1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 119 //===----------------------------------------------------------------------===// 120 // SCEV class definitions 121 //===----------------------------------------------------------------------===// 122 123 //===----------------------------------------------------------------------===// 124 // Implementation of the SCEV class. 125 // 126 127 LLVM_DUMP_METHOD 128 void SCEV::dump() const { 129 print(dbgs()); 130 dbgs() << '\n'; 131 } 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 auto PreStartFlags = 1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1276 1277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1278 // "S+X does not sign/unsign-overflow". 1279 // 1280 1281 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1284 return PreStart; 1285 1286 // 2. Direct overflow check on the step operation's expression. 1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1289 const SCEV *OperandExtendedStart = 1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1291 (SE->*GetExtendExpr)(Step, WideTy)); 1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1293 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1298 } 1299 return PreStart; 1300 } 1301 1302 // 3. Loop precondition. 1303 ICmpInst::Predicate Pred; 1304 const SCEV *OverflowLimit = 1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1306 1307 if (OverflowLimit && 1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1309 return PreStart; 1310 1311 return nullptr; 1312 } 1313 1314 // Get the normalized zero or sign extended expression for this AddRec's Start. 1315 template <typename ExtendOpTy> 1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1317 ScalarEvolution *SE) { 1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1319 1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1321 if (!PreStart) 1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1323 1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1325 (SE->*GetExtendExpr)(PreStart, Ty)); 1326 } 1327 1328 // Try to prove away overflow by looking at "nearby" add recurrences. A 1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1331 // 1332 // Formally: 1333 // 1334 // {S,+,X} == {S-T,+,X} + T 1335 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1336 // 1337 // If ({S-T,+,X} + T) does not overflow ... (1) 1338 // 1339 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1340 // 1341 // If {S-T,+,X} does not overflow ... (2) 1342 // 1343 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1344 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1345 // 1346 // If (S-T)+T does not overflow ... (3) 1347 // 1348 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1349 // == {Ext(S),+,Ext(X)} == LHS 1350 // 1351 // Thus, if (1), (2) and (3) are true for some T, then 1352 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1353 // 1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1355 // does not overflow" restricted to the 0th iteration. Therefore we only need 1356 // to check for (1) and (2). 1357 // 1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1359 // is `Delta` (defined below). 1360 // 1361 template <typename ExtendOpTy> 1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1363 const SCEV *Step, 1364 const Loop *L) { 1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1366 1367 // We restrict `Start` to a constant to prevent SCEV from spending too much 1368 // time here. It is correct (but more expensive) to continue with a 1369 // non-constant `Start` and do a general SCEV subtraction to compute 1370 // `PreStart` below. 1371 // 1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1373 if (!StartC) 1374 return false; 1375 1376 APInt StartAI = StartC->getValue()->getValue(); 1377 1378 for (unsigned Delta : {-2, -1, 1, 2}) { 1379 const SCEV *PreStart = getConstant(StartAI - Delta); 1380 1381 FoldingSetNodeID ID; 1382 ID.AddInteger(scAddRecExpr); 1383 ID.AddPointer(PreStart); 1384 ID.AddPointer(Step); 1385 ID.AddPointer(L); 1386 void *IP = nullptr; 1387 const auto *PreAR = 1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1389 1390 // Give up if we don't already have the add recurrence we need because 1391 // actually constructing an add recurrence is relatively expensive. 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1565 // If the addition does not unsign overflow then we can, by definition, 1566 // commute the zero extension with the addition operation. 1567 SmallVector<const SCEV *, 4> Ops; 1568 for (const auto *Op : SA->operands()) 1569 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1570 return getAddExpr(Ops, SCEV::FlagNUW); 1571 } 1572 } 1573 1574 // The cast wasn't folded; create an explicit cast node. 1575 // Recompute the insert position, as it may have been invalidated. 1576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1578 Op, Ty); 1579 UniqueSCEVs.InsertNode(S, IP); 1580 return S; 1581 } 1582 1583 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1584 Type *Ty) { 1585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1586 "This is not an extending conversion!"); 1587 assert(isSCEVable(Ty) && 1588 "This is not a conversion to a SCEVable type!"); 1589 Ty = getEffectiveSCEVType(Ty); 1590 1591 // Fold if the operand is constant. 1592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1593 return getConstant( 1594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1595 1596 // sext(sext(x)) --> sext(x) 1597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1598 return getSignExtendExpr(SS->getOperand(), Ty); 1599 1600 // sext(zext(x)) --> zext(x) 1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1602 return getZeroExtendExpr(SZ->getOperand(), Ty); 1603 1604 // Before doing any expensive analysis, check to see if we've already 1605 // computed a SCEV for this Op and Ty. 1606 FoldingSetNodeID ID; 1607 ID.AddInteger(scSignExtend); 1608 ID.AddPointer(Op); 1609 ID.AddPointer(Ty); 1610 void *IP = nullptr; 1611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1612 1613 // If the input value is provably positive, build a zext instead. 1614 if (isKnownNonNegative(Op)) 1615 return getZeroExtendExpr(Op, Ty); 1616 1617 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1619 // It's possible the bits taken off by the truncate were all sign bits. If 1620 // so, we should be able to simplify this further. 1621 const SCEV *X = ST->getOperand(); 1622 ConstantRange CR = getSignedRange(X); 1623 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1624 unsigned NewBits = getTypeSizeInBits(Ty); 1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1626 CR.sextOrTrunc(NewBits))) 1627 return getTruncateOrSignExtend(X, Ty); 1628 } 1629 1630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1632 if (SA->getNumOperands() == 2) { 1633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1635 if (SMul && SC1) { 1636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1637 const APInt &C1 = SC1->getValue()->getValue(); 1638 const APInt &C2 = SC2->getValue()->getValue(); 1639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1640 C2.ugt(C1) && C2.isPowerOf2()) 1641 return getAddExpr(getSignExtendExpr(SC1, Ty), 1642 getSignExtendExpr(SMul, Ty)); 1643 } 1644 } 1645 } 1646 1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1649 // If the addition does not sign overflow then we can, by definition, 1650 // commute the sign extension with the addition operation. 1651 SmallVector<const SCEV *, 4> Ops; 1652 for (const auto *Op : SA->operands()) 1653 Ops.push_back(getSignExtendExpr(Op, Ty)); 1654 return getAddExpr(Ops, SCEV::FlagNSW); 1655 } 1656 } 1657 // If the input value is a chrec scev, and we can prove that the value 1658 // did not overflow the old, smaller, value, we can sign extend all of the 1659 // operands (often constants). This allows analysis of something like 1660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1662 if (AR->isAffine()) { 1663 const SCEV *Start = AR->getStart(); 1664 const SCEV *Step = AR->getStepRecurrence(*this); 1665 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1666 const Loop *L = AR->getLoop(); 1667 1668 // If we have special knowledge that this addrec won't overflow, 1669 // we don't need to do any further analysis. 1670 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1671 return getAddRecExpr( 1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1674 1675 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1676 // Note that this serves two purposes: It filters out loops that are 1677 // simply not analyzable, and it covers the case where this code is 1678 // being called from within backedge-taken count analysis, such that 1679 // attempting to ask for the backedge-taken count would likely result 1680 // in infinite recursion. In the later case, the analysis code will 1681 // cope with a conservative value, and it will take care to purge 1682 // that value once it has finished. 1683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1685 // Manually compute the final value for AR, checking for 1686 // overflow. 1687 1688 // Check whether the backedge-taken count can be losslessly casted to 1689 // the addrec's type. The count is always unsigned. 1690 const SCEV *CastedMaxBECount = 1691 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1692 const SCEV *RecastedMaxBECount = 1693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1694 if (MaxBECount == RecastedMaxBECount) { 1695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1696 // Check whether Start+Step*MaxBECount has no signed overflow. 1697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1700 const SCEV *WideMaxBECount = 1701 getZeroExtendExpr(CastedMaxBECount, WideTy); 1702 const SCEV *OperandExtendedAdd = 1703 getAddExpr(WideStart, 1704 getMulExpr(WideMaxBECount, 1705 getSignExtendExpr(Step, WideTy))); 1706 if (SAdd == OperandExtendedAdd) { 1707 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 // Similar to above, only this time treat the step value as unsigned. 1715 // This covers loops that count up with an unsigned step. 1716 OperandExtendedAdd = 1717 getAddExpr(WideStart, 1718 getMulExpr(WideMaxBECount, 1719 getZeroExtendExpr(Step, WideTy))); 1720 if (SAdd == OperandExtendedAdd) { 1721 // If AR wraps around then 1722 // 1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1724 // => SAdd != OperandExtendedAdd 1725 // 1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1727 // (SAdd == OperandExtendedAdd => AR is NW) 1728 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1730 1731 // Return the expression with the addrec on the outside. 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 1738 // If the backedge is guarded by a comparison with the pre-inc value 1739 // the addrec is safe. Also, if the entry is guarded by a comparison 1740 // with the start value and the backedge is guarded by a comparison 1741 // with the post-inc value, the addrec is safe. 1742 ICmpInst::Predicate Pred; 1743 const SCEV *OverflowLimit = 1744 getSignedOverflowLimitForStep(Step, &Pred, this); 1745 if (OverflowLimit && 1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1749 OverflowLimit)))) { 1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1752 return getAddRecExpr( 1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1755 } 1756 } 1757 // If Start and Step are constants, check if we can apply this 1758 // transformation: 1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1760 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1761 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1762 if (SC1 && SC2) { 1763 const APInt &C1 = SC1->getValue()->getValue(); 1764 const APInt &C2 = SC2->getValue()->getValue(); 1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1766 C2.isPowerOf2()) { 1767 Start = getSignExtendExpr(Start, Ty); 1768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1769 AR->getNoWrapFlags()); 1770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // The cast wasn't folded; create an explicit cast node. 1783 // Recompute the insert position, as it may have been invalidated. 1784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1786 Op, Ty); 1787 UniqueSCEVs.InsertNode(S, IP); 1788 return S; 1789 } 1790 1791 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1792 /// unspecified bits out to the given type. 1793 /// 1794 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1795 Type *Ty) { 1796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1797 "This is not an extending conversion!"); 1798 assert(isSCEVable(Ty) && 1799 "This is not a conversion to a SCEVable type!"); 1800 Ty = getEffectiveSCEVType(Ty); 1801 1802 // Sign-extend negative constants. 1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1804 if (SC->getValue()->getValue().isNegative()) 1805 return getSignExtendExpr(Op, Ty); 1806 1807 // Peel off a truncate cast. 1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1809 const SCEV *NewOp = T->getOperand(); 1810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1811 return getAnyExtendExpr(NewOp, Ty); 1812 return getTruncateOrNoop(NewOp, Ty); 1813 } 1814 1815 // Next try a zext cast. If the cast is folded, use it. 1816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1817 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1818 return ZExt; 1819 1820 // Next try a sext cast. If the cast is folded, use it. 1821 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1822 if (!isa<SCEVSignExtendExpr>(SExt)) 1823 return SExt; 1824 1825 // Force the cast to be folded into the operands of an addrec. 1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1827 SmallVector<const SCEV *, 4> Ops; 1828 for (const SCEV *Op : AR->operands()) 1829 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1831 } 1832 1833 // If the expression is obviously signed, use the sext cast value. 1834 if (isa<SCEVSMaxExpr>(Op)) 1835 return SExt; 1836 1837 // Absent any other information, use the zext cast value. 1838 return ZExt; 1839 } 1840 1841 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1842 /// a list of operands to be added under the given scale, update the given 1843 /// map. This is a helper function for getAddRecExpr. As an example of 1844 /// what it does, given a sequence of operands that would form an add 1845 /// expression like this: 1846 /// 1847 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1848 /// 1849 /// where A and B are constants, update the map with these values: 1850 /// 1851 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1852 /// 1853 /// and add 13 + A*B*29 to AccumulatedConstant. 1854 /// This will allow getAddRecExpr to produce this: 1855 /// 1856 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1857 /// 1858 /// This form often exposes folding opportunities that are hidden in 1859 /// the original operand list. 1860 /// 1861 /// Return true iff it appears that any interesting folding opportunities 1862 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1863 /// the common case where no interesting opportunities are present, and 1864 /// is also used as a check to avoid infinite recursion. 1865 /// 1866 static bool 1867 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1868 SmallVectorImpl<const SCEV *> &NewOps, 1869 APInt &AccumulatedConstant, 1870 const SCEV *const *Ops, size_t NumOperands, 1871 const APInt &Scale, 1872 ScalarEvolution &SE) { 1873 bool Interesting = false; 1874 1875 // Iterate over the add operands. They are sorted, with constants first. 1876 unsigned i = 0; 1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1878 ++i; 1879 // Pull a buried constant out to the outside. 1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1881 Interesting = true; 1882 AccumulatedConstant += Scale * C->getValue()->getValue(); 1883 } 1884 1885 // Next comes everything else. We're especially interested in multiplies 1886 // here, but they're in the middle, so just visit the rest with one loop. 1887 for (; i != NumOperands; ++i) { 1888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1890 APInt NewScale = 1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1893 // A multiplication of a constant with another add; recurse. 1894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1895 Interesting |= 1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1897 Add->op_begin(), Add->getNumOperands(), 1898 NewScale, SE); 1899 } else { 1900 // A multiplication of a constant with some other value. Update 1901 // the map. 1902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1903 const SCEV *Key = SE.getMulExpr(MulOps); 1904 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1905 if (Pair.second) { 1906 NewOps.push_back(Pair.first->first); 1907 } else { 1908 Pair.first->second += NewScale; 1909 // The map already had an entry for this value, which may indicate 1910 // a folding opportunity. 1911 Interesting = true; 1912 } 1913 } 1914 } else { 1915 // An ordinary operand. Update the map. 1916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1917 M.insert(std::make_pair(Ops[i], Scale)); 1918 if (Pair.second) { 1919 NewOps.push_back(Pair.first->first); 1920 } else { 1921 Pair.first->second += Scale; 1922 // The map already had an entry for this value, which may indicate 1923 // a folding opportunity. 1924 Interesting = true; 1925 } 1926 } 1927 } 1928 1929 return Interesting; 1930 } 1931 1932 namespace { 1933 struct APIntCompare { 1934 bool operator()(const APInt &LHS, const APInt &RHS) const { 1935 return LHS.ult(RHS); 1936 } 1937 }; 1938 } 1939 1940 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1941 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1942 // can't-overflow flags for the operation if possible. 1943 static SCEV::NoWrapFlags 1944 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1945 const SmallVectorImpl<const SCEV *> &Ops, 1946 SCEV::NoWrapFlags Flags) { 1947 using namespace std::placeholders; 1948 typedef OverflowingBinaryOperator OBO; 1949 1950 bool CanAnalyze = 1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1952 (void)CanAnalyze; 1953 assert(CanAnalyze && "don't call from other places!"); 1954 1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1956 SCEV::NoWrapFlags SignOrUnsignWrap = 1957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1958 1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1960 auto IsKnownNonNegative = 1961 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1962 1963 if (SignOrUnsignWrap == SCEV::FlagNSW && 1964 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1965 Flags = 1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1967 1968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1969 1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1972 1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1975 1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1978 auto NSWRegion = 1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1982 } 1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1984 auto NUWRegion = 1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1986 OBO::NoUnsignedWrap); 1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1989 } 1990 } 1991 1992 return Flags; 1993 } 1994 1995 /// getAddExpr - Get a canonical add expression, or something simpler if 1996 /// possible. 1997 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1998 SCEV::NoWrapFlags Flags) { 1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2000 "only nuw or nsw allowed"); 2001 assert(!Ops.empty() && "Cannot get empty add!"); 2002 if (Ops.size() == 1) return Ops[0]; 2003 #ifndef NDEBUG 2004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2005 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2007 "SCEVAddExpr operand types don't match!"); 2008 #endif 2009 2010 // Sort by complexity, this groups all similar expression types together. 2011 GroupByComplexity(Ops, &LI); 2012 2013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2014 2015 // If there are any constants, fold them together. 2016 unsigned Idx = 0; 2017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2018 ++Idx; 2019 assert(Idx < Ops.size()); 2020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2021 // We found two constants, fold them together! 2022 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2023 RHSC->getValue()->getValue()); 2024 if (Ops.size() == 2) return Ops[0]; 2025 Ops.erase(Ops.begin()+1); // Erase the folded element 2026 LHSC = cast<SCEVConstant>(Ops[0]); 2027 } 2028 2029 // If we are left with a constant zero being added, strip it off. 2030 if (LHSC->getValue()->isZero()) { 2031 Ops.erase(Ops.begin()); 2032 --Idx; 2033 } 2034 2035 if (Ops.size() == 1) return Ops[0]; 2036 } 2037 2038 // Okay, check to see if the same value occurs in the operand list more than 2039 // once. If so, merge them together into an multiply expression. Since we 2040 // sorted the list, these values are required to be adjacent. 2041 Type *Ty = Ops[0]->getType(); 2042 bool FoundMatch = false; 2043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2045 // Scan ahead to count how many equal operands there are. 2046 unsigned Count = 2; 2047 while (i+Count != e && Ops[i+Count] == Ops[i]) 2048 ++Count; 2049 // Merge the values into a multiply. 2050 const SCEV *Scale = getConstant(Ty, Count); 2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2052 if (Ops.size() == Count) 2053 return Mul; 2054 Ops[i] = Mul; 2055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2056 --i; e -= Count - 1; 2057 FoundMatch = true; 2058 } 2059 if (FoundMatch) 2060 return getAddExpr(Ops, Flags); 2061 2062 // Check for truncates. If all the operands are truncated from the same 2063 // type, see if factoring out the truncate would permit the result to be 2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2065 // if the contents of the resulting outer trunc fold to something simple. 2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2068 Type *DstType = Trunc->getType(); 2069 Type *SrcType = Trunc->getOperand()->getType(); 2070 SmallVector<const SCEV *, 8> LargeOps; 2071 bool Ok = true; 2072 // Check all the operands to see if they can be represented in the 2073 // source type of the truncate. 2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2076 if (T->getOperand()->getType() != SrcType) { 2077 Ok = false; 2078 break; 2079 } 2080 LargeOps.push_back(T->getOperand()); 2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2082 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2084 SmallVector<const SCEV *, 8> LargeMulOps; 2085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2086 if (const SCEVTruncateExpr *T = 2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2088 if (T->getOperand()->getType() != SrcType) { 2089 Ok = false; 2090 break; 2091 } 2092 LargeMulOps.push_back(T->getOperand()); 2093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2095 } else { 2096 Ok = false; 2097 break; 2098 } 2099 } 2100 if (Ok) 2101 LargeOps.push_back(getMulExpr(LargeMulOps)); 2102 } else { 2103 Ok = false; 2104 break; 2105 } 2106 } 2107 if (Ok) { 2108 // Evaluate the expression in the larger type. 2109 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2110 // If it folds to something simple, use it. Otherwise, don't. 2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2112 return getTruncateExpr(Fold, DstType); 2113 } 2114 } 2115 2116 // Skip past any other cast SCEVs. 2117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2118 ++Idx; 2119 2120 // If there are add operands they would be next. 2121 if (Idx < Ops.size()) { 2122 bool DeletedAdd = false; 2123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2124 // If we have an add, expand the add operands onto the end of the operands 2125 // list. 2126 Ops.erase(Ops.begin()+Idx); 2127 Ops.append(Add->op_begin(), Add->op_end()); 2128 DeletedAdd = true; 2129 } 2130 2131 // If we deleted at least one add, we added operands to the end of the list, 2132 // and they are not necessarily sorted. Recurse to resort and resimplify 2133 // any operands we just acquired. 2134 if (DeletedAdd) 2135 return getAddExpr(Ops); 2136 } 2137 2138 // Skip over the add expression until we get to a multiply. 2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2140 ++Idx; 2141 2142 // Check to see if there are any folding opportunities present with 2143 // operands multiplied by constant values. 2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2145 uint64_t BitWidth = getTypeSizeInBits(Ty); 2146 DenseMap<const SCEV *, APInt> M; 2147 SmallVector<const SCEV *, 8> NewOps; 2148 APInt AccumulatedConstant(BitWidth, 0); 2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2150 Ops.data(), Ops.size(), 2151 APInt(BitWidth, 1), *this)) { 2152 // Some interesting folding opportunity is present, so its worthwhile to 2153 // re-generate the operands list. Group the operands by constant scale, 2154 // to avoid multiplying by the same constant scale multiple times. 2155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2156 for (const SCEV *NewOp : NewOps) 2157 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2158 // Re-generate the operands list. 2159 Ops.clear(); 2160 if (AccumulatedConstant != 0) 2161 Ops.push_back(getConstant(AccumulatedConstant)); 2162 for (auto &MulOp : MulOpLists) 2163 if (MulOp.first != 0) 2164 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2165 getAddExpr(MulOp.second))); 2166 if (Ops.empty()) 2167 return getZero(Ty); 2168 if (Ops.size() == 1) 2169 return Ops[0]; 2170 return getAddExpr(Ops); 2171 } 2172 } 2173 2174 // If we are adding something to a multiply expression, make sure the 2175 // something is not already an operand of the multiply. If so, merge it into 2176 // the multiply. 2177 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2178 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2179 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2180 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2181 if (isa<SCEVConstant>(MulOpSCEV)) 2182 continue; 2183 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2184 if (MulOpSCEV == Ops[AddOp]) { 2185 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2186 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2187 if (Mul->getNumOperands() != 2) { 2188 // If the multiply has more than two operands, we must get the 2189 // Y*Z term. 2190 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2191 Mul->op_begin()+MulOp); 2192 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2193 InnerMul = getMulExpr(MulOps); 2194 } 2195 const SCEV *One = getOne(Ty); 2196 const SCEV *AddOne = getAddExpr(One, InnerMul); 2197 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2198 if (Ops.size() == 2) return OuterMul; 2199 if (AddOp < Idx) { 2200 Ops.erase(Ops.begin()+AddOp); 2201 Ops.erase(Ops.begin()+Idx-1); 2202 } else { 2203 Ops.erase(Ops.begin()+Idx); 2204 Ops.erase(Ops.begin()+AddOp-1); 2205 } 2206 Ops.push_back(OuterMul); 2207 return getAddExpr(Ops); 2208 } 2209 2210 // Check this multiply against other multiplies being added together. 2211 for (unsigned OtherMulIdx = Idx+1; 2212 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2213 ++OtherMulIdx) { 2214 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2215 // If MulOp occurs in OtherMul, we can fold the two multiplies 2216 // together. 2217 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2218 OMulOp != e; ++OMulOp) 2219 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2220 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2221 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2222 if (Mul->getNumOperands() != 2) { 2223 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2224 Mul->op_begin()+MulOp); 2225 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2226 InnerMul1 = getMulExpr(MulOps); 2227 } 2228 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2229 if (OtherMul->getNumOperands() != 2) { 2230 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2231 OtherMul->op_begin()+OMulOp); 2232 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2233 InnerMul2 = getMulExpr(MulOps); 2234 } 2235 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2236 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2237 if (Ops.size() == 2) return OuterMul; 2238 Ops.erase(Ops.begin()+Idx); 2239 Ops.erase(Ops.begin()+OtherMulIdx-1); 2240 Ops.push_back(OuterMul); 2241 return getAddExpr(Ops); 2242 } 2243 } 2244 } 2245 } 2246 2247 // If there are any add recurrences in the operands list, see if any other 2248 // added values are loop invariant. If so, we can fold them into the 2249 // recurrence. 2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2251 ++Idx; 2252 2253 // Scan over all recurrences, trying to fold loop invariants into them. 2254 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2255 // Scan all of the other operands to this add and add them to the vector if 2256 // they are loop invariant w.r.t. the recurrence. 2257 SmallVector<const SCEV *, 8> LIOps; 2258 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2259 const Loop *AddRecLoop = AddRec->getLoop(); 2260 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2261 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2262 LIOps.push_back(Ops[i]); 2263 Ops.erase(Ops.begin()+i); 2264 --i; --e; 2265 } 2266 2267 // If we found some loop invariants, fold them into the recurrence. 2268 if (!LIOps.empty()) { 2269 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2270 LIOps.push_back(AddRec->getStart()); 2271 2272 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2273 AddRec->op_end()); 2274 AddRecOps[0] = getAddExpr(LIOps); 2275 2276 // Build the new addrec. Propagate the NUW and NSW flags if both the 2277 // outer add and the inner addrec are guaranteed to have no overflow. 2278 // Always propagate NW. 2279 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2280 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2281 2282 // If all of the other operands were loop invariant, we are done. 2283 if (Ops.size() == 1) return NewRec; 2284 2285 // Otherwise, add the folded AddRec by the non-invariant parts. 2286 for (unsigned i = 0;; ++i) 2287 if (Ops[i] == AddRec) { 2288 Ops[i] = NewRec; 2289 break; 2290 } 2291 return getAddExpr(Ops); 2292 } 2293 2294 // Okay, if there weren't any loop invariants to be folded, check to see if 2295 // there are multiple AddRec's with the same loop induction variable being 2296 // added together. If so, we can fold them. 2297 for (unsigned OtherIdx = Idx+1; 2298 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2299 ++OtherIdx) 2300 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2301 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2303 AddRec->op_end()); 2304 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2305 ++OtherIdx) 2306 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2307 if (OtherAddRec->getLoop() == AddRecLoop) { 2308 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2309 i != e; ++i) { 2310 if (i >= AddRecOps.size()) { 2311 AddRecOps.append(OtherAddRec->op_begin()+i, 2312 OtherAddRec->op_end()); 2313 break; 2314 } 2315 AddRecOps[i] = getAddExpr(AddRecOps[i], 2316 OtherAddRec->getOperand(i)); 2317 } 2318 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2319 } 2320 // Step size has changed, so we cannot guarantee no self-wraparound. 2321 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2322 return getAddExpr(Ops); 2323 } 2324 2325 // Otherwise couldn't fold anything into this recurrence. Move onto the 2326 // next one. 2327 } 2328 2329 // Okay, it looks like we really DO need an add expr. Check to see if we 2330 // already have one, otherwise create a new one. 2331 FoldingSetNodeID ID; 2332 ID.AddInteger(scAddExpr); 2333 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2334 ID.AddPointer(Ops[i]); 2335 void *IP = nullptr; 2336 SCEVAddExpr *S = 2337 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2338 if (!S) { 2339 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2340 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2341 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2342 O, Ops.size()); 2343 UniqueSCEVs.InsertNode(S, IP); 2344 } 2345 S->setNoWrapFlags(Flags); 2346 return S; 2347 } 2348 2349 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2350 uint64_t k = i*j; 2351 if (j > 1 && k / j != i) Overflow = true; 2352 return k; 2353 } 2354 2355 /// Compute the result of "n choose k", the binomial coefficient. If an 2356 /// intermediate computation overflows, Overflow will be set and the return will 2357 /// be garbage. Overflow is not cleared on absence of overflow. 2358 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2359 // We use the multiplicative formula: 2360 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2361 // At each iteration, we take the n-th term of the numeral and divide by the 2362 // (k-n)th term of the denominator. This division will always produce an 2363 // integral result, and helps reduce the chance of overflow in the 2364 // intermediate computations. However, we can still overflow even when the 2365 // final result would fit. 2366 2367 if (n == 0 || n == k) return 1; 2368 if (k > n) return 0; 2369 2370 if (k > n/2) 2371 k = n-k; 2372 2373 uint64_t r = 1; 2374 for (uint64_t i = 1; i <= k; ++i) { 2375 r = umul_ov(r, n-(i-1), Overflow); 2376 r /= i; 2377 } 2378 return r; 2379 } 2380 2381 /// Determine if any of the operands in this SCEV are a constant or if 2382 /// any of the add or multiply expressions in this SCEV contain a constant. 2383 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2384 SmallVector<const SCEV *, 4> Ops; 2385 Ops.push_back(StartExpr); 2386 while (!Ops.empty()) { 2387 const SCEV *CurrentExpr = Ops.pop_back_val(); 2388 if (isa<SCEVConstant>(*CurrentExpr)) 2389 return true; 2390 2391 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2392 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2393 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2394 } 2395 } 2396 return false; 2397 } 2398 2399 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2400 /// possible. 2401 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2402 SCEV::NoWrapFlags Flags) { 2403 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2404 "only nuw or nsw allowed"); 2405 assert(!Ops.empty() && "Cannot get empty mul!"); 2406 if (Ops.size() == 1) return Ops[0]; 2407 #ifndef NDEBUG 2408 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2409 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2410 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2411 "SCEVMulExpr operand types don't match!"); 2412 #endif 2413 2414 // Sort by complexity, this groups all similar expression types together. 2415 GroupByComplexity(Ops, &LI); 2416 2417 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2418 2419 // If there are any constants, fold them together. 2420 unsigned Idx = 0; 2421 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2422 2423 // C1*(C2+V) -> C1*C2 + C1*V 2424 if (Ops.size() == 2) 2425 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2426 // If any of Add's ops are Adds or Muls with a constant, 2427 // apply this transformation as well. 2428 if (Add->getNumOperands() == 2) 2429 if (containsConstantSomewhere(Add)) 2430 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2431 getMulExpr(LHSC, Add->getOperand(1))); 2432 2433 ++Idx; 2434 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2435 // We found two constants, fold them together! 2436 ConstantInt *Fold = ConstantInt::get(getContext(), 2437 LHSC->getValue()->getValue() * 2438 RHSC->getValue()->getValue()); 2439 Ops[0] = getConstant(Fold); 2440 Ops.erase(Ops.begin()+1); // Erase the folded element 2441 if (Ops.size() == 1) return Ops[0]; 2442 LHSC = cast<SCEVConstant>(Ops[0]); 2443 } 2444 2445 // If we are left with a constant one being multiplied, strip it off. 2446 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2447 Ops.erase(Ops.begin()); 2448 --Idx; 2449 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2450 // If we have a multiply of zero, it will always be zero. 2451 return Ops[0]; 2452 } else if (Ops[0]->isAllOnesValue()) { 2453 // If we have a mul by -1 of an add, try distributing the -1 among the 2454 // add operands. 2455 if (Ops.size() == 2) { 2456 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2457 SmallVector<const SCEV *, 4> NewOps; 2458 bool AnyFolded = false; 2459 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2460 E = Add->op_end(); I != E; ++I) { 2461 const SCEV *Mul = getMulExpr(Ops[0], *I); 2462 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2463 NewOps.push_back(Mul); 2464 } 2465 if (AnyFolded) 2466 return getAddExpr(NewOps); 2467 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2468 // Negation preserves a recurrence's no self-wrap property. 