1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 static cl::opt<bool> 119 VerifySCEVMap("verify-scev-maps", 120 cl::desc("Verify no dangling value in ScalarEvolution's" 121 "ExprValueMap (slow)")); 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 LLVM_DUMP_METHOD 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->hasNoUnsignedWrap()) 170 OS << "nuw><"; 171 if (AR->hasNoSignedWrap()) 172 OS << "nsw><"; 173 if (AR->hasNoSelfWrap() && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = nullptr; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->hasNoUnsignedWrap()) 204 OS << "<nuw>"; 205 if (NAry->hasNoSignedWrap()) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getAPInt().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = nullptr; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(nullptr); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getAPInt(); 541 const APInt &RA = RC->getAPInt(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } // end anonymous namespace 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 // Returns the size of the SCEV S. 674 static inline int sizeOfSCEV(const SCEV *S) { 675 struct FindSCEVSize { 676 int Size; 677 FindSCEVSize() : Size(0) {} 678 679 bool follow(const SCEV *S) { 680 ++Size; 681 // Keep looking at all operands of S. 682 return true; 683 } 684 bool isDone() const { 685 return false; 686 } 687 }; 688 689 FindSCEVSize F; 690 SCEVTraversal<FindSCEVSize> ST(F); 691 ST.visitAll(S); 692 return F.Size; 693 } 694 695 namespace { 696 697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 698 public: 699 // Computes the Quotient and Remainder of the division of Numerator by 700 // Denominator. 701 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 702 const SCEV *Denominator, const SCEV **Quotient, 703 const SCEV **Remainder) { 704 assert(Numerator && Denominator && "Uninitialized SCEV"); 705 706 SCEVDivision D(SE, Numerator, Denominator); 707 708 // Check for the trivial case here to avoid having to check for it in the 709 // rest of the code. 710 if (Numerator == Denominator) { 711 *Quotient = D.One; 712 *Remainder = D.Zero; 713 return; 714 } 715 716 if (Numerator->isZero()) { 717 *Quotient = D.Zero; 718 *Remainder = D.Zero; 719 return; 720 } 721 722 // A simple case when N/1. The quotient is N. 723 if (Denominator->isOne()) { 724 *Quotient = Numerator; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getAPInt(); 768 APInt DenominatorVal = D->getAPInt(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 if (!Numerator->isAffine()) 789 return cannotDivide(Numerator); 790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 792 // Bail out if the types do not match. 793 Type *Ty = Denominator->getType(); 794 if (Ty != StartQ->getType() || Ty != StartR->getType() || 795 Ty != StepQ->getType() || Ty != StepR->getType()) 796 return cannotDivide(Numerator); 797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 800 Numerator->getNoWrapFlags()); 801 } 802 803 void visitAddExpr(const SCEVAddExpr *Numerator) { 804 SmallVector<const SCEV *, 2> Qs, Rs; 805 Type *Ty = Denominator->getType(); 806 807 for (const SCEV *Op : Numerator->operands()) { 808 const SCEV *Q, *R; 809 divide(SE, Op, Denominator, &Q, &R); 810 811 // Bail out if types do not match. 812 if (Ty != Q->getType() || Ty != R->getType()) 813 return cannotDivide(Numerator); 814 815 Qs.push_back(Q); 816 Rs.push_back(R); 817 } 818 819 if (Qs.size() == 1) { 820 Quotient = Qs[0]; 821 Remainder = Rs[0]; 822 return; 823 } 824 825 Quotient = SE.getAddExpr(Qs); 826 Remainder = SE.getAddExpr(Rs); 827 } 828 829 void visitMulExpr(const SCEVMulExpr *Numerator) { 830 SmallVector<const SCEV *, 2> Qs; 831 Type *Ty = Denominator->getType(); 832 833 bool FoundDenominatorTerm = false; 834 for (const SCEV *Op : Numerator->operands()) { 835 // Bail out if types do not match. 836 if (Ty != Op->getType()) 837 return cannotDivide(Numerator); 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) 854 return cannotDivide(Numerator); 855 856 FoundDenominatorTerm = true; 857 Qs.push_back(Q); 858 } 859 860 if (FoundDenominatorTerm) { 861 Remainder = Zero; 862 if (Qs.size() == 1) 863 Quotient = Qs[0]; 864 else 865 Quotient = SE.getMulExpr(Qs); 866 return; 867 } 868 869 if (!isa<SCEVUnknown>(Denominator)) 870 return cannotDivide(Numerator); 871 872 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 873 ValueToValueMap RewriteMap; 874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 875 cast<SCEVConstant>(Zero)->getValue(); 876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 877 878 if (Remainder->isZero()) { 879 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(One)->getValue(); 882 Quotient = 883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 884 return; 885 } 886 887 // Quotient is (Numerator - Remainder) divided by Denominator. 888 const SCEV *Q, *R; 889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 890 // This SCEV does not seem to simplify: fail the division here. 891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 892 return cannotDivide(Numerator); 893 divide(SE, Diff, Denominator, &Q, &R); 894 if (R != Zero) 895 return cannotDivide(Numerator); 896 Quotient = Q; 897 } 898 899 private: 900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 901 const SCEV *Denominator) 902 : SE(S), Denominator(Denominator) { 903 Zero = SE.getZero(Denominator->getType()); 904 One = SE.getOne(Denominator->getType()); 905 906 // We generally do not know how to divide Expr by Denominator. We 907 // initialize the division to a "cannot divide" state to simplify the rest 908 // of the code. 909 cannotDivide(Numerator); 910 } 911 912 // Convenience function for giving up on the division. We set the quotient to 913 // be equal to zero and the remainder to be equal to the numerator. 914 void cannotDivide(const SCEV *Numerator) { 915 Quotient = Zero; 916 Remainder = Numerator; 917 } 918 919 ScalarEvolution &SE; 920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 921 }; 922 923 } 924 925 //===----------------------------------------------------------------------===// 926 // Simple SCEV method implementations 927 //===----------------------------------------------------------------------===// 928 929 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 930 /// Assume, K > 0. 931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 932 ScalarEvolution &SE, 933 Type *ResultTy) { 934 // Handle the simplest case efficiently. 935 if (K == 1) 936 return SE.getTruncateOrZeroExtend(It, ResultTy); 937 938 // We are using the following formula for BC(It, K): 939 // 940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 941 // 942 // Suppose, W is the bitwidth of the return value. We must be prepared for 943 // overflow. Hence, we must assure that the result of our computation is 944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 945 // safe in modular arithmetic. 946 // 947 // However, this code doesn't use exactly that formula; the formula it uses 948 // is something like the following, where T is the number of factors of 2 in 949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 950 // exponentiation: 951 // 952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 953 // 954 // This formula is trivially equivalent to the previous formula. However, 955 // this formula can be implemented much more efficiently. The trick is that 956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 957 // arithmetic. To do exact division in modular arithmetic, all we have 958 // to do is multiply by the inverse. Therefore, this step can be done at 959 // width W. 960 // 961 // The next issue is how to safely do the division by 2^T. The way this 962 // is done is by doing the multiplication step at a width of at least W + T 963 // bits. This way, the bottom W+T bits of the product are accurate. Then, 964 // when we perform the division by 2^T (which is equivalent to a right shift 965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 966 // truncated out after the division by 2^T. 967 // 968 // In comparison to just directly using the first formula, this technique 969 // is much more efficient; using the first formula requires W * K bits, 970 // but this formula less than W + K bits. Also, the first formula requires 971 // a division step, whereas this formula only requires multiplies and shifts. 972 // 973 // It doesn't matter whether the subtraction step is done in the calculation 974 // width or the input iteration count's width; if the subtraction overflows, 975 // the result must be zero anyway. We prefer here to do it in the width of 976 // the induction variable because it helps a lot for certain cases; CodeGen 977 // isn't smart enough to ignore the overflow, which leads to much less 978 // efficient code if the width of the subtraction is wider than the native 979 // register width. 980 // 981 // (It's possible to not widen at all by pulling out factors of 2 before 982 // the multiplication; for example, K=2 can be calculated as 983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 984 // extra arithmetic, so it's not an obvious win, and it gets 985 // much more complicated for K > 3.) 986 987 // Protection from insane SCEVs; this bound is conservative, 988 // but it probably doesn't matter. 989 if (K > 1000) 990 return SE.getCouldNotCompute(); 991 992 unsigned W = SE.getTypeSizeInBits(ResultTy); 993 994 // Calculate K! / 2^T and T; we divide out the factors of two before 995 // multiplying for calculating K! / 2^T to avoid overflow. 996 // Other overflow doesn't matter because we only care about the bottom 997 // W bits of the result. 998 APInt OddFactorial(W, 1); 999 unsigned T = 1; 1000 for (unsigned i = 3; i <= K; ++i) { 1001 APInt Mult(W, i); 1002 unsigned TwoFactors = Mult.countTrailingZeros(); 1003 T += TwoFactors; 1004 Mult = Mult.lshr(TwoFactors); 1005 OddFactorial *= Mult; 1006 } 1007 1008 // We need at least W + T bits for the multiplication step 1009 unsigned CalculationBits = W + T; 1010 1011 // Calculate 2^T, at width T+W. 1012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1013 1014 // Calculate the multiplicative inverse of K! / 2^T; 1015 // this multiplication factor will perform the exact division by 1016 // K! / 2^T. 1017 APInt Mod = APInt::getSignedMinValue(W+1); 1018 APInt MultiplyFactor = OddFactorial.zext(W+1); 1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1020 MultiplyFactor = MultiplyFactor.trunc(W); 1021 1022 // Calculate the product, at width T+W 1023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1024 CalculationBits); 1025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1026 for (unsigned i = 1; i != K; ++i) { 1027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1028 Dividend = SE.getMulExpr(Dividend, 1029 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1030 } 1031 1032 // Divide by 2^T 1033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1034 1035 // Truncate the result, and divide by K! / 2^T. 1036 1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1039 } 1040 1041 /// evaluateAtIteration - Return the value of this chain of recurrences at 1042 /// the specified iteration number. We can evaluate this recurrence by 1043 /// multiplying each element in the chain by the binomial coefficient 1044 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1045 /// 1046 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1047 /// 1048 /// where BC(It, k) stands for binomial coefficient. 1049 /// 1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1051 ScalarEvolution &SE) const { 1052 const SCEV *Result = getStart(); 1053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1071 Type *Ty) { 1072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1073 "This is not a truncating conversion!"); 1074 assert(isSCEVable(Ty) && 1075 "This is not a conversion to a SCEVable type!"); 1076 Ty = getEffectiveSCEVType(Ty); 1077 1078 FoldingSetNodeID ID; 1079 ID.AddInteger(scTruncate); 1080 ID.AddPointer(Op); 1081 ID.AddPointer(Ty); 1082 void *IP = nullptr; 1083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1084 1085 // Fold if the operand is constant. 1086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1087 return getConstant( 1088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1089 1090 // trunc(trunc(x)) --> trunc(x) 1091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1092 return getTruncateExpr(ST->getOperand(), Ty); 1093 1094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1096 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1097 1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1101 1102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1103 // eliminate all the truncates, or we replace other casts with truncates. 1104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1105 SmallVector<const SCEV *, 4> Operands; 1106 bool hasTrunc = false; 1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1109 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1110 hasTrunc = isa<SCEVTruncateExpr>(S); 1111 Operands.push_back(S); 1112 } 1113 if (!hasTrunc) 1114 return getAddExpr(Operands); 1115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1116 } 1117 1118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1119 // eliminate all the truncates, or we replace other casts with truncates. 1120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1121 SmallVector<const SCEV *, 4> Operands; 1122 bool hasTrunc = false; 1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1125 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (const SCEV *Op : AddRec->operands()) 1138 Operands.push_back(getTruncateExpr(Op, Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 auto PreStartFlags = 1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1278 1279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1280 // "S+X does not sign/unsign-overflow". 1281 // 1282 1283 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1286 return PreStart; 1287 1288 // 2. Direct overflow check on the step operation's expression. 1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1291 const SCEV *OperandExtendedStart = 1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1293 (SE->*GetExtendExpr)(Step, WideTy)); 1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1295 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1300 } 1301 return PreStart; 1302 } 1303 1304 // 3. Loop precondition. 1305 ICmpInst::Predicate Pred; 1306 const SCEV *OverflowLimit = 1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1308 1309 if (OverflowLimit && 1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1311 return PreStart; 1312 1313 return nullptr; 1314 } 1315 1316 // Get the normalized zero or sign extended expression for this AddRec's Start. 1317 template <typename ExtendOpTy> 1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1319 ScalarEvolution *SE) { 1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1321 1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1323 if (!PreStart) 1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1325 1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1327 (SE->*GetExtendExpr)(PreStart, Ty)); 1328 } 1329 1330 // Try to prove away overflow by looking at "nearby" add recurrences. A 1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1333 // 1334 // Formally: 1335 // 1336 // {S,+,X} == {S-T,+,X} + T 1337 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1338 // 1339 // If ({S-T,+,X} + T) does not overflow ... (1) 1340 // 1341 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1342 // 1343 // If {S-T,+,X} does not overflow ... (2) 1344 // 1345 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1346 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1347 // 1348 // If (S-T)+T does not overflow ... (3) 1349 // 1350 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1351 // == {Ext(S),+,Ext(X)} == LHS 1352 // 1353 // Thus, if (1), (2) and (3) are true for some T, then 1354 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1355 // 1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1357 // does not overflow" restricted to the 0th iteration. Therefore we only need 1358 // to check for (1) and (2). 1359 // 1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1361 // is `Delta` (defined below). 1362 // 1363 template <typename ExtendOpTy> 1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1365 const SCEV *Step, 1366 const Loop *L) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 1369 // We restrict `Start` to a constant to prevent SCEV from spending too much 1370 // time here. It is correct (but more expensive) to continue with a 1371 // non-constant `Start` and do a general SCEV subtraction to compute 1372 // `PreStart` below. 1373 // 1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1375 if (!StartC) 1376 return false; 1377 1378 APInt StartAI = StartC->getAPInt(); 1379 1380 for (unsigned Delta : {-2, -1, 1, 2}) { 1381 const SCEV *PreStart = getConstant(StartAI - Delta); 1382 1383 FoldingSetNodeID ID; 1384 ID.AddInteger(scAddRecExpr); 1385 ID.AddPointer(PreStart); 1386 ID.AddPointer(Step); 1387 ID.AddPointer(L); 1388 void *IP = nullptr; 1389 const auto *PreAR = 1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1391 1392 // Give up if we don't already have the add recurrence we need because 1393 // actually constructing an add recurrence is relatively expensive. 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 // If we have special knowledge that this addrec won't overflow, 1458 // we don't need to do any further analysis. 1459 if (AR->hasNoUnsignedWrap()) 1460 return getAddRecExpr( 1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1463 1464 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1465 // Note that this serves two purposes: It filters out loops that are 1466 // simply not analyzable, and it covers the case where this code is 1467 // being called from within backedge-taken count analysis, such that 1468 // attempting to ask for the backedge-taken count would likely result 1469 // in infinite recursion. In the later case, the analysis code will 1470 // cope with a conservative value, and it will take care to purge 1471 // that value once it has finished. 1472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1474 // Manually compute the final value for AR, checking for 1475 // overflow. 1476 1477 // Check whether the backedge-taken count can be losslessly casted to 1478 // the addrec's type. The count is always unsigned. 1479 const SCEV *CastedMaxBECount = 1480 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1481 const SCEV *RecastedMaxBECount = 1482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1483 if (MaxBECount == RecastedMaxBECount) { 1484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1485 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1489 const SCEV *WideMaxBECount = 1490 getZeroExtendExpr(CastedMaxBECount, WideTy); 1491 const SCEV *OperandExtendedAdd = 1492 getAddExpr(WideStart, 1493 getMulExpr(WideMaxBECount, 1494 getZeroExtendExpr(Step, WideTy))); 1495 if (ZAdd == OperandExtendedAdd) { 1496 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1498 // Return the expression with the addrec on the outside. 1499 return getAddRecExpr( 1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy))); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1517 } 1518 } 1519 1520 // If the backedge is guarded by a comparison with the pre-inc value 1521 // the addrec is safe. Also, if the entry is guarded by a comparison 1522 // with the start value and the backedge is guarded by a comparison 1523 // with the post-inc value, the addrec is safe. 1524 if (isKnownPositive(Step)) { 1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1526 getUnsignedRange(Step).getUnsignedMax()); 1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1530 AR->getPostIncExpr(*this), N))) { 1531 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1533 // Return the expression with the addrec on the outside. 1534 return getAddRecExpr( 1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1537 } 1538 } else if (isKnownNegative(Step)) { 1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1540 getSignedRange(Step).getSignedMin()); 1541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1544 AR->getPostIncExpr(*this), N))) { 1545 // Cache knowledge of AR NW, which is propagated to this AddRec. 1546 // Negative step causes unsigned wrap, but it still can't self-wrap. 1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1548 // Return the expression with the addrec on the outside. 1549 return getAddRecExpr( 1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1552 } 1553 } 1554 } 1555 1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1558 return getAddRecExpr( 1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1561 } 1562 } 1563 1564 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1565 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1566 if (SA->hasNoUnsignedWrap()) { 1567 // If the addition does not unsign overflow then we can, by definition, 1568 // commute the zero extension with the addition operation. 1569 SmallVector<const SCEV *, 4> Ops; 1570 for (const auto *Op : SA->operands()) 1571 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1572 return getAddExpr(Ops, SCEV::FlagNUW); 1573 } 1574 } 1575 1576 // The cast wasn't folded; create an explicit cast node. 1577 // Recompute the insert position, as it may have been invalidated. 1578 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1579 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1580 Op, Ty); 1581 UniqueSCEVs.InsertNode(S, IP); 1582 return S; 1583 } 1584 1585 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1586 Type *Ty) { 1587 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1588 "This is not an extending conversion!"); 1589 assert(isSCEVable(Ty) && 1590 "This is not a conversion to a SCEVable type!"); 1591 Ty = getEffectiveSCEVType(Ty); 1592 1593 // Fold if the operand is constant. 1594 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1595 return getConstant( 1596 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1597 1598 // sext(sext(x)) --> sext(x) 1599 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1600 return getSignExtendExpr(SS->getOperand(), Ty); 1601 1602 // sext(zext(x)) --> zext(x) 1603 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1604 return getZeroExtendExpr(SZ->getOperand(), Ty); 1605 1606 // Before doing any expensive analysis, check to see if we've already 1607 // computed a SCEV for this Op and Ty. 1608 FoldingSetNodeID ID; 1609 ID.AddInteger(scSignExtend); 1610 ID.AddPointer(Op); 1611 ID.AddPointer(Ty); 1612 void *IP = nullptr; 1613 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1614 1615 // If the input value is provably positive, build a zext instead. 1616 if (isKnownNonNegative(Op)) 1617 return getZeroExtendExpr(Op, Ty); 1618 1619 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1620 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1621 // It's possible the bits taken off by the truncate were all sign bits. If 1622 // so, we should be able to simplify this further. 1623 const SCEV *X = ST->getOperand(); 1624 ConstantRange CR = getSignedRange(X); 1625 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1626 unsigned NewBits = getTypeSizeInBits(Ty); 1627 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1628 CR.sextOrTrunc(NewBits))) 1629 return getTruncateOrSignExtend(X, Ty); 1630 } 1631 1632 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1633 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1634 if (SA->getNumOperands() == 2) { 1635 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1636 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1637 if (SMul && SC1) { 1638 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1639 const APInt &C1 = SC1->getAPInt(); 1640 const APInt &C2 = SC2->getAPInt(); 1641 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1642 C2.ugt(C1) && C2.isPowerOf2()) 1643 return getAddExpr(getSignExtendExpr(SC1, Ty), 1644 getSignExtendExpr(SMul, Ty)); 1645 } 1646 } 1647 } 1648 1649 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1650 if (SA->hasNoSignedWrap()) { 1651 // If the addition does not sign overflow then we can, by definition, 1652 // commute the sign extension with the addition operation. 1653 SmallVector<const SCEV *, 4> Ops; 1654 for (const auto *Op : SA->operands()) 1655 Ops.push_back(getSignExtendExpr(Op, Ty)); 1656 return getAddExpr(Ops, SCEV::FlagNSW); 1657 } 1658 } 1659 // If the input value is a chrec scev, and we can prove that the value 1660 // did not overflow the old, smaller, value, we can sign extend all of the 1661 // operands (often constants). This allows analysis of something like 1662 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1663 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1664 if (AR->isAffine()) { 1665 const SCEV *Start = AR->getStart(); 1666 const SCEV *Step = AR->getStepRecurrence(*this); 1667 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1668 const Loop *L = AR->getLoop(); 1669 1670 // If we have special knowledge that this addrec won't overflow, 1671 // we don't need to do any further analysis. 1672 if (AR->hasNoSignedWrap()) 1673 return getAddRecExpr( 1674 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1675 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1676 1677 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1678 // Note that this serves two purposes: It filters out loops that are 1679 // simply not analyzable, and it covers the case where this code is 1680 // being called from within backedge-taken count analysis, such that 1681 // attempting to ask for the backedge-taken count would likely result 1682 // in infinite recursion. In the later case, the analysis code will 1683 // cope with a conservative value, and it will take care to purge 1684 // that value once it has finished. 1685 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1686 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1687 // Manually compute the final value for AR, checking for 1688 // overflow. 1689 1690 // Check whether the backedge-taken count can be losslessly casted to 1691 // the addrec's type. The count is always unsigned. 1692 const SCEV *CastedMaxBECount = 1693 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1694 const SCEV *RecastedMaxBECount = 1695 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1696 if (MaxBECount == RecastedMaxBECount) { 1697 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1698 // Check whether Start+Step*MaxBECount has no signed overflow. 1699 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1700 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1701 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1702 const SCEV *WideMaxBECount = 1703 getZeroExtendExpr(CastedMaxBECount, WideTy); 1704 const SCEV *OperandExtendedAdd = 1705 getAddExpr(WideStart, 1706 getMulExpr(WideMaxBECount, 1707 getSignExtendExpr(Step, WideTy))); 1708 if (SAdd == OperandExtendedAdd) { 1709 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1710 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1711 // Return the expression with the addrec on the outside. 1712 return getAddRecExpr( 1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1714 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1715 } 1716 // Similar to above, only this time treat the step value as unsigned. 1717 // This covers loops that count up with an unsigned step. 1718 OperandExtendedAdd = 1719 getAddExpr(WideStart, 1720 getMulExpr(WideMaxBECount, 1721 getZeroExtendExpr(Step, WideTy))); 1722 if (SAdd == OperandExtendedAdd) { 1723 // If AR wraps around then 1724 // 1725 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1726 // => SAdd != OperandExtendedAdd 1727 // 1728 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1729 // (SAdd == OperandExtendedAdd => AR is NW) 1730 1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1732 1733 // Return the expression with the addrec on the outside. 1734 return getAddRecExpr( 1735 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1736 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1737 } 1738 } 1739 1740 // If the backedge is guarded by a comparison with the pre-inc value 1741 // the addrec is safe. Also, if the entry is guarded by a comparison 1742 // with the start value and the backedge is guarded by a comparison 1743 // with the post-inc value, the addrec is safe. 1744 ICmpInst::Predicate Pred; 1745 const SCEV *OverflowLimit = 1746 getSignedOverflowLimitForStep(Step, &Pred, this); 1747 if (OverflowLimit && 1748 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1749 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1750 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1751 OverflowLimit)))) { 1752 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 // If Start and Step are constants, check if we can apply this 1760 // transformation: 1761 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1762 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1763 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1764 if (SC1 && SC2) { 1765 const APInt &C1 = SC1->getAPInt(); 1766 const APInt &C2 = SC2->getAPInt(); 1767 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1768 C2.isPowerOf2()) { 1769 Start = getSignExtendExpr(Start, Ty); 1770 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1771 AR->getNoWrapFlags()); 1772 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1777 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1780 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // The cast wasn't folded; create an explicit cast node. 1785 // Recompute the insert position, as it may have been invalidated. 1786 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1787 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1788 Op, Ty); 1789 UniqueSCEVs.InsertNode(S, IP); 1790 return S; 1791 } 1792 1793 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1794 /// unspecified bits out to the given type. 1795 /// 1796 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1797 Type *Ty) { 1798 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1799 "This is not an extending conversion!"); 1800 assert(isSCEVable(Ty) && 1801 "This is not a conversion to a SCEVable type!"); 1802 Ty = getEffectiveSCEVType(Ty); 1803 1804 // Sign-extend negative constants. 1805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1806 if (SC->getAPInt().isNegative()) 1807 return getSignExtendExpr(Op, Ty); 1808 1809 // Peel off a truncate cast. 1810 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1811 const SCEV *NewOp = T->getOperand(); 1812 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1813 return getAnyExtendExpr(NewOp, Ty); 1814 return getTruncateOrNoop(NewOp, Ty); 1815 } 1816 1817 // Next try a zext cast. If the cast is folded, use it. 1818 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1819 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1820 return ZExt; 1821 1822 // Next try a sext cast. If the cast is folded, use it. 1823 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1824 if (!isa<SCEVSignExtendExpr>(SExt)) 1825 return SExt; 1826 1827 // Force the cast to be folded into the operands of an addrec. 1828 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1829 SmallVector<const SCEV *, 4> Ops; 1830 for (const SCEV *Op : AR->operands()) 1831 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1832 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1833 } 1834 1835 // If the expression is obviously signed, use the sext cast value. 1836 if (isa<SCEVSMaxExpr>(Op)) 1837 return SExt; 1838 1839 // Absent any other information, use the zext cast value. 1840 return ZExt; 1841 } 1842 1843 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1844 /// a list of operands to be added under the given scale, update the given 1845 /// map. This is a helper function for getAddRecExpr. As an example of 1846 /// what it does, given a sequence of operands that would form an add 1847 /// expression like this: 1848 /// 1849 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1850 /// 1851 /// where A and B are constants, update the map with these values: 1852 /// 1853 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1854 /// 1855 /// and add 13 + A*B*29 to AccumulatedConstant. 1856 /// This will allow getAddRecExpr to produce this: 1857 /// 1858 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1859 /// 1860 /// This form often exposes folding opportunities that are hidden in 1861 /// the original operand list. 1862 /// 1863 /// Return true iff it appears that any interesting folding opportunities 1864 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1865 /// the common case where no interesting opportunities are present, and 1866 /// is also used as a check to avoid infinite recursion. 1867 /// 1868 static bool 1869 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1870 SmallVectorImpl<const SCEV *> &NewOps, 1871 APInt &AccumulatedConstant, 1872 const SCEV *const *Ops, size_t NumOperands, 1873 const APInt &Scale, 1874 ScalarEvolution &SE) { 1875 bool Interesting = false; 1876 1877 // Iterate over the add operands. They are sorted, with constants first. 1878 unsigned i = 0; 1879 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1880 ++i; 1881 // Pull a buried constant out to the outside. 1882 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1883 Interesting = true; 1884 AccumulatedConstant += Scale * C->getAPInt(); 1885 } 1886 1887 // Next comes everything else. We're especially interested in multiplies 1888 // here, but they're in the middle, so just visit the rest with one loop. 1889 for (; i != NumOperands; ++i) { 1890 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1891 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1892 APInt NewScale = 1893 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1894 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1895 // A multiplication of a constant with another add; recurse. 1896 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1897 Interesting |= 1898 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1899 Add->op_begin(), Add->getNumOperands(), 1900 NewScale, SE); 1901 } else { 1902 // A multiplication of a constant with some other value. Update 1903 // the map. 1904 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1905 const SCEV *Key = SE.getMulExpr(MulOps); 1906 auto Pair = M.insert({Key, NewScale}); 1907 if (Pair.second) { 1908 NewOps.push_back(Pair.first->first); 1909 } else { 1910 Pair.first->second += NewScale; 1911 // The map already had an entry for this value, which may indicate 1912 // a folding opportunity. 1913 Interesting = true; 1914 } 1915 } 1916 } else { 1917 // An ordinary operand. Update the map. 1918 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1919 M.insert({Ops[i], Scale}); 1920 if (Pair.second) { 1921 NewOps.push_back(Pair.first->first); 1922 } else { 1923 Pair.first->second += Scale; 1924 // The map already had an entry for this value, which may indicate 1925 // a folding opportunity. 1926 Interesting = true; 1927 } 1928 } 1929 } 1930 1931 return Interesting; 1932 } 1933 1934 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1935 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1936 // can't-overflow flags for the operation if possible. 1937 static SCEV::NoWrapFlags 1938 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1939 const SmallVectorImpl<const SCEV *> &Ops, 1940 SCEV::NoWrapFlags Flags) { 1941 using namespace std::placeholders; 1942 typedef OverflowingBinaryOperator OBO; 1943 1944 bool CanAnalyze = 1945 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1946 (void)CanAnalyze; 1947 assert(CanAnalyze && "don't call from other places!"); 1948 1949 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1950 SCEV::NoWrapFlags SignOrUnsignWrap = 1951 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1952 1953 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1954 auto IsKnownNonNegative = [&](const SCEV *S) { 1955 return SE->isKnownNonNegative(S); 1956 }; 1957 1958 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1959 Flags = 1960 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1961 1962 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1963 1964 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1965 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1966 1967 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1968 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1969 1970 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 1971 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1972 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1973 Instruction::Add, C, OBO::NoSignedWrap); 1974 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1975 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1976 } 1977 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1978 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1979 Instruction::Add, C, OBO::NoUnsignedWrap); 1980 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1982 } 1983 } 1984 1985 return Flags; 1986 } 1987 1988 /// getAddExpr - Get a canonical add expression, or something simpler if 1989 /// possible. 1990 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1991 SCEV::NoWrapFlags Flags) { 1992 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1993 "only nuw or nsw allowed"); 1994 assert(!Ops.empty() && "Cannot get empty add!"); 1995 if (Ops.size() == 1) return Ops[0]; 1996 #ifndef NDEBUG 1997 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1998 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1999 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2000 "SCEVAddExpr operand types don't match!"); 2001 #endif 2002 2003 // Sort by complexity, this groups all similar expression types together. 2004 GroupByComplexity(Ops, &LI); 2005 2006 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2007 2008 // If there are any constants, fold them together. 2009 unsigned Idx = 0; 2010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2011 ++Idx; 2012 assert(Idx < Ops.size()); 2013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2014 // We found two constants, fold them together! 2015 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2016 if (Ops.size() == 2) return Ops[0]; 2017 Ops.erase(Ops.begin()+1); // Erase the folded element 2018 LHSC = cast<SCEVConstant>(Ops[0]); 2019 } 2020 2021 // If we are left with a constant zero being added, strip it off. 2022 if (LHSC->getValue()->isZero()) { 2023 Ops.erase(Ops.begin()); 2024 --Idx; 2025 } 2026 2027 if (Ops.size() == 1) return Ops[0]; 2028 } 2029 2030 // Okay, check to see if the same value occurs in the operand list more than 2031 // once. If so, merge them together into an multiply expression. Since we 2032 // sorted the list, these values are required to be adjacent. 2033 Type *Ty = Ops[0]->getType(); 2034 bool FoundMatch = false; 2035 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2036 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2037 // Scan ahead to count how many equal operands there are. 2038 unsigned Count = 2; 2039 while (i+Count != e && Ops[i+Count] == Ops[i]) 2040 ++Count; 2041 // Merge the values into a multiply. 2042 const SCEV *Scale = getConstant(Ty, Count); 2043 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2044 if (Ops.size() == Count) 2045 return Mul; 2046 Ops[i] = Mul; 2047 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2048 --i; e -= Count - 1; 2049 FoundMatch = true; 2050 } 2051 if (FoundMatch) 2052 return getAddExpr(Ops, Flags); 2053 2054 // Check for truncates. If all the operands are truncated from the same 2055 // type, see if factoring out the truncate would permit the result to be 2056 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2057 // if the contents of the resulting outer trunc fold to something simple. 2058 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2059 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2060 Type *DstType = Trunc->getType(); 2061 Type *SrcType = Trunc->getOperand()->getType(); 2062 SmallVector<const SCEV *, 8> LargeOps; 2063 bool Ok = true; 2064 // Check all the operands to see if they can be represented in the 2065 // source type of the truncate. 