xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision f1e9cae00e2322756324b5489dc48d533e5dd41d)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with XDEBUG when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's"
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 /// isNonConstantNegative - Return true if the specified scev is negated, but
291 /// not a constant.
292 bool SCEV::isNonConstantNegative() const {
293   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294   if (!Mul) return false;
295 
296   // If there is a constant factor, it will be first.
297   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298   if (!SC) return false;
299 
300   // Return true if the value is negative, this matches things like (-42 * V).
301   return SC->getAPInt().isNegative();
302 }
303 
304 SCEVCouldNotCompute::SCEVCouldNotCompute() :
305   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306 
307 bool SCEVCouldNotCompute::classof(const SCEV *S) {
308   return S->getSCEVType() == scCouldNotCompute;
309 }
310 
311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312   FoldingSetNodeID ID;
313   ID.AddInteger(scConstant);
314   ID.AddPointer(V);
315   void *IP = nullptr;
316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318   UniqueSCEVs.InsertNode(S, IP);
319   return S;
320 }
321 
322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323   return getConstant(ConstantInt::get(getContext(), Val));
324 }
325 
326 const SCEV *
327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329   return getConstant(ConstantInt::get(ITy, V, isSigned));
330 }
331 
332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333                            unsigned SCEVTy, const SCEV *op, Type *ty)
334   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335 
336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337                                    const SCEV *op, Type *ty)
338   : SCEVCastExpr(ID, scTruncate, op, ty) {
339   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
341          "Cannot truncate non-integer value!");
342 }
343 
344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345                                        const SCEV *op, Type *ty)
346   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
349          "Cannot zero extend non-integer value!");
350 }
351 
352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353                                        const SCEV *op, Type *ty)
354   : SCEVCastExpr(ID, scSignExtend, op, ty) {
355   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
357          "Cannot sign extend non-integer value!");
358 }
359 
360 void SCEVUnknown::deleted() {
361   // Clear this SCEVUnknown from various maps.
362   SE->forgetMemoizedResults(this);
363 
364   // Remove this SCEVUnknown from the uniquing map.
365   SE->UniqueSCEVs.RemoveNode(this);
366 
367   // Release the value.
368   setValPtr(nullptr);
369 }
370 
371 void SCEVUnknown::allUsesReplacedWith(Value *New) {
372   // Clear this SCEVUnknown from various maps.
373   SE->forgetMemoizedResults(this);
374 
375   // Remove this SCEVUnknown from the uniquing map.
376   SE->UniqueSCEVs.RemoveNode(this);
377 
378   // Update this SCEVUnknown to point to the new value. This is needed
379   // because there may still be outstanding SCEVs which still point to
380   // this SCEVUnknown.
381   setValPtr(New);
382 }
383 
384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386     if (VCE->getOpcode() == Instruction::PtrToInt)
387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388         if (CE->getOpcode() == Instruction::GetElementPtr &&
389             CE->getOperand(0)->isNullValue() &&
390             CE->getNumOperands() == 2)
391           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392             if (CI->isOne()) {
393               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394                                  ->getElementType();
395               return true;
396             }
397 
398   return false;
399 }
400 
401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403     if (VCE->getOpcode() == Instruction::PtrToInt)
404       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405         if (CE->getOpcode() == Instruction::GetElementPtr &&
406             CE->getOperand(0)->isNullValue()) {
407           Type *Ty =
408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409           if (StructType *STy = dyn_cast<StructType>(Ty))
410             if (!STy->isPacked() &&
411                 CE->getNumOperands() == 3 &&
412                 CE->getOperand(1)->isNullValue()) {
413               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414                 if (CI->isOne() &&
415                     STy->getNumElements() == 2 &&
416                     STy->getElementType(0)->isIntegerTy(1)) {
417                   AllocTy = STy->getElementType(1);
418                   return true;
419                 }
420             }
421         }
422 
423   return false;
424 }
425 
426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428     if (VCE->getOpcode() == Instruction::PtrToInt)
429       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430         if (CE->getOpcode() == Instruction::GetElementPtr &&
431             CE->getNumOperands() == 3 &&
432             CE->getOperand(0)->isNullValue() &&
433             CE->getOperand(1)->isNullValue()) {
434           Type *Ty =
435             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436           // Ignore vector types here so that ScalarEvolutionExpander doesn't
437           // emit getelementptrs that index into vectors.
438           if (Ty->isStructTy() || Ty->isArrayTy()) {
439             CTy = Ty;
440             FieldNo = CE->getOperand(2);
441             return true;
442           }
443         }
444 
445   return false;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                               SCEV Utilities
450 //===----------------------------------------------------------------------===//
451 
452 namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS.  This comparator is used to canonicalize
455 /// expressions.
456 class SCEVComplexityCompare {
457   const LoopInfo *const LI;
458 public:
459   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460 
461   // Return true or false if LHS is less than, or at least RHS, respectively.
462   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463     return compare(LHS, RHS) < 0;
464   }
465 
466   // Return negative, zero, or positive, if LHS is less than, equal to, or
467   // greater than RHS, respectively. A three-way result allows recursive
468   // comparisons to be more efficient.
469   int compare(const SCEV *LHS, const SCEV *RHS) const {
470     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471     if (LHS == RHS)
472       return 0;
473 
474     // Primarily, sort the SCEVs by their getSCEVType().
475     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476     if (LType != RType)
477       return (int)LType - (int)RType;
478 
479     // Aside from the getSCEVType() ordering, the particular ordering
480     // isn't very important except that it's beneficial to be consistent,
481     // so that (a + b) and (b + a) don't end up as different expressions.
482     switch (static_cast<SCEVTypes>(LType)) {
483     case scUnknown: {
484       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486 
487       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488       // not as complete as it could be.
489       const Value *LV = LU->getValue(), *RV = RU->getValue();
490 
491       // Order pointer values after integer values. This helps SCEVExpander
492       // form GEPs.
493       bool LIsPointer = LV->getType()->isPointerTy(),
494         RIsPointer = RV->getType()->isPointerTy();
495       if (LIsPointer != RIsPointer)
496         return (int)LIsPointer - (int)RIsPointer;
497 
498       // Compare getValueID values.
499       unsigned LID = LV->getValueID(),
500         RID = RV->getValueID();
501       if (LID != RID)
502         return (int)LID - (int)RID;
503 
504       // Sort arguments by their position.
505       if (const Argument *LA = dyn_cast<Argument>(LV)) {
506         const Argument *RA = cast<Argument>(RV);
507         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508         return (int)LArgNo - (int)RArgNo;
509       }
510 
511       // For instructions, compare their loop depth, and their operand
512       // count.  This is pretty loose.
513       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514         const Instruction *RInst = cast<Instruction>(RV);
515 
516         // Compare loop depths.
517         const BasicBlock *LParent = LInst->getParent(),
518           *RParent = RInst->getParent();
519         if (LParent != RParent) {
520           unsigned LDepth = LI->getLoopDepth(LParent),
521             RDepth = LI->getLoopDepth(RParent);
522           if (LDepth != RDepth)
523             return (int)LDepth - (int)RDepth;
524         }
525 
526         // Compare the number of operands.
527         unsigned LNumOps = LInst->getNumOperands(),
528           RNumOps = RInst->getNumOperands();
529         return (int)LNumOps - (int)RNumOps;
530       }
531 
532       return 0;
533     }
534 
535     case scConstant: {
536       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538 
539       // Compare constant values.
540       const APInt &LA = LC->getAPInt();
541       const APInt &RA = RC->getAPInt();
542       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543       if (LBitWidth != RBitWidth)
544         return (int)LBitWidth - (int)RBitWidth;
545       return LA.ult(RA) ? -1 : 1;
546     }
547 
548     case scAddRecExpr: {
549       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551 
552       // Compare addrec loop depths.
553       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554       if (LLoop != RLoop) {
555         unsigned LDepth = LLoop->getLoopDepth(),
556           RDepth = RLoop->getLoopDepth();
557         if (LDepth != RDepth)
558           return (int)LDepth - (int)RDepth;
559       }
560 
561       // Addrec complexity grows with operand count.
562       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563       if (LNumOps != RNumOps)
564         return (int)LNumOps - (int)RNumOps;
565 
566       // Lexicographically compare.
567       for (unsigned i = 0; i != LNumOps; ++i) {
568         long X = compare(LA->getOperand(i), RA->getOperand(i));
569         if (X != 0)
570           return X;
571       }
572 
573       return 0;
574     }
575 
576     case scAddExpr:
577     case scMulExpr:
578     case scSMaxExpr:
579     case scUMaxExpr: {
580       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582 
583       // Lexicographically compare n-ary expressions.
584       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585       if (LNumOps != RNumOps)
586         return (int)LNumOps - (int)RNumOps;
587 
588       for (unsigned i = 0; i != LNumOps; ++i) {
589         if (i >= RNumOps)
590           return 1;
591         long X = compare(LC->getOperand(i), RC->getOperand(i));
592         if (X != 0)
593           return X;
594       }
595       return (int)LNumOps - (int)RNumOps;
596     }
597 
598     case scUDivExpr: {
599       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601 
602       // Lexicographically compare udiv expressions.
603       long X = compare(LC->getLHS(), RC->getLHS());
604       if (X != 0)
605         return X;
606       return compare(LC->getRHS(), RC->getRHS());
607     }
608 
609     case scTruncate:
610     case scZeroExtend:
611     case scSignExtend: {
612       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614 
615       // Compare cast expressions by operand.
616       return compare(LC->getOperand(), RC->getOperand());
617     }
618 
619     case scCouldNotCompute:
620       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621     }
622     llvm_unreachable("Unknown SCEV kind!");
623   }
624 };
625 }  // end anonymous namespace
626 
627 /// GroupByComplexity - Given a list of SCEV objects, order them by their
628 /// complexity, and group objects of the same complexity together by value.
629 /// When this routine is finished, we know that any duplicates in the vector are
630 /// consecutive and that complexity is monotonically increasing.
631 ///
632 /// Note that we go take special precautions to ensure that we get deterministic
633 /// results from this routine.  In other words, we don't want the results of
634 /// this to depend on where the addresses of various SCEV objects happened to
635 /// land in memory.
636 ///
637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638                               LoopInfo *LI) {
639   if (Ops.size() < 2) return;  // Noop
640   if (Ops.size() == 2) {
641     // This is the common case, which also happens to be trivially simple.
642     // Special case it.
643     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644     if (SCEVComplexityCompare(LI)(RHS, LHS))
645       std::swap(LHS, RHS);
646     return;
647   }
648 
649   // Do the rough sort by complexity.
650   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651 
652   // Now that we are sorted by complexity, group elements of the same
653   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
654   // be extremely short in practice.  Note that we take this approach because we
655   // do not want to depend on the addresses of the objects we are grouping.
656   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657     const SCEV *S = Ops[i];
658     unsigned Complexity = S->getSCEVType();
659 
660     // If there are any objects of the same complexity and same value as this
661     // one, group them.
662     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663       if (Ops[j] == S) { // Found a duplicate.
664         // Move it to immediately after i'th element.
665         std::swap(Ops[i+1], Ops[j]);
666         ++i;   // no need to rescan it.
667         if (i == e-2) return;  // Done!
668       }
669     }
670   }
671 }
672 
673 // Returns the size of the SCEV S.
674 static inline int sizeOfSCEV(const SCEV *S) {
675   struct FindSCEVSize {
676     int Size;
677     FindSCEVSize() : Size(0) {}
678 
679     bool follow(const SCEV *S) {
680       ++Size;
681       // Keep looking at all operands of S.
682       return true;
683     }
684     bool isDone() const {
685       return false;
686     }
687   };
688 
689   FindSCEVSize F;
690   SCEVTraversal<FindSCEVSize> ST(F);
691   ST.visitAll(S);
692   return F.Size;
693 }
694 
695 namespace {
696 
697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698 public:
699   // Computes the Quotient and Remainder of the division of Numerator by
700   // Denominator.
701   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702                      const SCEV *Denominator, const SCEV **Quotient,
703                      const SCEV **Remainder) {
704     assert(Numerator && Denominator && "Uninitialized SCEV");
705 
706     SCEVDivision D(SE, Numerator, Denominator);
707 
708     // Check for the trivial case here to avoid having to check for it in the
709     // rest of the code.
710     if (Numerator == Denominator) {
711       *Quotient = D.One;
712       *Remainder = D.Zero;
713       return;
714     }
715 
716     if (Numerator->isZero()) {
717       *Quotient = D.Zero;
718       *Remainder = D.Zero;
719       return;
720     }
721 
722     // A simple case when N/1. The quotient is N.
723     if (Denominator->isOne()) {
724       *Quotient = Numerator;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getAPInt();
768       APInt DenominatorVal = D->getAPInt();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     if (!Numerator->isAffine())
789       return cannotDivide(Numerator);
790     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792     // Bail out if the types do not match.
793     Type *Ty = Denominator->getType();
794     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795         Ty != StepQ->getType() || Ty != StepR->getType())
796       return cannotDivide(Numerator);
797     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798                                 Numerator->getNoWrapFlags());
799     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800                                  Numerator->getNoWrapFlags());
801   }
802 
803   void visitAddExpr(const SCEVAddExpr *Numerator) {
804     SmallVector<const SCEV *, 2> Qs, Rs;
805     Type *Ty = Denominator->getType();
806 
807     for (const SCEV *Op : Numerator->operands()) {
808       const SCEV *Q, *R;
809       divide(SE, Op, Denominator, &Q, &R);
810 
811       // Bail out if types do not match.
812       if (Ty != Q->getType() || Ty != R->getType())
813         return cannotDivide(Numerator);
814 
815       Qs.push_back(Q);
816       Rs.push_back(R);
817     }
818 
819     if (Qs.size() == 1) {
820       Quotient = Qs[0];
821       Remainder = Rs[0];
822       return;
823     }
824 
825     Quotient = SE.getAddExpr(Qs);
826     Remainder = SE.getAddExpr(Rs);
827   }
828 
829   void visitMulExpr(const SCEVMulExpr *Numerator) {
830     SmallVector<const SCEV *, 2> Qs;
831     Type *Ty = Denominator->getType();
832 
833     bool FoundDenominatorTerm = false;
834     for (const SCEV *Op : Numerator->operands()) {
835       // Bail out if types do not match.
836       if (Ty != Op->getType())
837         return cannotDivide(Numerator);
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType())
854         return cannotDivide(Numerator);
855 
856       FoundDenominatorTerm = true;
857       Qs.push_back(Q);
858     }
859 
860     if (FoundDenominatorTerm) {
861       Remainder = Zero;
862       if (Qs.size() == 1)
863         Quotient = Qs[0];
864       else
865         Quotient = SE.getMulExpr(Qs);
866       return;
867     }
868 
869     if (!isa<SCEVUnknown>(Denominator))
870       return cannotDivide(Numerator);
871 
872     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873     ValueToValueMap RewriteMap;
874     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875         cast<SCEVConstant>(Zero)->getValue();
876     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877 
878     if (Remainder->isZero()) {
879       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881           cast<SCEVConstant>(One)->getValue();
882       Quotient =
883           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884       return;
885     }
886 
887     // Quotient is (Numerator - Remainder) divided by Denominator.
888     const SCEV *Q, *R;
889     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890     // This SCEV does not seem to simplify: fail the division here.
891     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892       return cannotDivide(Numerator);
893     divide(SE, Diff, Denominator, &Q, &R);
894     if (R != Zero)
895       return cannotDivide(Numerator);
896     Quotient = Q;
897   }
898 
899 private:
900   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901                const SCEV *Denominator)
902       : SE(S), Denominator(Denominator) {
903     Zero = SE.getZero(Denominator->getType());
904     One = SE.getOne(Denominator->getType());
905 
906     // We generally do not know how to divide Expr by Denominator. We
907     // initialize the division to a "cannot divide" state to simplify the rest
908     // of the code.
909     cannotDivide(Numerator);
910   }
911 
912   // Convenience function for giving up on the division. We set the quotient to
913   // be equal to zero and the remainder to be equal to the numerator.
914   void cannotDivide(const SCEV *Numerator) {
915     Quotient = Zero;
916     Remainder = Numerator;
917   }
918 
919   ScalarEvolution &SE;
920   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921 };
922 
923 }
924 
925 //===----------------------------------------------------------------------===//
926 //                      Simple SCEV method implementations
927 //===----------------------------------------------------------------------===//
928 
929 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
930 /// Assume, K > 0.
931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932                                        ScalarEvolution &SE,
933                                        Type *ResultTy) {
934   // Handle the simplest case efficiently.
935   if (K == 1)
936     return SE.getTruncateOrZeroExtend(It, ResultTy);
937 
938   // We are using the following formula for BC(It, K):
939   //
940   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941   //
942   // Suppose, W is the bitwidth of the return value.  We must be prepared for
943   // overflow.  Hence, we must assure that the result of our computation is
944   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
945   // safe in modular arithmetic.
946   //
947   // However, this code doesn't use exactly that formula; the formula it uses
948   // is something like the following, where T is the number of factors of 2 in
949   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950   // exponentiation:
951   //
952   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953   //
954   // This formula is trivially equivalent to the previous formula.  However,
955   // this formula can be implemented much more efficiently.  The trick is that
956   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957   // arithmetic.  To do exact division in modular arithmetic, all we have
958   // to do is multiply by the inverse.  Therefore, this step can be done at
959   // width W.
960   //
961   // The next issue is how to safely do the division by 2^T.  The way this
962   // is done is by doing the multiplication step at a width of at least W + T
963   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
964   // when we perform the division by 2^T (which is equivalent to a right shift
965   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
966   // truncated out after the division by 2^T.
967   //
968   // In comparison to just directly using the first formula, this technique
969   // is much more efficient; using the first formula requires W * K bits,
970   // but this formula less than W + K bits. Also, the first formula requires
971   // a division step, whereas this formula only requires multiplies and shifts.
972   //
973   // It doesn't matter whether the subtraction step is done in the calculation
974   // width or the input iteration count's width; if the subtraction overflows,
975   // the result must be zero anyway.  We prefer here to do it in the width of
976   // the induction variable because it helps a lot for certain cases; CodeGen
977   // isn't smart enough to ignore the overflow, which leads to much less
978   // efficient code if the width of the subtraction is wider than the native
979   // register width.
980   //
981   // (It's possible to not widen at all by pulling out factors of 2 before
982   // the multiplication; for example, K=2 can be calculated as
983   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984   // extra arithmetic, so it's not an obvious win, and it gets
985   // much more complicated for K > 3.)
986 
987   // Protection from insane SCEVs; this bound is conservative,
988   // but it probably doesn't matter.
989   if (K > 1000)
990     return SE.getCouldNotCompute();
991 
992   unsigned W = SE.getTypeSizeInBits(ResultTy);
993 
994   // Calculate K! / 2^T and T; we divide out the factors of two before
995   // multiplying for calculating K! / 2^T to avoid overflow.
996   // Other overflow doesn't matter because we only care about the bottom
997   // W bits of the result.
998   APInt OddFactorial(W, 1);
999   unsigned T = 1;
1000   for (unsigned i = 3; i <= K; ++i) {
1001     APInt Mult(W, i);
1002     unsigned TwoFactors = Mult.countTrailingZeros();
1003     T += TwoFactors;
1004     Mult = Mult.lshr(TwoFactors);
1005     OddFactorial *= Mult;
1006   }
1007 
1008   // We need at least W + T bits for the multiplication step
1009   unsigned CalculationBits = W + T;
1010 
1011   // Calculate 2^T, at width T+W.
1012   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013 
1014   // Calculate the multiplicative inverse of K! / 2^T;
1015   // this multiplication factor will perform the exact division by
1016   // K! / 2^T.
1017   APInt Mod = APInt::getSignedMinValue(W+1);
1018   APInt MultiplyFactor = OddFactorial.zext(W+1);
1019   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020   MultiplyFactor = MultiplyFactor.trunc(W);
1021 
1022   // Calculate the product, at width T+W
1023   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024                                                       CalculationBits);
1025   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026   for (unsigned i = 1; i != K; ++i) {
1027     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028     Dividend = SE.getMulExpr(Dividend,
1029                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1030   }
1031 
1032   // Divide by 2^T
1033   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034 
1035   // Truncate the result, and divide by K! / 2^T.
1036 
1037   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039 }
1040 
1041 /// evaluateAtIteration - Return the value of this chain of recurrences at
1042 /// the specified iteration number.  We can evaluate this recurrence by
1043 /// multiplying each element in the chain by the binomial coefficient
1044 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045 ///
1046 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047 ///
1048 /// where BC(It, k) stands for binomial coefficient.
1049 ///
1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051                                                 ScalarEvolution &SE) const {
1052   const SCEV *Result = getStart();
1053   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071                                              Type *Ty) {
1072   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1073          "This is not a truncating conversion!");
1074   assert(isSCEVable(Ty) &&
1075          "This is not a conversion to a SCEVable type!");
1076   Ty = getEffectiveSCEVType(Ty);
1077 
1078   FoldingSetNodeID ID;
1079   ID.AddInteger(scTruncate);
1080   ID.AddPointer(Op);
1081   ID.AddPointer(Ty);
1082   void *IP = nullptr;
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084 
1085   // Fold if the operand is constant.
1086   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087     return getConstant(
1088       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089 
1090   // trunc(trunc(x)) --> trunc(x)
1091   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092     return getTruncateExpr(ST->getOperand(), Ty);
1093 
1094   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097 
1098   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101 
1102   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103   // eliminate all the truncates, or we replace other casts with truncates.
1104   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105     SmallVector<const SCEV *, 4> Operands;
1106     bool hasTrunc = false;
1107     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110         hasTrunc = isa<SCEVTruncateExpr>(S);
1111       Operands.push_back(S);
1112     }
1113     if (!hasTrunc)
1114       return getAddExpr(Operands);
1115     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1116   }
1117 
1118   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119   // eliminate all the truncates, or we replace other casts with truncates.
1120   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     bool hasTrunc = false;
1123     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126         hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (const SCEV *Op : AddRec->operands())
1138       Operands.push_back(getTruncateExpr(Op, Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   auto PreStartFlags =
1274     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278 
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282 
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287 
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303 
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308 
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311     return PreStart;
1312 
1313   return nullptr;
1314 }
1315 
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321 
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325 
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329 
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377 
1378   APInt StartAI = StartC->getAPInt();
1379 
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382 
1383     FoldingSetNodeID ID;
1384     ID.AddInteger(scAddRecExpr);
1385     ID.AddPointer(PreStart);
1386     ID.AddPointer(Step);
1387     ID.AddPointer(L);
1388     void *IP = nullptr;
1389     const auto *PreAR =
1390       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391 
1392     // Give up if we don't already have the add recurrence we need because
1393     // actually constructing an add recurrence is relatively expensive.
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       // If we have special knowledge that this addrec won't overflow,
1458       // we don't need to do any further analysis.
1459       if (AR->hasNoUnsignedWrap())
1460         return getAddRecExpr(
1461             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1463 
1464       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465       // Note that this serves two purposes: It filters out loops that are
1466       // simply not analyzable, and it covers the case where this code is
1467       // being called from within backedge-taken count analysis, such that
1468       // attempting to ask for the backedge-taken count would likely result
1469       // in infinite recursion. In the later case, the analysis code will
1470       // cope with a conservative value, and it will take care to purge
1471       // that value once it has finished.
1472       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1473       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1474         // Manually compute the final value for AR, checking for
1475         // overflow.
1476 
1477         // Check whether the backedge-taken count can be losslessly casted to
1478         // the addrec's type. The count is always unsigned.
1479         const SCEV *CastedMaxBECount =
1480           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1481         const SCEV *RecastedMaxBECount =
1482           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483         if (MaxBECount == RecastedMaxBECount) {
1484           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1485           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1486           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1487           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489           const SCEV *WideMaxBECount =
1490             getZeroExtendExpr(CastedMaxBECount, WideTy);
1491           const SCEV *OperandExtendedAdd =
1492             getAddExpr(WideStart,
1493                        getMulExpr(WideMaxBECount,
1494                                   getZeroExtendExpr(Step, WideTy)));
1495           if (ZAdd == OperandExtendedAdd) {
1496             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1498             // Return the expression with the addrec on the outside.
1499             return getAddRecExpr(
1500                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1502           }
1503           // Similar to above, only this time treat the step value as signed.
1504           // This covers loops that count down.
1505           OperandExtendedAdd =
1506             getAddExpr(WideStart,
1507                        getMulExpr(WideMaxBECount,
1508                                   getSignExtendExpr(Step, WideTy)));
1509           if (ZAdd == OperandExtendedAdd) {
1510             // Cache knowledge of AR NW, which is propagated to this AddRec.
1511             // Negative step causes unsigned wrap, but it still can't self-wrap.
1512             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513             // Return the expression with the addrec on the outside.