2469 SmallVector<const SCEV *, 4> Operands; 2470 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2471 E = AddRec->op_end(); I != E; ++I) { 2472 Operands.push_back(getMulExpr(Ops[0], *I)); 2473 } 2474 return getAddRecExpr(Operands, AddRec->getLoop(), 2475 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2476 } 2477 } 2478 } 2479 2480 if (Ops.size() == 1) 2481 return Ops[0]; 2482 } 2483 2484 // Skip over the add expression until we get to a multiply. 2485 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2486 ++Idx; 2487 2488 // If there are mul operands inline them all into this expression. 2489 if (Idx < Ops.size()) { 2490 bool DeletedMul = false; 2491 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2492 // If we have an mul, expand the mul operands onto the end of the operands 2493 // list. 2494 Ops.erase(Ops.begin()+Idx); 2495 Ops.append(Mul->op_begin(), Mul->op_end()); 2496 DeletedMul = true; 2497 } 2498 2499 // If we deleted at least one mul, we added operands to the end of the list, 2500 // and they are not necessarily sorted. Recurse to resort and resimplify 2501 // any operands we just acquired. 2502 if (DeletedMul) 2503 return getMulExpr(Ops); 2504 } 2505 2506 // If there are any add recurrences in the operands list, see if any other 2507 // added values are loop invariant. If so, we can fold them into the 2508 // recurrence. 2509 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2510 ++Idx; 2511 2512 // Scan over all recurrences, trying to fold loop invariants into them. 2513 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2514 // Scan all of the other operands to this mul and add them to the vector if 2515 // they are loop invariant w.r.t. the recurrence. 2516 SmallVector<const SCEV *, 8> LIOps; 2517 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2518 const Loop *AddRecLoop = AddRec->getLoop(); 2519 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2520 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2521 LIOps.push_back(Ops[i]); 2522 Ops.erase(Ops.begin()+i); 2523 --i; --e; 2524 } 2525 2526 // If we found some loop invariants, fold them into the recurrence. 2527 if (!LIOps.empty()) { 2528 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2529 SmallVector<const SCEV *, 4> NewOps; 2530 NewOps.reserve(AddRec->getNumOperands()); 2531 const SCEV *Scale = getMulExpr(LIOps); 2532 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2533 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2534 2535 // Build the new addrec. Propagate the NUW and NSW flags if both the 2536 // outer mul and the inner addrec are guaranteed to have no overflow. 2537 // 2538 // No self-wrap cannot be guaranteed after changing the step size, but 2539 // will be inferred if either NUW or NSW is true. 2540 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2541 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2542 2543 // If all of the other operands were loop invariant, we are done. 2544 if (Ops.size() == 1) return NewRec; 2545 2546 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2547 for (unsigned i = 0;; ++i) 2548 if (Ops[i] == AddRec) { 2549 Ops[i] = NewRec; 2550 break; 2551 } 2552 return getMulExpr(Ops); 2553 } 2554 2555 // Okay, if there weren't any loop invariants to be folded, check to see if 2556 // there are multiple AddRec's with the same loop induction variable being 2557 // multiplied together. If so, we can fold them. 2558 2559 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2560 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2561 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2562 // ]]],+,...up to x=2n}. 2563 // Note that the arguments to choose() are always integers with values 2564 // known at compile time, never SCEV objects. 2565 // 2566 // The implementation avoids pointless extra computations when the two 2567 // addrec's are of different length (mathematically, it's equivalent to 2568 // an infinite stream of zeros on the right). 2569 bool OpsModified = false; 2570 for (unsigned OtherIdx = Idx+1; 2571 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2572 ++OtherIdx) { 2573 const SCEVAddRecExpr *OtherAddRec = 2574 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2575 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2576 continue; 2577 2578 bool Overflow = false; 2579 Type *Ty = AddRec->getType(); 2580 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2581 SmallVector<const SCEV*, 7> AddRecOps; 2582 for (int x = 0, xe = AddRec->getNumOperands() + 2583 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2584 const SCEV *Term = getZero(Ty); 2585 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2586 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2587 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2588 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2589 z < ze && !Overflow; ++z) { 2590 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2591 uint64_t Coeff; 2592 if (LargerThan64Bits) 2593 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2594 else 2595 Coeff = Coeff1*Coeff2; 2596 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2597 const SCEV *Term1 = AddRec->getOperand(y-z); 2598 const SCEV *Term2 = OtherAddRec->getOperand(z); 2599 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2600 } 2601 } 2602 AddRecOps.push_back(Term); 2603 } 2604 if (!Overflow) { 2605 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2606 SCEV::FlagAnyWrap); 2607 if (Ops.size() == 2) return NewAddRec; 2608 Ops[Idx] = NewAddRec; 2609 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2610 OpsModified = true; 2611 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2612 if (!AddRec) 2613 break; 2614 } 2615 } 2616 if (OpsModified) 2617 return getMulExpr(Ops); 2618 2619 // Otherwise couldn't fold anything into this recurrence. Move onto the 2620 // next one. 2621 } 2622 2623 // Okay, it looks like we really DO need an mul expr. Check to see if we 2624 // already have one, otherwise create a new one. 2625 FoldingSetNodeID ID; 2626 ID.AddInteger(scMulExpr); 2627 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2628 ID.AddPointer(Ops[i]); 2629 void *IP = nullptr; 2630 SCEVMulExpr *S = 2631 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2632 if (!S) { 2633 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2634 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2635 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2636 O, Ops.size()); 2637 UniqueSCEVs.InsertNode(S, IP); 2638 } 2639 S->setNoWrapFlags(Flags); 2640 return S; 2641 } 2642 2643 /// getUDivExpr - Get a canonical unsigned division expression, or something 2644 /// simpler if possible. 2645 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2646 const SCEV *RHS) { 2647 assert(getEffectiveSCEVType(LHS->getType()) == 2648 getEffectiveSCEVType(RHS->getType()) && 2649 "SCEVUDivExpr operand types don't match!"); 2650 2651 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2652 if (RHSC->getValue()->equalsInt(1)) 2653 return LHS; // X udiv 1 --> x 2654 // If the denominator is zero, the result of the udiv is undefined. Don't 2655 // try to analyze it, because the resolution chosen here may differ from 2656 // the resolution chosen in other parts of the compiler. 2657 if (!RHSC->getValue()->isZero()) { 2658 // Determine if the division can be folded into the operands of 2659 // its operands. 2660 // TODO: Generalize this to non-constants by using known-bits information. 2661 Type *Ty = LHS->getType(); 2662 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2663 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2664 // For non-power-of-two values, effectively round the value up to the 2665 // nearest power of two. 2666 if (!RHSC->getValue()->getValue().isPowerOf2()) 2667 ++MaxShiftAmt; 2668 IntegerType *ExtTy = 2669 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2670 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2671 if (const SCEVConstant *Step = 2672 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2673 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2674 const APInt &StepInt = Step->getValue()->getValue(); 2675 const APInt &DivInt = RHSC->getValue()->getValue(); 2676 if (!StepInt.urem(DivInt) && 2677 getZeroExtendExpr(AR, ExtTy) == 2678 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2679 getZeroExtendExpr(Step, ExtTy), 2680 AR->getLoop(), SCEV::FlagAnyWrap)) { 2681 SmallVector<const SCEV *, 4> Operands; 2682 for (const SCEV *Op : AR->operands()) 2683 Operands.push_back(getUDivExpr(Op, RHS)); 2684 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2685 } 2686 /// Get a canonical UDivExpr for a recurrence. 2687 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2688 // We can currently only fold X%N if X is constant. 2689 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2690 if (StartC && !DivInt.urem(StepInt) && 2691 getZeroExtendExpr(AR, ExtTy) == 2692 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2693 getZeroExtendExpr(Step, ExtTy), 2694 AR->getLoop(), SCEV::FlagAnyWrap)) { 2695 const APInt &StartInt = StartC->getValue()->getValue(); 2696 const APInt &StartRem = StartInt.urem(StepInt); 2697 if (StartRem != 0) 2698 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2699 AR->getLoop(), SCEV::FlagNW); 2700 } 2701 } 2702 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2703 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2704 SmallVector<const SCEV *, 4> Operands; 2705 for (const SCEV *Op : M->operands()) 2706 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2707 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2708 // Find an operand that's safely divisible. 2709 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2710 const SCEV *Op = M->getOperand(i); 2711 const SCEV *Div = getUDivExpr(Op, RHSC); 2712 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2713 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2714 M->op_end()); 2715 Operands[i] = Div; 2716 return getMulExpr(Operands); 2717 } 2718 } 2719 } 2720 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2721 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2722 SmallVector<const SCEV *, 4> Operands; 2723 for (const SCEV *Op : A->operands()) 2724 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2725 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2726 Operands.clear(); 2727 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2728 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2729 if (isa<SCEVUDivExpr>(Op) || 2730 getMulExpr(Op, RHS) != A->getOperand(i)) 2731 break; 2732 Operands.push_back(Op); 2733 } 2734 if (Operands.size() == A->getNumOperands()) 2735 return getAddExpr(Operands); 2736 } 2737 } 2738 2739 // Fold if both operands are constant. 2740 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2741 Constant *LHSCV = LHSC->getValue(); 2742 Constant *RHSCV = RHSC->getValue(); 2743 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2744 RHSCV))); 2745 } 2746 } 2747 } 2748 2749 FoldingSetNodeID ID; 2750 ID.AddInteger(scUDivExpr); 2751 ID.AddPointer(LHS); 2752 ID.AddPointer(RHS); 2753 void *IP = nullptr; 2754 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2755 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2756 LHS, RHS); 2757 UniqueSCEVs.InsertNode(S, IP); 2758 return S; 2759 } 2760 2761 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2762 APInt A = C1->getValue()->getValue().abs(); 2763 APInt B = C2->getValue()->getValue().abs(); 2764 uint32_t ABW = A.getBitWidth(); 2765 uint32_t BBW = B.getBitWidth(); 2766 2767 if (ABW > BBW) 2768 B = B.zext(ABW); 2769 else if (ABW < BBW) 2770 A = A.zext(BBW); 2771 2772 return APIntOps::GreatestCommonDivisor(A, B); 2773 } 2774 2775 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2776 /// something simpler if possible. There is no representation for an exact udiv 2777 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2778 /// We can't do this when it's not exact because the udiv may be clearing bits. 2779 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2780 const SCEV *RHS) { 2781 // TODO: we could try to find factors in all sorts of things, but for now we 2782 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2783 // end of this file for inspiration. 2784 2785 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2786 if (!Mul) 2787 return getUDivExpr(LHS, RHS); 2788 2789 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2790 // If the mulexpr multiplies by a constant, then that constant must be the 2791 // first element of the mulexpr. 2792 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2793 if (LHSCst == RHSCst) { 2794 SmallVector<const SCEV *, 2> Operands; 2795 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2796 return getMulExpr(Operands); 2797 } 2798 2799 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2800 // that there's a factor provided by one of the other terms. We need to 2801 // check. 2802 APInt Factor = gcd(LHSCst, RHSCst); 2803 if (!Factor.isIntN(1)) { 2804 LHSCst = cast<SCEVConstant>( 2805 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2806 RHSCst = cast<SCEVConstant>( 2807 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2808 SmallVector<const SCEV *, 2> Operands; 2809 Operands.push_back(LHSCst); 2810 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2811 LHS = getMulExpr(Operands); 2812 RHS = RHSCst; 2813 Mul = dyn_cast<SCEVMulExpr>(LHS); 2814 if (!Mul) 2815 return getUDivExactExpr(LHS, RHS); 2816 } 2817 } 2818 } 2819 2820 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2821 if (Mul->getOperand(i) == RHS) { 2822 SmallVector<const SCEV *, 2> Operands; 2823 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2824 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2825 return getMulExpr(Operands); 2826 } 2827 } 2828 2829 return getUDivExpr(LHS, RHS); 2830 } 2831 2832 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2833 /// Simplify the expression as much as possible. 2834 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2835 const Loop *L, 2836 SCEV::NoWrapFlags Flags) { 2837 SmallVector<const SCEV *, 4> Operands; 2838 Operands.push_back(Start); 2839 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2840 if (StepChrec->getLoop() == L) { 2841 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2842 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2843 } 2844 2845 Operands.push_back(Step); 2846 return getAddRecExpr(Operands, L, Flags); 2847 } 2848 2849 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2850 /// Simplify the expression as much as possible. 2851 const SCEV * 2852 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2853 const Loop *L, SCEV::NoWrapFlags Flags) { 2854 if (Operands.size() == 1) return Operands[0]; 2855 #ifndef NDEBUG 2856 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2857 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2858 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2859 "SCEVAddRecExpr operand types don't match!"); 2860 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2861 assert(isLoopInvariant(Operands[i], L) && 2862 "SCEVAddRecExpr operand is not loop-invariant!"); 2863 #endif 2864 2865 if (Operands.back()->isZero()) { 2866 Operands.pop_back(); 2867 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2868 } 2869 2870 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2871 // use that information to infer NUW and NSW flags. However, computing a 2872 // BE count requires calling getAddRecExpr, so we may not yet have a 2873 // meaningful BE count at this point (and if we don't, we'd be stuck 2874 // with a SCEVCouldNotCompute as the cached BE count). 2875 2876 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2877 2878 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2879 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2880 const Loop *NestedLoop = NestedAR->getLoop(); 2881 if (L->contains(NestedLoop) 2882 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2883 : (!NestedLoop->contains(L) && 2884 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2885 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2886 NestedAR->op_end()); 2887 Operands[0] = NestedAR->getStart(); 2888 // AddRecs require their operands be loop-invariant with respect to their 2889 // loops. Don't perform this transformation if it would break this 2890 // requirement. 2891 bool AllInvariant = 2892 std::all_of(Operands.begin(), Operands.end(), 2893 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2894 2895 if (AllInvariant) { 2896 // Create a recurrence for the outer loop with the same step size. 2897 // 2898 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2899 // inner recurrence has the same property. 2900 SCEV::NoWrapFlags OuterFlags = 2901 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2902 2903 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2904 AllInvariant = std::all_of( 2905 NestedOperands.begin(), NestedOperands.end(), 2906 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2907 2908 if (AllInvariant) { 2909 // Ok, both add recurrences are valid after the transformation. 2910 // 2911 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2912 // the outer recurrence has the same property. 2913 SCEV::NoWrapFlags InnerFlags = 2914 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2915 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2916 } 2917 } 2918 // Reset Operands to its original state. 2919 Operands[0] = NestedAR; 2920 } 2921 } 2922 2923 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2924 // already have one, otherwise create a new one. 2925 FoldingSetNodeID ID; 2926 ID.AddInteger(scAddRecExpr); 2927 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2928 ID.AddPointer(Operands[i]); 2929 ID.AddPointer(L); 2930 void *IP = nullptr; 2931 SCEVAddRecExpr *S = 2932 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2933 if (!S) { 2934 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2935 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2936 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2937 O, Operands.size(), L); 2938 UniqueSCEVs.InsertNode(S, IP); 2939 } 2940 S->setNoWrapFlags(Flags); 2941 return S; 2942 } 2943 2944 const SCEV * 2945 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2946 const SmallVectorImpl<const SCEV *> &IndexExprs, 2947 bool InBounds) { 2948 // getSCEV(Base)->getType() has the same address space as Base->getType() 2949 // because SCEV::getType() preserves the address space. 2950 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2951 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2952 // instruction to its SCEV, because the Instruction may be guarded by control 2953 // flow and the no-overflow bits may not be valid for the expression in any 2954 // context. This can be fixed similarly to how these flags are handled for 2955 // adds. 2956 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2957 2958 const SCEV *TotalOffset = getZero(IntPtrTy); 2959 // The address space is unimportant. The first thing we do on CurTy is getting 2960 // its element type. 2961 Type *CurTy = PointerType::getUnqual(PointeeType); 2962 for (const SCEV *IndexExpr : IndexExprs) { 2963 // Compute the (potentially symbolic) offset in bytes for this index. 2964 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2965 // For a struct, add the member offset. 2966 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2967 unsigned FieldNo = Index->getZExtValue(); 2968 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2969 2970 // Add the field offset to the running total offset. 2971 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2972 2973 // Update CurTy to the type of the field at Index. 2974 CurTy = STy->getTypeAtIndex(Index); 2975 } else { 2976 // Update CurTy to its element type. 2977 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2978 // For an array, add the element offset, explicitly scaled. 2979 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2980 // Getelementptr indices are signed. 2981 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2982 2983 // Multiply the index by the element size to compute the element offset. 2984 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2985 2986 // Add the element offset to the running total offset. 2987 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2988 } 2989 } 2990 2991 // Add the total offset from all the GEP indices to the base. 2992 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2993 } 2994 2995 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2996 const SCEV *RHS) { 2997 SmallVector<const SCEV *, 2> Ops; 2998 Ops.push_back(LHS); 2999 Ops.push_back(RHS); 3000 return getSMaxExpr(Ops); 3001 } 3002 3003 const SCEV * 3004 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3005 assert(!Ops.empty() && "Cannot get empty smax!"); 3006 if (Ops.size() == 1) return Ops[0]; 3007 #ifndef NDEBUG 3008 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3009 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3010 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3011 "SCEVSMaxExpr operand types don't match!"); 3012 #endif 3013 3014 // Sort by complexity, this groups all similar expression types together. 3015 GroupByComplexity(Ops, &LI); 3016 3017 // If there are any constants, fold them together. 3018 unsigned Idx = 0; 3019 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3020 ++Idx; 3021 assert(Idx < Ops.size()); 3022 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3023 // We found two constants, fold them together! 3024 ConstantInt *Fold = ConstantInt::get(getContext(), 3025 APIntOps::smax(LHSC->getValue()->getValue(), 3026 RHSC->getValue()->getValue())); 3027 Ops[0] = getConstant(Fold); 3028 Ops.erase(Ops.begin()+1); // Erase the folded element 3029 if (Ops.size() == 1) return Ops[0]; 3030 LHSC = cast<SCEVConstant>(Ops[0]); 3031 } 3032 3033 // If we are left with a constant minimum-int, strip it off. 3034 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3035 Ops.erase(Ops.begin()); 3036 --Idx; 3037 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3038 // If we have an smax with a constant maximum-int, it will always be 3039 // maximum-int. 3040 return Ops[0]; 3041 } 3042 3043 if (Ops.size() == 1) return Ops[0]; 3044 } 3045 3046 // Find the first SMax 3047 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3048 ++Idx; 3049 3050 // Check to see if one of the operands is an SMax. If so, expand its operands 3051 // onto our operand list, and recurse to simplify. 3052 if (Idx < Ops.size()) { 3053 bool DeletedSMax = false; 3054 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3055 Ops.erase(Ops.begin()+Idx); 3056 Ops.append(SMax->op_begin(), SMax->op_end()); 3057 DeletedSMax = true; 3058 } 3059 3060 if (DeletedSMax) 3061 return getSMaxExpr(Ops); 3062 } 3063 3064 // Okay, check to see if the same value occurs in the operand list twice. If 3065 // so, delete one. Since we sorted the list, these values are required to 3066 // be adjacent. 3067 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3068 // X smax Y smax Y --> X smax Y 3069 // X smax Y --> X, if X is always greater than Y 3070 if (Ops[i] == Ops[i+1] || 3071 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3072 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3073 --i; --e; 3074 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3075 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3076 --i; --e; 3077 } 3078 3079 if (Ops.size() == 1) return Ops[0]; 3080 3081 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3082 3083 // Okay, it looks like we really DO need an smax expr. Check to see if we 3084 // already have one, otherwise create a new one. 3085 FoldingSetNodeID ID; 3086 ID.AddInteger(scSMaxExpr); 3087 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3088 ID.AddPointer(Ops[i]); 3089 void *IP = nullptr; 3090 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3091 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3092 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3093 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3094 O, Ops.size()); 3095 UniqueSCEVs.InsertNode(S, IP); 3096 return S; 3097 } 3098 3099 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3100 const SCEV *RHS) { 3101 SmallVector<const SCEV *, 2> Ops; 3102 Ops.push_back(LHS); 3103 Ops.push_back(RHS); 3104 return getUMaxExpr(Ops); 3105 } 3106 3107 const SCEV * 3108 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3109 assert(!Ops.empty() && "Cannot get empty umax!"); 3110 if (Ops.size() == 1) return Ops[0]; 3111 #ifndef NDEBUG 3112 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3113 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3114 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3115 "SCEVUMaxExpr operand types don't match!"); 3116 #endif 3117 3118 // Sort by complexity, this groups all similar expression types together. 3119 GroupByComplexity(Ops, &LI); 3120 3121 // If there are any constants, fold them together. 3122 unsigned Idx = 0; 3123 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3124 ++Idx; 3125 assert(Idx < Ops.size()); 3126 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3127 // We found two constants, fold them together! 3128 ConstantInt *Fold = ConstantInt::get(getContext(), 3129 APIntOps::umax(LHSC->getValue()->getValue(), 3130 RHSC->getValue()->getValue())); 3131 Ops[0] = getConstant(Fold); 3132 Ops.erase(Ops.begin()+1); // Erase the folded element 3133 if (Ops.size() == 1) return Ops[0]; 3134 LHSC = cast<SCEVConstant>(Ops[0]); 3135 } 3136 3137 // If we are left with a constant minimum-int, strip it off. 3138 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3139 Ops.erase(Ops.begin()); 3140 --Idx; 3141 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3142 // If we have an umax with a constant maximum-int, it will always be 3143 // maximum-int. 3144 return Ops[0]; 3145 } 3146 3147 if (Ops.size() == 1) return Ops[0]; 3148 } 3149 3150 // Find the first UMax 3151 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3152 ++Idx; 3153 3154 // Check to see if one of the operands is a UMax. If so, expand its operands 3155 // onto our operand list, and recurse to simplify. 3156 if (Idx < Ops.size()) { 3157 bool DeletedUMax = false; 3158 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3159 Ops.erase(Ops.begin()+Idx); 3160 Ops.append(UMax->op_begin(), UMax->op_end()); 3161 DeletedUMax = true; 3162 } 3163 3164 if (DeletedUMax) 3165 return getUMaxExpr(Ops); 3166 } 3167 3168 // Okay, check to see if the same value occurs in the operand list twice. If 3169 // so, delete one. Since we sorted the list, these values are required to 3170 // be adjacent. 3171 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3172 // X umax Y umax Y --> X umax Y 3173 // X umax Y --> X, if X is always greater than Y 3174 if (Ops[i] == Ops[i+1] || 3175 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3176 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3177 --i; --e; 3178 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3179 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3180 --i; --e; 3181 } 3182 3183 if (Ops.size() == 1) return Ops[0]; 3184 3185 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3186 3187 // Okay, it looks like we really DO need a umax expr. Check to see if we 3188 // already have one, otherwise create a new one. 3189 FoldingSetNodeID ID; 3190 ID.AddInteger(scUMaxExpr); 3191 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3192 ID.AddPointer(Ops[i]); 3193 void *IP = nullptr; 3194 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3195 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3196 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3197 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3198 O, Ops.size()); 3199 UniqueSCEVs.InsertNode(S, IP); 3200 return S; 3201 } 3202 3203 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3204 const SCEV *RHS) { 3205 // ~smax(~x, ~y) == smin(x, y). 3206 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3207 } 3208 3209 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3210 const SCEV *RHS) { 3211 // ~umax(~x, ~y) == umin(x, y) 3212 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3213 } 3214 3215 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3216 // We can bypass creating a target-independent 3217 // constant expression and then folding it back into a ConstantInt. 3218 // This is just a compile-time optimization. 3219 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3220 } 3221 3222 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3223 StructType *STy, 3224 unsigned FieldNo) { 3225 // We can bypass creating a target-independent 3226 // constant expression and then folding it back into a ConstantInt. 3227 // This is just a compile-time optimization. 3228 return getConstant( 3229 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3230 } 3231 3232 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3233 // Don't attempt to do anything other than create a SCEVUnknown object 3234 // here. createSCEV only calls getUnknown after checking for all other 3235 // interesting possibilities, and any other code that calls getUnknown 3236 // is doing so in order to hide a value from SCEV canonicalization. 3237 3238 FoldingSetNodeID ID; 3239 ID.AddInteger(scUnknown); 3240 ID.AddPointer(V); 3241 void *IP = nullptr; 3242 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3243 assert(cast<SCEVUnknown>(S)->getValue() == V && 3244 "Stale SCEVUnknown in uniquing map!"); 3245 return S; 3246 } 3247 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3248 FirstUnknown); 3249 FirstUnknown = cast<SCEVUnknown>(S); 3250 UniqueSCEVs.InsertNode(S, IP); 3251 return S; 3252 } 3253 3254 //===----------------------------------------------------------------------===// 3255 // Basic SCEV Analysis and PHI Idiom Recognition Code 3256 // 3257 3258 /// isSCEVable - Test if values of the given type are analyzable within 3259 /// the SCEV framework. This primarily includes integer types, and it 3260 /// can optionally include pointer types if the ScalarEvolution class 3261 /// has access to target-specific information. 3262 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3263 // Integers and pointers are always SCEVable. 3264 return Ty->isIntegerTy() || Ty->isPointerTy(); 3265 } 3266 3267 /// getTypeSizeInBits - Return the size in bits of the specified type, 3268 /// for which isSCEVable must return true. 3269 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3270 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3271 return getDataLayout().getTypeSizeInBits(Ty); 3272 } 3273 3274 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3275 /// the given type and which represents how SCEV will treat the given 3276 /// type, for which isSCEVable must return true. For pointer types, 3277 /// this is the pointer-sized integer type. 3278 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3279 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3280 3281 if (Ty->isIntegerTy()) 3282 return Ty; 3283 3284 // The only other support type is pointer. 3285 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3286 return getDataLayout().getIntPtrType(Ty); 3287 } 3288 3289 const SCEV *ScalarEvolution::getCouldNotCompute() { 3290 return CouldNotCompute.get(); 3291 } 3292 3293 namespace { 3294 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3295 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3296 // is set iff if find such SCEVUnknown. 3297 // 3298 struct FindInvalidSCEVUnknown { 3299 bool FindOne; 3300 FindInvalidSCEVUnknown() { FindOne = false; } 3301 bool follow(const SCEV *S) { 3302 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3303 case scConstant: 3304 return false; 3305 case scUnknown: 3306 if (!cast<SCEVUnknown>(S)->getValue()) 3307 FindOne = true; 3308 return false; 3309 default: 3310 return true; 3311 } 3312 } 3313 bool isDone() const { return FindOne; } 3314 }; 3315 } 3316 3317 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3318 FindInvalidSCEVUnknown F; 3319 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3320 ST.visitAll(S); 3321 3322 return !F.FindOne; 3323 } 3324 3325 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3326 /// expression and create a new one. 3327 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3328 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3329 3330 const SCEV *S = getExistingSCEV(V); 3331 if (S == nullptr) { 3332 S = createSCEV(V); 3333 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3334 } 3335 return S; 3336 } 3337 3338 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3339 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3340 3341 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3342 if (I != ValueExprMap.end()) { 3343 const SCEV *S = I->second; 3344 if (checkValidity(S)) 3345 return S; 3346 ValueExprMap.erase(I); 3347 } 3348 return nullptr; 3349 } 3350 3351 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3352 /// 3353 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3354 SCEV::NoWrapFlags Flags) { 3355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3356 return getConstant( 3357 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3358 3359 Type *Ty = V->getType(); 3360 Ty = getEffectiveSCEVType(Ty); 3361 return getMulExpr( 3362 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3363 } 3364 3365 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3366 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3367 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3368 return getConstant( 3369 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3370 3371 Type *Ty = V->getType(); 3372 Ty = getEffectiveSCEVType(Ty); 3373 const SCEV *AllOnes = 3374 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3375 return getMinusSCEV(AllOnes, V); 3376 } 3377 3378 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3379 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3380 SCEV::NoWrapFlags Flags) { 3381 // Fast path: X - X --> 0. 3382 if (LHS == RHS) 3383 return getZero(LHS->getType()); 3384 3385 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3386 // makes it so that we cannot make much use of NUW. 3387 auto AddFlags = SCEV::FlagAnyWrap; 3388 const bool RHSIsNotMinSigned = 3389 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3390 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3391 // Let M be the minimum representable signed value. Then (-1)*RHS 3392 // signed-wraps if and only if RHS is M. That can happen even for 3393 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3394 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3395 // (-1)*RHS, we need to prove that RHS != M. 3396 // 3397 // If LHS is non-negative and we know that LHS - RHS does not 3398 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3399 // either by proving that RHS > M or that LHS >= 0. 3400 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3401 AddFlags = SCEV::FlagNSW; 3402 } 3403 } 3404 3405 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3406 // RHS is NSW and LHS >= 0. 3407 // 3408 // The difficulty here is that the NSW flag may have been proven 3409 // relative to a loop that is to be found in a recurrence in LHS and 3410 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3411 // larger scope than intended. 3412 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3413 3414 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3415 } 3416 3417 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3418 /// input value to the specified type. If the type must be extended, it is zero 3419 /// extended. 3420 const SCEV * 3421 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3422 Type *SrcTy = V->getType(); 3423 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3424 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3425 "Cannot truncate or zero extend with non-integer arguments!"); 3426 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3427 return V; // No conversion 3428 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3429 return getTruncateExpr(V, Ty); 3430 return getZeroExtendExpr(V, Ty); 3431 } 3432 3433 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3434 /// input value to the specified type. If the type must be extended, it is sign 3435 /// extended. 3436 const SCEV * 3437 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3438 Type *Ty) { 3439 Type *SrcTy = V->getType(); 3440 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3441 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3442 "Cannot truncate or zero extend with non-integer arguments!"); 3443 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3444 return V; // No conversion 3445 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3446 return getTruncateExpr(V, Ty); 3447 return getSignExtendExpr(V, Ty); 3448 } 3449 3450 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3451 /// input value to the specified type. If the type must be extended, it is zero 3452 /// extended. The conversion must not be narrowing. 