2066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2067 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2068 if (T->getOperand()->getType() != SrcType) { 2069 Ok = false; 2070 break; 2071 } 2072 LargeOps.push_back(T->getOperand()); 2073 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2074 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2075 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2076 SmallVector<const SCEV *, 8> LargeMulOps; 2077 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2078 if (const SCEVTruncateExpr *T = 2079 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2080 if (T->getOperand()->getType() != SrcType) { 2081 Ok = false; 2082 break; 2083 } 2084 LargeMulOps.push_back(T->getOperand()); 2085 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2086 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2087 } else { 2088 Ok = false; 2089 break; 2090 } 2091 } 2092 if (Ok) 2093 LargeOps.push_back(getMulExpr(LargeMulOps)); 2094 } else { 2095 Ok = false; 2096 break; 2097 } 2098 } 2099 if (Ok) { 2100 // Evaluate the expression in the larger type. 2101 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2102 // If it folds to something simple, use it. Otherwise, don't. 2103 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2104 return getTruncateExpr(Fold, DstType); 2105 } 2106 } 2107 2108 // Skip past any other cast SCEVs. 2109 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2110 ++Idx; 2111 2112 // If there are add operands they would be next. 2113 if (Idx < Ops.size()) { 2114 bool DeletedAdd = false; 2115 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2116 // If we have an add, expand the add operands onto the end of the operands 2117 // list. 2118 Ops.erase(Ops.begin()+Idx); 2119 Ops.append(Add->op_begin(), Add->op_end()); 2120 DeletedAdd = true; 2121 } 2122 2123 // If we deleted at least one add, we added operands to the end of the list, 2124 // and they are not necessarily sorted. Recurse to resort and resimplify 2125 // any operands we just acquired. 2126 if (DeletedAdd) 2127 return getAddExpr(Ops); 2128 } 2129 2130 // Skip over the add expression until we get to a multiply. 2131 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2132 ++Idx; 2133 2134 // Check to see if there are any folding opportunities present with 2135 // operands multiplied by constant values. 2136 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2137 uint64_t BitWidth = getTypeSizeInBits(Ty); 2138 DenseMap<const SCEV *, APInt> M; 2139 SmallVector<const SCEV *, 8> NewOps; 2140 APInt AccumulatedConstant(BitWidth, 0); 2141 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2142 Ops.data(), Ops.size(), 2143 APInt(BitWidth, 1), *this)) { 2144 struct APIntCompare { 2145 bool operator()(const APInt &LHS, const APInt &RHS) const { 2146 return LHS.ult(RHS); 2147 } 2148 }; 2149 2150 // Some interesting folding opportunity is present, so its worthwhile to 2151 // re-generate the operands list. Group the operands by constant scale, 2152 // to avoid multiplying by the same constant scale multiple times. 2153 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2154 for (const SCEV *NewOp : NewOps) 2155 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2156 // Re-generate the operands list. 2157 Ops.clear(); 2158 if (AccumulatedConstant != 0) 2159 Ops.push_back(getConstant(AccumulatedConstant)); 2160 for (auto &MulOp : MulOpLists) 2161 if (MulOp.first != 0) 2162 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2163 getAddExpr(MulOp.second))); 2164 if (Ops.empty()) 2165 return getZero(Ty); 2166 if (Ops.size() == 1) 2167 return Ops[0]; 2168 return getAddExpr(Ops); 2169 } 2170 } 2171 2172 // If we are adding something to a multiply expression, make sure the 2173 // something is not already an operand of the multiply. If so, merge it into 2174 // the multiply. 2175 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2176 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2177 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2178 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2179 if (isa<SCEVConstant>(MulOpSCEV)) 2180 continue; 2181 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2182 if (MulOpSCEV == Ops[AddOp]) { 2183 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2184 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2185 if (Mul->getNumOperands() != 2) { 2186 // If the multiply has more than two operands, we must get the 2187 // Y*Z term. 2188 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2189 Mul->op_begin()+MulOp); 2190 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2191 InnerMul = getMulExpr(MulOps); 2192 } 2193 const SCEV *One = getOne(Ty); 2194 const SCEV *AddOne = getAddExpr(One, InnerMul); 2195 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2196 if (Ops.size() == 2) return OuterMul; 2197 if (AddOp < Idx) { 2198 Ops.erase(Ops.begin()+AddOp); 2199 Ops.erase(Ops.begin()+Idx-1); 2200 } else { 2201 Ops.erase(Ops.begin()+Idx); 2202 Ops.erase(Ops.begin()+AddOp-1); 2203 } 2204 Ops.push_back(OuterMul); 2205 return getAddExpr(Ops); 2206 } 2207 2208 // Check this multiply against other multiplies being added together. 2209 for (unsigned OtherMulIdx = Idx+1; 2210 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2211 ++OtherMulIdx) { 2212 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2213 // If MulOp occurs in OtherMul, we can fold the two multiplies 2214 // together. 2215 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2216 OMulOp != e; ++OMulOp) 2217 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2218 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2219 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2220 if (Mul->getNumOperands() != 2) { 2221 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2222 Mul->op_begin()+MulOp); 2223 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2224 InnerMul1 = getMulExpr(MulOps); 2225 } 2226 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2227 if (OtherMul->getNumOperands() != 2) { 2228 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2229 OtherMul->op_begin()+OMulOp); 2230 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2231 InnerMul2 = getMulExpr(MulOps); 2232 } 2233 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2234 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2235 if (Ops.size() == 2) return OuterMul; 2236 Ops.erase(Ops.begin()+Idx); 2237 Ops.erase(Ops.begin()+OtherMulIdx-1); 2238 Ops.push_back(OuterMul); 2239 return getAddExpr(Ops); 2240 } 2241 } 2242 } 2243 } 2244 2245 // If there are any add recurrences in the operands list, see if any other 2246 // added values are loop invariant. If so, we can fold them into the 2247 // recurrence. 2248 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2249 ++Idx; 2250 2251 // Scan over all recurrences, trying to fold loop invariants into them. 2252 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2253 // Scan all of the other operands to this add and add them to the vector if 2254 // they are loop invariant w.r.t. the recurrence. 2255 SmallVector<const SCEV *, 8> LIOps; 2256 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2257 const Loop *AddRecLoop = AddRec->getLoop(); 2258 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2259 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2260 LIOps.push_back(Ops[i]); 2261 Ops.erase(Ops.begin()+i); 2262 --i; --e; 2263 } 2264 2265 // If we found some loop invariants, fold them into the recurrence. 2266 if (!LIOps.empty()) { 2267 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2268 LIOps.push_back(AddRec->getStart()); 2269 2270 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2271 AddRec->op_end()); 2272 AddRecOps[0] = getAddExpr(LIOps); 2273 2274 // Build the new addrec. Propagate the NUW and NSW flags if both the 2275 // outer add and the inner addrec are guaranteed to have no overflow. 2276 // Always propagate NW. 2277 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2278 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2279 2280 // If all of the other operands were loop invariant, we are done. 2281 if (Ops.size() == 1) return NewRec; 2282 2283 // Otherwise, add the folded AddRec by the non-invariant parts. 2284 for (unsigned i = 0;; ++i) 2285 if (Ops[i] == AddRec) { 2286 Ops[i] = NewRec; 2287 break; 2288 } 2289 return getAddExpr(Ops); 2290 } 2291 2292 // Okay, if there weren't any loop invariants to be folded, check to see if 2293 // there are multiple AddRec's with the same loop induction variable being 2294 // added together. If so, we can fold them. 2295 for (unsigned OtherIdx = Idx+1; 2296 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2297 ++OtherIdx) 2298 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2299 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2300 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2301 AddRec->op_end()); 2302 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2303 ++OtherIdx) 2304 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2305 if (OtherAddRec->getLoop() == AddRecLoop) { 2306 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2307 i != e; ++i) { 2308 if (i >= AddRecOps.size()) { 2309 AddRecOps.append(OtherAddRec->op_begin()+i, 2310 OtherAddRec->op_end()); 2311 break; 2312 } 2313 AddRecOps[i] = getAddExpr(AddRecOps[i], 2314 OtherAddRec->getOperand(i)); 2315 } 2316 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2317 } 2318 // Step size has changed, so we cannot guarantee no self-wraparound. 2319 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2320 return getAddExpr(Ops); 2321 } 2322 2323 // Otherwise couldn't fold anything into this recurrence. Move onto the 2324 // next one. 2325 } 2326 2327 // Okay, it looks like we really DO need an add expr. Check to see if we 2328 // already have one, otherwise create a new one. 2329 FoldingSetNodeID ID; 2330 ID.AddInteger(scAddExpr); 2331 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2332 ID.AddPointer(Ops[i]); 2333 void *IP = nullptr; 2334 SCEVAddExpr *S = 2335 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2336 if (!S) { 2337 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2338 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2339 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2340 O, Ops.size()); 2341 UniqueSCEVs.InsertNode(S, IP); 2342 } 2343 S->setNoWrapFlags(Flags); 2344 return S; 2345 } 2346 2347 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2348 uint64_t k = i*j; 2349 if (j > 1 && k / j != i) Overflow = true; 2350 return k; 2351 } 2352 2353 /// Compute the result of "n choose k", the binomial coefficient. If an 2354 /// intermediate computation overflows, Overflow will be set and the return will 2355 /// be garbage. Overflow is not cleared on absence of overflow. 2356 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2357 // We use the multiplicative formula: 2358 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2359 // At each iteration, we take the n-th term of the numeral and divide by the 2360 // (k-n)th term of the denominator. This division will always produce an 2361 // integral result, and helps reduce the chance of overflow in the 2362 // intermediate computations. However, we can still overflow even when the 2363 // final result would fit. 2364 2365 if (n == 0 || n == k) return 1; 2366 if (k > n) return 0; 2367 2368 if (k > n/2) 2369 k = n-k; 2370 2371 uint64_t r = 1; 2372 for (uint64_t i = 1; i <= k; ++i) { 2373 r = umul_ov(r, n-(i-1), Overflow); 2374 r /= i; 2375 } 2376 return r; 2377 } 2378 2379 /// Determine if any of the operands in this SCEV are a constant or if 2380 /// any of the add or multiply expressions in this SCEV contain a constant. 2381 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2382 SmallVector<const SCEV *, 4> Ops; 2383 Ops.push_back(StartExpr); 2384 while (!Ops.empty()) { 2385 const SCEV *CurrentExpr = Ops.pop_back_val(); 2386 if (isa<SCEVConstant>(*CurrentExpr)) 2387 return true; 2388 2389 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2390 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2391 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2392 } 2393 } 2394 return false; 2395 } 2396 2397 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2398 /// possible. 2399 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2400 SCEV::NoWrapFlags Flags) { 2401 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2402 "only nuw or nsw allowed"); 2403 assert(!Ops.empty() && "Cannot get empty mul!"); 2404 if (Ops.size() == 1) return Ops[0]; 2405 #ifndef NDEBUG 2406 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2407 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2408 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2409 "SCEVMulExpr operand types don't match!"); 2410 #endif 2411 2412 // Sort by complexity, this groups all similar expression types together. 2413 GroupByComplexity(Ops, &LI); 2414 2415 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2416 2417 // If there are any constants, fold them together. 2418 unsigned Idx = 0; 2419 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2420 2421 // C1*(C2+V) -> C1*C2 + C1*V 2422 if (Ops.size() == 2) 2423 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2424 // If any of Add's ops are Adds or Muls with a constant, 2425 // apply this transformation as well. 2426 if (Add->getNumOperands() == 2) 2427 if (containsConstantSomewhere(Add)) 2428 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2429 getMulExpr(LHSC, Add->getOperand(1))); 2430 2431 ++Idx; 2432 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2433 // We found two constants, fold them together! 2434 ConstantInt *Fold = 2435 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2436 Ops[0] = getConstant(Fold); 2437 Ops.erase(Ops.begin()+1); // Erase the folded element 2438 if (Ops.size() == 1) return Ops[0]; 2439 LHSC = cast<SCEVConstant>(Ops[0]); 2440 } 2441 2442 // If we are left with a constant one being multiplied, strip it off. 2443 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2444 Ops.erase(Ops.begin()); 2445 --Idx; 2446 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2447 // If we have a multiply of zero, it will always be zero. 2448 return Ops[0]; 2449 } else if (Ops[0]->isAllOnesValue()) { 2450 // If we have a mul by -1 of an add, try distributing the -1 among the 2451 // add operands. 2452 if (Ops.size() == 2) { 2453 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2454 SmallVector<const SCEV *, 4> NewOps; 2455 bool AnyFolded = false; 2456 for (const SCEV *AddOp : Add->operands()) { 2457 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2458 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2459 NewOps.push_back(Mul); 2460 } 2461 if (AnyFolded) 2462 return getAddExpr(NewOps); 2463 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2464 // Negation preserves a recurrence's no self-wrap property. 2465 SmallVector<const SCEV *, 4> Operands; 2466 for (const SCEV *AddRecOp : AddRec->operands()) 2467 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2468 2469 return getAddRecExpr(Operands, AddRec->getLoop(), 2470 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2471 } 2472 } 2473 } 2474 2475 if (Ops.size() == 1) 2476 return Ops[0]; 2477 } 2478 2479 // Skip over the add expression until we get to a multiply. 2480 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2481 ++Idx; 2482 2483 // If there are mul operands inline them all into this expression. 2484 if (Idx < Ops.size()) { 2485 bool DeletedMul = false; 2486 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2487 // If we have an mul, expand the mul operands onto the end of the operands 2488 // list. 2489 Ops.erase(Ops.begin()+Idx); 2490 Ops.append(Mul->op_begin(), Mul->op_end()); 2491 DeletedMul = true; 2492 } 2493 2494 // If we deleted at least one mul, we added operands to the end of the list, 2495 // and they are not necessarily sorted. Recurse to resort and resimplify 2496 // any operands we just acquired. 2497 if (DeletedMul) 2498 return getMulExpr(Ops); 2499 } 2500 2501 // If there are any add recurrences in the operands list, see if any other 2502 // added values are loop invariant. If so, we can fold them into the 2503 // recurrence. 2504 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2505 ++Idx; 2506 2507 // Scan over all recurrences, trying to fold loop invariants into them. 2508 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2509 // Scan all of the other operands to this mul and add them to the vector if 2510 // they are loop invariant w.r.t. the recurrence. 2511 SmallVector<const SCEV *, 8> LIOps; 2512 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2513 const Loop *AddRecLoop = AddRec->getLoop(); 2514 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2515 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2516 LIOps.push_back(Ops[i]); 2517 Ops.erase(Ops.begin()+i); 2518 --i; --e; 2519 } 2520 2521 // If we found some loop invariants, fold them into the recurrence. 2522 if (!LIOps.empty()) { 2523 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2524 SmallVector<const SCEV *, 4> NewOps; 2525 NewOps.reserve(AddRec->getNumOperands()); 2526 const SCEV *Scale = getMulExpr(LIOps); 2527 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2528 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2529 2530 // Build the new addrec. Propagate the NUW and NSW flags if both the 2531 // outer mul and the inner addrec are guaranteed to have no overflow. 2532 // 2533 // No self-wrap cannot be guaranteed after changing the step size, but 2534 // will be inferred if either NUW or NSW is true. 2535 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2536 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2537 2538 // If all of the other operands were loop invariant, we are done. 2539 if (Ops.size() == 1) return NewRec; 2540 2541 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2542 for (unsigned i = 0;; ++i) 2543 if (Ops[i] == AddRec) { 2544 Ops[i] = NewRec; 2545 break; 2546 } 2547 return getMulExpr(Ops); 2548 } 2549 2550 // Okay, if there weren't any loop invariants to be folded, check to see if 2551 // there are multiple AddRec's with the same loop induction variable being 2552 // multiplied together. If so, we can fold them. 2553 2554 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2555 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2556 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2557 // ]]],+,...up to x=2n}. 2558 // Note that the arguments to choose() are always integers with values 2559 // known at compile time, never SCEV objects. 2560 // 2561 // The implementation avoids pointless extra computations when the two 2562 // addrec's are of different length (mathematically, it's equivalent to 2563 // an infinite stream of zeros on the right). 2564 bool OpsModified = false; 2565 for (unsigned OtherIdx = Idx+1; 2566 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2567 ++OtherIdx) { 2568 const SCEVAddRecExpr *OtherAddRec = 2569 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2570 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2571 continue; 2572 2573 bool Overflow = false; 2574 Type *Ty = AddRec->getType(); 2575 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2576 SmallVector<const SCEV*, 7> AddRecOps; 2577 for (int x = 0, xe = AddRec->getNumOperands() + 2578 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2579 const SCEV *Term = getZero(Ty); 2580 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2581 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2582 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2583 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2584 z < ze && !Overflow; ++z) { 2585 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2586 uint64_t Coeff; 2587 if (LargerThan64Bits) 2588 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2589 else 2590 Coeff = Coeff1*Coeff2; 2591 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2592 const SCEV *Term1 = AddRec->getOperand(y-z); 2593 const SCEV *Term2 = OtherAddRec->getOperand(z); 2594 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2595 } 2596 } 2597 AddRecOps.push_back(Term); 2598 } 2599 if (!Overflow) { 2600 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2601 SCEV::FlagAnyWrap); 2602 if (Ops.size() == 2) return NewAddRec; 2603 Ops[Idx] = NewAddRec; 2604 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2605 OpsModified = true; 2606 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2607 if (!AddRec) 2608 break; 2609 } 2610 } 2611 if (OpsModified) 2612 return getMulExpr(Ops); 2613 2614 // Otherwise couldn't fold anything into this recurrence. Move onto the 2615 // next one. 2616 } 2617 2618 // Okay, it looks like we really DO need an mul expr. Check to see if we 2619 // already have one, otherwise create a new one. 2620 FoldingSetNodeID ID; 2621 ID.AddInteger(scMulExpr); 2622 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2623 ID.AddPointer(Ops[i]); 2624 void *IP = nullptr; 2625 SCEVMulExpr *S = 2626 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2627 if (!S) { 2628 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2629 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2630 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2631 O, Ops.size()); 2632 UniqueSCEVs.InsertNode(S, IP); 2633 } 2634 S->setNoWrapFlags(Flags); 2635 return S; 2636 } 2637 2638 /// getUDivExpr - Get a canonical unsigned division expression, or something 2639 /// simpler if possible. 2640 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2641 const SCEV *RHS) { 2642 assert(getEffectiveSCEVType(LHS->getType()) == 2643 getEffectiveSCEVType(RHS->getType()) && 2644 "SCEVUDivExpr operand types don't match!"); 2645 2646 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2647 if (RHSC->getValue()->equalsInt(1)) 2648 return LHS; // X udiv 1 --> x 2649 // If the denominator is zero, the result of the udiv is undefined. Don't 2650 // try to analyze it, because the resolution chosen here may differ from 2651 // the resolution chosen in other parts of the compiler. 2652 if (!RHSC->getValue()->isZero()) { 2653 // Determine if the division can be folded into the operands of 2654 // its operands. 2655 // TODO: Generalize this to non-constants by using known-bits information. 2656 Type *Ty = LHS->getType(); 2657 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2658 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2659 // For non-power-of-two values, effectively round the value up to the 2660 // nearest power of two. 2661 if (!RHSC->getAPInt().isPowerOf2()) 2662 ++MaxShiftAmt; 2663 IntegerType *ExtTy = 2664 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2665 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2666 if (const SCEVConstant *Step = 2667 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2668 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2669 const APInt &StepInt = Step->getAPInt(); 2670 const APInt &DivInt = RHSC->getAPInt(); 2671 if (!StepInt.urem(DivInt) && 2672 getZeroExtendExpr(AR, ExtTy) == 2673 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2674 getZeroExtendExpr(Step, ExtTy), 2675 AR->getLoop(), SCEV::FlagAnyWrap)) { 2676 SmallVector<const SCEV *, 4> Operands; 2677 for (const SCEV *Op : AR->operands()) 2678 Operands.push_back(getUDivExpr(Op, RHS)); 2679 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2680 } 2681 /// Get a canonical UDivExpr for a recurrence. 2682 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2683 // We can currently only fold X%N if X is constant. 2684 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2685 if (StartC && !DivInt.urem(StepInt) && 2686 getZeroExtendExpr(AR, ExtTy) == 2687 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2688 getZeroExtendExpr(Step, ExtTy), 2689 AR->getLoop(), SCEV::FlagAnyWrap)) { 2690 const APInt &StartInt = StartC->getAPInt(); 2691 const APInt &StartRem = StartInt.urem(StepInt); 2692 if (StartRem != 0) 2693 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2694 AR->getLoop(), SCEV::FlagNW); 2695 } 2696 } 2697 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2698 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2699 SmallVector<const SCEV *, 4> Operands; 2700 for (const SCEV *Op : M->operands()) 2701 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2702 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2703 // Find an operand that's safely divisible. 2704 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2705 const SCEV *Op = M->getOperand(i); 2706 const SCEV *Div = getUDivExpr(Op, RHSC); 2707 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2708 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2709 M->op_end()); 2710 Operands[i] = Div; 2711 return getMulExpr(Operands); 2712 } 2713 } 2714 } 2715 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2716 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2717 SmallVector<const SCEV *, 4> Operands; 2718 for (const SCEV *Op : A->operands()) 2719 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2720 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2721 Operands.clear(); 2722 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2723 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2724 if (isa<SCEVUDivExpr>(Op) || 2725 getMulExpr(Op, RHS) != A->getOperand(i)) 2726 break; 2727 Operands.push_back(Op); 2728 } 2729 if (Operands.size() == A->getNumOperands()) 2730 return getAddExpr(Operands); 2731 } 2732 } 2733 2734 // Fold if both operands are constant. 2735 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2736 Constant *LHSCV = LHSC->getValue(); 2737 Constant *RHSCV = RHSC->getValue(); 2738 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2739 RHSCV))); 2740 } 2741 } 2742 } 2743 2744 FoldingSetNodeID ID; 2745 ID.AddInteger(scUDivExpr); 2746 ID.AddPointer(LHS); 2747 ID.AddPointer(RHS); 2748 void *IP = nullptr; 2749 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2750 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2751 LHS, RHS); 2752 UniqueSCEVs.InsertNode(S, IP); 2753 return S; 2754 } 2755 2756 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2757 APInt A = C1->getAPInt().abs(); 2758 APInt B = C2->getAPInt().abs(); 2759 uint32_t ABW = A.getBitWidth(); 2760 uint32_t BBW = B.getBitWidth(); 2761 2762 if (ABW > BBW) 2763 B = B.zext(ABW); 2764 else if (ABW < BBW) 2765 A = A.zext(BBW); 2766 2767 return APIntOps::GreatestCommonDivisor(A, B); 2768 } 2769 2770 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2771 /// something simpler if possible. There is no representation for an exact udiv 2772 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2773 /// We can't do this when it's not exact because the udiv may be clearing bits. 2774 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2775 const SCEV *RHS) { 2776 // TODO: we could try to find factors in all sorts of things, but for now we 2777 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2778 // end of this file for inspiration. 2779 2780 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2781 if (!Mul) 2782 return getUDivExpr(LHS, RHS); 2783 2784 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2785 // If the mulexpr multiplies by a constant, then that constant must be the 2786 // first element of the mulexpr. 2787 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2788 if (LHSCst == RHSCst) { 2789 SmallVector<const SCEV *, 2> Operands; 2790 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2791 return getMulExpr(Operands); 2792 } 2793 2794 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2795 // that there's a factor provided by one of the other terms. We need to 2796 // check. 2797 APInt Factor = gcd(LHSCst, RHSCst); 2798 if (!Factor.isIntN(1)) { 2799 LHSCst = 2800 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2801 RHSCst = 2802 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2803 SmallVector<const SCEV *, 2> Operands; 2804 Operands.push_back(LHSCst); 2805 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2806 LHS = getMulExpr(Operands); 2807 RHS = RHSCst; 2808 Mul = dyn_cast<SCEVMulExpr>(LHS); 2809 if (!Mul) 2810 return getUDivExactExpr(LHS, RHS); 2811 } 2812 } 2813 } 2814 2815 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2816 if (Mul->getOperand(i) == RHS) { 2817 SmallVector<const SCEV *, 2> Operands; 2818 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2819 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2820 return getMulExpr(Operands); 2821 } 2822 } 2823 2824 return getUDivExpr(LHS, RHS); 2825 } 2826 2827 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2828 /// Simplify the expression as much as possible. 2829 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2830 const Loop *L, 2831 SCEV::NoWrapFlags Flags) { 2832 SmallVector<const SCEV *, 4> Operands; 2833 Operands.push_back(Start); 2834 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2835 if (StepChrec->getLoop() == L) { 2836 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2837 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2838 } 2839 2840 Operands.push_back(Step); 2841 return getAddRecExpr(Operands, L, Flags); 2842 } 2843 2844 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2845 /// Simplify the expression as much as possible. 2846 const SCEV * 2847 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2848 const Loop *L, SCEV::NoWrapFlags Flags) { 2849 if (Operands.size() == 1) return Operands[0]; 2850 #ifndef NDEBUG 2851 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2852 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2853 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2854 "SCEVAddRecExpr operand types don't match!"); 2855 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2856 assert(isLoopInvariant(Operands[i], L) && 2857 "SCEVAddRecExpr operand is not loop-invariant!"); 2858 #endif 2859 2860 if (Operands.back()->isZero()) { 2861 Operands.pop_back(); 2862 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2863 } 2864 2865 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2866 // use that information to infer NUW and NSW flags. However, computing a 2867 // BE count requires calling getAddRecExpr, so we may not yet have a 2868 // meaningful BE count at this point (and if we don't, we'd be stuck 2869 // with a SCEVCouldNotCompute as the cached BE count). 2870 2871 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2872 2873 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2874 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2875 const Loop *NestedLoop = NestedAR->getLoop(); 2876 if (L->contains(NestedLoop) 2877 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2878 : (!NestedLoop->contains(L) && 2879 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2880 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2881 NestedAR->op_end()); 2882 Operands[0] = NestedAR->getStart(); 2883 // AddRecs require their operands be loop-invariant with respect to their 2884 // loops. Don't perform this transformation if it would break this 2885 // requirement. 2886 bool AllInvariant = all_of( 2887 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2888 2889 if (AllInvariant) { 2890 // Create a recurrence for the outer loop with the same step size. 2891 // 2892 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2893 // inner recurrence has the same property. 2894 SCEV::NoWrapFlags OuterFlags = 2895 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2896 2897 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2898 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2899 return isLoopInvariant(Op, NestedLoop); 2900 }); 2901 2902 if (AllInvariant) { 2903 // Ok, both add recurrences are valid after the transformation. 2904 // 2905 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2906 // the outer recurrence has the same property. 2907 SCEV::NoWrapFlags InnerFlags = 2908 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2909 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2910 } 2911 } 2912 // Reset Operands to its original state. 2913 Operands[0] = NestedAR; 2914 } 2915 } 2916 2917 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2918 // already have one, otherwise create a new one. 2919 FoldingSetNodeID ID; 2920 ID.AddInteger(scAddRecExpr); 2921 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2922 ID.AddPointer(Operands[i]); 2923 ID.AddPointer(L); 2924 void *IP = nullptr; 2925 SCEVAddRecExpr *S = 2926 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2927 if (!S) { 2928 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2929 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2930 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2931 O, Operands.size(), L); 2932 UniqueSCEVs.InsertNode(S, IP); 2933 } 2934 S->setNoWrapFlags(Flags); 2935 return S; 2936 } 2937 2938 const SCEV * 2939 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2940 const SmallVectorImpl<const SCEV *> &IndexExprs, 2941 bool InBounds) { 2942 // getSCEV(Base)->getType() has the same address space as Base->getType() 2943 // because SCEV::getType() preserves the address space. 2944 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2945 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2946 // instruction to its SCEV, because the Instruction may be guarded by control 2947 // flow and the no-overflow bits may not be valid for the expression in any 2948 // context. This can be fixed similarly to how these flags are handled for 2949 // adds. 2950 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2951 2952 const SCEV *TotalOffset = getZero(IntPtrTy); 2953 // The address space is unimportant. The first thing we do on CurTy is getting 2954 // its element type. 2955 Type *CurTy = PointerType::getUnqual(PointeeType); 2956 for (const SCEV *IndexExpr : IndexExprs) { 2957 // Compute the (potentially symbolic) offset in bytes for this index. 2958 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2959 // For a struct, add the member offset. 2960 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2961 unsigned FieldNo = Index->getZExtValue(); 2962 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2963 2964 // Add the field offset to the running total offset. 2965 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2966 2967 // Update CurTy to the type of the field at Index. 2968 CurTy = STy->getTypeAtIndex(Index); 2969 } else { 2970 // Update CurTy to its element type. 2971 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2972 // For an array, add the element offset, explicitly scaled. 2973 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2974 // Getelementptr indices are signed. 2975 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2976 2977 // Multiply the index by the element size to compute the element offset. 2978 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2979 2980 // Add the element offset to the running total offset. 2981 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2982 } 2983 } 2984 2985 // Add the total offset from all the GEP indices to the base. 2986 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2987 } 2988 2989 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2990 const SCEV *RHS) { 2991 SmallVector<const SCEV *, 2> Ops; 2992 Ops.push_back(LHS); 2993 Ops.push_back(RHS); 2994 return getSMaxExpr(Ops); 2995 } 2996 2997 const SCEV * 2998 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2999 assert(!Ops.empty() && "Cannot get empty smax!"); 3000 if (Ops.size() == 1) return Ops[0]; 3001 #ifndef NDEBUG 3002 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3003 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3004 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3005 "SCEVSMaxExpr operand types don't match!"); 3006 #endif 3007 3008 // Sort by complexity, this groups all similar expression types together. 3009 GroupByComplexity(Ops, &LI); 3010 3011 // If there are any constants, fold them together. 3012 unsigned Idx = 0; 3013 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3014 ++Idx; 3015 assert(Idx < Ops.size()); 3016 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3017 // We found two constants, fold them together! 3018 ConstantInt *Fold = ConstantInt::get( 3019 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3020 Ops[0] = getConstant(Fold); 3021 Ops.erase(Ops.begin()+1); // Erase the folded element 3022 if (Ops.size() == 1) return Ops[0]; 3023 LHSC = cast<SCEVConstant>(Ops[0]); 3024 } 3025 3026 // If we are left with a constant minimum-int, strip it off. 3027 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3028 Ops.erase(Ops.begin()); 3029 --Idx; 3030 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3031 // If we have an smax with a constant maximum-int, it will always be 3032 // maximum-int. 3033 return Ops[0]; 3034 } 3035 3036 if (Ops.size() == 1) return Ops[0]; 3037 } 3038 3039 // Find the first SMax 3040 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3041 ++Idx; 3042 3043 // Check to see if one of the operands is an SMax. If so, expand its operands 3044 // onto our operand list, and recurse to simplify. 3045 if (Idx < Ops.size()) { 3046 bool DeletedSMax = false; 3047 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3048 Ops.erase(Ops.begin()+Idx); 3049 Ops.append(SMax->op_begin(), SMax->op_end()); 3050 DeletedSMax = true; 3051 } 3052 3053 if (DeletedSMax) 3054 return getSMaxExpr(Ops); 3055 } 3056 3057 // Okay, check to see if the same value occurs in the operand list twice. If 3058 // so, delete one. Since we sorted the list, these values are required to 3059 // be adjacent. 3060 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3061 // X smax Y smax Y --> X smax Y 3062 // X smax Y --> X, if X is always greater than Y 3063 if (Ops[i] == Ops[i+1] || 3064 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3065 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3066 --i; --e; 3067 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3068 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3069 --i; --e; 3070 } 3071 3072 if (Ops.size() == 1) return Ops[0]; 3073 3074 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3075 3076 // Okay, it looks like we really DO need an smax expr. Check to see if we 3077 // already have one, otherwise create a new one. 3078 FoldingSetNodeID ID; 3079 ID.AddInteger(scSMaxExpr); 3080 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3081 ID.AddPointer(Ops[i]); 3082 void *IP = nullptr; 3083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3084 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3085 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3086 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3087 O, Ops.size()); 3088 UniqueSCEVs.InsertNode(S, IP); 3089 return S; 3090 } 3091 3092 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3093 const SCEV *RHS) { 3094 SmallVector<const SCEV *, 2> Ops; 3095 Ops.push_back(LHS); 3096 Ops.push_back(RHS); 3097 return getUMaxExpr(Ops); 3098 } 3099 3100 const SCEV * 3101 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3102 assert(!Ops.empty() && "Cannot get empty umax!"); 3103 if (Ops.size() == 1) return Ops[0]; 3104 #ifndef NDEBUG 3105 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3106 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3107 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3108 "SCEVUMaxExpr operand types don't match!"); 3109 #endif 3110 3111 // Sort by complexity, this groups all similar expression types together. 3112 GroupByComplexity(Ops, &LI); 3113 3114 // If there are any constants, fold them together. 3115 unsigned Idx = 0; 3116 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3117 ++Idx; 3118 assert(Idx < Ops.size()); 3119 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3120 // We found two constants, fold them together! 3121 ConstantInt *Fold = ConstantInt::get( 3122 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3123 Ops[0] = getConstant(Fold); 3124 Ops.erase(Ops.begin()+1); // Erase the folded element 3125 if (Ops.size() == 1) return Ops[0]; 3126 LHSC = cast<SCEVConstant>(Ops[0]); 3127 } 3128 3129 // If we are left with a constant minimum-int, strip it off. 3130 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3131 Ops.erase(Ops.begin()); 3132 --Idx; 3133 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3134 // If we have an umax with a constant maximum-int, it will always be 3135 // maximum-int. 3136 return Ops[0]; 3137 } 3138 3139 if (Ops.size() == 1) return Ops[0]; 3140 } 3141 3142 // Find the first UMax 3143 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3144 ++Idx; 3145 3146 // Check to see if one of the operands is a UMax. If so, expand its operands 3147 // onto our operand list, and recurse to simplify. 