1514             return getAddRecExpr(
1515                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1517           }
1518         }
1519 
1520         // If the backedge is guarded by a comparison with the pre-inc value
1521         // the addrec is safe. Also, if the entry is guarded by a comparison
1522         // with the start value and the backedge is guarded by a comparison
1523         // with the post-inc value, the addrec is safe.
1524         if (isKnownPositive(Step)) {
1525           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526                                       getUnsignedRange(Step).getUnsignedMax());
1527           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1528               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1529                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1530                                            AR->getPostIncExpr(*this), N))) {
1531             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1533             // Return the expression with the addrec on the outside.
1534             return getAddRecExpr(
1535                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1537           }
1538         } else if (isKnownNegative(Step)) {
1539           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540                                       getSignedRange(Step).getSignedMin());
1541           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1543                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1544                                            AR->getPostIncExpr(*this), N))) {
1545             // Cache knowledge of AR NW, which is propagated to this AddRec.
1546             // Negative step causes unsigned wrap, but it still can't self-wrap.
1547             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548             // Return the expression with the addrec on the outside.
1549             return getAddRecExpr(
1550                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1552           }
1553         }
1554       }
1555 
1556       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558         return getAddRecExpr(
1559             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561       }
1562     }
1563 
1564   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1565     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1566     if (SA->hasNoUnsignedWrap()) {
1567       // If the addition does not unsign overflow then we can, by definition,
1568       // commute the zero extension with the addition operation.
1569       SmallVector<const SCEV *, 4> Ops;
1570       for (const auto *Op : SA->operands())
1571         Ops.push_back(getZeroExtendExpr(Op, Ty));
1572       return getAddExpr(Ops, SCEV::FlagNUW);
1573     }
1574   }
1575 
1576   // The cast wasn't folded; create an explicit cast node.
1577   // Recompute the insert position, as it may have been invalidated.
1578   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1579   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1580                                                    Op, Ty);
1581   UniqueSCEVs.InsertNode(S, IP);
1582   return S;
1583 }
1584 
1585 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1586                                                Type *Ty) {
1587   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1588          "This is not an extending conversion!");
1589   assert(isSCEVable(Ty) &&
1590          "This is not a conversion to a SCEVable type!");
1591   Ty = getEffectiveSCEVType(Ty);
1592 
1593   // Fold if the operand is constant.
1594   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1595     return getConstant(
1596       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1597 
1598   // sext(sext(x)) --> sext(x)
1599   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1600     return getSignExtendExpr(SS->getOperand(), Ty);
1601 
1602   // sext(zext(x)) --> zext(x)
1603   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1604     return getZeroExtendExpr(SZ->getOperand(), Ty);
1605 
1606   // Before doing any expensive analysis, check to see if we've already
1607   // computed a SCEV for this Op and Ty.
1608   FoldingSetNodeID ID;
1609   ID.AddInteger(scSignExtend);
1610   ID.AddPointer(Op);
1611   ID.AddPointer(Ty);
1612   void *IP = nullptr;
1613   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1614 
1615   // If the input value is provably positive, build a zext instead.
1616   if (isKnownNonNegative(Op))
1617     return getZeroExtendExpr(Op, Ty);
1618 
1619   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1620   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1621     // It's possible the bits taken off by the truncate were all sign bits. If
1622     // so, we should be able to simplify this further.
1623     const SCEV *X = ST->getOperand();
1624     ConstantRange CR = getSignedRange(X);
1625     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1626     unsigned NewBits = getTypeSizeInBits(Ty);
1627     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1628             CR.sextOrTrunc(NewBits)))
1629       return getTruncateOrSignExtend(X, Ty);
1630   }
1631 
1632   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1633   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1634     if (SA->getNumOperands() == 2) {
1635       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1636       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1637       if (SMul && SC1) {
1638         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1639           const APInt &C1 = SC1->getAPInt();
1640           const APInt &C2 = SC2->getAPInt();
1641           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1642               C2.ugt(C1) && C2.isPowerOf2())
1643             return getAddExpr(getSignExtendExpr(SC1, Ty),
1644                               getSignExtendExpr(SMul, Ty));
1645         }
1646       }
1647     }
1648 
1649     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1650     if (SA->hasNoSignedWrap()) {
1651       // If the addition does not sign overflow then we can, by definition,
1652       // commute the sign extension with the addition operation.
1653       SmallVector<const SCEV *, 4> Ops;
1654       for (const auto *Op : SA->operands())
1655         Ops.push_back(getSignExtendExpr(Op, Ty));
1656       return getAddExpr(Ops, SCEV::FlagNSW);
1657     }
1658   }
1659   // If the input value is a chrec scev, and we can prove that the value
1660   // did not overflow the old, smaller, value, we can sign extend all of the
1661   // operands (often constants).  This allows analysis of something like
1662   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1663   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1664     if (AR->isAffine()) {
1665       const SCEV *Start = AR->getStart();
1666       const SCEV *Step = AR->getStepRecurrence(*this);
1667       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1668       const Loop *L = AR->getLoop();
1669 
1670       // If we have special knowledge that this addrec won't overflow,
1671       // we don't need to do any further analysis.
1672       if (AR->hasNoSignedWrap())
1673         return getAddRecExpr(
1674             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1675             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1676 
1677       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1678       // Note that this serves two purposes: It filters out loops that are
1679       // simply not analyzable, and it covers the case where this code is
1680       // being called from within backedge-taken count analysis, such that
1681       // attempting to ask for the backedge-taken count would likely result
1682       // in infinite recursion. In the later case, the analysis code will
1683       // cope with a conservative value, and it will take care to purge
1684       // that value once it has finished.
1685       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1686       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1687         // Manually compute the final value for AR, checking for
1688         // overflow.
1689 
1690         // Check whether the backedge-taken count can be losslessly casted to
1691         // the addrec's type. The count is always unsigned.
1692         const SCEV *CastedMaxBECount =
1693           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1694         const SCEV *RecastedMaxBECount =
1695           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1696         if (MaxBECount == RecastedMaxBECount) {
1697           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1698           // Check whether Start+Step*MaxBECount has no signed overflow.
1699           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1700           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1701           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1702           const SCEV *WideMaxBECount =
1703             getZeroExtendExpr(CastedMaxBECount, WideTy);
1704           const SCEV *OperandExtendedAdd =
1705             getAddExpr(WideStart,
1706                        getMulExpr(WideMaxBECount,
1707                                   getSignExtendExpr(Step, WideTy)));
1708           if (SAdd == OperandExtendedAdd) {
1709             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1710             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1711             // Return the expression with the addrec on the outside.
1712             return getAddRecExpr(
1713                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1715           }
1716           // Similar to above, only this time treat the step value as unsigned.
1717           // This covers loops that count up with an unsigned step.
1718           OperandExtendedAdd =
1719             getAddExpr(WideStart,
1720                        getMulExpr(WideMaxBECount,
1721                                   getZeroExtendExpr(Step, WideTy)));
1722           if (SAdd == OperandExtendedAdd) {
1723             // If AR wraps around then
1724             //
1725             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1726             // => SAdd != OperandExtendedAdd
1727             //
1728             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1729             // (SAdd == OperandExtendedAdd => AR is NW)
1730 
1731             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1732 
1733             // Return the expression with the addrec on the outside.
1734             return getAddRecExpr(
1735                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1737           }
1738         }
1739 
1740         // If the backedge is guarded by a comparison with the pre-inc value
1741         // the addrec is safe. Also, if the entry is guarded by a comparison
1742         // with the start value and the backedge is guarded by a comparison
1743         // with the post-inc value, the addrec is safe.
1744         ICmpInst::Predicate Pred;
1745         const SCEV *OverflowLimit =
1746             getSignedOverflowLimitForStep(Step, &Pred, this);
1747         if (OverflowLimit &&
1748             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1749              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1750               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1751                                           OverflowLimit)))) {
1752           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1753           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1754           return getAddRecExpr(
1755               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1756               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1757         }
1758       }
1759       // If Start and Step are constants, check if we can apply this
1760       // transformation:
1761       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1762       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1763       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1764       if (SC1 && SC2) {
1765         const APInt &C1 = SC1->getAPInt();
1766         const APInt &C2 = SC2->getAPInt();
1767         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1768             C2.isPowerOf2()) {
1769           Start = getSignExtendExpr(Start, Ty);
1770           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1771                                             AR->getNoWrapFlags());
1772           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1777         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1780             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // The cast wasn't folded; create an explicit cast node.
1785   // Recompute the insert position, as it may have been invalidated.
1786   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1787   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1788                                                    Op, Ty);
1789   UniqueSCEVs.InsertNode(S, IP);
1790   return S;
1791 }
1792 
1793 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1794 /// unspecified bits out to the given type.
1795 ///
1796 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1797                                               Type *Ty) {
1798   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1799          "This is not an extending conversion!");
1800   assert(isSCEVable(Ty) &&
1801          "This is not a conversion to a SCEVable type!");
1802   Ty = getEffectiveSCEVType(Ty);
1803 
1804   // Sign-extend negative constants.
1805   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1806     if (SC->getAPInt().isNegative())
1807       return getSignExtendExpr(Op, Ty);
1808 
1809   // Peel off a truncate cast.
1810   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1811     const SCEV *NewOp = T->getOperand();
1812     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1813       return getAnyExtendExpr(NewOp, Ty);
1814     return getTruncateOrNoop(NewOp, Ty);
1815   }
1816 
1817   // Next try a zext cast. If the cast is folded, use it.
1818   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1819   if (!isa<SCEVZeroExtendExpr>(ZExt))
1820     return ZExt;
1821 
1822   // Next try a sext cast. If the cast is folded, use it.
1823   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1824   if (!isa<SCEVSignExtendExpr>(SExt))
1825     return SExt;
1826 
1827   // Force the cast to be folded into the operands of an addrec.
1828   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1829     SmallVector<const SCEV *, 4> Ops;
1830     for (const SCEV *Op : AR->operands())
1831       Ops.push_back(getAnyExtendExpr(Op, Ty));
1832     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1833   }
1834 
1835   // If the expression is obviously signed, use the sext cast value.
1836   if (isa<SCEVSMaxExpr>(Op))
1837     return SExt;
1838 
1839   // Absent any other information, use the zext cast value.
1840   return ZExt;
1841 }
1842 
1843 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1844 /// a list of operands to be added under the given scale, update the given
1845 /// map. This is a helper function for getAddRecExpr. As an example of
1846 /// what it does, given a sequence of operands that would form an add
1847 /// expression like this:
1848 ///
1849 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1850 ///
1851 /// where A and B are constants, update the map with these values:
1852 ///
1853 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1854 ///
1855 /// and add 13 + A*B*29 to AccumulatedConstant.
1856 /// This will allow getAddRecExpr to produce this:
1857 ///
1858 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1859 ///
1860 /// This form often exposes folding opportunities that are hidden in
1861 /// the original operand list.
1862 ///
1863 /// Return true iff it appears that any interesting folding opportunities
1864 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1865 /// the common case where no interesting opportunities are present, and
1866 /// is also used as a check to avoid infinite recursion.
1867 ///
1868 static bool
1869 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1870                              SmallVectorImpl<const SCEV *> &NewOps,
1871                              APInt &AccumulatedConstant,
1872                              const SCEV *const *Ops, size_t NumOperands,
1873                              const APInt &Scale,
1874                              ScalarEvolution &SE) {
1875   bool Interesting = false;
1876 
1877   // Iterate over the add operands. They are sorted, with constants first.
1878   unsigned i = 0;
1879   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1880     ++i;
1881     // Pull a buried constant out to the outside.
1882     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1883       Interesting = true;
1884     AccumulatedConstant += Scale * C->getAPInt();
1885   }
1886 
1887   // Next comes everything else. We're especially interested in multiplies
1888   // here, but they're in the middle, so just visit the rest with one loop.
1889   for (; i != NumOperands; ++i) {
1890     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1891     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1892       APInt NewScale =
1893           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1894       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1895         // A multiplication of a constant with another add; recurse.
1896         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1897         Interesting |=
1898           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1899                                        Add->op_begin(), Add->getNumOperands(),
1900                                        NewScale, SE);
1901       } else {
1902         // A multiplication of a constant with some other value. Update
1903         // the map.
1904         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1905         const SCEV *Key = SE.getMulExpr(MulOps);
1906         auto Pair = M.insert({Key, NewScale});
1907         if (Pair.second) {
1908           NewOps.push_back(Pair.first->first);
1909         } else {
1910           Pair.first->second += NewScale;
1911           // The map already had an entry for this value, which may indicate
1912           // a folding opportunity.
1913           Interesting = true;
1914         }
1915       }
1916     } else {
1917       // An ordinary operand. Update the map.
1918       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1919           M.insert({Ops[i], Scale});
1920       if (Pair.second) {
1921         NewOps.push_back(Pair.first->first);
1922       } else {
1923         Pair.first->second += Scale;
1924         // The map already had an entry for this value, which may indicate
1925         // a folding opportunity.
1926         Interesting = true;
1927       }
1928     }
1929   }
1930 
1931   return Interesting;
1932 }
1933 
1934 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1935 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1936 // can't-overflow flags for the operation if possible.
1937 static SCEV::NoWrapFlags
1938 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1939                       const SmallVectorImpl<const SCEV *> &Ops,
1940                       SCEV::NoWrapFlags Flags) {
1941   using namespace std::placeholders;
1942   typedef OverflowingBinaryOperator OBO;
1943 
1944   bool CanAnalyze =
1945       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1946   (void)CanAnalyze;
1947   assert(CanAnalyze && "don't call from other places!");
1948 
1949   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1950   SCEV::NoWrapFlags SignOrUnsignWrap =
1951       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1952 
1953   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1954   auto IsKnownNonNegative = [&](const SCEV *S) {
1955     return SE->isKnownNonNegative(S);
1956   };
1957 
1958   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1959     Flags =
1960         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1961 
1962   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1963 
1964   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1965       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1966 
1967     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1968     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1969 
1970     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1971     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1972       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1973           Instruction::Add, C, OBO::NoSignedWrap);
1974       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1975         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1976     }
1977     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1978       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1979           Instruction::Add, C, OBO::NoUnsignedWrap);
1980       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1981         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1982     }
1983   }
1984 
1985   return Flags;
1986 }
1987 
1988 /// getAddExpr - Get a canonical add expression, or something simpler if
1989 /// possible.
1990 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1991                                         SCEV::NoWrapFlags Flags) {
1992   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1993          "only nuw or nsw allowed");
1994   assert(!Ops.empty() && "Cannot get empty add!");
1995   if (Ops.size() == 1) return Ops[0];
1996 #ifndef NDEBUG
1997   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1998   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1999     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2000            "SCEVAddExpr operand types don't match!");
2001 #endif
2002 
2003   // Sort by complexity, this groups all similar expression types together.
2004   GroupByComplexity(Ops, &LI);
2005 
2006   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2007 
2008   // If there are any constants, fold them together.
2009   unsigned Idx = 0;
2010   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2011     ++Idx;
2012     assert(Idx < Ops.size());
2013     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2014       // We found two constants, fold them together!
2015       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2016       if (Ops.size() == 2) return Ops[0];
2017       Ops.erase(Ops.begin()+1);  // Erase the folded element
2018       LHSC = cast<SCEVConstant>(Ops[0]);
2019     }
2020 
2021     // If we are left with a constant zero being added, strip it off.
2022     if (LHSC->getValue()->isZero()) {
2023       Ops.erase(Ops.begin());
2024       --Idx;
2025     }
2026 
2027     if (Ops.size() == 1) return Ops[0];
2028   }
2029 
2030   // Okay, check to see if the same value occurs in the operand list more than
2031   // once.  If so, merge them together into an multiply expression.  Since we
2032   // sorted the list, these values are required to be adjacent.
2033   Type *Ty = Ops[0]->getType();
2034   bool FoundMatch = false;
2035   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2036     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2037       // Scan ahead to count how many equal operands there are.
2038       unsigned Count = 2;
2039       while (i+Count != e && Ops[i+Count] == Ops[i])
2040         ++Count;
2041       // Merge the values into a multiply.
2042       const SCEV *Scale = getConstant(Ty, Count);
2043       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2044       if (Ops.size() == Count)
2045         return Mul;
2046       Ops[i] = Mul;
2047       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2048       --i; e -= Count - 1;
2049       FoundMatch = true;
2050     }
2051   if (FoundMatch)
2052     return getAddExpr(Ops, Flags);
2053 
2054   // Check for truncates. If all the operands are truncated from the same
2055   // type, see if factoring out the truncate would permit the result to be
2056   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2057   // if the contents of the resulting outer trunc fold to something simple.
2058   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2059     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2060     Type *DstType = Trunc->getType();
2061     Type *SrcType = Trunc->getOperand()->getType();
2062     SmallVector<const SCEV *, 8> LargeOps;
2063     bool Ok = true;
2064     // Check all the operands to see if they can be represented in the
2065     // source type of the truncate.
2066     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2067       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2068         if (T->getOperand()->getType() != SrcType) {
2069           Ok = false;
2070           break;
2071         }
2072         LargeOps.push_back(T->getOperand());
2073       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2074         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2075       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2076         SmallVector<const SCEV *, 8> LargeMulOps;
2077         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2078           if (const SCEVTruncateExpr *T =
2079                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2080             if (T->getOperand()->getType() != SrcType) {
2081               Ok = false;
2082               break;
2083             }
2084             LargeMulOps.push_back(T->getOperand());
2085           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2086             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2087           } else {
2088             Ok = false;
2089             break;
2090           }
2091         }
2092         if (Ok)
2093           LargeOps.push_back(getMulExpr(LargeMulOps));
2094       } else {
2095         Ok = false;
2096         break;
2097       }
2098     }
2099     if (Ok) {
2100       // Evaluate the expression in the larger type.
2101       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2102       // If it folds to something simple, use it. Otherwise, don't.
2103       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2104         return getTruncateExpr(Fold, DstType);
2105     }
2106   }
2107 
2108   // Skip past any other cast SCEVs.
2109   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2110     ++Idx;
2111 
2112   // If there are add operands they would be next.
2113   if (Idx < Ops.size()) {
2114     bool DeletedAdd = false;
2115     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2116       // If we have an add, expand the add operands onto the end of the operands
2117       // list.
2118       Ops.erase(Ops.begin()+Idx);
2119       Ops.append(Add->op_begin(), Add->op_end());
2120       DeletedAdd = true;
2121     }
2122 
2123     // If we deleted at least one add, we added operands to the end of the list,
2124     // and they are not necessarily sorted.  Recurse to resort and resimplify
2125     // any operands we just acquired.
2126     if (DeletedAdd)
2127       return getAddExpr(Ops);
2128   }
2129 
2130   // Skip over the add expression until we get to a multiply.
2131   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2132     ++Idx;
2133 
2134   // Check to see if there are any folding opportunities present with
2135   // operands multiplied by constant values.
2136   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2137     uint64_t BitWidth = getTypeSizeInBits(Ty);
2138     DenseMap<const SCEV *, APInt> M;
2139     SmallVector<const SCEV *, 8> NewOps;
2140     APInt AccumulatedConstant(BitWidth, 0);
2141     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2142                                      Ops.data(), Ops.size(),
2143                                      APInt(BitWidth, 1), *this)) {
2144       struct APIntCompare {
2145         bool operator()(const APInt &LHS, const APInt &RHS) const {
2146           return LHS.ult(RHS);
2147         }
2148       };
2149 
2150       // Some interesting folding opportunity is present, so its worthwhile to
2151       // re-generate the operands list. Group the operands by constant scale,
2152       // to avoid multiplying by the same constant scale multiple times.
2153       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2154       for (const SCEV *NewOp : NewOps)
2155         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2156       // Re-generate the operands list.
2157       Ops.clear();
2158       if (AccumulatedConstant != 0)
2159         Ops.push_back(getConstant(AccumulatedConstant));
2160       for (auto &MulOp : MulOpLists)
2161         if (MulOp.first != 0)
2162           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2163                                    getAddExpr(MulOp.second)));
2164       if (Ops.empty())
2165         return getZero(Ty);
2166       if (Ops.size() == 1)
2167         return Ops[0];
2168       return getAddExpr(Ops);
2169     }
2170   }
2171 
2172   // If we are adding something to a multiply expression, make sure the
2173   // something is not already an operand of the multiply.  If so, merge it into
2174   // the multiply.
2175   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2176     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2177     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2178       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2179       if (isa<SCEVConstant>(MulOpSCEV))
2180         continue;
2181       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2182         if (MulOpSCEV == Ops[AddOp]) {
2183           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2184           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2185           if (Mul->getNumOperands() != 2) {
2186             // If the multiply has more than two operands, we must get the
2187             // Y*Z term.
2188             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2189                                                 Mul->op_begin()+MulOp);
2190             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2191             InnerMul = getMulExpr(MulOps);
2192           }
2193           const SCEV *One = getOne(Ty);
2194           const SCEV *AddOne = getAddExpr(One, InnerMul);
2195           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2196           if (Ops.size() == 2) return OuterMul;
2197           if (AddOp < Idx) {
2198             Ops.erase(Ops.begin()+AddOp);
2199             Ops.erase(Ops.begin()+Idx-1);
2200           } else {
2201             Ops.erase(Ops.begin()+Idx);
2202             Ops.erase(Ops.begin()+AddOp-1);
2203           }
2204           Ops.push_back(OuterMul);
2205           return getAddExpr(Ops);
2206         }
2207 
2208       // Check this multiply against other multiplies being added together.
2209       for (unsigned OtherMulIdx = Idx+1;
2210            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2211            ++OtherMulIdx) {
2212         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2213         // If MulOp occurs in OtherMul, we can fold the two multiplies
2214         // together.
2215         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2216              OMulOp != e; ++OMulOp)
2217           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2218             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2219             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2220             if (Mul->getNumOperands() != 2) {
2221               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2222                                                   Mul->op_begin()+MulOp);
2223               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2224               InnerMul1 = getMulExpr(MulOps);
2225             }
2226             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2227             if (OtherMul->getNumOperands() != 2) {
2228               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2229                                                   OtherMul->op_begin()+OMulOp);
2230               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2231               InnerMul2 = getMulExpr(MulOps);
2232             }
2233             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2234             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2235             if (Ops.size() == 2) return OuterMul;
2236             Ops.erase(Ops.begin()+Idx);
2237             Ops.erase(Ops.begin()+OtherMulIdx-1);
2238             Ops.push_back(OuterMul);
2239             return getAddExpr(Ops);
2240           }
2241       }
2242     }
2243   }
2244 
2245   // If there are any add recurrences in the operands list, see if any other
2246   // added values are loop invariant.  If so, we can fold them into the
2247   // recurrence.
2248   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2249     ++Idx;
2250 
2251   // Scan over all recurrences, trying to fold loop invariants into them.
2252   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2253     // Scan all of the other operands to this add and add them to the vector if
2254     // they are loop invariant w.r.t. the recurrence.
2255     SmallVector<const SCEV *, 8> LIOps;
2256     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2257     const Loop *AddRecLoop = AddRec->getLoop();
2258     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2259       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2260         LIOps.push_back(Ops[i]);
2261         Ops.erase(Ops.begin()+i);
2262         --i; --e;
2263       }
2264 
2265     // If we found some loop invariants, fold them into the recurrence.
2266     if (!LIOps.empty()) {
2267       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2268       LIOps.push_back(AddRec->getStart());
2269 
2270       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2271                                              AddRec->op_end());
2272       AddRecOps[0] = getAddExpr(LIOps);
2273 
2274       // Build the new addrec. Propagate the NUW and NSW flags if both the
2275       // outer add and the inner addrec are guaranteed to have no overflow.
2276       // Always propagate NW.
2277       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2278       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2279 
2280       // If all of the other operands were loop invariant, we are done.
2281       if (Ops.size() == 1) return NewRec;
2282 
2283       // Otherwise, add the folded AddRec by the non-invariant parts.
2284       for (unsigned i = 0;; ++i)
2285         if (Ops[i] == AddRec) {
2286           Ops[i] = NewRec;
2287           break;
2288         }
2289       return getAddExpr(Ops);
2290     }
2291 
2292     // Okay, if there weren't any loop invariants to be folded, check to see if
2293     // there are multiple AddRec's with the same loop induction variable being
2294     // added together.  If so, we can fold them.
2295     for (unsigned OtherIdx = Idx+1;
2296          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2297          ++OtherIdx)
2298       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2299         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2300         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2301                                                AddRec->op_end());
2302         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2303              ++OtherIdx)
2304           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2305             if (OtherAddRec->getLoop() == AddRecLoop) {
2306               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2307                    i != e; ++i) {
2308                 if (i >= AddRecOps.size()) {
2309                   AddRecOps.append(OtherAddRec->op_begin()+i,
2310                                    OtherAddRec->op_end());
2311                   break;
2312                 }
2313                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2314                                           OtherAddRec->getOperand(i));
2315               }
2316               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2317             }
2318         // Step size has changed, so we cannot guarantee no self-wraparound.
2319         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2320         return getAddExpr(Ops);
2321       }
2322 
2323     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2324     // next one.