3453 const SCEV * 3454 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3455 Type *SrcTy = V->getType(); 3456 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3457 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3458 "Cannot noop or zero extend with non-integer arguments!"); 3459 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3460 "getNoopOrZeroExtend cannot truncate!"); 3461 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3462 return V; // No conversion 3463 return getZeroExtendExpr(V, Ty); 3464 } 3465 3466 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3467 /// input value to the specified type. If the type must be extended, it is sign 3468 /// extended. The conversion must not be narrowing. 3469 const SCEV * 3470 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3471 Type *SrcTy = V->getType(); 3472 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3473 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3474 "Cannot noop or sign extend with non-integer arguments!"); 3475 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3476 "getNoopOrSignExtend cannot truncate!"); 3477 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3478 return V; // No conversion 3479 return getSignExtendExpr(V, Ty); 3480 } 3481 3482 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3483 /// the input value to the specified type. If the type must be extended, 3484 /// it is extended with unspecified bits. The conversion must not be 3485 /// narrowing. 3486 const SCEV * 3487 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3488 Type *SrcTy = V->getType(); 3489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3490 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3491 "Cannot noop or any extend with non-integer arguments!"); 3492 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3493 "getNoopOrAnyExtend cannot truncate!"); 3494 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3495 return V; // No conversion 3496 return getAnyExtendExpr(V, Ty); 3497 } 3498 3499 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3500 /// input value to the specified type. The conversion must not be widening. 3501 const SCEV * 3502 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3503 Type *SrcTy = V->getType(); 3504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3505 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3506 "Cannot truncate or noop with non-integer arguments!"); 3507 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3508 "getTruncateOrNoop cannot extend!"); 3509 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3510 return V; // No conversion 3511 return getTruncateExpr(V, Ty); 3512 } 3513 3514 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3515 /// the types using zero-extension, and then perform a umax operation 3516 /// with them. 3517 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3518 const SCEV *RHS) { 3519 const SCEV *PromotedLHS = LHS; 3520 const SCEV *PromotedRHS = RHS; 3521 3522 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3523 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3524 else 3525 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3526 3527 return getUMaxExpr(PromotedLHS, PromotedRHS); 3528 } 3529 3530 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3531 /// the types using zero-extension, and then perform a umin operation 3532 /// with them. 3533 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3534 const SCEV *RHS) { 3535 const SCEV *PromotedLHS = LHS; 3536 const SCEV *PromotedRHS = RHS; 3537 3538 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3539 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3540 else 3541 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3542 3543 return getUMinExpr(PromotedLHS, PromotedRHS); 3544 } 3545 3546 /// getPointerBase - Transitively follow the chain of pointer-type operands 3547 /// until reaching a SCEV that does not have a single pointer operand. This 3548 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3549 /// but corner cases do exist. 3550 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3551 // A pointer operand may evaluate to a nonpointer expression, such as null. 3552 if (!V->getType()->isPointerTy()) 3553 return V; 3554 3555 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3556 return getPointerBase(Cast->getOperand()); 3557 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3558 const SCEV *PtrOp = nullptr; 3559 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3560 I != E; ++I) { 3561 if ((*I)->getType()->isPointerTy()) { 3562 // Cannot find the base of an expression with multiple pointer operands. 3563 if (PtrOp) 3564 return V; 3565 PtrOp = *I; 3566 } 3567 } 3568 if (!PtrOp) 3569 return V; 3570 return getPointerBase(PtrOp); 3571 } 3572 return V; 3573 } 3574 3575 /// PushDefUseChildren - Push users of the given Instruction 3576 /// onto the given Worklist. 3577 static void 3578 PushDefUseChildren(Instruction *I, 3579 SmallVectorImpl<Instruction *> &Worklist) { 3580 // Push the def-use children onto the Worklist stack. 3581 for (User *U : I->users()) 3582 Worklist.push_back(cast<Instruction>(U)); 3583 } 3584 3585 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3586 /// instructions that depend on the given instruction and removes them from 3587 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3588 /// resolution. 3589 void 3590 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3591 SmallVector<Instruction *, 16> Worklist; 3592 PushDefUseChildren(PN, Worklist); 3593 3594 SmallPtrSet<Instruction *, 8> Visited; 3595 Visited.insert(PN); 3596 while (!Worklist.empty()) { 3597 Instruction *I = Worklist.pop_back_val(); 3598 if (!Visited.insert(I).second) 3599 continue; 3600 3601 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3602 if (It != ValueExprMap.end()) { 3603 const SCEV *Old = It->second; 3604 3605 // Short-circuit the def-use traversal if the symbolic name 3606 // ceases to appear in expressions. 3607 if (Old != SymName && !hasOperand(Old, SymName)) 3608 continue; 3609 3610 // SCEVUnknown for a PHI either means that it has an unrecognized 3611 // structure, it's a PHI that's in the progress of being computed 3612 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3613 // additional loop trip count information isn't going to change anything. 3614 // In the second case, createNodeForPHI will perform the necessary 3615 // updates on its own when it gets to that point. In the third, we do 3616 // want to forget the SCEVUnknown. 3617 if (!isa<PHINode>(I) || 3618 !isa<SCEVUnknown>(Old) || 3619 (I != PN && Old == SymName)) { 3620 forgetMemoizedResults(Old); 3621 ValueExprMap.erase(It); 3622 } 3623 } 3624 3625 PushDefUseChildren(I, Worklist); 3626 } 3627 } 3628 3629 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3630 public: 3631 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3632 ScalarEvolution &SE) { 3633 SCEVInitRewriter Rewriter(L, SE); 3634 const SCEV *Result = Rewriter.visit(Scev); 3635 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3636 } 3637 3638 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3639 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3640 3641 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3642 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3643 Valid = false; 3644 return Expr; 3645 } 3646 3647 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3648 // Only allow AddRecExprs for this loop. 3649 if (Expr->getLoop() == L) 3650 return Expr->getStart(); 3651 Valid = false; 3652 return Expr; 3653 } 3654 3655 bool isValid() { return Valid; } 3656 3657 private: 3658 const Loop *L; 3659 bool Valid; 3660 }; 3661 3662 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3663 public: 3664 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3665 ScalarEvolution &SE) { 3666 SCEVShiftRewriter Rewriter(L, SE); 3667 const SCEV *Result = Rewriter.visit(Scev); 3668 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3669 } 3670 3671 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3672 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3673 3674 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3675 // Only allow AddRecExprs for this loop. 3676 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3677 Valid = false; 3678 return Expr; 3679 } 3680 3681 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3682 if (Expr->getLoop() == L && Expr->isAffine()) 3683 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3684 Valid = false; 3685 return Expr; 3686 } 3687 bool isValid() { return Valid; } 3688 3689 private: 3690 const Loop *L; 3691 bool Valid; 3692 }; 3693 3694 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3695 const Loop *L = LI.getLoopFor(PN->getParent()); 3696 if (!L || L->getHeader() != PN->getParent()) 3697 return nullptr; 3698 3699 // The loop may have multiple entrances or multiple exits; we can analyze 3700 // this phi as an addrec if it has a unique entry value and a unique 3701 // backedge value. 3702 Value *BEValueV = nullptr, *StartValueV = nullptr; 3703 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3704 Value *V = PN->getIncomingValue(i); 3705 if (L->contains(PN->getIncomingBlock(i))) { 3706 if (!BEValueV) { 3707 BEValueV = V; 3708 } else if (BEValueV != V) { 3709 BEValueV = nullptr; 3710 break; 3711 } 3712 } else if (!StartValueV) { 3713 StartValueV = V; 3714 } else if (StartValueV != V) { 3715 StartValueV = nullptr; 3716 break; 3717 } 3718 } 3719 if (BEValueV && StartValueV) { 3720 // While we are analyzing this PHI node, handle its value symbolically. 3721 const SCEV *SymbolicName = getUnknown(PN); 3722 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3723 "PHI node already processed?"); 3724 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3725 3726 // Using this symbolic name for the PHI, analyze the value coming around 3727 // the back-edge. 3728 const SCEV *BEValue = getSCEV(BEValueV); 3729 3730 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3731 // has a special value for the first iteration of the loop. 3732 3733 // If the value coming around the backedge is an add with the symbolic 3734 // value we just inserted, then we found a simple induction variable! 3735 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3736 // If there is a single occurrence of the symbolic value, replace it 3737 // with a recurrence. 3738 unsigned FoundIndex = Add->getNumOperands(); 3739 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3740 if (Add->getOperand(i) == SymbolicName) 3741 if (FoundIndex == e) { 3742 FoundIndex = i; 3743 break; 3744 } 3745 3746 if (FoundIndex != Add->getNumOperands()) { 3747 // Create an add with everything but the specified operand. 3748 SmallVector<const SCEV *, 8> Ops; 3749 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3750 if (i != FoundIndex) 3751 Ops.push_back(Add->getOperand(i)); 3752 const SCEV *Accum = getAddExpr(Ops); 3753 3754 // This is not a valid addrec if the step amount is varying each 3755 // loop iteration, but is not itself an addrec in this loop. 3756 if (isLoopInvariant(Accum, L) || 3757 (isa<SCEVAddRecExpr>(Accum) && 3758 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3759 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3760 3761 // If the increment doesn't overflow, then neither the addrec nor 3762 // the post-increment will overflow. 3763 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3764 if (OBO->getOperand(0) == PN) { 3765 if (OBO->hasNoUnsignedWrap()) 3766 Flags = setFlags(Flags, SCEV::FlagNUW); 3767 if (OBO->hasNoSignedWrap()) 3768 Flags = setFlags(Flags, SCEV::FlagNSW); 3769 } 3770 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3771 // If the increment is an inbounds GEP, then we know the address 3772 // space cannot be wrapped around. We cannot make any guarantee 3773 // about signed or unsigned overflow because pointers are 3774 // unsigned but we may have a negative index from the base 3775 // pointer. We can guarantee that no unsigned wrap occurs if the 3776 // indices form a positive value. 3777 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3778 Flags = setFlags(Flags, SCEV::FlagNW); 3779 3780 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3781 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3782 Flags = setFlags(Flags, SCEV::FlagNUW); 3783 } 3784 3785 // We cannot transfer nuw and nsw flags from subtraction 3786 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3787 // for instance. 3788 } 3789 3790 const SCEV *StartVal = getSCEV(StartValueV); 3791 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3792 3793 // Since the no-wrap flags are on the increment, they apply to the 3794 // post-incremented value as well. 3795 if (isLoopInvariant(Accum, L)) 3796 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3797 3798 // Okay, for the entire analysis of this edge we assumed the PHI 3799 // to be symbolic. We now need to go back and purge all of the 3800 // entries for the scalars that use the symbolic expression. 3801 ForgetSymbolicName(PN, SymbolicName); 3802 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3803 return PHISCEV; 3804 } 3805 } 3806 } else { 3807 // Otherwise, this could be a loop like this: 3808 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3809 // In this case, j = {1,+,1} and BEValue is j. 3810 // Because the other in-value of i (0) fits the evolution of BEValue 3811 // i really is an addrec evolution. 3812 // 3813 // We can generalize this saying that i is the shifted value of BEValue 3814 // by one iteration: 3815 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3816 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3817 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3818 if (Shifted != getCouldNotCompute() && 3819 Start != getCouldNotCompute()) { 3820 const SCEV *StartVal = getSCEV(StartValueV); 3821 if (Start == StartVal) { 3822 // Okay, for the entire analysis of this edge we assumed the PHI 3823 // to be symbolic. We now need to go back and purge all of the 3824 // entries for the scalars that use the symbolic expression. 3825 ForgetSymbolicName(PN, SymbolicName); 3826 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3827 return Shifted; 3828 } 3829 } 3830 } 3831 } 3832 3833 return nullptr; 3834 } 3835 3836 // Checks if the SCEV S is available at BB. S is considered available at BB 3837 // if S can be materialized at BB without introducing a fault. 3838 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3839 BasicBlock *BB) { 3840 struct CheckAvailable { 3841 bool TraversalDone = false; 3842 bool Available = true; 3843 3844 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3845 BasicBlock *BB = nullptr; 3846 DominatorTree &DT; 3847 3848 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3849 : L(L), BB(BB), DT(DT) {} 3850 3851 bool setUnavailable() { 3852 TraversalDone = true; 3853 Available = false; 3854 return false; 3855 } 3856 3857 bool follow(const SCEV *S) { 3858 switch (S->getSCEVType()) { 3859 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3860 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3861 // These expressions are available if their operand(s) is/are. 3862 return true; 3863 3864 case scAddRecExpr: { 3865 // We allow add recurrences that are on the loop BB is in, or some 3866 // outer loop. This guarantees availability because the value of the 3867 // add recurrence at BB is simply the "current" value of the induction 3868 // variable. We can relax this in the future; for instance an add 3869 // recurrence on a sibling dominating loop is also available at BB. 3870 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3871 if (L && (ARLoop == L || ARLoop->contains(L))) 3872 return true; 3873 3874 return setUnavailable(); 3875 } 3876 3877 case scUnknown: { 3878 // For SCEVUnknown, we check for simple dominance. 3879 const auto *SU = cast<SCEVUnknown>(S); 3880 Value *V = SU->getValue(); 3881 3882 if (isa<Argument>(V)) 3883 return false; 3884 3885 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3886 return false; 3887 3888 return setUnavailable(); 3889 } 3890 3891 case scUDivExpr: 3892 case scCouldNotCompute: 3893 // We do not try to smart about these at all. 3894 return setUnavailable(); 3895 } 3896 llvm_unreachable("switch should be fully covered!"); 3897 } 3898 3899 bool isDone() { return TraversalDone; } 3900 }; 3901 3902 CheckAvailable CA(L, BB, DT); 3903 SCEVTraversal<CheckAvailable> ST(CA); 3904 3905 ST.visitAll(S); 3906 return CA.Available; 3907 } 3908 3909 // Try to match a control flow sequence that branches out at BI and merges back 3910 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3911 // match. 3912 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3913 Value *&C, Value *&LHS, Value *&RHS) { 3914 C = BI->getCondition(); 3915 3916 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3917 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3918 3919 if (!LeftEdge.isSingleEdge()) 3920 return false; 3921 3922 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3923 3924 Use &LeftUse = Merge->getOperandUse(0); 3925 Use &RightUse = Merge->getOperandUse(1); 3926 3927 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3928 LHS = LeftUse; 3929 RHS = RightUse; 3930 return true; 3931 } 3932 3933 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3934 LHS = RightUse; 3935 RHS = LeftUse; 3936 return true; 3937 } 3938 3939 return false; 3940 } 3941 3942 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3943 if (PN->getNumIncomingValues() == 2) { 3944 const Loop *L = LI.getLoopFor(PN->getParent()); 3945 3946 // Try to match 3947 // 3948 // br %cond, label %left, label %right 3949 // left: 3950 // br label %merge 3951 // right: 3952 // br label %merge 3953 // merge: 3954 // V = phi [ %x, %left ], [ %y, %right ] 3955 // 3956 // as "select %cond, %x, %y" 3957 3958 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3959 assert(IDom && "At least the entry block should dominate PN"); 3960 3961 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3962 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3963 3964 if (BI && BI->isConditional() && 3965 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3966 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3967 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3968 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3969 } 3970 3971 return nullptr; 3972 } 3973 3974 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3975 if (const SCEV *S = createAddRecFromPHI(PN)) 3976 return S; 3977 3978 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3979 return S; 3980 3981 // If the PHI has a single incoming value, follow that value, unless the 3982 // PHI's incoming blocks are in a different loop, in which case doing so 3983 // risks breaking LCSSA form. Instcombine would normally zap these, but 3984 // it doesn't have DominatorTree information, so it may miss cases. 3985 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 3986 if (LI.replacementPreservesLCSSAForm(PN, V)) 3987 return getSCEV(V); 3988 3989 // If it's not a loop phi, we can't handle it yet. 3990 return getUnknown(PN); 3991 } 3992 3993 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3994 Value *Cond, 3995 Value *TrueVal, 3996 Value *FalseVal) { 3997 // Handle "constant" branch or select. This can occur for instance when a 3998 // loop pass transforms an inner loop and moves on to process the outer loop. 3999 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4000 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4001 4002 // Try to match some simple smax or umax patterns. 4003 auto *ICI = dyn_cast<ICmpInst>(Cond); 4004 if (!ICI) 4005 return getUnknown(I); 4006 4007 Value *LHS = ICI->getOperand(0); 4008 Value *RHS = ICI->getOperand(1); 4009 4010 switch (ICI->getPredicate()) { 4011 case ICmpInst::ICMP_SLT: 4012 case ICmpInst::ICMP_SLE: 4013 std::swap(LHS, RHS); 4014 // fall through 4015 case ICmpInst::ICMP_SGT: 4016 case ICmpInst::ICMP_SGE: 4017 // a >s b ? a+x : b+x -> smax(a, b)+x 4018 // a >s b ? b+x : a+x -> smin(a, b)+x 4019 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4020 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4021 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4022 const SCEV *LA = getSCEV(TrueVal); 4023 const SCEV *RA = getSCEV(FalseVal); 4024 const SCEV *LDiff = getMinusSCEV(LA, LS); 4025 const SCEV *RDiff = getMinusSCEV(RA, RS); 4026 if (LDiff == RDiff) 4027 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4028 LDiff = getMinusSCEV(LA, RS); 4029 RDiff = getMinusSCEV(RA, LS); 4030 if (LDiff == RDiff) 4031 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4032 } 4033 break; 4034 case ICmpInst::ICMP_ULT: 4035 case ICmpInst::ICMP_ULE: 4036 std::swap(LHS, RHS); 4037 // fall through 4038 case ICmpInst::ICMP_UGT: 4039 case ICmpInst::ICMP_UGE: 4040 // a >u b ? a+x : b+x -> umax(a, b)+x 4041 // a >u b ? b+x : a+x -> umin(a, b)+x 4042 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4043 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4044 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4045 const SCEV *LA = getSCEV(TrueVal); 4046 const SCEV *RA = getSCEV(FalseVal); 4047 const SCEV *LDiff = getMinusSCEV(LA, LS); 4048 const SCEV *RDiff = getMinusSCEV(RA, RS); 4049 if (LDiff == RDiff) 4050 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4051 LDiff = getMinusSCEV(LA, RS); 4052 RDiff = getMinusSCEV(RA, LS); 4053 if (LDiff == RDiff) 4054 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4055 } 4056 break; 4057 case ICmpInst::ICMP_NE: 4058 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4059 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4060 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4061 const SCEV *One = getOne(I->getType()); 4062 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4063 const SCEV *LA = getSCEV(TrueVal); 4064 const SCEV *RA = getSCEV(FalseVal); 4065 const SCEV *LDiff = getMinusSCEV(LA, LS); 4066 const SCEV *RDiff = getMinusSCEV(RA, One); 4067 if (LDiff == RDiff) 4068 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4069 } 4070 break; 4071 case ICmpInst::ICMP_EQ: 4072 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4073 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4074 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4075 const SCEV *One = getOne(I->getType()); 4076 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4077 const SCEV *LA = getSCEV(TrueVal); 4078 const SCEV *RA = getSCEV(FalseVal); 4079 const SCEV *LDiff = getMinusSCEV(LA, One); 4080 const SCEV *RDiff = getMinusSCEV(RA, LS); 4081 if (LDiff == RDiff) 4082 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4083 } 4084 break; 4085 default: 4086 break; 4087 } 4088 4089 return getUnknown(I); 4090 } 4091 4092 /// createNodeForGEP - Expand GEP instructions into add and multiply 4093 /// operations. This allows them to be analyzed by regular SCEV code. 4094 /// 4095 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4096 Value *Base = GEP->getOperand(0); 4097 // Don't attempt to analyze GEPs over unsized objects. 4098 if (!Base->getType()->getPointerElementType()->isSized()) 4099 return getUnknown(GEP); 4100 4101 SmallVector<const SCEV *, 4> IndexExprs; 4102 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4103 IndexExprs.push_back(getSCEV(*Index)); 4104 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4105 GEP->isInBounds()); 4106 } 4107 4108 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4109 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4110 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4111 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4112 uint32_t 4113 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4114 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4115 return C->getValue()->getValue().countTrailingZeros(); 4116 4117 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4118 return std::min(GetMinTrailingZeros(T->getOperand()), 4119 (uint32_t)getTypeSizeInBits(T->getType())); 4120 4121 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4122 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4123 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4124 getTypeSizeInBits(E->getType()) : OpRes; 4125 } 4126 4127 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4128 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4129 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4130 getTypeSizeInBits(E->getType()) : OpRes; 4131 } 4132 4133 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4134 // The result is the min of all operands results. 4135 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4136 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4137 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4138 return MinOpRes; 4139 } 4140 4141 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4142 // The result is the sum of all operands results. 4143 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4144 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4145 for (unsigned i = 1, e = M->getNumOperands(); 4146 SumOpRes != BitWidth && i != e; ++i) 4147 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4148 BitWidth); 4149 return SumOpRes; 4150 } 4151 4152 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4153 // The result is the min of all operands results. 4154 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4155 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4156 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4157 return MinOpRes; 4158 } 4159 4160 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4161 // The result is the min of all operands results. 4162 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4163 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4164 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4165 return MinOpRes; 4166 } 4167 4168 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4169 // The result is the min of all operands results. 4170 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4171 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4172 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4173 return MinOpRes; 4174 } 4175 4176 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4177 // For a SCEVUnknown, ask ValueTracking. 4178 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4179 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4180 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4181 nullptr, &DT); 4182 return Zeros.countTrailingOnes(); 4183 } 4184 4185 // SCEVUDivExpr 4186 return 0; 4187 } 4188 4189 /// GetRangeFromMetadata - Helper method to assign a range to V from 4190 /// metadata present in the IR. 4191 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4192 if (Instruction *I = dyn_cast<Instruction>(V)) 4193 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4194 return getConstantRangeFromMetadata(*MD); 4195 4196 return None; 4197 } 4198 4199 /// getRange - Determine the range for a particular SCEV. If SignHint is 4200 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4201 /// with a "cleaner" unsigned (resp. signed) representation. 4202 /// 4203 ConstantRange 4204 ScalarEvolution::getRange(const SCEV *S, 4205 ScalarEvolution::RangeSignHint SignHint) { 4206 DenseMap<const SCEV *, ConstantRange> &Cache = 4207 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4208 : SignedRanges; 4209 4210 // See if we've computed this range already. 4211 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4212 if (I != Cache.end()) 4213 return I->second; 4214 4215 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4216 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4217 4218 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4219 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4220 4221 // If the value has known zeros, the maximum value will have those known zeros 4222 // as well. 4223 uint32_t TZ = GetMinTrailingZeros(S); 4224 if (TZ != 0) { 4225 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4226 ConservativeResult = 4227 ConstantRange(APInt::getMinValue(BitWidth), 4228 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4229 else 4230 ConservativeResult = ConstantRange( 4231 APInt::getSignedMinValue(BitWidth), 4232 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4233 } 4234 4235 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4236 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4237 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4238 X = X.add(getRange(Add->getOperand(i), SignHint)); 4239 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4240 } 4241 4242 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4243 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4244 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4245 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4246 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4247 } 4248 4249 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4250 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4251 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4252 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4253 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4254 } 4255 4256 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4257 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4258 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4259 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4260 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4261 } 4262 4263 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4264 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4265 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4266 return setRange(UDiv, SignHint, 4267 ConservativeResult.intersectWith(X.udiv(Y))); 4268 } 4269 4270 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4271 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4272 return setRange(ZExt, SignHint, 4273 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4274 } 4275 4276 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4277 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4278 return setRange(SExt, SignHint, 4279 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4280 } 4281 4282 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4283 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4284 return setRange(Trunc, SignHint, 4285 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4286 } 4287 4288 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4289 // If there's no unsigned wrap, the value will never be less than its 4290 // initial value. 4291 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4292 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4293 if (!C->getValue()->isZero()) 4294 ConservativeResult = 4295 ConservativeResult.intersectWith( 4296 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4297 4298 // If there's no signed wrap, and all the operands have the same sign or 4299 // zero, the value won't ever change sign. 4300 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4301 bool AllNonNeg = true; 4302 bool AllNonPos = true; 4303 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4304 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4305 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4306 } 4307 if (AllNonNeg) 4308 ConservativeResult = ConservativeResult.intersectWith( 4309 ConstantRange(APInt(BitWidth, 0), 4310 APInt::getSignedMinValue(BitWidth))); 4311 else if (AllNonPos) 4312 ConservativeResult = ConservativeResult.intersectWith( 4313 ConstantRange(APInt::getSignedMinValue(BitWidth), 4314 APInt(BitWidth, 1))); 4315 } 4316 4317 // TODO: non-affine addrec 4318 if (AddRec->isAffine()) { 4319 Type *Ty = AddRec->getType(); 4320 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4321 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4322 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4323 4324 // Check for overflow. This must be done with ConstantRange arithmetic 4325 // because we could be called from within the ScalarEvolution overflow 4326 // checking code. 4327 4328 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4329 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4330 ConstantRange ZExtMaxBECountRange = 4331 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4332 4333 const SCEV *Start = AddRec->getStart(); 4334 const SCEV *Step = AddRec->getStepRecurrence(*this); 4335 ConstantRange StepSRange = getSignedRange(Step); 4336 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4337 4338 ConstantRange StartURange = getUnsignedRange(Start); 4339 ConstantRange EndURange = 4340 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4341 4342 // Check for unsigned overflow. 4343 ConstantRange ZExtStartURange = 4344 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4345 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4346 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4347 ZExtEndURange) { 4348 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4349 EndURange.getUnsignedMin()); 4350 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4351 EndURange.getUnsignedMax()); 4352 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4353 if (!IsFullRange) 4354 ConservativeResult = 4355 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4356 } 4357 4358 ConstantRange StartSRange = getSignedRange(Start); 4359 ConstantRange EndSRange = 4360 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4361 4362 // Check for signed overflow. This must be done with ConstantRange 4363 // arithmetic because we could be called from within the ScalarEvolution 4364 // overflow checking code. 4365 ConstantRange SExtStartSRange = 4366 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4367 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4368 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4369 SExtEndSRange) { 4370 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4371 EndSRange.getSignedMin()); 4372 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4373 EndSRange.getSignedMax()); 4374 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4375 if (!IsFullRange) 4376 ConservativeResult = 4377 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4378 } 4379 } 4380 } 4381 4382 return setRange(AddRec, SignHint, ConservativeResult); 4383 } 4384 4385 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4386 // Check if the IR explicitly contains !range metadata. 4387 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4388 if (MDRange.hasValue()) 4389 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4390 4391 // Split here to avoid paying the compile-time cost of calling both 4392 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4393 // if needed. 4394 const DataLayout &DL = getDataLayout(); 4395 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4396 // For a SCEVUnknown, ask ValueTracking. 4397 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4398 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4399 if (Ones != ~Zeros + 1) 4400 ConservativeResult = 4401 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4402 } else { 4403 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4404 "generalize as needed!"); 4405 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4406 if (NS > 1) 4407 ConservativeResult = ConservativeResult.intersectWith( 4408 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4409 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4410 } 4411 4412 return setRange(U, SignHint, ConservativeResult); 4413 } 4414 4415 return setRange(S, SignHint, ConservativeResult); 4416 } 4417 4418 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4419 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4420 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4421 4422 // Return early if there are no flags to propagate to the SCEV. 4423 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4424 if (BinOp->hasNoUnsignedWrap()) 4425 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4426 if (BinOp->hasNoSignedWrap()) 4427 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4428 if (Flags == SCEV::FlagAnyWrap) { 4429 return SCEV::FlagAnyWrap; 4430 } 4431 4432 // Here we check that BinOp is in the header of the innermost loop 4433 // containing BinOp, since we only deal with instructions in the loop 4434 // header. The actual loop we need to check later will come from an add 4435 // recurrence, but getting that requires computing the SCEV of the operands, 4436 // which can be expensive. This check we can do cheaply to rule out some 4437 // cases early. 4438 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4439 if (innermostContainingLoop == nullptr || 4440 innermostContainingLoop->getHeader() != BinOp->getParent()) 4441 return SCEV::FlagAnyWrap; 4442 4443 // Only proceed if we can prove that BinOp does not yield poison. 