3148 if (Idx < Ops.size()) { 3149 bool DeletedUMax = false; 3150 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3151 Ops.erase(Ops.begin()+Idx); 3152 Ops.append(UMax->op_begin(), UMax->op_end()); 3153 DeletedUMax = true; 3154 } 3155 3156 if (DeletedUMax) 3157 return getUMaxExpr(Ops); 3158 } 3159 3160 // Okay, check to see if the same value occurs in the operand list twice. If 3161 // so, delete one. Since we sorted the list, these values are required to 3162 // be adjacent. 3163 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3164 // X umax Y umax Y --> X umax Y 3165 // X umax Y --> X, if X is always greater than Y 3166 if (Ops[i] == Ops[i+1] || 3167 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3168 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3169 --i; --e; 3170 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3171 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3172 --i; --e; 3173 } 3174 3175 if (Ops.size() == 1) return Ops[0]; 3176 3177 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3178 3179 // Okay, it looks like we really DO need a umax expr. Check to see if we 3180 // already have one, otherwise create a new one. 3181 FoldingSetNodeID ID; 3182 ID.AddInteger(scUMaxExpr); 3183 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3184 ID.AddPointer(Ops[i]); 3185 void *IP = nullptr; 3186 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3187 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3188 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3189 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3190 O, Ops.size()); 3191 UniqueSCEVs.InsertNode(S, IP); 3192 return S; 3193 } 3194 3195 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3196 const SCEV *RHS) { 3197 // ~smax(~x, ~y) == smin(x, y). 3198 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3199 } 3200 3201 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3202 const SCEV *RHS) { 3203 // ~umax(~x, ~y) == umin(x, y) 3204 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3205 } 3206 3207 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3208 // We can bypass creating a target-independent 3209 // constant expression and then folding it back into a ConstantInt. 3210 // This is just a compile-time optimization. 3211 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3212 } 3213 3214 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3215 StructType *STy, 3216 unsigned FieldNo) { 3217 // We can bypass creating a target-independent 3218 // constant expression and then folding it back into a ConstantInt. 3219 // This is just a compile-time optimization. 3220 return getConstant( 3221 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3222 } 3223 3224 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3225 // Don't attempt to do anything other than create a SCEVUnknown object 3226 // here. createSCEV only calls getUnknown after checking for all other 3227 // interesting possibilities, and any other code that calls getUnknown 3228 // is doing so in order to hide a value from SCEV canonicalization. 3229 3230 FoldingSetNodeID ID; 3231 ID.AddInteger(scUnknown); 3232 ID.AddPointer(V); 3233 void *IP = nullptr; 3234 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3235 assert(cast<SCEVUnknown>(S)->getValue() == V && 3236 "Stale SCEVUnknown in uniquing map!"); 3237 return S; 3238 } 3239 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3240 FirstUnknown); 3241 FirstUnknown = cast<SCEVUnknown>(S); 3242 UniqueSCEVs.InsertNode(S, IP); 3243 return S; 3244 } 3245 3246 //===----------------------------------------------------------------------===// 3247 // Basic SCEV Analysis and PHI Idiom Recognition Code 3248 // 3249 3250 /// isSCEVable - Test if values of the given type are analyzable within 3251 /// the SCEV framework. This primarily includes integer types, and it 3252 /// can optionally include pointer types if the ScalarEvolution class 3253 /// has access to target-specific information. 3254 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3255 // Integers and pointers are always SCEVable. 3256 return Ty->isIntegerTy() || Ty->isPointerTy(); 3257 } 3258 3259 /// getTypeSizeInBits - Return the size in bits of the specified type, 3260 /// for which isSCEVable must return true. 3261 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3262 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3263 return getDataLayout().getTypeSizeInBits(Ty); 3264 } 3265 3266 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3267 /// the given type and which represents how SCEV will treat the given 3268 /// type, for which isSCEVable must return true. For pointer types, 3269 /// this is the pointer-sized integer type. 3270 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3271 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3272 3273 if (Ty->isIntegerTy()) 3274 return Ty; 3275 3276 // The only other support type is pointer. 3277 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3278 return getDataLayout().getIntPtrType(Ty); 3279 } 3280 3281 const SCEV *ScalarEvolution::getCouldNotCompute() { 3282 return CouldNotCompute.get(); 3283 } 3284 3285 3286 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3287 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3288 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3289 // is set iff if find such SCEVUnknown. 3290 // 3291 struct FindInvalidSCEVUnknown { 3292 bool FindOne; 3293 FindInvalidSCEVUnknown() { FindOne = false; } 3294 bool follow(const SCEV *S) { 3295 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3296 case scConstant: 3297 return false; 3298 case scUnknown: 3299 if (!cast<SCEVUnknown>(S)->getValue()) 3300 FindOne = true; 3301 return false; 3302 default: 3303 return true; 3304 } 3305 } 3306 bool isDone() const { return FindOne; } 3307 }; 3308 3309 FindInvalidSCEVUnknown F; 3310 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3311 ST.visitAll(S); 3312 3313 return !F.FindOne; 3314 } 3315 3316 namespace { 3317 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3318 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set 3319 // iff if such sub scAddRecExpr type SCEV is found. 3320 struct FindAddRecurrence { 3321 bool FoundOne; 3322 FindAddRecurrence() : FoundOne(false) {} 3323 3324 bool follow(const SCEV *S) { 3325 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3326 case scAddRecExpr: 3327 FoundOne = true; 3328 case scConstant: 3329 case scUnknown: 3330 case scCouldNotCompute: 3331 return false; 3332 default: 3333 return true; 3334 } 3335 } 3336 bool isDone() const { return FoundOne; } 3337 }; 3338 } 3339 3340 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3341 HasRecMapType::iterator I = HasRecMap.find_as(S); 3342 if (I != HasRecMap.end()) 3343 return I->second; 3344 3345 FindAddRecurrence F; 3346 SCEVTraversal<FindAddRecurrence> ST(F); 3347 ST.visitAll(S); 3348 HasRecMap.insert({S, F.FoundOne}); 3349 return F.FoundOne; 3350 } 3351 3352 /// getSCEVValues - Return the Value set from S. 3353 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) { 3354 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3355 if (SI == ExprValueMap.end()) 3356 return nullptr; 3357 #ifndef NDEBUG 3358 if (VerifySCEVMap) { 3359 // Check there is no dangling Value in the set returned. 3360 for (const auto &VE : SI->second) 3361 assert(ValueExprMap.count(VE)); 3362 } 3363 #endif 3364 return &SI->second; 3365 } 3366 3367 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap. 3368 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S), 3369 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed 3370 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S]. 3371 void ScalarEvolution::eraseValueFromMap(Value *V) { 3372 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3373 if (I != ValueExprMap.end()) { 3374 const SCEV *S = I->second; 3375 SetVector<Value *> *SV = getSCEVValues(S); 3376 // Remove V from the set of ExprValueMap[S] 3377 if (SV) 3378 SV->remove(V); 3379 ValueExprMap.erase(V); 3380 } 3381 } 3382 3383 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3384 /// expression and create a new one. 3385 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3386 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3387 3388 const SCEV *S = getExistingSCEV(V); 3389 if (S == nullptr) { 3390 S = createSCEV(V); 3391 // During PHI resolution, it is possible to create two SCEVs for the same 3392 // V, so it is needed to double check whether V->S is inserted into 3393 // ValueExprMap before insert S->V into ExprValueMap. 3394 std::pair<ValueExprMapType::iterator, bool> Pair = 3395 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3396 if (Pair.second) 3397 ExprValueMap[S].insert(V); 3398 } 3399 return S; 3400 } 3401 3402 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3403 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3404 3405 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3406 if (I != ValueExprMap.end()) { 3407 const SCEV *S = I->second; 3408 if (checkValidity(S)) 3409 return S; 3410 forgetMemoizedResults(S); 3411 ValueExprMap.erase(I); 3412 } 3413 return nullptr; 3414 } 3415 3416 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3417 /// 3418 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3419 SCEV::NoWrapFlags Flags) { 3420 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3421 return getConstant( 3422 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3423 3424 Type *Ty = V->getType(); 3425 Ty = getEffectiveSCEVType(Ty); 3426 return getMulExpr( 3427 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3428 } 3429 3430 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3431 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3432 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3433 return getConstant( 3434 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3435 3436 Type *Ty = V->getType(); 3437 Ty = getEffectiveSCEVType(Ty); 3438 const SCEV *AllOnes = 3439 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3440 return getMinusSCEV(AllOnes, V); 3441 } 3442 3443 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3444 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3445 SCEV::NoWrapFlags Flags) { 3446 // Fast path: X - X --> 0. 3447 if (LHS == RHS) 3448 return getZero(LHS->getType()); 3449 3450 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3451 // makes it so that we cannot make much use of NUW. 3452 auto AddFlags = SCEV::FlagAnyWrap; 3453 const bool RHSIsNotMinSigned = 3454 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3455 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3456 // Let M be the minimum representable signed value. Then (-1)*RHS 3457 // signed-wraps if and only if RHS is M. That can happen even for 3458 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3459 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3460 // (-1)*RHS, we need to prove that RHS != M. 3461 // 3462 // If LHS is non-negative and we know that LHS - RHS does not 3463 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3464 // either by proving that RHS > M or that LHS >= 0. 3465 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3466 AddFlags = SCEV::FlagNSW; 3467 } 3468 } 3469 3470 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3471 // RHS is NSW and LHS >= 0. 3472 // 3473 // The difficulty here is that the NSW flag may have been proven 3474 // relative to a loop that is to be found in a recurrence in LHS and 3475 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3476 // larger scope than intended. 3477 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3478 3479 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3480 } 3481 3482 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3483 /// input value to the specified type. If the type must be extended, it is zero 3484 /// extended. 3485 const SCEV * 3486 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3487 Type *SrcTy = V->getType(); 3488 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3489 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3490 "Cannot truncate or zero extend with non-integer arguments!"); 3491 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3492 return V; // No conversion 3493 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3494 return getTruncateExpr(V, Ty); 3495 return getZeroExtendExpr(V, Ty); 3496 } 3497 3498 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3499 /// input value to the specified type. If the type must be extended, it is sign 3500 /// extended. 3501 const SCEV * 3502 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3503 Type *Ty) { 3504 Type *SrcTy = V->getType(); 3505 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3506 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3507 "Cannot truncate or zero extend with non-integer arguments!"); 3508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3509 return V; // No conversion 3510 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3511 return getTruncateExpr(V, Ty); 3512 return getSignExtendExpr(V, Ty); 3513 } 3514 3515 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3516 /// input value to the specified type. If the type must be extended, it is zero 3517 /// extended. The conversion must not be narrowing. 3518 const SCEV * 3519 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3520 Type *SrcTy = V->getType(); 3521 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3522 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3523 "Cannot noop or zero extend with non-integer arguments!"); 3524 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3525 "getNoopOrZeroExtend cannot truncate!"); 3526 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3527 return V; // No conversion 3528 return getZeroExtendExpr(V, Ty); 3529 } 3530 3531 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3532 /// input value to the specified type. If the type must be extended, it is sign 3533 /// extended. The conversion must not be narrowing. 3534 const SCEV * 3535 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3536 Type *SrcTy = V->getType(); 3537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3538 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3539 "Cannot noop or sign extend with non-integer arguments!"); 3540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3541 "getNoopOrSignExtend cannot truncate!"); 3542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3543 return V; // No conversion 3544 return getSignExtendExpr(V, Ty); 3545 } 3546 3547 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3548 /// the input value to the specified type. If the type must be extended, 3549 /// it is extended with unspecified bits. The conversion must not be 3550 /// narrowing. 3551 const SCEV * 3552 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3553 Type *SrcTy = V->getType(); 3554 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3555 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3556 "Cannot noop or any extend with non-integer arguments!"); 3557 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3558 "getNoopOrAnyExtend cannot truncate!"); 3559 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3560 return V; // No conversion 3561 return getAnyExtendExpr(V, Ty); 3562 } 3563 3564 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3565 /// input value to the specified type. The conversion must not be widening. 3566 const SCEV * 3567 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3568 Type *SrcTy = V->getType(); 3569 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3570 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3571 "Cannot truncate or noop with non-integer arguments!"); 3572 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3573 "getTruncateOrNoop cannot extend!"); 3574 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3575 return V; // No conversion 3576 return getTruncateExpr(V, Ty); 3577 } 3578 3579 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3580 /// the types using zero-extension, and then perform a umax operation 3581 /// with them. 3582 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3583 const SCEV *RHS) { 3584 const SCEV *PromotedLHS = LHS; 3585 const SCEV *PromotedRHS = RHS; 3586 3587 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3588 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3589 else 3590 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3591 3592 return getUMaxExpr(PromotedLHS, PromotedRHS); 3593 } 3594 3595 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3596 /// the types using zero-extension, and then perform a umin operation 3597 /// with them. 3598 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3599 const SCEV *RHS) { 3600 const SCEV *PromotedLHS = LHS; 3601 const SCEV *PromotedRHS = RHS; 3602 3603 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3604 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3605 else 3606 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3607 3608 return getUMinExpr(PromotedLHS, PromotedRHS); 3609 } 3610 3611 /// getPointerBase - Transitively follow the chain of pointer-type operands 3612 /// until reaching a SCEV that does not have a single pointer operand. This 3613 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3614 /// but corner cases do exist. 3615 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3616 // A pointer operand may evaluate to a nonpointer expression, such as null. 3617 if (!V->getType()->isPointerTy()) 3618 return V; 3619 3620 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3621 return getPointerBase(Cast->getOperand()); 3622 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3623 const SCEV *PtrOp = nullptr; 3624 for (const SCEV *NAryOp : NAry->operands()) { 3625 if (NAryOp->getType()->isPointerTy()) { 3626 // Cannot find the base of an expression with multiple pointer operands. 3627 if (PtrOp) 3628 return V; 3629 PtrOp = NAryOp; 3630 } 3631 } 3632 if (!PtrOp) 3633 return V; 3634 return getPointerBase(PtrOp); 3635 } 3636 return V; 3637 } 3638 3639 /// PushDefUseChildren - Push users of the given Instruction 3640 /// onto the given Worklist. 3641 static void 3642 PushDefUseChildren(Instruction *I, 3643 SmallVectorImpl<Instruction *> &Worklist) { 3644 // Push the def-use children onto the Worklist stack. 3645 for (User *U : I->users()) 3646 Worklist.push_back(cast<Instruction>(U)); 3647 } 3648 3649 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3650 /// instructions that depend on the given instruction and removes them from 3651 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3652 /// resolution. 3653 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3654 SmallVector<Instruction *, 16> Worklist; 3655 PushDefUseChildren(PN, Worklist); 3656 3657 SmallPtrSet<Instruction *, 8> Visited; 3658 Visited.insert(PN); 3659 while (!Worklist.empty()) { 3660 Instruction *I = Worklist.pop_back_val(); 3661 if (!Visited.insert(I).second) 3662 continue; 3663 3664 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3665 if (It != ValueExprMap.end()) { 3666 const SCEV *Old = It->second; 3667 3668 // Short-circuit the def-use traversal if the symbolic name 3669 // ceases to appear in expressions. 3670 if (Old != SymName && !hasOperand(Old, SymName)) 3671 continue; 3672 3673 // SCEVUnknown for a PHI either means that it has an unrecognized 3674 // structure, it's a PHI that's in the progress of being computed 3675 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3676 // additional loop trip count information isn't going to change anything. 3677 // In the second case, createNodeForPHI will perform the necessary 3678 // updates on its own when it gets to that point. In the third, we do 3679 // want to forget the SCEVUnknown. 3680 if (!isa<PHINode>(I) || 3681 !isa<SCEVUnknown>(Old) || 3682 (I != PN && Old == SymName)) { 3683 forgetMemoizedResults(Old); 3684 ValueExprMap.erase(It); 3685 } 3686 } 3687 3688 PushDefUseChildren(I, Worklist); 3689 } 3690 } 3691 3692 namespace { 3693 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3694 public: 3695 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3696 ScalarEvolution &SE) { 3697 SCEVInitRewriter Rewriter(L, SE); 3698 const SCEV *Result = Rewriter.visit(S); 3699 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3700 } 3701 3702 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3703 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3704 3705 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3706 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3707 Valid = false; 3708 return Expr; 3709 } 3710 3711 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3712 // Only allow AddRecExprs for this loop. 3713 if (Expr->getLoop() == L) 3714 return Expr->getStart(); 3715 Valid = false; 3716 return Expr; 3717 } 3718 3719 bool isValid() { return Valid; } 3720 3721 private: 3722 const Loop *L; 3723 bool Valid; 3724 }; 3725 3726 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3727 public: 3728 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3729 ScalarEvolution &SE) { 3730 SCEVShiftRewriter Rewriter(L, SE); 3731 const SCEV *Result = Rewriter.visit(S); 3732 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3733 } 3734 3735 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3736 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3737 3738 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3739 // Only allow AddRecExprs for this loop. 3740 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3741 Valid = false; 3742 return Expr; 3743 } 3744 3745 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3746 if (Expr->getLoop() == L && Expr->isAffine()) 3747 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3748 Valid = false; 3749 return Expr; 3750 } 3751 bool isValid() { return Valid; } 3752 3753 private: 3754 const Loop *L; 3755 bool Valid; 3756 }; 3757 } // end anonymous namespace 3758 3759 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3760 const Loop *L = LI.getLoopFor(PN->getParent()); 3761 if (!L || L->getHeader() != PN->getParent()) 3762 return nullptr; 3763 3764 // The loop may have multiple entrances or multiple exits; we can analyze 3765 // this phi as an addrec if it has a unique entry value and a unique 3766 // backedge value. 3767 Value *BEValueV = nullptr, *StartValueV = nullptr; 3768 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3769 Value *V = PN->getIncomingValue(i); 3770 if (L->contains(PN->getIncomingBlock(i))) { 3771 if (!BEValueV) { 3772 BEValueV = V; 3773 } else if (BEValueV != V) { 3774 BEValueV = nullptr; 3775 break; 3776 } 3777 } else if (!StartValueV) { 3778 StartValueV = V; 3779 } else if (StartValueV != V) { 3780 StartValueV = nullptr; 3781 break; 3782 } 3783 } 3784 if (BEValueV && StartValueV) { 3785 // While we are analyzing this PHI node, handle its value symbolically. 3786 const SCEV *SymbolicName = getUnknown(PN); 3787 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3788 "PHI node already processed?"); 3789 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3790 3791 // Using this symbolic name for the PHI, analyze the value coming around 3792 // the back-edge. 3793 const SCEV *BEValue = getSCEV(BEValueV); 3794 3795 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3796 // has a special value for the first iteration of the loop. 3797 3798 // If the value coming around the backedge is an add with the symbolic 3799 // value we just inserted, then we found a simple induction variable! 3800 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3801 // If there is a single occurrence of the symbolic value, replace it 3802 // with a recurrence. 3803 unsigned FoundIndex = Add->getNumOperands(); 3804 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3805 if (Add->getOperand(i) == SymbolicName) 3806 if (FoundIndex == e) { 3807 FoundIndex = i; 3808 break; 3809 } 3810 3811 if (FoundIndex != Add->getNumOperands()) { 3812 // Create an add with everything but the specified operand. 3813 SmallVector<const SCEV *, 8> Ops; 3814 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3815 if (i != FoundIndex) 3816 Ops.push_back(Add->getOperand(i)); 3817 const SCEV *Accum = getAddExpr(Ops); 3818 3819 // This is not a valid addrec if the step amount is varying each 3820 // loop iteration, but is not itself an addrec in this loop. 3821 if (isLoopInvariant(Accum, L) || 3822 (isa<SCEVAddRecExpr>(Accum) && 3823 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3824 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3825 3826 // If the increment doesn't overflow, then neither the addrec nor 3827 // the post-increment will overflow. 3828 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3829 if (OBO->getOperand(0) == PN) { 3830 if (OBO->hasNoUnsignedWrap()) 3831 Flags = setFlags(Flags, SCEV::FlagNUW); 3832 if (OBO->hasNoSignedWrap()) 3833 Flags = setFlags(Flags, SCEV::FlagNSW); 3834 } 3835 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3836 // If the increment is an inbounds GEP, then we know the address 3837 // space cannot be wrapped around. We cannot make any guarantee 3838 // about signed or unsigned overflow because pointers are 3839 // unsigned but we may have a negative index from the base 3840 // pointer. We can guarantee that no unsigned wrap occurs if the 3841 // indices form a positive value. 3842 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3843 Flags = setFlags(Flags, SCEV::FlagNW); 3844 3845 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3846 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3847 Flags = setFlags(Flags, SCEV::FlagNUW); 3848 } 3849 3850 // We cannot transfer nuw and nsw flags from subtraction 3851 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3852 // for instance. 3853 } 3854 3855 const SCEV *StartVal = getSCEV(StartValueV); 3856 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3857 3858 // Since the no-wrap flags are on the increment, they apply to the 3859 // post-incremented value as well. 3860 if (isLoopInvariant(Accum, L)) 3861 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3862 3863 // Okay, for the entire analysis of this edge we assumed the PHI 3864 // to be symbolic. We now need to go back and purge all of the 3865 // entries for the scalars that use the symbolic expression. 3866 forgetSymbolicName(PN, SymbolicName); 3867 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3868 return PHISCEV; 3869 } 3870 } 3871 } else { 3872 // Otherwise, this could be a loop like this: 3873 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3874 // In this case, j = {1,+,1} and BEValue is j. 3875 // Because the other in-value of i (0) fits the evolution of BEValue 3876 // i really is an addrec evolution. 3877 // 3878 // We can generalize this saying that i is the shifted value of BEValue 3879 // by one iteration: 3880 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3881 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3882 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3883 if (Shifted != getCouldNotCompute() && 3884 Start != getCouldNotCompute()) { 3885 const SCEV *StartVal = getSCEV(StartValueV); 3886 if (Start == StartVal) { 3887 // Okay, for the entire analysis of this edge we assumed the PHI 3888 // to be symbolic. We now need to go back and purge all of the 3889 // entries for the scalars that use the symbolic expression. 3890 forgetSymbolicName(PN, SymbolicName); 3891 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3892 return Shifted; 3893 } 3894 } 3895 } 3896 3897 // Remove the temporary PHI node SCEV that has been inserted while intending 3898 // to create an AddRecExpr for this PHI node. We can not keep this temporary 3899 // as it will prevent later (possibly simpler) SCEV expressions to be added 3900 // to the ValueExprMap. 3901 ValueExprMap.erase(PN); 3902 } 3903 3904 return nullptr; 3905 } 3906 3907 // Checks if the SCEV S is available at BB. S is considered available at BB 3908 // if S can be materialized at BB without introducing a fault. 3909 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3910 BasicBlock *BB) { 3911 struct CheckAvailable { 3912 bool TraversalDone = false; 3913 bool Available = true; 3914 3915 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3916 BasicBlock *BB = nullptr; 3917 DominatorTree &DT; 3918 3919 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3920 : L(L), BB(BB), DT(DT) {} 3921 3922 bool setUnavailable() { 3923 TraversalDone = true; 3924 Available = false; 3925 return false; 3926 } 3927 3928 bool follow(const SCEV *S) { 3929 switch (S->getSCEVType()) { 3930 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3931 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3932 // These expressions are available if their operand(s) is/are. 3933 return true; 3934 3935 case scAddRecExpr: { 3936 // We allow add recurrences that are on the loop BB is in, or some 3937 // outer loop. This guarantees availability because the value of the 3938 // add recurrence at BB is simply the "current" value of the induction 3939 // variable. We can relax this in the future; for instance an add 3940 // recurrence on a sibling dominating loop is also available at BB. 3941 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3942 if (L && (ARLoop == L || ARLoop->contains(L))) 3943 return true; 3944 3945 return setUnavailable(); 3946 } 3947 3948 case scUnknown: { 3949 // For SCEVUnknown, we check for simple dominance. 3950 const auto *SU = cast<SCEVUnknown>(S); 3951 Value *V = SU->getValue(); 3952 3953 if (isa<Argument>(V)) 3954 return false; 3955 3956 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3957 return false; 3958 3959 return setUnavailable(); 3960 } 3961 3962 case scUDivExpr: 3963 case scCouldNotCompute: 3964 // We do not try to smart about these at all. 3965 return setUnavailable(); 3966 } 3967 llvm_unreachable("switch should be fully covered!"); 3968 } 3969 3970 bool isDone() { return TraversalDone; } 3971 }; 3972 3973 CheckAvailable CA(L, BB, DT); 3974 SCEVTraversal<CheckAvailable> ST(CA); 3975 3976 ST.visitAll(S); 3977 return CA.Available; 3978 } 3979 3980 // Try to match a control flow sequence that branches out at BI and merges back 3981 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3982 // match. 3983 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3984 Value *&C, Value *&LHS, Value *&RHS) { 3985 C = BI->getCondition(); 3986 3987 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3988 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3989 3990 if (!LeftEdge.isSingleEdge()) 3991 return false; 3992 3993 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3994 3995 Use &LeftUse = Merge->getOperandUse(0); 3996 Use &RightUse = Merge->getOperandUse(1); 3997 3998 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3999 LHS = LeftUse; 4000 RHS = RightUse; 4001 return true; 4002 } 4003 4004 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4005 LHS = RightUse; 4006 RHS = LeftUse; 4007 return true; 4008 } 4009 4010 return false; 4011 } 4012 4013 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4014 if (PN->getNumIncomingValues() == 2) { 4015 const Loop *L = LI.getLoopFor(PN->getParent()); 4016 4017 // We don't want to break LCSSA, even in a SCEV expression tree. 4018 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4019 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4020 return nullptr; 4021 4022 // Try to match 4023 // 4024 // br %cond, label %left, label %right 4025 // left: 4026 // br label %merge 4027 // right: 4028 // br label %merge 4029 // merge: 4030 // V = phi [ %x, %left ], [ %y, %right ] 4031 // 4032 // as "select %cond, %x, %y" 4033 4034 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4035 assert(IDom && "At least the entry block should dominate PN"); 4036 4037 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4038 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4039 4040 if (BI && BI->isConditional() && 4041 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4042 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4043 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4044 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4045 } 4046 4047 return nullptr; 4048 } 4049 4050 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4051 if (const SCEV *S = createAddRecFromPHI(PN)) 4052 return S; 4053 4054 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4055 return S; 4056 4057 // If the PHI has a single incoming value, follow that value, unless the 4058 // PHI's incoming blocks are in a different loop, in which case doing so 4059 // risks breaking LCSSA form. Instcombine would normally zap these, but 4060 // it doesn't have DominatorTree information, so it may miss cases. 4061 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4062 if (LI.replacementPreservesLCSSAForm(PN, V)) 4063 return getSCEV(V); 4064 4065 // If it's not a loop phi, we can't handle it yet. 4066 return getUnknown(PN); 4067 } 4068 4069 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4070 Value *Cond, 4071 Value *TrueVal, 4072 Value *FalseVal) { 4073 // Handle "constant" branch or select. This can occur for instance when a 4074 // loop pass transforms an inner loop and moves on to process the outer loop. 4075 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4076 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4077 4078 // Try to match some simple smax or umax patterns. 4079 auto *ICI = dyn_cast<ICmpInst>(Cond); 4080 if (!ICI) 4081 return getUnknown(I); 4082 4083 Value *LHS = ICI->getOperand(0); 4084 Value *RHS = ICI->getOperand(1); 4085 4086 switch (ICI->getPredicate()) { 4087 case ICmpInst::ICMP_SLT: 4088 case ICmpInst::ICMP_SLE: 4089 std::swap(LHS, RHS); 4090 // fall through 4091 case ICmpInst::ICMP_SGT: 4092 case ICmpInst::ICMP_SGE: 4093 // a >s b ? a+x : b+x -> smax(a, b)+x 4094 // a >s b ? b+x : a+x -> smin(a, b)+x 4095 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4096 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4097 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4098 const SCEV *LA = getSCEV(TrueVal); 4099 const SCEV *RA = getSCEV(FalseVal); 4100 const SCEV *LDiff = getMinusSCEV(LA, LS); 4101 const SCEV *RDiff = getMinusSCEV(RA, RS); 4102 if (LDiff == RDiff) 4103 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4104 LDiff = getMinusSCEV(LA, RS); 4105 RDiff = getMinusSCEV(RA, LS); 4106 if (LDiff == RDiff) 4107 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4108 } 4109 break; 4110 case ICmpInst::ICMP_ULT: 4111 case ICmpInst::ICMP_ULE: 4112 std::swap(LHS, RHS); 4113 // fall through 4114 case ICmpInst::ICMP_UGT: 4115 case ICmpInst::ICMP_UGE: 4116 // a >u b ? a+x : b+x -> umax(a, b)+x 4117 // a >u b ? b+x : a+x -> umin(a, b)+x 4118 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4119 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4120 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4121 const SCEV *LA = getSCEV(TrueVal); 4122 const SCEV *RA = getSCEV(FalseVal); 4123 const SCEV *LDiff = getMinusSCEV(LA, LS); 4124 const SCEV *RDiff = getMinusSCEV(RA, RS); 4125 if (LDiff == RDiff) 4126 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4127 LDiff = getMinusSCEV(LA, RS); 4128 RDiff = getMinusSCEV(RA, LS); 4129 if (LDiff == RDiff) 4130 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4131 } 4132 break; 4133 case ICmpInst::ICMP_NE: 4134 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4135 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4136 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4137 const SCEV *One = getOne(I->getType()); 4138 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4139 const SCEV *LA = getSCEV(TrueVal); 4140 const SCEV *RA = getSCEV(FalseVal); 4141 const SCEV *LDiff = getMinusSCEV(LA, LS); 4142 const SCEV *RDiff = getMinusSCEV(RA, One); 4143 if (LDiff == RDiff) 4144 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4145 } 4146 break; 4147 case ICmpInst::ICMP_EQ: 4148 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4149 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4150 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4151 const SCEV *One = getOne(I->getType()); 4152 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4153 const SCEV *LA = getSCEV(TrueVal); 4154 const SCEV *RA = getSCEV(FalseVal); 4155 const SCEV *LDiff = getMinusSCEV(LA, One); 4156 const SCEV *RDiff = getMinusSCEV(RA, LS); 4157 if (LDiff == RDiff) 4158 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4159 } 4160 break; 4161 default: 4162 break; 4163 } 4164 4165 return getUnknown(I); 4166 } 4167 4168 /// createNodeForGEP - Expand GEP instructions into add and multiply 4169 /// operations. This allows them to be analyzed by regular SCEV code. 4170 /// 4171 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4172 // Don't attempt to analyze GEPs over unsized objects. 4173 if (!GEP->getSourceElementType()->isSized()) 4174 return getUnknown(GEP); 4175 4176 SmallVector<const SCEV *, 4> IndexExprs; 4177 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4178 IndexExprs.push_back(getSCEV(*Index)); 4179 return getGEPExpr(GEP->getSourceElementType(), 4180 getSCEV(GEP->getPointerOperand()), 4181 IndexExprs, GEP->isInBounds()); 4182 } 4183 4184 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4185 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4186 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4187 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4188 uint32_t 4189 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4190 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4191 return C->getAPInt().countTrailingZeros(); 4192 4193 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4194 return std::min(GetMinTrailingZeros(T->getOperand()), 4195 (uint32_t)getTypeSizeInBits(T->getType())); 4196 4197 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4198 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4199 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4200 getTypeSizeInBits(E->getType()) : OpRes; 4201 } 4202 4203 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4204 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4205 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4206 getTypeSizeInBits(E->getType()) : OpRes; 4207 } 4208 4209 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4210 // The result is the min of all operands results. 4211 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4212 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4213 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4214 return MinOpRes; 4215 } 4216 4217 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4218 // The result is the sum of all operands results. 4219 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4220 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4221 for (unsigned i = 1, e = M->getNumOperands(); 4222 SumOpRes != BitWidth && i != e; ++i) 4223 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4224 BitWidth); 4225 return SumOpRes; 4226 } 4227 4228 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4229 // The result is the min of all operands results. 4230 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4231 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4232 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4233 return MinOpRes; 4234 } 4235 4236 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4237 // The result is the min of all operands results. 4238 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4239 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4240 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4241 return MinOpRes; 4242 } 4243 4244 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4245 // The result is the min of all operands results. 4246 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4247 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4248 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4249 return MinOpRes; 4250 } 4251 4252 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4253 // For a SCEVUnknown, ask ValueTracking. 4254 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4255 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4256 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4257 nullptr, &DT); 4258 return Zeros.countTrailingOnes(); 4259 } 4260 4261 // SCEVUDivExpr 4262 return 0; 4263 } 4264 4265 /// GetRangeFromMetadata - Helper method to assign a range to V from 4266 /// metadata present in the IR. 4267 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4268 if (Instruction *I = dyn_cast<Instruction>(V)) 4269 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4270 return getConstantRangeFromMetadata(*MD); 4271 4272 return None; 4273 } 4274 4275 /// getRange - Determine the range for a particular SCEV. If SignHint is 4276 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4277 /// with a "cleaner" unsigned (resp. signed) representation. 