end anonymous namespace 10358 10359 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10360 SCEVUnionPredicate &Preds) { 10361 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false); 10362 } 10363 10364 const SCEVAddRecExpr * 10365 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, 10366 SCEVUnionPredicate &Preds) { 10367 SCEVUnionPredicate TransformPreds; 10368 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true); 10369 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10370 10371 if (!AddRec) 10372 return nullptr; 10373 10374 // Since the transformation was successful, we can now transfer the SCEV 10375 // predicates. 10376 Preds.add(&TransformPreds); 10377 return AddRec; 10378 } 10379 10380 /// SCEV predicates 10381 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10382 SCEVPredicateKind Kind) 10383 : FastID(ID), Kind(Kind) {} 10384 10385 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10386 const SCEVUnknown *LHS, 10387 const SCEVConstant *RHS) 10388 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10389 10390 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10391 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 10392 10393 if (!Op) 10394 return false; 10395 10396 return Op->LHS == LHS && Op->RHS == RHS; 10397 } 10398 10399 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10400 10401 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10402 10403 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10404 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10405 } 10406 10407 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10408 const SCEVAddRecExpr *AR, 10409 IncrementWrapFlags Flags) 10410 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10411 10412 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10413 10414 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10415 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10416 10417 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10418 } 10419 10420 bool SCEVWrapPredicate::isAlwaysTrue() const { 10421 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10422 IncrementWrapFlags IFlags = Flags; 10423 10424 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10425 IFlags = clearFlags(IFlags, IncrementNSSW); 10426 10427 return IFlags == IncrementAnyWrap; 10428 } 10429 10430 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10431 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10432 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10433 OS << "<nusw>"; 10434 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10435 OS << "<nssw>"; 10436 OS << "\n"; 10437 } 10438 10439 SCEVWrapPredicate::IncrementWrapFlags 10440 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10441 ScalarEvolution &SE) { 10442 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10443 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10444 10445 // We can safely transfer the NSW flag as NSSW. 10446 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10447 ImpliedFlags = IncrementNSSW; 10448 10449 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10450 // If the increment is positive, the SCEV NUW flag will also imply the 10451 // WrapPredicate NUSW flag. 10452 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10453 if (Step->getValue()->getValue().isNonNegative()) 10454 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10455 } 10456 10457 return ImpliedFlags; 10458 } 10459 10460 /// Union predicates don't get cached so create a dummy set ID for it. 10461 SCEVUnionPredicate::SCEVUnionPredicate() 10462 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10463 10464 bool SCEVUnionPredicate::isAlwaysTrue() const { 10465 return all_of(Preds, 10466 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10467 } 10468 10469 ArrayRef<const SCEVPredicate *> 10470 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10471 auto I = SCEVToPreds.find(Expr); 10472 if (I == SCEVToPreds.end()) 10473 return ArrayRef<const SCEVPredicate *>(); 10474 return I->second; 10475 } 10476 10477 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10478 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 10479 return all_of(Set->Preds, 10480 [this](const SCEVPredicate *I) { return this->implies(I); }); 10481 10482 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10483 if (ScevPredsIt == SCEVToPreds.end()) 10484 return false; 10485 auto &SCEVPreds = ScevPredsIt->second; 10486 10487 return any_of(SCEVPreds, 10488 [N](const SCEVPredicate *I) { return I->implies(N); }); 10489 } 10490 10491 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10492 10493 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10494 for (auto Pred : Preds) 10495 Pred->print(OS, Depth); 10496 } 10497 10498 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10499 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 10500 for (auto Pred : Set->Preds) 10501 add(Pred); 10502 return; 10503 } 10504 10505 if (implies(N)) 10506 return; 10507 10508 const SCEV *Key = N->getExpr(); 10509 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10510 " associated expression!"); 10511 10512 SCEVToPreds[Key].push_back(N); 10513 Preds.push_back(N); 10514 } 10515 10516 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10517 Loop &L) 10518 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10519 10520 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10521 const SCEV *Expr = SE.getSCEV(V); 10522 RewriteEntry &Entry = RewriteMap[Expr]; 10523 10524 // If we already have an entry and the version matches, return it. 10525 if (Entry.second && Generation == Entry.first) 10526 return Entry.second; 10527 10528 // We found an entry but it's stale. Rewrite the stale entry 10529 // acording to the current predicate. 10530 if (Entry.second) 10531 Expr = Entry.second; 10532 10533 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10534 Entry = {Generation, NewSCEV}; 10535 10536 return NewSCEV; 10537 } 10538 10539 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10540 if (!BackedgeCount) { 10541 SCEVUnionPredicate BackedgePred; 10542 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10543 addPredicate(BackedgePred); 10544 } 10545 return BackedgeCount; 10546 } 10547 10548 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10549 if (Preds.implies(&Pred)) 10550 return; 10551 Preds.add(&Pred); 10552 updateGeneration(); 10553 } 10554 10555 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10556 return Preds; 10557 } 10558 10559 void PredicatedScalarEvolution::updateGeneration() { 10560 // If the generation number wrapped recompute everything. 10561 if (++Generation == 0) { 10562 for (auto &II : RewriteMap) { 10563 const SCEV *Rewritten = II.second.second; 10564 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10565 } 10566 } 10567 } 10568 10569 void PredicatedScalarEvolution::setNoOverflow( 10570 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10571 const SCEV *Expr = getSCEV(V); 10572 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10573 10574 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10575 10576 // Clear the statically implied flags. 10577 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10578 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10579 10580 auto II = FlagsMap.insert({V, Flags}); 10581 if (!II.second) 10582 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10583 } 10584 10585 bool PredicatedScalarEvolution::hasNoOverflow( 10586 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10587 const SCEV *Expr = getSCEV(V); 10588 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10589 10590 Flags = SCEVWrapPredicate::clearFlags( 10591 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10592 10593 auto II = FlagsMap.find(V); 10594 10595 if (II != FlagsMap.end()) 10596 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10597 10598 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10599 } 10600 10601 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10602 const SCEV *Expr = this->getSCEV(V); 10603 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds); 10604 10605 if (!New) 10606 return nullptr; 10607 10608 updateGeneration(); 10609 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10610 return New; 10611 } 10612 10613 PredicatedScalarEvolution::PredicatedScalarEvolution( 10614 const PredicatedScalarEvolution &Init) 10615 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10616 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10617 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I) 10618 FlagsMap.insert(*I); 10619 } 10620 10621 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10622 // For each block. 10623 for (auto *BB : L.getBlocks()) 10624 for (auto &I : *BB) { 10625 if (!SE.isSCEVable(I.getType())) 10626 continue; 10627 10628 auto *Expr = SE.getSCEV(&I); 10629 auto II = RewriteMap.find(Expr); 10630 10631 if (II == RewriteMap.end()) 10632 continue; 10633 10634 // Don't print things that are not interesting. 10635 if (II->second.second == Expr) 10636 continue; 10637 10638 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10639 OS.indent(Depth + 2) << *Expr << "\n"; 10640 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10641 } 10642 } 10643