4444 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4445 4446 // At this point we know that if V is executed, then it does not wrap 4447 // according to at least one of NSW or NUW. If V is not executed, then we do 4448 // not know if the calculation that V represents would wrap. Multiple 4449 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4450 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4451 // derived from other instructions that map to the same SCEV. We cannot make 4452 // that guarantee for cases where V is not executed. So we need to find the 4453 // loop that V is considered in relation to and prove that V is executed for 4454 // every iteration of that loop. That implies that the value that V 4455 // calculates does not wrap anywhere in the loop, so then we can apply the 4456 // flags to the SCEV. 4457 // 4458 // We check isLoopInvariant to disambiguate in case we are adding two 4459 // recurrences from different loops, so that we know which loop to prove 4460 // that V is executed in. 4461 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4462 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4463 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4464 const int OtherOpIndex = 1 - OpIndex; 4465 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4466 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4467 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4468 return Flags; 4469 } 4470 } 4471 return SCEV::FlagAnyWrap; 4472 } 4473 4474 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4475 /// the expression. 4476 /// 4477 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4478 if (!isSCEVable(V->getType())) 4479 return getUnknown(V); 4480 4481 unsigned Opcode = Instruction::UserOp1; 4482 if (Instruction *I = dyn_cast<Instruction>(V)) { 4483 Opcode = I->getOpcode(); 4484 4485 // Don't attempt to analyze instructions in blocks that aren't 4486 // reachable. Such instructions don't matter, and they aren't required 4487 // to obey basic rules for definitions dominating uses which this 4488 // analysis depends on. 4489 if (!DT.isReachableFromEntry(I->getParent())) 4490 return getUnknown(V); 4491 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4492 Opcode = CE->getOpcode(); 4493 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4494 return getConstant(CI); 4495 else if (isa<ConstantPointerNull>(V)) 4496 return getZero(V->getType()); 4497 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4498 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4499 else 4500 return getUnknown(V); 4501 4502 Operator *U = cast<Operator>(V); 4503 switch (Opcode) { 4504 case Instruction::Add: { 4505 // The simple thing to do would be to just call getSCEV on both operands 4506 // and call getAddExpr with the result. However if we're looking at a 4507 // bunch of things all added together, this can be quite inefficient, 4508 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4509 // Instead, gather up all the operands and make a single getAddExpr call. 4510 // LLVM IR canonical form means we need only traverse the left operands. 4511 SmallVector<const SCEV *, 4> AddOps; 4512 for (Value *Op = U;; Op = U->getOperand(0)) { 4513 U = dyn_cast<Operator>(Op); 4514 unsigned Opcode = U ? U->getOpcode() : 0; 4515 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4516 assert(Op != V && "V should be an add"); 4517 AddOps.push_back(getSCEV(Op)); 4518 break; 4519 } 4520 4521 if (auto *OpSCEV = getExistingSCEV(U)) { 4522 AddOps.push_back(OpSCEV); 4523 break; 4524 } 4525 4526 // If a NUW or NSW flag can be applied to the SCEV for this 4527 // addition, then compute the SCEV for this addition by itself 4528 // with a separate call to getAddExpr. We need to do that 4529 // instead of pushing the operands of the addition onto AddOps, 4530 // since the flags are only known to apply to this particular 4531 // addition - they may not apply to other additions that can be 4532 // formed with operands from AddOps. 4533 const SCEV *RHS = getSCEV(U->getOperand(1)); 4534 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4535 if (Flags != SCEV::FlagAnyWrap) { 4536 const SCEV *LHS = getSCEV(U->getOperand(0)); 4537 if (Opcode == Instruction::Sub) 4538 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4539 else 4540 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4541 break; 4542 } 4543 4544 if (Opcode == Instruction::Sub) 4545 AddOps.push_back(getNegativeSCEV(RHS)); 4546 else 4547 AddOps.push_back(RHS); 4548 } 4549 return getAddExpr(AddOps); 4550 } 4551 4552 case Instruction::Mul: { 4553 SmallVector<const SCEV *, 4> MulOps; 4554 for (Value *Op = U;; Op = U->getOperand(0)) { 4555 U = dyn_cast<Operator>(Op); 4556 if (!U || U->getOpcode() != Instruction::Mul) { 4557 assert(Op != V && "V should be a mul"); 4558 MulOps.push_back(getSCEV(Op)); 4559 break; 4560 } 4561 4562 if (auto *OpSCEV = getExistingSCEV(U)) { 4563 MulOps.push_back(OpSCEV); 4564 break; 4565 } 4566 4567 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4568 if (Flags != SCEV::FlagAnyWrap) { 4569 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4570 getSCEV(U->getOperand(1)), Flags)); 4571 break; 4572 } 4573 4574 MulOps.push_back(getSCEV(U->getOperand(1))); 4575 } 4576 return getMulExpr(MulOps); 4577 } 4578 case Instruction::UDiv: 4579 return getUDivExpr(getSCEV(U->getOperand(0)), 4580 getSCEV(U->getOperand(1))); 4581 case Instruction::Sub: 4582 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4583 getNoWrapFlagsFromUB(U)); 4584 case Instruction::And: 4585 // For an expression like x&255 that merely masks off the high bits, 4586 // use zext(trunc(x)) as the SCEV expression. 4587 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4588 if (CI->isNullValue()) 4589 return getSCEV(U->getOperand(1)); 4590 if (CI->isAllOnesValue()) 4591 return getSCEV(U->getOperand(0)); 4592 const APInt &A = CI->getValue(); 4593 4594 // Instcombine's ShrinkDemandedConstant may strip bits out of 4595 // constants, obscuring what would otherwise be a low-bits mask. 4596 // Use computeKnownBits to compute what ShrinkDemandedConstant 4597 // knew about to reconstruct a low-bits mask value. 4598 unsigned LZ = A.countLeadingZeros(); 4599 unsigned TZ = A.countTrailingZeros(); 4600 unsigned BitWidth = A.getBitWidth(); 4601 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4602 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4603 0, &AC, nullptr, &DT); 4604 4605 APInt EffectiveMask = 4606 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4607 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4608 const SCEV *MulCount = getConstant( 4609 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4610 return getMulExpr( 4611 getZeroExtendExpr( 4612 getTruncateExpr( 4613 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4614 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4615 U->getType()), 4616 MulCount); 4617 } 4618 } 4619 break; 4620 4621 case Instruction::Or: 4622 // If the RHS of the Or is a constant, we may have something like: 4623 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4624 // optimizations will transparently handle this case. 4625 // 4626 // In order for this transformation to be safe, the LHS must be of the 4627 // form X*(2^n) and the Or constant must be less than 2^n. 4628 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4629 const SCEV *LHS = getSCEV(U->getOperand(0)); 4630 const APInt &CIVal = CI->getValue(); 4631 if (GetMinTrailingZeros(LHS) >= 4632 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4633 // Build a plain add SCEV. 4634 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4635 // If the LHS of the add was an addrec and it has no-wrap flags, 4636 // transfer the no-wrap flags, since an or won't introduce a wrap. 4637 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4638 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4639 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4640 OldAR->getNoWrapFlags()); 4641 } 4642 return S; 4643 } 4644 } 4645 break; 4646 case Instruction::Xor: 4647 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4648 // If the RHS of the xor is a signbit, then this is just an add. 4649 // Instcombine turns add of signbit into xor as a strength reduction step. 4650 if (CI->getValue().isSignBit()) 4651 return getAddExpr(getSCEV(U->getOperand(0)), 4652 getSCEV(U->getOperand(1))); 4653 4654 // If the RHS of xor is -1, then this is a not operation. 4655 if (CI->isAllOnesValue()) 4656 return getNotSCEV(getSCEV(U->getOperand(0))); 4657 4658 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4659 // This is a variant of the check for xor with -1, and it handles 4660 // the case where instcombine has trimmed non-demanded bits out 4661 // of an xor with -1. 4662 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4663 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4664 if (BO->getOpcode() == Instruction::And && 4665 LCI->getValue() == CI->getValue()) 4666 if (const SCEVZeroExtendExpr *Z = 4667 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4668 Type *UTy = U->getType(); 4669 const SCEV *Z0 = Z->getOperand(); 4670 Type *Z0Ty = Z0->getType(); 4671 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4672 4673 // If C is a low-bits mask, the zero extend is serving to 4674 // mask off the high bits. Complement the operand and 4675 // re-apply the zext. 4676 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4677 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4678 4679 // If C is a single bit, it may be in the sign-bit position 4680 // before the zero-extend. In this case, represent the xor 4681 // using an add, which is equivalent, and re-apply the zext. 4682 APInt Trunc = CI->getValue().trunc(Z0TySize); 4683 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4684 Trunc.isSignBit()) 4685 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4686 UTy); 4687 } 4688 } 4689 break; 4690 4691 case Instruction::Shl: 4692 // Turn shift left of a constant amount into a multiply. 4693 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4694 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4695 4696 // If the shift count is not less than the bitwidth, the result of 4697 // the shift is undefined. Don't try to analyze it, because the 4698 // resolution chosen here may differ from the resolution chosen in 4699 // other parts of the compiler. 4700 if (SA->getValue().uge(BitWidth)) 4701 break; 4702 4703 // It is currently not resolved how to interpret NSW for left 4704 // shift by BitWidth - 1, so we avoid applying flags in that 4705 // case. Remove this check (or this comment) once the situation 4706 // is resolved. See 4707 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4708 // and http://reviews.llvm.org/D8890 . 4709 auto Flags = SCEV::FlagAnyWrap; 4710 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4711 4712 Constant *X = ConstantInt::get(getContext(), 4713 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4714 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4715 } 4716 break; 4717 4718 case Instruction::LShr: 4719 // Turn logical shift right of a constant into a unsigned divide. 4720 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4721 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4722 4723 // If the shift count is not less than the bitwidth, the result of 4724 // the shift is undefined. Don't try to analyze it, because the 4725 // resolution chosen here may differ from the resolution chosen in 4726 // other parts of the compiler. 4727 if (SA->getValue().uge(BitWidth)) 4728 break; 4729 4730 Constant *X = ConstantInt::get(getContext(), 4731 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4732 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4733 } 4734 break; 4735 4736 case Instruction::AShr: 4737 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4738 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4739 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4740 if (L->getOpcode() == Instruction::Shl && 4741 L->getOperand(1) == U->getOperand(1)) { 4742 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4743 4744 // If the shift count is not less than the bitwidth, the result of 4745 // the shift is undefined. Don't try to analyze it, because the 4746 // resolution chosen here may differ from the resolution chosen in 4747 // other parts of the compiler. 4748 if (CI->getValue().uge(BitWidth)) 4749 break; 4750 4751 uint64_t Amt = BitWidth - CI->getZExtValue(); 4752 if (Amt == BitWidth) 4753 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4754 return 4755 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4756 IntegerType::get(getContext(), 4757 Amt)), 4758 U->getType()); 4759 } 4760 break; 4761 4762 case Instruction::Trunc: 4763 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4764 4765 case Instruction::ZExt: 4766 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4767 4768 case Instruction::SExt: 4769 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4770 4771 case Instruction::BitCast: 4772 // BitCasts are no-op casts so we just eliminate the cast. 4773 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4774 return getSCEV(U->getOperand(0)); 4775 break; 4776 4777 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4778 // lead to pointer expressions which cannot safely be expanded to GEPs, 4779 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4780 // simplifying integer expressions. 4781 4782 case Instruction::GetElementPtr: 4783 return createNodeForGEP(cast<GEPOperator>(U)); 4784 4785 case Instruction::PHI: 4786 return createNodeForPHI(cast<PHINode>(U)); 4787 4788 case Instruction::Select: 4789 // U can also be a select constant expr, which let fall through. Since 4790 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4791 // constant expressions cannot have instructions as operands, we'd have 4792 // returned getUnknown for a select constant expressions anyway. 4793 if (isa<Instruction>(U)) 4794 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4795 U->getOperand(1), U->getOperand(2)); 4796 4797 default: // We cannot analyze this expression. 4798 break; 4799 } 4800 4801 return getUnknown(V); 4802 } 4803 4804 4805 4806 //===----------------------------------------------------------------------===// 4807 // Iteration Count Computation Code 4808 // 4809 4810 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4811 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4812 return getSmallConstantTripCount(L, ExitingBB); 4813 4814 // No trip count information for multiple exits. 4815 return 0; 4816 } 4817 4818 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4819 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4820 /// constant. Will also return 0 if the maximum trip count is very large (>= 4821 /// 2^32). 4822 /// 4823 /// This "trip count" assumes that control exits via ExitingBlock. More 4824 /// precisely, it is the number of times that control may reach ExitingBlock 4825 /// before taking the branch. For loops with multiple exits, it may not be the 4826 /// number times that the loop header executes because the loop may exit 4827 /// prematurely via another branch. 4828 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4829 BasicBlock *ExitingBlock) { 4830 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4831 assert(L->isLoopExiting(ExitingBlock) && 4832 "Exiting block must actually branch out of the loop!"); 4833 const SCEVConstant *ExitCount = 4834 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4835 if (!ExitCount) 4836 return 0; 4837 4838 ConstantInt *ExitConst = ExitCount->getValue(); 4839 4840 // Guard against huge trip counts. 4841 if (ExitConst->getValue().getActiveBits() > 32) 4842 return 0; 4843 4844 // In case of integer overflow, this returns 0, which is correct. 4845 return ((unsigned)ExitConst->getZExtValue()) + 1; 4846 } 4847 4848 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4849 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4850 return getSmallConstantTripMultiple(L, ExitingBB); 4851 4852 // No trip multiple information for multiple exits. 4853 return 0; 4854 } 4855 4856 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4857 /// trip count of this loop as a normal unsigned value, if possible. This 4858 /// means that the actual trip count is always a multiple of the returned 4859 /// value (don't forget the trip count could very well be zero as well!). 4860 /// 4861 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4862 /// multiple of a constant (which is also the case if the trip count is simply 4863 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4864 /// if the trip count is very large (>= 2^32). 4865 /// 4866 /// As explained in the comments for getSmallConstantTripCount, this assumes 4867 /// that control exits the loop via ExitingBlock. 4868 unsigned 4869 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4870 BasicBlock *ExitingBlock) { 4871 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4872 assert(L->isLoopExiting(ExitingBlock) && 4873 "Exiting block must actually branch out of the loop!"); 4874 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4875 if (ExitCount == getCouldNotCompute()) 4876 return 1; 4877 4878 // Get the trip count from the BE count by adding 1. 4879 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4880 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4881 // to factor simple cases. 4882 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4883 TCMul = Mul->getOperand(0); 4884 4885 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4886 if (!MulC) 4887 return 1; 4888 4889 ConstantInt *Result = MulC->getValue(); 4890 4891 // Guard against huge trip counts (this requires checking 4892 // for zero to handle the case where the trip count == -1 and the 4893 // addition wraps). 4894 if (!Result || Result->getValue().getActiveBits() > 32 || 4895 Result->getValue().getActiveBits() == 0) 4896 return 1; 4897 4898 return (unsigned)Result->getZExtValue(); 4899 } 4900 4901 // getExitCount - Get the expression for the number of loop iterations for which 4902 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4903 // SCEVCouldNotCompute. 4904 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4905 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4906 } 4907 4908 /// getBackedgeTakenCount - If the specified loop has a predictable 4909 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4910 /// object. The backedge-taken count is the number of times the loop header 4911 /// will be branched to from within the loop. This is one less than the 4912 /// trip count of the loop, since it doesn't count the first iteration, 4913 /// when the header is branched to from outside the loop. 4914 /// 4915 /// Note that it is not valid to call this method on a loop without a 4916 /// loop-invariant backedge-taken count (see 4917 /// hasLoopInvariantBackedgeTakenCount). 4918 /// 4919 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4920 return getBackedgeTakenInfo(L).getExact(this); 4921 } 4922 4923 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4924 /// return the least SCEV value that is known never to be less than the 4925 /// actual backedge taken count. 4926 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4927 return getBackedgeTakenInfo(L).getMax(this); 4928 } 4929 4930 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4931 /// onto the given Worklist. 4932 static void 4933 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4934 BasicBlock *Header = L->getHeader(); 4935 4936 // Push all Loop-header PHIs onto the Worklist stack. 4937 for (BasicBlock::iterator I = Header->begin(); 4938 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4939 Worklist.push_back(PN); 4940 } 4941 4942 const ScalarEvolution::BackedgeTakenInfo & 4943 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4944 // Initially insert an invalid entry for this loop. If the insertion 4945 // succeeds, proceed to actually compute a backedge-taken count and 4946 // update the value. The temporary CouldNotCompute value tells SCEV 4947 // code elsewhere that it shouldn't attempt to request a new 4948 // backedge-taken count, which could result in infinite recursion. 4949 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4950 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4951 if (!Pair.second) 4952 return Pair.first->second; 4953 4954 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4955 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4956 // must be cleared in this scope. 4957 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4958 4959 if (Result.getExact(this) != getCouldNotCompute()) { 4960 assert(isLoopInvariant(Result.getExact(this), L) && 4961 isLoopInvariant(Result.getMax(this), L) && 4962 "Computed backedge-taken count isn't loop invariant for loop!"); 4963 ++NumTripCountsComputed; 4964 } 4965 else if (Result.getMax(this) == getCouldNotCompute() && 4966 isa<PHINode>(L->getHeader()->begin())) { 4967 // Only count loops that have phi nodes as not being computable. 4968 ++NumTripCountsNotComputed; 4969 } 4970 4971 // Now that we know more about the trip count for this loop, forget any 4972 // existing SCEV values for PHI nodes in this loop since they are only 4973 // conservative estimates made without the benefit of trip count 4974 // information. This is similar to the code in forgetLoop, except that 4975 // it handles SCEVUnknown PHI nodes specially. 4976 if (Result.hasAnyInfo()) { 4977 SmallVector<Instruction *, 16> Worklist; 4978 PushLoopPHIs(L, Worklist); 4979 4980 SmallPtrSet<Instruction *, 8> Visited; 4981 while (!Worklist.empty()) { 4982 Instruction *I = Worklist.pop_back_val(); 4983 if (!Visited.insert(I).second) 4984 continue; 4985 4986 ValueExprMapType::iterator It = 4987 ValueExprMap.find_as(static_cast<Value *>(I)); 4988 if (It != ValueExprMap.end()) { 4989 const SCEV *Old = It->second; 4990 4991 // SCEVUnknown for a PHI either means that it has an unrecognized 4992 // structure, or it's a PHI that's in the progress of being computed 4993 // by createNodeForPHI. In the former case, additional loop trip 4994 // count information isn't going to change anything. In the later 4995 // case, createNodeForPHI will perform the necessary updates on its 4996 // own when it gets to that point. 4997 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4998 forgetMemoizedResults(Old); 4999 ValueExprMap.erase(It); 5000 } 5001 if (PHINode *PN = dyn_cast<PHINode>(I)) 5002 ConstantEvolutionLoopExitValue.erase(PN); 5003 } 5004 5005 PushDefUseChildren(I, Worklist); 5006 } 5007 } 5008 5009 // Re-lookup the insert position, since the call to 5010 // computeBackedgeTakenCount above could result in a 5011 // recusive call to getBackedgeTakenInfo (on a different 5012 // loop), which would invalidate the iterator computed 5013 // earlier. 5014 return BackedgeTakenCounts.find(L)->second = Result; 5015 } 5016 5017 /// forgetLoop - This method should be called by the client when it has 5018 /// changed a loop in a way that may effect ScalarEvolution's ability to 5019 /// compute a trip count, or if the loop is deleted. 5020 void ScalarEvolution::forgetLoop(const Loop *L) { 5021 // Drop any stored trip count value. 5022 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5023 BackedgeTakenCounts.find(L); 5024 if (BTCPos != BackedgeTakenCounts.end()) { 5025 BTCPos->second.clear(); 5026 BackedgeTakenCounts.erase(BTCPos); 5027 } 5028 5029 // Drop information about expressions based on loop-header PHIs. 5030 SmallVector<Instruction *, 16> Worklist; 5031 PushLoopPHIs(L, Worklist); 5032 5033 SmallPtrSet<Instruction *, 8> Visited; 5034 while (!Worklist.empty()) { 5035 Instruction *I = Worklist.pop_back_val(); 5036 if (!Visited.insert(I).second) 5037 continue; 5038 5039 ValueExprMapType::iterator It = 5040 ValueExprMap.find_as(static_cast<Value *>(I)); 5041 if (It != ValueExprMap.end()) { 5042 forgetMemoizedResults(It->second); 5043 ValueExprMap.erase(It); 5044 if (PHINode *PN = dyn_cast<PHINode>(I)) 5045 ConstantEvolutionLoopExitValue.erase(PN); 5046 } 5047 5048 PushDefUseChildren(I, Worklist); 5049 } 5050 5051 // Forget all contained loops too, to avoid dangling entries in the 5052 // ValuesAtScopes map. 5053 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5054 forgetLoop(*I); 5055 } 5056 5057 /// forgetValue - This method should be called by the client when it has 5058 /// changed a value in a way that may effect its value, or which may 5059 /// disconnect it from a def-use chain linking it to a loop. 5060 void ScalarEvolution::forgetValue(Value *V) { 5061 Instruction *I = dyn_cast<Instruction>(V); 5062 if (!I) return; 5063 5064 // Drop information about expressions based on loop-header PHIs. 5065 SmallVector<Instruction *, 16> Worklist; 5066 Worklist.push_back(I); 5067 5068 SmallPtrSet<Instruction *, 8> Visited; 5069 while (!Worklist.empty()) { 5070 I = Worklist.pop_back_val(); 5071 if (!Visited.insert(I).second) 5072 continue; 5073 5074 ValueExprMapType::iterator It = 5075 ValueExprMap.find_as(static_cast<Value *>(I)); 5076 if (It != ValueExprMap.end()) { 5077 forgetMemoizedResults(It->second); 5078 ValueExprMap.erase(It); 5079 if (PHINode *PN = dyn_cast<PHINode>(I)) 5080 ConstantEvolutionLoopExitValue.erase(PN); 5081 } 5082 5083 PushDefUseChildren(I, Worklist); 5084 } 5085 } 5086 5087 /// getExact - Get the exact loop backedge taken count considering all loop 5088 /// exits. A computable result can only be returned for loops with a single 5089 /// exit. Returning the minimum taken count among all exits is incorrect 5090 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5091 /// assumes that the limit of each loop test is never skipped. This is a valid 5092 /// assumption as long as the loop exits via that test. For precise results, it 5093 /// is the caller's responsibility to specify the relevant loop exit using 5094 /// getExact(ExitingBlock, SE). 5095 const SCEV * 5096 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5097 // If any exits were not computable, the loop is not computable. 5098 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5099 5100 // We need exactly one computable exit. 5101 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5102 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5103 5104 const SCEV *BECount = nullptr; 5105 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5106 ENT != nullptr; ENT = ENT->getNextExit()) { 5107 5108 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5109 5110 if (!BECount) 5111 BECount = ENT->ExactNotTaken; 5112 else if (BECount != ENT->ExactNotTaken) 5113 return SE->getCouldNotCompute(); 5114 } 5115 assert(BECount && "Invalid not taken count for loop exit"); 5116 return BECount; 5117 } 5118 5119 /// getExact - Get the exact not taken count for this loop exit. 5120 const SCEV * 5121 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5122 ScalarEvolution *SE) const { 5123 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5124 ENT != nullptr; ENT = ENT->getNextExit()) { 5125 5126 if (ENT->ExitingBlock == ExitingBlock) 5127 return ENT->ExactNotTaken; 5128 } 5129 return SE->getCouldNotCompute(); 5130 } 5131 5132 /// getMax - Get the max backedge taken count for the loop. 5133 const SCEV * 5134 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5135 return Max ? Max : SE->getCouldNotCompute(); 5136 } 5137 5138 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5139 ScalarEvolution *SE) const { 5140 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5141 return true; 5142 5143 if (!ExitNotTaken.ExitingBlock) 5144 return false; 5145 5146 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5147 ENT != nullptr; ENT = ENT->getNextExit()) { 5148 5149 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5150 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5151 return true; 5152 } 5153 } 5154 return false; 5155 } 5156 5157 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5158 /// computable exit into a persistent ExitNotTakenInfo array. 5159 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5160 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5161 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5162 5163 if (!Complete) 5164 ExitNotTaken.setIncomplete(); 5165 5166 unsigned NumExits = ExitCounts.size(); 5167 if (NumExits == 0) return; 5168 5169 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5170 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5171 if (NumExits == 1) return; 5172 5173 // Handle the rare case of multiple computable exits. 5174 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5175 5176 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5177 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5178 PrevENT->setNextExit(ENT); 5179 ENT->ExitingBlock = ExitCounts[i].first; 5180 ENT->ExactNotTaken = ExitCounts[i].second; 5181 } 5182 } 5183 5184 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5185 void ScalarEvolution::BackedgeTakenInfo::clear() { 5186 ExitNotTaken.ExitingBlock = nullptr; 5187 ExitNotTaken.ExactNotTaken = nullptr; 5188 delete[] ExitNotTaken.getNextExit(); 5189 } 5190 5191 /// computeBackedgeTakenCount - Compute the number of times the backedge 5192 /// of the specified loop will execute. 5193 ScalarEvolution::BackedgeTakenInfo 5194 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5195 SmallVector<BasicBlock *, 8> ExitingBlocks; 5196 L->getExitingBlocks(ExitingBlocks); 5197 5198 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5199 bool CouldComputeBECount = true; 5200 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5201 const SCEV *MustExitMaxBECount = nullptr; 5202 const SCEV *MayExitMaxBECount = nullptr; 5203 5204 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5205 // and compute maxBECount. 5206 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5207 BasicBlock *ExitBB = ExitingBlocks[i]; 5208 ExitLimit EL = computeExitLimit(L, ExitBB); 5209 5210 // 1. For each exit that can be computed, add an entry to ExitCounts. 5211 // CouldComputeBECount is true only if all exits can be computed. 5212 if (EL.Exact == getCouldNotCompute()) 5213 // We couldn't compute an exact value for this exit, so 5214 // we won't be able to compute an exact value for the loop. 5215 CouldComputeBECount = false; 5216 else 5217 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5218 5219 // 2. Derive the loop's MaxBECount from each exit's max number of 5220 // non-exiting iterations. Partition the loop exits into two kinds: 5221 // LoopMustExits and LoopMayExits. 5222 // 5223 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5224 // is a LoopMayExit. If any computable LoopMustExit is found, then 5225 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5226 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5227 // considered greater than any computable EL.Max. 5228 if (EL.Max != getCouldNotCompute() && Latch && 5229 DT.dominates(ExitBB, Latch)) { 5230 if (!MustExitMaxBECount) 5231 MustExitMaxBECount = EL.Max; 5232 else { 5233 MustExitMaxBECount = 5234 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5235 } 5236 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5237 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5238 MayExitMaxBECount = EL.Max; 5239 else { 5240 MayExitMaxBECount = 5241 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5242 } 5243 } 5244 } 5245 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5246 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5247 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5248 } 5249 5250 ScalarEvolution::ExitLimit 5251 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5252 5253 // Okay, we've chosen an exiting block. See what condition causes us to exit 5254 // at this block and remember the exit block and whether all other targets 5255 // lead to the loop header. 5256 bool MustExecuteLoopHeader = true; 5257 BasicBlock *Exit = nullptr; 5258 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5259 SI != SE; ++SI) 5260 if (!L->contains(*SI)) { 5261 if (Exit) // Multiple exit successors. 5262 return getCouldNotCompute(); 5263 Exit = *SI; 5264 } else if (*SI != L->getHeader()) { 5265 MustExecuteLoopHeader = false; 5266 } 5267 5268 // At this point, we know we have a conditional branch that determines whether 5269 // the loop is exited. However, we don't know if the branch is executed each 5270 // time through the loop. If not, then the execution count of the branch will 5271 // not be equal to the trip count of the loop. 5272 // 5273 // Currently we check for this by checking to see if the Exit branch goes to 5274 // the loop header. If so, we know it will always execute the same number of 5275 // times as the loop. We also handle the case where the exit block *is* the 5276 // loop header. This is common for un-rotated loops. 5277 // 5278 // If both of those tests fail, walk up the unique predecessor chain to the 5279 // header, stopping if there is an edge that doesn't exit the loop. If the 5280 // header is reached, the execution count of the branch will be equal to the 5281 // trip count of the loop. 5282 // 5283 // More extensive analysis could be done to handle more cases here. 5284 // 5285 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5286 // The simple checks failed, try climbing the unique predecessor chain 5287 // up to the header. 5288 bool Ok = false; 5289 for (BasicBlock *BB = ExitingBlock; BB; ) { 5290 BasicBlock *Pred = BB->getUniquePredecessor(); 5291 if (!Pred) 5292 return getCouldNotCompute(); 5293 TerminatorInst *PredTerm = Pred->getTerminator(); 5294 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5295 if (PredSucc == BB) 5296 continue; 5297 // If the predecessor has a successor that isn't BB and isn't 5298 // outside the loop, assume the worst. 5299 if (L->contains(PredSucc)) 5300 return getCouldNotCompute(); 5301 } 5302 if (Pred == L->getHeader()) { 5303 Ok = true; 5304 break; 5305 } 5306 BB = Pred; 5307 } 5308 if (!Ok) 5309 return getCouldNotCompute(); 5310 } 5311 5312 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5313 TerminatorInst *Term = ExitingBlock->getTerminator(); 5314 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5315 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5316 // Proceed to the next level to examine the exit condition expression. 5317 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5318 BI->getSuccessor(1), 5319 /*ControlsExit=*/IsOnlyExit); 5320 } 5321 5322 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5323 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5324 /*ControlsExit=*/IsOnlyExit); 5325 5326 return getCouldNotCompute(); 5327 } 5328 5329 /// computeExitLimitFromCond - Compute the number of times the 5330 /// backedge of the specified loop will execute if its exit condition 5331 /// were a conditional branch of ExitCond, TBB, and FBB. 5332 /// 5333 /// @param ControlsExit is true if ExitCond directly controls the exit 5334 /// branch. In this case, we can assume that the loop exits only if the 5335 /// condition is true and can infer that failing to meet the condition prior to 5336 /// integer wraparound results in undefined behavior. 5337 ScalarEvolution::ExitLimit 5338 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5339 Value *ExitCond, 5340 BasicBlock *TBB, 5341 BasicBlock *FBB, 5342 bool ControlsExit) { 5343 // Check if the controlling expression for this loop is an And or Or. 5344 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5345 if (BO->getOpcode() == Instruction::And) { 5346 // Recurse on the operands of the and. 5347 bool EitherMayExit = L->contains(TBB); 5348 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5349 ControlsExit && !EitherMayExit); 5350 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5351 ControlsExit && !EitherMayExit); 5352 const SCEV *BECount = getCouldNotCompute(); 5353 const SCEV *MaxBECount = getCouldNotCompute(); 5354 if (EitherMayExit) { 5355 // Both conditions must be true for the loop to continue executing. 5356 // Choose the less conservative count. 5357 if (EL0.Exact == getCouldNotCompute() || 5358 EL1.Exact == getCouldNotCompute()) 5359 BECount = getCouldNotCompute(); 5360 else 5361 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5362 if (EL0.Max == getCouldNotCompute()) 5363 MaxBECount = EL1.Max; 5364 else if (EL1.Max == getCouldNotCompute()) 5365 MaxBECount = EL0.Max; 5366 else 5367 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5368 } else { 5369 // Both conditions must be true at the same time for the loop to exit. 5370 // For now, be conservative. 