2325   }
2326 
2327   // Okay, it looks like we really DO need an add expr.  Check to see if we
2328   // already have one, otherwise create a new one.
2329   FoldingSetNodeID ID;
2330   ID.AddInteger(scAddExpr);
2331   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2332     ID.AddPointer(Ops[i]);
2333   void *IP = nullptr;
2334   SCEVAddExpr *S =
2335     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2336   if (!S) {
2337     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2338     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2339     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2340                                         O, Ops.size());
2341     UniqueSCEVs.InsertNode(S, IP);
2342   }
2343   S->setNoWrapFlags(Flags);
2344   return S;
2345 }
2346 
2347 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2348   uint64_t k = i*j;
2349   if (j > 1 && k / j != i) Overflow = true;
2350   return k;
2351 }
2352 
2353 /// Compute the result of "n choose k", the binomial coefficient.  If an
2354 /// intermediate computation overflows, Overflow will be set and the return will
2355 /// be garbage. Overflow is not cleared on absence of overflow.
2356 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2357   // We use the multiplicative formula:
2358   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2359   // At each iteration, we take the n-th term of the numeral and divide by the
2360   // (k-n)th term of the denominator.  This division will always produce an
2361   // integral result, and helps reduce the chance of overflow in the
2362   // intermediate computations. However, we can still overflow even when the
2363   // final result would fit.
2364 
2365   if (n == 0 || n == k) return 1;
2366   if (k > n) return 0;
2367 
2368   if (k > n/2)
2369     k = n-k;
2370 
2371   uint64_t r = 1;
2372   for (uint64_t i = 1; i <= k; ++i) {
2373     r = umul_ov(r, n-(i-1), Overflow);
2374     r /= i;
2375   }
2376   return r;
2377 }
2378 
2379 /// Determine if any of the operands in this SCEV are a constant or if
2380 /// any of the add or multiply expressions in this SCEV contain a constant.
2381 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2382   SmallVector<const SCEV *, 4> Ops;
2383   Ops.push_back(StartExpr);
2384   while (!Ops.empty()) {
2385     const SCEV *CurrentExpr = Ops.pop_back_val();
2386     if (isa<SCEVConstant>(*CurrentExpr))
2387       return true;
2388 
2389     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2390       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2391       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2392     }
2393   }
2394   return false;
2395 }
2396 
2397 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2398 /// possible.
2399 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2400                                         SCEV::NoWrapFlags Flags) {
2401   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2402          "only nuw or nsw allowed");
2403   assert(!Ops.empty() && "Cannot get empty mul!");
2404   if (Ops.size() == 1) return Ops[0];
2405 #ifndef NDEBUG
2406   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2407   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2408     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2409            "SCEVMulExpr operand types don't match!");
2410 #endif
2411 
2412   // Sort by complexity, this groups all similar expression types together.
2413   GroupByComplexity(Ops, &LI);
2414 
2415   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2416 
2417   // If there are any constants, fold them together.
2418   unsigned Idx = 0;
2419   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2420 
2421     // C1*(C2+V) -> C1*C2 + C1*V
2422     if (Ops.size() == 2)
2423         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2424           // If any of Add's ops are Adds or Muls with a constant,
2425           // apply this transformation as well.
2426           if (Add->getNumOperands() == 2)
2427             if (containsConstantSomewhere(Add))
2428               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2429                                 getMulExpr(LHSC, Add->getOperand(1)));
2430 
2431     ++Idx;
2432     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2433       // We found two constants, fold them together!
2434       ConstantInt *Fold =
2435           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2436       Ops[0] = getConstant(Fold);
2437       Ops.erase(Ops.begin()+1);  // Erase the folded element
2438       if (Ops.size() == 1) return Ops[0];
2439       LHSC = cast<SCEVConstant>(Ops[0]);
2440     }
2441 
2442     // If we are left with a constant one being multiplied, strip it off.
2443     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2444       Ops.erase(Ops.begin());
2445       --Idx;
2446     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2447       // If we have a multiply of zero, it will always be zero.
2448       return Ops[0];
2449     } else if (Ops[0]->isAllOnesValue()) {
2450       // If we have a mul by -1 of an add, try distributing the -1 among the
2451       // add operands.
2452       if (Ops.size() == 2) {
2453         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2454           SmallVector<const SCEV *, 4> NewOps;
2455           bool AnyFolded = false;
2456           for (const SCEV *AddOp : Add->operands()) {
2457             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2458             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2459             NewOps.push_back(Mul);
2460           }
2461           if (AnyFolded)
2462             return getAddExpr(NewOps);
2463         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2464           // Negation preserves a recurrence's no self-wrap property.
2465           SmallVector<const SCEV *, 4> Operands;
2466           for (const SCEV *AddRecOp : AddRec->operands())
2467             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2468 
2469           return getAddRecExpr(Operands, AddRec->getLoop(),
2470                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2471         }
2472       }
2473     }
2474 
2475     if (Ops.size() == 1)
2476       return Ops[0];
2477   }
2478 
2479   // Skip over the add expression until we get to a multiply.
2480   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2481     ++Idx;
2482 
2483   // If there are mul operands inline them all into this expression.
2484   if (Idx < Ops.size()) {
2485     bool DeletedMul = false;
2486     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2487       // If we have an mul, expand the mul operands onto the end of the operands
2488       // list.
2489       Ops.erase(Ops.begin()+Idx);
2490       Ops.append(Mul->op_begin(), Mul->op_end());
2491       DeletedMul = true;
2492     }
2493 
2494     // If we deleted at least one mul, we added operands to the end of the list,
2495     // and they are not necessarily sorted.  Recurse to resort and resimplify
2496     // any operands we just acquired.
2497     if (DeletedMul)
2498       return getMulExpr(Ops);
2499   }
2500 
2501   // If there are any add recurrences in the operands list, see if any other
2502   // added values are loop invariant.  If so, we can fold them into the
2503   // recurrence.
2504   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2505     ++Idx;
2506 
2507   // Scan over all recurrences, trying to fold loop invariants into them.
2508   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2509     // Scan all of the other operands to this mul and add them to the vector if
2510     // they are loop invariant w.r.t. the recurrence.
2511     SmallVector<const SCEV *, 8> LIOps;
2512     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2513     const Loop *AddRecLoop = AddRec->getLoop();
2514     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2515       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2516         LIOps.push_back(Ops[i]);
2517         Ops.erase(Ops.begin()+i);
2518         --i; --e;
2519       }
2520 
2521     // If we found some loop invariants, fold them into the recurrence.
2522     if (!LIOps.empty()) {
2523       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2524       SmallVector<const SCEV *, 4> NewOps;
2525       NewOps.reserve(AddRec->getNumOperands());
2526       const SCEV *Scale = getMulExpr(LIOps);
2527       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2528         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2529 
2530       // Build the new addrec. Propagate the NUW and NSW flags if both the
2531       // outer mul and the inner addrec are guaranteed to have no overflow.
2532       //
2533       // No self-wrap cannot be guaranteed after changing the step size, but
2534       // will be inferred if either NUW or NSW is true.
2535       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2536       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2537 
2538       // If all of the other operands were loop invariant, we are done.
2539       if (Ops.size() == 1) return NewRec;
2540 
2541       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2542       for (unsigned i = 0;; ++i)
2543         if (Ops[i] == AddRec) {
2544           Ops[i] = NewRec;
2545           break;
2546         }
2547       return getMulExpr(Ops);
2548     }
2549 
2550     // Okay, if there weren't any loop invariants to be folded, check to see if
2551     // there are multiple AddRec's with the same loop induction variable being
2552     // multiplied together.  If so, we can fold them.
2553 
2554     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2555     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2556     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2557     //   ]]],+,...up to x=2n}.
2558     // Note that the arguments to choose() are always integers with values
2559     // known at compile time, never SCEV objects.
2560     //
2561     // The implementation avoids pointless extra computations when the two
2562     // addrec's are of different length (mathematically, it's equivalent to
2563     // an infinite stream of zeros on the right).
2564     bool OpsModified = false;
2565     for (unsigned OtherIdx = Idx+1;
2566          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2567          ++OtherIdx) {
2568       const SCEVAddRecExpr *OtherAddRec =
2569         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2570       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2571         continue;
2572 
2573       bool Overflow = false;
2574       Type *Ty = AddRec->getType();
2575       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2576       SmallVector<const SCEV*, 7> AddRecOps;
2577       for (int x = 0, xe = AddRec->getNumOperands() +
2578              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2579         const SCEV *Term = getZero(Ty);
2580         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2581           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2582           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2583                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2584                z < ze && !Overflow; ++z) {
2585             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2586             uint64_t Coeff;
2587             if (LargerThan64Bits)
2588               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2589             else
2590               Coeff = Coeff1*Coeff2;
2591             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2592             const SCEV *Term1 = AddRec->getOperand(y-z);
2593             const SCEV *Term2 = OtherAddRec->getOperand(z);
2594             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2595           }
2596         }
2597         AddRecOps.push_back(Term);
2598       }
2599       if (!Overflow) {
2600         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2601                                               SCEV::FlagAnyWrap);
2602         if (Ops.size() == 2) return NewAddRec;
2603         Ops[Idx] = NewAddRec;
2604         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2605         OpsModified = true;
2606         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2607         if (!AddRec)
2608           break;
2609       }
2610     }
2611     if (OpsModified)
2612       return getMulExpr(Ops);
2613 
2614     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2615     // next one.
2616   }
2617 
2618   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2619   // already have one, otherwise create a new one.
2620   FoldingSetNodeID ID;
2621   ID.AddInteger(scMulExpr);
2622   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2623     ID.AddPointer(Ops[i]);
2624   void *IP = nullptr;
2625   SCEVMulExpr *S =
2626     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2627   if (!S) {
2628     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2629     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2630     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2631                                         O, Ops.size());
2632     UniqueSCEVs.InsertNode(S, IP);
2633   }
2634   S->setNoWrapFlags(Flags);
2635   return S;
2636 }
2637 
2638 /// getUDivExpr - Get a canonical unsigned division expression, or something
2639 /// simpler if possible.
2640 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2641                                          const SCEV *RHS) {
2642   assert(getEffectiveSCEVType(LHS->getType()) ==
2643          getEffectiveSCEVType(RHS->getType()) &&
2644          "SCEVUDivExpr operand types don't match!");
2645 
2646   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2647     if (RHSC->getValue()->equalsInt(1))
2648       return LHS;                               // X udiv 1 --> x
2649     // If the denominator is zero, the result of the udiv is undefined. Don't
2650     // try to analyze it, because the resolution chosen here may differ from
2651     // the resolution chosen in other parts of the compiler.
2652     if (!RHSC->getValue()->isZero()) {
2653       // Determine if the division can be folded into the operands of
2654       // its operands.
2655       // TODO: Generalize this to non-constants by using known-bits information.
2656       Type *Ty = LHS->getType();
2657       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2658       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2659       // For non-power-of-two values, effectively round the value up to the
2660       // nearest power of two.
2661       if (!RHSC->getAPInt().isPowerOf2())
2662         ++MaxShiftAmt;
2663       IntegerType *ExtTy =
2664         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2665       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2666         if (const SCEVConstant *Step =
2667             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2668           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2669           const APInt &StepInt = Step->getAPInt();
2670           const APInt &DivInt = RHSC->getAPInt();
2671           if (!StepInt.urem(DivInt) &&
2672               getZeroExtendExpr(AR, ExtTy) ==
2673               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2674                             getZeroExtendExpr(Step, ExtTy),
2675                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2676             SmallVector<const SCEV *, 4> Operands;
2677             for (const SCEV *Op : AR->operands())
2678               Operands.push_back(getUDivExpr(Op, RHS));
2679             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2680           }
2681           /// Get a canonical UDivExpr for a recurrence.
2682           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2683           // We can currently only fold X%N if X is constant.
2684           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2685           if (StartC && !DivInt.urem(StepInt) &&
2686               getZeroExtendExpr(AR, ExtTy) ==
2687               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2688                             getZeroExtendExpr(Step, ExtTy),
2689                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2690             const APInt &StartInt = StartC->getAPInt();
2691             const APInt &StartRem = StartInt.urem(StepInt);
2692             if (StartRem != 0)
2693               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2694                                   AR->getLoop(), SCEV::FlagNW);
2695           }
2696         }
2697       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2698       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2699         SmallVector<const SCEV *, 4> Operands;
2700         for (const SCEV *Op : M->operands())
2701           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2702         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2703           // Find an operand that's safely divisible.
2704           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2705             const SCEV *Op = M->getOperand(i);
2706             const SCEV *Div = getUDivExpr(Op, RHSC);
2707             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2708               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2709                                                       M->op_end());
2710               Operands[i] = Div;
2711               return getMulExpr(Operands);
2712             }
2713           }
2714       }
2715       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2716       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2717         SmallVector<const SCEV *, 4> Operands;
2718         for (const SCEV *Op : A->operands())
2719           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2720         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2721           Operands.clear();
2722           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2723             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2724             if (isa<SCEVUDivExpr>(Op) ||
2725                 getMulExpr(Op, RHS) != A->getOperand(i))
2726               break;
2727             Operands.push_back(Op);
2728           }
2729           if (Operands.size() == A->getNumOperands())
2730             return getAddExpr(Operands);
2731         }
2732       }
2733 
2734       // Fold if both operands are constant.
2735       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2736         Constant *LHSCV = LHSC->getValue();
2737         Constant *RHSCV = RHSC->getValue();
2738         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2739                                                                    RHSCV)));
2740       }
2741     }
2742   }
2743 
2744   FoldingSetNodeID ID;
2745   ID.AddInteger(scUDivExpr);
2746   ID.AddPointer(LHS);
2747   ID.AddPointer(RHS);
2748   void *IP = nullptr;
2749   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2750   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2751                                              LHS, RHS);
2752   UniqueSCEVs.InsertNode(S, IP);
2753   return S;
2754 }
2755 
2756 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2757   APInt A = C1->getAPInt().abs();
2758   APInt B = C2->getAPInt().abs();
2759   uint32_t ABW = A.getBitWidth();
2760   uint32_t BBW = B.getBitWidth();
2761 
2762   if (ABW > BBW)
2763     B = B.zext(ABW);
2764   else if (ABW < BBW)
2765     A = A.zext(BBW);
2766 
2767   return APIntOps::GreatestCommonDivisor(A, B);
2768 }
2769 
2770 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2771 /// something simpler if possible. There is no representation for an exact udiv
2772 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2773 /// We can't do this when it's not exact because the udiv may be clearing bits.
2774 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2775                                               const SCEV *RHS) {
2776   // TODO: we could try to find factors in all sorts of things, but for now we
2777   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2778   // end of this file for inspiration.
2779 
2780   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2781   if (!Mul)
2782     return getUDivExpr(LHS, RHS);
2783 
2784   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2785     // If the mulexpr multiplies by a constant, then that constant must be the
2786     // first element of the mulexpr.
2787     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2788       if (LHSCst == RHSCst) {
2789         SmallVector<const SCEV *, 2> Operands;
2790         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2791         return getMulExpr(Operands);
2792       }
2793 
2794       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2795       // that there's a factor provided by one of the other terms. We need to
2796       // check.
2797       APInt Factor = gcd(LHSCst, RHSCst);
2798       if (!Factor.isIntN(1)) {
2799         LHSCst =
2800             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2801         RHSCst =
2802             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2803         SmallVector<const SCEV *, 2> Operands;
2804         Operands.push_back(LHSCst);
2805         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2806         LHS = getMulExpr(Operands);
2807         RHS = RHSCst;
2808         Mul = dyn_cast<SCEVMulExpr>(LHS);
2809         if (!Mul)
2810           return getUDivExactExpr(LHS, RHS);
2811       }
2812     }
2813   }
2814 
2815   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2816     if (Mul->getOperand(i) == RHS) {
2817       SmallVector<const SCEV *, 2> Operands;
2818       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2819       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2820       return getMulExpr(Operands);
2821     }
2822   }
2823 
2824   return getUDivExpr(LHS, RHS);
2825 }
2826 
2827 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2828 /// Simplify the expression as much as possible.
2829 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2830                                            const Loop *L,
2831                                            SCEV::NoWrapFlags Flags) {
2832   SmallVector<const SCEV *, 4> Operands;
2833   Operands.push_back(Start);
2834   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2835     if (StepChrec->getLoop() == L) {
2836       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2837       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2838     }
2839 
2840   Operands.push_back(Step);
2841   return getAddRecExpr(Operands, L, Flags);
2842 }
2843 
2844 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2845 /// Simplify the expression as much as possible.
2846 const SCEV *
2847 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2848                                const Loop *L, SCEV::NoWrapFlags Flags) {
2849   if (Operands.size() == 1) return Operands[0];
2850 #ifndef NDEBUG
2851   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2852   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2853     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2854            "SCEVAddRecExpr operand types don't match!");
2855   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2856     assert(isLoopInvariant(Operands[i], L) &&
2857            "SCEVAddRecExpr operand is not loop-invariant!");
2858 #endif
2859 
2860   if (Operands.back()->isZero()) {
2861     Operands.pop_back();
2862     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2863   }
2864 
2865   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2866   // use that information to infer NUW and NSW flags. However, computing a
2867   // BE count requires calling getAddRecExpr, so we may not yet have a
2868   // meaningful BE count at this point (and if we don't, we'd be stuck
2869   // with a SCEVCouldNotCompute as the cached BE count).
2870 
2871   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2872 
2873   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2874   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2875     const Loop *NestedLoop = NestedAR->getLoop();
2876     if (L->contains(NestedLoop)
2877             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2878             : (!NestedLoop->contains(L) &&
2879                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2880       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2881                                                   NestedAR->op_end());
2882       Operands[0] = NestedAR->getStart();
2883       // AddRecs require their operands be loop-invariant with respect to their
2884       // loops. Don't perform this transformation if it would break this
2885       // requirement.
2886       bool AllInvariant = all_of(
2887           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2888 
2889       if (AllInvariant) {
2890         // Create a recurrence for the outer loop with the same step size.
2891         //
2892         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2893         // inner recurrence has the same property.
2894         SCEV::NoWrapFlags OuterFlags =
2895           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2896 
2897         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2898         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2899           return isLoopInvariant(Op, NestedLoop);
2900         });
2901 
2902         if (AllInvariant) {
2903           // Ok, both add recurrences are valid after the transformation.
2904           //
2905           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2906           // the outer recurrence has the same property.
2907           SCEV::NoWrapFlags InnerFlags =
2908             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2909           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2910         }
2911       }
2912       // Reset Operands to its original state.
2913       Operands[0] = NestedAR;
2914     }
2915   }
2916 
2917   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2918   // already have one, otherwise create a new one.
2919   FoldingSetNodeID ID;
2920   ID.AddInteger(scAddRecExpr);
2921   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2922     ID.AddPointer(Operands[i]);
2923   ID.AddPointer(L);
2924   void *IP = nullptr;
2925   SCEVAddRecExpr *S =
2926     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2927   if (!S) {
2928     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2929     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2930     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2931                                            O, Operands.size(), L);
2932     UniqueSCEVs.InsertNode(S, IP);
2933   }
2934   S->setNoWrapFlags(Flags);
2935   return S;
2936 }
2937 
2938 const SCEV *
2939 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2940                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2941                             bool InBounds) {
2942   // getSCEV(Base)->getType() has the same address space as Base->getType()
2943   // because SCEV::getType() preserves the address space.
2944   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2945   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2946   // instruction to its SCEV, because the Instruction may be guarded by control
2947   // flow and the no-overflow bits may not be valid for the expression in any
2948   // context. This can be fixed similarly to how these flags are handled for
2949   // adds.
2950   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2951 
2952   const SCEV *TotalOffset = getZero(IntPtrTy);
2953   // The address space is unimportant. The first thing we do on CurTy is getting
2954   // its element type.
2955   Type *CurTy = PointerType::getUnqual(PointeeType);
2956   for (const SCEV *IndexExpr : IndexExprs) {
2957     // Compute the (potentially symbolic) offset in bytes for this index.
2958     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2959       // For a struct, add the member offset.
2960       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2961       unsigned FieldNo = Index->getZExtValue();
2962       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2963 
2964       // Add the field offset to the running total offset.
2965       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2966 
2967       // Update CurTy to the type of the field at Index.
2968       CurTy = STy->getTypeAtIndex(Index);
2969     } else {
2970       // Update CurTy to its element type.
2971       CurTy = cast<SequentialType>(CurTy)->getElementType();
2972       // For an array, add the element offset, explicitly scaled.
2973       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2974       // Getelementptr indices are signed.
2975       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2976 
2977       // Multiply the index by the element size to compute the element offset.
2978       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2979 
2980       // Add the element offset to the running total offset.
2981       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2982     }
2983   }
2984 
2985   // Add the total offset from all the GEP indices to the base.
2986   return getAddExpr(BaseExpr, TotalOffset, Wrap);
2987 }
2988 
2989 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2990                                          const SCEV *RHS) {
2991   SmallVector<const SCEV *, 2> Ops;
2992   Ops.push_back(LHS);
2993   Ops.push_back(RHS);
2994   return getSMaxExpr(Ops);
2995 }
2996 
2997 const SCEV *
2998 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2999   assert(!Ops.empty() && "Cannot get empty smax!");
3000   if (Ops.size() == 1) return Ops[0];
3001 #ifndef NDEBUG
3002   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3003   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3004     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3005            "SCEVSMaxExpr operand types don't match!");
3006 #endif
3007 
3008   // Sort by complexity, this groups all similar expression types together.
3009   GroupByComplexity(Ops, &LI);
3010 
3011   // If there are any constants, fold them together.
3012   unsigned Idx = 0;
3013   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3014     ++Idx;
3015     assert(Idx < Ops.size());
3016     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3017       // We found two constants, fold them together!
3018       ConstantInt *Fold = ConstantInt::get(
3019           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3020       Ops[0] = getConstant(Fold);
3021       Ops.erase(Ops.begin()+1);  // Erase the folded element
3022       if (Ops.size() == 1) return Ops[0];
3023       LHSC = cast<SCEVConstant>(Ops[0]);
3024     }
3025 
3026     // If we are left with a constant minimum-int, strip it off.
3027     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3028       Ops.erase(Ops.begin());
3029       --Idx;
3030     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3031       // If we have an smax with a constant maximum-int, it will always be
3032       // maximum-int.
3033       return Ops[0];
3034     }
3035 
3036     if (Ops.size() == 1) return Ops[0];
3037   }
3038 
3039   // Find the first SMax
3040   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3041     ++Idx;
3042 
3043   // Check to see if one of the operands is an SMax. If so, expand its operands
3044   // onto our operand list, and recurse to simplify.
3045   if (Idx < Ops.size()) {
3046     bool DeletedSMax = false;
3047     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3048       Ops.erase(Ops.begin()+Idx);
3049       Ops.append(SMax->op_begin(), SMax->op_end());
3050       DeletedSMax = true;
3051     }
3052 
3053     if (DeletedSMax)
3054       return getSMaxExpr(Ops);
3055   }
3056 
3057   // Okay, check to see if the same value occurs in the operand list twice.  If
3058   // so, delete one.  Since we sorted the list, these values are required to
3059   // be adjacent.
3060   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3061     //  X smax Y smax Y  -->  X smax Y
3062     //  X smax Y         -->  X, if X is always greater than Y
3063     if (Ops[i] == Ops[i+1] ||
3064         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3065       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3066       --i; --e;
3067     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3068       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3069       --i; --e;
3070     }
3071 
3072   if (Ops.size() == 1) return Ops[0];
3073 
3074   assert(!Ops.empty() && "Reduced smax down to nothing!");
3075 
3076   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3077   // already have one, otherwise create a new one.
3078   FoldingSetNodeID ID;
3079   ID.AddInteger(scSMaxExpr);
3080   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3081     ID.AddPointer(Ops[i]);
3082   void *IP = nullptr;
3083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3084   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3085   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3086   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3087                                              O, Ops.size());
3088   UniqueSCEVs.InsertNode(S, IP);
3089   return S;
3090 }
3091 
3092 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3093                                          const SCEV *RHS) {
3094   SmallVector<const SCEV *, 2> Ops;
3095   Ops.push_back(LHS);
3096   Ops.push_back(RHS);
3097   return getUMaxExpr(Ops);
3098 }
3099 
3100 const SCEV *
3101 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3102   assert(!Ops.empty() && "Cannot get empty umax!");
3103   if (Ops.size() == 1) return Ops[0];
3104 #ifndef NDEBUG
3105   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3106   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3107     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3108            "SCEVUMaxExpr operand types don't match!");
3109 #endif
3110 
3111   // Sort by complexity, this groups all similar expression types together.
3112   GroupByComplexity(Ops, &LI);
3113 
3114   // If there are any constants, fold them together.
3115   unsigned Idx = 0;
3116   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3117     ++Idx;
3118     assert(Idx < Ops.size());
3119     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3120       // We found two constants, fold them together!