4278 /// 4279 ConstantRange 4280 ScalarEvolution::getRange(const SCEV *S, 4281 ScalarEvolution::RangeSignHint SignHint) { 4282 DenseMap<const SCEV *, ConstantRange> &Cache = 4283 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4284 : SignedRanges; 4285 4286 // See if we've computed this range already. 4287 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4288 if (I != Cache.end()) 4289 return I->second; 4290 4291 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4292 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4293 4294 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4295 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4296 4297 // If the value has known zeros, the maximum value will have those known zeros 4298 // as well. 4299 uint32_t TZ = GetMinTrailingZeros(S); 4300 if (TZ != 0) { 4301 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4302 ConservativeResult = 4303 ConstantRange(APInt::getMinValue(BitWidth), 4304 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4305 else 4306 ConservativeResult = ConstantRange( 4307 APInt::getSignedMinValue(BitWidth), 4308 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4309 } 4310 4311 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4312 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4313 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4314 X = X.add(getRange(Add->getOperand(i), SignHint)); 4315 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4316 } 4317 4318 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4319 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4320 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4321 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4322 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4323 } 4324 4325 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4326 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4327 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4328 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4329 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4330 } 4331 4332 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4333 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4334 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4335 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4336 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4337 } 4338 4339 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4340 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4341 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4342 return setRange(UDiv, SignHint, 4343 ConservativeResult.intersectWith(X.udiv(Y))); 4344 } 4345 4346 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4347 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4348 return setRange(ZExt, SignHint, 4349 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4350 } 4351 4352 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4353 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4354 return setRange(SExt, SignHint, 4355 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4356 } 4357 4358 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4359 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4360 return setRange(Trunc, SignHint, 4361 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4362 } 4363 4364 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4365 // If there's no unsigned wrap, the value will never be less than its 4366 // initial value. 4367 if (AddRec->hasNoUnsignedWrap()) 4368 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4369 if (!C->getValue()->isZero()) 4370 ConservativeResult = ConservativeResult.intersectWith( 4371 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4372 4373 // If there's no signed wrap, and all the operands have the same sign or 4374 // zero, the value won't ever change sign. 4375 if (AddRec->hasNoSignedWrap()) { 4376 bool AllNonNeg = true; 4377 bool AllNonPos = true; 4378 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4379 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4380 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4381 } 4382 if (AllNonNeg) 4383 ConservativeResult = ConservativeResult.intersectWith( 4384 ConstantRange(APInt(BitWidth, 0), 4385 APInt::getSignedMinValue(BitWidth))); 4386 else if (AllNonPos) 4387 ConservativeResult = ConservativeResult.intersectWith( 4388 ConstantRange(APInt::getSignedMinValue(BitWidth), 4389 APInt(BitWidth, 1))); 4390 } 4391 4392 // TODO: non-affine addrec 4393 if (AddRec->isAffine()) { 4394 Type *Ty = AddRec->getType(); 4395 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4396 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4397 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4398 4399 // Check for overflow. This must be done with ConstantRange arithmetic 4400 // because we could be called from within the ScalarEvolution overflow 4401 // checking code. 4402 4403 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4404 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4405 ConstantRange ZExtMaxBECountRange = 4406 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4407 4408 const SCEV *Start = AddRec->getStart(); 4409 const SCEV *Step = AddRec->getStepRecurrence(*this); 4410 ConstantRange StepSRange = getSignedRange(Step); 4411 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4412 4413 ConstantRange StartURange = getUnsignedRange(Start); 4414 ConstantRange EndURange = 4415 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4416 4417 // Check for unsigned overflow. 4418 ConstantRange ZExtStartURange = 4419 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4420 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4421 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4422 ZExtEndURange) { 4423 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4424 EndURange.getUnsignedMin()); 4425 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4426 EndURange.getUnsignedMax()); 4427 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4428 if (!IsFullRange) 4429 ConservativeResult = 4430 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4431 } 4432 4433 ConstantRange StartSRange = getSignedRange(Start); 4434 ConstantRange EndSRange = 4435 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4436 4437 // Check for signed overflow. This must be done with ConstantRange 4438 // arithmetic because we could be called from within the ScalarEvolution 4439 // overflow checking code. 4440 ConstantRange SExtStartSRange = 4441 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4442 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4443 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4444 SExtEndSRange) { 4445 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4446 EndSRange.getSignedMin()); 4447 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4448 EndSRange.getSignedMax()); 4449 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4450 if (!IsFullRange) 4451 ConservativeResult = 4452 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4453 } 4454 } 4455 } 4456 4457 return setRange(AddRec, SignHint, ConservativeResult); 4458 } 4459 4460 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4461 // Check if the IR explicitly contains !range metadata. 4462 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4463 if (MDRange.hasValue()) 4464 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4465 4466 // Split here to avoid paying the compile-time cost of calling both 4467 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4468 // if needed. 4469 const DataLayout &DL = getDataLayout(); 4470 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4471 // For a SCEVUnknown, ask ValueTracking. 4472 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4473 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4474 if (Ones != ~Zeros + 1) 4475 ConservativeResult = 4476 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4477 } else { 4478 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4479 "generalize as needed!"); 4480 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4481 if (NS > 1) 4482 ConservativeResult = ConservativeResult.intersectWith( 4483 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4484 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4485 } 4486 4487 return setRange(U, SignHint, ConservativeResult); 4488 } 4489 4490 return setRange(S, SignHint, ConservativeResult); 4491 } 4492 4493 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4494 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4495 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4496 4497 // Return early if there are no flags to propagate to the SCEV. 4498 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4499 if (BinOp->hasNoUnsignedWrap()) 4500 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4501 if (BinOp->hasNoSignedWrap()) 4502 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4503 if (Flags == SCEV::FlagAnyWrap) { 4504 return SCEV::FlagAnyWrap; 4505 } 4506 4507 // Here we check that BinOp is in the header of the innermost loop 4508 // containing BinOp, since we only deal with instructions in the loop 4509 // header. The actual loop we need to check later will come from an add 4510 // recurrence, but getting that requires computing the SCEV of the operands, 4511 // which can be expensive. This check we can do cheaply to rule out some 4512 // cases early. 4513 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4514 if (innermostContainingLoop == nullptr || 4515 innermostContainingLoop->getHeader() != BinOp->getParent()) 4516 return SCEV::FlagAnyWrap; 4517 4518 // Only proceed if we can prove that BinOp does not yield poison. 4519 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4520 4521 // At this point we know that if V is executed, then it does not wrap 4522 // according to at least one of NSW or NUW. If V is not executed, then we do 4523 // not know if the calculation that V represents would wrap. Multiple 4524 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4525 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4526 // derived from other instructions that map to the same SCEV. We cannot make 4527 // that guarantee for cases where V is not executed. So we need to find the 4528 // loop that V is considered in relation to and prove that V is executed for 4529 // every iteration of that loop. That implies that the value that V 4530 // calculates does not wrap anywhere in the loop, so then we can apply the 4531 // flags to the SCEV. 4532 // 4533 // We check isLoopInvariant to disambiguate in case we are adding two 4534 // recurrences from different loops, so that we know which loop to prove 4535 // that V is executed in. 4536 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4537 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4538 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4539 const int OtherOpIndex = 1 - OpIndex; 4540 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4541 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4542 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4543 return Flags; 4544 } 4545 } 4546 return SCEV::FlagAnyWrap; 4547 } 4548 4549 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4550 /// the expression. 4551 /// 4552 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4553 if (!isSCEVable(V->getType())) 4554 return getUnknown(V); 4555 4556 unsigned Opcode = Instruction::UserOp1; 4557 if (Instruction *I = dyn_cast<Instruction>(V)) { 4558 Opcode = I->getOpcode(); 4559 4560 // Don't attempt to analyze instructions in blocks that aren't 4561 // reachable. Such instructions don't matter, and they aren't required 4562 // to obey basic rules for definitions dominating uses which this 4563 // analysis depends on. 4564 if (!DT.isReachableFromEntry(I->getParent())) 4565 return getUnknown(V); 4566 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4567 Opcode = CE->getOpcode(); 4568 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4569 return getConstant(CI); 4570 else if (isa<ConstantPointerNull>(V)) 4571 return getZero(V->getType()); 4572 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4573 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4574 else 4575 return getUnknown(V); 4576 4577 Operator *U = cast<Operator>(V); 4578 switch (Opcode) { 4579 case Instruction::Add: { 4580 // The simple thing to do would be to just call getSCEV on both operands 4581 // and call getAddExpr with the result. However if we're looking at a 4582 // bunch of things all added together, this can be quite inefficient, 4583 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4584 // Instead, gather up all the operands and make a single getAddExpr call. 4585 // LLVM IR canonical form means we need only traverse the left operands. 4586 SmallVector<const SCEV *, 4> AddOps; 4587 for (Value *Op = U;; Op = U->getOperand(0)) { 4588 U = dyn_cast<Operator>(Op); 4589 unsigned Opcode = U ? U->getOpcode() : 0; 4590 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4591 assert(Op != V && "V should be an add"); 4592 AddOps.push_back(getSCEV(Op)); 4593 break; 4594 } 4595 4596 if (auto *OpSCEV = getExistingSCEV(U)) { 4597 AddOps.push_back(OpSCEV); 4598 break; 4599 } 4600 4601 // If a NUW or NSW flag can be applied to the SCEV for this 4602 // addition, then compute the SCEV for this addition by itself 4603 // with a separate call to getAddExpr. We need to do that 4604 // instead of pushing the operands of the addition onto AddOps, 4605 // since the flags are only known to apply to this particular 4606 // addition - they may not apply to other additions that can be 4607 // formed with operands from AddOps. 4608 const SCEV *RHS = getSCEV(U->getOperand(1)); 4609 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4610 if (Flags != SCEV::FlagAnyWrap) { 4611 const SCEV *LHS = getSCEV(U->getOperand(0)); 4612 if (Opcode == Instruction::Sub) 4613 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4614 else 4615 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4616 break; 4617 } 4618 4619 if (Opcode == Instruction::Sub) 4620 AddOps.push_back(getNegativeSCEV(RHS)); 4621 else 4622 AddOps.push_back(RHS); 4623 } 4624 return getAddExpr(AddOps); 4625 } 4626 4627 case Instruction::Mul: { 4628 SmallVector<const SCEV *, 4> MulOps; 4629 for (Value *Op = U;; Op = U->getOperand(0)) { 4630 U = dyn_cast<Operator>(Op); 4631 if (!U || U->getOpcode() != Instruction::Mul) { 4632 assert(Op != V && "V should be a mul"); 4633 MulOps.push_back(getSCEV(Op)); 4634 break; 4635 } 4636 4637 if (auto *OpSCEV = getExistingSCEV(U)) { 4638 MulOps.push_back(OpSCEV); 4639 break; 4640 } 4641 4642 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4643 if (Flags != SCEV::FlagAnyWrap) { 4644 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4645 getSCEV(U->getOperand(1)), Flags)); 4646 break; 4647 } 4648 4649 MulOps.push_back(getSCEV(U->getOperand(1))); 4650 } 4651 return getMulExpr(MulOps); 4652 } 4653 case Instruction::UDiv: 4654 return getUDivExpr(getSCEV(U->getOperand(0)), 4655 getSCEV(U->getOperand(1))); 4656 case Instruction::Sub: 4657 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4658 getNoWrapFlagsFromUB(U)); 4659 case Instruction::And: 4660 // For an expression like x&255 that merely masks off the high bits, 4661 // use zext(trunc(x)) as the SCEV expression. 4662 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4663 if (CI->isNullValue()) 4664 return getSCEV(U->getOperand(1)); 4665 if (CI->isAllOnesValue()) 4666 return getSCEV(U->getOperand(0)); 4667 const APInt &A = CI->getValue(); 4668 4669 // Instcombine's ShrinkDemandedConstant may strip bits out of 4670 // constants, obscuring what would otherwise be a low-bits mask. 4671 // Use computeKnownBits to compute what ShrinkDemandedConstant 4672 // knew about to reconstruct a low-bits mask value. 4673 unsigned LZ = A.countLeadingZeros(); 4674 unsigned TZ = A.countTrailingZeros(); 4675 unsigned BitWidth = A.getBitWidth(); 4676 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4677 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4678 0, &AC, nullptr, &DT); 4679 4680 APInt EffectiveMask = 4681 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4682 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4683 const SCEV *MulCount = getConstant( 4684 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4685 return getMulExpr( 4686 getZeroExtendExpr( 4687 getTruncateExpr( 4688 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4689 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4690 U->getType()), 4691 MulCount); 4692 } 4693 } 4694 break; 4695 4696 case Instruction::Or: 4697 // If the RHS of the Or is a constant, we may have something like: 4698 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4699 // optimizations will transparently handle this case. 4700 // 4701 // In order for this transformation to be safe, the LHS must be of the 4702 // form X*(2^n) and the Or constant must be less than 2^n. 4703 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4704 const SCEV *LHS = getSCEV(U->getOperand(0)); 4705 const APInt &CIVal = CI->getValue(); 4706 if (GetMinTrailingZeros(LHS) >= 4707 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4708 // Build a plain add SCEV. 4709 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4710 // If the LHS of the add was an addrec and it has no-wrap flags, 4711 // transfer the no-wrap flags, since an or won't introduce a wrap. 4712 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4713 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4714 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4715 OldAR->getNoWrapFlags()); 4716 } 4717 return S; 4718 } 4719 } 4720 break; 4721 case Instruction::Xor: 4722 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4723 // If the RHS of the xor is a signbit, then this is just an add. 4724 // Instcombine turns add of signbit into xor as a strength reduction step. 4725 if (CI->getValue().isSignBit()) 4726 return getAddExpr(getSCEV(U->getOperand(0)), 4727 getSCEV(U->getOperand(1))); 4728 4729 // If the RHS of xor is -1, then this is a not operation. 4730 if (CI->isAllOnesValue()) 4731 return getNotSCEV(getSCEV(U->getOperand(0))); 4732 4733 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4734 // This is a variant of the check for xor with -1, and it handles 4735 // the case where instcombine has trimmed non-demanded bits out 4736 // of an xor with -1. 4737 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4738 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4739 if (BO->getOpcode() == Instruction::And && 4740 LCI->getValue() == CI->getValue()) 4741 if (const SCEVZeroExtendExpr *Z = 4742 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4743 Type *UTy = U->getType(); 4744 const SCEV *Z0 = Z->getOperand(); 4745 Type *Z0Ty = Z0->getType(); 4746 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4747 4748 // If C is a low-bits mask, the zero extend is serving to 4749 // mask off the high bits. Complement the operand and 4750 // re-apply the zext. 4751 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4752 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4753 4754 // If C is a single bit, it may be in the sign-bit position 4755 // before the zero-extend. In this case, represent the xor 4756 // using an add, which is equivalent, and re-apply the zext. 4757 APInt Trunc = CI->getValue().trunc(Z0TySize); 4758 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4759 Trunc.isSignBit()) 4760 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4761 UTy); 4762 } 4763 } 4764 break; 4765 4766 case Instruction::Shl: 4767 // Turn shift left of a constant amount into a multiply. 4768 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4769 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4770 4771 // If the shift count is not less than the bitwidth, the result of 4772 // the shift is undefined. Don't try to analyze it, because the 4773 // resolution chosen here may differ from the resolution chosen in 4774 // other parts of the compiler. 4775 if (SA->getValue().uge(BitWidth)) 4776 break; 4777 4778 // It is currently not resolved how to interpret NSW for left 4779 // shift by BitWidth - 1, so we avoid applying flags in that 4780 // case. Remove this check (or this comment) once the situation 4781 // is resolved. See 4782 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4783 // and http://reviews.llvm.org/D8890 . 4784 auto Flags = SCEV::FlagAnyWrap; 4785 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4786 4787 Constant *X = ConstantInt::get(getContext(), 4788 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4789 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4790 } 4791 break; 4792 4793 case Instruction::LShr: 4794 // Turn logical shift right of a constant into a unsigned divide. 4795 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4796 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4797 4798 // If the shift count is not less than the bitwidth, the result of 4799 // the shift is undefined. Don't try to analyze it, because the 4800 // resolution chosen here may differ from the resolution chosen in 4801 // other parts of the compiler. 4802 if (SA->getValue().uge(BitWidth)) 4803 break; 4804 4805 Constant *X = ConstantInt::get(getContext(), 4806 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4807 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4808 } 4809 break; 4810 4811 case Instruction::AShr: 4812 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4813 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4814 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4815 if (L->getOpcode() == Instruction::Shl && 4816 L->getOperand(1) == U->getOperand(1)) { 4817 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4818 4819 // If the shift count is not less than the bitwidth, the result of 4820 // the shift is undefined. Don't try to analyze it, because the 4821 // resolution chosen here may differ from the resolution chosen in 4822 // other parts of the compiler. 4823 if (CI->getValue().uge(BitWidth)) 4824 break; 4825 4826 uint64_t Amt = BitWidth - CI->getZExtValue(); 4827 if (Amt == BitWidth) 4828 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4829 return 4830 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4831 IntegerType::get(getContext(), 4832 Amt)), 4833 U->getType()); 4834 } 4835 break; 4836 4837 case Instruction::Trunc: 4838 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4839 4840 case Instruction::ZExt: 4841 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4842 4843 case Instruction::SExt: 4844 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4845 4846 case Instruction::BitCast: 4847 // BitCasts are no-op casts so we just eliminate the cast. 4848 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4849 return getSCEV(U->getOperand(0)); 4850 break; 4851 4852 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4853 // lead to pointer expressions which cannot safely be expanded to GEPs, 4854 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4855 // simplifying integer expressions. 4856 4857 case Instruction::GetElementPtr: 4858 return createNodeForGEP(cast<GEPOperator>(U)); 4859 4860 case Instruction::PHI: 4861 return createNodeForPHI(cast<PHINode>(U)); 4862 4863 case Instruction::Select: 4864 // U can also be a select constant expr, which let fall through. Since 4865 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4866 // constant expressions cannot have instructions as operands, we'd have 4867 // returned getUnknown for a select constant expressions anyway. 4868 if (isa<Instruction>(U)) 4869 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4870 U->getOperand(1), U->getOperand(2)); 4871 4872 default: // We cannot analyze this expression. 4873 break; 4874 } 4875 4876 return getUnknown(V); 4877 } 4878 4879 4880 4881 //===----------------------------------------------------------------------===// 4882 // Iteration Count Computation Code 4883 // 4884 4885 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4886 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4887 return getSmallConstantTripCount(L, ExitingBB); 4888 4889 // No trip count information for multiple exits. 4890 return 0; 4891 } 4892 4893 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4894 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4895 /// constant. Will also return 0 if the maximum trip count is very large (>= 4896 /// 2^32). 4897 /// 4898 /// This "trip count" assumes that control exits via ExitingBlock. More 4899 /// precisely, it is the number of times that control may reach ExitingBlock 4900 /// before taking the branch. For loops with multiple exits, it may not be the 4901 /// number times that the loop header executes because the loop may exit 4902 /// prematurely via another branch. 4903 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4904 BasicBlock *ExitingBlock) { 4905 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4906 assert(L->isLoopExiting(ExitingBlock) && 4907 "Exiting block must actually branch out of the loop!"); 4908 const SCEVConstant *ExitCount = 4909 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4910 if (!ExitCount) 4911 return 0; 4912 4913 ConstantInt *ExitConst = ExitCount->getValue(); 4914 4915 // Guard against huge trip counts. 4916 if (ExitConst->getValue().getActiveBits() > 32) 4917 return 0; 4918 4919 // In case of integer overflow, this returns 0, which is correct. 4920 return ((unsigned)ExitConst->getZExtValue()) + 1; 4921 } 4922 4923 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4924 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4925 return getSmallConstantTripMultiple(L, ExitingBB); 4926 4927 // No trip multiple information for multiple exits. 4928 return 0; 4929 } 4930 4931 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4932 /// trip count of this loop as a normal unsigned value, if possible. This 4933 /// means that the actual trip count is always a multiple of the returned 4934 /// value (don't forget the trip count could very well be zero as well!). 4935 /// 4936 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4937 /// multiple of a constant (which is also the case if the trip count is simply 4938 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4939 /// if the trip count is very large (>= 2^32). 4940 /// 4941 /// As explained in the comments for getSmallConstantTripCount, this assumes 4942 /// that control exits the loop via ExitingBlock. 4943 unsigned 4944 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4945 BasicBlock *ExitingBlock) { 4946 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4947 assert(L->isLoopExiting(ExitingBlock) && 4948 "Exiting block must actually branch out of the loop!"); 4949 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4950 if (ExitCount == getCouldNotCompute()) 4951 return 1; 4952 4953 // Get the trip count from the BE count by adding 1. 4954 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4955 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4956 // to factor simple cases. 4957 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4958 TCMul = Mul->getOperand(0); 4959 4960 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4961 if (!MulC) 4962 return 1; 4963 4964 ConstantInt *Result = MulC->getValue(); 4965 4966 // Guard against huge trip counts (this requires checking 4967 // for zero to handle the case where the trip count == -1 and the 4968 // addition wraps). 4969 if (!Result || Result->getValue().getActiveBits() > 32 || 4970 Result->getValue().getActiveBits() == 0) 4971 return 1; 4972 4973 return (unsigned)Result->getZExtValue(); 4974 } 4975 4976 // getExitCount - Get the expression for the number of loop iterations for which 4977 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4978 // SCEVCouldNotCompute. 4979 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4980 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4981 } 4982 4983 /// getBackedgeTakenCount - If the specified loop has a predictable 4984 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4985 /// object. The backedge-taken count is the number of times the loop header 4986 /// will be branched to from within the loop. This is one less than the 4987 /// trip count of the loop, since it doesn't count the first iteration, 4988 /// when the header is branched to from outside the loop. 4989 /// 4990 /// Note that it is not valid to call this method on a loop without a 4991 /// loop-invariant backedge-taken count (see 4992 /// hasLoopInvariantBackedgeTakenCount). 4993 /// 4994 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4995 return getBackedgeTakenInfo(L).getExact(this); 4996 } 4997 4998 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4999 /// return the least SCEV value that is known never to be less than the 5000 /// actual backedge taken count. 5001 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5002 return getBackedgeTakenInfo(L).getMax(this); 5003 } 5004 5005 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 5006 /// onto the given Worklist. 5007 static void 5008 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5009 BasicBlock *Header = L->getHeader(); 5010 5011 // Push all Loop-header PHIs onto the Worklist stack. 5012 for (BasicBlock::iterator I = Header->begin(); 5013 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5014 Worklist.push_back(PN); 5015 } 5016 5017 const ScalarEvolution::BackedgeTakenInfo & 5018 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5019 // Initially insert an invalid entry for this loop. If the insertion 5020 // succeeds, proceed to actually compute a backedge-taken count and 5021 // update the value. The temporary CouldNotCompute value tells SCEV 5022 // code elsewhere that it shouldn't attempt to request a new 5023 // backedge-taken count, which could result in infinite recursion. 5024 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5025 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5026 if (!Pair.second) 5027 return Pair.first->second; 5028 5029 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5030 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5031 // must be cleared in this scope. 5032 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5033 5034 if (Result.getExact(this) != getCouldNotCompute()) { 5035 assert(isLoopInvariant(Result.getExact(this), L) && 5036 isLoopInvariant(Result.getMax(this), L) && 5037 "Computed backedge-taken count isn't loop invariant for loop!"); 5038 ++NumTripCountsComputed; 5039 } 5040 else if (Result.getMax(this) == getCouldNotCompute() && 5041 isa<PHINode>(L->getHeader()->begin())) { 5042 // Only count loops that have phi nodes as not being computable. 5043 ++NumTripCountsNotComputed; 5044 } 5045 5046 // Now that we know more about the trip count for this loop, forget any 5047 // existing SCEV values for PHI nodes in this loop since they are only 5048 // conservative estimates made without the benefit of trip count 5049 // information. This is similar to the code in forgetLoop, except that 5050 // it handles SCEVUnknown PHI nodes specially. 5051 if (Result.hasAnyInfo()) { 5052 SmallVector<Instruction *, 16> Worklist; 5053 PushLoopPHIs(L, Worklist); 5054 5055 SmallPtrSet<Instruction *, 8> Visited; 5056 while (!Worklist.empty()) { 5057 Instruction *I = Worklist.pop_back_val(); 5058 if (!Visited.insert(I).second) 5059 continue; 5060 5061 ValueExprMapType::iterator It = 5062 ValueExprMap.find_as(static_cast<Value *>(I)); 5063 if (It != ValueExprMap.end()) { 5064 const SCEV *Old = It->second; 5065 5066 // SCEVUnknown for a PHI either means that it has an unrecognized 5067 // structure, or it's a PHI that's in the progress of being computed 5068 // by createNodeForPHI. In the former case, additional loop trip 5069 // count information isn't going to change anything. In the later 5070 // case, createNodeForPHI will perform the necessary updates on its 5071 // own when it gets to that point. 5072 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5073 forgetMemoizedResults(Old); 5074 ValueExprMap.erase(It); 5075 } 5076 if (PHINode *PN = dyn_cast<PHINode>(I)) 5077 ConstantEvolutionLoopExitValue.erase(PN); 5078 } 5079 5080 PushDefUseChildren(I, Worklist); 5081 } 5082 } 5083 5084 // Re-lookup the insert position, since the call to 5085 // computeBackedgeTakenCount above could result in a 5086 // recusive call to getBackedgeTakenInfo (on a different 5087 // loop), which would invalidate the iterator computed 5088 // earlier. 5089 return BackedgeTakenCounts.find(L)->second = Result; 5090 } 5091 5092 /// forgetLoop - This method should be called by the client when it has 5093 /// changed a loop in a way that may effect ScalarEvolution's ability to 5094 /// compute a trip count, or if the loop is deleted. 5095 void ScalarEvolution::forgetLoop(const Loop *L) { 5096 // Drop any stored trip count value. 5097 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5098 BackedgeTakenCounts.find(L); 5099 if (BTCPos != BackedgeTakenCounts.end()) { 5100 BTCPos->second.clear(); 5101 BackedgeTakenCounts.erase(BTCPos); 5102 } 5103 5104 // Drop information about expressions based on loop-header PHIs. 5105 SmallVector<Instruction *, 16> Worklist; 5106 PushLoopPHIs(L, Worklist); 5107 5108 SmallPtrSet<Instruction *, 8> Visited; 5109 while (!Worklist.empty()) { 5110 Instruction *I = Worklist.pop_back_val(); 5111 if (!Visited.insert(I).second) 5112 continue; 5113 5114 ValueExprMapType::iterator It = 5115 ValueExprMap.find_as(static_cast<Value *>(I)); 5116 if (It != ValueExprMap.end()) { 5117 forgetMemoizedResults(It->second); 5118 ValueExprMap.erase(It); 5119 if (PHINode *PN = dyn_cast<PHINode>(I)) 5120 ConstantEvolutionLoopExitValue.erase(PN); 5121 } 5122 5123 PushDefUseChildren(I, Worklist); 5124 } 5125 5126 // Forget all contained loops too, to avoid dangling entries in the 5127 // ValuesAtScopes map. 5128 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5129 forgetLoop(*I); 5130 } 5131 5132 /// forgetValue - This method should be called by the client when it has 5133 /// changed a value in a way that may effect its value, or which may 5134 /// disconnect it from a def-use chain linking it to a loop. 5135 void ScalarEvolution::forgetValue(Value *V) { 5136 Instruction *I = dyn_cast<Instruction>(V); 5137 if (!I) return; 5138 5139 // Drop information about expressions based on loop-header PHIs. 5140 SmallVector<Instruction *, 16> Worklist; 5141 Worklist.push_back(I); 5142 5143 SmallPtrSet<Instruction *, 8> Visited; 5144 while (!Worklist.empty()) { 5145 I = Worklist.pop_back_val(); 5146 if (!Visited.insert(I).second) 5147 continue; 5148 5149 ValueExprMapType::iterator It = 5150 ValueExprMap.find_as(static_cast<Value *>(I)); 5151 if (It != ValueExprMap.end()) { 5152 forgetMemoizedResults(It->second); 5153 ValueExprMap.erase(It); 5154 if (PHINode *PN = dyn_cast<PHINode>(I)) 5155 ConstantEvolutionLoopExitValue.erase(PN); 5156 } 5157 5158 PushDefUseChildren(I, Worklist); 5159 } 5160 } 5161 5162 /// getExact - Get the exact loop backedge taken count considering all loop 5163 /// exits. A computable result can only be returned for loops with a single 5164 /// exit. Returning the minimum taken count among all exits is incorrect 5165 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5166 /// assumes that the limit of each loop test is never skipped. This is a valid 5167 /// assumption as long as the loop exits via that test. For precise results, it 5168 /// is the caller's responsibility to specify the relevant loop exit using 5169 /// getExact(ExitingBlock, SE). 5170 const SCEV * 5171 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5172 // If any exits were not computable, the loop is not computable. 5173 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5174 5175 // We need exactly one computable exit. 5176 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5177 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5178 5179 const SCEV *BECount = nullptr; 5180 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5181 ENT != nullptr; ENT = ENT->getNextExit()) { 5182 5183 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5184 5185 if (!BECount) 5186 BECount = ENT->ExactNotTaken; 5187 else if (BECount != ENT->ExactNotTaken) 5188 return SE->getCouldNotCompute(); 5189 } 5190 assert(BECount && "Invalid not taken count for loop exit"); 5191 return BECount; 5192 } 5193 5194 /// getExact - Get the exact not taken count for this loop exit. 5195 const SCEV * 5196 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5197 ScalarEvolution *SE) const { 5198 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5199 ENT != nullptr; ENT = ENT->getNextExit()) { 5200 5201 if (ENT->ExitingBlock == ExitingBlock) 5202 return ENT->ExactNotTaken; 5203 } 5204 return SE->getCouldNotCompute(); 5205 } 5206 5207 /// getMax - Get the max backedge taken count for the loop. 5208 const SCEV * 5209 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5210 return Max ? Max : SE->getCouldNotCompute(); 5211 } 5212 5213 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5214 ScalarEvolution *SE) const { 5215 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5216 return true; 5217 5218 if (!ExitNotTaken.ExitingBlock) 5219 return false; 5220 5221 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5222 ENT != nullptr; ENT = ENT->getNextExit()) { 5223 5224 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5225 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5226 return true; 5227 } 5228 } 5229 return false; 5230 } 5231 5232 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5233 /// computable exit into a persistent ExitNotTakenInfo array. 5234 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5235 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5236 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5237 5238 if (!Complete) 5239 ExitNotTaken.setIncomplete(); 5240 5241 unsigned NumExits = ExitCounts.size(); 5242 if (NumExits == 0) return; 5243 5244 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5245 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5246 if (NumExits == 1) return; 5247 5248 // Handle the rare case of multiple computable exits. 5249 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5250 5251 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5252 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5253 PrevENT->setNextExit(ENT); 5254 ENT->ExitingBlock = ExitCounts[i].first; 5255 ENT->ExactNotTaken = ExitCounts[i].second; 5256 } 5257 } 5258 5259 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5260 void ScalarEvolution::BackedgeTakenInfo::clear() { 5261 ExitNotTaken.ExitingBlock = nullptr; 5262 ExitNotTaken.ExactNotTaken = nullptr; 5263 delete[] ExitNotTaken.getNextExit(); 5264 } 5265 5266 /// computeBackedgeTakenCount - Compute the number of times the backedge 5267 /// of the specified loop will execute. 5268 ScalarEvolution::BackedgeTakenInfo 5269 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5270 SmallVector<BasicBlock *, 8> ExitingBlocks; 5271 L->getExitingBlocks(ExitingBlocks); 5272 5273 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5274 bool CouldComputeBECount = true; 5275 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5276 const SCEV *MustExitMaxBECount = nullptr; 5277 const SCEV *MayExitMaxBECount = nullptr; 5278 5279 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5280 // and compute maxBECount. 5281 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5282 BasicBlock *ExitBB = ExitingBlocks[i]; 5283 ExitLimit EL = computeExitLimit(L, ExitBB); 5284 5285 // 1. For each exit that can be computed, add an entry to ExitCounts. 5286 // CouldComputeBECount is true only if all exits can be computed. 5287 if (EL.Exact == getCouldNotCompute()) 5288 // We couldn't compute an exact value for this exit, so 5289 // we won't be able to compute an exact value for the loop. 5290 CouldComputeBECount = false; 5291 else 5292 ExitCounts.push_back({ExitBB, EL.Exact}); 5293 5294 // 2. Derive the loop's MaxBECount from each exit's max number of 5295 // non-exiting iterations. Partition the loop exits into two kinds: 5296 // LoopMustExits and LoopMayExits. 