5371 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5372 if (EL0.Max == EL1.Max) 5373 MaxBECount = EL0.Max; 5374 if (EL0.Exact == EL1.Exact) 5375 BECount = EL0.Exact; 5376 } 5377 5378 return ExitLimit(BECount, MaxBECount); 5379 } 5380 if (BO->getOpcode() == Instruction::Or) { 5381 // Recurse on the operands of the or. 5382 bool EitherMayExit = L->contains(FBB); 5383 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5384 ControlsExit && !EitherMayExit); 5385 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5386 ControlsExit && !EitherMayExit); 5387 const SCEV *BECount = getCouldNotCompute(); 5388 const SCEV *MaxBECount = getCouldNotCompute(); 5389 if (EitherMayExit) { 5390 // Both conditions must be false for the loop to continue executing. 5391 // Choose the less conservative count. 5392 if (EL0.Exact == getCouldNotCompute() || 5393 EL1.Exact == getCouldNotCompute()) 5394 BECount = getCouldNotCompute(); 5395 else 5396 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5397 if (EL0.Max == getCouldNotCompute()) 5398 MaxBECount = EL1.Max; 5399 else if (EL1.Max == getCouldNotCompute()) 5400 MaxBECount = EL0.Max; 5401 else 5402 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5403 } else { 5404 // Both conditions must be false at the same time for the loop to exit. 5405 // For now, be conservative. 5406 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5407 if (EL0.Max == EL1.Max) 5408 MaxBECount = EL0.Max; 5409 if (EL0.Exact == EL1.Exact) 5410 BECount = EL0.Exact; 5411 } 5412 5413 return ExitLimit(BECount, MaxBECount); 5414 } 5415 } 5416 5417 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5418 // Proceed to the next level to examine the icmp. 5419 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5420 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5421 5422 // Check for a constant condition. These are normally stripped out by 5423 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5424 // preserve the CFG and is temporarily leaving constant conditions 5425 // in place. 5426 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5427 if (L->contains(FBB) == !CI->getZExtValue()) 5428 // The backedge is always taken. 5429 return getCouldNotCompute(); 5430 else 5431 // The backedge is never taken. 5432 return getZero(CI->getType()); 5433 } 5434 5435 // If it's not an integer or pointer comparison then compute it the hard way. 5436 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5437 } 5438 5439 ScalarEvolution::ExitLimit 5440 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5441 ICmpInst *ExitCond, 5442 BasicBlock *TBB, 5443 BasicBlock *FBB, 5444 bool ControlsExit) { 5445 5446 // If the condition was exit on true, convert the condition to exit on false 5447 ICmpInst::Predicate Cond; 5448 if (!L->contains(FBB)) 5449 Cond = ExitCond->getPredicate(); 5450 else 5451 Cond = ExitCond->getInversePredicate(); 5452 5453 // Handle common loops like: for (X = "string"; *X; ++X) 5454 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5455 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5456 ExitLimit ItCnt = 5457 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5458 if (ItCnt.hasAnyInfo()) 5459 return ItCnt; 5460 } 5461 5462 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5463 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5464 if (ShiftEL.hasAnyInfo()) 5465 return ShiftEL; 5466 5467 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5468 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5469 5470 // Try to evaluate any dependencies out of the loop. 5471 LHS = getSCEVAtScope(LHS, L); 5472 RHS = getSCEVAtScope(RHS, L); 5473 5474 // At this point, we would like to compute how many iterations of the 5475 // loop the predicate will return true for these inputs. 5476 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5477 // If there is a loop-invariant, force it into the RHS. 5478 std::swap(LHS, RHS); 5479 Cond = ICmpInst::getSwappedPredicate(Cond); 5480 } 5481 5482 // Simplify the operands before analyzing them. 5483 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5484 5485 // If we have a comparison of a chrec against a constant, try to use value 5486 // ranges to answer this query. 5487 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5488 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5489 if (AddRec->getLoop() == L) { 5490 // Form the constant range. 5491 ConstantRange CompRange( 5492 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5493 5494 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5495 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5496 } 5497 5498 switch (Cond) { 5499 case ICmpInst::ICMP_NE: { // while (X != Y) 5500 // Convert to: while (X-Y != 0) 5501 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5502 if (EL.hasAnyInfo()) return EL; 5503 break; 5504 } 5505 case ICmpInst::ICMP_EQ: { // while (X == Y) 5506 // Convert to: while (X-Y == 0) 5507 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5508 if (EL.hasAnyInfo()) return EL; 5509 break; 5510 } 5511 case ICmpInst::ICMP_SLT: 5512 case ICmpInst::ICMP_ULT: { // while (X < Y) 5513 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5514 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5515 if (EL.hasAnyInfo()) return EL; 5516 break; 5517 } 5518 case ICmpInst::ICMP_SGT: 5519 case ICmpInst::ICMP_UGT: { // while (X > Y) 5520 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5521 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5522 if (EL.hasAnyInfo()) return EL; 5523 break; 5524 } 5525 default: 5526 break; 5527 } 5528 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5529 } 5530 5531 ScalarEvolution::ExitLimit 5532 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5533 SwitchInst *Switch, 5534 BasicBlock *ExitingBlock, 5535 bool ControlsExit) { 5536 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5537 5538 // Give up if the exit is the default dest of a switch. 5539 if (Switch->getDefaultDest() == ExitingBlock) 5540 return getCouldNotCompute(); 5541 5542 assert(L->contains(Switch->getDefaultDest()) && 5543 "Default case must not exit the loop!"); 5544 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5545 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5546 5547 // while (X != Y) --> while (X-Y != 0) 5548 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5549 if (EL.hasAnyInfo()) 5550 return EL; 5551 5552 return getCouldNotCompute(); 5553 } 5554 5555 static ConstantInt * 5556 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5557 ScalarEvolution &SE) { 5558 const SCEV *InVal = SE.getConstant(C); 5559 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5560 assert(isa<SCEVConstant>(Val) && 5561 "Evaluation of SCEV at constant didn't fold correctly?"); 5562 return cast<SCEVConstant>(Val)->getValue(); 5563 } 5564 5565 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5566 /// 'icmp op load X, cst', try to see if we can compute the backedge 5567 /// execution count. 5568 ScalarEvolution::ExitLimit 5569 ScalarEvolution::computeLoadConstantCompareExitLimit( 5570 LoadInst *LI, 5571 Constant *RHS, 5572 const Loop *L, 5573 ICmpInst::Predicate predicate) { 5574 5575 if (LI->isVolatile()) return getCouldNotCompute(); 5576 5577 // Check to see if the loaded pointer is a getelementptr of a global. 5578 // TODO: Use SCEV instead of manually grubbing with GEPs. 5579 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5580 if (!GEP) return getCouldNotCompute(); 5581 5582 // Make sure that it is really a constant global we are gepping, with an 5583 // initializer, and make sure the first IDX is really 0. 5584 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5585 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5586 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5587 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5588 return getCouldNotCompute(); 5589 5590 // Okay, we allow one non-constant index into the GEP instruction. 5591 Value *VarIdx = nullptr; 5592 std::vector<Constant*> Indexes; 5593 unsigned VarIdxNum = 0; 5594 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5595 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5596 Indexes.push_back(CI); 5597 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5598 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5599 VarIdx = GEP->getOperand(i); 5600 VarIdxNum = i-2; 5601 Indexes.push_back(nullptr); 5602 } 5603 5604 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5605 if (!VarIdx) 5606 return getCouldNotCompute(); 5607 5608 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5609 // Check to see if X is a loop variant variable value now. 5610 const SCEV *Idx = getSCEV(VarIdx); 5611 Idx = getSCEVAtScope(Idx, L); 5612 5613 // We can only recognize very limited forms of loop index expressions, in 5614 // particular, only affine AddRec's like {C1,+,C2}. 5615 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5616 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5617 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5618 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5619 return getCouldNotCompute(); 5620 5621 unsigned MaxSteps = MaxBruteForceIterations; 5622 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5623 ConstantInt *ItCst = ConstantInt::get( 5624 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5625 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5626 5627 // Form the GEP offset. 5628 Indexes[VarIdxNum] = Val; 5629 5630 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5631 Indexes); 5632 if (!Result) break; // Cannot compute! 5633 5634 // Evaluate the condition for this iteration. 5635 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5636 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5637 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5638 ++NumArrayLenItCounts; 5639 return getConstant(ItCst); // Found terminating iteration! 5640 } 5641 } 5642 return getCouldNotCompute(); 5643 } 5644 5645 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5646 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5647 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5648 if (!RHS) 5649 return getCouldNotCompute(); 5650 5651 const BasicBlock *Latch = L->getLoopLatch(); 5652 if (!Latch) 5653 return getCouldNotCompute(); 5654 5655 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5656 if (!Predecessor) 5657 return getCouldNotCompute(); 5658 5659 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5660 // Return LHS in OutLHS and shift_opt in OutOpCode. 5661 auto MatchPositiveShift = 5662 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5663 5664 using namespace PatternMatch; 5665 5666 ConstantInt *ShiftAmt; 5667 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5668 OutOpCode = Instruction::LShr; 5669 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5670 OutOpCode = Instruction::AShr; 5671 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5672 OutOpCode = Instruction::Shl; 5673 else 5674 return false; 5675 5676 return ShiftAmt->getValue().isStrictlyPositive(); 5677 }; 5678 5679 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5680 // 5681 // loop: 5682 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5683 // %iv.shifted = lshr i32 %iv, <positive constant> 5684 // 5685 // Return true on a succesful match. Return the corresponding PHI node (%iv 5686 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5687 auto MatchShiftRecurrence = 5688 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5689 Optional<Instruction::BinaryOps> PostShiftOpCode; 5690 5691 { 5692 Instruction::BinaryOps OpC; 5693 Value *V; 5694 5695 // If we encounter a shift instruction, "peel off" the shift operation, 5696 // and remember that we did so. Later when we inspect %iv's backedge 5697 // value, we will make sure that the backedge value uses the same 5698 // operation. 5699 // 5700 // Note: the peeled shift operation does not have to be the same 5701 // instruction as the one feeding into the PHI's backedge value. We only 5702 // really care about it being the same *kind* of shift instruction -- 5703 // that's all that is required for our later inferences to hold. 5704 if (MatchPositiveShift(LHS, V, OpC)) { 5705 PostShiftOpCode = OpC; 5706 LHS = V; 5707 } 5708 } 5709 5710 PNOut = dyn_cast<PHINode>(LHS); 5711 if (!PNOut || PNOut->getParent() != L->getHeader()) 5712 return false; 5713 5714 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5715 Value *OpLHS; 5716 5717 return 5718 // The backedge value for the PHI node must be a shift by a positive 5719 // amount 5720 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5721 5722 // of the PHI node itself 5723 OpLHS == PNOut && 5724 5725 // and the kind of shift should be match the kind of shift we peeled 5726 // off, if any. 5727 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5728 }; 5729 5730 PHINode *PN; 5731 Instruction::BinaryOps OpCode; 5732 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5733 return getCouldNotCompute(); 5734 5735 const DataLayout &DL = getDataLayout(); 5736 5737 // The key rationale for this optimization is that for some kinds of shift 5738 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5739 // within a finite number of iterations. If the condition guarding the 5740 // backedge (in the sense that the backedge is taken if the condition is true) 5741 // is false for the value the shift recurrence stabilizes to, then we know 5742 // that the backedge is taken only a finite number of times. 5743 5744 ConstantInt *StableValue = nullptr; 5745 switch (OpCode) { 5746 default: 5747 llvm_unreachable("Impossible case!"); 5748 5749 case Instruction::AShr: { 5750 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5751 // bitwidth(K) iterations. 5752 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5753 bool KnownZero, KnownOne; 5754 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5755 Predecessor->getTerminator(), &DT); 5756 auto *Ty = cast<IntegerType>(RHS->getType()); 5757 if (KnownZero) 5758 StableValue = ConstantInt::get(Ty, 0); 5759 else if (KnownOne) 5760 StableValue = ConstantInt::get(Ty, -1, true); 5761 else 5762 return getCouldNotCompute(); 5763 5764 break; 5765 } 5766 case Instruction::LShr: 5767 case Instruction::Shl: 5768 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5769 // stabilize to 0 in at most bitwidth(K) iterations. 5770 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5771 break; 5772 } 5773 5774 auto *Result = 5775 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5776 assert(Result->getType()->isIntegerTy(1) && 5777 "Otherwise cannot be an operand to a branch instruction"); 5778 5779 if (Result->isZeroValue()) { 5780 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5781 const SCEV *UpperBound = 5782 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5783 return ExitLimit(getCouldNotCompute(), UpperBound); 5784 } 5785 5786 return getCouldNotCompute(); 5787 } 5788 5789 /// CanConstantFold - Return true if we can constant fold an instruction of the 5790 /// specified type, assuming that all operands were constants. 5791 static bool CanConstantFold(const Instruction *I) { 5792 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5793 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5794 isa<LoadInst>(I)) 5795 return true; 5796 5797 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5798 if (const Function *F = CI->getCalledFunction()) 5799 return canConstantFoldCallTo(F); 5800 return false; 5801 } 5802 5803 /// Determine whether this instruction can constant evolve within this loop 5804 /// assuming its operands can all constant evolve. 5805 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5806 // An instruction outside of the loop can't be derived from a loop PHI. 5807 if (!L->contains(I)) return false; 5808 5809 if (isa<PHINode>(I)) { 5810 // We don't currently keep track of the control flow needed to evaluate 5811 // PHIs, so we cannot handle PHIs inside of loops. 5812 return L->getHeader() == I->getParent(); 5813 } 5814 5815 // If we won't be able to constant fold this expression even if the operands 5816 // are constants, bail early. 5817 return CanConstantFold(I); 5818 } 5819 5820 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5821 /// recursing through each instruction operand until reaching a loop header phi. 5822 static PHINode * 5823 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5824 DenseMap<Instruction *, PHINode *> &PHIMap) { 5825 5826 // Otherwise, we can evaluate this instruction if all of its operands are 5827 // constant or derived from a PHI node themselves. 5828 PHINode *PHI = nullptr; 5829 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5830 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5831 5832 if (isa<Constant>(*OpI)) continue; 5833 5834 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5835 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5836 5837 PHINode *P = dyn_cast<PHINode>(OpInst); 5838 if (!P) 5839 // If this operand is already visited, reuse the prior result. 5840 // We may have P != PHI if this is the deepest point at which the 5841 // inconsistent paths meet. 5842 P = PHIMap.lookup(OpInst); 5843 if (!P) { 5844 // Recurse and memoize the results, whether a phi is found or not. 5845 // This recursive call invalidates pointers into PHIMap. 5846 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5847 PHIMap[OpInst] = P; 5848 } 5849 if (!P) 5850 return nullptr; // Not evolving from PHI 5851 if (PHI && PHI != P) 5852 return nullptr; // Evolving from multiple different PHIs. 5853 PHI = P; 5854 } 5855 // This is a expression evolving from a constant PHI! 5856 return PHI; 5857 } 5858 5859 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5860 /// in the loop that V is derived from. We allow arbitrary operations along the 5861 /// way, but the operands of an operation must either be constants or a value 5862 /// derived from a constant PHI. If this expression does not fit with these 5863 /// constraints, return null. 5864 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5865 Instruction *I = dyn_cast<Instruction>(V); 5866 if (!I || !canConstantEvolve(I, L)) return nullptr; 5867 5868 if (PHINode *PN = dyn_cast<PHINode>(I)) 5869 return PN; 5870 5871 // Record non-constant instructions contained by the loop. 5872 DenseMap<Instruction *, PHINode *> PHIMap; 5873 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5874 } 5875 5876 /// EvaluateExpression - Given an expression that passes the 5877 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5878 /// in the loop has the value PHIVal. If we can't fold this expression for some 5879 /// reason, return null. 5880 static Constant *EvaluateExpression(Value *V, const Loop *L, 5881 DenseMap<Instruction *, Constant *> &Vals, 5882 const DataLayout &DL, 5883 const TargetLibraryInfo *TLI) { 5884 // Convenient constant check, but redundant for recursive calls. 5885 if (Constant *C = dyn_cast<Constant>(V)) return C; 5886 Instruction *I = dyn_cast<Instruction>(V); 5887 if (!I) return nullptr; 5888 5889 if (Constant *C = Vals.lookup(I)) return C; 5890 5891 // An instruction inside the loop depends on a value outside the loop that we 5892 // weren't given a mapping for, or a value such as a call inside the loop. 5893 if (!canConstantEvolve(I, L)) return nullptr; 5894 5895 // An unmapped PHI can be due to a branch or another loop inside this loop, 5896 // or due to this not being the initial iteration through a loop where we 5897 // couldn't compute the evolution of this particular PHI last time. 5898 if (isa<PHINode>(I)) return nullptr; 5899 5900 std::vector<Constant*> Operands(I->getNumOperands()); 5901 5902 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5903 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5904 if (!Operand) { 5905 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5906 if (!Operands[i]) return nullptr; 5907 continue; 5908 } 5909 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5910 Vals[Operand] = C; 5911 if (!C) return nullptr; 5912 Operands[i] = C; 5913 } 5914 5915 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5916 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5917 Operands[1], DL, TLI); 5918 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5919 if (!LI->isVolatile()) 5920 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5921 } 5922 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5923 TLI); 5924 } 5925 5926 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5927 /// in the header of its containing loop, we know the loop executes a 5928 /// constant number of times, and the PHI node is just a recurrence 5929 /// involving constants, fold it. 5930 Constant * 5931 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5932 const APInt &BEs, 5933 const Loop *L) { 5934 auto I = ConstantEvolutionLoopExitValue.find(PN); 5935 if (I != ConstantEvolutionLoopExitValue.end()) 5936 return I->second; 5937 5938 if (BEs.ugt(MaxBruteForceIterations)) 5939 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5940 5941 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5942 5943 DenseMap<Instruction *, Constant *> CurrentIterVals; 5944 BasicBlock *Header = L->getHeader(); 5945 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5946 5947 BasicBlock *Latch = L->getLoopLatch(); 5948 if (!Latch) 5949 return nullptr; 5950 5951 // Since the loop has one latch, the PHI node must have two entries. One 5952 // entry must be a constant (coming in from outside of the loop), and the 5953 // second must be derived from the same PHI. 5954 5955 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5956 ? PN->getIncomingBlock(1) 5957 : PN->getIncomingBlock(0); 5958 5959 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5960 5961 // Note: not all PHI nodes in the same block have to have their incoming 5962 // values in the same order, so we use the basic block to look up the incoming 5963 // value, not an index. 5964 5965 for (auto &I : *Header) { 5966 PHINode *PHI = dyn_cast<PHINode>(&I); 5967 if (!PHI) break; 5968 auto *StartCST = 5969 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5970 if (!StartCST) continue; 5971 CurrentIterVals[PHI] = StartCST; 5972 } 5973 if (!CurrentIterVals.count(PN)) 5974 return RetVal = nullptr; 5975 5976 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5977 5978 // Execute the loop symbolically to determine the exit value. 5979 if (BEs.getActiveBits() >= 32) 5980 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5981 5982 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5983 unsigned IterationNum = 0; 5984 const DataLayout &DL = getDataLayout(); 5985 for (; ; ++IterationNum) { 5986 if (IterationNum == NumIterations) 5987 return RetVal = CurrentIterVals[PN]; // Got exit value! 5988 5989 // Compute the value of the PHIs for the next iteration. 5990 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5991 DenseMap<Instruction *, Constant *> NextIterVals; 5992 Constant *NextPHI = 5993 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5994 if (!NextPHI) 5995 return nullptr; // Couldn't evaluate! 5996 NextIterVals[PN] = NextPHI; 5997 5998 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5999 6000 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6001 // cease to be able to evaluate one of them or if they stop evolving, 6002 // because that doesn't necessarily prevent us from computing PN. 6003 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6004 for (const auto &I : CurrentIterVals) { 6005 PHINode *PHI = dyn_cast<PHINode>(I.first); 6006 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6007 PHIsToCompute.emplace_back(PHI, I.second); 6008 } 6009 // We use two distinct loops because EvaluateExpression may invalidate any 6010 // iterators into CurrentIterVals. 6011 for (const auto &I : PHIsToCompute) { 6012 PHINode *PHI = I.first; 6013 Constant *&NextPHI = NextIterVals[PHI]; 6014 if (!NextPHI) { // Not already computed. 6015 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6016 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6017 } 6018 if (NextPHI != I.second) 6019 StoppedEvolving = false; 6020 } 6021 6022 // If all entries in CurrentIterVals == NextIterVals then we can stop 6023 // iterating, the loop can't continue to change. 6024 if (StoppedEvolving) 6025 return RetVal = CurrentIterVals[PN]; 6026 6027 CurrentIterVals.swap(NextIterVals); 6028 } 6029 } 6030 6031 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6032 Value *Cond, 6033 bool ExitWhen) { 6034 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6035 if (!PN) return getCouldNotCompute(); 6036 6037 // If the loop is canonicalized, the PHI will have exactly two entries. 6038 // That's the only form we support here. 6039 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6040 6041 DenseMap<Instruction *, Constant *> CurrentIterVals; 6042 BasicBlock *Header = L->getHeader(); 6043 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6044 6045 BasicBlock *Latch = L->getLoopLatch(); 6046 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6047 6048 // NonLatch is the preheader, or something equivalent. 6049 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 6050 ? PN->getIncomingBlock(1) 6051 : PN->getIncomingBlock(0); 6052 6053 // Note: not all PHI nodes in the same block have to have their incoming 6054 // values in the same order, so we use the basic block to look up the incoming 6055 // value, not an index. 6056 6057 for (auto &I : *Header) { 6058 PHINode *PHI = dyn_cast<PHINode>(&I); 6059 if (!PHI) 6060 break; 6061 auto *StartCST = 6062 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 6063 if (!StartCST) continue; 6064 CurrentIterVals[PHI] = StartCST; 6065 } 6066 if (!CurrentIterVals.count(PN)) 6067 return getCouldNotCompute(); 6068 6069 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6070 // the loop symbolically to determine when the condition gets a value of 6071 // "ExitWhen". 6072 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6073 const DataLayout &DL = getDataLayout(); 6074 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6075 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6076 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6077 6078 // Couldn't symbolically evaluate. 6079 if (!CondVal) return getCouldNotCompute(); 6080 6081 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6082 ++NumBruteForceTripCountsComputed; 6083 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6084 } 6085 6086 // Update all the PHI nodes for the next iteration. 6087 DenseMap<Instruction *, Constant *> NextIterVals; 6088 6089 // Create a list of which PHIs we need to compute. We want to do this before 6090 // calling EvaluateExpression on them because that may invalidate iterators 6091 // into CurrentIterVals. 6092 SmallVector<PHINode *, 8> PHIsToCompute; 6093 for (const auto &I : CurrentIterVals) { 6094 PHINode *PHI = dyn_cast<PHINode>(I.first); 6095 if (!PHI || PHI->getParent() != Header) continue; 6096 PHIsToCompute.push_back(PHI); 6097 } 6098 for (PHINode *PHI : PHIsToCompute) { 6099 Constant *&NextPHI = NextIterVals[PHI]; 6100 if (NextPHI) continue; // Already computed! 6101 6102 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6103 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6104 } 6105 CurrentIterVals.swap(NextIterVals); 6106 } 6107 6108 // Too many iterations were needed to evaluate. 6109 return getCouldNotCompute(); 6110 } 6111 6112 /// getSCEVAtScope - Return a SCEV expression for the specified value 6113 /// at the specified scope in the program. The L value specifies a loop 6114 /// nest to evaluate the expression at, where null is the top-level or a 6115 /// specified loop is immediately inside of the loop. 6116 /// 6117 /// This method can be used to compute the exit value for a variable defined 6118 /// in a loop by querying what the value will hold in the parent loop. 6119 /// 6120 /// In the case that a relevant loop exit value cannot be computed, the 6121 /// original value V is returned. 6122 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6123 // Check to see if we've folded this expression at this loop before. 6124 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 6125 for (unsigned u = 0; u < Values.size(); u++) { 6126 if (Values[u].first == L) 6127 return Values[u].second ? Values[u].second : V; 6128 } 6129 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 6130 // Otherwise compute it. 6131 const SCEV *C = computeSCEVAtScope(V, L); 6132 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 6133 for (unsigned u = Values2.size(); u > 0; u--) { 6134 if (Values2[u - 1].first == L) { 6135 Values2[u - 1].second = C; 6136 break; 6137 } 6138 } 6139 return C; 6140 } 6141 6142 /// This builds up a Constant using the ConstantExpr interface. That way, we 6143 /// will return Constants for objects which aren't represented by a 6144 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6145 /// Returns NULL if the SCEV isn't representable as a Constant. 6146 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6147 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6148 case scCouldNotCompute: 6149 case scAddRecExpr: 6150 break; 6151 case scConstant: 6152 return cast<SCEVConstant>(V)->getValue(); 6153 case scUnknown: 6154 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6155 case scSignExtend: { 6156 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6157 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6158 return ConstantExpr::getSExt(CastOp, SS->getType()); 6159 break; 6160 } 6161 case scZeroExtend: { 6162 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6163 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6164 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6165 break; 6166 } 6167 case scTruncate: { 6168 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6169 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6170 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6171 break; 6172 } 6173 case scAddExpr: { 6174 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6175 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6176 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6177 unsigned AS = PTy->getAddressSpace(); 6178 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6179 C = ConstantExpr::getBitCast(C, DestPtrTy); 6180 } 6181 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6182 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6183 if (!C2) return nullptr; 6184 6185 // First pointer! 6186 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6187 unsigned AS = C2->getType()->getPointerAddressSpace(); 6188 std::swap(C, C2); 6189 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6190 // The offsets have been converted to bytes. We can add bytes to an 6191 // i8* by GEP with the byte count in the first index. 6192 C = ConstantExpr::getBitCast(C, DestPtrTy); 6193 } 6194 6195 // Don't bother trying to sum two pointers. We probably can't 6196 // statically compute a load that results from it anyway. 6197 if (C2->getType()->isPointerTy()) 6198 return nullptr; 6199 6200 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6201 if (PTy->getElementType()->isStructTy()) 6202 C2 = ConstantExpr::getIntegerCast( 6203 C2, Type::getInt32Ty(C->getContext()), true); 6204 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6205 } else 6206 C = ConstantExpr::getAdd(C, C2); 6207 } 6208 return C; 6209 } 6210 break; 6211 } 6212 case scMulExpr: { 6213 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6214 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6215 // Don't bother with pointers at all. 6216 if (C->getType()->isPointerTy()) return nullptr; 6217 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6218 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6219 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6220 C = ConstantExpr::getMul(C, C2); 6221 } 6222 return C; 6223 } 6224 break; 6225 } 6226 case scUDivExpr: { 6227 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6228 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6229 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6230 if (LHS->getType() == RHS->getType()) 6231 return ConstantExpr::getUDiv(LHS, RHS); 6232 break; 6233 } 6234 case scSMaxExpr: 6235 case scUMaxExpr: 6236 break; // TODO: smax, umax. 6237 } 6238 return nullptr; 6239 } 6240 6241 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6242 if (isa<SCEVConstant>(V)) return V; 6243 6244 // If this instruction is evolved from a constant-evolving PHI, compute the 6245 // exit value from the loop without using SCEVs. 6246 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6247 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6248 const Loop *LI = this->LI[I->getParent()]; 6249 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6250 if (PHINode *PN = dyn_cast<PHINode>(I)) 6251 if (PN->getParent() == LI->getHeader()) { 6252 // Okay, there is no closed form solution for the PHI node. Check 6253 // to see if the loop that contains it has a known backedge-taken 6254 // count. If so, we may be able to force computation of the exit 6255 // value. 6256 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6257 if (const SCEVConstant *BTCC = 6258 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6259 // Okay, we know how many times the containing loop executes. If 6260 // this is a constant evolving PHI node, get the final value at 6261 // the specified iteration number. 6262 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6263 BTCC->getValue()->getValue(), 6264 LI); 6265 if (RV) return getSCEV(RV); 6266 } 6267 } 6268 6269 // Okay, this is an expression that we cannot symbolically evaluate 6270 // into a SCEV. Check to see if it's possible to symbolically evaluate 6271 // the arguments into constants, and if so, try to constant propagate the 6272 // result. This is particularly useful for computing loop exit values. 6273 if (CanConstantFold(I)) { 6274 SmallVector<Constant *, 4> Operands; 6275 bool MadeImprovement = false; 6276 for (Value *Op : I->operands()) { 6277 if (Constant *C = dyn_cast<Constant>(Op)) { 6278 Operands.push_back(C); 6279 continue; 6280 } 6281 6282 // If any of the operands is non-constant and if they are 6283 // non-integer and non-pointer, don't even try to analyze them 6284 // with scev techniques. 6285 if (!isSCEVable(Op->getType())) 6286 return V; 6287 6288 const SCEV *OrigV = getSCEV(Op); 6289 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6290 MadeImprovement |= OrigV != OpV; 6291 6292 Constant *C = BuildConstantFromSCEV(OpV); 6293 if (!C) return V; 6294 if (C->getType() != Op->getType()) 6295 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6296 Op->getType(), 6297 false), 6298 C, Op->getType()); 6299 Operands.push_back(C); 6300 } 6301 6302 // Check to see if getSCEVAtScope actually made an improvement. 6303 if (MadeImprovement) { 6304 Constant *C = nullptr; 6305 const DataLayout &DL = getDataLayout(); 6306 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6307 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6308 Operands[1], DL, &TLI); 6309 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6310 if (!LI->isVolatile()) 6311 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6312 } else 6313 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6314 DL, &TLI); 6315 if (!C) return V; 6316 return getSCEV(C); 6317 } 6318 } 6319 } 6320 6321 // This is some other type of SCEVUnknown, just return it. 6322 return V; 6323 } 6324 6325 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6326 // Avoid performing the look-up in the common case where the specified 6327 // expression has no loop-variant portions. 6328 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6329 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6330 if (OpAtScope != Comm->getOperand(i)) { 6331 // Okay, at least one of these operands is loop variant but might be 6332 // foldable. Build a new instance of the folded commutative expression. 6333 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6334 Comm->op_begin()+i); 6335 NewOps.push_back(OpAtScope); 6336 6337 for (++i; i != e; ++i) { 6338 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6339 NewOps.push_back(OpAtScope); 6340 } 6341 if (isa<SCEVAddExpr>(Comm)) 6342 return getAddExpr(NewOps); 6343 if (isa<SCEVMulExpr>(Comm)) 6344 return getMulExpr(NewOps); 6345 if (isa<SCEVSMaxExpr>(Comm)) 6346 return getSMaxExpr(NewOps); 6347 if (isa<SCEVUMaxExpr>(Comm)) 6348 return getUMaxExpr(NewOps); 6349 llvm_unreachable("Unknown commutative SCEV type!"); 6350 } 6351 } 6352 // If we got here, all operands are loop invariant. 6353 return Comm; 6354 } 6355 6356 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6357 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6358 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6359 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6360 return Div; // must be loop invariant 6361 return getUDivExpr(LHS, RHS); 6362 } 6363 6364 // If this is a loop recurrence for a loop that does not contain L, then we 6365 // are dealing with the final value computed by the loop. 6366 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6367 // First, attempt to evaluate each operand. 