3121       ConstantInt *Fold = ConstantInt::get(
3122           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3123       Ops[0] = getConstant(Fold);
3124       Ops.erase(Ops.begin()+1);  // Erase the folded element
3125       if (Ops.size() == 1) return Ops[0];
3126       LHSC = cast<SCEVConstant>(Ops[0]);
3127     }
3128 
3129     // If we are left with a constant minimum-int, strip it off.
3130     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3131       Ops.erase(Ops.begin());
3132       --Idx;
3133     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3134       // If we have an umax with a constant maximum-int, it will always be
3135       // maximum-int.
3136       return Ops[0];
3137     }
3138 
3139     if (Ops.size() == 1) return Ops[0];
3140   }
3141 
3142   // Find the first UMax
3143   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3144     ++Idx;
3145 
3146   // Check to see if one of the operands is a UMax. If so, expand its operands
3147   // onto our operand list, and recurse to simplify.
3148   if (Idx < Ops.size()) {
3149     bool DeletedUMax = false;
3150     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3151       Ops.erase(Ops.begin()+Idx);
3152       Ops.append(UMax->op_begin(), UMax->op_end());
3153       DeletedUMax = true;
3154     }
3155 
3156     if (DeletedUMax)
3157       return getUMaxExpr(Ops);
3158   }
3159 
3160   // Okay, check to see if the same value occurs in the operand list twice.  If
3161   // so, delete one.  Since we sorted the list, these values are required to
3162   // be adjacent.
3163   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3164     //  X umax Y umax Y  -->  X umax Y
3165     //  X umax Y         -->  X, if X is always greater than Y
3166     if (Ops[i] == Ops[i+1] ||
3167         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3168       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3169       --i; --e;
3170     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3171       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3172       --i; --e;
3173     }
3174 
3175   if (Ops.size() == 1) return Ops[0];
3176 
3177   assert(!Ops.empty() && "Reduced umax down to nothing!");
3178 
3179   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3180   // already have one, otherwise create a new one.
3181   FoldingSetNodeID ID;
3182   ID.AddInteger(scUMaxExpr);
3183   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3184     ID.AddPointer(Ops[i]);
3185   void *IP = nullptr;
3186   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3187   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3188   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3189   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3190                                              O, Ops.size());
3191   UniqueSCEVs.InsertNode(S, IP);
3192   return S;
3193 }
3194 
3195 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3196                                          const SCEV *RHS) {
3197   // ~smax(~x, ~y) == smin(x, y).
3198   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3199 }
3200 
3201 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3202                                          const SCEV *RHS) {
3203   // ~umax(~x, ~y) == umin(x, y)
3204   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3205 }
3206 
3207 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3208   // We can bypass creating a target-independent
3209   // constant expression and then folding it back into a ConstantInt.
3210   // This is just a compile-time optimization.
3211   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3212 }
3213 
3214 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3215                                              StructType *STy,
3216                                              unsigned FieldNo) {
3217   // We can bypass creating a target-independent
3218   // constant expression and then folding it back into a ConstantInt.
3219   // This is just a compile-time optimization.
3220   return getConstant(
3221       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3222 }
3223 
3224 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3225   // Don't attempt to do anything other than create a SCEVUnknown object
3226   // here.  createSCEV only calls getUnknown after checking for all other
3227   // interesting possibilities, and any other code that calls getUnknown
3228   // is doing so in order to hide a value from SCEV canonicalization.
3229 
3230   FoldingSetNodeID ID;
3231   ID.AddInteger(scUnknown);
3232   ID.AddPointer(V);
3233   void *IP = nullptr;
3234   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3235     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3236            "Stale SCEVUnknown in uniquing map!");
3237     return S;
3238   }
3239   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3240                                             FirstUnknown);
3241   FirstUnknown = cast<SCEVUnknown>(S);
3242   UniqueSCEVs.InsertNode(S, IP);
3243   return S;
3244 }
3245 
3246 //===----------------------------------------------------------------------===//
3247 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3248 //
3249 
3250 /// isSCEVable - Test if values of the given type are analyzable within
3251 /// the SCEV framework. This primarily includes integer types, and it
3252 /// can optionally include pointer types if the ScalarEvolution class
3253 /// has access to target-specific information.
3254 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3255   // Integers and pointers are always SCEVable.
3256   return Ty->isIntegerTy() || Ty->isPointerTy();
3257 }
3258 
3259 /// getTypeSizeInBits - Return the size in bits of the specified type,
3260 /// for which isSCEVable must return true.
3261 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3262   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3263   return getDataLayout().getTypeSizeInBits(Ty);
3264 }
3265 
3266 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3267 /// the given type and which represents how SCEV will treat the given
3268 /// type, for which isSCEVable must return true. For pointer types,
3269 /// this is the pointer-sized integer type.
3270 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3271   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3272 
3273   if (Ty->isIntegerTy())
3274     return Ty;
3275 
3276   // The only other support type is pointer.
3277   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3278   return getDataLayout().getIntPtrType(Ty);
3279 }
3280 
3281 const SCEV *ScalarEvolution::getCouldNotCompute() {
3282   return CouldNotCompute.get();
3283 }
3284 
3285 
3286 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3287   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3288   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3289   // is set iff if find such SCEVUnknown.
3290   //
3291   struct FindInvalidSCEVUnknown {
3292     bool FindOne;
3293     FindInvalidSCEVUnknown() { FindOne = false; }
3294     bool follow(const SCEV *S) {
3295       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3296       case scConstant:
3297         return false;
3298       case scUnknown:
3299         if (!cast<SCEVUnknown>(S)->getValue())
3300           FindOne = true;
3301         return false;
3302       default:
3303         return true;
3304       }
3305     }
3306     bool isDone() const { return FindOne; }
3307   };
3308 
3309   FindInvalidSCEVUnknown F;
3310   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3311   ST.visitAll(S);
3312 
3313   return !F.FindOne;
3314 }
3315 
3316 namespace {
3317 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3318 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3319 // iff if such sub scAddRecExpr type SCEV is found.
3320 struct FindAddRecurrence {
3321   bool FoundOne;
3322   FindAddRecurrence() : FoundOne(false) {}
3323 
3324   bool follow(const SCEV *S) {
3325     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3326     case scAddRecExpr:
3327       FoundOne = true;
3328     case scConstant:
3329     case scUnknown:
3330     case scCouldNotCompute:
3331       return false;
3332     default:
3333       return true;
3334     }
3335   }
3336   bool isDone() const { return FoundOne; }
3337 };
3338 }
3339 
3340 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3341   HasRecMapType::iterator I = HasRecMap.find_as(S);
3342   if (I != HasRecMap.end())
3343     return I->second;
3344 
3345   FindAddRecurrence F;
3346   SCEVTraversal<FindAddRecurrence> ST(F);
3347   ST.visitAll(S);
3348   HasRecMap.insert({S, F.FoundOne});
3349   return F.FoundOne;
3350 }
3351 
3352 /// getSCEVValues - Return the Value set from S.
3353 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3354   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3355   if (SI == ExprValueMap.end())
3356     return nullptr;
3357 #ifndef NDEBUG
3358   if (VerifySCEVMap) {
3359     // Check there is no dangling Value in the set returned.
3360     for (const auto &VE : SI->second)
3361       assert(ValueExprMap.count(VE));
3362   }
3363 #endif
3364   return &SI->second;
3365 }
3366 
3367 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3368 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3369 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3370 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3371 void ScalarEvolution::eraseValueFromMap(Value *V) {
3372   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3373   if (I != ValueExprMap.end()) {
3374     const SCEV *S = I->second;
3375     SetVector<Value *> *SV = getSCEVValues(S);
3376     // Remove V from the set of ExprValueMap[S]
3377     if (SV)
3378       SV->remove(V);
3379     ValueExprMap.erase(V);
3380   }
3381 }
3382 
3383 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3384 /// expression and create a new one.
3385 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3386   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3387 
3388   const SCEV *S = getExistingSCEV(V);
3389   if (S == nullptr) {
3390     S = createSCEV(V);
3391     // During PHI resolution, it is possible to create two SCEVs for the same
3392     // V, so it is needed to double check whether V->S is inserted into
3393     // ValueExprMap before insert S->V into ExprValueMap.
3394     std::pair<ValueExprMapType::iterator, bool> Pair =
3395         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3396     if (Pair.second)
3397       ExprValueMap[S].insert(V);
3398   }
3399   return S;
3400 }
3401 
3402 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3403   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3404 
3405   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3406   if (I != ValueExprMap.end()) {
3407     const SCEV *S = I->second;
3408     if (checkValidity(S))
3409       return S;
3410     forgetMemoizedResults(S);
3411     ValueExprMap.erase(I);
3412   }
3413   return nullptr;
3414 }
3415 
3416 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3417 ///
3418 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3419                                              SCEV::NoWrapFlags Flags) {
3420   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3421     return getConstant(
3422                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3423 
3424   Type *Ty = V->getType();
3425   Ty = getEffectiveSCEVType(Ty);
3426   return getMulExpr(
3427       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3428 }
3429 
3430 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3431 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3432   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3433     return getConstant(
3434                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3435 
3436   Type *Ty = V->getType();
3437   Ty = getEffectiveSCEVType(Ty);
3438   const SCEV *AllOnes =
3439                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3440   return getMinusSCEV(AllOnes, V);
3441 }
3442 
3443 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3444 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3445                                           SCEV::NoWrapFlags Flags) {
3446   // Fast path: X - X --> 0.
3447   if (LHS == RHS)
3448     return getZero(LHS->getType());
3449 
3450   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3451   // makes it so that we cannot make much use of NUW.
3452   auto AddFlags = SCEV::FlagAnyWrap;
3453   const bool RHSIsNotMinSigned =
3454       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3455   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3456     // Let M be the minimum representable signed value. Then (-1)*RHS
3457     // signed-wraps if and only if RHS is M. That can happen even for
3458     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3459     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3460     // (-1)*RHS, we need to prove that RHS != M.
3461     //
3462     // If LHS is non-negative and we know that LHS - RHS does not
3463     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3464     // either by proving that RHS > M or that LHS >= 0.
3465     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3466       AddFlags = SCEV::FlagNSW;
3467     }
3468   }
3469 
3470   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3471   // RHS is NSW and LHS >= 0.
3472   //
3473   // The difficulty here is that the NSW flag may have been proven
3474   // relative to a loop that is to be found in a recurrence in LHS and
3475   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3476   // larger scope than intended.
3477   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3478 
3479   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3480 }
3481 
3482 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3483 /// input value to the specified type.  If the type must be extended, it is zero
3484 /// extended.
3485 const SCEV *
3486 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3487   Type *SrcTy = V->getType();
3488   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3489          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3490          "Cannot truncate or zero extend with non-integer arguments!");
3491   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3492     return V;  // No conversion
3493   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3494     return getTruncateExpr(V, Ty);
3495   return getZeroExtendExpr(V, Ty);
3496 }
3497 
3498 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3499 /// input value to the specified type.  If the type must be extended, it is sign
3500 /// extended.
3501 const SCEV *
3502 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3503                                          Type *Ty) {
3504   Type *SrcTy = V->getType();
3505   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3506          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3507          "Cannot truncate or zero extend with non-integer arguments!");
3508   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3509     return V;  // No conversion
3510   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3511     return getTruncateExpr(V, Ty);
3512   return getSignExtendExpr(V, Ty);
3513 }
3514 
3515 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3516 /// input value to the specified type.  If the type must be extended, it is zero
3517 /// extended.  The conversion must not be narrowing.
3518 const SCEV *
3519 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3520   Type *SrcTy = V->getType();
3521   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3522          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3523          "Cannot noop or zero extend with non-integer arguments!");
3524   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3525          "getNoopOrZeroExtend cannot truncate!");
3526   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3527     return V;  // No conversion
3528   return getZeroExtendExpr(V, Ty);
3529 }
3530 
3531 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3532 /// input value to the specified type.  If the type must be extended, it is sign
3533 /// extended.  The conversion must not be narrowing.
3534 const SCEV *
3535 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3536   Type *SrcTy = V->getType();
3537   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3538          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3539          "Cannot noop or sign extend with non-integer arguments!");
3540   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3541          "getNoopOrSignExtend cannot truncate!");
3542   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3543     return V;  // No conversion
3544   return getSignExtendExpr(V, Ty);
3545 }
3546 
3547 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3548 /// the input value to the specified type. If the type must be extended,
3549 /// it is extended with unspecified bits. The conversion must not be
3550 /// narrowing.
3551 const SCEV *
3552 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3553   Type *SrcTy = V->getType();
3554   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3555          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3556          "Cannot noop or any extend with non-integer arguments!");
3557   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3558          "getNoopOrAnyExtend cannot truncate!");
3559   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3560     return V;  // No conversion
3561   return getAnyExtendExpr(V, Ty);
3562 }
3563 
3564 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3565 /// input value to the specified type.  The conversion must not be widening.
3566 const SCEV *
3567 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3568   Type *SrcTy = V->getType();
3569   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3570          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3571          "Cannot truncate or noop with non-integer arguments!");
3572   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3573          "getTruncateOrNoop cannot extend!");
3574   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3575     return V;  // No conversion
3576   return getTruncateExpr(V, Ty);
3577 }
3578 
3579 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3580 /// the types using zero-extension, and then perform a umax operation
3581 /// with them.
3582 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3583                                                         const SCEV *RHS) {
3584   const SCEV *PromotedLHS = LHS;
3585   const SCEV *PromotedRHS = RHS;
3586 
3587   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3588     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3589   else
3590     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3591 
3592   return getUMaxExpr(PromotedLHS, PromotedRHS);
3593 }
3594 
3595 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3596 /// the types using zero-extension, and then perform a umin operation
3597 /// with them.
3598 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3599                                                         const SCEV *RHS) {
3600   const SCEV *PromotedLHS = LHS;
3601   const SCEV *PromotedRHS = RHS;
3602 
3603   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3604     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3605   else
3606     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3607 
3608   return getUMinExpr(PromotedLHS, PromotedRHS);
3609 }
3610 
3611 /// getPointerBase - Transitively follow the chain of pointer-type operands
3612 /// until reaching a SCEV that does not have a single pointer operand. This
3613 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3614 /// but corner cases do exist.
3615 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3616   // A pointer operand may evaluate to a nonpointer expression, such as null.
3617   if (!V->getType()->isPointerTy())
3618     return V;
3619 
3620   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3621     return getPointerBase(Cast->getOperand());
3622   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3623     const SCEV *PtrOp = nullptr;
3624     for (const SCEV *NAryOp : NAry->operands()) {
3625       if (NAryOp->getType()->isPointerTy()) {
3626         // Cannot find the base of an expression with multiple pointer operands.
3627         if (PtrOp)
3628           return V;
3629         PtrOp = NAryOp;
3630       }
3631     }
3632     if (!PtrOp)
3633       return V;
3634     return getPointerBase(PtrOp);
3635   }
3636   return V;
3637 }
3638 
3639 /// PushDefUseChildren - Push users of the given Instruction
3640 /// onto the given Worklist.
3641 static void
3642 PushDefUseChildren(Instruction *I,
3643                    SmallVectorImpl<Instruction *> &Worklist) {
3644   // Push the def-use children onto the Worklist stack.
3645   for (User *U : I->users())
3646     Worklist.push_back(cast<Instruction>(U));
3647 }
3648 
3649 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3650 /// instructions that depend on the given instruction and removes them from
3651 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3652 /// resolution.
3653 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3654   SmallVector<Instruction *, 16> Worklist;
3655   PushDefUseChildren(PN, Worklist);
3656 
3657   SmallPtrSet<Instruction *, 8> Visited;
3658   Visited.insert(PN);
3659   while (!Worklist.empty()) {
3660     Instruction *I = Worklist.pop_back_val();
3661     if (!Visited.insert(I).second)
3662       continue;
3663 
3664     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3665     if (It != ValueExprMap.end()) {
3666       const SCEV *Old = It->second;
3667 
3668       // Short-circuit the def-use traversal if the symbolic name
3669       // ceases to appear in expressions.
3670       if (Old != SymName && !hasOperand(Old, SymName))
3671         continue;
3672 
3673       // SCEVUnknown for a PHI either means that it has an unrecognized
3674       // structure, it's a PHI that's in the progress of being computed
3675       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3676       // additional loop trip count information isn't going to change anything.
3677       // In the second case, createNodeForPHI will perform the necessary
3678       // updates on its own when it gets to that point. In the third, we do
3679       // want to forget the SCEVUnknown.
3680       if (!isa<PHINode>(I) ||
3681           !isa<SCEVUnknown>(Old) ||
3682           (I != PN && Old == SymName)) {
3683         forgetMemoizedResults(Old);
3684         ValueExprMap.erase(It);
3685       }
3686     }
3687 
3688     PushDefUseChildren(I, Worklist);
3689   }
3690 }
3691 
3692 namespace {
3693 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3694 public:
3695   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3696                              ScalarEvolution &SE) {
3697     SCEVInitRewriter Rewriter(L, SE);
3698     const SCEV *Result = Rewriter.visit(S);
3699     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3700   }
3701 
3702   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3703       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3704 
3705   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3706     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3707       Valid = false;
3708     return Expr;
3709   }
3710 
3711   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3712     // Only allow AddRecExprs for this loop.
3713     if (Expr->getLoop() == L)
3714       return Expr->getStart();
3715     Valid = false;
3716     return Expr;
3717   }
3718 
3719   bool isValid() { return Valid; }
3720 
3721 private:
3722   const Loop *L;
3723   bool Valid;
3724 };
3725 
3726 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3727 public:
3728   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3729                              ScalarEvolution &SE) {
3730     SCEVShiftRewriter Rewriter(L, SE);
3731     const SCEV *Result = Rewriter.visit(S);
3732     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3733   }
3734 
3735   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3736       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3737 
3738   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3739     // Only allow AddRecExprs for this loop.
3740     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3741       Valid = false;
3742     return Expr;
3743   }
3744 
3745   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3746     if (Expr->getLoop() == L && Expr->isAffine())
3747       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3748     Valid = false;
3749     return Expr;
3750   }
3751   bool isValid() { return Valid; }
3752 
3753 private:
3754   const Loop *L;
3755   bool Valid;
3756 };
3757 } // end anonymous namespace
3758 
3759 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3760   const Loop *L = LI.getLoopFor(PN->getParent());
3761   if (!L || L->getHeader() != PN->getParent())
3762     return nullptr;
3763 
3764   // The loop may have multiple entrances or multiple exits; we can analyze
3765   // this phi as an addrec if it has a unique entry value and a unique
3766   // backedge value.
3767   Value *BEValueV = nullptr, *StartValueV = nullptr;
3768   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3769     Value *V = PN->getIncomingValue(i);
3770     if (L->contains(PN->getIncomingBlock(i))) {
3771       if (!BEValueV) {
3772         BEValueV = V;
3773       } else if (BEValueV != V) {
3774         BEValueV = nullptr;
3775         break;
3776       }
3777     } else if (!StartValueV) {
3778       StartValueV = V;
3779     } else if (StartValueV != V) {
3780       StartValueV = nullptr;
3781       break;
3782     }
3783   }
3784   if (BEValueV && StartValueV) {
3785     // While we are analyzing this PHI node, handle its value symbolically.
3786     const SCEV *SymbolicName = getUnknown(PN);
3787     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3788            "PHI node already processed?");
3789     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3790 
3791     // Using this symbolic name for the PHI, analyze the value coming around
3792     // the back-edge.
3793     const SCEV *BEValue = getSCEV(BEValueV);
3794 
3795     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3796     // has a special value for the first iteration of the loop.
3797 
3798     // If the value coming around the backedge is an add with the symbolic
3799     // value we just inserted, then we found a simple induction variable!
3800     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3801       // If there is a single occurrence of the symbolic value, replace it
3802       // with a recurrence.
3803       unsigned FoundIndex = Add->getNumOperands();
3804       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3805         if (Add->getOperand(i) == SymbolicName)
3806           if (FoundIndex == e) {
3807             FoundIndex = i;
3808             break;
3809           }
3810 
3811       if (FoundIndex != Add->getNumOperands()) {
3812         // Create an add with everything but the specified operand.
3813         SmallVector<const SCEV *, 8> Ops;
3814         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3815           if (i != FoundIndex)
3816             Ops.push_back(Add->getOperand(i));
3817         const SCEV *Accum = getAddExpr(Ops);
3818 
3819         // This is not a valid addrec if the step amount is varying each
3820         // loop iteration, but is not itself an addrec in this loop.
3821         if (isLoopInvariant(Accum, L) ||
3822             (isa<SCEVAddRecExpr>(Accum) &&
3823              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3824           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3825 
3826           // If the increment doesn't overflow, then neither the addrec nor
3827           // the post-increment will overflow.
3828           if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3829             if (OBO->getOperand(0) == PN) {
3830               if (OBO->hasNoUnsignedWrap())
3831                 Flags = setFlags(Flags, SCEV::FlagNUW);
3832               if (OBO->hasNoSignedWrap())
3833                 Flags = setFlags(Flags, SCEV::FlagNSW);
3834             }
3835           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3836             // If the increment is an inbounds GEP, then we know the address
3837             // space cannot be wrapped around. We cannot make any guarantee
3838             // about signed or unsigned overflow because pointers are
3839             // unsigned but we may have a negative index from the base
3840             // pointer. We can guarantee that no unsigned wrap occurs if the
3841             // indices form a positive value.
3842             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3843               Flags = setFlags(Flags, SCEV::FlagNW);
3844 
3845               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3846               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3847                 Flags = setFlags(Flags, SCEV::FlagNUW);
3848             }
3849 
3850             // We cannot transfer nuw and nsw flags from subtraction
3851             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3852             // for instance.
3853           }
3854 
3855           const SCEV *StartVal = getSCEV(StartValueV);
3856           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3857 
3858           // Since the no-wrap flags are on the increment, they apply to the
3859           // post-incremented value as well.
3860           if (isLoopInvariant(Accum, L))
3861             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3862 
3863           // Okay, for the entire analysis of this edge we assumed the PHI
3864           // to be symbolic.  We now need to go back and purge all of the
3865           // entries for the scalars that use the symbolic expression.
3866           forgetSymbolicName(PN, SymbolicName);
3867           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3868           return PHISCEV;
3869         }
3870       }
3871     } else {
3872       // Otherwise, this could be a loop like this:
3873       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3874       // In this case, j = {1,+,1}  and BEValue is j.
3875       // Because the other in-value of i (0) fits the evolution of BEValue
3876       // i really is an addrec evolution.
3877       //
3878       // We can generalize this saying that i is the shifted value of BEValue
3879       // by one iteration:
3880       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
3881       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3882       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3883       if (Shifted != getCouldNotCompute() &&
3884           Start != getCouldNotCompute()) {
3885         const SCEV *StartVal = getSCEV(StartValueV);
3886         if (Start == StartVal) {
3887           // Okay, for the entire analysis of this edge we assumed the PHI
3888           // to be symbolic.  We now need to go back and purge all of the
3889           // entries for the scalars that use the symbolic expression.
3890           forgetSymbolicName(PN, SymbolicName);
3891           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3892           return Shifted;
3893         }
3894       }
3895     }
3896 
3897     // Remove the temporary PHI node SCEV that has been inserted while intending
3898     // to create an AddRecExpr for this PHI node. We can not keep this temporary
3899     // as it will prevent later (possibly simpler) SCEV expressions to be added
3900     // to the ValueExprMap.
3901     ValueExprMap.erase(PN);
3902   }
3903 
3904   return nullptr;
3905 }
3906 
3907 // Checks if the SCEV S is available at BB.  S is considered available at BB
3908 // if S can be materialized at BB without introducing a fault.
3909 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3910                                BasicBlock *BB) {
3911   struct CheckAvailable {
3912     bool TraversalDone = false;
3913     bool Available = true;
3914 
3915     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
3916     BasicBlock *BB = nullptr;
3917     DominatorTree &DT;
3918 
3919     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3920       : L(L), BB(BB), DT(DT) {}
3921 
3922     bool setUnavailable() {
3923       TraversalDone = true;
3924       Available = false;
3925       return false;
3926     }
3927 
3928     bool follow(const SCEV *S) {
3929       switch (S->getSCEVType()) {
3930       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3931       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3932         // These expressions are available if their operand(s) is/are.
3933         return true;
3934 
3935       case scAddRecExpr: {
3936         // We allow add recurrences that are on the loop BB is in, or some
3937         // outer loop.  This guarantees availability because the value of the
3938         // add recurrence at BB is simply the "current" value of the induction
3939         // variable.  We can relax this in the future; for instance an add
3940         // recurrence on a sibling dominating loop is also available at BB.
3941         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3942         if (L && (ARLoop == L || ARLoop->contains(L)))
3943           return true;
3944 
3945         return setUnavailable();
3946       }
3947 
3948       case scUnknown: {
3949         // For SCEVUnknown, we check for simple dominance.