5297 // 5298 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5299 // is a LoopMayExit. If any computable LoopMustExit is found, then 5300 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5301 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5302 // considered greater than any computable EL.Max. 5303 if (EL.Max != getCouldNotCompute() && Latch && 5304 DT.dominates(ExitBB, Latch)) { 5305 if (!MustExitMaxBECount) 5306 MustExitMaxBECount = EL.Max; 5307 else { 5308 MustExitMaxBECount = 5309 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5310 } 5311 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5312 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5313 MayExitMaxBECount = EL.Max; 5314 else { 5315 MayExitMaxBECount = 5316 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5317 } 5318 } 5319 } 5320 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5321 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5322 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5323 } 5324 5325 ScalarEvolution::ExitLimit 5326 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5327 5328 // Okay, we've chosen an exiting block. See what condition causes us to exit 5329 // at this block and remember the exit block and whether all other targets 5330 // lead to the loop header. 5331 bool MustExecuteLoopHeader = true; 5332 BasicBlock *Exit = nullptr; 5333 for (auto *SBB : successors(ExitingBlock)) 5334 if (!L->contains(SBB)) { 5335 if (Exit) // Multiple exit successors. 5336 return getCouldNotCompute(); 5337 Exit = SBB; 5338 } else if (SBB != L->getHeader()) { 5339 MustExecuteLoopHeader = false; 5340 } 5341 5342 // At this point, we know we have a conditional branch that determines whether 5343 // the loop is exited. However, we don't know if the branch is executed each 5344 // time through the loop. If not, then the execution count of the branch will 5345 // not be equal to the trip count of the loop. 5346 // 5347 // Currently we check for this by checking to see if the Exit branch goes to 5348 // the loop header. If so, we know it will always execute the same number of 5349 // times as the loop. We also handle the case where the exit block *is* the 5350 // loop header. This is common for un-rotated loops. 5351 // 5352 // If both of those tests fail, walk up the unique predecessor chain to the 5353 // header, stopping if there is an edge that doesn't exit the loop. If the 5354 // header is reached, the execution count of the branch will be equal to the 5355 // trip count of the loop. 5356 // 5357 // More extensive analysis could be done to handle more cases here. 5358 // 5359 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5360 // The simple checks failed, try climbing the unique predecessor chain 5361 // up to the header. 5362 bool Ok = false; 5363 for (BasicBlock *BB = ExitingBlock; BB; ) { 5364 BasicBlock *Pred = BB->getUniquePredecessor(); 5365 if (!Pred) 5366 return getCouldNotCompute(); 5367 TerminatorInst *PredTerm = Pred->getTerminator(); 5368 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5369 if (PredSucc == BB) 5370 continue; 5371 // If the predecessor has a successor that isn't BB and isn't 5372 // outside the loop, assume the worst. 5373 if (L->contains(PredSucc)) 5374 return getCouldNotCompute(); 5375 } 5376 if (Pred == L->getHeader()) { 5377 Ok = true; 5378 break; 5379 } 5380 BB = Pred; 5381 } 5382 if (!Ok) 5383 return getCouldNotCompute(); 5384 } 5385 5386 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5387 TerminatorInst *Term = ExitingBlock->getTerminator(); 5388 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5389 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5390 // Proceed to the next level to examine the exit condition expression. 5391 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5392 BI->getSuccessor(1), 5393 /*ControlsExit=*/IsOnlyExit); 5394 } 5395 5396 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5397 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5398 /*ControlsExit=*/IsOnlyExit); 5399 5400 return getCouldNotCompute(); 5401 } 5402 5403 /// computeExitLimitFromCond - Compute the number of times the 5404 /// backedge of the specified loop will execute if its exit condition 5405 /// were a conditional branch of ExitCond, TBB, and FBB. 5406 /// 5407 /// @param ControlsExit is true if ExitCond directly controls the exit 5408 /// branch. In this case, we can assume that the loop exits only if the 5409 /// condition is true and can infer that failing to meet the condition prior to 5410 /// integer wraparound results in undefined behavior. 5411 ScalarEvolution::ExitLimit 5412 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5413 Value *ExitCond, 5414 BasicBlock *TBB, 5415 BasicBlock *FBB, 5416 bool ControlsExit) { 5417 // Check if the controlling expression for this loop is an And or Or. 5418 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5419 if (BO->getOpcode() == Instruction::And) { 5420 // Recurse on the operands of the and. 5421 bool EitherMayExit = L->contains(TBB); 5422 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5423 ControlsExit && !EitherMayExit); 5424 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5425 ControlsExit && !EitherMayExit); 5426 const SCEV *BECount = getCouldNotCompute(); 5427 const SCEV *MaxBECount = getCouldNotCompute(); 5428 if (EitherMayExit) { 5429 // Both conditions must be true for the loop to continue executing. 5430 // Choose the less conservative count. 5431 if (EL0.Exact == getCouldNotCompute() || 5432 EL1.Exact == getCouldNotCompute()) 5433 BECount = getCouldNotCompute(); 5434 else 5435 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5436 if (EL0.Max == getCouldNotCompute()) 5437 MaxBECount = EL1.Max; 5438 else if (EL1.Max == getCouldNotCompute()) 5439 MaxBECount = EL0.Max; 5440 else 5441 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5442 } else { 5443 // Both conditions must be true at the same time for the loop to exit. 5444 // For now, be conservative. 5445 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5446 if (EL0.Max == EL1.Max) 5447 MaxBECount = EL0.Max; 5448 if (EL0.Exact == EL1.Exact) 5449 BECount = EL0.Exact; 5450 } 5451 5452 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5453 // to be more aggressive when computing BECount than when computing 5454 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact 5455 // to match, but for EL0.Max and EL1.Max to not. 5456 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5457 !isa<SCEVCouldNotCompute>(BECount)) 5458 MaxBECount = BECount; 5459 5460 return ExitLimit(BECount, MaxBECount); 5461 } 5462 if (BO->getOpcode() == Instruction::Or) { 5463 // Recurse on the operands of the or. 5464 bool EitherMayExit = L->contains(FBB); 5465 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5466 ControlsExit && !EitherMayExit); 5467 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5468 ControlsExit && !EitherMayExit); 5469 const SCEV *BECount = getCouldNotCompute(); 5470 const SCEV *MaxBECount = getCouldNotCompute(); 5471 if (EitherMayExit) { 5472 // Both conditions must be false for the loop to continue executing. 5473 // Choose the less conservative count. 5474 if (EL0.Exact == getCouldNotCompute() || 5475 EL1.Exact == getCouldNotCompute()) 5476 BECount = getCouldNotCompute(); 5477 else 5478 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5479 if (EL0.Max == getCouldNotCompute()) 5480 MaxBECount = EL1.Max; 5481 else if (EL1.Max == getCouldNotCompute()) 5482 MaxBECount = EL0.Max; 5483 else 5484 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5485 } else { 5486 // Both conditions must be false at the same time for the loop to exit. 5487 // For now, be conservative. 5488 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5489 if (EL0.Max == EL1.Max) 5490 MaxBECount = EL0.Max; 5491 if (EL0.Exact == EL1.Exact) 5492 BECount = EL0.Exact; 5493 } 5494 5495 return ExitLimit(BECount, MaxBECount); 5496 } 5497 } 5498 5499 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5500 // Proceed to the next level to examine the icmp. 5501 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5502 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5503 5504 // Check for a constant condition. These are normally stripped out by 5505 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5506 // preserve the CFG and is temporarily leaving constant conditions 5507 // in place. 5508 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5509 if (L->contains(FBB) == !CI->getZExtValue()) 5510 // The backedge is always taken. 5511 return getCouldNotCompute(); 5512 else 5513 // The backedge is never taken. 5514 return getZero(CI->getType()); 5515 } 5516 5517 // If it's not an integer or pointer comparison then compute it the hard way. 5518 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5519 } 5520 5521 ScalarEvolution::ExitLimit 5522 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5523 ICmpInst *ExitCond, 5524 BasicBlock *TBB, 5525 BasicBlock *FBB, 5526 bool ControlsExit) { 5527 5528 // If the condition was exit on true, convert the condition to exit on false 5529 ICmpInst::Predicate Cond; 5530 if (!L->contains(FBB)) 5531 Cond = ExitCond->getPredicate(); 5532 else 5533 Cond = ExitCond->getInversePredicate(); 5534 5535 // Handle common loops like: for (X = "string"; *X; ++X) 5536 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5537 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5538 ExitLimit ItCnt = 5539 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5540 if (ItCnt.hasAnyInfo()) 5541 return ItCnt; 5542 } 5543 5544 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5545 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5546 if (ShiftEL.hasAnyInfo()) 5547 return ShiftEL; 5548 5549 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5550 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5551 5552 // Try to evaluate any dependencies out of the loop. 5553 LHS = getSCEVAtScope(LHS, L); 5554 RHS = getSCEVAtScope(RHS, L); 5555 5556 // At this point, we would like to compute how many iterations of the 5557 // loop the predicate will return true for these inputs. 5558 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5559 // If there is a loop-invariant, force it into the RHS. 5560 std::swap(LHS, RHS); 5561 Cond = ICmpInst::getSwappedPredicate(Cond); 5562 } 5563 5564 // Simplify the operands before analyzing them. 5565 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5566 5567 // If we have a comparison of a chrec against a constant, try to use value 5568 // ranges to answer this query. 5569 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5570 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5571 if (AddRec->getLoop() == L) { 5572 // Form the constant range. 5573 ConstantRange CompRange( 5574 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 5575 5576 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5577 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5578 } 5579 5580 switch (Cond) { 5581 case ICmpInst::ICMP_NE: { // while (X != Y) 5582 // Convert to: while (X-Y != 0) 5583 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5584 if (EL.hasAnyInfo()) return EL; 5585 break; 5586 } 5587 case ICmpInst::ICMP_EQ: { // while (X == Y) 5588 // Convert to: while (X-Y == 0) 5589 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5590 if (EL.hasAnyInfo()) return EL; 5591 break; 5592 } 5593 case ICmpInst::ICMP_SLT: 5594 case ICmpInst::ICMP_ULT: { // while (X < Y) 5595 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5596 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5597 if (EL.hasAnyInfo()) return EL; 5598 break; 5599 } 5600 case ICmpInst::ICMP_SGT: 5601 case ICmpInst::ICMP_UGT: { // while (X > Y) 5602 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5603 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5604 if (EL.hasAnyInfo()) return EL; 5605 break; 5606 } 5607 default: 5608 break; 5609 } 5610 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5611 } 5612 5613 ScalarEvolution::ExitLimit 5614 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5615 SwitchInst *Switch, 5616 BasicBlock *ExitingBlock, 5617 bool ControlsExit) { 5618 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5619 5620 // Give up if the exit is the default dest of a switch. 5621 if (Switch->getDefaultDest() == ExitingBlock) 5622 return getCouldNotCompute(); 5623 5624 assert(L->contains(Switch->getDefaultDest()) && 5625 "Default case must not exit the loop!"); 5626 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5627 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5628 5629 // while (X != Y) --> while (X-Y != 0) 5630 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5631 if (EL.hasAnyInfo()) 5632 return EL; 5633 5634 return getCouldNotCompute(); 5635 } 5636 5637 static ConstantInt * 5638 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5639 ScalarEvolution &SE) { 5640 const SCEV *InVal = SE.getConstant(C); 5641 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5642 assert(isa<SCEVConstant>(Val) && 5643 "Evaluation of SCEV at constant didn't fold correctly?"); 5644 return cast<SCEVConstant>(Val)->getValue(); 5645 } 5646 5647 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5648 /// 'icmp op load X, cst', try to see if we can compute the backedge 5649 /// execution count. 5650 ScalarEvolution::ExitLimit 5651 ScalarEvolution::computeLoadConstantCompareExitLimit( 5652 LoadInst *LI, 5653 Constant *RHS, 5654 const Loop *L, 5655 ICmpInst::Predicate predicate) { 5656 5657 if (LI->isVolatile()) return getCouldNotCompute(); 5658 5659 // Check to see if the loaded pointer is a getelementptr of a global. 5660 // TODO: Use SCEV instead of manually grubbing with GEPs. 5661 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5662 if (!GEP) return getCouldNotCompute(); 5663 5664 // Make sure that it is really a constant global we are gepping, with an 5665 // initializer, and make sure the first IDX is really 0. 5666 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5667 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5668 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5669 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5670 return getCouldNotCompute(); 5671 5672 // Okay, we allow one non-constant index into the GEP instruction. 5673 Value *VarIdx = nullptr; 5674 std::vector<Constant*> Indexes; 5675 unsigned VarIdxNum = 0; 5676 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5677 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5678 Indexes.push_back(CI); 5679 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5680 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5681 VarIdx = GEP->getOperand(i); 5682 VarIdxNum = i-2; 5683 Indexes.push_back(nullptr); 5684 } 5685 5686 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5687 if (!VarIdx) 5688 return getCouldNotCompute(); 5689 5690 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5691 // Check to see if X is a loop variant variable value now. 5692 const SCEV *Idx = getSCEV(VarIdx); 5693 Idx = getSCEVAtScope(Idx, L); 5694 5695 // We can only recognize very limited forms of loop index expressions, in 5696 // particular, only affine AddRec's like {C1,+,C2}. 5697 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5698 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5699 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5700 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5701 return getCouldNotCompute(); 5702 5703 unsigned MaxSteps = MaxBruteForceIterations; 5704 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5705 ConstantInt *ItCst = ConstantInt::get( 5706 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5707 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5708 5709 // Form the GEP offset. 5710 Indexes[VarIdxNum] = Val; 5711 5712 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5713 Indexes); 5714 if (!Result) break; // Cannot compute! 5715 5716 // Evaluate the condition for this iteration. 5717 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5718 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5719 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5720 ++NumArrayLenItCounts; 5721 return getConstant(ItCst); // Found terminating iteration! 5722 } 5723 } 5724 return getCouldNotCompute(); 5725 } 5726 5727 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5728 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5729 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5730 if (!RHS) 5731 return getCouldNotCompute(); 5732 5733 const BasicBlock *Latch = L->getLoopLatch(); 5734 if (!Latch) 5735 return getCouldNotCompute(); 5736 5737 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5738 if (!Predecessor) 5739 return getCouldNotCompute(); 5740 5741 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5742 // Return LHS in OutLHS and shift_opt in OutOpCode. 5743 auto MatchPositiveShift = 5744 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5745 5746 using namespace PatternMatch; 5747 5748 ConstantInt *ShiftAmt; 5749 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5750 OutOpCode = Instruction::LShr; 5751 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5752 OutOpCode = Instruction::AShr; 5753 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5754 OutOpCode = Instruction::Shl; 5755 else 5756 return false; 5757 5758 return ShiftAmt->getValue().isStrictlyPositive(); 5759 }; 5760 5761 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5762 // 5763 // loop: 5764 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5765 // %iv.shifted = lshr i32 %iv, <positive constant> 5766 // 5767 // Return true on a succesful match. Return the corresponding PHI node (%iv 5768 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5769 auto MatchShiftRecurrence = 5770 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5771 Optional<Instruction::BinaryOps> PostShiftOpCode; 5772 5773 { 5774 Instruction::BinaryOps OpC; 5775 Value *V; 5776 5777 // If we encounter a shift instruction, "peel off" the shift operation, 5778 // and remember that we did so. Later when we inspect %iv's backedge 5779 // value, we will make sure that the backedge value uses the same 5780 // operation. 5781 // 5782 // Note: the peeled shift operation does not have to be the same 5783 // instruction as the one feeding into the PHI's backedge value. We only 5784 // really care about it being the same *kind* of shift instruction -- 5785 // that's all that is required for our later inferences to hold. 5786 if (MatchPositiveShift(LHS, V, OpC)) { 5787 PostShiftOpCode = OpC; 5788 LHS = V; 5789 } 5790 } 5791 5792 PNOut = dyn_cast<PHINode>(LHS); 5793 if (!PNOut || PNOut->getParent() != L->getHeader()) 5794 return false; 5795 5796 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5797 Value *OpLHS; 5798 5799 return 5800 // The backedge value for the PHI node must be a shift by a positive 5801 // amount 5802 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5803 5804 // of the PHI node itself 5805 OpLHS == PNOut && 5806 5807 // and the kind of shift should be match the kind of shift we peeled 5808 // off, if any. 5809 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5810 }; 5811 5812 PHINode *PN; 5813 Instruction::BinaryOps OpCode; 5814 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5815 return getCouldNotCompute(); 5816 5817 const DataLayout &DL = getDataLayout(); 5818 5819 // The key rationale for this optimization is that for some kinds of shift 5820 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5821 // within a finite number of iterations. If the condition guarding the 5822 // backedge (in the sense that the backedge is taken if the condition is true) 5823 // is false for the value the shift recurrence stabilizes to, then we know 5824 // that the backedge is taken only a finite number of times. 5825 5826 ConstantInt *StableValue = nullptr; 5827 switch (OpCode) { 5828 default: 5829 llvm_unreachable("Impossible case!"); 5830 5831 case Instruction::AShr: { 5832 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5833 // bitwidth(K) iterations. 5834 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5835 bool KnownZero, KnownOne; 5836 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5837 Predecessor->getTerminator(), &DT); 5838 auto *Ty = cast<IntegerType>(RHS->getType()); 5839 if (KnownZero) 5840 StableValue = ConstantInt::get(Ty, 0); 5841 else if (KnownOne) 5842 StableValue = ConstantInt::get(Ty, -1, true); 5843 else 5844 return getCouldNotCompute(); 5845 5846 break; 5847 } 5848 case Instruction::LShr: 5849 case Instruction::Shl: 5850 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5851 // stabilize to 0 in at most bitwidth(K) iterations. 5852 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5853 break; 5854 } 5855 5856 auto *Result = 5857 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5858 assert(Result->getType()->isIntegerTy(1) && 5859 "Otherwise cannot be an operand to a branch instruction"); 5860 5861 if (Result->isZeroValue()) { 5862 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5863 const SCEV *UpperBound = 5864 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5865 return ExitLimit(getCouldNotCompute(), UpperBound); 5866 } 5867 5868 return getCouldNotCompute(); 5869 } 5870 5871 /// CanConstantFold - Return true if we can constant fold an instruction of the 5872 /// specified type, assuming that all operands were constants. 5873 static bool CanConstantFold(const Instruction *I) { 5874 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5875 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5876 isa<LoadInst>(I)) 5877 return true; 5878 5879 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5880 if (const Function *F = CI->getCalledFunction()) 5881 return canConstantFoldCallTo(F); 5882 return false; 5883 } 5884 5885 /// Determine whether this instruction can constant evolve within this loop 5886 /// assuming its operands can all constant evolve. 5887 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5888 // An instruction outside of the loop can't be derived from a loop PHI. 5889 if (!L->contains(I)) return false; 5890 5891 if (isa<PHINode>(I)) { 5892 // We don't currently keep track of the control flow needed to evaluate 5893 // PHIs, so we cannot handle PHIs inside of loops. 5894 return L->getHeader() == I->getParent(); 5895 } 5896 5897 // If we won't be able to constant fold this expression even if the operands 5898 // are constants, bail early. 5899 return CanConstantFold(I); 5900 } 5901 5902 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5903 /// recursing through each instruction operand until reaching a loop header phi. 5904 static PHINode * 5905 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5906 DenseMap<Instruction *, PHINode *> &PHIMap) { 5907 5908 // Otherwise, we can evaluate this instruction if all of its operands are 5909 // constant or derived from a PHI node themselves. 5910 PHINode *PHI = nullptr; 5911 for (Value *Op : UseInst->operands()) { 5912 if (isa<Constant>(Op)) continue; 5913 5914 Instruction *OpInst = dyn_cast<Instruction>(Op); 5915 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5916 5917 PHINode *P = dyn_cast<PHINode>(OpInst); 5918 if (!P) 5919 // If this operand is already visited, reuse the prior result. 5920 // We may have P != PHI if this is the deepest point at which the 5921 // inconsistent paths meet. 5922 P = PHIMap.lookup(OpInst); 5923 if (!P) { 5924 // Recurse and memoize the results, whether a phi is found or not. 5925 // This recursive call invalidates pointers into PHIMap. 5926 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5927 PHIMap[OpInst] = P; 5928 } 5929 if (!P) 5930 return nullptr; // Not evolving from PHI 5931 if (PHI && PHI != P) 5932 return nullptr; // Evolving from multiple different PHIs. 5933 PHI = P; 5934 } 5935 // This is a expression evolving from a constant PHI! 5936 return PHI; 5937 } 5938 5939 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5940 /// in the loop that V is derived from. We allow arbitrary operations along the 5941 /// way, but the operands of an operation must either be constants or a value 5942 /// derived from a constant PHI. If this expression does not fit with these 5943 /// constraints, return null. 5944 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5945 Instruction *I = dyn_cast<Instruction>(V); 5946 if (!I || !canConstantEvolve(I, L)) return nullptr; 5947 5948 if (PHINode *PN = dyn_cast<PHINode>(I)) 5949 return PN; 5950 5951 // Record non-constant instructions contained by the loop. 5952 DenseMap<Instruction *, PHINode *> PHIMap; 5953 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5954 } 5955 5956 /// EvaluateExpression - Given an expression that passes the 5957 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5958 /// in the loop has the value PHIVal. If we can't fold this expression for some 5959 /// reason, return null. 5960 static Constant *EvaluateExpression(Value *V, const Loop *L, 5961 DenseMap<Instruction *, Constant *> &Vals, 5962 const DataLayout &DL, 5963 const TargetLibraryInfo *TLI) { 5964 // Convenient constant check, but redundant for recursive calls. 5965 if (Constant *C = dyn_cast<Constant>(V)) return C; 5966 Instruction *I = dyn_cast<Instruction>(V); 5967 if (!I) return nullptr; 5968 5969 if (Constant *C = Vals.lookup(I)) return C; 5970 5971 // An instruction inside the loop depends on a value outside the loop that we 5972 // weren't given a mapping for, or a value such as a call inside the loop. 5973 if (!canConstantEvolve(I, L)) return nullptr; 5974 5975 // An unmapped PHI can be due to a branch or another loop inside this loop, 5976 // or due to this not being the initial iteration through a loop where we 5977 // couldn't compute the evolution of this particular PHI last time. 5978 if (isa<PHINode>(I)) return nullptr; 5979 5980 std::vector<Constant*> Operands(I->getNumOperands()); 5981 5982 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5983 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5984 if (!Operand) { 5985 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5986 if (!Operands[i]) return nullptr; 5987 continue; 5988 } 5989 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5990 Vals[Operand] = C; 5991 if (!C) return nullptr; 5992 Operands[i] = C; 5993 } 5994 5995 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5996 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5997 Operands[1], DL, TLI); 5998 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5999 if (!LI->isVolatile()) 6000 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6001 } 6002 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6003 } 6004 6005 6006 // If every incoming value to PN except the one for BB is a specific Constant, 6007 // return that, else return nullptr. 6008 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6009 Constant *IncomingVal = nullptr; 6010 6011 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6012 if (PN->getIncomingBlock(i) == BB) 6013 continue; 6014 6015 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6016 if (!CurrentVal) 6017 return nullptr; 6018 6019 if (IncomingVal != CurrentVal) { 6020 if (IncomingVal) 6021 return nullptr; 6022 IncomingVal = CurrentVal; 6023 } 6024 } 6025 6026 return IncomingVal; 6027 } 6028 6029 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6030 /// in the header of its containing loop, we know the loop executes a 6031 /// constant number of times, and the PHI node is just a recurrence 6032 /// involving constants, fold it. 6033 Constant * 6034 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6035 const APInt &BEs, 6036 const Loop *L) { 6037 auto I = ConstantEvolutionLoopExitValue.find(PN); 6038 if (I != ConstantEvolutionLoopExitValue.end()) 6039 return I->second; 6040 6041 if (BEs.ugt(MaxBruteForceIterations)) 6042 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6043 6044 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6045 6046 DenseMap<Instruction *, Constant *> CurrentIterVals; 6047 BasicBlock *Header = L->getHeader(); 6048 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6049 6050 BasicBlock *Latch = L->getLoopLatch(); 6051 if (!Latch) 6052 return nullptr; 6053 6054 for (auto &I : *Header) { 6055 PHINode *PHI = dyn_cast<PHINode>(&I); 6056 if (!PHI) break; 6057 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6058 if (!StartCST) continue; 6059 CurrentIterVals[PHI] = StartCST; 6060 } 6061 if (!CurrentIterVals.count(PN)) 6062 return RetVal = nullptr; 6063 6064 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6065 6066 // Execute the loop symbolically to determine the exit value. 6067 if (BEs.getActiveBits() >= 32) 6068 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6069 6070 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6071 unsigned IterationNum = 0; 6072 const DataLayout &DL = getDataLayout(); 6073 for (; ; ++IterationNum) { 6074 if (IterationNum == NumIterations) 6075 return RetVal = CurrentIterVals[PN]; // Got exit value! 6076 6077 // Compute the value of the PHIs for the next iteration. 6078 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6079 DenseMap<Instruction *, Constant *> NextIterVals; 6080 Constant *NextPHI = 6081 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6082 if (!NextPHI) 6083 return nullptr; // Couldn't evaluate! 6084 NextIterVals[PN] = NextPHI; 6085 6086 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6087 6088 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6089 // cease to be able to evaluate one of them or if they stop evolving, 6090 // because that doesn't necessarily prevent us from computing PN. 6091 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6092 for (const auto &I : CurrentIterVals) { 6093 PHINode *PHI = dyn_cast<PHINode>(I.first); 6094 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6095 PHIsToCompute.emplace_back(PHI, I.second); 6096 } 6097 // We use two distinct loops because EvaluateExpression may invalidate any 6098 // iterators into CurrentIterVals. 6099 for (const auto &I : PHIsToCompute) { 6100 PHINode *PHI = I.first; 6101 Constant *&NextPHI = NextIterVals[PHI]; 6102 if (!NextPHI) { // Not already computed. 6103 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6104 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6105 } 6106 if (NextPHI != I.second) 6107 StoppedEvolving = false; 6108 } 6109 6110 // If all entries in CurrentIterVals == NextIterVals then we can stop 6111 // iterating, the loop can't continue to change. 6112 if (StoppedEvolving) 6113 return RetVal = CurrentIterVals[PN]; 6114 6115 CurrentIterVals.swap(NextIterVals); 6116 } 6117 } 6118 6119 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6120 Value *Cond, 6121 bool ExitWhen) { 6122 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6123 if (!PN) return getCouldNotCompute(); 6124 6125 // If the loop is canonicalized, the PHI will have exactly two entries. 6126 // That's the only form we support here. 6127 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6128 6129 DenseMap<Instruction *, Constant *> CurrentIterVals; 6130 BasicBlock *Header = L->getHeader(); 6131 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6132 6133 BasicBlock *Latch = L->getLoopLatch(); 6134 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6135 6136 for (auto &I : *Header) { 6137 PHINode *PHI = dyn_cast<PHINode>(&I); 6138 if (!PHI) 6139 break; 6140 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6141 if (!StartCST) continue; 6142 CurrentIterVals[PHI] = StartCST; 6143 } 6144 if (!CurrentIterVals.count(PN)) 6145 return getCouldNotCompute(); 6146 6147 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6148 // the loop symbolically to determine when the condition gets a value of 6149 // "ExitWhen". 6150 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6151 const DataLayout &DL = getDataLayout(); 6152 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6153 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6154 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6155 6156 // Couldn't symbolically evaluate. 6157 if (!CondVal) return getCouldNotCompute(); 6158 6159 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6160 ++NumBruteForceTripCountsComputed; 6161 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6162 } 6163 6164 // Update all the PHI nodes for the next iteration. 6165 DenseMap<Instruction *, Constant *> NextIterVals; 6166 6167 // Create a list of which PHIs we need to compute. We want to do this before 6168 // calling EvaluateExpression on them because that may invalidate iterators 6169 // into CurrentIterVals. 6170 SmallVector<PHINode *, 8> PHIsToCompute; 6171 for (const auto &I : CurrentIterVals) { 6172 PHINode *PHI = dyn_cast<PHINode>(I.first); 6173 if (!PHI || PHI->getParent() != Header) continue; 6174 PHIsToCompute.push_back(PHI); 6175 } 6176 for (PHINode *PHI : PHIsToCompute) { 6177 Constant *&NextPHI = NextIterVals[PHI]; 6178 if (NextPHI) continue; // Already computed! 6179 6180 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6181 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6182 } 6183 CurrentIterVals.swap(NextIterVals); 6184 } 6185 6186 // Too many iterations were needed to evaluate. 6187 return getCouldNotCompute(); 6188 } 6189 6190 /// getSCEVAtScope - Return a SCEV expression for the specified value 6191 /// at the specified scope in the program. The L value specifies a loop 6192 /// nest to evaluate the expression at, where null is the top-level or a 6193 /// specified loop is immediately inside of the loop. 6194 /// 6195 /// This method can be used to compute the exit value for a variable defined 6196 /// in a loop by querying what the value will hold in the parent loop. 6197 /// 6198 /// In the case that a relevant loop exit value cannot be computed, the 6199 /// original value V is returned. 6200 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6201 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6202 ValuesAtScopes[V]; 6203 // Check to see if we've folded this expression at this loop before. 6204 for (auto &LS : Values) 6205 if (LS.first == L) 6206 return LS.second ? LS.second : V; 6207 6208 Values.emplace_back(L, nullptr); 6209 6210 // Otherwise compute it. 6211 const SCEV *C = computeSCEVAtScope(V, L); 6212 for (auto &LS : reverse(ValuesAtScopes[V])) 6213 if (LS.first == L) { 6214 LS.second = C; 6215 break; 6216 } 6217 return C; 6218 } 6219 6220 /// This builds up a Constant using the ConstantExpr interface. That way, we 6221 /// will return Constants for objects which aren't represented by a 6222 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6223 /// Returns NULL if the SCEV isn't representable as a Constant. 6224 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6225 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6226 case scCouldNotCompute: 6227 case scAddRecExpr: 6228 break; 6229 case scConstant: 6230 return cast<SCEVConstant>(V)->getValue(); 6231 case scUnknown: 6232 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6233 case scSignExtend: { 6234 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6235 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6236 return ConstantExpr::getSExt(CastOp, SS->getType()); 6237 break; 6238 } 6239 case scZeroExtend: { 6240 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6241 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6242 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6243 break; 6244 } 6245 case scTruncate: { 6246 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6247 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6248 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6249 break; 6250 } 6251 case scAddExpr: { 6252 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6253 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6254 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6255 unsigned AS = PTy->getAddressSpace(); 6256 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6257 C = ConstantExpr::getBitCast(C, DestPtrTy); 6258 } 6259 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6260 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6261 if (!C2) return nullptr; 6262 6263 // First pointer! 6264 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6265 unsigned AS = C2->getType()->getPointerAddressSpace(); 6266 std::swap(C, C2); 6267 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6268 // The offsets have been converted to bytes. We can add bytes to an 6269 // i8* by GEP with the byte count in the first index. 6270 C = ConstantExpr::getBitCast(C, DestPtrTy); 6271 } 6272 6273 // Don't bother trying to sum two pointers. We probably can't 6274 // statically compute a load that results from it anyway. 6275 if (C2->getType()->isPointerTy()) 6276 return nullptr; 6277 6278 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6279 if (PTy->getElementType()->isStructTy()) 6280 C2 = ConstantExpr::getIntegerCast( 6281 C2, Type::getInt32Ty(C->getContext()), true); 6282 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6283 } else 6284 C = ConstantExpr::getAdd(C, C2); 6285 } 6286 return C; 6287 } 6288 break; 6289 } 6290 case scMulExpr: { 6291 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6292 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6293 // Don't bother with pointers at all. 6294 if (C->getType()->isPointerTy()) return nullptr; 6295 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6296 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6297 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6298 C = ConstantExpr::getMul(C, C2); 6299 } 6300 return C; 6301 } 6302 break; 6303 } 6304 case scUDivExpr: { 6305 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6306 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6307 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6308 if (LHS->getType() == RHS->getType()) 6309 return ConstantExpr::getUDiv(LHS, RHS); 6310 break; 6311 } 6312 case scSMaxExpr: 6313 case scUMaxExpr: 6314 break; // TODO: smax, umax. 6315 } 6316 return nullptr; 6317 } 6318 6319 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6320 if (isa<SCEVConstant>(V)) return V; 6321 6322 // If this instruction is evolved from a constant-evolving PHI, compute the 6323 // exit value from the loop without using SCEVs. 6324 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6325 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6326 const Loop *LI = this->LI[I->getParent()]; 6327 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6328 if (PHINode *PN = dyn_cast<PHINode>(I)) 6329 if (PN->getParent() == LI->getHeader()) { 6330 // Okay, there is no closed form solution for the PHI node. Check 6331 // to see if the loop that contains it has a known backedge-taken 6332 // count. If so, we may be able to force computation of the exit 6333 // value. 6334 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6335 if (const SCEVConstant *BTCC = 6336 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6337 // Okay, we know how many times the containing loop executes. If 6338 // this is a constant evolving PHI node, get the final value at 6339 // the specified iteration number. 6340 Constant *RV = 6341 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6342 if (RV) return getSCEV(RV); 6343 } 6344 } 6345 6346 // Okay, this is an expression that we cannot symbolically evaluate 6347 // into a SCEV. Check to see if it's possible to symbolically evaluate 6348 // the arguments into constants, and if so, try to constant propagate the 6349 // result. This is particularly useful for computing loop exit values. 6350 if (CanConstantFold(I)) { 6351 SmallVector<Constant *, 4> Operands; 6352 bool MadeImprovement = false; 6353 for (Value *Op : I->operands()) { 6354 if (Constant *C = dyn_cast<Constant>(Op)) { 6355 Operands.push_back(C); 6356 continue; 6357 } 6358 6359 // If any of the operands is non-constant and if they are 6360 // non-integer and non-pointer, don't even try to analyze them 6361 // with scev techniques. 6362 if (!isSCEVable(Op->getType())) 6363 return V; 6364 6365 const SCEV *OrigV = getSCEV(Op); 6366 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6367 MadeImprovement |= OrigV != OpV; 6368 6369 Constant *C = BuildConstantFromSCEV(OpV); 6370 if (!C) return V; 6371 if (C->getType() != Op->getType()) 6372 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6373 Op->getType(), 6374 false), 6375 C, Op->getType()); 6376 Operands.push_back(C); 6377 } 6378 6379 // Check to see if getSCEVAtScope actually made an improvement. 6380 if (MadeImprovement) { 6381 Constant *C = nullptr; 6382 const DataLayout &DL = getDataLayout(); 6383 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6384 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6385 Operands[1], DL, &TLI); 6386 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6387 if (!LI->isVolatile()) 6388 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6389 } else 6390 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6391 if (!C) return V; 6392 return getSCEV(C); 6393 } 6394 } 6395 } 6396 6397 // This is some other type of SCEVUnknown, just return it. 6398 return V; 6399 } 6400 6401 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6402 // Avoid performing the look-up in the common case where the specified 6403 // expression has no loop-variant portions. 