6368 // Avoid performing the look-up in the common case where the specified 6369 // expression has no loop-variant portions. 6370 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6371 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6372 if (OpAtScope == AddRec->getOperand(i)) 6373 continue; 6374 6375 // Okay, at least one of these operands is loop variant but might be 6376 // foldable. Build a new instance of the folded commutative expression. 6377 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6378 AddRec->op_begin()+i); 6379 NewOps.push_back(OpAtScope); 6380 for (++i; i != e; ++i) 6381 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6382 6383 const SCEV *FoldedRec = 6384 getAddRecExpr(NewOps, AddRec->getLoop(), 6385 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6386 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6387 // The addrec may be folded to a nonrecurrence, for example, if the 6388 // induction variable is multiplied by zero after constant folding. Go 6389 // ahead and return the folded value. 6390 if (!AddRec) 6391 return FoldedRec; 6392 break; 6393 } 6394 6395 // If the scope is outside the addrec's loop, evaluate it by using the 6396 // loop exit value of the addrec. 6397 if (!AddRec->getLoop()->contains(L)) { 6398 // To evaluate this recurrence, we need to know how many times the AddRec 6399 // loop iterates. Compute this now. 6400 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6401 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6402 6403 // Then, evaluate the AddRec. 6404 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6405 } 6406 6407 return AddRec; 6408 } 6409 6410 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6411 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6412 if (Op == Cast->getOperand()) 6413 return Cast; // must be loop invariant 6414 return getZeroExtendExpr(Op, Cast->getType()); 6415 } 6416 6417 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6418 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6419 if (Op == Cast->getOperand()) 6420 return Cast; // must be loop invariant 6421 return getSignExtendExpr(Op, Cast->getType()); 6422 } 6423 6424 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6425 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6426 if (Op == Cast->getOperand()) 6427 return Cast; // must be loop invariant 6428 return getTruncateExpr(Op, Cast->getType()); 6429 } 6430 6431 llvm_unreachable("Unknown SCEV type!"); 6432 } 6433 6434 /// getSCEVAtScope - This is a convenience function which does 6435 /// getSCEVAtScope(getSCEV(V), L). 6436 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6437 return getSCEVAtScope(getSCEV(V), L); 6438 } 6439 6440 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6441 /// following equation: 6442 /// 6443 /// A * X = B (mod N) 6444 /// 6445 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6446 /// A and B isn't important. 6447 /// 6448 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6449 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6450 ScalarEvolution &SE) { 6451 uint32_t BW = A.getBitWidth(); 6452 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6453 assert(A != 0 && "A must be non-zero."); 6454 6455 // 1. D = gcd(A, N) 6456 // 6457 // The gcd of A and N may have only one prime factor: 2. The number of 6458 // trailing zeros in A is its multiplicity 6459 uint32_t Mult2 = A.countTrailingZeros(); 6460 // D = 2^Mult2 6461 6462 // 2. Check if B is divisible by D. 6463 // 6464 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6465 // is not less than multiplicity of this prime factor for D. 6466 if (B.countTrailingZeros() < Mult2) 6467 return SE.getCouldNotCompute(); 6468 6469 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6470 // modulo (N / D). 6471 // 6472 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6473 // bit width during computations. 6474 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6475 APInt Mod(BW + 1, 0); 6476 Mod.setBit(BW - Mult2); // Mod = N / D 6477 APInt I = AD.multiplicativeInverse(Mod); 6478 6479 // 4. Compute the minimum unsigned root of the equation: 6480 // I * (B / D) mod (N / D) 6481 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6482 6483 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6484 // bits. 6485 return SE.getConstant(Result.trunc(BW)); 6486 } 6487 6488 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6489 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6490 /// might be the same) or two SCEVCouldNotCompute objects. 6491 /// 6492 static std::pair<const SCEV *,const SCEV *> 6493 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6494 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6495 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6496 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6497 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6498 6499 // We currently can only solve this if the coefficients are constants. 6500 if (!LC || !MC || !NC) { 6501 const SCEV *CNC = SE.getCouldNotCompute(); 6502 return std::make_pair(CNC, CNC); 6503 } 6504 6505 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6506 const APInt &L = LC->getValue()->getValue(); 6507 const APInt &M = MC->getValue()->getValue(); 6508 const APInt &N = NC->getValue()->getValue(); 6509 APInt Two(BitWidth, 2); 6510 APInt Four(BitWidth, 4); 6511 6512 { 6513 using namespace APIntOps; 6514 const APInt& C = L; 6515 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6516 // The B coefficient is M-N/2 6517 APInt B(M); 6518 B -= sdiv(N,Two); 6519 6520 // The A coefficient is N/2 6521 APInt A(N.sdiv(Two)); 6522 6523 // Compute the B^2-4ac term. 6524 APInt SqrtTerm(B); 6525 SqrtTerm *= B; 6526 SqrtTerm -= Four * (A * C); 6527 6528 if (SqrtTerm.isNegative()) { 6529 // The loop is provably infinite. 6530 const SCEV *CNC = SE.getCouldNotCompute(); 6531 return std::make_pair(CNC, CNC); 6532 } 6533 6534 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6535 // integer value or else APInt::sqrt() will assert. 6536 APInt SqrtVal(SqrtTerm.sqrt()); 6537 6538 // Compute the two solutions for the quadratic formula. 6539 // The divisions must be performed as signed divisions. 6540 APInt NegB(-B); 6541 APInt TwoA(A << 1); 6542 if (TwoA.isMinValue()) { 6543 const SCEV *CNC = SE.getCouldNotCompute(); 6544 return std::make_pair(CNC, CNC); 6545 } 6546 6547 LLVMContext &Context = SE.getContext(); 6548 6549 ConstantInt *Solution1 = 6550 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6551 ConstantInt *Solution2 = 6552 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6553 6554 return std::make_pair(SE.getConstant(Solution1), 6555 SE.getConstant(Solution2)); 6556 } // end APIntOps namespace 6557 } 6558 6559 /// HowFarToZero - Return the number of times a backedge comparing the specified 6560 /// value to zero will execute. If not computable, return CouldNotCompute. 6561 /// 6562 /// This is only used for loops with a "x != y" exit test. The exit condition is 6563 /// now expressed as a single expression, V = x-y. So the exit test is 6564 /// effectively V != 0. We know and take advantage of the fact that this 6565 /// expression only being used in a comparison by zero context. 6566 ScalarEvolution::ExitLimit 6567 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6568 // If the value is a constant 6569 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6570 // If the value is already zero, the branch will execute zero times. 6571 if (C->getValue()->isZero()) return C; 6572 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6573 } 6574 6575 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6576 if (!AddRec || AddRec->getLoop() != L) 6577 return getCouldNotCompute(); 6578 6579 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6580 // the quadratic equation to solve it. 6581 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6582 std::pair<const SCEV *,const SCEV *> Roots = 6583 SolveQuadraticEquation(AddRec, *this); 6584 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6585 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6586 if (R1 && R2) { 6587 // Pick the smallest positive root value. 6588 if (ConstantInt *CB = 6589 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6590 R1->getValue(), 6591 R2->getValue()))) { 6592 if (!CB->getZExtValue()) 6593 std::swap(R1, R2); // R1 is the minimum root now. 6594 6595 // We can only use this value if the chrec ends up with an exact zero 6596 // value at this index. When solving for "X*X != 5", for example, we 6597 // should not accept a root of 2. 6598 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6599 if (Val->isZero()) 6600 return R1; // We found a quadratic root! 6601 } 6602 } 6603 return getCouldNotCompute(); 6604 } 6605 6606 // Otherwise we can only handle this if it is affine. 6607 if (!AddRec->isAffine()) 6608 return getCouldNotCompute(); 6609 6610 // If this is an affine expression, the execution count of this branch is 6611 // the minimum unsigned root of the following equation: 6612 // 6613 // Start + Step*N = 0 (mod 2^BW) 6614 // 6615 // equivalent to: 6616 // 6617 // Step*N = -Start (mod 2^BW) 6618 // 6619 // where BW is the common bit width of Start and Step. 6620 6621 // Get the initial value for the loop. 6622 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6623 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6624 6625 // For now we handle only constant steps. 6626 // 6627 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6628 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6629 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6630 // We have not yet seen any such cases. 6631 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6632 if (!StepC || StepC->getValue()->equalsInt(0)) 6633 return getCouldNotCompute(); 6634 6635 // For positive steps (counting up until unsigned overflow): 6636 // N = -Start/Step (as unsigned) 6637 // For negative steps (counting down to zero): 6638 // N = Start/-Step 6639 // First compute the unsigned distance from zero in the direction of Step. 6640 bool CountDown = StepC->getValue()->getValue().isNegative(); 6641 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6642 6643 // Handle unitary steps, which cannot wraparound. 6644 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6645 // N = Distance (as unsigned) 6646 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6647 ConstantRange CR = getUnsignedRange(Start); 6648 const SCEV *MaxBECount; 6649 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6650 // When counting up, the worst starting value is 1, not 0. 6651 MaxBECount = CR.getUnsignedMax().isMinValue() 6652 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6653 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6654 else 6655 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6656 : -CR.getUnsignedMin()); 6657 return ExitLimit(Distance, MaxBECount); 6658 } 6659 6660 // As a special case, handle the instance where Step is a positive power of 6661 // two. In this case, determining whether Step divides Distance evenly can be 6662 // done by counting and comparing the number of trailing zeros of Step and 6663 // Distance. 6664 if (!CountDown) { 6665 const APInt &StepV = StepC->getValue()->getValue(); 6666 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6667 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6668 // case is not handled as this code is guarded by !CountDown. 6669 if (StepV.isPowerOf2() && 6670 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6671 // Here we've constrained the equation to be of the form 6672 // 6673 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6674 // 6675 // where we're operating on a W bit wide integer domain and k is 6676 // non-negative. The smallest unsigned solution for X is the trip count. 6677 // 6678 // (0) is equivalent to: 6679 // 6680 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6681 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6682 // <=> 2^k * Distance' - X = L * 2^(W - N) 6683 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6684 // 6685 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6686 // by 2^(W - N). 6687 // 6688 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6689 // 6690 // E.g. say we're solving 6691 // 6692 // 2 * Val = 2 * X (in i8) ... (3) 6693 // 6694 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6695 // 6696 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6697 // necessarily the smallest unsigned value of X that satisfies (3). 6698 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6699 // is i8 1, not i8 -127 6700 6701 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6702 6703 // Since SCEV does not have a URem node, we construct one using a truncate 6704 // and a zero extend. 6705 6706 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6707 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6708 auto *WideTy = Distance->getType(); 6709 6710 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6711 } 6712 } 6713 6714 // If the condition controls loop exit (the loop exits only if the expression 6715 // is true) and the addition is no-wrap we can use unsigned divide to 6716 // compute the backedge count. In this case, the step may not divide the 6717 // distance, but we don't care because if the condition is "missed" the loop 6718 // will have undefined behavior due to wrapping. 6719 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6720 const SCEV *Exact = 6721 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6722 return ExitLimit(Exact, Exact); 6723 } 6724 6725 // Then, try to solve the above equation provided that Start is constant. 6726 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6727 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6728 -StartC->getValue()->getValue(), 6729 *this); 6730 return getCouldNotCompute(); 6731 } 6732 6733 /// HowFarToNonZero - Return the number of times a backedge checking the 6734 /// specified value for nonzero will execute. If not computable, return 6735 /// CouldNotCompute 6736 ScalarEvolution::ExitLimit 6737 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6738 // Loops that look like: while (X == 0) are very strange indeed. We don't 6739 // handle them yet except for the trivial case. This could be expanded in the 6740 // future as needed. 6741 6742 // If the value is a constant, check to see if it is known to be non-zero 6743 // already. If so, the backedge will execute zero times. 6744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6745 if (!C->getValue()->isNullValue()) 6746 return getZero(C->getType()); 6747 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6748 } 6749 6750 // We could implement others, but I really doubt anyone writes loops like 6751 // this, and if they did, they would already be constant folded. 6752 return getCouldNotCompute(); 6753 } 6754 6755 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6756 /// (which may not be an immediate predecessor) which has exactly one 6757 /// successor from which BB is reachable, or null if no such block is 6758 /// found. 6759 /// 6760 std::pair<BasicBlock *, BasicBlock *> 6761 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6762 // If the block has a unique predecessor, then there is no path from the 6763 // predecessor to the block that does not go through the direct edge 6764 // from the predecessor to the block. 6765 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6766 return std::make_pair(Pred, BB); 6767 6768 // A loop's header is defined to be a block that dominates the loop. 6769 // If the header has a unique predecessor outside the loop, it must be 6770 // a block that has exactly one successor that can reach the loop. 6771 if (Loop *L = LI.getLoopFor(BB)) 6772 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6773 6774 return std::pair<BasicBlock *, BasicBlock *>(); 6775 } 6776 6777 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6778 /// testing whether two expressions are equal, however for the purposes of 6779 /// looking for a condition guarding a loop, it can be useful to be a little 6780 /// more general, since a front-end may have replicated the controlling 6781 /// expression. 6782 /// 6783 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6784 // Quick check to see if they are the same SCEV. 6785 if (A == B) return true; 6786 6787 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6788 // Not all instructions that are "identical" compute the same value. For 6789 // instance, two distinct alloca instructions allocating the same type are 6790 // identical and do not read memory; but compute distinct values. 6791 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6792 }; 6793 6794 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6795 // two different instructions with the same value. Check for this case. 6796 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6797 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6798 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6799 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6800 if (ComputesEqualValues(AI, BI)) 6801 return true; 6802 6803 // Otherwise assume they may have a different value. 6804 return false; 6805 } 6806 6807 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6808 /// predicate Pred. Return true iff any changes were made. 6809 /// 6810 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6811 const SCEV *&LHS, const SCEV *&RHS, 6812 unsigned Depth) { 6813 bool Changed = false; 6814 6815 // If we hit the max recursion limit bail out. 6816 if (Depth >= 3) 6817 return false; 6818 6819 // Canonicalize a constant to the right side. 6820 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6821 // Check for both operands constant. 6822 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6823 if (ConstantExpr::getICmp(Pred, 6824 LHSC->getValue(), 6825 RHSC->getValue())->isNullValue()) 6826 goto trivially_false; 6827 else 6828 goto trivially_true; 6829 } 6830 // Otherwise swap the operands to put the constant on the right. 6831 std::swap(LHS, RHS); 6832 Pred = ICmpInst::getSwappedPredicate(Pred); 6833 Changed = true; 6834 } 6835 6836 // If we're comparing an addrec with a value which is loop-invariant in the 6837 // addrec's loop, put the addrec on the left. Also make a dominance check, 6838 // as both operands could be addrecs loop-invariant in each other's loop. 6839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6840 const Loop *L = AR->getLoop(); 6841 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6842 std::swap(LHS, RHS); 6843 Pred = ICmpInst::getSwappedPredicate(Pred); 6844 Changed = true; 6845 } 6846 } 6847 6848 // If there's a constant operand, canonicalize comparisons with boundary 6849 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6850 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6851 const APInt &RA = RC->getValue()->getValue(); 6852 switch (Pred) { 6853 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6854 case ICmpInst::ICMP_EQ: 6855 case ICmpInst::ICMP_NE: 6856 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6857 if (!RA) 6858 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6859 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6860 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6861 ME->getOperand(0)->isAllOnesValue()) { 6862 RHS = AE->getOperand(1); 6863 LHS = ME->getOperand(1); 6864 Changed = true; 6865 } 6866 break; 6867 case ICmpInst::ICMP_UGE: 6868 if ((RA - 1).isMinValue()) { 6869 Pred = ICmpInst::ICMP_NE; 6870 RHS = getConstant(RA - 1); 6871 Changed = true; 6872 break; 6873 } 6874 if (RA.isMaxValue()) { 6875 Pred = ICmpInst::ICMP_EQ; 6876 Changed = true; 6877 break; 6878 } 6879 if (RA.isMinValue()) goto trivially_true; 6880 6881 Pred = ICmpInst::ICMP_UGT; 6882 RHS = getConstant(RA - 1); 6883 Changed = true; 6884 break; 6885 case ICmpInst::ICMP_ULE: 6886 if ((RA + 1).isMaxValue()) { 6887 Pred = ICmpInst::ICMP_NE; 6888 RHS = getConstant(RA + 1); 6889 Changed = true; 6890 break; 6891 } 6892 if (RA.isMinValue()) { 6893 Pred = ICmpInst::ICMP_EQ; 6894 Changed = true; 6895 break; 6896 } 6897 if (RA.isMaxValue()) goto trivially_true; 6898 6899 Pred = ICmpInst::ICMP_ULT; 6900 RHS = getConstant(RA + 1); 6901 Changed = true; 6902 break; 6903 case ICmpInst::ICMP_SGE: 6904 if ((RA - 1).isMinSignedValue()) { 6905 Pred = ICmpInst::ICMP_NE; 6906 RHS = getConstant(RA - 1); 6907 Changed = true; 6908 break; 6909 } 6910 if (RA.isMaxSignedValue()) { 6911 Pred = ICmpInst::ICMP_EQ; 6912 Changed = true; 6913 break; 6914 } 6915 if (RA.isMinSignedValue()) goto trivially_true; 6916 6917 Pred = ICmpInst::ICMP_SGT; 6918 RHS = getConstant(RA - 1); 6919 Changed = true; 6920 break; 6921 case ICmpInst::ICMP_SLE: 6922 if ((RA + 1).isMaxSignedValue()) { 6923 Pred = ICmpInst::ICMP_NE; 6924 RHS = getConstant(RA + 1); 6925 Changed = true; 6926 break; 6927 } 6928 if (RA.isMinSignedValue()) { 6929 Pred = ICmpInst::ICMP_EQ; 6930 Changed = true; 6931 break; 6932 } 6933 if (RA.isMaxSignedValue()) goto trivially_true; 6934 6935 Pred = ICmpInst::ICMP_SLT; 6936 RHS = getConstant(RA + 1); 6937 Changed = true; 6938 break; 6939 case ICmpInst::ICMP_UGT: 6940 if (RA.isMinValue()) { 6941 Pred = ICmpInst::ICMP_NE; 6942 Changed = true; 6943 break; 6944 } 6945 if ((RA + 1).isMaxValue()) { 6946 Pred = ICmpInst::ICMP_EQ; 6947 RHS = getConstant(RA + 1); 6948 Changed = true; 6949 break; 6950 } 6951 if (RA.isMaxValue()) goto trivially_false; 6952 break; 6953 case ICmpInst::ICMP_ULT: 6954 if (RA.isMaxValue()) { 6955 Pred = ICmpInst::ICMP_NE; 6956 Changed = true; 6957 break; 6958 } 6959 if ((RA - 1).isMinValue()) { 6960 Pred = ICmpInst::ICMP_EQ; 6961 RHS = getConstant(RA - 1); 6962 Changed = true; 6963 break; 6964 } 6965 if (RA.isMinValue()) goto trivially_false; 6966 break; 6967 case ICmpInst::ICMP_SGT: 6968 if (RA.isMinSignedValue()) { 6969 Pred = ICmpInst::ICMP_NE; 6970 Changed = true; 6971 break; 6972 } 6973 if ((RA + 1).isMaxSignedValue()) { 6974 Pred = ICmpInst::ICMP_EQ; 6975 RHS = getConstant(RA + 1); 6976 Changed = true; 6977 break; 6978 } 6979 if (RA.isMaxSignedValue()) goto trivially_false; 6980 break; 6981 case ICmpInst::ICMP_SLT: 6982 if (RA.isMaxSignedValue()) { 6983 Pred = ICmpInst::ICMP_NE; 6984 Changed = true; 6985 break; 6986 } 6987 if ((RA - 1).isMinSignedValue()) { 6988 Pred = ICmpInst::ICMP_EQ; 6989 RHS = getConstant(RA - 1); 6990 Changed = true; 6991 break; 6992 } 6993 if (RA.isMinSignedValue()) goto trivially_false; 6994 break; 6995 } 6996 } 6997 6998 // Check for obvious equality. 6999 if (HasSameValue(LHS, RHS)) { 7000 if (ICmpInst::isTrueWhenEqual(Pred)) 7001 goto trivially_true; 7002 if (ICmpInst::isFalseWhenEqual(Pred)) 7003 goto trivially_false; 7004 } 7005 7006 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7007 // adding or subtracting 1 from one of the operands. 7008 switch (Pred) { 7009 case ICmpInst::ICMP_SLE: 7010 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7011 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7012 SCEV::FlagNSW); 7013 Pred = ICmpInst::ICMP_SLT; 7014 Changed = true; 7015 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7016 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7017 SCEV::FlagNSW); 7018 Pred = ICmpInst::ICMP_SLT; 7019 Changed = true; 7020 } 7021 break; 7022 case ICmpInst::ICMP_SGE: 7023 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7024 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7025 SCEV::FlagNSW); 7026 Pred = ICmpInst::ICMP_SGT; 7027 Changed = true; 7028 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7029 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7030 SCEV::FlagNSW); 7031 Pred = ICmpInst::ICMP_SGT; 7032 Changed = true; 7033 } 7034 break; 7035 case ICmpInst::ICMP_ULE: 7036 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7037 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7038 SCEV::FlagNUW); 7039 Pred = ICmpInst::ICMP_ULT; 7040 Changed = true; 7041 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7042 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7043 SCEV::FlagNUW); 7044 Pred = ICmpInst::ICMP_ULT; 7045 Changed = true; 7046 } 7047 break; 7048 case ICmpInst::ICMP_UGE: 7049 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7050 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7051 SCEV::FlagNUW); 7052 Pred = ICmpInst::ICMP_UGT; 7053 Changed = true; 7054 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7055 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7056 SCEV::FlagNUW); 7057 Pred = ICmpInst::ICMP_UGT; 7058 Changed = true; 7059 } 7060 break; 7061 default: 7062 break; 7063 } 7064 7065 // TODO: More simplifications are possible here. 7066 7067 // Recursively simplify until we either hit a recursion limit or nothing 7068 // changes. 7069 if (Changed) 7070 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7071 7072 return Changed; 7073 7074 trivially_true: 7075 // Return 0 == 0. 7076 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7077 Pred = ICmpInst::ICMP_EQ; 7078 return true; 7079 7080 trivially_false: 7081 // Return 0 != 0. 7082 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7083 Pred = ICmpInst::ICMP_NE; 7084 return true; 7085 } 7086 7087 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7088 return getSignedRange(S).getSignedMax().isNegative(); 7089 } 7090 7091 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7092 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7093 } 7094 7095 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7096 return !getSignedRange(S).getSignedMin().isNegative(); 7097 } 7098 7099 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7100 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7101 } 7102 7103 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7104 return isKnownNegative(S) || isKnownPositive(S); 7105 } 7106 7107 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7108 const SCEV *LHS, const SCEV *RHS) { 7109 // Canonicalize the inputs first. 7110 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7111 7112 // If LHS or RHS is an addrec, check to see if the condition is true in 7113 // every iteration of the loop. 7114 // If LHS and RHS are both addrec, both conditions must be true in 7115 // every iteration of the loop. 7116 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7117 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7118 bool LeftGuarded = false; 7119 bool RightGuarded = false; 7120 if (LAR) { 7121 const Loop *L = LAR->getLoop(); 7122 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7123 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7124 if (!RAR) return true; 7125 LeftGuarded = true; 7126 } 7127 } 7128 if (RAR) { 7129 const Loop *L = RAR->getLoop(); 7130 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7131 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7132 if (!LAR) return true; 7133 RightGuarded = true; 7134 } 7135 } 7136 if (LeftGuarded && RightGuarded) 7137 return true; 7138 7139 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7140 return true; 7141 7142 // Otherwise see what can be done with known constant ranges. 7143 return isKnownPredicateWithRanges(Pred, LHS, RHS); 7144 } 7145 7146 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7147 ICmpInst::Predicate Pred, 7148 bool &Increasing) { 7149 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7150 7151 #ifndef NDEBUG 7152 // Verify an invariant: inverting the predicate should turn a monotonically 7153 // increasing change to a monotonically decreasing one, and vice versa. 7154 bool IncreasingSwapped; 7155 bool ResultSwapped = isMonotonicPredicateImpl( 7156 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7157 7158 assert(Result == ResultSwapped && "should be able to analyze both!"); 7159 if (ResultSwapped) 7160 assert(Increasing == !IncreasingSwapped && 7161 "monotonicity should flip as we flip the predicate"); 7162 #endif 7163 7164 return Result; 7165 } 7166 7167 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7168 ICmpInst::Predicate Pred, 7169 bool &Increasing) { 7170 7171 // A zero step value for LHS means the induction variable is essentially a 7172 // loop invariant value. We don't really depend on the predicate actually 7173 // flipping from false to true (for increasing predicates, and the other way 7174 // around for decreasing predicates), all we care about is that *if* the 7175 // predicate changes then it only changes from false to true. 7176 // 7177 // A zero step value in itself is not very useful, but there may be places 7178 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7179 // as general as possible. 7180 7181 switch (Pred) { 7182 default: 7183 return false; // Conservative answer 7184 7185 case ICmpInst::ICMP_UGT: 7186 case ICmpInst::ICMP_UGE: 7187 case ICmpInst::ICMP_ULT: 7188 case ICmpInst::ICMP_ULE: 7189 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7190 return false; 7191 7192 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7193 return true; 7194 7195 case ICmpInst::ICMP_SGT: 7196 case ICmpInst::ICMP_SGE: 7197 case ICmpInst::ICMP_SLT: 7198 case ICmpInst::ICMP_SLE: { 7199 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7200 return false; 7201 7202 const SCEV *Step = LHS->getStepRecurrence(*this); 7203 7204 if (isKnownNonNegative(Step)) { 7205 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7206 return true; 7207 } 7208 7209 if (isKnownNonPositive(Step)) { 7210 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7211 return true; 7212 } 7213 7214 return false; 7215 } 7216 7217 } 7218 7219 llvm_unreachable("switch has default clause!"); 7220 } 7221 7222 bool ScalarEvolution::isLoopInvariantPredicate( 7223 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7224 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7225 const SCEV *&InvariantRHS) { 7226 7227 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7228 if (!isLoopInvariant(RHS, L)) { 7229 if (!isLoopInvariant(LHS, L)) 7230 return false; 7231 7232 std::swap(LHS, RHS); 7233 Pred = ICmpInst::getSwappedPredicate(Pred); 7234 } 7235 7236 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7237 if (!ArLHS || ArLHS->getLoop() != L) 7238 return false; 7239 7240 bool Increasing; 7241 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7242 return false; 7243 7244 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7245 // true as the loop iterates, and the backedge is control dependent on 7246 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7247 // 7248 // * if the predicate was false in the first iteration then the predicate 7249 // is never evaluated again, since the loop exits without taking the 7250 // backedge. 7251 // * if the predicate was true in the first iteration then it will 7252 // continue to be true for all future iterations since it is 7253 // monotonically increasing. 7254 // 7255 // For both the above possibilities, we can replace the loop varying 7256 // predicate with its value on the first iteration of the loop (which is 7257 // loop invariant). 7258 // 7259 // A similar reasoning applies for a monotonically decreasing predicate, by 7260 // replacing true with false and false with true in the above two bullets. 7261 7262 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7263 7264 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7265 return false; 7266 7267 InvariantPred = Pred; 7268 InvariantLHS = ArLHS->getStart(); 7269 InvariantRHS = RHS; 7270 return true; 7271 } 7272 7273 bool 7274 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7275 const SCEV *LHS, const SCEV *RHS) { 7276 if (HasSameValue(LHS, RHS)) 7277 return ICmpInst::isTrueWhenEqual(Pred); 7278 7279 // This code is split out from isKnownPredicate because it is called from 7280 // within isLoopEntryGuardedByCond. 7281 switch (Pred) { 7282 default: 7283 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7284 case ICmpInst::ICMP_SGT: 7285 std::swap(LHS, RHS); 7286 case ICmpInst::ICMP_SLT: { 7287 ConstantRange LHSRange = getSignedRange(LHS); 7288 ConstantRange RHSRange = getSignedRange(RHS); 7289 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7290 return true; 7291 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7292 return false; 7293 break; 7294 } 7295 case ICmpInst::ICMP_SGE: 7296 std::swap(LHS, RHS); 7297 case ICmpInst::ICMP_SLE: { 7298 ConstantRange LHSRange = getSignedRange(LHS); 7299 ConstantRange RHSRange = getSignedRange(RHS); 7300 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7301 return true; 7302 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7303 return false; 7304 break; 7305 } 7306 case ICmpInst::ICMP_UGT: 7307 std::swap(LHS, RHS); 7308 case ICmpInst::ICMP_ULT: { 7309 ConstantRange LHSRange = getUnsignedRange(LHS); 7310 ConstantRange RHSRange = getUnsignedRange(RHS); 7311 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7312 return true; 7313 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7314 return false; 7315 break; 7316 } 7317 case ICmpInst::ICMP_UGE: 7318 std::swap(LHS, RHS); 7319 case ICmpInst::ICMP_ULE: { 7320 ConstantRange LHSRange = getUnsignedRange(LHS); 7321 ConstantRange RHSRange = getUnsignedRange(RHS); 7322 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7323 return true; 7324 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7325 return false; 7326 break; 7327 } 7328 case ICmpInst::ICMP_NE: { 7329 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7330 return true; 7331 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7332 return true; 7333 7334 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7335 if (isKnownNonZero(Diff)) 7336 return true; 7337 break; 7338 } 7339 case ICmpInst::ICMP_EQ: 7340 // The check at the top of the function catches the case where 7341 // the values are known to be equal. 7342 break; 7343 } 7344 return false; 7345 } 7346 7347 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7348 const SCEV *LHS, 7349 const SCEV *RHS) { 7350 7351 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7352 // Return Y via OutY. 7353 auto MatchBinaryAddToConst = 7354 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7355 SCEV::NoWrapFlags ExpectedFlags) { 7356 const SCEV *NonConstOp, *ConstOp; 7357 SCEV::NoWrapFlags FlagsPresent; 7358 7359 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7360 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7361 return false; 7362 7363 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7364 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7365 }; 7366 7367 APInt C; 7368 7369 switch (Pred) { 7370 default: 7371 break; 7372 7373 case ICmpInst::ICMP_SGE: 7374 std::swap(LHS, RHS); 7375 case ICmpInst::ICMP_SLE: 7376 // X s<= (X + C)<nsw> if C >= 0 7377 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7378 return true; 7379 7380 // (X + C)<nsw> s<= X if C <= 0 7381 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7382 !C.isStrictlyPositive()) 7383 return true; 7384 7385 case ICmpInst::ICMP_SGT: 7386 std::swap(LHS, RHS); 7387 case ICmpInst::ICMP_SLT: 7388 // X s< (X + C)<nsw> if C > 0 7389 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7390 C.isStrictlyPositive()) 7391 return true; 7392 7393 // (X + C)<nsw> s< X if C < 0 7394 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7395 return true; 7396 } 7397 7398 return false; 7399 } 7400 7401 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7402 const SCEV *LHS, 7403 const SCEV *RHS) { 7404 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7405 return false; 7406 7407 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7408 // the stack can result in exponential time complexity. 7409 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7410 7411 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7412 // 7413 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7414 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7415 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7416 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7417 // use isKnownPredicate later if needed. 7418 if (isKnownNonNegative(RHS) && 7419 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7420 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7421 return true; 7422 7423 return false; 7424 } 7425 7426 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7427 /// protected by a conditional between LHS and RHS. This is used to 7428 /// to eliminate casts. 7429 bool 7430 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7431 ICmpInst::Predicate Pred, 7432 const SCEV *LHS, const SCEV *RHS) { 7433 // Interpret a null as meaning no loop, where there is obviously no guard 7434 // (interprocedural conditions notwithstanding). 