3950         const auto *SU = cast<SCEVUnknown>(S);
3951         Value *V = SU->getValue();
3952 
3953         if (isa<Argument>(V))
3954           return false;
3955 
3956         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3957           return false;
3958 
3959         return setUnavailable();
3960       }
3961 
3962       case scUDivExpr:
3963       case scCouldNotCompute:
3964         // We do not try to smart about these at all.
3965         return setUnavailable();
3966       }
3967       llvm_unreachable("switch should be fully covered!");
3968     }
3969 
3970     bool isDone() { return TraversalDone; }
3971   };
3972 
3973   CheckAvailable CA(L, BB, DT);
3974   SCEVTraversal<CheckAvailable> ST(CA);
3975 
3976   ST.visitAll(S);
3977   return CA.Available;
3978 }
3979 
3980 // Try to match a control flow sequence that branches out at BI and merges back
3981 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
3982 // match.
3983 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3984                           Value *&C, Value *&LHS, Value *&RHS) {
3985   C = BI->getCondition();
3986 
3987   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3988   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3989 
3990   if (!LeftEdge.isSingleEdge())
3991     return false;
3992 
3993   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3994 
3995   Use &LeftUse = Merge->getOperandUse(0);
3996   Use &RightUse = Merge->getOperandUse(1);
3997 
3998   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3999     LHS = LeftUse;
4000     RHS = RightUse;
4001     return true;
4002   }
4003 
4004   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4005     LHS = RightUse;
4006     RHS = LeftUse;
4007     return true;
4008   }
4009 
4010   return false;
4011 }
4012 
4013 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4014   if (PN->getNumIncomingValues() == 2) {
4015     const Loop *L = LI.getLoopFor(PN->getParent());
4016 
4017     // We don't want to break LCSSA, even in a SCEV expression tree.
4018     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4019       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4020         return nullptr;
4021 
4022     // Try to match
4023     //
4024     //  br %cond, label %left, label %right
4025     // left:
4026     //  br label %merge
4027     // right:
4028     //  br label %merge
4029     // merge:
4030     //  V = phi [ %x, %left ], [ %y, %right ]
4031     //
4032     // as "select %cond, %x, %y"
4033 
4034     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4035     assert(IDom && "At least the entry block should dominate PN");
4036 
4037     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4038     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4039 
4040     if (BI && BI->isConditional() &&
4041         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4042         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4043         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4044       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4045   }
4046 
4047   return nullptr;
4048 }
4049 
4050 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4051   if (const SCEV *S = createAddRecFromPHI(PN))
4052     return S;
4053 
4054   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4055     return S;
4056 
4057   // If the PHI has a single incoming value, follow that value, unless the
4058   // PHI's incoming blocks are in a different loop, in which case doing so
4059   // risks breaking LCSSA form. Instcombine would normally zap these, but
4060   // it doesn't have DominatorTree information, so it may miss cases.
4061   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4062     if (LI.replacementPreservesLCSSAForm(PN, V))
4063       return getSCEV(V);
4064 
4065   // If it's not a loop phi, we can't handle it yet.
4066   return getUnknown(PN);
4067 }
4068 
4069 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4070                                                       Value *Cond,
4071                                                       Value *TrueVal,
4072                                                       Value *FalseVal) {
4073   // Handle "constant" branch or select. This can occur for instance when a
4074   // loop pass transforms an inner loop and moves on to process the outer loop.
4075   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4076     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4077 
4078   // Try to match some simple smax or umax patterns.
4079   auto *ICI = dyn_cast<ICmpInst>(Cond);
4080   if (!ICI)
4081     return getUnknown(I);
4082 
4083   Value *LHS = ICI->getOperand(0);
4084   Value *RHS = ICI->getOperand(1);
4085 
4086   switch (ICI->getPredicate()) {
4087   case ICmpInst::ICMP_SLT:
4088   case ICmpInst::ICMP_SLE:
4089     std::swap(LHS, RHS);
4090   // fall through
4091   case ICmpInst::ICMP_SGT:
4092   case ICmpInst::ICMP_SGE:
4093     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4094     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4095     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4096       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4097       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4098       const SCEV *LA = getSCEV(TrueVal);
4099       const SCEV *RA = getSCEV(FalseVal);
4100       const SCEV *LDiff = getMinusSCEV(LA, LS);
4101       const SCEV *RDiff = getMinusSCEV(RA, RS);
4102       if (LDiff == RDiff)
4103         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4104       LDiff = getMinusSCEV(LA, RS);
4105       RDiff = getMinusSCEV(RA, LS);
4106       if (LDiff == RDiff)
4107         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4108     }
4109     break;
4110   case ICmpInst::ICMP_ULT:
4111   case ICmpInst::ICMP_ULE:
4112     std::swap(LHS, RHS);
4113   // fall through
4114   case ICmpInst::ICMP_UGT:
4115   case ICmpInst::ICMP_UGE:
4116     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4117     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4118     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4119       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4120       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4121       const SCEV *LA = getSCEV(TrueVal);
4122       const SCEV *RA = getSCEV(FalseVal);
4123       const SCEV *LDiff = getMinusSCEV(LA, LS);
4124       const SCEV *RDiff = getMinusSCEV(RA, RS);
4125       if (LDiff == RDiff)
4126         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4127       LDiff = getMinusSCEV(LA, RS);
4128       RDiff = getMinusSCEV(RA, LS);
4129       if (LDiff == RDiff)
4130         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4131     }
4132     break;
4133   case ICmpInst::ICMP_NE:
4134     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4135     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4136         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4137       const SCEV *One = getOne(I->getType());
4138       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4139       const SCEV *LA = getSCEV(TrueVal);
4140       const SCEV *RA = getSCEV(FalseVal);
4141       const SCEV *LDiff = getMinusSCEV(LA, LS);
4142       const SCEV *RDiff = getMinusSCEV(RA, One);
4143       if (LDiff == RDiff)
4144         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4145     }
4146     break;
4147   case ICmpInst::ICMP_EQ:
4148     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4149     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4150         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4151       const SCEV *One = getOne(I->getType());
4152       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4153       const SCEV *LA = getSCEV(TrueVal);
4154       const SCEV *RA = getSCEV(FalseVal);
4155       const SCEV *LDiff = getMinusSCEV(LA, One);
4156       const SCEV *RDiff = getMinusSCEV(RA, LS);
4157       if (LDiff == RDiff)
4158         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4159     }
4160     break;
4161   default:
4162     break;
4163   }
4164 
4165   return getUnknown(I);
4166 }
4167 
4168 /// createNodeForGEP - Expand GEP instructions into add and multiply
4169 /// operations. This allows them to be analyzed by regular SCEV code.
4170 ///
4171 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4172   // Don't attempt to analyze GEPs over unsized objects.
4173   if (!GEP->getSourceElementType()->isSized())
4174     return getUnknown(GEP);
4175 
4176   SmallVector<const SCEV *, 4> IndexExprs;
4177   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4178     IndexExprs.push_back(getSCEV(*Index));
4179   return getGEPExpr(GEP->getSourceElementType(),
4180                     getSCEV(GEP->getPointerOperand()),
4181                     IndexExprs, GEP->isInBounds());
4182 }
4183 
4184 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4185 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4186 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4187 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4188 uint32_t
4189 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4190   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4191     return C->getAPInt().countTrailingZeros();
4192 
4193   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4194     return std::min(GetMinTrailingZeros(T->getOperand()),
4195                     (uint32_t)getTypeSizeInBits(T->getType()));
4196 
4197   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4198     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4199     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4200              getTypeSizeInBits(E->getType()) : OpRes;
4201   }
4202 
4203   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4204     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4205     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4206              getTypeSizeInBits(E->getType()) : OpRes;
4207   }
4208 
4209   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4210     // The result is the min of all operands results.
4211     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4212     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4213       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4214     return MinOpRes;
4215   }
4216 
4217   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4218     // The result is the sum of all operands results.
4219     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4220     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4221     for (unsigned i = 1, e = M->getNumOperands();
4222          SumOpRes != BitWidth && i != e; ++i)
4223       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4224                           BitWidth);
4225     return SumOpRes;
4226   }
4227 
4228   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4229     // The result is the min of all operands results.
4230     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4231     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4232       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4233     return MinOpRes;
4234   }
4235 
4236   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4237     // The result is the min of all operands results.
4238     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4239     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4240       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4241     return MinOpRes;
4242   }
4243 
4244   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4245     // The result is the min of all operands results.
4246     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4247     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4248       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4249     return MinOpRes;
4250   }
4251 
4252   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4253     // For a SCEVUnknown, ask ValueTracking.
4254     unsigned BitWidth = getTypeSizeInBits(U->getType());
4255     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4256     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4257                      nullptr, &DT);
4258     return Zeros.countTrailingOnes();
4259   }
4260 
4261   // SCEVUDivExpr
4262   return 0;
4263 }
4264 
4265 /// GetRangeFromMetadata - Helper method to assign a range to V from
4266 /// metadata present in the IR.
4267 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4268   if (Instruction *I = dyn_cast<Instruction>(V))
4269     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4270       return getConstantRangeFromMetadata(*MD);
4271 
4272   return None;
4273 }
4274 
4275 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4276 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4277 /// with a "cleaner" unsigned (resp. signed) representation.
4278 ///
4279 ConstantRange
4280 ScalarEvolution::getRange(const SCEV *S,
4281                           ScalarEvolution::RangeSignHint SignHint) {
4282   DenseMap<const SCEV *, ConstantRange> &Cache =
4283       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4284                                                        : SignedRanges;
4285 
4286   // See if we've computed this range already.
4287   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4288   if (I != Cache.end())
4289     return I->second;
4290 
4291   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4292     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4293 
4294   unsigned BitWidth = getTypeSizeInBits(S->getType());
4295   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4296 
4297   // If the value has known zeros, the maximum value will have those known zeros
4298   // as well.
4299   uint32_t TZ = GetMinTrailingZeros(S);
4300   if (TZ != 0) {
4301     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4302       ConservativeResult =
4303           ConstantRange(APInt::getMinValue(BitWidth),
4304                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4305     else
4306       ConservativeResult = ConstantRange(
4307           APInt::getSignedMinValue(BitWidth),
4308           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4309   }
4310 
4311   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4312     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4313     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4314       X = X.add(getRange(Add->getOperand(i), SignHint));
4315     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4316   }
4317 
4318   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4319     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4320     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4321       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4322     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4323   }
4324 
4325   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4326     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4327     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4328       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4329     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4330   }
4331 
4332   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4333     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4334     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4335       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4336     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4337   }
4338 
4339   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4340     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4341     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4342     return setRange(UDiv, SignHint,
4343                     ConservativeResult.intersectWith(X.udiv(Y)));
4344   }
4345 
4346   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4347     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4348     return setRange(ZExt, SignHint,
4349                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4350   }
4351 
4352   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4353     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4354     return setRange(SExt, SignHint,
4355                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4356   }
4357 
4358   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4359     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4360     return setRange(Trunc, SignHint,
4361                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4362   }
4363 
4364   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4365     // If there's no unsigned wrap, the value will never be less than its
4366     // initial value.
4367     if (AddRec->hasNoUnsignedWrap())
4368       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4369         if (!C->getValue()->isZero())
4370           ConservativeResult = ConservativeResult.intersectWith(
4371               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4372 
4373     // If there's no signed wrap, and all the operands have the same sign or
4374     // zero, the value won't ever change sign.
4375     if (AddRec->hasNoSignedWrap()) {
4376       bool AllNonNeg = true;
4377       bool AllNonPos = true;
4378       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4379         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4380         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4381       }
4382       if (AllNonNeg)
4383         ConservativeResult = ConservativeResult.intersectWith(
4384           ConstantRange(APInt(BitWidth, 0),
4385                         APInt::getSignedMinValue(BitWidth)));
4386       else if (AllNonPos)
4387         ConservativeResult = ConservativeResult.intersectWith(
4388           ConstantRange(APInt::getSignedMinValue(BitWidth),
4389                         APInt(BitWidth, 1)));
4390     }
4391 
4392     // TODO: non-affine addrec
4393     if (AddRec->isAffine()) {
4394       Type *Ty = AddRec->getType();
4395       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4396       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4397           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4398 
4399         // Check for overflow.  This must be done with ConstantRange arithmetic
4400         // because we could be called from within the ScalarEvolution overflow
4401         // checking code.
4402 
4403         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4404         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4405         ConstantRange ZExtMaxBECountRange =
4406             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4407 
4408         const SCEV *Start = AddRec->getStart();
4409         const SCEV *Step = AddRec->getStepRecurrence(*this);
4410         ConstantRange StepSRange = getSignedRange(Step);
4411         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4412 
4413         ConstantRange StartURange = getUnsignedRange(Start);
4414         ConstantRange EndURange =
4415             StartURange.add(MaxBECountRange.multiply(StepSRange));
4416 
4417         // Check for unsigned overflow.
4418         ConstantRange ZExtStartURange =
4419             StartURange.zextOrTrunc(BitWidth * 2 + 1);
4420         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4421         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4422             ZExtEndURange) {
4423           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4424                                      EndURange.getUnsignedMin());
4425           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4426                                      EndURange.getUnsignedMax());
4427           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4428           if (!IsFullRange)
4429             ConservativeResult =
4430                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4431         }
4432 
4433         ConstantRange StartSRange = getSignedRange(Start);
4434         ConstantRange EndSRange =
4435             StartSRange.add(MaxBECountRange.multiply(StepSRange));
4436 
4437         // Check for signed overflow. This must be done with ConstantRange
4438         // arithmetic because we could be called from within the ScalarEvolution
4439         // overflow checking code.
4440         ConstantRange SExtStartSRange =
4441             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4442         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4443         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4444             SExtEndSRange) {
4445           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4446                                      EndSRange.getSignedMin());
4447           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4448                                      EndSRange.getSignedMax());
4449           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4450           if (!IsFullRange)
4451             ConservativeResult =
4452                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4453         }
4454       }
4455     }
4456 
4457     return setRange(AddRec, SignHint, ConservativeResult);
4458   }
4459 
4460   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4461     // Check if the IR explicitly contains !range metadata.
4462     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4463     if (MDRange.hasValue())
4464       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4465 
4466     // Split here to avoid paying the compile-time cost of calling both
4467     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4468     // if needed.
4469     const DataLayout &DL = getDataLayout();
4470     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4471       // For a SCEVUnknown, ask ValueTracking.
4472       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4473       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4474       if (Ones != ~Zeros + 1)
4475         ConservativeResult =
4476             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4477     } else {
4478       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4479              "generalize as needed!");
4480       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4481       if (NS > 1)
4482         ConservativeResult = ConservativeResult.intersectWith(
4483             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4484                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4485     }
4486 
4487     return setRange(U, SignHint, ConservativeResult);
4488   }
4489 
4490   return setRange(S, SignHint, ConservativeResult);
4491 }
4492 
4493 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4494   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4495   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4496 
4497   // Return early if there are no flags to propagate to the SCEV.
4498   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4499   if (BinOp->hasNoUnsignedWrap())
4500     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4501   if (BinOp->hasNoSignedWrap())
4502     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4503   if (Flags == SCEV::FlagAnyWrap) {
4504     return SCEV::FlagAnyWrap;
4505   }
4506 
4507   // Here we check that BinOp is in the header of the innermost loop
4508   // containing BinOp, since we only deal with instructions in the loop
4509   // header. The actual loop we need to check later will come from an add
4510   // recurrence, but getting that requires computing the SCEV of the operands,
4511   // which can be expensive. This check we can do cheaply to rule out some
4512   // cases early.
4513   Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4514   if (innermostContainingLoop == nullptr ||
4515       innermostContainingLoop->getHeader() != BinOp->getParent())
4516     return SCEV::FlagAnyWrap;
4517 
4518   // Only proceed if we can prove that BinOp does not yield poison.
4519   if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4520 
4521   // At this point we know that if V is executed, then it does not wrap
4522   // according to at least one of NSW or NUW. If V is not executed, then we do
4523   // not know if the calculation that V represents would wrap. Multiple
4524   // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4525   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4526   // derived from other instructions that map to the same SCEV. We cannot make
4527   // that guarantee for cases where V is not executed. So we need to find the
4528   // loop that V is considered in relation to and prove that V is executed for
4529   // every iteration of that loop. That implies that the value that V
4530   // calculates does not wrap anywhere in the loop, so then we can apply the
4531   // flags to the SCEV.
4532   //
4533   // We check isLoopInvariant to disambiguate in case we are adding two
4534   // recurrences from different loops, so that we know which loop to prove
4535   // that V is executed in.
4536   for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4537     const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4538     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4539       const int OtherOpIndex = 1 - OpIndex;
4540       const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4541       if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4542           isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4543         return Flags;
4544     }
4545   }
4546   return SCEV::FlagAnyWrap;
4547 }
4548 
4549 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4550 /// the expression.
4551 ///
4552 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4553   if (!isSCEVable(V->getType()))
4554     return getUnknown(V);
4555 
4556   unsigned Opcode = Instruction::UserOp1;
4557   if (Instruction *I = dyn_cast<Instruction>(V)) {
4558     Opcode = I->getOpcode();
4559 
4560     // Don't attempt to analyze instructions in blocks that aren't
4561     // reachable. Such instructions don't matter, and they aren't required
4562     // to obey basic rules for definitions dominating uses which this
4563     // analysis depends on.
4564     if (!DT.isReachableFromEntry(I->getParent()))
4565       return getUnknown(V);
4566   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4567     Opcode = CE->getOpcode();
4568   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4569     return getConstant(CI);
4570   else if (isa<ConstantPointerNull>(V))
4571     return getZero(V->getType());
4572   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4573     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4574   else
4575     return getUnknown(V);
4576 
4577   Operator *U = cast<Operator>(V);
4578   switch (Opcode) {
4579   case Instruction::Add: {
4580     // The simple thing to do would be to just call getSCEV on both operands
4581     // and call getAddExpr with the result. However if we're looking at a
4582     // bunch of things all added together, this can be quite inefficient,
4583     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4584     // Instead, gather up all the operands and make a single getAddExpr call.
4585     // LLVM IR canonical form means we need only traverse the left operands.
4586     SmallVector<const SCEV *, 4> AddOps;
4587     for (Value *Op = U;; Op = U->getOperand(0)) {
4588       U = dyn_cast<Operator>(Op);
4589       unsigned Opcode = U ? U->getOpcode() : 0;
4590       if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4591         assert(Op != V && "V should be an add");
4592         AddOps.push_back(getSCEV(Op));
4593         break;
4594       }
4595 
4596       if (auto *OpSCEV = getExistingSCEV(U)) {
4597         AddOps.push_back(OpSCEV);
4598         break;
4599       }
4600 
4601       // If a NUW or NSW flag can be applied to the SCEV for this
4602       // addition, then compute the SCEV for this addition by itself
4603       // with a separate call to getAddExpr. We need to do that
4604       // instead of pushing the operands of the addition onto AddOps,
4605       // since the flags are only known to apply to this particular
4606       // addition - they may not apply to other additions that can be
4607       // formed with operands from AddOps.
4608       const SCEV *RHS = getSCEV(U->getOperand(1));
4609       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4610       if (Flags != SCEV::FlagAnyWrap) {
4611         const SCEV *LHS = getSCEV(U->getOperand(0));
4612         if (Opcode == Instruction::Sub)
4613           AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4614         else
4615           AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4616         break;
4617       }
4618 
4619       if (Opcode == Instruction::Sub)
4620         AddOps.push_back(getNegativeSCEV(RHS));
4621       else
4622         AddOps.push_back(RHS);
4623     }
4624     return getAddExpr(AddOps);
4625   }
4626 
4627   case Instruction::Mul: {
4628     SmallVector<const SCEV *, 4> MulOps;
4629     for (Value *Op = U;; Op = U->getOperand(0)) {
4630       U = dyn_cast<Operator>(Op);
4631       if (!U || U->getOpcode() != Instruction::Mul) {
4632         assert(Op != V && "V should be a mul");
4633         MulOps.push_back(getSCEV(Op));
4634         break;
4635       }
4636 
4637       if (auto *OpSCEV = getExistingSCEV(U)) {
4638         MulOps.push_back(OpSCEV);
4639         break;
4640       }
4641 
4642       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4643       if (Flags != SCEV::FlagAnyWrap) {
4644         MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4645                                     getSCEV(U->getOperand(1)), Flags));
4646         break;
4647       }
4648 
4649       MulOps.push_back(getSCEV(U->getOperand(1)));
4650     }
4651     return getMulExpr(MulOps);
4652   }
4653   case Instruction::UDiv:
4654     return getUDivExpr(getSCEV(U->getOperand(0)),
4655                        getSCEV(U->getOperand(1)));
4656   case Instruction::Sub:
4657     return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4658                         getNoWrapFlagsFromUB(U));
4659   case Instruction::And:
4660     // For an expression like x&255 that merely masks off the high bits,
4661     // use zext(trunc(x)) as the SCEV expression.
4662     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4663       if (CI->isNullValue())
4664         return getSCEV(U->getOperand(1));
4665       if (CI->isAllOnesValue())
4666         return getSCEV(U->getOperand(0));
4667       const APInt &A = CI->getValue();
4668 
4669       // Instcombine's ShrinkDemandedConstant may strip bits out of
4670       // constants, obscuring what would otherwise be a low-bits mask.
4671       // Use computeKnownBits to compute what ShrinkDemandedConstant
4672       // knew about to reconstruct a low-bits mask value.
4673       unsigned LZ = A.countLeadingZeros();
4674       unsigned TZ = A.countTrailingZeros();
4675       unsigned BitWidth = A.getBitWidth();
4676       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4677       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4678                        0, &AC, nullptr, &DT);
4679 
4680       APInt EffectiveMask =
4681           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4682       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4683         const SCEV *MulCount = getConstant(
4684             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4685         return getMulExpr(
4686             getZeroExtendExpr(
4687                 getTruncateExpr(
4688                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4689                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4690                 U->getType()),
4691             MulCount);
4692       }
4693     }
4694     break;
4695 
4696   case Instruction::Or:
4697     // If the RHS of the Or is a constant, we may have something like:
4698     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4699     // optimizations will transparently handle this case.
4700     //
4701     // In order for this transformation to be safe, the LHS must be of the
4702     // form X*(2^n) and the Or constant must be less than 2^n.
4703     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4704       const SCEV *LHS = getSCEV(U->getOperand(0));
4705       const APInt &CIVal = CI->getValue();
4706       if (GetMinTrailingZeros(LHS) >=
4707           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4708         // Build a plain add SCEV.
4709         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4710         // If the LHS of the add was an addrec and it has no-wrap flags,
4711         // transfer the no-wrap flags, since an or won't introduce a wrap.
4712         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4713           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4714           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4715             OldAR->getNoWrapFlags());
4716         }
4717         return S;
4718       }
4719     }
4720     break;
4721   case Instruction::Xor:
4722     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4723       // If the RHS of the xor is a signbit, then this is just an add.
4724       // Instcombine turns add of signbit into xor as a strength reduction step.
4725       if (CI->getValue().isSignBit())
4726         return getAddExpr(getSCEV(U->getOperand(0)),
4727                           getSCEV(U->getOperand(1)));
4728 
4729       // If the RHS of xor is -1, then this is a not operation.
4730       if (CI->isAllOnesValue())
4731         return getNotSCEV(getSCEV(U->getOperand(0)));
4732 
4733       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4734       // This is a variant of the check for xor with -1, and it handles
4735       // the case where instcombine has trimmed non-demanded bits out
4736       // of an xor with -1.
4737       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4738         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4739           if (BO->getOpcode() == Instruction::And &&
4740               LCI->getValue() == CI->getValue())
4741             if (const SCEVZeroExtendExpr *Z =
4742                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4743               Type *UTy = U->getType();
4744               const SCEV *Z0 = Z->getOperand();
4745               Type *Z0Ty = Z0->getType();
4746               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4747 
4748               // If C is a low-bits mask, the zero extend is serving to
4749               // mask off the high bits. Complement the operand and
4750               // re-apply the zext.
4751               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4752                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4753 
4754               // If C is a single bit, it may be in the sign-bit position
4755               // before the zero-extend. In this case, represent the xor
4756               // using an add, which is equivalent, and re-apply the zext.
4757               APInt Trunc = CI->getValue().trunc(Z0TySize);
4758               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4759                   Trunc.isSignBit())
4760                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4761                                          UTy);
4762             }
4763     }
4764     break;
4765 
4766   case Instruction::Shl:
4767     // Turn shift left of a constant amount into a multiply.
4768     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4769       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4770 
4771       // If the shift count is not less than the bitwidth, the result of
4772       // the shift is undefined. Don't try to analyze it, because the
4773       // resolution chosen here may differ from the resolution chosen in
4774       // other parts of the compiler.
4775       if (SA->getValue().uge(BitWidth))
4776         break;
4777 
4778       // It is currently not resolved how to interpret NSW for left
4779       // shift by BitWidth - 1, so we avoid applying flags in that
4780       // case. Remove this check (or this comment) once the situation
4781       // is resolved. See
4782       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4783       // and http://reviews.llvm.org/D8890 .