6404 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6405 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6406 if (OpAtScope != Comm->getOperand(i)) { 6407 // Okay, at least one of these operands is loop variant but might be 6408 // foldable. Build a new instance of the folded commutative expression. 6409 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6410 Comm->op_begin()+i); 6411 NewOps.push_back(OpAtScope); 6412 6413 for (++i; i != e; ++i) { 6414 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6415 NewOps.push_back(OpAtScope); 6416 } 6417 if (isa<SCEVAddExpr>(Comm)) 6418 return getAddExpr(NewOps); 6419 if (isa<SCEVMulExpr>(Comm)) 6420 return getMulExpr(NewOps); 6421 if (isa<SCEVSMaxExpr>(Comm)) 6422 return getSMaxExpr(NewOps); 6423 if (isa<SCEVUMaxExpr>(Comm)) 6424 return getUMaxExpr(NewOps); 6425 llvm_unreachable("Unknown commutative SCEV type!"); 6426 } 6427 } 6428 // If we got here, all operands are loop invariant. 6429 return Comm; 6430 } 6431 6432 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6433 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6434 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6435 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6436 return Div; // must be loop invariant 6437 return getUDivExpr(LHS, RHS); 6438 } 6439 6440 // If this is a loop recurrence for a loop that does not contain L, then we 6441 // are dealing with the final value computed by the loop. 6442 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6443 // First, attempt to evaluate each operand. 6444 // Avoid performing the look-up in the common case where the specified 6445 // expression has no loop-variant portions. 6446 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6447 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6448 if (OpAtScope == AddRec->getOperand(i)) 6449 continue; 6450 6451 // Okay, at least one of these operands is loop variant but might be 6452 // foldable. Build a new instance of the folded commutative expression. 6453 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6454 AddRec->op_begin()+i); 6455 NewOps.push_back(OpAtScope); 6456 for (++i; i != e; ++i) 6457 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6458 6459 const SCEV *FoldedRec = 6460 getAddRecExpr(NewOps, AddRec->getLoop(), 6461 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6462 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6463 // The addrec may be folded to a nonrecurrence, for example, if the 6464 // induction variable is multiplied by zero after constant folding. Go 6465 // ahead and return the folded value. 6466 if (!AddRec) 6467 return FoldedRec; 6468 break; 6469 } 6470 6471 // If the scope is outside the addrec's loop, evaluate it by using the 6472 // loop exit value of the addrec. 6473 if (!AddRec->getLoop()->contains(L)) { 6474 // To evaluate this recurrence, we need to know how many times the AddRec 6475 // loop iterates. Compute this now. 6476 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6477 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6478 6479 // Then, evaluate the AddRec. 6480 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6481 } 6482 6483 return AddRec; 6484 } 6485 6486 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6487 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6488 if (Op == Cast->getOperand()) 6489 return Cast; // must be loop invariant 6490 return getZeroExtendExpr(Op, Cast->getType()); 6491 } 6492 6493 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6494 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6495 if (Op == Cast->getOperand()) 6496 return Cast; // must be loop invariant 6497 return getSignExtendExpr(Op, Cast->getType()); 6498 } 6499 6500 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6501 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6502 if (Op == Cast->getOperand()) 6503 return Cast; // must be loop invariant 6504 return getTruncateExpr(Op, Cast->getType()); 6505 } 6506 6507 llvm_unreachable("Unknown SCEV type!"); 6508 } 6509 6510 /// getSCEVAtScope - This is a convenience function which does 6511 /// getSCEVAtScope(getSCEV(V), L). 6512 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6513 return getSCEVAtScope(getSCEV(V), L); 6514 } 6515 6516 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6517 /// following equation: 6518 /// 6519 /// A * X = B (mod N) 6520 /// 6521 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6522 /// A and B isn't important. 6523 /// 6524 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6525 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6526 ScalarEvolution &SE) { 6527 uint32_t BW = A.getBitWidth(); 6528 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6529 assert(A != 0 && "A must be non-zero."); 6530 6531 // 1. D = gcd(A, N) 6532 // 6533 // The gcd of A and N may have only one prime factor: 2. The number of 6534 // trailing zeros in A is its multiplicity 6535 uint32_t Mult2 = A.countTrailingZeros(); 6536 // D = 2^Mult2 6537 6538 // 2. Check if B is divisible by D. 6539 // 6540 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6541 // is not less than multiplicity of this prime factor for D. 6542 if (B.countTrailingZeros() < Mult2) 6543 return SE.getCouldNotCompute(); 6544 6545 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6546 // modulo (N / D). 6547 // 6548 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6549 // bit width during computations. 6550 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6551 APInt Mod(BW + 1, 0); 6552 Mod.setBit(BW - Mult2); // Mod = N / D 6553 APInt I = AD.multiplicativeInverse(Mod); 6554 6555 // 4. Compute the minimum unsigned root of the equation: 6556 // I * (B / D) mod (N / D) 6557 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6558 6559 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6560 // bits. 6561 return SE.getConstant(Result.trunc(BW)); 6562 } 6563 6564 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6565 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6566 /// might be the same) or two SCEVCouldNotCompute objects. 6567 /// 6568 static std::pair<const SCEV *,const SCEV *> 6569 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6570 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6571 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6572 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6573 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6574 6575 // We currently can only solve this if the coefficients are constants. 6576 if (!LC || !MC || !NC) { 6577 const SCEV *CNC = SE.getCouldNotCompute(); 6578 return {CNC, CNC}; 6579 } 6580 6581 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 6582 const APInt &L = LC->getAPInt(); 6583 const APInt &M = MC->getAPInt(); 6584 const APInt &N = NC->getAPInt(); 6585 APInt Two(BitWidth, 2); 6586 APInt Four(BitWidth, 4); 6587 6588 { 6589 using namespace APIntOps; 6590 const APInt& C = L; 6591 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6592 // The B coefficient is M-N/2 6593 APInt B(M); 6594 B -= sdiv(N,Two); 6595 6596 // The A coefficient is N/2 6597 APInt A(N.sdiv(Two)); 6598 6599 // Compute the B^2-4ac term. 6600 APInt SqrtTerm(B); 6601 SqrtTerm *= B; 6602 SqrtTerm -= Four * (A * C); 6603 6604 if (SqrtTerm.isNegative()) { 6605 // The loop is provably infinite. 6606 const SCEV *CNC = SE.getCouldNotCompute(); 6607 return {CNC, CNC}; 6608 } 6609 6610 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6611 // integer value or else APInt::sqrt() will assert. 6612 APInt SqrtVal(SqrtTerm.sqrt()); 6613 6614 // Compute the two solutions for the quadratic formula. 6615 // The divisions must be performed as signed divisions. 6616 APInt NegB(-B); 6617 APInt TwoA(A << 1); 6618 if (TwoA.isMinValue()) { 6619 const SCEV *CNC = SE.getCouldNotCompute(); 6620 return {CNC, CNC}; 6621 } 6622 6623 LLVMContext &Context = SE.getContext(); 6624 6625 ConstantInt *Solution1 = 6626 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6627 ConstantInt *Solution2 = 6628 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6629 6630 return {SE.getConstant(Solution1), SE.getConstant(Solution2)}; 6631 } // end APIntOps namespace 6632 } 6633 6634 /// HowFarToZero - Return the number of times a backedge comparing the specified 6635 /// value to zero will execute. If not computable, return CouldNotCompute. 6636 /// 6637 /// This is only used for loops with a "x != y" exit test. The exit condition is 6638 /// now expressed as a single expression, V = x-y. So the exit test is 6639 /// effectively V != 0. We know and take advantage of the fact that this 6640 /// expression only being used in a comparison by zero context. 6641 ScalarEvolution::ExitLimit 6642 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6643 // If the value is a constant 6644 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6645 // If the value is already zero, the branch will execute zero times. 6646 if (C->getValue()->isZero()) return C; 6647 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6648 } 6649 6650 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6651 if (!AddRec || AddRec->getLoop() != L) 6652 return getCouldNotCompute(); 6653 6654 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6655 // the quadratic equation to solve it. 6656 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6657 std::pair<const SCEV *,const SCEV *> Roots = 6658 SolveQuadraticEquation(AddRec, *this); 6659 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6660 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6661 if (R1 && R2) { 6662 // Pick the smallest positive root value. 6663 if (ConstantInt *CB = 6664 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6665 R1->getValue(), 6666 R2->getValue()))) { 6667 if (!CB->getZExtValue()) 6668 std::swap(R1, R2); // R1 is the minimum root now. 6669 6670 // We can only use this value if the chrec ends up with an exact zero 6671 // value at this index. When solving for "X*X != 5", for example, we 6672 // should not accept a root of 2. 6673 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6674 if (Val->isZero()) 6675 return R1; // We found a quadratic root! 6676 } 6677 } 6678 return getCouldNotCompute(); 6679 } 6680 6681 // Otherwise we can only handle this if it is affine. 6682 if (!AddRec->isAffine()) 6683 return getCouldNotCompute(); 6684 6685 // If this is an affine expression, the execution count of this branch is 6686 // the minimum unsigned root of the following equation: 6687 // 6688 // Start + Step*N = 0 (mod 2^BW) 6689 // 6690 // equivalent to: 6691 // 6692 // Step*N = -Start (mod 2^BW) 6693 // 6694 // where BW is the common bit width of Start and Step. 6695 6696 // Get the initial value for the loop. 6697 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6698 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6699 6700 // For now we handle only constant steps. 6701 // 6702 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6703 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6704 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6705 // We have not yet seen any such cases. 6706 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6707 if (!StepC || StepC->getValue()->equalsInt(0)) 6708 return getCouldNotCompute(); 6709 6710 // For positive steps (counting up until unsigned overflow): 6711 // N = -Start/Step (as unsigned) 6712 // For negative steps (counting down to zero): 6713 // N = Start/-Step 6714 // First compute the unsigned distance from zero in the direction of Step. 6715 bool CountDown = StepC->getAPInt().isNegative(); 6716 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6717 6718 // Handle unitary steps, which cannot wraparound. 6719 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6720 // N = Distance (as unsigned) 6721 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6722 ConstantRange CR = getUnsignedRange(Start); 6723 const SCEV *MaxBECount; 6724 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6725 // When counting up, the worst starting value is 1, not 0. 6726 MaxBECount = CR.getUnsignedMax().isMinValue() 6727 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6728 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6729 else 6730 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6731 : -CR.getUnsignedMin()); 6732 return ExitLimit(Distance, MaxBECount); 6733 } 6734 6735 // As a special case, handle the instance where Step is a positive power of 6736 // two. In this case, determining whether Step divides Distance evenly can be 6737 // done by counting and comparing the number of trailing zeros of Step and 6738 // Distance. 6739 if (!CountDown) { 6740 const APInt &StepV = StepC->getAPInt(); 6741 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6742 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6743 // case is not handled as this code is guarded by !CountDown. 6744 if (StepV.isPowerOf2() && 6745 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6746 // Here we've constrained the equation to be of the form 6747 // 6748 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6749 // 6750 // where we're operating on a W bit wide integer domain and k is 6751 // non-negative. The smallest unsigned solution for X is the trip count. 6752 // 6753 // (0) is equivalent to: 6754 // 6755 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6756 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6757 // <=> 2^k * Distance' - X = L * 2^(W - N) 6758 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6759 // 6760 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6761 // by 2^(W - N). 6762 // 6763 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6764 // 6765 // E.g. say we're solving 6766 // 6767 // 2 * Val = 2 * X (in i8) ... (3) 6768 // 6769 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6770 // 6771 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6772 // necessarily the smallest unsigned value of X that satisfies (3). 6773 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6774 // is i8 1, not i8 -127 6775 6776 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6777 6778 // Since SCEV does not have a URem node, we construct one using a truncate 6779 // and a zero extend. 6780 6781 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6782 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6783 auto *WideTy = Distance->getType(); 6784 6785 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6786 } 6787 } 6788 6789 // If the condition controls loop exit (the loop exits only if the expression 6790 // is true) and the addition is no-wrap we can use unsigned divide to 6791 // compute the backedge count. In this case, the step may not divide the 6792 // distance, but we don't care because if the condition is "missed" the loop 6793 // will have undefined behavior due to wrapping. 6794 if (ControlsExit && AddRec->hasNoSelfWrap()) { 6795 const SCEV *Exact = 6796 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6797 return ExitLimit(Exact, Exact); 6798 } 6799 6800 // Then, try to solve the above equation provided that Start is constant. 6801 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6802 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(), 6803 *this); 6804 return getCouldNotCompute(); 6805 } 6806 6807 /// HowFarToNonZero - Return the number of times a backedge checking the 6808 /// specified value for nonzero will execute. If not computable, return 6809 /// CouldNotCompute 6810 ScalarEvolution::ExitLimit 6811 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6812 // Loops that look like: while (X == 0) are very strange indeed. We don't 6813 // handle them yet except for the trivial case. This could be expanded in the 6814 // future as needed. 6815 6816 // If the value is a constant, check to see if it is known to be non-zero 6817 // already. If so, the backedge will execute zero times. 6818 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6819 if (!C->getValue()->isNullValue()) 6820 return getZero(C->getType()); 6821 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6822 } 6823 6824 // We could implement others, but I really doubt anyone writes loops like 6825 // this, and if they did, they would already be constant folded. 6826 return getCouldNotCompute(); 6827 } 6828 6829 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6830 /// (which may not be an immediate predecessor) which has exactly one 6831 /// successor from which BB is reachable, or null if no such block is 6832 /// found. 6833 /// 6834 std::pair<BasicBlock *, BasicBlock *> 6835 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6836 // If the block has a unique predecessor, then there is no path from the 6837 // predecessor to the block that does not go through the direct edge 6838 // from the predecessor to the block. 6839 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6840 return {Pred, BB}; 6841 6842 // A loop's header is defined to be a block that dominates the loop. 6843 // If the header has a unique predecessor outside the loop, it must be 6844 // a block that has exactly one successor that can reach the loop. 6845 if (Loop *L = LI.getLoopFor(BB)) 6846 return {L->getLoopPredecessor(), L->getHeader()}; 6847 6848 return {nullptr, nullptr}; 6849 } 6850 6851 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6852 /// testing whether two expressions are equal, however for the purposes of 6853 /// looking for a condition guarding a loop, it can be useful to be a little 6854 /// more general, since a front-end may have replicated the controlling 6855 /// expression. 6856 /// 6857 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6858 // Quick check to see if they are the same SCEV. 6859 if (A == B) return true; 6860 6861 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6862 // Not all instructions that are "identical" compute the same value. For 6863 // instance, two distinct alloca instructions allocating the same type are 6864 // identical and do not read memory; but compute distinct values. 6865 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6866 }; 6867 6868 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6869 // two different instructions with the same value. Check for this case. 6870 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6871 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6872 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6873 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6874 if (ComputesEqualValues(AI, BI)) 6875 return true; 6876 6877 // Otherwise assume they may have a different value. 6878 return false; 6879 } 6880 6881 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6882 /// predicate Pred. Return true iff any changes were made. 6883 /// 6884 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6885 const SCEV *&LHS, const SCEV *&RHS, 6886 unsigned Depth) { 6887 bool Changed = false; 6888 6889 // If we hit the max recursion limit bail out. 6890 if (Depth >= 3) 6891 return false; 6892 6893 // Canonicalize a constant to the right side. 6894 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6895 // Check for both operands constant. 6896 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6897 if (ConstantExpr::getICmp(Pred, 6898 LHSC->getValue(), 6899 RHSC->getValue())->isNullValue()) 6900 goto trivially_false; 6901 else 6902 goto trivially_true; 6903 } 6904 // Otherwise swap the operands to put the constant on the right. 6905 std::swap(LHS, RHS); 6906 Pred = ICmpInst::getSwappedPredicate(Pred); 6907 Changed = true; 6908 } 6909 6910 // If we're comparing an addrec with a value which is loop-invariant in the 6911 // addrec's loop, put the addrec on the left. Also make a dominance check, 6912 // as both operands could be addrecs loop-invariant in each other's loop. 6913 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6914 const Loop *L = AR->getLoop(); 6915 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6916 std::swap(LHS, RHS); 6917 Pred = ICmpInst::getSwappedPredicate(Pred); 6918 Changed = true; 6919 } 6920 } 6921 6922 // If there's a constant operand, canonicalize comparisons with boundary 6923 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6924 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6925 const APInt &RA = RC->getAPInt(); 6926 switch (Pred) { 6927 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6928 case ICmpInst::ICMP_EQ: 6929 case ICmpInst::ICMP_NE: 6930 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6931 if (!RA) 6932 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6933 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6934 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6935 ME->getOperand(0)->isAllOnesValue()) { 6936 RHS = AE->getOperand(1); 6937 LHS = ME->getOperand(1); 6938 Changed = true; 6939 } 6940 break; 6941 case ICmpInst::ICMP_UGE: 6942 if ((RA - 1).isMinValue()) { 6943 Pred = ICmpInst::ICMP_NE; 6944 RHS = getConstant(RA - 1); 6945 Changed = true; 6946 break; 6947 } 6948 if (RA.isMaxValue()) { 6949 Pred = ICmpInst::ICMP_EQ; 6950 Changed = true; 6951 break; 6952 } 6953 if (RA.isMinValue()) goto trivially_true; 6954 6955 Pred = ICmpInst::ICMP_UGT; 6956 RHS = getConstant(RA - 1); 6957 Changed = true; 6958 break; 6959 case ICmpInst::ICMP_ULE: 6960 if ((RA + 1).isMaxValue()) { 6961 Pred = ICmpInst::ICMP_NE; 6962 RHS = getConstant(RA + 1); 6963 Changed = true; 6964 break; 6965 } 6966 if (RA.isMinValue()) { 6967 Pred = ICmpInst::ICMP_EQ; 6968 Changed = true; 6969 break; 6970 } 6971 if (RA.isMaxValue()) goto trivially_true; 6972 6973 Pred = ICmpInst::ICMP_ULT; 6974 RHS = getConstant(RA + 1); 6975 Changed = true; 6976 break; 6977 case ICmpInst::ICMP_SGE: 6978 if ((RA - 1).isMinSignedValue()) { 6979 Pred = ICmpInst::ICMP_NE; 6980 RHS = getConstant(RA - 1); 6981 Changed = true; 6982 break; 6983 } 6984 if (RA.isMaxSignedValue()) { 6985 Pred = ICmpInst::ICMP_EQ; 6986 Changed = true; 6987 break; 6988 } 6989 if (RA.isMinSignedValue()) goto trivially_true; 6990 6991 Pred = ICmpInst::ICMP_SGT; 6992 RHS = getConstant(RA - 1); 6993 Changed = true; 6994 break; 6995 case ICmpInst::ICMP_SLE: 6996 if ((RA + 1).isMaxSignedValue()) { 6997 Pred = ICmpInst::ICMP_NE; 6998 RHS = getConstant(RA + 1); 6999 Changed = true; 7000 break; 7001 } 7002 if (RA.isMinSignedValue()) { 7003 Pred = ICmpInst::ICMP_EQ; 7004 Changed = true; 7005 break; 7006 } 7007 if (RA.isMaxSignedValue()) goto trivially_true; 7008 7009 Pred = ICmpInst::ICMP_SLT; 7010 RHS = getConstant(RA + 1); 7011 Changed = true; 7012 break; 7013 case ICmpInst::ICMP_UGT: 7014 if (RA.isMinValue()) { 7015 Pred = ICmpInst::ICMP_NE; 7016 Changed = true; 7017 break; 7018 } 7019 if ((RA + 1).isMaxValue()) { 7020 Pred = ICmpInst::ICMP_EQ; 7021 RHS = getConstant(RA + 1); 7022 Changed = true; 7023 break; 7024 } 7025 if (RA.isMaxValue()) goto trivially_false; 7026 break; 7027 case ICmpInst::ICMP_ULT: 7028 if (RA.isMaxValue()) { 7029 Pred = ICmpInst::ICMP_NE; 7030 Changed = true; 7031 break; 7032 } 7033 if ((RA - 1).isMinValue()) { 7034 Pred = ICmpInst::ICMP_EQ; 7035 RHS = getConstant(RA - 1); 7036 Changed = true; 7037 break; 7038 } 7039 if (RA.isMinValue()) goto trivially_false; 7040 break; 7041 case ICmpInst::ICMP_SGT: 7042 if (RA.isMinSignedValue()) { 7043 Pred = ICmpInst::ICMP_NE; 7044 Changed = true; 7045 break; 7046 } 7047 if ((RA + 1).isMaxSignedValue()) { 7048 Pred = ICmpInst::ICMP_EQ; 7049 RHS = getConstant(RA + 1); 7050 Changed = true; 7051 break; 7052 } 7053 if (RA.isMaxSignedValue()) goto trivially_false; 7054 break; 7055 case ICmpInst::ICMP_SLT: 7056 if (RA.isMaxSignedValue()) { 7057 Pred = ICmpInst::ICMP_NE; 7058 Changed = true; 7059 break; 7060 } 7061 if ((RA - 1).isMinSignedValue()) { 7062 Pred = ICmpInst::ICMP_EQ; 7063 RHS = getConstant(RA - 1); 7064 Changed = true; 7065 break; 7066 } 7067 if (RA.isMinSignedValue()) goto trivially_false; 7068 break; 7069 } 7070 } 7071 7072 // Check for obvious equality. 7073 if (HasSameValue(LHS, RHS)) { 7074 if (ICmpInst::isTrueWhenEqual(Pred)) 7075 goto trivially_true; 7076 if (ICmpInst::isFalseWhenEqual(Pred)) 7077 goto trivially_false; 7078 } 7079 7080 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7081 // adding or subtracting 1 from one of the operands. 7082 switch (Pred) { 7083 case ICmpInst::ICMP_SLE: 7084 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7085 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7086 SCEV::FlagNSW); 7087 Pred = ICmpInst::ICMP_SLT; 7088 Changed = true; 7089 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7090 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7091 SCEV::FlagNSW); 7092 Pred = ICmpInst::ICMP_SLT; 7093 Changed = true; 7094 } 7095 break; 7096 case ICmpInst::ICMP_SGE: 7097 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7098 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7099 SCEV::FlagNSW); 7100 Pred = ICmpInst::ICMP_SGT; 7101 Changed = true; 7102 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7103 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7104 SCEV::FlagNSW); 7105 Pred = ICmpInst::ICMP_SGT; 7106 Changed = true; 7107 } 7108 break; 7109 case ICmpInst::ICMP_ULE: 7110 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7111 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7112 SCEV::FlagNUW); 7113 Pred = ICmpInst::ICMP_ULT; 7114 Changed = true; 7115 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7116 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7117 Pred = ICmpInst::ICMP_ULT; 7118 Changed = true; 7119 } 7120 break; 7121 case ICmpInst::ICMP_UGE: 7122 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7123 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7124 Pred = ICmpInst::ICMP_UGT; 7125 Changed = true; 7126 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7127 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7128 SCEV::FlagNUW); 7129 Pred = ICmpInst::ICMP_UGT; 7130 Changed = true; 7131 } 7132 break; 7133 default: 7134 break; 7135 } 7136 7137 // TODO: More simplifications are possible here. 7138 7139 // Recursively simplify until we either hit a recursion limit or nothing 7140 // changes. 7141 if (Changed) 7142 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7143 7144 return Changed; 7145 7146 trivially_true: 7147 // Return 0 == 0. 7148 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7149 Pred = ICmpInst::ICMP_EQ; 7150 return true; 7151 7152 trivially_false: 7153 // Return 0 != 0. 7154 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7155 Pred = ICmpInst::ICMP_NE; 7156 return true; 7157 } 7158 7159 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7160 return getSignedRange(S).getSignedMax().isNegative(); 7161 } 7162 7163 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7164 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7165 } 7166 7167 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7168 return !getSignedRange(S).getSignedMin().isNegative(); 7169 } 7170 7171 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7172 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7173 } 7174 7175 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7176 return isKnownNegative(S) || isKnownPositive(S); 7177 } 7178 7179 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7180 const SCEV *LHS, const SCEV *RHS) { 7181 // Canonicalize the inputs first. 7182 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7183 7184 // If LHS or RHS is an addrec, check to see if the condition is true in 7185 // every iteration of the loop. 7186 // If LHS and RHS are both addrec, both conditions must be true in 7187 // every iteration of the loop. 7188 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7189 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7190 bool LeftGuarded = false; 7191 bool RightGuarded = false; 7192 if (LAR) { 7193 const Loop *L = LAR->getLoop(); 7194 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7195 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7196 if (!RAR) return true; 7197 LeftGuarded = true; 7198 } 7199 } 7200 if (RAR) { 7201 const Loop *L = RAR->getLoop(); 7202 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7203 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7204 if (!LAR) return true; 7205 RightGuarded = true; 7206 } 7207 } 7208 if (LeftGuarded && RightGuarded) 7209 return true; 7210 7211 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7212 return true; 7213 7214 // Otherwise see what can be done with known constant ranges. 7215 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7216 } 7217 7218 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7219 ICmpInst::Predicate Pred, 7220 bool &Increasing) { 7221 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7222 7223 #ifndef NDEBUG 7224 // Verify an invariant: inverting the predicate should turn a monotonically 7225 // increasing change to a monotonically decreasing one, and vice versa. 7226 bool IncreasingSwapped; 7227 bool ResultSwapped = isMonotonicPredicateImpl( 7228 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7229 7230 assert(Result == ResultSwapped && "should be able to analyze both!"); 7231 if (ResultSwapped) 7232 assert(Increasing == !IncreasingSwapped && 7233 "monotonicity should flip as we flip the predicate"); 7234 #endif 7235 7236 return Result; 7237 } 7238 7239 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7240 ICmpInst::Predicate Pred, 7241 bool &Increasing) { 7242 7243 // A zero step value for LHS means the induction variable is essentially a 7244 // loop invariant value. We don't really depend on the predicate actually 7245 // flipping from false to true (for increasing predicates, and the other way 7246 // around for decreasing predicates), all we care about is that *if* the 7247 // predicate changes then it only changes from false to true. 7248 // 7249 // A zero step value in itself is not very useful, but there may be places 7250 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7251 // as general as possible. 7252 7253 switch (Pred) { 7254 default: 7255 return false; // Conservative answer 7256 7257 case ICmpInst::ICMP_UGT: 7258 case ICmpInst::ICMP_UGE: 7259 case ICmpInst::ICMP_ULT: 7260 case ICmpInst::ICMP_ULE: 7261 if (!LHS->hasNoUnsignedWrap()) 7262 return false; 7263 7264 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7265 return true; 7266 7267 case ICmpInst::ICMP_SGT: 7268 case ICmpInst::ICMP_SGE: 7269 case ICmpInst::ICMP_SLT: 7270 case ICmpInst::ICMP_SLE: { 7271 if (!LHS->hasNoSignedWrap()) 7272 return false; 7273 7274 const SCEV *Step = LHS->getStepRecurrence(*this); 7275 7276 if (isKnownNonNegative(Step)) { 7277 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7278 return true; 7279 } 7280 7281 if (isKnownNonPositive(Step)) { 7282 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7283 return true; 7284 } 7285 7286 return false; 7287 } 7288 7289 } 7290 7291 llvm_unreachable("switch has default clause!"); 7292 } 7293 7294 bool ScalarEvolution::isLoopInvariantPredicate( 7295 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7296 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7297 const SCEV *&InvariantRHS) { 7298 7299 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7300 if (!isLoopInvariant(RHS, L)) { 7301 if (!isLoopInvariant(LHS, L)) 7302 return false; 7303 7304 std::swap(LHS, RHS); 7305 Pred = ICmpInst::getSwappedPredicate(Pred); 7306 } 7307 7308 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7309 if (!ArLHS || ArLHS->getLoop() != L) 7310 return false; 7311 7312 bool Increasing; 7313 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7314 return false; 7315 7316 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7317 // true as the loop iterates, and the backedge is control dependent on 7318 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7319 // 7320 // * if the predicate was false in the first iteration then the predicate 7321 // is never evaluated again, since the loop exits without taking the 7322 // backedge. 7323 // * if the predicate was true in the first iteration then it will 7324 // continue to be true for all future iterations since it is 7325 // monotonically increasing. 7326 // 7327 // For both the above possibilities, we can replace the loop varying 7328 // predicate with its value on the first iteration of the loop (which is 7329 // loop invariant). 7330 // 7331 // A similar reasoning applies for a monotonically decreasing predicate, by 7332 // replacing true with false and false with true in the above two bullets. 7333 7334 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7335 7336 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7337 return false; 7338 7339 InvariantPred = Pred; 7340 InvariantLHS = ArLHS->getStart(); 7341 InvariantRHS = RHS; 7342 return true; 7343 } 7344 7345 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7346 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7347 if (HasSameValue(LHS, RHS)) 7348 return ICmpInst::isTrueWhenEqual(Pred); 7349 7350 // This code is split out from isKnownPredicate because it is called from 7351 // within isLoopEntryGuardedByCond. 7352 7353 auto CheckRanges = 7354 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7355 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7356 .contains(RangeLHS); 7357 }; 7358 7359 // The check at the top of the function catches the case where the values are 7360 // known to be equal. 7361 if (Pred == CmpInst::ICMP_EQ) 7362 return false; 7363 7364 if (Pred == CmpInst::ICMP_NE) 7365 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7366 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7367 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7368 7369 if (CmpInst::isSigned(Pred)) 7370 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7371 7372 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7373 } 7374 7375 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7376 const SCEV *LHS, 7377 const SCEV *RHS) { 7378 7379 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7380 // Return Y via OutY. 7381 auto MatchBinaryAddToConst = 7382 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7383 SCEV::NoWrapFlags ExpectedFlags) { 7384 const SCEV *NonConstOp, *ConstOp; 7385 SCEV::NoWrapFlags FlagsPresent; 7386 7387 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7388 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7389 return false; 7390 7391 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7392 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7393 }; 7394 7395 APInt C; 7396 7397 switch (Pred) { 7398 default: 7399 break; 7400 7401 case ICmpInst::ICMP_SGE: 7402 std::swap(LHS, RHS); 7403 case ICmpInst::ICMP_SLE: 7404 // X s<= (X + C)<nsw> if C >= 0 7405 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7406 return true; 7407 7408 // (X + C)<nsw> s<= X if C <= 0 7409 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7410 !C.isStrictlyPositive()) 7411 return true; 7412 break; 7413 7414 case ICmpInst::ICMP_SGT: 7415 std::swap(LHS, RHS); 7416 case ICmpInst::ICMP_SLT: 7417 // X s< (X + C)<nsw> if C > 0 7418 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7419 C.isStrictlyPositive()) 7420 return true; 7421 7422 // (X + C)<nsw> s< X if C < 0 7423 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7424 return true; 7425 break; 7426 } 7427 7428 return false; 7429 } 7430 7431 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7432 const SCEV *LHS, 7433 const SCEV *RHS) { 7434 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7435 return false; 7436 7437 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7438 // the stack can result in exponential time complexity. 7439 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7440 7441 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7442 // 7443 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7444 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7445 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7446 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7447 // use isKnownPredicate later if needed. 7448 return isKnownNonNegative(RHS) && 7449 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7450 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7451 } 7452 7453 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7454 /// protected by a conditional between LHS and RHS. This is used to 7455 /// to eliminate casts. 7456 bool 7457 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7458 ICmpInst::Predicate Pred, 7459 const SCEV *LHS, const SCEV *RHS) { 7460 // Interpret a null as meaning no loop, where there is obviously no guard 7461 // (interprocedural conditions notwithstanding). 7462 if (!L) return true; 7463 7464 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7465 return true; 7466 7467 BasicBlock *Latch = L->getLoopLatch(); 7468 if (!Latch) 7469 return false; 7470 7471 BranchInst *LoopContinuePredicate = 7472 dyn_cast<BranchInst>(Latch->getTerminator()); 7473 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7474 isImpliedCond(Pred, LHS, RHS, 7475 LoopContinuePredicate->getCondition(), 7476 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7477 return true; 7478 7479 // We don't want more than one activation of the following loops on the stack 7480 // -- that can lead to O(n!) time complexity. 7481 if (WalkingBEDominatingConds) 7482 return false; 7483 7484 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7485 7486 // See if we can exploit a trip count to prove the predicate. 7487 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7488 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7489 if (LatchBECount != getCouldNotCompute()) { 7490 // We know that Latch branches back to the loop header exactly 7491 // LatchBECount times. This means the backdege condition at Latch is 7492 // equivalent to "{0,+,1} u< LatchBECount". 7493 Type *Ty = LatchBECount->getType(); 7494 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7495 const SCEV *LoopCounter = 7496 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7497 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7498 LatchBECount)) 7499 return true; 7500 } 7501 7502 // Check conditions due to any @llvm.assume intrinsics. 7503 for (auto &AssumeVH : AC.assumptions()) { 7504 if (!AssumeVH) 7505 continue; 7506 auto *CI = cast<CallInst>(AssumeVH); 7507 if (!DT.dominates(CI, Latch->getTerminator())) 7508 continue; 7509 7510 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7511 return true; 7512 } 7513 7514 // If the loop is not reachable from the entry block, we risk running into an 7515 // infinite loop as we walk up into the dom tree. These loops do not matter 7516 // anyway, so we just return a conservative answer when we see them. 7517 if (!DT.isReachableFromEntry(L->getHeader())) 7518 return false; 7519 7520 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7521 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7522 7523 assert(DTN && "should reach the loop header before reaching the root!"); 7524 7525 BasicBlock *BB = DTN->getBlock(); 7526 BasicBlock *PBB = BB->getSinglePredecessor(); 7527 if (!PBB) 7528 continue; 7529 7530 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7531 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7532 continue; 7533 7534 Value *Condition = ContinuePredicate->getCondition(); 7535 7536 // If we have an edge `E` within the loop body that dominates the only 7537 // latch, the condition guarding `E` also guards the backedge. This 7538 // reasoning works only for loops with a single latch. 7539 7540 BasicBlockEdge DominatingEdge(PBB, BB); 7541 if (DominatingEdge.isSingleEdge()) { 7542 // We're constructively (and conservatively) enumerating edges within the 7543 // loop body that dominate the latch. The dominator tree better agree 7544 // with us on this: 7545 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7546 7547 if (isImpliedCond(Pred, LHS, RHS, Condition, 7548 BB != ContinuePredicate->getSuccessor(0))) 7549 return true; 7550 } 7551 } 7552 7553 return false; 7554 } 7555 7556 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7557 /// by a conditional between LHS and RHS. This is used to help avoid max 7558 /// expressions in loop trip counts, and to eliminate casts. 7559 bool 7560 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7561 ICmpInst::Predicate Pred, 7562 const SCEV *LHS, const SCEV *RHS) { 7563 // Interpret a null as meaning no loop, where there is obviously no guard 7564 // (interprocedural conditions notwithstanding). 