7435 if (!L) return true; 7436 7437 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7438 7439 BasicBlock *Latch = L->getLoopLatch(); 7440 if (!Latch) 7441 return false; 7442 7443 BranchInst *LoopContinuePredicate = 7444 dyn_cast<BranchInst>(Latch->getTerminator()); 7445 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7446 isImpliedCond(Pred, LHS, RHS, 7447 LoopContinuePredicate->getCondition(), 7448 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7449 return true; 7450 7451 // We don't want more than one activation of the following loops on the stack 7452 // -- that can lead to O(n!) time complexity. 7453 if (WalkingBEDominatingConds) 7454 return false; 7455 7456 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7457 7458 // See if we can exploit a trip count to prove the predicate. 7459 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7460 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7461 if (LatchBECount != getCouldNotCompute()) { 7462 // We know that Latch branches back to the loop header exactly 7463 // LatchBECount times. This means the backdege condition at Latch is 7464 // equivalent to "{0,+,1} u< LatchBECount". 7465 Type *Ty = LatchBECount->getType(); 7466 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7467 const SCEV *LoopCounter = 7468 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7469 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7470 LatchBECount)) 7471 return true; 7472 } 7473 7474 // Check conditions due to any @llvm.assume intrinsics. 7475 for (auto &AssumeVH : AC.assumptions()) { 7476 if (!AssumeVH) 7477 continue; 7478 auto *CI = cast<CallInst>(AssumeVH); 7479 if (!DT.dominates(CI, Latch->getTerminator())) 7480 continue; 7481 7482 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7483 return true; 7484 } 7485 7486 // If the loop is not reachable from the entry block, we risk running into an 7487 // infinite loop as we walk up into the dom tree. These loops do not matter 7488 // anyway, so we just return a conservative answer when we see them. 7489 if (!DT.isReachableFromEntry(L->getHeader())) 7490 return false; 7491 7492 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7493 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7494 7495 assert(DTN && "should reach the loop header before reaching the root!"); 7496 7497 BasicBlock *BB = DTN->getBlock(); 7498 BasicBlock *PBB = BB->getSinglePredecessor(); 7499 if (!PBB) 7500 continue; 7501 7502 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7503 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7504 continue; 7505 7506 Value *Condition = ContinuePredicate->getCondition(); 7507 7508 // If we have an edge `E` within the loop body that dominates the only 7509 // latch, the condition guarding `E` also guards the backedge. This 7510 // reasoning works only for loops with a single latch. 7511 7512 BasicBlockEdge DominatingEdge(PBB, BB); 7513 if (DominatingEdge.isSingleEdge()) { 7514 // We're constructively (and conservatively) enumerating edges within the 7515 // loop body that dominate the latch. The dominator tree better agree 7516 // with us on this: 7517 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7518 7519 if (isImpliedCond(Pred, LHS, RHS, Condition, 7520 BB != ContinuePredicate->getSuccessor(0))) 7521 return true; 7522 } 7523 } 7524 7525 return false; 7526 } 7527 7528 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7529 /// by a conditional between LHS and RHS. This is used to help avoid max 7530 /// expressions in loop trip counts, and to eliminate casts. 7531 bool 7532 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7533 ICmpInst::Predicate Pred, 7534 const SCEV *LHS, const SCEV *RHS) { 7535 // Interpret a null as meaning no loop, where there is obviously no guard 7536 // (interprocedural conditions notwithstanding). 7537 if (!L) return false; 7538 7539 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7540 7541 // Starting at the loop predecessor, climb up the predecessor chain, as long 7542 // as there are predecessors that can be found that have unique successors 7543 // leading to the original header. 7544 for (std::pair<BasicBlock *, BasicBlock *> 7545 Pair(L->getLoopPredecessor(), L->getHeader()); 7546 Pair.first; 7547 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7548 7549 BranchInst *LoopEntryPredicate = 7550 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7551 if (!LoopEntryPredicate || 7552 LoopEntryPredicate->isUnconditional()) 7553 continue; 7554 7555 if (isImpliedCond(Pred, LHS, RHS, 7556 LoopEntryPredicate->getCondition(), 7557 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7558 return true; 7559 } 7560 7561 // Check conditions due to any @llvm.assume intrinsics. 7562 for (auto &AssumeVH : AC.assumptions()) { 7563 if (!AssumeVH) 7564 continue; 7565 auto *CI = cast<CallInst>(AssumeVH); 7566 if (!DT.dominates(CI, L->getHeader())) 7567 continue; 7568 7569 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7570 return true; 7571 } 7572 7573 return false; 7574 } 7575 7576 namespace { 7577 /// RAII wrapper to prevent recursive application of isImpliedCond. 7578 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7579 /// currently evaluating isImpliedCond. 7580 struct MarkPendingLoopPredicate { 7581 Value *Cond; 7582 DenseSet<Value*> &LoopPreds; 7583 bool Pending; 7584 7585 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7586 : Cond(C), LoopPreds(LP) { 7587 Pending = !LoopPreds.insert(Cond).second; 7588 } 7589 ~MarkPendingLoopPredicate() { 7590 if (!Pending) 7591 LoopPreds.erase(Cond); 7592 } 7593 }; 7594 } // end anonymous namespace 7595 7596 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7597 /// and RHS is true whenever the given Cond value evaluates to true. 7598 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7599 const SCEV *LHS, const SCEV *RHS, 7600 Value *FoundCondValue, 7601 bool Inverse) { 7602 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7603 if (Mark.Pending) 7604 return false; 7605 7606 // Recursively handle And and Or conditions. 7607 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7608 if (BO->getOpcode() == Instruction::And) { 7609 if (!Inverse) 7610 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7611 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7612 } else if (BO->getOpcode() == Instruction::Or) { 7613 if (Inverse) 7614 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7615 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7616 } 7617 } 7618 7619 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7620 if (!ICI) return false; 7621 7622 // Now that we found a conditional branch that dominates the loop or controls 7623 // the loop latch. Check to see if it is the comparison we are looking for. 7624 ICmpInst::Predicate FoundPred; 7625 if (Inverse) 7626 FoundPred = ICI->getInversePredicate(); 7627 else 7628 FoundPred = ICI->getPredicate(); 7629 7630 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7631 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7632 7633 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7634 } 7635 7636 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7637 const SCEV *RHS, 7638 ICmpInst::Predicate FoundPred, 7639 const SCEV *FoundLHS, 7640 const SCEV *FoundRHS) { 7641 // Balance the types. 7642 if (getTypeSizeInBits(LHS->getType()) < 7643 getTypeSizeInBits(FoundLHS->getType())) { 7644 if (CmpInst::isSigned(Pred)) { 7645 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7646 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7647 } else { 7648 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7649 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7650 } 7651 } else if (getTypeSizeInBits(LHS->getType()) > 7652 getTypeSizeInBits(FoundLHS->getType())) { 7653 if (CmpInst::isSigned(FoundPred)) { 7654 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7655 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7656 } else { 7657 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7658 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7659 } 7660 } 7661 7662 // Canonicalize the query to match the way instcombine will have 7663 // canonicalized the comparison. 7664 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7665 if (LHS == RHS) 7666 return CmpInst::isTrueWhenEqual(Pred); 7667 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7668 if (FoundLHS == FoundRHS) 7669 return CmpInst::isFalseWhenEqual(FoundPred); 7670 7671 // Check to see if we can make the LHS or RHS match. 7672 if (LHS == FoundRHS || RHS == FoundLHS) { 7673 if (isa<SCEVConstant>(RHS)) { 7674 std::swap(FoundLHS, FoundRHS); 7675 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7676 } else { 7677 std::swap(LHS, RHS); 7678 Pred = ICmpInst::getSwappedPredicate(Pred); 7679 } 7680 } 7681 7682 // Check whether the found predicate is the same as the desired predicate. 7683 if (FoundPred == Pred) 7684 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7685 7686 // Check whether swapping the found predicate makes it the same as the 7687 // desired predicate. 7688 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7689 if (isa<SCEVConstant>(RHS)) 7690 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7691 else 7692 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7693 RHS, LHS, FoundLHS, FoundRHS); 7694 } 7695 7696 // Unsigned comparison is the same as signed comparison when both the operands 7697 // are non-negative. 7698 if (CmpInst::isUnsigned(FoundPred) && 7699 CmpInst::getSignedPredicate(FoundPred) == Pred && 7700 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7701 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7702 7703 // Check if we can make progress by sharpening ranges. 7704 if (FoundPred == ICmpInst::ICMP_NE && 7705 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7706 7707 const SCEVConstant *C = nullptr; 7708 const SCEV *V = nullptr; 7709 7710 if (isa<SCEVConstant>(FoundLHS)) { 7711 C = cast<SCEVConstant>(FoundLHS); 7712 V = FoundRHS; 7713 } else { 7714 C = cast<SCEVConstant>(FoundRHS); 7715 V = FoundLHS; 7716 } 7717 7718 // The guarding predicate tells us that C != V. If the known range 7719 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7720 // range we consider has to correspond to same signedness as the 7721 // predicate we're interested in folding. 7722 7723 APInt Min = ICmpInst::isSigned(Pred) ? 7724 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7725 7726 if (Min == C->getValue()->getValue()) { 7727 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7728 // This is true even if (Min + 1) wraps around -- in case of 7729 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7730 7731 APInt SharperMin = Min + 1; 7732 7733 switch (Pred) { 7734 case ICmpInst::ICMP_SGE: 7735 case ICmpInst::ICMP_UGE: 7736 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7737 // RHS, we're done. 7738 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7739 getConstant(SharperMin))) 7740 return true; 7741 7742 case ICmpInst::ICMP_SGT: 7743 case ICmpInst::ICMP_UGT: 7744 // We know from the range information that (V `Pred` Min || 7745 // V == Min). We know from the guarding condition that !(V 7746 // == Min). This gives us 7747 // 7748 // V `Pred` Min || V == Min && !(V == Min) 7749 // => V `Pred` Min 7750 // 7751 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7752 7753 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7754 return true; 7755 7756 default: 7757 // No change 7758 break; 7759 } 7760 } 7761 } 7762 7763 // Check whether the actual condition is beyond sufficient. 7764 if (FoundPred == ICmpInst::ICMP_EQ) 7765 if (ICmpInst::isTrueWhenEqual(Pred)) 7766 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7767 return true; 7768 if (Pred == ICmpInst::ICMP_NE) 7769 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7770 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7771 return true; 7772 7773 // Otherwise assume the worst. 7774 return false; 7775 } 7776 7777 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7778 const SCEV *&L, const SCEV *&R, 7779 SCEV::NoWrapFlags &Flags) { 7780 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7781 if (!AE || AE->getNumOperands() != 2) 7782 return false; 7783 7784 L = AE->getOperand(0); 7785 R = AE->getOperand(1); 7786 Flags = AE->getNoWrapFlags(); 7787 return true; 7788 } 7789 7790 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7791 const SCEV *More, 7792 APInt &C) { 7793 // We avoid subtracting expressions here because this function is usually 7794 // fairly deep in the call stack (i.e. is called many times). 7795 7796 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7797 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7798 const auto *MAR = cast<SCEVAddRecExpr>(More); 7799 7800 if (LAR->getLoop() != MAR->getLoop()) 7801 return false; 7802 7803 // We look at affine expressions only; not for correctness but to keep 7804 // getStepRecurrence cheap. 7805 if (!LAR->isAffine() || !MAR->isAffine()) 7806 return false; 7807 7808 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7809 return false; 7810 7811 Less = LAR->getStart(); 7812 More = MAR->getStart(); 7813 7814 // fall through 7815 } 7816 7817 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7818 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7819 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7820 C = M - L; 7821 return true; 7822 } 7823 7824 const SCEV *L, *R; 7825 SCEV::NoWrapFlags Flags; 7826 if (splitBinaryAdd(Less, L, R, Flags)) 7827 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7828 if (R == More) { 7829 C = -(LC->getValue()->getValue()); 7830 return true; 7831 } 7832 7833 if (splitBinaryAdd(More, L, R, Flags)) 7834 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7835 if (R == Less) { 7836 C = LC->getValue()->getValue(); 7837 return true; 7838 } 7839 7840 return false; 7841 } 7842 7843 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7844 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7845 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7846 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7847 return false; 7848 7849 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7850 if (!AddRecLHS) 7851 return false; 7852 7853 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7854 if (!AddRecFoundLHS) 7855 return false; 7856 7857 // We'd like to let SCEV reason about control dependencies, so we constrain 7858 // both the inequalities to be about add recurrences on the same loop. This 7859 // way we can use isLoopEntryGuardedByCond later. 7860 7861 const Loop *L = AddRecFoundLHS->getLoop(); 7862 if (L != AddRecLHS->getLoop()) 7863 return false; 7864 7865 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7866 // 7867 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7868 // ... (2) 7869 // 7870 // Informal proof for (2), assuming (1) [*]: 7871 // 7872 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7873 // 7874 // Then 7875 // 7876 // FoundLHS s< FoundRHS s< INT_MIN - C 7877 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7878 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7879 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7880 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7881 // <=> FoundLHS + C s< FoundRHS + C 7882 // 7883 // [*]: (1) can be proved by ruling out overflow. 7884 // 7885 // [**]: This can be proved by analyzing all the four possibilities: 7886 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7887 // (A s>= 0, B s>= 0). 7888 // 7889 // Note: 7890 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7891 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7892 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7893 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7894 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7895 // C)". 7896 7897 APInt LDiff, RDiff; 7898 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7899 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7900 LDiff != RDiff) 7901 return false; 7902 7903 if (LDiff == 0) 7904 return true; 7905 7906 APInt FoundRHSLimit; 7907 7908 if (Pred == CmpInst::ICMP_ULT) { 7909 FoundRHSLimit = -RDiff; 7910 } else { 7911 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7912 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7913 } 7914 7915 // Try to prove (1) or (2), as needed. 7916 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7917 getConstant(FoundRHSLimit)); 7918 } 7919 7920 /// isImpliedCondOperands - Test whether the condition described by Pred, 7921 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7922 /// and FoundRHS is true. 7923 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7924 const SCEV *LHS, const SCEV *RHS, 7925 const SCEV *FoundLHS, 7926 const SCEV *FoundRHS) { 7927 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7928 return true; 7929 7930 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7931 return true; 7932 7933 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7934 FoundLHS, FoundRHS) || 7935 // ~x < ~y --> x > y 7936 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7937 getNotSCEV(FoundRHS), 7938 getNotSCEV(FoundLHS)); 7939 } 7940 7941 7942 /// If Expr computes ~A, return A else return nullptr 7943 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7944 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7945 if (!Add || Add->getNumOperands() != 2 || 7946 !Add->getOperand(0)->isAllOnesValue()) 7947 return nullptr; 7948 7949 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7950 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7951 !AddRHS->getOperand(0)->isAllOnesValue()) 7952 return nullptr; 7953 7954 return AddRHS->getOperand(1); 7955 } 7956 7957 7958 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7959 template<typename MaxExprType> 7960 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7961 const SCEV *Candidate) { 7962 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7963 if (!MaxExpr) return false; 7964 7965 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7966 return It != MaxExpr->op_end(); 7967 } 7968 7969 7970 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7971 template<typename MaxExprType> 7972 static bool IsMinConsistingOf(ScalarEvolution &SE, 7973 const SCEV *MaybeMinExpr, 7974 const SCEV *Candidate) { 7975 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7976 if (!MaybeMaxExpr) 7977 return false; 7978 7979 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7980 } 7981 7982 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7983 ICmpInst::Predicate Pred, 7984 const SCEV *LHS, const SCEV *RHS) { 7985 7986 // If both sides are affine addrecs for the same loop, with equal 7987 // steps, and we know the recurrences don't wrap, then we only 7988 // need to check the predicate on the starting values. 7989 7990 if (!ICmpInst::isRelational(Pred)) 7991 return false; 7992 7993 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7994 if (!LAR) 7995 return false; 7996 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7997 if (!RAR) 7998 return false; 7999 if (LAR->getLoop() != RAR->getLoop()) 8000 return false; 8001 if (!LAR->isAffine() || !RAR->isAffine()) 8002 return false; 8003 8004 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8005 return false; 8006 8007 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8008 SCEV::FlagNSW : SCEV::FlagNUW; 8009 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8010 return false; 8011 8012 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8013 } 8014 8015 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8016 /// expression? 8017 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8018 ICmpInst::Predicate Pred, 8019 const SCEV *LHS, const SCEV *RHS) { 8020 switch (Pred) { 8021 default: 8022 return false; 8023 8024 case ICmpInst::ICMP_SGE: 8025 std::swap(LHS, RHS); 8026 // fall through 8027 case ICmpInst::ICMP_SLE: 8028 return 8029 // min(A, ...) <= A 8030 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8031 // A <= max(A, ...) 8032 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8033 8034 case ICmpInst::ICMP_UGE: 8035 std::swap(LHS, RHS); 8036 // fall through 8037 case ICmpInst::ICMP_ULE: 8038 return 8039 // min(A, ...) <= A 8040 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8041 // A <= max(A, ...) 8042 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8043 } 8044 8045 llvm_unreachable("covered switch fell through?!"); 8046 } 8047 8048 /// isImpliedCondOperandsHelper - Test whether the condition described by 8049 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8050 /// FoundLHS, and FoundRHS is true. 8051 bool 8052 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8053 const SCEV *LHS, const SCEV *RHS, 8054 const SCEV *FoundLHS, 8055 const SCEV *FoundRHS) { 8056 auto IsKnownPredicateFull = 8057 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8058 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 8059 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8060 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8061 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8062 }; 8063 8064 switch (Pred) { 8065 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8066 case ICmpInst::ICMP_EQ: 8067 case ICmpInst::ICMP_NE: 8068 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8069 return true; 8070 break; 8071 case ICmpInst::ICMP_SLT: 8072 case ICmpInst::ICMP_SLE: 8073 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8074 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8075 return true; 8076 break; 8077 case ICmpInst::ICMP_SGT: 8078 case ICmpInst::ICMP_SGE: 8079 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8080 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8081 return true; 8082 break; 8083 case ICmpInst::ICMP_ULT: 8084 case ICmpInst::ICMP_ULE: 8085 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8086 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8087 return true; 8088 break; 8089 case ICmpInst::ICMP_UGT: 8090 case ICmpInst::ICMP_UGE: 8091 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8092 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8093 return true; 8094 break; 8095 } 8096 8097 return false; 8098 } 8099 8100 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8101 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8102 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8103 const SCEV *LHS, 8104 const SCEV *RHS, 8105 const SCEV *FoundLHS, 8106 const SCEV *FoundRHS) { 8107 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8108 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8109 // reduce the compile time impact of this optimization. 8110 return false; 8111 8112 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8113 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8114 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8115 return false; 8116 8117 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 8118 8119 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8120 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8121 ConstantRange FoundLHSRange = 8122 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8123 8124 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8125 // for `LHS`: 8126 APInt Addend = 8127 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 8128 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8129 8130 // We can also compute the range of values for `LHS` that satisfy the 8131 // consequent, "`LHS` `Pred` `RHS`": 8132 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 8133 ConstantRange SatisfyingLHSRange = 8134 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8135 8136 // The antecedent implies the consequent if every value of `LHS` that 8137 // satisfies the antecedent also satisfies the consequent. 8138 return SatisfyingLHSRange.contains(LHSRange); 8139 } 8140 8141 // Verify if an linear IV with positive stride can overflow when in a 8142 // less-than comparison, knowing the invariant term of the comparison, the 8143 // stride and the knowledge of NSW/NUW flags on the recurrence. 8144 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8145 bool IsSigned, bool NoWrap) { 8146 if (NoWrap) return false; 8147 8148 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8149 const SCEV *One = getOne(Stride->getType()); 8150 8151 if (IsSigned) { 8152 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8153 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8154 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8155 .getSignedMax(); 8156 8157 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8158 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8159 } 8160 8161 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8162 APInt MaxValue = APInt::getMaxValue(BitWidth); 8163 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8164 .getUnsignedMax(); 8165 8166 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8167 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8168 } 8169 8170 // Verify if an linear IV with negative stride can overflow when in a 8171 // greater-than comparison, knowing the invariant term of the comparison, 8172 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8173 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8174 bool IsSigned, bool NoWrap) { 8175 if (NoWrap) return false; 8176 8177 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8178 const SCEV *One = getOne(Stride->getType()); 8179 8180 if (IsSigned) { 8181 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8182 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8183 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8184 .getSignedMax(); 8185 8186 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8187 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8188 } 8189 8190 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8191 APInt MinValue = APInt::getMinValue(BitWidth); 8192 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8193 .getUnsignedMax(); 8194 8195 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8196 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8197 } 8198 8199 // Compute the backedge taken count knowing the interval difference, the 8200 // stride and presence of the equality in the comparison. 8201 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8202 bool Equality) { 8203 const SCEV *One = getOne(Step->getType()); 8204 Delta = Equality ? getAddExpr(Delta, Step) 8205 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8206 return getUDivExpr(Delta, Step); 8207 } 8208 8209 /// HowManyLessThans - Return the number of times a backedge containing the 8210 /// specified less-than comparison will execute. If not computable, return 8211 /// CouldNotCompute. 8212 /// 8213 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8214 /// the branch (loops exits only if condition is true). In this case, we can use 8215 /// NoWrapFlags to skip overflow checks. 8216 ScalarEvolution::ExitLimit 8217 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8218 const Loop *L, bool IsSigned, 8219 bool ControlsExit) { 8220 // We handle only IV < Invariant 8221 if (!isLoopInvariant(RHS, L)) 8222 return getCouldNotCompute(); 8223 8224 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8225 8226 // Avoid weird loops 8227 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8228 return getCouldNotCompute(); 8229 8230 bool NoWrap = ControlsExit && 8231 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8232 8233 const SCEV *Stride = IV->getStepRecurrence(*this); 8234 8235 // Avoid negative or zero stride values 8236 if (!isKnownPositive(Stride)) 8237 return getCouldNotCompute(); 8238 8239 // Avoid proven overflow cases: this will ensure that the backedge taken count 8240 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8241 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8242 // behaviors like the case of C language. 8243 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8244 return getCouldNotCompute(); 8245 8246 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8247 : ICmpInst::ICMP_ULT; 8248 const SCEV *Start = IV->getStart(); 8249 const SCEV *End = RHS; 8250 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8251 const SCEV *Diff = getMinusSCEV(RHS, Start); 8252 // If we have NoWrap set, then we can assume that the increment won't 8253 // overflow, in which case if RHS - Start is a constant, we don't need to 8254 // do a max operation since we can just figure it out statically 8255 if (NoWrap && isa<SCEVConstant>(Diff)) { 8256 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8257 if (D.isNegative()) 8258 End = Start; 8259 } else 8260 End = IsSigned ? getSMaxExpr(RHS, Start) 8261 : getUMaxExpr(RHS, Start); 8262 } 8263 8264 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8265 8266 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8267 : getUnsignedRange(Start).getUnsignedMin(); 8268 8269 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8270 : getUnsignedRange(Stride).getUnsignedMin(); 8271 8272 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8273 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8274 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8275 8276 // Although End can be a MAX expression we estimate MaxEnd considering only 8277 // the case End = RHS. This is safe because in the other case (End - Start) 8278 // is zero, leading to a zero maximum backedge taken count. 8279 APInt MaxEnd = 8280 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8281 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8282 8283 const SCEV *MaxBECount; 8284 if (isa<SCEVConstant>(BECount)) 8285 MaxBECount = BECount; 8286 else 8287 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8288 getConstant(MinStride), false); 8289 8290 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8291 MaxBECount = BECount; 8292 8293 return ExitLimit(BECount, MaxBECount); 8294 } 8295 8296 ScalarEvolution::ExitLimit 8297 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8298 const Loop *L, bool IsSigned, 8299 bool ControlsExit) { 8300 // We handle only IV > Invariant 8301 if (!isLoopInvariant(RHS, L)) 8302 return getCouldNotCompute(); 8303 8304 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8305 8306 // Avoid weird loops 8307 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8308 return getCouldNotCompute(); 8309 8310 bool NoWrap = ControlsExit && 8311 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8312 8313 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8314 8315 // Avoid negative or zero stride values 8316 if (!isKnownPositive(Stride)) 8317 return getCouldNotCompute(); 8318 8319 // Avoid proven overflow cases: this will ensure that the backedge taken count 8320 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8321 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8322 // behaviors like the case of C language. 8323 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8324 return getCouldNotCompute(); 8325 8326 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8327 : ICmpInst::ICMP_UGT; 8328 8329 const SCEV *Start = IV->getStart(); 8330 const SCEV *End = RHS; 8331 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8332 const SCEV *Diff = getMinusSCEV(RHS, Start); 8333 // If we have NoWrap set, then we can assume that the increment won't 8334 // overflow, in which case if RHS - Start is a constant, we don't need to 8335 // do a max operation since we can just figure it out statically 8336 if (NoWrap && isa<SCEVConstant>(Diff)) { 8337 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8338 if (!D.isNegative()) 8339 End = Start; 8340 } else 8341 End = IsSigned ? getSMinExpr(RHS, Start) 8342 : getUMinExpr(RHS, Start); 8343 } 8344 8345 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8346 8347 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8348 : getUnsignedRange(Start).getUnsignedMax(); 8349 8350 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8351 : getUnsignedRange(Stride).getUnsignedMin(); 8352 8353 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8354 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8355 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8356 8357 // Although End can be a MIN expression we estimate MinEnd considering only 8358 // the case End = RHS. This is safe because in the other case (Start - End) 8359 // is zero, leading to a zero maximum backedge taken count. 8360 APInt MinEnd = 8361 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8362 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8363 8364 8365 const SCEV *MaxBECount = getCouldNotCompute(); 8366 if (isa<SCEVConstant>(BECount)) 8367 MaxBECount = BECount; 8368 else 8369 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8370 getConstant(MinStride), false); 8371 8372 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8373 MaxBECount = BECount; 8374 8375 return ExitLimit(BECount, MaxBECount); 8376 } 8377 8378 /// getNumIterationsInRange - Return the number of iterations of this loop that 8379 /// produce values in the specified constant range. Another way of looking at 8380 /// this is that it returns the first iteration number where the value is not in 8381 /// the condition, thus computing the exit count. If the iteration count can't 8382 /// be computed, an instance of SCEVCouldNotCompute is returned. 8383 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8384 ScalarEvolution &SE) const { 8385 if (Range.isFullSet()) // Infinite loop. 8386 return SE.getCouldNotCompute(); 8387 8388 // If the start is a non-zero constant, shift the range to simplify things. 8389 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8390 if (!SC->getValue()->isZero()) { 8391 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8392 Operands[0] = SE.getZero(SC->getType()); 8393 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8394 getNoWrapFlags(FlagNW)); 8395 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8396 return ShiftedAddRec->getNumIterationsInRange( 8397 Range.subtract(SC->getValue()->getValue()), SE); 8398 // This is strange and shouldn't happen. 8399 return SE.getCouldNotCompute(); 8400 } 8401 8402 // The only time we can solve this is when we have all constant indices. 8403 // Otherwise, we cannot determine the overflow conditions. 8404 if (std::any_of(op_begin(), op_end(), 8405 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8406 return SE.getCouldNotCompute(); 8407 8408 // Okay at this point we know that all elements of the chrec are constants and 8409 // that the start element is zero. 8410 8411 // First check to see if the range contains zero. If not, the first 8412 // iteration exits. 8413 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8414 if (!Range.contains(APInt(BitWidth, 0))) 8415 return SE.getZero(getType()); 8416 8417 if (isAffine()) { 8418 // If this is an affine expression then we have this situation: 8419 // Solve {0,+,A} in Range === Ax in Range 8420 8421 // We know that zero is in the range. If A is positive then we know that 8422 // the upper value of the range must be the first possible exit value. 8423 // If A is negative then the lower of the range is the last possible loop 8424 // value. Also note that we already checked for a full range. 8425 APInt One(BitWidth,1); 8426 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8427 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8428 8429 // The exit value should be (End+A)/A. 8430 APInt ExitVal = (End + A).udiv(A); 8431 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8432 8433 // Evaluate at the exit value. If we really did fall out of the valid 8434 // range, then we computed our trip count, otherwise wrap around or other 8435 // things must have happened. 8436 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8437 if (Range.contains(Val->getValue())) 8438 return SE.getCouldNotCompute(); // Something strange happened 8439 8440 // Ensure that the previous value is in the range. This is a sanity check. 8441 assert(Range.contains( 8442 EvaluateConstantChrecAtConstant(this, 8443 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8444 "Linear scev computation is off in a bad way!"); 8445 return SE.getConstant(ExitValue); 8446 } else if (isQuadratic()) { 8447 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8448 // quadratic equation to solve it. To do this, we must frame our problem in 8449 // terms of figuring out when zero is crossed, instead of when 8450 // Range.getUpper() is crossed. 8451 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8452 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8453 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8454 // getNoWrapFlags(FlagNW) 8455 FlagAnyWrap); 8456 8457 // Next, solve the constructed addrec 8458 std::pair<const SCEV *,const SCEV *> Roots = 8459 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8460 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8461 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8462 if (R1) { 8463 // Pick the smallest positive root value. 