4784       auto Flags = SCEV::FlagAnyWrap;
4785       if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4786 
4787       Constant *X = ConstantInt::get(getContext(),
4788         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4789       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
4790     }
4791     break;
4792 
4793   case Instruction::LShr:
4794     // Turn logical shift right of a constant into a unsigned divide.
4795     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4796       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4797 
4798       // If the shift count is not less than the bitwidth, the result of
4799       // the shift is undefined. Don't try to analyze it, because the
4800       // resolution chosen here may differ from the resolution chosen in
4801       // other parts of the compiler.
4802       if (SA->getValue().uge(BitWidth))
4803         break;
4804 
4805       Constant *X = ConstantInt::get(getContext(),
4806         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4807       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4808     }
4809     break;
4810 
4811   case Instruction::AShr:
4812     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4813     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4814       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4815         if (L->getOpcode() == Instruction::Shl &&
4816             L->getOperand(1) == U->getOperand(1)) {
4817           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4818 
4819           // If the shift count is not less than the bitwidth, the result of
4820           // the shift is undefined. Don't try to analyze it, because the
4821           // resolution chosen here may differ from the resolution chosen in
4822           // other parts of the compiler.
4823           if (CI->getValue().uge(BitWidth))
4824             break;
4825 
4826           uint64_t Amt = BitWidth - CI->getZExtValue();
4827           if (Amt == BitWidth)
4828             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4829           return
4830             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4831                                               IntegerType::get(getContext(),
4832                                                                Amt)),
4833                               U->getType());
4834         }
4835     break;
4836 
4837   case Instruction::Trunc:
4838     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4839 
4840   case Instruction::ZExt:
4841     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4842 
4843   case Instruction::SExt:
4844     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4845 
4846   case Instruction::BitCast:
4847     // BitCasts are no-op casts so we just eliminate the cast.
4848     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4849       return getSCEV(U->getOperand(0));
4850     break;
4851 
4852   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4853   // lead to pointer expressions which cannot safely be expanded to GEPs,
4854   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4855   // simplifying integer expressions.
4856 
4857   case Instruction::GetElementPtr:
4858     return createNodeForGEP(cast<GEPOperator>(U));
4859 
4860   case Instruction::PHI:
4861     return createNodeForPHI(cast<PHINode>(U));
4862 
4863   case Instruction::Select:
4864     // U can also be a select constant expr, which let fall through.  Since
4865     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4866     // constant expressions cannot have instructions as operands, we'd have
4867     // returned getUnknown for a select constant expressions anyway.
4868     if (isa<Instruction>(U))
4869       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4870                                       U->getOperand(1), U->getOperand(2));
4871 
4872   default: // We cannot analyze this expression.
4873     break;
4874   }
4875 
4876   return getUnknown(V);
4877 }
4878 
4879 
4880 
4881 //===----------------------------------------------------------------------===//
4882 //                   Iteration Count Computation Code
4883 //
4884 
4885 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4886   if (BasicBlock *ExitingBB = L->getExitingBlock())
4887     return getSmallConstantTripCount(L, ExitingBB);
4888 
4889   // No trip count information for multiple exits.
4890   return 0;
4891 }
4892 
4893 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4894 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4895 /// constant. Will also return 0 if the maximum trip count is very large (>=
4896 /// 2^32).
4897 ///
4898 /// This "trip count" assumes that control exits via ExitingBlock. More
4899 /// precisely, it is the number of times that control may reach ExitingBlock
4900 /// before taking the branch. For loops with multiple exits, it may not be the
4901 /// number times that the loop header executes because the loop may exit
4902 /// prematurely via another branch.
4903 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4904                                                     BasicBlock *ExitingBlock) {
4905   assert(ExitingBlock && "Must pass a non-null exiting block!");
4906   assert(L->isLoopExiting(ExitingBlock) &&
4907          "Exiting block must actually branch out of the loop!");
4908   const SCEVConstant *ExitCount =
4909       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4910   if (!ExitCount)
4911     return 0;
4912 
4913   ConstantInt *ExitConst = ExitCount->getValue();
4914 
4915   // Guard against huge trip counts.
4916   if (ExitConst->getValue().getActiveBits() > 32)
4917     return 0;
4918 
4919   // In case of integer overflow, this returns 0, which is correct.
4920   return ((unsigned)ExitConst->getZExtValue()) + 1;
4921 }
4922 
4923 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4924   if (BasicBlock *ExitingBB = L->getExitingBlock())
4925     return getSmallConstantTripMultiple(L, ExitingBB);
4926 
4927   // No trip multiple information for multiple exits.
4928   return 0;
4929 }
4930 
4931 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4932 /// trip count of this loop as a normal unsigned value, if possible. This
4933 /// means that the actual trip count is always a multiple of the returned
4934 /// value (don't forget the trip count could very well be zero as well!).
4935 ///
4936 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4937 /// multiple of a constant (which is also the case if the trip count is simply
4938 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4939 /// if the trip count is very large (>= 2^32).
4940 ///
4941 /// As explained in the comments for getSmallConstantTripCount, this assumes
4942 /// that control exits the loop via ExitingBlock.
4943 unsigned
4944 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4945                                               BasicBlock *ExitingBlock) {
4946   assert(ExitingBlock && "Must pass a non-null exiting block!");
4947   assert(L->isLoopExiting(ExitingBlock) &&
4948          "Exiting block must actually branch out of the loop!");
4949   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4950   if (ExitCount == getCouldNotCompute())
4951     return 1;
4952 
4953   // Get the trip count from the BE count by adding 1.
4954   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
4955   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4956   // to factor simple cases.
4957   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4958     TCMul = Mul->getOperand(0);
4959 
4960   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4961   if (!MulC)
4962     return 1;
4963 
4964   ConstantInt *Result = MulC->getValue();
4965 
4966   // Guard against huge trip counts (this requires checking
4967   // for zero to handle the case where the trip count == -1 and the
4968   // addition wraps).
4969   if (!Result || Result->getValue().getActiveBits() > 32 ||
4970       Result->getValue().getActiveBits() == 0)
4971     return 1;
4972 
4973   return (unsigned)Result->getZExtValue();
4974 }
4975 
4976 // getExitCount - Get the expression for the number of loop iterations for which
4977 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4978 // SCEVCouldNotCompute.
4979 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4980   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4981 }
4982 
4983 /// getBackedgeTakenCount - If the specified loop has a predictable
4984 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4985 /// object. The backedge-taken count is the number of times the loop header
4986 /// will be branched to from within the loop. This is one less than the
4987 /// trip count of the loop, since it doesn't count the first iteration,
4988 /// when the header is branched to from outside the loop.
4989 ///
4990 /// Note that it is not valid to call this method on a loop without a
4991 /// loop-invariant backedge-taken count (see
4992 /// hasLoopInvariantBackedgeTakenCount).
4993 ///
4994 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4995   return getBackedgeTakenInfo(L).getExact(this);
4996 }
4997 
4998 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4999 /// return the least SCEV value that is known never to be less than the
5000 /// actual backedge taken count.
5001 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5002   return getBackedgeTakenInfo(L).getMax(this);
5003 }
5004 
5005 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
5006 /// onto the given Worklist.
5007 static void
5008 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5009   BasicBlock *Header = L->getHeader();
5010 
5011   // Push all Loop-header PHIs onto the Worklist stack.
5012   for (BasicBlock::iterator I = Header->begin();
5013        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5014     Worklist.push_back(PN);
5015 }
5016 
5017 const ScalarEvolution::BackedgeTakenInfo &
5018 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5019   // Initially insert an invalid entry for this loop. If the insertion
5020   // succeeds, proceed to actually compute a backedge-taken count and
5021   // update the value. The temporary CouldNotCompute value tells SCEV
5022   // code elsewhere that it shouldn't attempt to request a new
5023   // backedge-taken count, which could result in infinite recursion.
5024   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5025       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5026   if (!Pair.second)
5027     return Pair.first->second;
5028 
5029   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5030   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5031   // must be cleared in this scope.
5032   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5033 
5034   if (Result.getExact(this) != getCouldNotCompute()) {
5035     assert(isLoopInvariant(Result.getExact(this), L) &&
5036            isLoopInvariant(Result.getMax(this), L) &&
5037            "Computed backedge-taken count isn't loop invariant for loop!");
5038     ++NumTripCountsComputed;
5039   }
5040   else if (Result.getMax(this) == getCouldNotCompute() &&
5041            isa<PHINode>(L->getHeader()->begin())) {
5042     // Only count loops that have phi nodes as not being computable.
5043     ++NumTripCountsNotComputed;
5044   }
5045 
5046   // Now that we know more about the trip count for this loop, forget any
5047   // existing SCEV values for PHI nodes in this loop since they are only
5048   // conservative estimates made without the benefit of trip count
5049   // information. This is similar to the code in forgetLoop, except that
5050   // it handles SCEVUnknown PHI nodes specially.
5051   if (Result.hasAnyInfo()) {
5052     SmallVector<Instruction *, 16> Worklist;
5053     PushLoopPHIs(L, Worklist);
5054 
5055     SmallPtrSet<Instruction *, 8> Visited;
5056     while (!Worklist.empty()) {
5057       Instruction *I = Worklist.pop_back_val();
5058       if (!Visited.insert(I).second)
5059         continue;
5060 
5061       ValueExprMapType::iterator It =
5062         ValueExprMap.find_as(static_cast<Value *>(I));
5063       if (It != ValueExprMap.end()) {
5064         const SCEV *Old = It->second;
5065 
5066         // SCEVUnknown for a PHI either means that it has an unrecognized
5067         // structure, or it's a PHI that's in the progress of being computed
5068         // by createNodeForPHI.  In the former case, additional loop trip
5069         // count information isn't going to change anything. In the later
5070         // case, createNodeForPHI will perform the necessary updates on its
5071         // own when it gets to that point.
5072         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5073           forgetMemoizedResults(Old);
5074           ValueExprMap.erase(It);
5075         }
5076         if (PHINode *PN = dyn_cast<PHINode>(I))
5077           ConstantEvolutionLoopExitValue.erase(PN);
5078       }
5079 
5080       PushDefUseChildren(I, Worklist);
5081     }
5082   }
5083 
5084   // Re-lookup the insert position, since the call to
5085   // computeBackedgeTakenCount above could result in a
5086   // recusive call to getBackedgeTakenInfo (on a different
5087   // loop), which would invalidate the iterator computed
5088   // earlier.
5089   return BackedgeTakenCounts.find(L)->second = Result;
5090 }
5091 
5092 /// forgetLoop - This method should be called by the client when it has
5093 /// changed a loop in a way that may effect ScalarEvolution's ability to
5094 /// compute a trip count, or if the loop is deleted.
5095 void ScalarEvolution::forgetLoop(const Loop *L) {
5096   // Drop any stored trip count value.
5097   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5098     BackedgeTakenCounts.find(L);
5099   if (BTCPos != BackedgeTakenCounts.end()) {
5100     BTCPos->second.clear();
5101     BackedgeTakenCounts.erase(BTCPos);
5102   }
5103 
5104   // Drop information about expressions based on loop-header PHIs.
5105   SmallVector<Instruction *, 16> Worklist;
5106   PushLoopPHIs(L, Worklist);
5107 
5108   SmallPtrSet<Instruction *, 8> Visited;
5109   while (!Worklist.empty()) {
5110     Instruction *I = Worklist.pop_back_val();
5111     if (!Visited.insert(I).second)
5112       continue;
5113 
5114     ValueExprMapType::iterator It =
5115       ValueExprMap.find_as(static_cast<Value *>(I));
5116     if (It != ValueExprMap.end()) {
5117       forgetMemoizedResults(It->second);
5118       ValueExprMap.erase(It);
5119       if (PHINode *PN = dyn_cast<PHINode>(I))
5120         ConstantEvolutionLoopExitValue.erase(PN);
5121     }
5122 
5123     PushDefUseChildren(I, Worklist);
5124   }
5125 
5126   // Forget all contained loops too, to avoid dangling entries in the
5127   // ValuesAtScopes map.
5128   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5129     forgetLoop(*I);
5130 }
5131 
5132 /// forgetValue - This method should be called by the client when it has
5133 /// changed a value in a way that may effect its value, or which may
5134 /// disconnect it from a def-use chain linking it to a loop.
5135 void ScalarEvolution::forgetValue(Value *V) {
5136   Instruction *I = dyn_cast<Instruction>(V);
5137   if (!I) return;
5138 
5139   // Drop information about expressions based on loop-header PHIs.
5140   SmallVector<Instruction *, 16> Worklist;
5141   Worklist.push_back(I);
5142 
5143   SmallPtrSet<Instruction *, 8> Visited;
5144   while (!Worklist.empty()) {
5145     I = Worklist.pop_back_val();
5146     if (!Visited.insert(I).second)
5147       continue;
5148 
5149     ValueExprMapType::iterator It =
5150       ValueExprMap.find_as(static_cast<Value *>(I));
5151     if (It != ValueExprMap.end()) {
5152       forgetMemoizedResults(It->second);
5153       ValueExprMap.erase(It);
5154       if (PHINode *PN = dyn_cast<PHINode>(I))
5155         ConstantEvolutionLoopExitValue.erase(PN);
5156     }
5157 
5158     PushDefUseChildren(I, Worklist);
5159   }
5160 }
5161 
5162 /// getExact - Get the exact loop backedge taken count considering all loop
5163 /// exits. A computable result can only be returned for loops with a single
5164 /// exit.  Returning the minimum taken count among all exits is incorrect
5165 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5166 /// assumes that the limit of each loop test is never skipped. This is a valid
5167 /// assumption as long as the loop exits via that test. For precise results, it
5168 /// is the caller's responsibility to specify the relevant loop exit using
5169 /// getExact(ExitingBlock, SE).
5170 const SCEV *
5171 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5172   // If any exits were not computable, the loop is not computable.
5173   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5174 
5175   // We need exactly one computable exit.
5176   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5177   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5178 
5179   const SCEV *BECount = nullptr;
5180   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5181        ENT != nullptr; ENT = ENT->getNextExit()) {
5182 
5183     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5184 
5185     if (!BECount)
5186       BECount = ENT->ExactNotTaken;
5187     else if (BECount != ENT->ExactNotTaken)
5188       return SE->getCouldNotCompute();
5189   }
5190   assert(BECount && "Invalid not taken count for loop exit");
5191   return BECount;
5192 }
5193 
5194 /// getExact - Get the exact not taken count for this loop exit.
5195 const SCEV *
5196 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5197                                              ScalarEvolution *SE) const {
5198   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5199        ENT != nullptr; ENT = ENT->getNextExit()) {
5200 
5201     if (ENT->ExitingBlock == ExitingBlock)
5202       return ENT->ExactNotTaken;
5203   }
5204   return SE->getCouldNotCompute();
5205 }
5206 
5207 /// getMax - Get the max backedge taken count for the loop.
5208 const SCEV *
5209 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5210   return Max ? Max : SE->getCouldNotCompute();
5211 }
5212 
5213 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5214                                                     ScalarEvolution *SE) const {
5215   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5216     return true;
5217 
5218   if (!ExitNotTaken.ExitingBlock)
5219     return false;
5220 
5221   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5222        ENT != nullptr; ENT = ENT->getNextExit()) {
5223 
5224     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5225         && SE->hasOperand(ENT->ExactNotTaken, S)) {
5226       return true;
5227     }
5228   }
5229   return false;
5230 }
5231 
5232 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5233 /// computable exit into a persistent ExitNotTakenInfo array.
5234 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5235   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5236   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5237 
5238   if (!Complete)
5239     ExitNotTaken.setIncomplete();
5240 
5241   unsigned NumExits = ExitCounts.size();
5242   if (NumExits == 0) return;
5243 
5244   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5245   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5246   if (NumExits == 1) return;
5247 
5248   // Handle the rare case of multiple computable exits.
5249   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5250 
5251   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5252   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5253     PrevENT->setNextExit(ENT);
5254     ENT->ExitingBlock = ExitCounts[i].first;
5255     ENT->ExactNotTaken = ExitCounts[i].second;
5256   }
5257 }
5258 
5259 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5260 void ScalarEvolution::BackedgeTakenInfo::clear() {
5261   ExitNotTaken.ExitingBlock = nullptr;
5262   ExitNotTaken.ExactNotTaken = nullptr;
5263   delete[] ExitNotTaken.getNextExit();
5264 }
5265 
5266 /// computeBackedgeTakenCount - Compute the number of times the backedge
5267 /// of the specified loop will execute.
5268 ScalarEvolution::BackedgeTakenInfo
5269 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5270   SmallVector<BasicBlock *, 8> ExitingBlocks;
5271   L->getExitingBlocks(ExitingBlocks);
5272 
5273   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5274   bool CouldComputeBECount = true;
5275   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5276   const SCEV *MustExitMaxBECount = nullptr;
5277   const SCEV *MayExitMaxBECount = nullptr;
5278 
5279   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5280   // and compute maxBECount.
5281   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5282     BasicBlock *ExitBB = ExitingBlocks[i];
5283     ExitLimit EL = computeExitLimit(L, ExitBB);
5284 
5285     // 1. For each exit that can be computed, add an entry to ExitCounts.
5286     // CouldComputeBECount is true only if all exits can be computed.
5287     if (EL.Exact == getCouldNotCompute())
5288       // We couldn't compute an exact value for this exit, so
5289       // we won't be able to compute an exact value for the loop.
5290       CouldComputeBECount = false;
5291     else
5292       ExitCounts.push_back({ExitBB, EL.Exact});
5293 
5294     // 2. Derive the loop's MaxBECount from each exit's max number of
5295     // non-exiting iterations. Partition the loop exits into two kinds:
5296     // LoopMustExits and LoopMayExits.
5297     //
5298     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5299     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5300     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5301     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5302     // considered greater than any computable EL.Max.
5303     if (EL.Max != getCouldNotCompute() && Latch &&
5304         DT.dominates(ExitBB, Latch)) {
5305       if (!MustExitMaxBECount)
5306         MustExitMaxBECount = EL.Max;
5307       else {
5308         MustExitMaxBECount =
5309           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5310       }
5311     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5312       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5313         MayExitMaxBECount = EL.Max;
5314       else {
5315         MayExitMaxBECount =
5316           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5317       }
5318     }
5319   }
5320   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5321     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5322   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5323 }
5324 
5325 ScalarEvolution::ExitLimit
5326 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5327 
5328   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5329   // at this block and remember the exit block and whether all other targets
5330   // lead to the loop header.
5331   bool MustExecuteLoopHeader = true;
5332   BasicBlock *Exit = nullptr;
5333   for (auto *SBB : successors(ExitingBlock))
5334     if (!L->contains(SBB)) {
5335       if (Exit) // Multiple exit successors.
5336         return getCouldNotCompute();
5337       Exit = SBB;
5338     } else if (SBB != L->getHeader()) {
5339       MustExecuteLoopHeader = false;
5340     }
5341 
5342   // At this point, we know we have a conditional branch that determines whether
5343   // the loop is exited.  However, we don't know if the branch is executed each
5344   // time through the loop.  If not, then the execution count of the branch will
5345   // not be equal to the trip count of the loop.
5346   //
5347   // Currently we check for this by checking to see if the Exit branch goes to
5348   // the loop header.  If so, we know it will always execute the same number of
5349   // times as the loop.  We also handle the case where the exit block *is* the
5350   // loop header.  This is common for un-rotated loops.
5351   //
5352   // If both of those tests fail, walk up the unique predecessor chain to the
5353   // header, stopping if there is an edge that doesn't exit the loop. If the
5354   // header is reached, the execution count of the branch will be equal to the
5355   // trip count of the loop.
5356   //
5357   //  More extensive analysis could be done to handle more cases here.
5358   //
5359   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5360     // The simple checks failed, try climbing the unique predecessor chain
5361     // up to the header.
5362     bool Ok = false;
5363     for (BasicBlock *BB = ExitingBlock; BB; ) {
5364       BasicBlock *Pred = BB->getUniquePredecessor();
5365       if (!Pred)
5366         return getCouldNotCompute();
5367       TerminatorInst *PredTerm = Pred->getTerminator();
5368       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5369         if (PredSucc == BB)
5370           continue;
5371         // If the predecessor has a successor that isn't BB and isn't
5372         // outside the loop, assume the worst.
5373         if (L->contains(PredSucc))
5374           return getCouldNotCompute();
5375       }
5376       if (Pred == L->getHeader()) {
5377         Ok = true;
5378         break;
5379       }
5380       BB = Pred;
5381     }
5382     if (!Ok)
5383       return getCouldNotCompute();
5384   }
5385 
5386   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5387   TerminatorInst *Term = ExitingBlock->getTerminator();
5388   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5389     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5390     // Proceed to the next level to examine the exit condition expression.
5391     return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5392                                     BI->getSuccessor(1),
5393                                     /*ControlsExit=*/IsOnlyExit);
5394   }
5395 
5396   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5397     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5398                                                 /*ControlsExit=*/IsOnlyExit);
5399 
5400   return getCouldNotCompute();
5401 }
5402 
5403 /// computeExitLimitFromCond - Compute the number of times the
5404 /// backedge of the specified loop will execute if its exit condition
5405 /// were a conditional branch of ExitCond, TBB, and FBB.
5406 ///
5407 /// @param ControlsExit is true if ExitCond directly controls the exit
5408 /// branch. In this case, we can assume that the loop exits only if the
5409 /// condition is true and can infer that failing to meet the condition prior to
5410 /// integer wraparound results in undefined behavior.
5411 ScalarEvolution::ExitLimit
5412 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5413                                           Value *ExitCond,
5414                                           BasicBlock *TBB,
5415                                           BasicBlock *FBB,
5416                                           bool ControlsExit) {
5417   // Check if the controlling expression for this loop is an And or Or.
5418   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5419     if (BO->getOpcode() == Instruction::And) {
5420       // Recurse on the operands of the and.
5421       bool EitherMayExit = L->contains(TBB);
5422       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5423                                                ControlsExit && !EitherMayExit);
5424       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5425                                                ControlsExit && !EitherMayExit);
5426       const SCEV *BECount = getCouldNotCompute();
5427       const SCEV *MaxBECount = getCouldNotCompute();
5428       if (EitherMayExit) {
5429         // Both conditions must be true for the loop to continue executing.
5430         // Choose the less conservative count.
5431         if (EL0.Exact == getCouldNotCompute() ||
5432             EL1.Exact == getCouldNotCompute())
5433           BECount = getCouldNotCompute();
5434         else
5435           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5436         if (EL0.Max == getCouldNotCompute())
5437           MaxBECount = EL1.Max;
5438         else if (EL1.Max == getCouldNotCompute())
5439           MaxBECount = EL0.Max;
5440         else
5441           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5442       } else {
5443         // Both conditions must be true at the same time for the loop to exit.
5444         // For now, be conservative.
5445         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5446         if (EL0.Max == EL1.Max)
5447           MaxBECount = EL0.Max;
5448         if (EL0.Exact == EL1.Exact)
5449           BECount = EL0.Exact;
5450       }
5451 
5452       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5453       // to be more aggressive when computing BECount than when computing
5454       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5455       // to match, but for EL0.Max and EL1.Max to not.
5456       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5457           !isa<SCEVCouldNotCompute>(BECount))
5458         MaxBECount = BECount;
5459 
5460       return ExitLimit(BECount, MaxBECount);
5461     }
5462     if (BO->getOpcode() == Instruction::Or) {
5463       // Recurse on the operands of the or.
5464       bool EitherMayExit = L->contains(FBB);
5465       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5466                                                ControlsExit && !EitherMayExit);
5467       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5468                                                ControlsExit && !EitherMayExit);
5469       const SCEV *BECount = getCouldNotCompute();
5470       const SCEV *MaxBECount = getCouldNotCompute();
5471       if (EitherMayExit) {
5472         // Both conditions must be false for the loop to continue executing.
5473         // Choose the less conservative count.
5474         if (EL0.Exact == getCouldNotCompute() ||
5475             EL1.Exact == getCouldNotCompute())
5476           BECount = getCouldNotCompute();
5477         else
5478           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5479         if (EL0.Max == getCouldNotCompute())
5480           MaxBECount = EL1.Max;
5481         else if (EL1.Max == getCouldNotCompute())
5482           MaxBECount = EL0.Max;
5483         else
5484           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5485       } else {
5486         // Both conditions must be false at the same time for the loop to exit.
5487         // For now, be conservative.
5488         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5489         if (EL0.Max == EL1.Max)
5490           MaxBECount = EL0.Max;
5491         if (EL0.Exact == EL1.Exact)
5492           BECount = EL0.Exact;
5493       }
5494 
5495       return ExitLimit(BECount, MaxBECount);
5496     }
5497   }
5498 
5499   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5500   // Proceed to the next level to examine the icmp.