7565 if (!L) return false; 7566 7567 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7568 return true; 7569 7570 // Starting at the loop predecessor, climb up the predecessor chain, as long 7571 // as there are predecessors that can be found that have unique successors 7572 // leading to the original header. 7573 for (std::pair<BasicBlock *, BasicBlock *> 7574 Pair(L->getLoopPredecessor(), L->getHeader()); 7575 Pair.first; 7576 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7577 7578 BranchInst *LoopEntryPredicate = 7579 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7580 if (!LoopEntryPredicate || 7581 LoopEntryPredicate->isUnconditional()) 7582 continue; 7583 7584 if (isImpliedCond(Pred, LHS, RHS, 7585 LoopEntryPredicate->getCondition(), 7586 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7587 return true; 7588 } 7589 7590 // Check conditions due to any @llvm.assume intrinsics. 7591 for (auto &AssumeVH : AC.assumptions()) { 7592 if (!AssumeVH) 7593 continue; 7594 auto *CI = cast<CallInst>(AssumeVH); 7595 if (!DT.dominates(CI, L->getHeader())) 7596 continue; 7597 7598 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7599 return true; 7600 } 7601 7602 return false; 7603 } 7604 7605 namespace { 7606 /// RAII wrapper to prevent recursive application of isImpliedCond. 7607 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7608 /// currently evaluating isImpliedCond. 7609 struct MarkPendingLoopPredicate { 7610 Value *Cond; 7611 DenseSet<Value*> &LoopPreds; 7612 bool Pending; 7613 7614 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7615 : Cond(C), LoopPreds(LP) { 7616 Pending = !LoopPreds.insert(Cond).second; 7617 } 7618 ~MarkPendingLoopPredicate() { 7619 if (!Pending) 7620 LoopPreds.erase(Cond); 7621 } 7622 }; 7623 } // end anonymous namespace 7624 7625 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7626 /// and RHS is true whenever the given Cond value evaluates to true. 7627 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7628 const SCEV *LHS, const SCEV *RHS, 7629 Value *FoundCondValue, 7630 bool Inverse) { 7631 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7632 if (Mark.Pending) 7633 return false; 7634 7635 // Recursively handle And and Or conditions. 7636 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7637 if (BO->getOpcode() == Instruction::And) { 7638 if (!Inverse) 7639 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7640 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7641 } else if (BO->getOpcode() == Instruction::Or) { 7642 if (Inverse) 7643 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7644 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7645 } 7646 } 7647 7648 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7649 if (!ICI) return false; 7650 7651 // Now that we found a conditional branch that dominates the loop or controls 7652 // the loop latch. Check to see if it is the comparison we are looking for. 7653 ICmpInst::Predicate FoundPred; 7654 if (Inverse) 7655 FoundPred = ICI->getInversePredicate(); 7656 else 7657 FoundPred = ICI->getPredicate(); 7658 7659 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7660 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7661 7662 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7663 } 7664 7665 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7666 const SCEV *RHS, 7667 ICmpInst::Predicate FoundPred, 7668 const SCEV *FoundLHS, 7669 const SCEV *FoundRHS) { 7670 // Balance the types. 7671 if (getTypeSizeInBits(LHS->getType()) < 7672 getTypeSizeInBits(FoundLHS->getType())) { 7673 if (CmpInst::isSigned(Pred)) { 7674 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7675 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7676 } else { 7677 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7678 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7679 } 7680 } else if (getTypeSizeInBits(LHS->getType()) > 7681 getTypeSizeInBits(FoundLHS->getType())) { 7682 if (CmpInst::isSigned(FoundPred)) { 7683 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7684 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7685 } else { 7686 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7687 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7688 } 7689 } 7690 7691 // Canonicalize the query to match the way instcombine will have 7692 // canonicalized the comparison. 7693 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7694 if (LHS == RHS) 7695 return CmpInst::isTrueWhenEqual(Pred); 7696 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7697 if (FoundLHS == FoundRHS) 7698 return CmpInst::isFalseWhenEqual(FoundPred); 7699 7700 // Check to see if we can make the LHS or RHS match. 7701 if (LHS == FoundRHS || RHS == FoundLHS) { 7702 if (isa<SCEVConstant>(RHS)) { 7703 std::swap(FoundLHS, FoundRHS); 7704 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7705 } else { 7706 std::swap(LHS, RHS); 7707 Pred = ICmpInst::getSwappedPredicate(Pred); 7708 } 7709 } 7710 7711 // Check whether the found predicate is the same as the desired predicate. 7712 if (FoundPred == Pred) 7713 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7714 7715 // Check whether swapping the found predicate makes it the same as the 7716 // desired predicate. 7717 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7718 if (isa<SCEVConstant>(RHS)) 7719 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7720 else 7721 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7722 RHS, LHS, FoundLHS, FoundRHS); 7723 } 7724 7725 // Unsigned comparison is the same as signed comparison when both the operands 7726 // are non-negative. 7727 if (CmpInst::isUnsigned(FoundPred) && 7728 CmpInst::getSignedPredicate(FoundPred) == Pred && 7729 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7730 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7731 7732 // Check if we can make progress by sharpening ranges. 7733 if (FoundPred == ICmpInst::ICMP_NE && 7734 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7735 7736 const SCEVConstant *C = nullptr; 7737 const SCEV *V = nullptr; 7738 7739 if (isa<SCEVConstant>(FoundLHS)) { 7740 C = cast<SCEVConstant>(FoundLHS); 7741 V = FoundRHS; 7742 } else { 7743 C = cast<SCEVConstant>(FoundRHS); 7744 V = FoundLHS; 7745 } 7746 7747 // The guarding predicate tells us that C != V. If the known range 7748 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7749 // range we consider has to correspond to same signedness as the 7750 // predicate we're interested in folding. 7751 7752 APInt Min = ICmpInst::isSigned(Pred) ? 7753 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7754 7755 if (Min == C->getAPInt()) { 7756 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7757 // This is true even if (Min + 1) wraps around -- in case of 7758 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7759 7760 APInt SharperMin = Min + 1; 7761 7762 switch (Pred) { 7763 case ICmpInst::ICMP_SGE: 7764 case ICmpInst::ICMP_UGE: 7765 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7766 // RHS, we're done. 7767 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7768 getConstant(SharperMin))) 7769 return true; 7770 7771 case ICmpInst::ICMP_SGT: 7772 case ICmpInst::ICMP_UGT: 7773 // We know from the range information that (V `Pred` Min || 7774 // V == Min). We know from the guarding condition that !(V 7775 // == Min). This gives us 7776 // 7777 // V `Pred` Min || V == Min && !(V == Min) 7778 // => V `Pred` Min 7779 // 7780 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7781 7782 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7783 return true; 7784 7785 default: 7786 // No change 7787 break; 7788 } 7789 } 7790 } 7791 7792 // Check whether the actual condition is beyond sufficient. 7793 if (FoundPred == ICmpInst::ICMP_EQ) 7794 if (ICmpInst::isTrueWhenEqual(Pred)) 7795 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7796 return true; 7797 if (Pred == ICmpInst::ICMP_NE) 7798 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7799 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7800 return true; 7801 7802 // Otherwise assume the worst. 7803 return false; 7804 } 7805 7806 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7807 const SCEV *&L, const SCEV *&R, 7808 SCEV::NoWrapFlags &Flags) { 7809 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7810 if (!AE || AE->getNumOperands() != 2) 7811 return false; 7812 7813 L = AE->getOperand(0); 7814 R = AE->getOperand(1); 7815 Flags = AE->getNoWrapFlags(); 7816 return true; 7817 } 7818 7819 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7820 const SCEV *More, 7821 APInt &C) { 7822 // We avoid subtracting expressions here because this function is usually 7823 // fairly deep in the call stack (i.e. is called many times). 7824 7825 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7826 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7827 const auto *MAR = cast<SCEVAddRecExpr>(More); 7828 7829 if (LAR->getLoop() != MAR->getLoop()) 7830 return false; 7831 7832 // We look at affine expressions only; not for correctness but to keep 7833 // getStepRecurrence cheap. 7834 if (!LAR->isAffine() || !MAR->isAffine()) 7835 return false; 7836 7837 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7838 return false; 7839 7840 Less = LAR->getStart(); 7841 More = MAR->getStart(); 7842 7843 // fall through 7844 } 7845 7846 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7847 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 7848 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 7849 C = M - L; 7850 return true; 7851 } 7852 7853 const SCEV *L, *R; 7854 SCEV::NoWrapFlags Flags; 7855 if (splitBinaryAdd(Less, L, R, Flags)) 7856 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7857 if (R == More) { 7858 C = -(LC->getAPInt()); 7859 return true; 7860 } 7861 7862 if (splitBinaryAdd(More, L, R, Flags)) 7863 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7864 if (R == Less) { 7865 C = LC->getAPInt(); 7866 return true; 7867 } 7868 7869 return false; 7870 } 7871 7872 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7873 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7874 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7875 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7876 return false; 7877 7878 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7879 if (!AddRecLHS) 7880 return false; 7881 7882 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7883 if (!AddRecFoundLHS) 7884 return false; 7885 7886 // We'd like to let SCEV reason about control dependencies, so we constrain 7887 // both the inequalities to be about add recurrences on the same loop. This 7888 // way we can use isLoopEntryGuardedByCond later. 7889 7890 const Loop *L = AddRecFoundLHS->getLoop(); 7891 if (L != AddRecLHS->getLoop()) 7892 return false; 7893 7894 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7895 // 7896 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7897 // ... (2) 7898 // 7899 // Informal proof for (2), assuming (1) [*]: 7900 // 7901 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7902 // 7903 // Then 7904 // 7905 // FoundLHS s< FoundRHS s< INT_MIN - C 7906 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7907 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7908 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7909 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7910 // <=> FoundLHS + C s< FoundRHS + C 7911 // 7912 // [*]: (1) can be proved by ruling out overflow. 7913 // 7914 // [**]: This can be proved by analyzing all the four possibilities: 7915 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7916 // (A s>= 0, B s>= 0). 7917 // 7918 // Note: 7919 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7920 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7921 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7922 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7923 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7924 // C)". 7925 7926 APInt LDiff, RDiff; 7927 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7928 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7929 LDiff != RDiff) 7930 return false; 7931 7932 if (LDiff == 0) 7933 return true; 7934 7935 APInt FoundRHSLimit; 7936 7937 if (Pred == CmpInst::ICMP_ULT) { 7938 FoundRHSLimit = -RDiff; 7939 } else { 7940 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7941 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7942 } 7943 7944 // Try to prove (1) or (2), as needed. 7945 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7946 getConstant(FoundRHSLimit)); 7947 } 7948 7949 /// isImpliedCondOperands - Test whether the condition described by Pred, 7950 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7951 /// and FoundRHS is true. 7952 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7953 const SCEV *LHS, const SCEV *RHS, 7954 const SCEV *FoundLHS, 7955 const SCEV *FoundRHS) { 7956 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7957 return true; 7958 7959 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7960 return true; 7961 7962 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7963 FoundLHS, FoundRHS) || 7964 // ~x < ~y --> x > y 7965 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7966 getNotSCEV(FoundRHS), 7967 getNotSCEV(FoundLHS)); 7968 } 7969 7970 7971 /// If Expr computes ~A, return A else return nullptr 7972 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7973 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7974 if (!Add || Add->getNumOperands() != 2 || 7975 !Add->getOperand(0)->isAllOnesValue()) 7976 return nullptr; 7977 7978 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7979 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7980 !AddRHS->getOperand(0)->isAllOnesValue()) 7981 return nullptr; 7982 7983 return AddRHS->getOperand(1); 7984 } 7985 7986 7987 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7988 template<typename MaxExprType> 7989 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7990 const SCEV *Candidate) { 7991 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7992 if (!MaxExpr) return false; 7993 7994 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 7995 } 7996 7997 7998 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7999 template<typename MaxExprType> 8000 static bool IsMinConsistingOf(ScalarEvolution &SE, 8001 const SCEV *MaybeMinExpr, 8002 const SCEV *Candidate) { 8003 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8004 if (!MaybeMaxExpr) 8005 return false; 8006 8007 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8008 } 8009 8010 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8011 ICmpInst::Predicate Pred, 8012 const SCEV *LHS, const SCEV *RHS) { 8013 8014 // If both sides are affine addrecs for the same loop, with equal 8015 // steps, and we know the recurrences don't wrap, then we only 8016 // need to check the predicate on the starting values. 8017 8018 if (!ICmpInst::isRelational(Pred)) 8019 return false; 8020 8021 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8022 if (!LAR) 8023 return false; 8024 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8025 if (!RAR) 8026 return false; 8027 if (LAR->getLoop() != RAR->getLoop()) 8028 return false; 8029 if (!LAR->isAffine() || !RAR->isAffine()) 8030 return false; 8031 8032 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8033 return false; 8034 8035 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8036 SCEV::FlagNSW : SCEV::FlagNUW; 8037 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8038 return false; 8039 8040 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8041 } 8042 8043 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8044 /// expression? 8045 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8046 ICmpInst::Predicate Pred, 8047 const SCEV *LHS, const SCEV *RHS) { 8048 switch (Pred) { 8049 default: 8050 return false; 8051 8052 case ICmpInst::ICMP_SGE: 8053 std::swap(LHS, RHS); 8054 // fall through 8055 case ICmpInst::ICMP_SLE: 8056 return 8057 // min(A, ...) <= A 8058 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8059 // A <= max(A, ...) 8060 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8061 8062 case ICmpInst::ICMP_UGE: 8063 std::swap(LHS, RHS); 8064 // fall through 8065 case ICmpInst::ICMP_ULE: 8066 return 8067 // min(A, ...) <= A 8068 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8069 // A <= max(A, ...) 8070 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8071 } 8072 8073 llvm_unreachable("covered switch fell through?!"); 8074 } 8075 8076 /// isImpliedCondOperandsHelper - Test whether the condition described by 8077 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8078 /// FoundLHS, and FoundRHS is true. 8079 bool 8080 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8081 const SCEV *LHS, const SCEV *RHS, 8082 const SCEV *FoundLHS, 8083 const SCEV *FoundRHS) { 8084 auto IsKnownPredicateFull = 8085 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8086 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8087 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8088 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8089 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8090 }; 8091 8092 switch (Pred) { 8093 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8094 case ICmpInst::ICMP_EQ: 8095 case ICmpInst::ICMP_NE: 8096 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8097 return true; 8098 break; 8099 case ICmpInst::ICMP_SLT: 8100 case ICmpInst::ICMP_SLE: 8101 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8102 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8103 return true; 8104 break; 8105 case ICmpInst::ICMP_SGT: 8106 case ICmpInst::ICMP_SGE: 8107 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8108 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8109 return true; 8110 break; 8111 case ICmpInst::ICMP_ULT: 8112 case ICmpInst::ICMP_ULE: 8113 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8114 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8115 return true; 8116 break; 8117 case ICmpInst::ICMP_UGT: 8118 case ICmpInst::ICMP_UGE: 8119 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8120 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8121 return true; 8122 break; 8123 } 8124 8125 return false; 8126 } 8127 8128 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8129 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8130 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8131 const SCEV *LHS, 8132 const SCEV *RHS, 8133 const SCEV *FoundLHS, 8134 const SCEV *FoundRHS) { 8135 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8136 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8137 // reduce the compile time impact of this optimization. 8138 return false; 8139 8140 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8141 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8142 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8143 return false; 8144 8145 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8146 8147 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8148 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8149 ConstantRange FoundLHSRange = 8150 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8151 8152 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8153 // for `LHS`: 8154 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8155 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8156 8157 // We can also compute the range of values for `LHS` that satisfy the 8158 // consequent, "`LHS` `Pred` `RHS`": 8159 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8160 ConstantRange SatisfyingLHSRange = 8161 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8162 8163 // The antecedent implies the consequent if every value of `LHS` that 8164 // satisfies the antecedent also satisfies the consequent. 8165 return SatisfyingLHSRange.contains(LHSRange); 8166 } 8167 8168 // Verify if an linear IV with positive stride can overflow when in a 8169 // less-than comparison, knowing the invariant term of the comparison, the 8170 // stride and the knowledge of NSW/NUW flags on the recurrence. 8171 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8172 bool IsSigned, bool NoWrap) { 8173 if (NoWrap) return false; 8174 8175 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8176 const SCEV *One = getOne(Stride->getType()); 8177 8178 if (IsSigned) { 8179 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8180 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8181 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8182 .getSignedMax(); 8183 8184 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8185 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8186 } 8187 8188 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8189 APInt MaxValue = APInt::getMaxValue(BitWidth); 8190 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8191 .getUnsignedMax(); 8192 8193 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8194 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8195 } 8196 8197 // Verify if an linear IV with negative stride can overflow when in a 8198 // greater-than comparison, knowing the invariant term of the comparison, 8199 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8200 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8201 bool IsSigned, bool NoWrap) { 8202 if (NoWrap) return false; 8203 8204 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8205 const SCEV *One = getOne(Stride->getType()); 8206 8207 if (IsSigned) { 8208 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8209 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8210 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8211 .getSignedMax(); 8212 8213 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8214 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8215 } 8216 8217 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8218 APInt MinValue = APInt::getMinValue(BitWidth); 8219 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8220 .getUnsignedMax(); 8221 8222 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8223 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8224 } 8225 8226 // Compute the backedge taken count knowing the interval difference, the 8227 // stride and presence of the equality in the comparison. 8228 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8229 bool Equality) { 8230 const SCEV *One = getOne(Step->getType()); 8231 Delta = Equality ? getAddExpr(Delta, Step) 8232 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8233 return getUDivExpr(Delta, Step); 8234 } 8235 8236 /// HowManyLessThans - Return the number of times a backedge containing the 8237 /// specified less-than comparison will execute. If not computable, return 8238 /// CouldNotCompute. 8239 /// 8240 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8241 /// the branch (loops exits only if condition is true). In this case, we can use 8242 /// NoWrapFlags to skip overflow checks. 8243 ScalarEvolution::ExitLimit 8244 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8245 const Loop *L, bool IsSigned, 8246 bool ControlsExit) { 8247 // We handle only IV < Invariant 8248 if (!isLoopInvariant(RHS, L)) 8249 return getCouldNotCompute(); 8250 8251 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8252 8253 // Avoid weird loops 8254 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8255 return getCouldNotCompute(); 8256 8257 bool NoWrap = ControlsExit && 8258 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8259 8260 const SCEV *Stride = IV->getStepRecurrence(*this); 8261 8262 // Avoid negative or zero stride values 8263 if (!isKnownPositive(Stride)) 8264 return getCouldNotCompute(); 8265 8266 // Avoid proven overflow cases: this will ensure that the backedge taken count 8267 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8268 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8269 // behaviors like the case of C language. 8270 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8271 return getCouldNotCompute(); 8272 8273 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8274 : ICmpInst::ICMP_ULT; 8275 const SCEV *Start = IV->getStart(); 8276 const SCEV *End = RHS; 8277 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8278 const SCEV *Diff = getMinusSCEV(RHS, Start); 8279 // If we have NoWrap set, then we can assume that the increment won't 8280 // overflow, in which case if RHS - Start is a constant, we don't need to 8281 // do a max operation since we can just figure it out statically 8282 if (NoWrap && isa<SCEVConstant>(Diff)) { 8283 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8284 if (D.isNegative()) 8285 End = Start; 8286 } else 8287 End = IsSigned ? getSMaxExpr(RHS, Start) 8288 : getUMaxExpr(RHS, Start); 8289 } 8290 8291 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8292 8293 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8294 : getUnsignedRange(Start).getUnsignedMin(); 8295 8296 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8297 : getUnsignedRange(Stride).getUnsignedMin(); 8298 8299 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8300 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8301 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8302 8303 // Although End can be a MAX expression we estimate MaxEnd considering only 8304 // the case End = RHS. This is safe because in the other case (End - Start) 8305 // is zero, leading to a zero maximum backedge taken count. 8306 APInt MaxEnd = 8307 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8308 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8309 8310 const SCEV *MaxBECount; 8311 if (isa<SCEVConstant>(BECount)) 8312 MaxBECount = BECount; 8313 else 8314 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8315 getConstant(MinStride), false); 8316 8317 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8318 MaxBECount = BECount; 8319 8320 return ExitLimit(BECount, MaxBECount); 8321 } 8322 8323 ScalarEvolution::ExitLimit 8324 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8325 const Loop *L, bool IsSigned, 8326 bool ControlsExit) { 8327 // We handle only IV > Invariant 8328 if (!isLoopInvariant(RHS, L)) 8329 return getCouldNotCompute(); 8330 8331 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8332 8333 // Avoid weird loops 8334 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8335 return getCouldNotCompute(); 8336 8337 bool NoWrap = ControlsExit && 8338 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8339 8340 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8341 8342 // Avoid negative or zero stride values 8343 if (!isKnownPositive(Stride)) 8344 return getCouldNotCompute(); 8345 8346 // Avoid proven overflow cases: this will ensure that the backedge taken count 8347 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8348 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8349 // behaviors like the case of C language. 8350 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8351 return getCouldNotCompute(); 8352 8353 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8354 : ICmpInst::ICMP_UGT; 8355 8356 const SCEV *Start = IV->getStart(); 8357 const SCEV *End = RHS; 8358 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8359 const SCEV *Diff = getMinusSCEV(RHS, Start); 8360 // If we have NoWrap set, then we can assume that the increment won't 8361 // overflow, in which case if RHS - Start is a constant, we don't need to 8362 // do a max operation since we can just figure it out statically 8363 if (NoWrap && isa<SCEVConstant>(Diff)) { 8364 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8365 if (!D.isNegative()) 8366 End = Start; 8367 } else 8368 End = IsSigned ? getSMinExpr(RHS, Start) 8369 : getUMinExpr(RHS, Start); 8370 } 8371 8372 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8373 8374 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8375 : getUnsignedRange(Start).getUnsignedMax(); 8376 8377 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8378 : getUnsignedRange(Stride).getUnsignedMin(); 8379 8380 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8381 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8382 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8383 8384 // Although End can be a MIN expression we estimate MinEnd considering only 8385 // the case End = RHS. This is safe because in the other case (Start - End) 8386 // is zero, leading to a zero maximum backedge taken count. 8387 APInt MinEnd = 8388 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8389 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8390 8391 8392 const SCEV *MaxBECount = getCouldNotCompute(); 8393 if (isa<SCEVConstant>(BECount)) 8394 MaxBECount = BECount; 8395 else 8396 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8397 getConstant(MinStride), false); 8398 8399 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8400 MaxBECount = BECount; 8401 8402 return ExitLimit(BECount, MaxBECount); 8403 } 8404 8405 /// getNumIterationsInRange - Return the number of iterations of this loop that 8406 /// produce values in the specified constant range. Another way of looking at 8407 /// this is that it returns the first iteration number where the value is not in 8408 /// the condition, thus computing the exit count. If the iteration count can't 8409 /// be computed, an instance of SCEVCouldNotCompute is returned. 8410 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8411 ScalarEvolution &SE) const { 8412 if (Range.isFullSet()) // Infinite loop. 8413 return SE.getCouldNotCompute(); 8414 8415 // If the start is a non-zero constant, shift the range to simplify things. 8416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8417 if (!SC->getValue()->isZero()) { 8418 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8419 Operands[0] = SE.getZero(SC->getType()); 8420 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8421 getNoWrapFlags(FlagNW)); 8422 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8423 return ShiftedAddRec->getNumIterationsInRange( 8424 Range.subtract(SC->getAPInt()), SE); 8425 // This is strange and shouldn't happen. 8426 return SE.getCouldNotCompute(); 8427 } 8428 8429 // The only time we can solve this is when we have all constant indices. 8430 // Otherwise, we cannot determine the overflow conditions. 8431 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8432 return SE.getCouldNotCompute(); 8433 8434 // Okay at this point we know that all elements of the chrec are constants and 8435 // that the start element is zero. 8436 8437 // First check to see if the range contains zero. If not, the first 8438 // iteration exits. 8439 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8440 if (!Range.contains(APInt(BitWidth, 0))) 8441 return SE.getZero(getType()); 8442 8443 if (isAffine()) { 8444 // If this is an affine expression then we have this situation: 8445 // Solve {0,+,A} in Range === Ax in Range 8446 8447 // We know that zero is in the range. If A is positive then we know that 8448 // the upper value of the range must be the first possible exit value. 8449 // If A is negative then the lower of the range is the last possible loop 8450 // value. Also note that we already checked for a full range. 8451 APInt One(BitWidth,1); 8452 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8453 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8454 8455 // The exit value should be (End+A)/A. 8456 APInt ExitVal = (End + A).udiv(A); 8457 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8458 8459 // Evaluate at the exit value. If we really did fall out of the valid 8460 // range, then we computed our trip count, otherwise wrap around or other 8461 // things must have happened. 8462 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8463 if (Range.contains(Val->getValue())) 8464 return SE.getCouldNotCompute(); // Something strange happened 8465 8466 // Ensure that the previous value is in the range. This is a sanity check. 8467 assert(Range.contains( 8468 EvaluateConstantChrecAtConstant(this, 8469 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8470 "Linear scev computation is off in a bad way!"); 8471 return SE.getConstant(ExitValue); 8472 } else if (isQuadratic()) { 8473 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8474 // quadratic equation to solve it. To do this, we must frame our problem in 8475 // terms of figuring out when zero is crossed, instead of when 8476 // Range.getUpper() is crossed. 8477 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8478 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8479 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8480 // getNoWrapFlags(FlagNW) 8481 FlagAnyWrap); 8482 8483 // Next, solve the constructed addrec 8484 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8485 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8486 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8487 if (R1) { 8488 // Pick the smallest positive root value. 8489 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8490 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8491 if (!CB->getZExtValue()) 8492 std::swap(R1, R2); // R1 is the minimum root now. 8493 8494 // Make sure the root is not off by one. The returned iteration should 8495 // not be in the range, but the previous one should be. When solving 8496 // for "X*X < 5", for example, we should not return a root of 2. 8497 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8498 R1->getValue(), 8499 SE); 8500 if (Range.contains(R1Val->getValue())) { 8501 // The next iteration must be out of the range... 8502 ConstantInt *NextVal = 8503 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8504 8505 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8506 if (!Range.contains(R1Val->getValue())) 8507 return SE.getConstant(NextVal); 8508 return SE.getCouldNotCompute(); // Something strange happened 8509 } 8510 8511 // If R1 was not in the range, then it is a good return value. Make 8512 // sure that R1-1 WAS in the range though, just in case. 8513 ConstantInt *NextVal = 8514 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8515 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8516 if (Range.contains(R1Val->getValue())) 8517 return R1; 8518 return SE.getCouldNotCompute(); // Something strange happened 8519 } 8520 } 8521 } 8522 8523 return SE.getCouldNotCompute(); 8524 } 8525 8526 namespace { 8527 struct FindUndefs { 8528 bool Found; 8529 FindUndefs() : Found(false) {} 8530 8531 bool follow(const SCEV *S) { 8532 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8533 if (isa<UndefValue>(C->getValue())) 8534 Found = true; 8535 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8536 if (isa<UndefValue>(C->getValue())) 8537 Found = true; 8538 } 8539 8540 // Keep looking if we haven't found it yet. 8541 return !Found; 8542 } 8543 bool isDone() const { 8544 // Stop recursion if we have found an undef. 8545 return Found; 8546 } 8547 }; 8548 } 8549 8550 // Return true when S contains at least an undef value. 8551 static inline bool 8552 containsUndefs(const SCEV *S) { 8553 FindUndefs F; 8554 SCEVTraversal<FindUndefs> ST(F); 8555 ST.visitAll(S); 8556 8557 return F.Found; 8558 } 8559 8560 namespace { 8561 // Collect all steps of SCEV expressions. 8562 struct SCEVCollectStrides { 8563 ScalarEvolution &SE; 8564 SmallVectorImpl<const SCEV *> &Strides; 8565 8566 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8567 : SE(SE), Strides(S) {} 8568 8569 bool follow(const SCEV *S) { 8570 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8571 Strides.push_back(AR->getStepRecurrence(SE)); 8572 return true; 8573 } 8574 bool isDone() const { return false; } 8575 }; 8576 8577 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8578 struct SCEVCollectTerms { 8579 SmallVectorImpl<const SCEV *> &Terms; 8580 8581 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8582 : Terms(T) {} 8583 8584 bool follow(const SCEV *S) { 8585 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8586 if (!containsUndefs(S)) 8587 Terms.push_back(S); 8588 8589 // Stop recursion: once we collected a term, do not walk its operands. 8590 return false; 8591 } 8592 8593 // Keep looking. 8594 return true; 8595 } 8596 bool isDone() const { return false; } 8597 }; 8598 8599 // Check if a SCEV contains an AddRecExpr. 8600 struct SCEVHasAddRec { 8601 bool &ContainsAddRec; 8602 8603 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8604 ContainsAddRec = false; 8605 } 8606 8607 bool follow(const SCEV *S) { 8608 if (isa<SCEVAddRecExpr>(S)) { 8609 ContainsAddRec = true; 8610 8611 // Stop recursion: once we collected a term, do not walk its operands. 8612 return false; 8613 } 8614 8615 // Keep looking. 8616 return true; 8617 } 8618 bool isDone() const { return false; } 8619 }; 8620 8621 // Find factors that are multiplied with an expression that (possibly as a 8622 // subexpression) contains an AddRecExpr. In the expression: 8623 // 8624 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8625 // 8626 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8627 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8628 // parameters as they form a product with an induction variable. 8629 // 8630 // This collector expects all array size parameters to be in the same MulExpr. 8631 // It might be necessary to later add support for collecting parameters that are 8632 // spread over different nested MulExpr. 8633 struct SCEVCollectAddRecMultiplies { 8634 SmallVectorImpl<const SCEV *> &Terms; 8635 ScalarEvolution &SE; 8636 8637 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8638 : Terms(T), SE(SE) {} 8639 8640 bool follow(const SCEV *S) { 8641 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8642 bool HasAddRec = false; 8643 SmallVector<const SCEV *, 0> Operands; 8644 for (auto Op : Mul->operands()) { 8645 if (isa<SCEVUnknown>(Op)) { 8646 Operands.push_back(Op); 8647 } else { 8648 bool ContainsAddRec; 8649 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8650 visitAll(Op, ContiansAddRec); 8651 HasAddRec |= ContainsAddRec; 8652 } 8653 } 8654 if (Operands.size() == 0) 8655 return true; 8656 8657 if (!HasAddRec) 8658 return false; 8659 8660 Terms.push_back(SE.getMulExpr(Operands)); 8661 // Stop recursion: once we collected a term, do not walk its operands. 8662 return false; 8663 } 8664 8665 // Keep looking. 8666 return true; 8667 } 8668 bool isDone() const { return false; } 8669 }; 8670 } 8671 8672 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8673 /// two places: 8674 /// 1) The strides of AddRec expressions. 8675 /// 2) Unknowns that are multiplied with AddRec expressions. 8676 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8677 SmallVectorImpl<const SCEV *> &Terms) { 8678 SmallVector<const SCEV *, 4> Strides; 8679 SCEVCollectStrides StrideCollector(*this, Strides); 8680 visitAll(Expr, StrideCollector); 8681 8682 DEBUG({ 8683 dbgs() << "Strides:\n"; 8684 for (const SCEV *S : Strides) 8685 dbgs() << *S << "\n"; 8686 }); 8687 8688 for (const SCEV *S : Strides) { 8689 SCEVCollectTerms TermCollector(Terms); 8690 visitAll(S, TermCollector); 8691 } 8692 8693 DEBUG({ 8694 dbgs() << "Terms:\n"; 8695 for (const SCEV *T : Terms) 8696 dbgs() << *T << "\n"; 8697 }); 8698 8699 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8700 visitAll(Expr, MulCollector); 8701 } 8702 8703 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8704 SmallVectorImpl<const SCEV *> &Terms, 8705 SmallVectorImpl<const SCEV *> &Sizes) { 8706 int Last = Terms.size() - 1; 8707 const SCEV *Step = Terms[Last]; 8708 8709 // End of recursion. 8710 if (Last == 0) { 8711 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8712 SmallVector<const SCEV *, 2> Qs; 8713 for (const SCEV *Op : M->operands()) 8714 if (!isa<SCEVConstant>(Op)) 8715 Qs.push_back(Op); 8716 8717 Step = SE.getMulExpr(Qs); 8718 } 8719 8720 Sizes.push_back(Step); 8721 return true; 8722 } 8723 8724 for (const SCEV *&Term : Terms) { 8725 // Normalize the terms before the next call to findArrayDimensionsRec. 8726 const SCEV *Q, *R; 8727 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8728 8729 // Bail out when GCD does not evenly divide one of the terms. 8730 if (!R->isZero()) 8731 return false; 8732 8733 Term = Q; 8734 } 8735 8736 // Remove all SCEVConstants. 8737 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8738 return isa<SCEVConstant>(E); 8739 }), 8740 Terms.end()); 8741 8742 if (Terms.size() > 0) 8743 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8744 return false; 8745 8746 Sizes.push_back(Step); 8747 return true; 8748 } 8749 8750 // Returns true when S contains at least a SCEVUnknown parameter. 