8464 if (ConstantInt *CB = 8465 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8466 R1->getValue(), R2->getValue()))) { 8467 if (!CB->getZExtValue()) 8468 std::swap(R1, R2); // R1 is the minimum root now. 8469 8470 // Make sure the root is not off by one. The returned iteration should 8471 // not be in the range, but the previous one should be. When solving 8472 // for "X*X < 5", for example, we should not return a root of 2. 8473 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8474 R1->getValue(), 8475 SE); 8476 if (Range.contains(R1Val->getValue())) { 8477 // The next iteration must be out of the range... 8478 ConstantInt *NextVal = 8479 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8480 8481 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8482 if (!Range.contains(R1Val->getValue())) 8483 return SE.getConstant(NextVal); 8484 return SE.getCouldNotCompute(); // Something strange happened 8485 } 8486 8487 // If R1 was not in the range, then it is a good return value. Make 8488 // sure that R1-1 WAS in the range though, just in case. 8489 ConstantInt *NextVal = 8490 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8491 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8492 if (Range.contains(R1Val->getValue())) 8493 return R1; 8494 return SE.getCouldNotCompute(); // Something strange happened 8495 } 8496 } 8497 } 8498 8499 return SE.getCouldNotCompute(); 8500 } 8501 8502 namespace { 8503 struct FindUndefs { 8504 bool Found; 8505 FindUndefs() : Found(false) {} 8506 8507 bool follow(const SCEV *S) { 8508 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8509 if (isa<UndefValue>(C->getValue())) 8510 Found = true; 8511 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8512 if (isa<UndefValue>(C->getValue())) 8513 Found = true; 8514 } 8515 8516 // Keep looking if we haven't found it yet. 8517 return !Found; 8518 } 8519 bool isDone() const { 8520 // Stop recursion if we have found an undef. 8521 return Found; 8522 } 8523 }; 8524 } 8525 8526 // Return true when S contains at least an undef value. 8527 static inline bool 8528 containsUndefs(const SCEV *S) { 8529 FindUndefs F; 8530 SCEVTraversal<FindUndefs> ST(F); 8531 ST.visitAll(S); 8532 8533 return F.Found; 8534 } 8535 8536 namespace { 8537 // Collect all steps of SCEV expressions. 8538 struct SCEVCollectStrides { 8539 ScalarEvolution &SE; 8540 SmallVectorImpl<const SCEV *> &Strides; 8541 8542 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8543 : SE(SE), Strides(S) {} 8544 8545 bool follow(const SCEV *S) { 8546 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8547 Strides.push_back(AR->getStepRecurrence(SE)); 8548 return true; 8549 } 8550 bool isDone() const { return false; } 8551 }; 8552 8553 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8554 struct SCEVCollectTerms { 8555 SmallVectorImpl<const SCEV *> &Terms; 8556 8557 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8558 : Terms(T) {} 8559 8560 bool follow(const SCEV *S) { 8561 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8562 if (!containsUndefs(S)) 8563 Terms.push_back(S); 8564 8565 // Stop recursion: once we collected a term, do not walk its operands. 8566 return false; 8567 } 8568 8569 // Keep looking. 8570 return true; 8571 } 8572 bool isDone() const { return false; } 8573 }; 8574 8575 // Check if a SCEV contains an AddRecExpr. 8576 struct SCEVHasAddRec { 8577 bool &ContainsAddRec; 8578 8579 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8580 ContainsAddRec = false; 8581 } 8582 8583 bool follow(const SCEV *S) { 8584 if (isa<SCEVAddRecExpr>(S)) { 8585 ContainsAddRec = true; 8586 8587 // Stop recursion: once we collected a term, do not walk its operands. 8588 return false; 8589 } 8590 8591 // Keep looking. 8592 return true; 8593 } 8594 bool isDone() const { return false; } 8595 }; 8596 8597 // Find factors that are multiplied with an expression that (possibly as a 8598 // subexpression) contains an AddRecExpr. In the expression: 8599 // 8600 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8601 // 8602 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8603 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8604 // parameters as they form a product with an induction variable. 8605 // 8606 // This collector expects all array size parameters to be in the same MulExpr. 8607 // It might be necessary to later add support for collecting parameters that are 8608 // spread over different nested MulExpr. 8609 struct SCEVCollectAddRecMultiplies { 8610 SmallVectorImpl<const SCEV *> &Terms; 8611 ScalarEvolution &SE; 8612 8613 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8614 : Terms(T), SE(SE) {} 8615 8616 bool follow(const SCEV *S) { 8617 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8618 bool HasAddRec = false; 8619 SmallVector<const SCEV *, 0> Operands; 8620 for (auto Op : Mul->operands()) { 8621 if (isa<SCEVUnknown>(Op)) { 8622 Operands.push_back(Op); 8623 } else { 8624 bool ContainsAddRec; 8625 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8626 visitAll(Op, ContiansAddRec); 8627 HasAddRec |= ContainsAddRec; 8628 } 8629 } 8630 if (Operands.size() == 0) 8631 return true; 8632 8633 if (!HasAddRec) 8634 return false; 8635 8636 Terms.push_back(SE.getMulExpr(Operands)); 8637 // Stop recursion: once we collected a term, do not walk its operands. 8638 return false; 8639 } 8640 8641 // Keep looking. 8642 return true; 8643 } 8644 bool isDone() const { return false; } 8645 }; 8646 } 8647 8648 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8649 /// two places: 8650 /// 1) The strides of AddRec expressions. 8651 /// 2) Unknowns that are multiplied with AddRec expressions. 8652 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8653 SmallVectorImpl<const SCEV *> &Terms) { 8654 SmallVector<const SCEV *, 4> Strides; 8655 SCEVCollectStrides StrideCollector(*this, Strides); 8656 visitAll(Expr, StrideCollector); 8657 8658 DEBUG({ 8659 dbgs() << "Strides:\n"; 8660 for (const SCEV *S : Strides) 8661 dbgs() << *S << "\n"; 8662 }); 8663 8664 for (const SCEV *S : Strides) { 8665 SCEVCollectTerms TermCollector(Terms); 8666 visitAll(S, TermCollector); 8667 } 8668 8669 DEBUG({ 8670 dbgs() << "Terms:\n"; 8671 for (const SCEV *T : Terms) 8672 dbgs() << *T << "\n"; 8673 }); 8674 8675 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8676 visitAll(Expr, MulCollector); 8677 } 8678 8679 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8680 SmallVectorImpl<const SCEV *> &Terms, 8681 SmallVectorImpl<const SCEV *> &Sizes) { 8682 int Last = Terms.size() - 1; 8683 const SCEV *Step = Terms[Last]; 8684 8685 // End of recursion. 8686 if (Last == 0) { 8687 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8688 SmallVector<const SCEV *, 2> Qs; 8689 for (const SCEV *Op : M->operands()) 8690 if (!isa<SCEVConstant>(Op)) 8691 Qs.push_back(Op); 8692 8693 Step = SE.getMulExpr(Qs); 8694 } 8695 8696 Sizes.push_back(Step); 8697 return true; 8698 } 8699 8700 for (const SCEV *&Term : Terms) { 8701 // Normalize the terms before the next call to findArrayDimensionsRec. 8702 const SCEV *Q, *R; 8703 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8704 8705 // Bail out when GCD does not evenly divide one of the terms. 8706 if (!R->isZero()) 8707 return false; 8708 8709 Term = Q; 8710 } 8711 8712 // Remove all SCEVConstants. 8713 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8714 return isa<SCEVConstant>(E); 8715 }), 8716 Terms.end()); 8717 8718 if (Terms.size() > 0) 8719 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8720 return false; 8721 8722 Sizes.push_back(Step); 8723 return true; 8724 } 8725 8726 namespace { 8727 struct FindParameter { 8728 bool FoundParameter; 8729 FindParameter() : FoundParameter(false) {} 8730 8731 bool follow(const SCEV *S) { 8732 if (isa<SCEVUnknown>(S)) { 8733 FoundParameter = true; 8734 // Stop recursion: we found a parameter. 8735 return false; 8736 } 8737 // Keep looking. 8738 return true; 8739 } 8740 bool isDone() const { 8741 // Stop recursion if we have found a parameter. 8742 return FoundParameter; 8743 } 8744 }; 8745 } 8746 8747 // Returns true when S contains at least a SCEVUnknown parameter. 8748 static inline bool 8749 containsParameters(const SCEV *S) { 8750 FindParameter F; 8751 SCEVTraversal<FindParameter> ST(F); 8752 ST.visitAll(S); 8753 8754 return F.FoundParameter; 8755 } 8756 8757 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8758 static inline bool 8759 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8760 for (const SCEV *T : Terms) 8761 if (containsParameters(T)) 8762 return true; 8763 return false; 8764 } 8765 8766 // Return the number of product terms in S. 8767 static inline int numberOfTerms(const SCEV *S) { 8768 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8769 return Expr->getNumOperands(); 8770 return 1; 8771 } 8772 8773 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8774 if (isa<SCEVConstant>(T)) 8775 return nullptr; 8776 8777 if (isa<SCEVUnknown>(T)) 8778 return T; 8779 8780 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8781 SmallVector<const SCEV *, 2> Factors; 8782 for (const SCEV *Op : M->operands()) 8783 if (!isa<SCEVConstant>(Op)) 8784 Factors.push_back(Op); 8785 8786 return SE.getMulExpr(Factors); 8787 } 8788 8789 return T; 8790 } 8791 8792 /// Return the size of an element read or written by Inst. 8793 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8794 Type *Ty; 8795 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8796 Ty = Store->getValueOperand()->getType(); 8797 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8798 Ty = Load->getType(); 8799 else 8800 return nullptr; 8801 8802 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8803 return getSizeOfExpr(ETy, Ty); 8804 } 8805 8806 /// Second step of delinearization: compute the array dimensions Sizes from the 8807 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8808 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8809 SmallVectorImpl<const SCEV *> &Sizes, 8810 const SCEV *ElementSize) const { 8811 8812 if (Terms.size() < 1 || !ElementSize) 8813 return; 8814 8815 // Early return when Terms do not contain parameters: we do not delinearize 8816 // non parametric SCEVs. 8817 if (!containsParameters(Terms)) 8818 return; 8819 8820 DEBUG({ 8821 dbgs() << "Terms:\n"; 8822 for (const SCEV *T : Terms) 8823 dbgs() << *T << "\n"; 8824 }); 8825 8826 // Remove duplicates. 8827 std::sort(Terms.begin(), Terms.end()); 8828 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8829 8830 // Put larger terms first. 8831 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8832 return numberOfTerms(LHS) > numberOfTerms(RHS); 8833 }); 8834 8835 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8836 8837 // Try to divide all terms by the element size. If term is not divisible by 8838 // element size, proceed with the original term. 8839 for (const SCEV *&Term : Terms) { 8840 const SCEV *Q, *R; 8841 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8842 if (!Q->isZero()) 8843 Term = Q; 8844 } 8845 8846 SmallVector<const SCEV *, 4> NewTerms; 8847 8848 // Remove constant factors. 8849 for (const SCEV *T : Terms) 8850 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8851 NewTerms.push_back(NewT); 8852 8853 DEBUG({ 8854 dbgs() << "Terms after sorting:\n"; 8855 for (const SCEV *T : NewTerms) 8856 dbgs() << *T << "\n"; 8857 }); 8858 8859 if (NewTerms.empty() || 8860 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8861 Sizes.clear(); 8862 return; 8863 } 8864 8865 // The last element to be pushed into Sizes is the size of an element. 8866 Sizes.push_back(ElementSize); 8867 8868 DEBUG({ 8869 dbgs() << "Sizes:\n"; 8870 for (const SCEV *S : Sizes) 8871 dbgs() << *S << "\n"; 8872 }); 8873 } 8874 8875 /// Third step of delinearization: compute the access functions for the 8876 /// Subscripts based on the dimensions in Sizes. 8877 void ScalarEvolution::computeAccessFunctions( 8878 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8879 SmallVectorImpl<const SCEV *> &Sizes) { 8880 8881 // Early exit in case this SCEV is not an affine multivariate function. 8882 if (Sizes.empty()) 8883 return; 8884 8885 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8886 if (!AR->isAffine()) 8887 return; 8888 8889 const SCEV *Res = Expr; 8890 int Last = Sizes.size() - 1; 8891 for (int i = Last; i >= 0; i--) { 8892 const SCEV *Q, *R; 8893 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8894 8895 DEBUG({ 8896 dbgs() << "Res: " << *Res << "\n"; 8897 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8898 dbgs() << "Res divided by Sizes[i]:\n"; 8899 dbgs() << "Quotient: " << *Q << "\n"; 8900 dbgs() << "Remainder: " << *R << "\n"; 8901 }); 8902 8903 Res = Q; 8904 8905 // Do not record the last subscript corresponding to the size of elements in 8906 // the array. 8907 if (i == Last) { 8908 8909 // Bail out if the remainder is too complex. 8910 if (isa<SCEVAddRecExpr>(R)) { 8911 Subscripts.clear(); 8912 Sizes.clear(); 8913 return; 8914 } 8915 8916 continue; 8917 } 8918 8919 // Record the access function for the current subscript. 8920 Subscripts.push_back(R); 8921 } 8922 8923 // Also push in last position the remainder of the last division: it will be 8924 // the access function of the innermost dimension. 8925 Subscripts.push_back(Res); 8926 8927 std::reverse(Subscripts.begin(), Subscripts.end()); 8928 8929 DEBUG({ 8930 dbgs() << "Subscripts:\n"; 8931 for (const SCEV *S : Subscripts) 8932 dbgs() << *S << "\n"; 8933 }); 8934 } 8935 8936 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8937 /// sizes of an array access. Returns the remainder of the delinearization that 8938 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8939 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8940 /// expressions in the stride and base of a SCEV corresponding to the 8941 /// computation of a GCD (greatest common divisor) of base and stride. When 8942 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8943 /// 8944 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8945 /// 8946 /// void foo(long n, long m, long o, double A[n][m][o]) { 8947 /// 8948 /// for (long i = 0; i < n; i++) 8949 /// for (long j = 0; j < m; j++) 8950 /// for (long k = 0; k < o; k++) 8951 /// A[i][j][k] = 1.0; 8952 /// } 8953 /// 8954 /// the delinearization input is the following AddRec SCEV: 8955 /// 8956 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8957 /// 8958 /// From this SCEV, we are able to say that the base offset of the access is %A 8959 /// because it appears as an offset that does not divide any of the strides in 8960 /// the loops: 8961 /// 8962 /// CHECK: Base offset: %A 8963 /// 8964 /// and then SCEV->delinearize determines the size of some of the dimensions of 8965 /// the array as these are the multiples by which the strides are happening: 8966 /// 8967 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8968 /// 8969 /// Note that the outermost dimension remains of UnknownSize because there are 8970 /// no strides that would help identifying the size of the last dimension: when 8971 /// the array has been statically allocated, one could compute the size of that 8972 /// dimension by dividing the overall size of the array by the size of the known 8973 /// dimensions: %m * %o * 8. 8974 /// 8975 /// Finally delinearize provides the access functions for the array reference 8976 /// that does correspond to A[i][j][k] of the above C testcase: 8977 /// 8978 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8979 /// 8980 /// The testcases are checking the output of a function pass: 8981 /// DelinearizationPass that walks through all loads and stores of a function 8982 /// asking for the SCEV of the memory access with respect to all enclosing 8983 /// loops, calling SCEV->delinearize on that and printing the results. 8984 8985 void ScalarEvolution::delinearize(const SCEV *Expr, 8986 SmallVectorImpl<const SCEV *> &Subscripts, 8987 SmallVectorImpl<const SCEV *> &Sizes, 8988 const SCEV *ElementSize) { 8989 // First step: collect parametric terms. 8990 SmallVector<const SCEV *, 4> Terms; 8991 collectParametricTerms(Expr, Terms); 8992 8993 if (Terms.empty()) 8994 return; 8995 8996 // Second step: find subscript sizes. 8997 findArrayDimensions(Terms, Sizes, ElementSize); 8998 8999 if (Sizes.empty()) 9000 return; 9001 9002 // Third step: compute the access functions for each subscript. 9003 computeAccessFunctions(Expr, Subscripts, Sizes); 9004 9005 if (Subscripts.empty()) 9006 return; 9007 9008 DEBUG({ 9009 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9010 dbgs() << "ArrayDecl[UnknownSize]"; 9011 for (const SCEV *S : Sizes) 9012 dbgs() << "[" << *S << "]"; 9013 9014 dbgs() << "\nArrayRef"; 9015 for (const SCEV *S : Subscripts) 9016 dbgs() << "[" << *S << "]"; 9017 dbgs() << "\n"; 9018 }); 9019 } 9020 9021 //===----------------------------------------------------------------------===// 9022 // SCEVCallbackVH Class Implementation 9023 //===----------------------------------------------------------------------===// 9024 9025 void ScalarEvolution::SCEVCallbackVH::deleted() { 9026 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9027 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9028 SE->ConstantEvolutionLoopExitValue.erase(PN); 9029 SE->ValueExprMap.erase(getValPtr()); 9030 // this now dangles! 9031 } 9032 9033 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9034 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9035 9036 // Forget all the expressions associated with users of the old value, 9037 // so that future queries will recompute the expressions using the new 9038 // value. 9039 Value *Old = getValPtr(); 9040 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9041 SmallPtrSet<User *, 8> Visited; 9042 while (!Worklist.empty()) { 9043 User *U = Worklist.pop_back_val(); 9044 // Deleting the Old value will cause this to dangle. Postpone 9045 // that until everything else is done. 9046 if (U == Old) 9047 continue; 9048 if (!Visited.insert(U).second) 9049 continue; 9050 if (PHINode *PN = dyn_cast<PHINode>(U)) 9051 SE->ConstantEvolutionLoopExitValue.erase(PN); 9052 SE->ValueExprMap.erase(U); 9053 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9054 } 9055 // Delete the Old value. 9056 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9057 SE->ConstantEvolutionLoopExitValue.erase(PN); 9058 SE->ValueExprMap.erase(Old); 9059 // this now dangles! 9060 } 9061 9062 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9063 : CallbackVH(V), SE(se) {} 9064 9065 //===----------------------------------------------------------------------===// 9066 // ScalarEvolution Class Implementation 9067 //===----------------------------------------------------------------------===// 9068 9069 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9070 AssumptionCache &AC, DominatorTree &DT, 9071 LoopInfo &LI) 9072 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9073 CouldNotCompute(new SCEVCouldNotCompute()), 9074 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9075 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9076 FirstUnknown(nullptr) {} 9077 9078 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9079 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9080 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9081 ValueExprMap(std::move(Arg.ValueExprMap)), 9082 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9083 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9084 ConstantEvolutionLoopExitValue( 9085 std::move(Arg.ConstantEvolutionLoopExitValue)), 9086 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9087 LoopDispositions(std::move(Arg.LoopDispositions)), 9088 BlockDispositions(std::move(Arg.BlockDispositions)), 9089 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9090 SignedRanges(std::move(Arg.SignedRanges)), 9091 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9092 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9093 FirstUnknown(Arg.FirstUnknown) { 9094 Arg.FirstUnknown = nullptr; 9095 } 9096 9097 ScalarEvolution::~ScalarEvolution() { 9098 // Iterate through all the SCEVUnknown instances and call their 9099 // destructors, so that they release their references to their values. 9100 for (SCEVUnknown *U = FirstUnknown; U;) { 9101 SCEVUnknown *Tmp = U; 9102 U = U->Next; 9103 Tmp->~SCEVUnknown(); 9104 } 9105 FirstUnknown = nullptr; 9106 9107 ValueExprMap.clear(); 9108 9109 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9110 // that a loop had multiple computable exits. 9111 for (auto &BTCI : BackedgeTakenCounts) 9112 BTCI.second.clear(); 9113 9114 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9115 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9116 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9117 } 9118 9119 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9120 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9121 } 9122 9123 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9124 const Loop *L) { 9125 // Print all inner loops first 9126 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9127 PrintLoopInfo(OS, SE, *I); 9128 9129 OS << "Loop "; 9130 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9131 OS << ": "; 9132 9133 SmallVector<BasicBlock *, 8> ExitBlocks; 9134 L->getExitBlocks(ExitBlocks); 9135 if (ExitBlocks.size() != 1) 9136 OS << "<multiple exits> "; 9137 9138 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9139 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9140 } else { 9141 OS << "Unpredictable backedge-taken count. "; 9142 } 9143 9144 OS << "\n" 9145 "Loop "; 9146 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9147 OS << ": "; 9148 9149 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9150 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9151 } else { 9152 OS << "Unpredictable max backedge-taken count. "; 9153 } 9154 9155 OS << "\n"; 9156 } 9157 9158 void ScalarEvolution::print(raw_ostream &OS) const { 9159 // ScalarEvolution's implementation of the print method is to print 9160 // out SCEV values of all instructions that are interesting. Doing 9161 // this potentially causes it to create new SCEV objects though, 9162 // which technically conflicts with the const qualifier. This isn't 9163 // observable from outside the class though, so casting away the 9164 // const isn't dangerous. 9165 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9166 9167 OS << "Classifying expressions for: "; 9168 F.printAsOperand(OS, /*PrintType=*/false); 9169 OS << "\n"; 9170 for (Instruction &I : instructions(F)) 9171 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9172 OS << I << '\n'; 9173 OS << " --> "; 9174 const SCEV *SV = SE.getSCEV(&I); 9175 SV->print(OS); 9176 if (!isa<SCEVCouldNotCompute>(SV)) { 9177 OS << " U: "; 9178 SE.getUnsignedRange(SV).print(OS); 9179 OS << " S: "; 9180 SE.getSignedRange(SV).print(OS); 9181 } 9182 9183 const Loop *L = LI.getLoopFor(I.getParent()); 9184 9185 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9186 if (AtUse != SV) { 9187 OS << " --> "; 9188 AtUse->print(OS); 9189 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9190 OS << " U: "; 9191 SE.getUnsignedRange(AtUse).print(OS); 9192 OS << " S: "; 9193 SE.getSignedRange(AtUse).print(OS); 9194 } 9195 } 9196 9197 if (L) { 9198 OS << "\t\t" "Exits: "; 9199 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9200 if (!SE.isLoopInvariant(ExitValue, L)) { 9201 OS << "<<Unknown>>"; 9202 } else { 9203 OS << *ExitValue; 9204 } 9205 } 9206 9207 OS << "\n"; 9208 } 9209 9210 OS << "Determining loop execution counts for: "; 9211 F.printAsOperand(OS, /*PrintType=*/false); 9212 OS << "\n"; 9213 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9214 PrintLoopInfo(OS, &SE, *I); 9215 } 9216 9217 ScalarEvolution::LoopDisposition 9218 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9219 auto &Values = LoopDispositions[S]; 9220 for (auto &V : Values) { 9221 if (V.getPointer() == L) 9222 return V.getInt(); 9223 } 9224 Values.emplace_back(L, LoopVariant); 9225 LoopDisposition D = computeLoopDisposition(S, L); 9226 auto &Values2 = LoopDispositions[S]; 9227 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9228 if (V.getPointer() == L) { 9229 V.setInt(D); 9230 break; 9231 } 9232 } 9233 return D; 9234 } 9235 9236 ScalarEvolution::LoopDisposition 9237 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9238 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9239 case scConstant: 9240 return LoopInvariant; 9241 case scTruncate: 9242 case scZeroExtend: 9243 case scSignExtend: 9244 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9245 case scAddRecExpr: { 9246 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9247 9248 // If L is the addrec's loop, it's computable. 9249 if (AR->getLoop() == L) 9250 return LoopComputable; 9251 9252 // Add recurrences are never invariant in the function-body (null loop). 9253 if (!L) 9254 return LoopVariant; 9255 9256 // This recurrence is variant w.r.t. L if L contains AR's loop. 9257 if (L->contains(AR->getLoop())) 9258 return LoopVariant; 9259 9260 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9261 if (AR->getLoop()->contains(L)) 9262 return LoopInvariant; 9263 9264 // This recurrence is variant w.r.t. L if any of its operands 9265 // are variant. 9266 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9267 I != E; ++I) 9268 if (!isLoopInvariant(*I, L)) 9269 return LoopVariant; 9270 9271 // Otherwise it's loop-invariant. 9272 return LoopInvariant; 9273 } 9274 case scAddExpr: 9275 case scMulExpr: 9276 case scUMaxExpr: 9277 case scSMaxExpr: { 9278 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9279 bool HasVarying = false; 9280 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9281 I != E; ++I) { 9282 LoopDisposition D = getLoopDisposition(*I, L); 9283 if (D == LoopVariant) 9284 return LoopVariant; 9285 if (D == LoopComputable) 9286 HasVarying = true; 9287 } 9288 return HasVarying ? LoopComputable : LoopInvariant; 9289 } 9290 case scUDivExpr: { 9291 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9292 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9293 if (LD == LoopVariant) 9294 return LoopVariant; 9295 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9296 if (RD == LoopVariant) 9297 return LoopVariant; 9298 return (LD == LoopInvariant && RD == LoopInvariant) ? 9299 LoopInvariant : LoopComputable; 9300 } 9301 case scUnknown: 9302 // All non-instruction values are loop invariant. All instructions are loop 9303 // invariant if they are not contained in the specified loop. 9304 // Instructions are never considered invariant in the function body 9305 // (null loop) because they are defined within the "loop". 9306 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9307 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9308 return LoopInvariant; 9309 case scCouldNotCompute: 9310 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9311 } 9312 llvm_unreachable("Unknown SCEV kind!"); 9313 } 9314 9315 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9316 return getLoopDisposition(S, L) == LoopInvariant; 9317 } 9318 9319 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9320 return getLoopDisposition(S, L) == LoopComputable; 9321 } 9322 9323 ScalarEvolution::BlockDisposition 9324 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9325 auto &Values = BlockDispositions[S]; 9326 for (auto &V : Values) { 9327 if (V.getPointer() == BB) 9328 return V.getInt(); 9329 } 9330 Values.emplace_back(BB, DoesNotDominateBlock); 9331 BlockDisposition D = computeBlockDisposition(S, BB); 9332 auto &Values2 = BlockDispositions[S]; 9333 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9334 if (V.getPointer() == BB) { 9335 V.setInt(D); 9336 break; 9337 } 9338 } 9339 return D; 9340 } 9341 9342 ScalarEvolution::BlockDisposition 9343 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9344 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9345 case scConstant: 9346 return ProperlyDominatesBlock; 9347 case scTruncate: 9348 case scZeroExtend: 9349 case scSignExtend: 9350 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9351 case scAddRecExpr: { 9352 // This uses a "dominates" query instead of "properly dominates" query 9353 // to test for proper dominance too, because the instruction which 9354 // produces the addrec's value is a PHI, and a PHI effectively properly 9355 // dominates its entire containing block. 9356 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9357 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9358 return DoesNotDominateBlock; 9359 } 9360 // FALL THROUGH into SCEVNAryExpr handling. 9361 case scAddExpr: 9362 case scMulExpr: 9363 case scUMaxExpr: 9364 case scSMaxExpr: { 9365 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9366 bool Proper = true; 9367 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9368 I != E; ++I) { 9369 BlockDisposition D = getBlockDisposition(*I, BB); 9370 if (D == DoesNotDominateBlock) 9371 return DoesNotDominateBlock; 9372 if (D == DominatesBlock) 9373 Proper = false; 9374 } 9375 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9376 } 9377 case scUDivExpr: { 9378 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9379 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9380 BlockDisposition LD = getBlockDisposition(LHS, BB); 9381 if (LD == DoesNotDominateBlock) 9382 return DoesNotDominateBlock; 9383 BlockDisposition RD = getBlockDisposition(RHS, BB); 9384 if (RD == DoesNotDominateBlock) 9385 return DoesNotDominateBlock; 9386 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9387 ProperlyDominatesBlock : DominatesBlock; 9388 } 9389 case scUnknown: 9390 if (Instruction *I = 9391 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9392 if (I->getParent() == BB) 9393 return DominatesBlock; 9394 if (DT.properlyDominates(I->getParent(), BB)) 9395 return ProperlyDominatesBlock; 9396 return DoesNotDominateBlock; 9397 } 9398 return ProperlyDominatesBlock; 9399 case scCouldNotCompute: 9400 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9401 } 9402 llvm_unreachable("Unknown SCEV kind!"); 9403 } 9404 9405 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9406 return getBlockDisposition(S, BB) >= DominatesBlock; 9407 } 9408 9409 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9410 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9411 } 9412 9413 namespace { 9414 // Search for a SCEV expression node within an expression tree. 9415 // Implements SCEVTraversal::Visitor. 9416 struct SCEVSearch { 9417 const SCEV *Node; 9418 bool IsFound; 9419 9420 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9421 9422 bool follow(const SCEV *S) { 9423 IsFound |= (S == Node); 9424 return !IsFound; 9425 } 9426 bool isDone() const { return IsFound; } 9427 }; 9428 } 9429 9430 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9431 SCEVSearch Search(Op); 9432 visitAll(S, Search); 9433 return Search.IsFound; 9434 } 9435 9436 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9437 ValuesAtScopes.erase(S); 9438 LoopDispositions.erase(S); 9439 BlockDispositions.erase(S); 9440 UnsignedRanges.erase(S); 9441 SignedRanges.erase(S); 9442 9443 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9444 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9445 BackedgeTakenInfo &BEInfo = I->second; 9446 if (BEInfo.hasOperand(S, this)) { 9447 BEInfo.clear(); 9448 BackedgeTakenCounts.erase(I++); 9449 } 9450 else 9451 ++I; 9452 } 9453 } 9454 9455 typedef DenseMap<const Loop *, std::string> VerifyMap; 9456 9457 /// replaceSubString - Replaces all occurrences of From in Str with To. 9458 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9459 size_t Pos = 0; 9460 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9461 Str.replace(Pos, From.size(), To.data(), To.size()); 9462 Pos += To.size(); 9463 } 9464 } 9465 9466 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9467 static void 9468 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9469 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9470 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9471 9472 std::string &S = Map[L]; 9473 if (S.empty()) { 9474 raw_string_ostream OS(S); 9475 SE.getBackedgeTakenCount(L)->print(OS); 9476 9477 // false and 0 are semantically equivalent. This can happen in dead loops. 9478 replaceSubString(OS.str(), "false", "0"); 9479 // Remove wrap flags, their use in SCEV is highly fragile. 9480 // FIXME: Remove this when SCEV gets smarter about them. 9481 replaceSubString(OS.str(), "<nw>", ""); 9482 replaceSubString(OS.str(), "<nsw>", ""); 9483 replaceSubString(OS.str(), "<nuw>", ""); 9484 } 9485 } 9486 } 9487 9488 void ScalarEvolution::verify() const { 9489 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9490 9491 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9492 // FIXME: It would be much better to store actual values instead of strings, 9493 // but SCEV pointers will change if we drop the caches. 9494 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9495 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9496 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9497 9498 // Gather stringified backedge taken counts for all loops using a fresh 9499 // ScalarEvolution object. 9500 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9501 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9502 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9503 9504 // Now compare whether they're the same with and without caches. This allows 9505 // verifying that no pass changed the cache. 9506 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9507 "New loops suddenly appeared!"); 9508 9509 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9510 OldE = BackedgeDumpsOld.end(), 9511 NewI = BackedgeDumpsNew.begin(); 9512 OldI != OldE; ++OldI, ++NewI) { 9513 assert(OldI->first == NewI->first && "Loop order changed!"); 9514 9515 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9516 // changes. 9517 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9518 // means that a pass is buggy or SCEV has to learn a new pattern but is 9519 // usually not harmful. 9520 if (OldI->second != NewI->second && 9521 OldI->second.find("undef") == std::string::npos && 9522 NewI->second.find("undef") == std::string::npos && 9523 OldI->second != "***COULDNOTCOMPUTE***" && 9524 NewI->second != "***COULDNOTCOMPUTE***") { 9525 dbgs() << "SCEVValidator: SCEV for loop '" 9526 << OldI->first->getHeader()->getName() 9527 << "' changed from '" << OldI->second 9528 << "' to '" << NewI->second << "'!\n"; 9529 std::abort(); 9530 } 9531 } 9532 9533 // TODO: Verify more things. 9534 } 9535 9536 char ScalarEvolutionAnalysis::PassID; 9537 9538 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9539 AnalysisManager<Function> *AM) { 9540 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9541 AM->getResult<AssumptionAnalysis>(F), 9542 AM->getResult<DominatorTreeAnalysis>(F), 9543 AM->getResult<LoopAnalysis>(F)); 9544 } 9545 9546 PreservedAnalyses 9547 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9548 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9549 return PreservedAnalyses::all(); 9550 } 9551 9552 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9553 "Scalar Evolution Analysis", false, true) 9554 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9555 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9556 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9557 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9558 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9559 "Scalar Evolution Analysis", false, true) 9560 char ScalarEvolutionWrapperPass::ID = 0; 9561 9562 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9563 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9564 } 9565 9566 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9567 SE.reset(new ScalarEvolution( 9568 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9569 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9570 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9571 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9572 return false; 9573 } 9574 9575 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9576 9577 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9578 SE->print(OS); 9579 } 9580 9581 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9582 if (!VerifySCEV) 9583 return; 9584 9585 SE->verify(); 9586 } 9587 9588 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9589 AU.setPreservesAll(); 9590 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9591 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9592 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9593 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9594 } 9595