5501   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5502     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5503 
5504   // Check for a constant condition. These are normally stripped out by
5505   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5506   // preserve the CFG and is temporarily leaving constant conditions
5507   // in place.
5508   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5509     if (L->contains(FBB) == !CI->getZExtValue())
5510       // The backedge is always taken.
5511       return getCouldNotCompute();
5512     else
5513       // The backedge is never taken.
5514       return getZero(CI->getType());
5515   }
5516 
5517   // If it's not an integer or pointer comparison then compute it the hard way.
5518   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5519 }
5520 
5521 ScalarEvolution::ExitLimit
5522 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5523                                           ICmpInst *ExitCond,
5524                                           BasicBlock *TBB,
5525                                           BasicBlock *FBB,
5526                                           bool ControlsExit) {
5527 
5528   // If the condition was exit on true, convert the condition to exit on false
5529   ICmpInst::Predicate Cond;
5530   if (!L->contains(FBB))
5531     Cond = ExitCond->getPredicate();
5532   else
5533     Cond = ExitCond->getInversePredicate();
5534 
5535   // Handle common loops like: for (X = "string"; *X; ++X)
5536   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5537     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5538       ExitLimit ItCnt =
5539         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5540       if (ItCnt.hasAnyInfo())
5541         return ItCnt;
5542     }
5543 
5544   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5545       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5546   if (ShiftEL.hasAnyInfo())
5547     return ShiftEL;
5548 
5549   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5550   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5551 
5552   // Try to evaluate any dependencies out of the loop.
5553   LHS = getSCEVAtScope(LHS, L);
5554   RHS = getSCEVAtScope(RHS, L);
5555 
5556   // At this point, we would like to compute how many iterations of the
5557   // loop the predicate will return true for these inputs.
5558   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5559     // If there is a loop-invariant, force it into the RHS.
5560     std::swap(LHS, RHS);
5561     Cond = ICmpInst::getSwappedPredicate(Cond);
5562   }
5563 
5564   // Simplify the operands before analyzing them.
5565   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5566 
5567   // If we have a comparison of a chrec against a constant, try to use value
5568   // ranges to answer this query.
5569   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5570     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5571       if (AddRec->getLoop() == L) {
5572         // Form the constant range.
5573         ConstantRange CompRange(
5574             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5575 
5576         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5577         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5578       }
5579 
5580   switch (Cond) {
5581   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5582     // Convert to: while (X-Y != 0)
5583     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5584     if (EL.hasAnyInfo()) return EL;
5585     break;
5586   }
5587   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5588     // Convert to: while (X-Y == 0)
5589     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5590     if (EL.hasAnyInfo()) return EL;
5591     break;
5592   }
5593   case ICmpInst::ICMP_SLT:
5594   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5595     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5596     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5597     if (EL.hasAnyInfo()) return EL;
5598     break;
5599   }
5600   case ICmpInst::ICMP_SGT:
5601   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5602     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5603     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5604     if (EL.hasAnyInfo()) return EL;
5605     break;
5606   }
5607   default:
5608     break;
5609   }
5610   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5611 }
5612 
5613 ScalarEvolution::ExitLimit
5614 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5615                                                       SwitchInst *Switch,
5616                                                       BasicBlock *ExitingBlock,
5617                                                       bool ControlsExit) {
5618   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5619 
5620   // Give up if the exit is the default dest of a switch.
5621   if (Switch->getDefaultDest() == ExitingBlock)
5622     return getCouldNotCompute();
5623 
5624   assert(L->contains(Switch->getDefaultDest()) &&
5625          "Default case must not exit the loop!");
5626   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5627   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5628 
5629   // while (X != Y) --> while (X-Y != 0)
5630   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5631   if (EL.hasAnyInfo())
5632     return EL;
5633 
5634   return getCouldNotCompute();
5635 }
5636 
5637 static ConstantInt *
5638 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5639                                 ScalarEvolution &SE) {
5640   const SCEV *InVal = SE.getConstant(C);
5641   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5642   assert(isa<SCEVConstant>(Val) &&
5643          "Evaluation of SCEV at constant didn't fold correctly?");
5644   return cast<SCEVConstant>(Val)->getValue();
5645 }
5646 
5647 /// computeLoadConstantCompareExitLimit - Given an exit condition of
5648 /// 'icmp op load X, cst', try to see if we can compute the backedge
5649 /// execution count.
5650 ScalarEvolution::ExitLimit
5651 ScalarEvolution::computeLoadConstantCompareExitLimit(
5652   LoadInst *LI,
5653   Constant *RHS,
5654   const Loop *L,
5655   ICmpInst::Predicate predicate) {
5656 
5657   if (LI->isVolatile()) return getCouldNotCompute();
5658 
5659   // Check to see if the loaded pointer is a getelementptr of a global.
5660   // TODO: Use SCEV instead of manually grubbing with GEPs.
5661   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5662   if (!GEP) return getCouldNotCompute();
5663 
5664   // Make sure that it is really a constant global we are gepping, with an
5665   // initializer, and make sure the first IDX is really 0.
5666   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5667   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5668       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5669       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5670     return getCouldNotCompute();
5671 
5672   // Okay, we allow one non-constant index into the GEP instruction.
5673   Value *VarIdx = nullptr;
5674   std::vector<Constant*> Indexes;
5675   unsigned VarIdxNum = 0;
5676   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5677     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5678       Indexes.push_back(CI);
5679     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5680       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5681       VarIdx = GEP->getOperand(i);
5682       VarIdxNum = i-2;
5683       Indexes.push_back(nullptr);
5684     }
5685 
5686   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5687   if (!VarIdx)
5688     return getCouldNotCompute();
5689 
5690   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5691   // Check to see if X is a loop variant variable value now.
5692   const SCEV *Idx = getSCEV(VarIdx);
5693   Idx = getSCEVAtScope(Idx, L);
5694 
5695   // We can only recognize very limited forms of loop index expressions, in
5696   // particular, only affine AddRec's like {C1,+,C2}.
5697   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5698   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5699       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5700       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5701     return getCouldNotCompute();
5702 
5703   unsigned MaxSteps = MaxBruteForceIterations;
5704   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5705     ConstantInt *ItCst = ConstantInt::get(
5706                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5707     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5708 
5709     // Form the GEP offset.
5710     Indexes[VarIdxNum] = Val;
5711 
5712     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5713                                                          Indexes);
5714     if (!Result) break;  // Cannot compute!
5715 
5716     // Evaluate the condition for this iteration.
5717     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5718     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5719     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5720       ++NumArrayLenItCounts;
5721       return getConstant(ItCst);   // Found terminating iteration!
5722     }
5723   }
5724   return getCouldNotCompute();
5725 }
5726 
5727 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5728     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5729   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5730   if (!RHS)
5731     return getCouldNotCompute();
5732 
5733   const BasicBlock *Latch = L->getLoopLatch();
5734   if (!Latch)
5735     return getCouldNotCompute();
5736 
5737   const BasicBlock *Predecessor = L->getLoopPredecessor();
5738   if (!Predecessor)
5739     return getCouldNotCompute();
5740 
5741   // Return true if V is of the form "LHS `shift_op` <positive constant>".
5742   // Return LHS in OutLHS and shift_opt in OutOpCode.
5743   auto MatchPositiveShift =
5744       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5745 
5746     using namespace PatternMatch;
5747 
5748     ConstantInt *ShiftAmt;
5749     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5750       OutOpCode = Instruction::LShr;
5751     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5752       OutOpCode = Instruction::AShr;
5753     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5754       OutOpCode = Instruction::Shl;
5755     else
5756       return false;
5757 
5758     return ShiftAmt->getValue().isStrictlyPositive();
5759   };
5760 
5761   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5762   //
5763   // loop:
5764   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5765   //   %iv.shifted = lshr i32 %iv, <positive constant>
5766   //
5767   // Return true on a succesful match.  Return the corresponding PHI node (%iv
5768   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5769   auto MatchShiftRecurrence =
5770       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5771     Optional<Instruction::BinaryOps> PostShiftOpCode;
5772 
5773     {
5774       Instruction::BinaryOps OpC;
5775       Value *V;
5776 
5777       // If we encounter a shift instruction, "peel off" the shift operation,
5778       // and remember that we did so.  Later when we inspect %iv's backedge
5779       // value, we will make sure that the backedge value uses the same
5780       // operation.
5781       //
5782       // Note: the peeled shift operation does not have to be the same
5783       // instruction as the one feeding into the PHI's backedge value.  We only
5784       // really care about it being the same *kind* of shift instruction --
5785       // that's all that is required for our later inferences to hold.
5786       if (MatchPositiveShift(LHS, V, OpC)) {
5787         PostShiftOpCode = OpC;
5788         LHS = V;
5789       }
5790     }
5791 
5792     PNOut = dyn_cast<PHINode>(LHS);
5793     if (!PNOut || PNOut->getParent() != L->getHeader())
5794       return false;
5795 
5796     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5797     Value *OpLHS;
5798 
5799     return
5800         // The backedge value for the PHI node must be a shift by a positive
5801         // amount
5802         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5803 
5804         // of the PHI node itself
5805         OpLHS == PNOut &&
5806 
5807         // and the kind of shift should be match the kind of shift we peeled
5808         // off, if any.
5809         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5810   };
5811 
5812   PHINode *PN;
5813   Instruction::BinaryOps OpCode;
5814   if (!MatchShiftRecurrence(LHS, PN, OpCode))
5815     return getCouldNotCompute();
5816 
5817   const DataLayout &DL = getDataLayout();
5818 
5819   // The key rationale for this optimization is that for some kinds of shift
5820   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5821   // within a finite number of iterations.  If the condition guarding the
5822   // backedge (in the sense that the backedge is taken if the condition is true)
5823   // is false for the value the shift recurrence stabilizes to, then we know
5824   // that the backedge is taken only a finite number of times.
5825 
5826   ConstantInt *StableValue = nullptr;
5827   switch (OpCode) {
5828   default:
5829     llvm_unreachable("Impossible case!");
5830 
5831   case Instruction::AShr: {
5832     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5833     // bitwidth(K) iterations.
5834     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5835     bool KnownZero, KnownOne;
5836     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5837                    Predecessor->getTerminator(), &DT);
5838     auto *Ty = cast<IntegerType>(RHS->getType());
5839     if (KnownZero)
5840       StableValue = ConstantInt::get(Ty, 0);
5841     else if (KnownOne)
5842       StableValue = ConstantInt::get(Ty, -1, true);
5843     else
5844       return getCouldNotCompute();
5845 
5846     break;
5847   }
5848   case Instruction::LShr:
5849   case Instruction::Shl:
5850     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5851     // stabilize to 0 in at most bitwidth(K) iterations.
5852     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5853     break;
5854   }
5855 
5856   auto *Result =
5857       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5858   assert(Result->getType()->isIntegerTy(1) &&
5859          "Otherwise cannot be an operand to a branch instruction");
5860 
5861   if (Result->isZeroValue()) {
5862     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5863     const SCEV *UpperBound =
5864         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5865     return ExitLimit(getCouldNotCompute(), UpperBound);
5866   }
5867 
5868   return getCouldNotCompute();
5869 }
5870 
5871 /// CanConstantFold - Return true if we can constant fold an instruction of the
5872 /// specified type, assuming that all operands were constants.
5873 static bool CanConstantFold(const Instruction *I) {
5874   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5875       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5876       isa<LoadInst>(I))
5877     return true;
5878 
5879   if (const CallInst *CI = dyn_cast<CallInst>(I))
5880     if (const Function *F = CI->getCalledFunction())
5881       return canConstantFoldCallTo(F);
5882   return false;
5883 }
5884 
5885 /// Determine whether this instruction can constant evolve within this loop
5886 /// assuming its operands can all constant evolve.
5887 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5888   // An instruction outside of the loop can't be derived from a loop PHI.
5889   if (!L->contains(I)) return false;
5890 
5891   if (isa<PHINode>(I)) {
5892     // We don't currently keep track of the control flow needed to evaluate
5893     // PHIs, so we cannot handle PHIs inside of loops.
5894     return L->getHeader() == I->getParent();
5895   }
5896 
5897   // If we won't be able to constant fold this expression even if the operands
5898   // are constants, bail early.
5899   return CanConstantFold(I);
5900 }
5901 
5902 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5903 /// recursing through each instruction operand until reaching a loop header phi.
5904 static PHINode *
5905 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5906                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5907 
5908   // Otherwise, we can evaluate this instruction if all of its operands are
5909   // constant or derived from a PHI node themselves.
5910   PHINode *PHI = nullptr;
5911   for (Value *Op : UseInst->operands()) {
5912     if (isa<Constant>(Op)) continue;
5913 
5914     Instruction *OpInst = dyn_cast<Instruction>(Op);
5915     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5916 
5917     PHINode *P = dyn_cast<PHINode>(OpInst);
5918     if (!P)
5919       // If this operand is already visited, reuse the prior result.
5920       // We may have P != PHI if this is the deepest point at which the
5921       // inconsistent paths meet.
5922       P = PHIMap.lookup(OpInst);
5923     if (!P) {
5924       // Recurse and memoize the results, whether a phi is found or not.
5925       // This recursive call invalidates pointers into PHIMap.
5926       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5927       PHIMap[OpInst] = P;
5928     }
5929     if (!P)
5930       return nullptr;  // Not evolving from PHI
5931     if (PHI && PHI != P)
5932       return nullptr;  // Evolving from multiple different PHIs.
5933     PHI = P;
5934   }
5935   // This is a expression evolving from a constant PHI!
5936   return PHI;
5937 }
5938 
5939 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5940 /// in the loop that V is derived from.  We allow arbitrary operations along the
5941 /// way, but the operands of an operation must either be constants or a value
5942 /// derived from a constant PHI.  If this expression does not fit with these
5943 /// constraints, return null.
5944 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5945   Instruction *I = dyn_cast<Instruction>(V);
5946   if (!I || !canConstantEvolve(I, L)) return nullptr;
5947 
5948   if (PHINode *PN = dyn_cast<PHINode>(I))
5949     return PN;
5950 
5951   // Record non-constant instructions contained by the loop.
5952   DenseMap<Instruction *, PHINode *> PHIMap;
5953   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5954 }
5955 
5956 /// EvaluateExpression - Given an expression that passes the
5957 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5958 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5959 /// reason, return null.
5960 static Constant *EvaluateExpression(Value *V, const Loop *L,
5961                                     DenseMap<Instruction *, Constant *> &Vals,
5962                                     const DataLayout &DL,
5963                                     const TargetLibraryInfo *TLI) {
5964   // Convenient constant check, but redundant for recursive calls.
5965   if (Constant *C = dyn_cast<Constant>(V)) return C;
5966   Instruction *I = dyn_cast<Instruction>(V);
5967   if (!I) return nullptr;
5968 
5969   if (Constant *C = Vals.lookup(I)) return C;
5970 
5971   // An instruction inside the loop depends on a value outside the loop that we
5972   // weren't given a mapping for, or a value such as a call inside the loop.
5973   if (!canConstantEvolve(I, L)) return nullptr;
5974 
5975   // An unmapped PHI can be due to a branch or another loop inside this loop,
5976   // or due to this not being the initial iteration through a loop where we
5977   // couldn't compute the evolution of this particular PHI last time.
5978   if (isa<PHINode>(I)) return nullptr;
5979 
5980   std::vector<Constant*> Operands(I->getNumOperands());
5981 
5982   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5983     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5984     if (!Operand) {
5985       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5986       if (!Operands[i]) return nullptr;
5987       continue;
5988     }
5989     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5990     Vals[Operand] = C;
5991     if (!C) return nullptr;
5992     Operands[i] = C;
5993   }
5994 
5995   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5996     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5997                                            Operands[1], DL, TLI);
5998   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5999     if (!LI->isVolatile())
6000       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6001   }
6002   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6003 }
6004 
6005 
6006 // If every incoming value to PN except the one for BB is a specific Constant,
6007 // return that, else return nullptr.
6008 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6009   Constant *IncomingVal = nullptr;
6010 
6011   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6012     if (PN->getIncomingBlock(i) == BB)
6013       continue;
6014 
6015     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6016     if (!CurrentVal)
6017       return nullptr;
6018 
6019     if (IncomingVal != CurrentVal) {
6020       if (IncomingVal)
6021         return nullptr;
6022       IncomingVal = CurrentVal;
6023     }
6024   }
6025 
6026   return IncomingVal;
6027 }
6028 
6029 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6030 /// in the header of its containing loop, we know the loop executes a
6031 /// constant number of times, and the PHI node is just a recurrence
6032 /// involving constants, fold it.
6033 Constant *
6034 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6035                                                    const APInt &BEs,
6036                                                    const Loop *L) {
6037   auto I = ConstantEvolutionLoopExitValue.find(PN);
6038   if (I != ConstantEvolutionLoopExitValue.end())
6039     return I->second;
6040 
6041   if (BEs.ugt(MaxBruteForceIterations))
6042     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6043 
6044   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6045 
6046   DenseMap<Instruction *, Constant *> CurrentIterVals;
6047   BasicBlock *Header = L->getHeader();
6048   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6049 
6050   BasicBlock *Latch = L->getLoopLatch();
6051   if (!Latch)
6052     return nullptr;
6053 
6054   for (auto &I : *Header) {
6055     PHINode *PHI = dyn_cast<PHINode>(&I);
6056     if (!PHI) break;
6057     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6058     if (!StartCST) continue;
6059     CurrentIterVals[PHI] = StartCST;
6060   }
6061   if (!CurrentIterVals.count(PN))
6062     return RetVal = nullptr;
6063 
6064   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6065 
6066   // Execute the loop symbolically to determine the exit value.
6067   if (BEs.getActiveBits() >= 32)
6068     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6069 
6070   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6071   unsigned IterationNum = 0;
6072   const DataLayout &DL = getDataLayout();
6073   for (; ; ++IterationNum) {
6074     if (IterationNum == NumIterations)
6075       return RetVal = CurrentIterVals[PN];  // Got exit value!
6076 
6077     // Compute the value of the PHIs for the next iteration.
6078     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6079     DenseMap<Instruction *, Constant *> NextIterVals;
6080     Constant *NextPHI =
6081         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6082     if (!NextPHI)
6083       return nullptr;        // Couldn't evaluate!
6084     NextIterVals[PN] = NextPHI;
6085 
6086     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6087 
6088     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6089     // cease to be able to evaluate one of them or if they stop evolving,
6090     // because that doesn't necessarily prevent us from computing PN.
6091     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6092     for (const auto &I : CurrentIterVals) {
6093       PHINode *PHI = dyn_cast<PHINode>(I.first);
6094       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6095       PHIsToCompute.emplace_back(PHI, I.second);
6096     }
6097     // We use two distinct loops because EvaluateExpression may invalidate any
6098     // iterators into CurrentIterVals.
6099     for (const auto &I : PHIsToCompute) {
6100       PHINode *PHI = I.first;
6101       Constant *&NextPHI = NextIterVals[PHI];
6102       if (!NextPHI) {   // Not already computed.
6103         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6104         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6105       }
6106       if (NextPHI != I.second)
6107         StoppedEvolving = false;
6108     }
6109 
6110     // If all entries in CurrentIterVals == NextIterVals then we can stop
6111     // iterating, the loop can't continue to change.
6112     if (StoppedEvolving)
6113       return RetVal = CurrentIterVals[PN];
6114 
6115     CurrentIterVals.swap(NextIterVals);
6116   }
6117 }
6118 
6119 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6120                                                           Value *Cond,
6121                                                           bool ExitWhen) {
6122   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6123   if (!PN) return getCouldNotCompute();
6124 
6125   // If the loop is canonicalized, the PHI will have exactly two entries.
6126   // That's the only form we support here.
6127   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6128 
6129   DenseMap<Instruction *, Constant *> CurrentIterVals;
6130   BasicBlock *Header = L->getHeader();
6131   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6132 
6133   BasicBlock *Latch = L->getLoopLatch();
6134   assert(Latch && "Should follow from NumIncomingValues == 2!");
6135 
6136   for (auto &I : *Header) {
6137     PHINode *PHI = dyn_cast<PHINode>(&I);
6138     if (!PHI)
6139       break;
6140     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6141     if (!StartCST) continue;
6142     CurrentIterVals[PHI] = StartCST;
6143   }
6144   if (!CurrentIterVals.count(PN))
6145     return getCouldNotCompute();
6146 
6147   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6148   // the loop symbolically to determine when the condition gets a value of
6149   // "ExitWhen".
6150   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6151   const DataLayout &DL = getDataLayout();
6152   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6153     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6154         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6155 
6156     // Couldn't symbolically evaluate.
6157     if (!CondVal) return getCouldNotCompute();
6158 
6159     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6160       ++NumBruteForceTripCountsComputed;
6161       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6162     }
6163 
6164     // Update all the PHI nodes for the next iteration.
6165     DenseMap<Instruction *, Constant *> NextIterVals;
6166 
6167     // Create a list of which PHIs we need to compute. We want to do this before
6168     // calling EvaluateExpression on them because that may invalidate iterators
6169     // into CurrentIterVals.
6170     SmallVector<PHINode *, 8> PHIsToCompute;
6171     for (const auto &I : CurrentIterVals) {
6172       PHINode *PHI = dyn_cast<PHINode>(I.first);
6173       if (!PHI || PHI->getParent() != Header) continue;
6174       PHIsToCompute.push_back(PHI);
6175     }
6176     for (PHINode *PHI : PHIsToCompute) {
6177       Constant *&NextPHI = NextIterVals[PHI];
6178       if (NextPHI) continue;    // Already computed!
6179 
6180       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6181       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6182     }
6183     CurrentIterVals.swap(NextIterVals);
6184   }
6185 
6186   // Too many iterations were needed to evaluate.
6187   return getCouldNotCompute();
6188 }
6189 
6190 /// getSCEVAtScope - Return a SCEV expression for the specified value
6191 /// at the specified scope in the program.  The L value specifies a loop
6192 /// nest to evaluate the expression at, where null is the top-level or a
6193 /// specified loop is immediately inside of the loop.
6194 ///
6195 /// This method can be used to compute the exit value for a variable defined
6196 /// in a loop by querying what the value will hold in the parent loop.
6197 ///
6198 /// In the case that a relevant loop exit value cannot be computed, the
6199 /// original value V is returned.
6200 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6201   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6202       ValuesAtScopes[V];
6203   // Check to see if we've folded this expression at this loop before.
6204   for (auto &LS : Values)
6205     if (LS.first == L)
6206       return LS.second ? LS.second : V;
6207 
6208   Values.emplace_back(L, nullptr);
6209 
6210   // Otherwise compute it.
6211   const SCEV *C = computeSCEVAtScope(V, L);
6212   for (auto &LS : reverse(ValuesAtScopes[V]))
6213     if (LS.first == L) {
6214       LS.second = C;
6215       break;
6216     }
6217   return C;
6218 }
6219 
6220 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6221 /// will return Constants for objects which aren't represented by a
6222 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6223 /// Returns NULL if the SCEV isn't representable as a Constant.
6224 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6225   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6226     case scCouldNotCompute:
6227     case scAddRecExpr:
6228       break;
6229     case scConstant:
6230       return cast<SCEVConstant>(V)->getValue();
6231     case scUnknown:
6232       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6233     case scSignExtend: {
6234       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6235       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6236         return ConstantExpr::getSExt(CastOp, SS->getType());
6237       break;
6238     }
6239     case scZeroExtend: {
6240       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6241       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6242         return ConstantExpr::getZExt(CastOp, SZ->getType());
6243       break;
6244     }
6245     case scTruncate: {
6246       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6247       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6248         return ConstantExpr::getTrunc(CastOp, ST->getType());
6249       break;
6250     }
6251     case scAddExpr: {
6252       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6253       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6254         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6255           unsigned AS = PTy->getAddressSpace();
6256           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6257           C = ConstantExpr::getBitCast(C, DestPtrTy);
6258         }
6259         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6260           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6261           if (!C2) return nullptr;
6262 
6263           // First pointer!
6264           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6265             unsigned AS = C2->getType()->getPointerAddressSpace();
6266             std::swap(C, C2);
6267             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6268             // The offsets have been converted to bytes.  We can add bytes to an
6269             // i8* by GEP with the byte count in the first index.
6270             C = ConstantExpr::getBitCast(C, DestPtrTy);
6271           }
6272 
6273           // Don't bother trying to sum two pointers. We probably can't
6274           // statically compute a load that results from it anyway.
6275           if (C2->getType()->isPointerTy())
6276             return nullptr;
6277 
6278           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6279             if (PTy->getElementType()->isStructTy())
6280               C2 = ConstantExpr::getIntegerCast(
6281                   C2, Type::getInt32Ty(C->getContext()), true);
6282             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6283           } else
6284             C = ConstantExpr::getAdd(C, C2);
6285         }
6286         return C;
6287       }
6288       break;
6289     }
6290     case scMulExpr: {
6291       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6292       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6293         // Don't bother with pointers at all.