8751 static inline bool 8752 containsParameters(const SCEV *S) { 8753 struct FindParameter { 8754 bool FoundParameter; 8755 FindParameter() : FoundParameter(false) {} 8756 8757 bool follow(const SCEV *S) { 8758 if (isa<SCEVUnknown>(S)) { 8759 FoundParameter = true; 8760 // Stop recursion: we found a parameter. 8761 return false; 8762 } 8763 // Keep looking. 8764 return true; 8765 } 8766 bool isDone() const { 8767 // Stop recursion if we have found a parameter. 8768 return FoundParameter; 8769 } 8770 }; 8771 8772 FindParameter F; 8773 SCEVTraversal<FindParameter> ST(F); 8774 ST.visitAll(S); 8775 8776 return F.FoundParameter; 8777 } 8778 8779 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8780 static inline bool 8781 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8782 for (const SCEV *T : Terms) 8783 if (containsParameters(T)) 8784 return true; 8785 return false; 8786 } 8787 8788 // Return the number of product terms in S. 8789 static inline int numberOfTerms(const SCEV *S) { 8790 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8791 return Expr->getNumOperands(); 8792 return 1; 8793 } 8794 8795 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8796 if (isa<SCEVConstant>(T)) 8797 return nullptr; 8798 8799 if (isa<SCEVUnknown>(T)) 8800 return T; 8801 8802 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8803 SmallVector<const SCEV *, 2> Factors; 8804 for (const SCEV *Op : M->operands()) 8805 if (!isa<SCEVConstant>(Op)) 8806 Factors.push_back(Op); 8807 8808 return SE.getMulExpr(Factors); 8809 } 8810 8811 return T; 8812 } 8813 8814 /// Return the size of an element read or written by Inst. 8815 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8816 Type *Ty; 8817 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8818 Ty = Store->getValueOperand()->getType(); 8819 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8820 Ty = Load->getType(); 8821 else 8822 return nullptr; 8823 8824 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8825 return getSizeOfExpr(ETy, Ty); 8826 } 8827 8828 /// Second step of delinearization: compute the array dimensions Sizes from the 8829 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8830 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8831 SmallVectorImpl<const SCEV *> &Sizes, 8832 const SCEV *ElementSize) const { 8833 8834 if (Terms.size() < 1 || !ElementSize) 8835 return; 8836 8837 // Early return when Terms do not contain parameters: we do not delinearize 8838 // non parametric SCEVs. 8839 if (!containsParameters(Terms)) 8840 return; 8841 8842 DEBUG({ 8843 dbgs() << "Terms:\n"; 8844 for (const SCEV *T : Terms) 8845 dbgs() << *T << "\n"; 8846 }); 8847 8848 // Remove duplicates. 8849 std::sort(Terms.begin(), Terms.end()); 8850 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8851 8852 // Put larger terms first. 8853 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8854 return numberOfTerms(LHS) > numberOfTerms(RHS); 8855 }); 8856 8857 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8858 8859 // Try to divide all terms by the element size. If term is not divisible by 8860 // element size, proceed with the original term. 8861 for (const SCEV *&Term : Terms) { 8862 const SCEV *Q, *R; 8863 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8864 if (!Q->isZero()) 8865 Term = Q; 8866 } 8867 8868 SmallVector<const SCEV *, 4> NewTerms; 8869 8870 // Remove constant factors. 8871 for (const SCEV *T : Terms) 8872 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8873 NewTerms.push_back(NewT); 8874 8875 DEBUG({ 8876 dbgs() << "Terms after sorting:\n"; 8877 for (const SCEV *T : NewTerms) 8878 dbgs() << *T << "\n"; 8879 }); 8880 8881 if (NewTerms.empty() || 8882 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8883 Sizes.clear(); 8884 return; 8885 } 8886 8887 // The last element to be pushed into Sizes is the size of an element. 8888 Sizes.push_back(ElementSize); 8889 8890 DEBUG({ 8891 dbgs() << "Sizes:\n"; 8892 for (const SCEV *S : Sizes) 8893 dbgs() << *S << "\n"; 8894 }); 8895 } 8896 8897 /// Third step of delinearization: compute the access functions for the 8898 /// Subscripts based on the dimensions in Sizes. 8899 void ScalarEvolution::computeAccessFunctions( 8900 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8901 SmallVectorImpl<const SCEV *> &Sizes) { 8902 8903 // Early exit in case this SCEV is not an affine multivariate function. 8904 if (Sizes.empty()) 8905 return; 8906 8907 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8908 if (!AR->isAffine()) 8909 return; 8910 8911 const SCEV *Res = Expr; 8912 int Last = Sizes.size() - 1; 8913 for (int i = Last; i >= 0; i--) { 8914 const SCEV *Q, *R; 8915 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8916 8917 DEBUG({ 8918 dbgs() << "Res: " << *Res << "\n"; 8919 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8920 dbgs() << "Res divided by Sizes[i]:\n"; 8921 dbgs() << "Quotient: " << *Q << "\n"; 8922 dbgs() << "Remainder: " << *R << "\n"; 8923 }); 8924 8925 Res = Q; 8926 8927 // Do not record the last subscript corresponding to the size of elements in 8928 // the array. 8929 if (i == Last) { 8930 8931 // Bail out if the remainder is too complex. 8932 if (isa<SCEVAddRecExpr>(R)) { 8933 Subscripts.clear(); 8934 Sizes.clear(); 8935 return; 8936 } 8937 8938 continue; 8939 } 8940 8941 // Record the access function for the current subscript. 8942 Subscripts.push_back(R); 8943 } 8944 8945 // Also push in last position the remainder of the last division: it will be 8946 // the access function of the innermost dimension. 8947 Subscripts.push_back(Res); 8948 8949 std::reverse(Subscripts.begin(), Subscripts.end()); 8950 8951 DEBUG({ 8952 dbgs() << "Subscripts:\n"; 8953 for (const SCEV *S : Subscripts) 8954 dbgs() << *S << "\n"; 8955 }); 8956 } 8957 8958 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8959 /// sizes of an array access. Returns the remainder of the delinearization that 8960 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8961 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8962 /// expressions in the stride and base of a SCEV corresponding to the 8963 /// computation of a GCD (greatest common divisor) of base and stride. When 8964 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8965 /// 8966 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8967 /// 8968 /// void foo(long n, long m, long o, double A[n][m][o]) { 8969 /// 8970 /// for (long i = 0; i < n; i++) 8971 /// for (long j = 0; j < m; j++) 8972 /// for (long k = 0; k < o; k++) 8973 /// A[i][j][k] = 1.0; 8974 /// } 8975 /// 8976 /// the delinearization input is the following AddRec SCEV: 8977 /// 8978 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8979 /// 8980 /// From this SCEV, we are able to say that the base offset of the access is %A 8981 /// because it appears as an offset that does not divide any of the strides in 8982 /// the loops: 8983 /// 8984 /// CHECK: Base offset: %A 8985 /// 8986 /// and then SCEV->delinearize determines the size of some of the dimensions of 8987 /// the array as these are the multiples by which the strides are happening: 8988 /// 8989 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8990 /// 8991 /// Note that the outermost dimension remains of UnknownSize because there are 8992 /// no strides that would help identifying the size of the last dimension: when 8993 /// the array has been statically allocated, one could compute the size of that 8994 /// dimension by dividing the overall size of the array by the size of the known 8995 /// dimensions: %m * %o * 8. 8996 /// 8997 /// Finally delinearize provides the access functions for the array reference 8998 /// that does correspond to A[i][j][k] of the above C testcase: 8999 /// 9000 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9001 /// 9002 /// The testcases are checking the output of a function pass: 9003 /// DelinearizationPass that walks through all loads and stores of a function 9004 /// asking for the SCEV of the memory access with respect to all enclosing 9005 /// loops, calling SCEV->delinearize on that and printing the results. 9006 9007 void ScalarEvolution::delinearize(const SCEV *Expr, 9008 SmallVectorImpl<const SCEV *> &Subscripts, 9009 SmallVectorImpl<const SCEV *> &Sizes, 9010 const SCEV *ElementSize) { 9011 // First step: collect parametric terms. 9012 SmallVector<const SCEV *, 4> Terms; 9013 collectParametricTerms(Expr, Terms); 9014 9015 if (Terms.empty()) 9016 return; 9017 9018 // Second step: find subscript sizes. 9019 findArrayDimensions(Terms, Sizes, ElementSize); 9020 9021 if (Sizes.empty()) 9022 return; 9023 9024 // Third step: compute the access functions for each subscript. 9025 computeAccessFunctions(Expr, Subscripts, Sizes); 9026 9027 if (Subscripts.empty()) 9028 return; 9029 9030 DEBUG({ 9031 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9032 dbgs() << "ArrayDecl[UnknownSize]"; 9033 for (const SCEV *S : Sizes) 9034 dbgs() << "[" << *S << "]"; 9035 9036 dbgs() << "\nArrayRef"; 9037 for (const SCEV *S : Subscripts) 9038 dbgs() << "[" << *S << "]"; 9039 dbgs() << "\n"; 9040 }); 9041 } 9042 9043 //===----------------------------------------------------------------------===// 9044 // SCEVCallbackVH Class Implementation 9045 //===----------------------------------------------------------------------===// 9046 9047 void ScalarEvolution::SCEVCallbackVH::deleted() { 9048 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9049 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9050 SE->ConstantEvolutionLoopExitValue.erase(PN); 9051 SE->eraseValueFromMap(getValPtr()); 9052 // this now dangles! 9053 } 9054 9055 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9056 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9057 9058 // Forget all the expressions associated with users of the old value, 9059 // so that future queries will recompute the expressions using the new 9060 // value. 9061 Value *Old = getValPtr(); 9062 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9063 SmallPtrSet<User *, 8> Visited; 9064 while (!Worklist.empty()) { 9065 User *U = Worklist.pop_back_val(); 9066 // Deleting the Old value will cause this to dangle. Postpone 9067 // that until everything else is done. 9068 if (U == Old) 9069 continue; 9070 if (!Visited.insert(U).second) 9071 continue; 9072 if (PHINode *PN = dyn_cast<PHINode>(U)) 9073 SE->ConstantEvolutionLoopExitValue.erase(PN); 9074 SE->eraseValueFromMap(U); 9075 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9076 } 9077 // Delete the Old value. 9078 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9079 SE->ConstantEvolutionLoopExitValue.erase(PN); 9080 SE->eraseValueFromMap(Old); 9081 // this now dangles! 9082 } 9083 9084 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9085 : CallbackVH(V), SE(se) {} 9086 9087 //===----------------------------------------------------------------------===// 9088 // ScalarEvolution Class Implementation 9089 //===----------------------------------------------------------------------===// 9090 9091 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9092 AssumptionCache &AC, DominatorTree &DT, 9093 LoopInfo &LI) 9094 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9095 CouldNotCompute(new SCEVCouldNotCompute()), 9096 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9097 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9098 FirstUnknown(nullptr) {} 9099 9100 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9101 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9102 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9103 ValueExprMap(std::move(Arg.ValueExprMap)), 9104 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9105 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9106 ConstantEvolutionLoopExitValue( 9107 std::move(Arg.ConstantEvolutionLoopExitValue)), 9108 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9109 LoopDispositions(std::move(Arg.LoopDispositions)), 9110 BlockDispositions(std::move(Arg.BlockDispositions)), 9111 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9112 SignedRanges(std::move(Arg.SignedRanges)), 9113 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9114 UniquePreds(std::move(Arg.UniquePreds)), 9115 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9116 FirstUnknown(Arg.FirstUnknown) { 9117 Arg.FirstUnknown = nullptr; 9118 } 9119 9120 ScalarEvolution::~ScalarEvolution() { 9121 // Iterate through all the SCEVUnknown instances and call their 9122 // destructors, so that they release their references to their values. 9123 for (SCEVUnknown *U = FirstUnknown; U;) { 9124 SCEVUnknown *Tmp = U; 9125 U = U->Next; 9126 Tmp->~SCEVUnknown(); 9127 } 9128 FirstUnknown = nullptr; 9129 9130 ExprValueMap.clear(); 9131 ValueExprMap.clear(); 9132 HasRecMap.clear(); 9133 9134 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9135 // that a loop had multiple computable exits. 9136 for (auto &BTCI : BackedgeTakenCounts) 9137 BTCI.second.clear(); 9138 9139 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9140 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9141 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9142 } 9143 9144 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9145 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9146 } 9147 9148 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9149 const Loop *L) { 9150 // Print all inner loops first 9151 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9152 PrintLoopInfo(OS, SE, *I); 9153 9154 OS << "Loop "; 9155 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9156 OS << ": "; 9157 9158 SmallVector<BasicBlock *, 8> ExitBlocks; 9159 L->getExitBlocks(ExitBlocks); 9160 if (ExitBlocks.size() != 1) 9161 OS << "<multiple exits> "; 9162 9163 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9164 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9165 } else { 9166 OS << "Unpredictable backedge-taken count. "; 9167 } 9168 9169 OS << "\n" 9170 "Loop "; 9171 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9172 OS << ": "; 9173 9174 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9175 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9176 } else { 9177 OS << "Unpredictable max backedge-taken count. "; 9178 } 9179 9180 OS << "\n"; 9181 } 9182 9183 void ScalarEvolution::print(raw_ostream &OS) const { 9184 // ScalarEvolution's implementation of the print method is to print 9185 // out SCEV values of all instructions that are interesting. Doing 9186 // this potentially causes it to create new SCEV objects though, 9187 // which technically conflicts with the const qualifier. This isn't 9188 // observable from outside the class though, so casting away the 9189 // const isn't dangerous. 9190 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9191 9192 OS << "Classifying expressions for: "; 9193 F.printAsOperand(OS, /*PrintType=*/false); 9194 OS << "\n"; 9195 for (Instruction &I : instructions(F)) 9196 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9197 OS << I << '\n'; 9198 OS << " --> "; 9199 const SCEV *SV = SE.getSCEV(&I); 9200 SV->print(OS); 9201 if (!isa<SCEVCouldNotCompute>(SV)) { 9202 OS << " U: "; 9203 SE.getUnsignedRange(SV).print(OS); 9204 OS << " S: "; 9205 SE.getSignedRange(SV).print(OS); 9206 } 9207 9208 const Loop *L = LI.getLoopFor(I.getParent()); 9209 9210 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9211 if (AtUse != SV) { 9212 OS << " --> "; 9213 AtUse->print(OS); 9214 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9215 OS << " U: "; 9216 SE.getUnsignedRange(AtUse).print(OS); 9217 OS << " S: "; 9218 SE.getSignedRange(AtUse).print(OS); 9219 } 9220 } 9221 9222 if (L) { 9223 OS << "\t\t" "Exits: "; 9224 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9225 if (!SE.isLoopInvariant(ExitValue, L)) { 9226 OS << "<<Unknown>>"; 9227 } else { 9228 OS << *ExitValue; 9229 } 9230 } 9231 9232 OS << "\n"; 9233 } 9234 9235 OS << "Determining loop execution counts for: "; 9236 F.printAsOperand(OS, /*PrintType=*/false); 9237 OS << "\n"; 9238 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9239 PrintLoopInfo(OS, &SE, *I); 9240 } 9241 9242 ScalarEvolution::LoopDisposition 9243 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9244 auto &Values = LoopDispositions[S]; 9245 for (auto &V : Values) { 9246 if (V.getPointer() == L) 9247 return V.getInt(); 9248 } 9249 Values.emplace_back(L, LoopVariant); 9250 LoopDisposition D = computeLoopDisposition(S, L); 9251 auto &Values2 = LoopDispositions[S]; 9252 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9253 if (V.getPointer() == L) { 9254 V.setInt(D); 9255 break; 9256 } 9257 } 9258 return D; 9259 } 9260 9261 ScalarEvolution::LoopDisposition 9262 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9263 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9264 case scConstant: 9265 return LoopInvariant; 9266 case scTruncate: 9267 case scZeroExtend: 9268 case scSignExtend: 9269 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9270 case scAddRecExpr: { 9271 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9272 9273 // If L is the addrec's loop, it's computable. 9274 if (AR->getLoop() == L) 9275 return LoopComputable; 9276 9277 // Add recurrences are never invariant in the function-body (null loop). 9278 if (!L) 9279 return LoopVariant; 9280 9281 // This recurrence is variant w.r.t. L if L contains AR's loop. 9282 if (L->contains(AR->getLoop())) 9283 return LoopVariant; 9284 9285 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9286 if (AR->getLoop()->contains(L)) 9287 return LoopInvariant; 9288 9289 // This recurrence is variant w.r.t. L if any of its operands 9290 // are variant. 9291 for (auto *Op : AR->operands()) 9292 if (!isLoopInvariant(Op, L)) 9293 return LoopVariant; 9294 9295 // Otherwise it's loop-invariant. 9296 return LoopInvariant; 9297 } 9298 case scAddExpr: 9299 case scMulExpr: 9300 case scUMaxExpr: 9301 case scSMaxExpr: { 9302 bool HasVarying = false; 9303 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9304 LoopDisposition D = getLoopDisposition(Op, L); 9305 if (D == LoopVariant) 9306 return LoopVariant; 9307 if (D == LoopComputable) 9308 HasVarying = true; 9309 } 9310 return HasVarying ? LoopComputable : LoopInvariant; 9311 } 9312 case scUDivExpr: { 9313 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9314 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9315 if (LD == LoopVariant) 9316 return LoopVariant; 9317 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9318 if (RD == LoopVariant) 9319 return LoopVariant; 9320 return (LD == LoopInvariant && RD == LoopInvariant) ? 9321 LoopInvariant : LoopComputable; 9322 } 9323 case scUnknown: 9324 // All non-instruction values are loop invariant. All instructions are loop 9325 // invariant if they are not contained in the specified loop. 9326 // Instructions are never considered invariant in the function body 9327 // (null loop) because they are defined within the "loop". 9328 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9329 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9330 return LoopInvariant; 9331 case scCouldNotCompute: 9332 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9333 } 9334 llvm_unreachable("Unknown SCEV kind!"); 9335 } 9336 9337 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9338 return getLoopDisposition(S, L) == LoopInvariant; 9339 } 9340 9341 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9342 return getLoopDisposition(S, L) == LoopComputable; 9343 } 9344 9345 ScalarEvolution::BlockDisposition 9346 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9347 auto &Values = BlockDispositions[S]; 9348 for (auto &V : Values) { 9349 if (V.getPointer() == BB) 9350 return V.getInt(); 9351 } 9352 Values.emplace_back(BB, DoesNotDominateBlock); 9353 BlockDisposition D = computeBlockDisposition(S, BB); 9354 auto &Values2 = BlockDispositions[S]; 9355 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9356 if (V.getPointer() == BB) { 9357 V.setInt(D); 9358 break; 9359 } 9360 } 9361 return D; 9362 } 9363 9364 ScalarEvolution::BlockDisposition 9365 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9366 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9367 case scConstant: 9368 return ProperlyDominatesBlock; 9369 case scTruncate: 9370 case scZeroExtend: 9371 case scSignExtend: 9372 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9373 case scAddRecExpr: { 9374 // This uses a "dominates" query instead of "properly dominates" query 9375 // to test for proper dominance too, because the instruction which 9376 // produces the addrec's value is a PHI, and a PHI effectively properly 9377 // dominates its entire containing block. 9378 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9379 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9380 return DoesNotDominateBlock; 9381 } 9382 // FALL THROUGH into SCEVNAryExpr handling. 9383 case scAddExpr: 9384 case scMulExpr: 9385 case scUMaxExpr: 9386 case scSMaxExpr: { 9387 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9388 bool Proper = true; 9389 for (const SCEV *NAryOp : NAry->operands()) { 9390 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9391 if (D == DoesNotDominateBlock) 9392 return DoesNotDominateBlock; 9393 if (D == DominatesBlock) 9394 Proper = false; 9395 } 9396 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9397 } 9398 case scUDivExpr: { 9399 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9400 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9401 BlockDisposition LD = getBlockDisposition(LHS, BB); 9402 if (LD == DoesNotDominateBlock) 9403 return DoesNotDominateBlock; 9404 BlockDisposition RD = getBlockDisposition(RHS, BB); 9405 if (RD == DoesNotDominateBlock) 9406 return DoesNotDominateBlock; 9407 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9408 ProperlyDominatesBlock : DominatesBlock; 9409 } 9410 case scUnknown: 9411 if (Instruction *I = 9412 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9413 if (I->getParent() == BB) 9414 return DominatesBlock; 9415 if (DT.properlyDominates(I->getParent(), BB)) 9416 return ProperlyDominatesBlock; 9417 return DoesNotDominateBlock; 9418 } 9419 return ProperlyDominatesBlock; 9420 case scCouldNotCompute: 9421 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9422 } 9423 llvm_unreachable("Unknown SCEV kind!"); 9424 } 9425 9426 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9427 return getBlockDisposition(S, BB) >= DominatesBlock; 9428 } 9429 9430 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9431 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9432 } 9433 9434 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9435 // Search for a SCEV expression node within an expression tree. 9436 // Implements SCEVTraversal::Visitor. 9437 struct SCEVSearch { 9438 const SCEV *Node; 9439 bool IsFound; 9440 9441 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9442 9443 bool follow(const SCEV *S) { 9444 IsFound |= (S == Node); 9445 return !IsFound; 9446 } 9447 bool isDone() const { return IsFound; } 9448 }; 9449 9450 SCEVSearch Search(Op); 9451 visitAll(S, Search); 9452 return Search.IsFound; 9453 } 9454 9455 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9456 ValuesAtScopes.erase(S); 9457 LoopDispositions.erase(S); 9458 BlockDispositions.erase(S); 9459 UnsignedRanges.erase(S); 9460 SignedRanges.erase(S); 9461 ExprValueMap.erase(S); 9462 HasRecMap.erase(S); 9463 9464 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9465 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9466 BackedgeTakenInfo &BEInfo = I->second; 9467 if (BEInfo.hasOperand(S, this)) { 9468 BEInfo.clear(); 9469 BackedgeTakenCounts.erase(I++); 9470 } 9471 else 9472 ++I; 9473 } 9474 } 9475 9476 typedef DenseMap<const Loop *, std::string> VerifyMap; 9477 9478 /// replaceSubString - Replaces all occurrences of From in Str with To. 9479 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9480 size_t Pos = 0; 9481 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9482 Str.replace(Pos, From.size(), To.data(), To.size()); 9483 Pos += To.size(); 9484 } 9485 } 9486 9487 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9488 static void 9489 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9490 std::string &S = Map[L]; 9491 if (S.empty()) { 9492 raw_string_ostream OS(S); 9493 SE.getBackedgeTakenCount(L)->print(OS); 9494 9495 // false and 0 are semantically equivalent. This can happen in dead loops. 9496 replaceSubString(OS.str(), "false", "0"); 9497 // Remove wrap flags, their use in SCEV is highly fragile. 9498 // FIXME: Remove this when SCEV gets smarter about them. 9499 replaceSubString(OS.str(), "<nw>", ""); 9500 replaceSubString(OS.str(), "<nsw>", ""); 9501 replaceSubString(OS.str(), "<nuw>", ""); 9502 } 9503 9504 for (auto *R : reverse(*L)) 9505 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9506 } 9507 9508 void ScalarEvolution::verify() const { 9509 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9510 9511 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9512 // FIXME: It would be much better to store actual values instead of strings, 9513 // but SCEV pointers will change if we drop the caches. 9514 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9515 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9516 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9517 9518 // Gather stringified backedge taken counts for all loops using a fresh 9519 // ScalarEvolution object. 9520 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9521 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9522 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9523 9524 // Now compare whether they're the same with and without caches. This allows 9525 // verifying that no pass changed the cache. 9526 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9527 "New loops suddenly appeared!"); 9528 9529 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9530 OldE = BackedgeDumpsOld.end(), 9531 NewI = BackedgeDumpsNew.begin(); 9532 OldI != OldE; ++OldI, ++NewI) { 9533 assert(OldI->first == NewI->first && "Loop order changed!"); 9534 9535 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9536 // changes. 9537 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9538 // means that a pass is buggy or SCEV has to learn a new pattern but is 9539 // usually not harmful. 9540 if (OldI->second != NewI->second && 9541 OldI->second.find("undef") == std::string::npos && 9542 NewI->second.find("undef") == std::string::npos && 9543 OldI->second != "***COULDNOTCOMPUTE***" && 9544 NewI->second != "***COULDNOTCOMPUTE***") { 9545 dbgs() << "SCEVValidator: SCEV for loop '" 9546 << OldI->first->getHeader()->getName() 9547 << "' changed from '" << OldI->second 9548 << "' to '" << NewI->second << "'!\n"; 9549 std::abort(); 9550 } 9551 } 9552 9553 // TODO: Verify more things. 9554 } 9555 9556 template class llvm::AnalysisBase<ScalarEvolutionAnalysis>; 9557 9558 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9559 AnalysisManager<Function> *AM) { 9560 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9561 AM->getResult<AssumptionAnalysis>(F), 9562 AM->getResult<DominatorTreeAnalysis>(F), 9563 AM->getResult<LoopAnalysis>(F)); 9564 } 9565 9566 PreservedAnalyses 9567 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9568 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9569 return PreservedAnalyses::all(); 9570 } 9571 9572 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9573 "Scalar Evolution Analysis", false, true) 9574 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9575 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9576 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9577 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9578 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9579 "Scalar Evolution Analysis", false, true) 9580 char ScalarEvolutionWrapperPass::ID = 0; 9581 9582 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9583 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9584 } 9585 9586 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9587 SE.reset(new ScalarEvolution( 9588 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9589 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9590 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9591 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9592 return false; 9593 } 9594 9595 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9596 9597 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9598 SE->print(OS); 9599 } 9600 9601 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9602 if (!VerifySCEV) 9603 return; 9604 9605 SE->verify(); 9606 } 9607 9608 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9609 AU.setPreservesAll(); 9610 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9611 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9612 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9613 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9614 } 9615 9616 const SCEVPredicate * 9617 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9618 const SCEVConstant *RHS) { 9619 FoldingSetNodeID ID; 9620 // Unique this node based on the arguments 9621 ID.AddInteger(SCEVPredicate::P_Equal); 9622 ID.AddPointer(LHS); 9623 ID.AddPointer(RHS); 9624 void *IP = nullptr; 9625 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9626 return S; 9627 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9628 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9629 UniquePreds.InsertNode(Eq, IP); 9630 return Eq; 9631 } 9632 9633 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 9634 const SCEVAddRecExpr *AR, 9635 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9636 FoldingSetNodeID ID; 9637 // Unique this node based on the arguments 9638 ID.AddInteger(SCEVPredicate::P_Wrap); 9639 ID.AddPointer(AR); 9640 ID.AddInteger(AddedFlags); 9641 void *IP = nullptr; 9642 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9643 return S; 9644 auto *OF = new (SCEVAllocator) 9645 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 9646 UniquePreds.InsertNode(OF, IP); 9647 return OF; 9648 } 9649 9650 namespace { 9651 9652 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9653 public: 9654 // Rewrites \p S in the context of a loop L and the predicate A. 9655 // If Assume is true, rewrite is free to add further predicates to A 9656 // such that the result will be an AddRecExpr. 9657 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 9658 SCEVUnionPredicate &A, bool Assume) { 9659 SCEVPredicateRewriter Rewriter(L, SE, A, Assume); 9660 return Rewriter.visit(S); 9661 } 9662 9663 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 9664 SCEVUnionPredicate &P, bool Assume) 9665 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {} 9666 9667 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9668 auto ExprPreds = P.getPredicatesForExpr(Expr); 9669 for (auto *Pred : ExprPreds) 9670 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9671 if (IPred->getLHS() == Expr) 9672 return IPred->getRHS(); 9673 9674 return Expr; 9675 } 9676 9677 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 9678 const SCEV *Operand = visit(Expr->getOperand()); 9679 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9680 if (AR && AR->getLoop() == L && AR->isAffine()) { 9681 // This couldn't be folded because the operand didn't have the nuw 9682 // flag. Add the nusw flag as an assumption that we could make. 9683 const SCEV *Step = AR->getStepRecurrence(SE); 9684 Type *Ty = Expr->getType(); 9685 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 9686 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 9687 SE.getSignExtendExpr(Step, Ty), L, 9688 AR->getNoWrapFlags()); 9689 } 9690 return SE.getZeroExtendExpr(Operand, Expr->getType()); 9691 } 9692 9693 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 9694 const SCEV *Operand = visit(Expr->getOperand()); 9695 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9696 if (AR && AR->getLoop() == L && AR->isAffine()) { 9697 // This couldn't be folded because the operand didn't have the nsw 9698 // flag. Add the nssw flag as an assumption that we could make. 9699 const SCEV *Step = AR->getStepRecurrence(SE); 9700 Type *Ty = Expr->getType(); 9701 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 9702 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 9703 SE.getSignExtendExpr(Step, Ty), L, 9704 AR->getNoWrapFlags()); 9705 } 9706 return SE.getSignExtendExpr(Operand, Expr->getType()); 9707 } 9708 9709 private: 9710 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 9711 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9712 auto *A = SE.getWrapPredicate(AR, AddedFlags); 9713 if (!Assume) { 9714 // Check if we've already made this assumption. 9715 if (P.implies(A)) 9716 return true; 9717 return false; 9718 } 9719 P.add(A); 9720 return true; 9721 } 9722 9723 SCEVUnionPredicate &P; 9724 const Loop *L; 9725 bool Assume; 9726 }; 9727 } // end anonymous namespace 9728 9729 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 9730 SCEVUnionPredicate &Preds) { 9731 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false); 9732 } 9733 9734 const SCEV * 9735 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, 9736 SCEVUnionPredicate &Preds) { 9737 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, true); 9738 } 9739 9740 /// SCEV predicates 9741 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9742 SCEVPredicateKind Kind) 9743 : FastID(ID), Kind(Kind) {} 9744 9745 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9746 const SCEVUnknown *LHS, 9747 const SCEVConstant *RHS) 9748 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9749 9750 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9751 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9752 9753 if (!Op) 9754 return false; 9755 9756 return Op->LHS == LHS && Op->RHS == RHS; 9757 } 9758 9759 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9760 9761 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9762 9763 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9764 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9765 } 9766 9767 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 9768 const SCEVAddRecExpr *AR, 9769 IncrementWrapFlags Flags) 9770 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 9771 9772 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 9773 9774 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 9775 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 9776 9777 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 9778 } 9779 9780 bool SCEVWrapPredicate::isAlwaysTrue() const { 9781 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 9782 IncrementWrapFlags IFlags = Flags; 9783 9784 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 9785 IFlags = clearFlags(IFlags, IncrementNSSW); 9786 9787 return IFlags == IncrementAnyWrap; 9788 } 9789 9790 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 9791 OS.indent(Depth) << *getExpr() << " Added Flags: "; 9792 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 9793 OS << "<nusw>"; 9794 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 9795 OS << "<nssw>"; 9796 OS << "\n"; 9797 } 9798 9799 SCEVWrapPredicate::IncrementWrapFlags 9800 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 9801 ScalarEvolution &SE) { 9802 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 9803 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 9804 9805 // We can safely transfer the NSW flag as NSSW. 9806 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 9807 ImpliedFlags = IncrementNSSW; 9808 9809 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 9810 // If the increment is positive, the SCEV NUW flag will also imply the 9811 // WrapPredicate NUSW flag. 9812 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 9813 if (Step->getValue()->getValue().isNonNegative()) 9814 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 9815 } 9816 9817 return ImpliedFlags; 9818 } 9819 9820 /// Union predicates don't get cached so create a dummy set ID for it. 9821 SCEVUnionPredicate::SCEVUnionPredicate() 9822 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9823 9824 bool SCEVUnionPredicate::isAlwaysTrue() const { 9825 return all_of(Preds, 9826 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9827 } 9828 9829 ArrayRef<const SCEVPredicate *> 9830 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9831 auto I = SCEVToPreds.find(Expr); 9832 if (I == SCEVToPreds.end()) 9833 return ArrayRef<const SCEVPredicate *>(); 9834 return I->second; 9835 } 9836 9837 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9838 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9839 return all_of(Set->Preds, 9840 [this](const SCEVPredicate *I) { return this->implies(I); }); 9841 9842 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9843 if (ScevPredsIt == SCEVToPreds.end()) 9844 return false; 9845 auto &SCEVPreds = ScevPredsIt->second; 9846 9847 return any_of(SCEVPreds, 9848 [N](const SCEVPredicate *I) { return I->implies(N); }); 9849 } 9850 9851 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9852 9853 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9854 for (auto Pred : Preds) 9855 Pred->print(OS, Depth); 9856 } 9857 9858 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9859 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9860 for (auto Pred : Set->Preds) 9861 add(Pred); 9862 return; 9863 } 9864 9865 if (implies(N)) 9866 return; 9867 9868 const SCEV *Key = N->getExpr(); 9869 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9870 " associated expression!"); 9871 9872 SCEVToPreds[Key].push_back(N); 9873 Preds.push_back(N); 9874 } 9875 9876 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 9877 Loop &L) 9878 : SE(SE), L(L), Generation(0) {} 9879 9880 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 9881 const SCEV *Expr = SE.getSCEV(V); 9882 RewriteEntry &Entry = RewriteMap[Expr]; 9883 9884 // If we already have an entry and the version matches, return it. 9885 if (Entry.second && Generation == Entry.first) 9886 return Entry.second; 9887 9888 // We found an entry but it's stale. Rewrite the stale entry 9889 // acording to the current predicate. 9890 if (Entry.second) 9891 Expr = Entry.second; 9892 9893 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 9894 Entry = {Generation, NewSCEV}; 9895 9896 return NewSCEV; 9897 } 9898 9899 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 9900 if (Preds.implies(&Pred)) 9901 return; 9902 Preds.add(&Pred); 9903 updateGeneration(); 9904 } 9905 9906 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 9907 return Preds; 9908 } 9909 9910 void PredicatedScalarEvolution::updateGeneration() { 9911 // If the generation number wrapped recompute everything. 9912 if (++Generation == 0) { 9913 for (auto &II : RewriteMap) { 9914 const SCEV *Rewritten = II.second.second; 9915 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 9916 } 9917 } 9918 } 9919 9920 void PredicatedScalarEvolution::setNoOverflow( 9921 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 9922 const SCEV *Expr = getSCEV(V); 9923 const auto *AR = cast<SCEVAddRecExpr>(Expr); 9924 9925 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 9926 9927 // Clear the statically implied flags. 9928 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 9929 addPredicate(*SE.getWrapPredicate(AR, Flags)); 9930 9931 auto II = FlagsMap.insert({V, Flags}); 9932 if (!II.second) 9933 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 9934 } 9935 9936 bool PredicatedScalarEvolution::hasNoOverflow( 9937 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 9938 const SCEV *Expr = getSCEV(V); 9939 const auto *AR = cast<SCEVAddRecExpr>(Expr); 9940 9941 Flags = SCEVWrapPredicate::clearFlags( 9942 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 9943 9944 auto II = FlagsMap.find(V); 9945 9946 if (II != FlagsMap.end()) 9947 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 9948 9949 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 9950 } 9951 9952 const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) { 9953 const SCEV *Expr = this->getSCEV(V); 9954 const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds); 9955 updateGeneration(); 9956 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 9957 return New; 9958 } 9959 9960 PredicatedScalarEvolution:: 9961 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) : 9962 RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 9963 Generation(Init.Generation) { 9964 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I) 9965 FlagsMap.insert(*I); 9966 } 9967