6294         if (C->getType()->isPointerTy()) return nullptr;
6295         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6296           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6297           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6298           C = ConstantExpr::getMul(C, C2);
6299         }
6300         return C;
6301       }
6302       break;
6303     }
6304     case scUDivExpr: {
6305       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6306       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6307         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6308           if (LHS->getType() == RHS->getType())
6309             return ConstantExpr::getUDiv(LHS, RHS);
6310       break;
6311     }
6312     case scSMaxExpr:
6313     case scUMaxExpr:
6314       break; // TODO: smax, umax.
6315   }
6316   return nullptr;
6317 }
6318 
6319 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6320   if (isa<SCEVConstant>(V)) return V;
6321 
6322   // If this instruction is evolved from a constant-evolving PHI, compute the
6323   // exit value from the loop without using SCEVs.
6324   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6325     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6326       const Loop *LI = this->LI[I->getParent()];
6327       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6328         if (PHINode *PN = dyn_cast<PHINode>(I))
6329           if (PN->getParent() == LI->getHeader()) {
6330             // Okay, there is no closed form solution for the PHI node.  Check
6331             // to see if the loop that contains it has a known backedge-taken
6332             // count.  If so, we may be able to force computation of the exit
6333             // value.
6334             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6335             if (const SCEVConstant *BTCC =
6336                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6337               // Okay, we know how many times the containing loop executes.  If
6338               // this is a constant evolving PHI node, get the final value at
6339               // the specified iteration number.
6340               Constant *RV =
6341                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6342               if (RV) return getSCEV(RV);
6343             }
6344           }
6345 
6346       // Okay, this is an expression that we cannot symbolically evaluate
6347       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6348       // the arguments into constants, and if so, try to constant propagate the
6349       // result.  This is particularly useful for computing loop exit values.
6350       if (CanConstantFold(I)) {
6351         SmallVector<Constant *, 4> Operands;
6352         bool MadeImprovement = false;
6353         for (Value *Op : I->operands()) {
6354           if (Constant *C = dyn_cast<Constant>(Op)) {
6355             Operands.push_back(C);
6356             continue;
6357           }
6358 
6359           // If any of the operands is non-constant and if they are
6360           // non-integer and non-pointer, don't even try to analyze them
6361           // with scev techniques.
6362           if (!isSCEVable(Op->getType()))
6363             return V;
6364 
6365           const SCEV *OrigV = getSCEV(Op);
6366           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6367           MadeImprovement |= OrigV != OpV;
6368 
6369           Constant *C = BuildConstantFromSCEV(OpV);
6370           if (!C) return V;
6371           if (C->getType() != Op->getType())
6372             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6373                                                               Op->getType(),
6374                                                               false),
6375                                       C, Op->getType());
6376           Operands.push_back(C);
6377         }
6378 
6379         // Check to see if getSCEVAtScope actually made an improvement.
6380         if (MadeImprovement) {
6381           Constant *C = nullptr;
6382           const DataLayout &DL = getDataLayout();
6383           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6384             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6385                                                 Operands[1], DL, &TLI);
6386           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6387             if (!LI->isVolatile())
6388               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6389           } else
6390             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6391           if (!C) return V;
6392           return getSCEV(C);
6393         }
6394       }
6395     }
6396 
6397     // This is some other type of SCEVUnknown, just return it.
6398     return V;
6399   }
6400 
6401   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6402     // Avoid performing the look-up in the common case where the specified
6403     // expression has no loop-variant portions.
6404     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6405       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6406       if (OpAtScope != Comm->getOperand(i)) {
6407         // Okay, at least one of these operands is loop variant but might be
6408         // foldable.  Build a new instance of the folded commutative expression.
6409         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6410                                             Comm->op_begin()+i);
6411         NewOps.push_back(OpAtScope);
6412 
6413         for (++i; i != e; ++i) {
6414           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6415           NewOps.push_back(OpAtScope);
6416         }
6417         if (isa<SCEVAddExpr>(Comm))
6418           return getAddExpr(NewOps);
6419         if (isa<SCEVMulExpr>(Comm))
6420           return getMulExpr(NewOps);
6421         if (isa<SCEVSMaxExpr>(Comm))
6422           return getSMaxExpr(NewOps);
6423         if (isa<SCEVUMaxExpr>(Comm))
6424           return getUMaxExpr(NewOps);
6425         llvm_unreachable("Unknown commutative SCEV type!");
6426       }
6427     }
6428     // If we got here, all operands are loop invariant.
6429     return Comm;
6430   }
6431 
6432   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6433     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6434     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6435     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6436       return Div;   // must be loop invariant
6437     return getUDivExpr(LHS, RHS);
6438   }
6439 
6440   // If this is a loop recurrence for a loop that does not contain L, then we
6441   // are dealing with the final value computed by the loop.
6442   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6443     // First, attempt to evaluate each operand.
6444     // Avoid performing the look-up in the common case where the specified
6445     // expression has no loop-variant portions.
6446     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6447       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6448       if (OpAtScope == AddRec->getOperand(i))
6449         continue;
6450 
6451       // Okay, at least one of these operands is loop variant but might be
6452       // foldable.  Build a new instance of the folded commutative expression.
6453       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6454                                           AddRec->op_begin()+i);
6455       NewOps.push_back(OpAtScope);
6456       for (++i; i != e; ++i)
6457         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6458 
6459       const SCEV *FoldedRec =
6460         getAddRecExpr(NewOps, AddRec->getLoop(),
6461                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6462       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6463       // The addrec may be folded to a nonrecurrence, for example, if the
6464       // induction variable is multiplied by zero after constant folding. Go
6465       // ahead and return the folded value.
6466       if (!AddRec)
6467         return FoldedRec;
6468       break;
6469     }
6470 
6471     // If the scope is outside the addrec's loop, evaluate it by using the
6472     // loop exit value of the addrec.
6473     if (!AddRec->getLoop()->contains(L)) {
6474       // To evaluate this recurrence, we need to know how many times the AddRec
6475       // loop iterates.  Compute this now.
6476       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6477       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6478 
6479       // Then, evaluate the AddRec.
6480       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6481     }
6482 
6483     return AddRec;
6484   }
6485 
6486   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6487     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6488     if (Op == Cast->getOperand())
6489       return Cast;  // must be loop invariant
6490     return getZeroExtendExpr(Op, Cast->getType());
6491   }
6492 
6493   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6494     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6495     if (Op == Cast->getOperand())
6496       return Cast;  // must be loop invariant
6497     return getSignExtendExpr(Op, Cast->getType());
6498   }
6499 
6500   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6501     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6502     if (Op == Cast->getOperand())
6503       return Cast;  // must be loop invariant
6504     return getTruncateExpr(Op, Cast->getType());
6505   }
6506 
6507   llvm_unreachable("Unknown SCEV type!");
6508 }
6509 
6510 /// getSCEVAtScope - This is a convenience function which does
6511 /// getSCEVAtScope(getSCEV(V), L).
6512 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6513   return getSCEVAtScope(getSCEV(V), L);
6514 }
6515 
6516 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6517 /// following equation:
6518 ///
6519 ///     A * X = B (mod N)
6520 ///
6521 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6522 /// A and B isn't important.
6523 ///
6524 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6525 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6526                                                ScalarEvolution &SE) {
6527   uint32_t BW = A.getBitWidth();
6528   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6529   assert(A != 0 && "A must be non-zero.");
6530 
6531   // 1. D = gcd(A, N)
6532   //
6533   // The gcd of A and N may have only one prime factor: 2. The number of
6534   // trailing zeros in A is its multiplicity
6535   uint32_t Mult2 = A.countTrailingZeros();
6536   // D = 2^Mult2
6537 
6538   // 2. Check if B is divisible by D.
6539   //
6540   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6541   // is not less than multiplicity of this prime factor for D.
6542   if (B.countTrailingZeros() < Mult2)
6543     return SE.getCouldNotCompute();
6544 
6545   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6546   // modulo (N / D).
6547   //
6548   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6549   // bit width during computations.
6550   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6551   APInt Mod(BW + 1, 0);
6552   Mod.setBit(BW - Mult2);  // Mod = N / D
6553   APInt I = AD.multiplicativeInverse(Mod);
6554 
6555   // 4. Compute the minimum unsigned root of the equation:
6556   // I * (B / D) mod (N / D)
6557   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6558 
6559   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6560   // bits.
6561   return SE.getConstant(Result.trunc(BW));
6562 }
6563 
6564 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6565 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6566 /// might be the same) or two SCEVCouldNotCompute objects.
6567 ///
6568 static std::pair<const SCEV *,const SCEV *>
6569 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6570   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6571   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6572   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6573   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6574 
6575   // We currently can only solve this if the coefficients are constants.
6576   if (!LC || !MC || !NC) {
6577     const SCEV *CNC = SE.getCouldNotCompute();
6578     return {CNC, CNC};
6579   }
6580 
6581   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6582   const APInt &L = LC->getAPInt();
6583   const APInt &M = MC->getAPInt();
6584   const APInt &N = NC->getAPInt();
6585   APInt Two(BitWidth, 2);
6586   APInt Four(BitWidth, 4);
6587 
6588   {
6589     using namespace APIntOps;
6590     const APInt& C = L;
6591     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6592     // The B coefficient is M-N/2
6593     APInt B(M);
6594     B -= sdiv(N,Two);
6595 
6596     // The A coefficient is N/2
6597     APInt A(N.sdiv(Two));
6598 
6599     // Compute the B^2-4ac term.
6600     APInt SqrtTerm(B);
6601     SqrtTerm *= B;
6602     SqrtTerm -= Four * (A * C);
6603 
6604     if (SqrtTerm.isNegative()) {
6605       // The loop is provably infinite.
6606       const SCEV *CNC = SE.getCouldNotCompute();
6607       return {CNC, CNC};
6608     }
6609 
6610     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6611     // integer value or else APInt::sqrt() will assert.
6612     APInt SqrtVal(SqrtTerm.sqrt());
6613 
6614     // Compute the two solutions for the quadratic formula.
6615     // The divisions must be performed as signed divisions.
6616     APInt NegB(-B);
6617     APInt TwoA(A << 1);
6618     if (TwoA.isMinValue()) {
6619       const SCEV *CNC = SE.getCouldNotCompute();
6620       return {CNC, CNC};
6621     }
6622 
6623     LLVMContext &Context = SE.getContext();
6624 
6625     ConstantInt *Solution1 =
6626       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6627     ConstantInt *Solution2 =
6628       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6629 
6630     return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
6631   } // end APIntOps namespace
6632 }
6633 
6634 /// HowFarToZero - Return the number of times a backedge comparing the specified
6635 /// value to zero will execute.  If not computable, return CouldNotCompute.
6636 ///
6637 /// This is only used for loops with a "x != y" exit test. The exit condition is
6638 /// now expressed as a single expression, V = x-y. So the exit test is
6639 /// effectively V != 0.  We know and take advantage of the fact that this
6640 /// expression only being used in a comparison by zero context.
6641 ScalarEvolution::ExitLimit
6642 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6643   // If the value is a constant
6644   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6645     // If the value is already zero, the branch will execute zero times.
6646     if (C->getValue()->isZero()) return C;
6647     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6648   }
6649 
6650   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6651   if (!AddRec || AddRec->getLoop() != L)
6652     return getCouldNotCompute();
6653 
6654   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6655   // the quadratic equation to solve it.
6656   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6657     std::pair<const SCEV *,const SCEV *> Roots =
6658       SolveQuadraticEquation(AddRec, *this);
6659     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6660     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6661     if (R1 && R2) {
6662       // Pick the smallest positive root value.
6663       if (ConstantInt *CB =
6664           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6665                                                       R1->getValue(),
6666                                                       R2->getValue()))) {
6667         if (!CB->getZExtValue())
6668           std::swap(R1, R2);   // R1 is the minimum root now.
6669 
6670         // We can only use this value if the chrec ends up with an exact zero
6671         // value at this index.  When solving for "X*X != 5", for example, we
6672         // should not accept a root of 2.
6673         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6674         if (Val->isZero())
6675           return R1;  // We found a quadratic root!
6676       }
6677     }
6678     return getCouldNotCompute();
6679   }
6680 
6681   // Otherwise we can only handle this if it is affine.
6682   if (!AddRec->isAffine())
6683     return getCouldNotCompute();
6684 
6685   // If this is an affine expression, the execution count of this branch is
6686   // the minimum unsigned root of the following equation:
6687   //
6688   //     Start + Step*N = 0 (mod 2^BW)
6689   //
6690   // equivalent to:
6691   //
6692   //             Step*N = -Start (mod 2^BW)
6693   //
6694   // where BW is the common bit width of Start and Step.
6695 
6696   // Get the initial value for the loop.
6697   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6698   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6699 
6700   // For now we handle only constant steps.
6701   //
6702   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6703   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6704   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6705   // We have not yet seen any such cases.
6706   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6707   if (!StepC || StepC->getValue()->equalsInt(0))
6708     return getCouldNotCompute();
6709 
6710   // For positive steps (counting up until unsigned overflow):
6711   //   N = -Start/Step (as unsigned)
6712   // For negative steps (counting down to zero):
6713   //   N = Start/-Step
6714   // First compute the unsigned distance from zero in the direction of Step.
6715   bool CountDown = StepC->getAPInt().isNegative();
6716   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6717 
6718   // Handle unitary steps, which cannot wraparound.
6719   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6720   //   N = Distance (as unsigned)
6721   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6722     ConstantRange CR = getUnsignedRange(Start);
6723     const SCEV *MaxBECount;
6724     if (!CountDown && CR.getUnsignedMin().isMinValue())
6725       // When counting up, the worst starting value is 1, not 0.
6726       MaxBECount = CR.getUnsignedMax().isMinValue()
6727         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6728         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6729     else
6730       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6731                                          : -CR.getUnsignedMin());
6732     return ExitLimit(Distance, MaxBECount);
6733   }
6734 
6735   // As a special case, handle the instance where Step is a positive power of
6736   // two. In this case, determining whether Step divides Distance evenly can be
6737   // done by counting and comparing the number of trailing zeros of Step and
6738   // Distance.
6739   if (!CountDown) {
6740     const APInt &StepV = StepC->getAPInt();
6741     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6742     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6743     // case is not handled as this code is guarded by !CountDown.
6744     if (StepV.isPowerOf2() &&
6745         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6746       // Here we've constrained the equation to be of the form
6747       //
6748       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
6749       //
6750       // where we're operating on a W bit wide integer domain and k is
6751       // non-negative.  The smallest unsigned solution for X is the trip count.
6752       //
6753       // (0) is equivalent to:
6754       //
6755       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
6756       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6757       // <=>  2^k * Distance' - X = L * 2^(W - N)
6758       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
6759       //
6760       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6761       // by 2^(W - N).
6762       //
6763       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
6764       //
6765       // E.g. say we're solving
6766       //
6767       //   2 * Val = 2 * X  (in i8)   ... (3)
6768       //
6769       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6770       //
6771       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6772       // necessarily the smallest unsigned value of X that satisfies (3).
6773       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6774       // is i8 1, not i8 -127
6775 
6776       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6777 
6778       // Since SCEV does not have a URem node, we construct one using a truncate
6779       // and a zero extend.
6780 
6781       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6782       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6783       auto *WideTy = Distance->getType();
6784 
6785       return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6786     }
6787   }
6788 
6789   // If the condition controls loop exit (the loop exits only if the expression
6790   // is true) and the addition is no-wrap we can use unsigned divide to
6791   // compute the backedge count.  In this case, the step may not divide the
6792   // distance, but we don't care because if the condition is "missed" the loop
6793   // will have undefined behavior due to wrapping.
6794   if (ControlsExit && AddRec->hasNoSelfWrap()) {
6795     const SCEV *Exact =
6796         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6797     return ExitLimit(Exact, Exact);
6798   }
6799 
6800   // Then, try to solve the above equation provided that Start is constant.
6801   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6802     return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
6803                                         *this);
6804   return getCouldNotCompute();
6805 }
6806 
6807 /// HowFarToNonZero - Return the number of times a backedge checking the
6808 /// specified value for nonzero will execute.  If not computable, return
6809 /// CouldNotCompute
6810 ScalarEvolution::ExitLimit
6811 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6812   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6813   // handle them yet except for the trivial case.  This could be expanded in the
6814   // future as needed.
6815 
6816   // If the value is a constant, check to see if it is known to be non-zero
6817   // already.  If so, the backedge will execute zero times.
6818   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6819     if (!C->getValue()->isNullValue())
6820       return getZero(C->getType());
6821     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6822   }
6823 
6824   // We could implement others, but I really doubt anyone writes loops like
6825   // this, and if they did, they would already be constant folded.
6826   return getCouldNotCompute();
6827 }
6828 
6829 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6830 /// (which may not be an immediate predecessor) which has exactly one
6831 /// successor from which BB is reachable, or null if no such block is
6832 /// found.
6833 ///
6834 std::pair<BasicBlock *, BasicBlock *>
6835 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6836   // If the block has a unique predecessor, then there is no path from the
6837   // predecessor to the block that does not go through the direct edge
6838   // from the predecessor to the block.
6839   if (BasicBlock *Pred = BB->getSinglePredecessor())
6840     return {Pred, BB};
6841 
6842   // A loop's header is defined to be a block that dominates the loop.
6843   // If the header has a unique predecessor outside the loop, it must be
6844   // a block that has exactly one successor that can reach the loop.
6845   if (Loop *L = LI.getLoopFor(BB))
6846     return {L->getLoopPredecessor(), L->getHeader()};
6847 
6848   return {nullptr, nullptr};
6849 }
6850 
6851 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6852 /// testing whether two expressions are equal, however for the purposes of
6853 /// looking for a condition guarding a loop, it can be useful to be a little
6854 /// more general, since a front-end may have replicated the controlling
6855 /// expression.
6856 ///
6857 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6858   // Quick check to see if they are the same SCEV.
6859   if (A == B) return true;
6860 
6861   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6862     // Not all instructions that are "identical" compute the same value.  For
6863     // instance, two distinct alloca instructions allocating the same type are
6864     // identical and do not read memory; but compute distinct values.
6865     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6866   };
6867 
6868   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6869   // two different instructions with the same value. Check for this case.
6870   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6871     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6872       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6873         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6874           if (ComputesEqualValues(AI, BI))
6875             return true;
6876 
6877   // Otherwise assume they may have a different value.
6878   return false;
6879 }
6880 
6881 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6882 /// predicate Pred. Return true iff any changes were made.
6883 ///
6884 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6885                                            const SCEV *&LHS, const SCEV *&RHS,
6886                                            unsigned Depth) {
6887   bool Changed = false;
6888 
6889   // If we hit the max recursion limit bail out.
6890   if (Depth >= 3)
6891     return false;
6892 
6893   // Canonicalize a constant to the right side.
6894   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6895     // Check for both operands constant.
6896     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6897       if (ConstantExpr::getICmp(Pred,
6898                                 LHSC->getValue(),
6899                                 RHSC->getValue())->isNullValue())
6900         goto trivially_false;
6901       else
6902         goto trivially_true;
6903     }
6904     // Otherwise swap the operands to put the constant on the right.
6905     std::swap(LHS, RHS);
6906     Pred = ICmpInst::getSwappedPredicate(Pred);
6907     Changed = true;
6908   }
6909 
6910   // If we're comparing an addrec with a value which is loop-invariant in the
6911   // addrec's loop, put the addrec on the left. Also make a dominance check,
6912   // as both operands could be addrecs loop-invariant in each other's loop.
6913   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6914     const Loop *L = AR->getLoop();
6915     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6916       std::swap(LHS, RHS);
6917       Pred = ICmpInst::getSwappedPredicate(Pred);
6918       Changed = true;
6919     }
6920   }
6921 
6922   // If there's a constant operand, canonicalize comparisons with boundary
6923   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6924   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6925     const APInt &RA = RC->getAPInt();
6926     switch (Pred) {
6927     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6928     case ICmpInst::ICMP_EQ:
6929     case ICmpInst::ICMP_NE:
6930       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6931       if (!RA)
6932         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6933           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6934             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6935                 ME->getOperand(0)->isAllOnesValue()) {
6936               RHS = AE->getOperand(1);
6937               LHS = ME->getOperand(1);
6938               Changed = true;
6939             }
6940       break;
6941     case ICmpInst::ICMP_UGE:
6942       if ((RA - 1).isMinValue()) {
6943         Pred = ICmpInst::ICMP_NE;
6944         RHS = getConstant(RA - 1);
6945         Changed = true;
6946         break;
6947       }
6948       if (RA.isMaxValue()) {
6949         Pred = ICmpInst::ICMP_EQ;
6950         Changed = true;
6951         break;
6952       }
6953       if (RA.isMinValue()) goto trivially_true;
6954 
6955       Pred = ICmpInst::ICMP_UGT;
6956       RHS = getConstant(RA - 1);
6957       Changed = true;
6958       break;
6959     case ICmpInst::ICMP_ULE:
6960       if ((RA + 1).isMaxValue()) {
6961         Pred = ICmpInst::ICMP_NE;
6962         RHS = getConstant(RA + 1);
6963         Changed = true;
6964         break;
6965       }
6966       if (RA.isMinValue()) {
6967         Pred = ICmpInst::ICMP_EQ;
6968         Changed = true;
6969         break;
6970       }
6971       if (RA.isMaxValue()) goto trivially_true;
6972 
6973       Pred = ICmpInst::ICMP_ULT;
6974       RHS = getConstant(RA + 1);
6975       Changed = true;
6976       break;
6977     case ICmpInst::ICMP_SGE:
6978       if ((RA - 1).isMinSignedValue()) {
6979         Pred = ICmpInst::ICMP_NE;
6980         RHS = getConstant(RA - 1);
6981         Changed = true;
6982         break;
6983       }
6984       if (RA.isMaxSignedValue()) {
6985         Pred = ICmpInst::ICMP_EQ;
6986         Changed = true;
6987         break;
6988       }
6989       if (RA.isMinSignedValue()) goto trivially_true;
6990 
6991       Pred = ICmpInst::ICMP_SGT;
6992       RHS = getConstant(RA - 1);
6993       Changed = true;
6994       break;
6995     case ICmpInst::ICMP_SLE:
6996       if ((RA + 1).isMaxSignedValue()) {
6997         Pred = ICmpInst::ICMP_NE;
6998         RHS = getConstant(RA + 1);
6999         Changed = true;
7000         break;
7001       }
7002       if (RA.isMinSignedValue()) {
7003         Pred = ICmpInst::ICMP_EQ;
7004         Changed = true;
7005         break;
7006       }
7007       if (RA.isMaxSignedValue()) goto trivially_true;
7008 
7009       Pred = ICmpInst::ICMP_SLT;
7010       RHS = getConstant(RA + 1);
7011       Changed = true;
7012       break;
7013     case ICmpInst::ICMP_UGT:
7014       if (RA.isMinValue()) {
7015         Pred = ICmpInst::ICMP_NE;
7016         Changed = true;
7017         break;
7018       }
7019       if ((RA + 1).isMaxValue()) {
7020         Pred = ICmpInst::ICMP_EQ;
7021         RHS = getConstant(RA + 1);
7022         Changed = true;
7023         break;
7024       }
7025       if (RA.isMaxValue()) goto trivially_false;
7026       break;
7027     case ICmpInst::ICMP_ULT:
7028       if (RA.isMaxValue()) {
7029         Pred = ICmpInst::ICMP_NE;
7030         Changed = true;
7031         break;
7032       }
7033       if ((RA - 1).isMinValue()) {
7034         Pred = ICmpInst::ICMP_EQ;
7035         RHS = getConstant(RA - 1);
7036         Changed = true;
7037         break;
7038       }
7039       if (RA.isMinValue()) goto trivially_false;
7040       break;
7041     case ICmpInst::ICMP_SGT:
7042       if (RA.isMinSignedValue()) {
7043         Pred = ICmpInst::ICMP_NE;
7044         Changed = true;
7045         break;
7046       }
7047       if ((RA + 1).isMaxSignedValue()) {
7048         Pred = ICmpInst::ICMP_EQ;
7049         RHS = getConstant(RA + 1);
7050         Changed = true;
7051         break;
7052       }
7053       if (RA.isMaxSignedValue()) goto trivially_false;
7054       break;
7055     case ICmpInst::ICMP_SLT:
7056       if (RA.isMaxSignedValue()) {
7057         Pred = ICmpInst::ICMP_NE;
7058         Changed = true;
7059         break;
7060       }
7061       if ((RA - 1).isMinSignedValue()) {
7062        Pred = ICmpInst::ICMP_EQ;
7063        RHS = getConstant(RA - 1);
7064         Changed = true;
7065        break;
7066       }
7067       if (RA.isMinSignedValue()) goto trivially_false;
7068       break;
7069     }
7070   }
7071 
7072   // Check for obvious equality.
7073   if (HasSameValue(LHS, RHS)) {
7074     if (ICmpInst::isTrueWhenEqual(Pred))
7075       goto trivially_true;
7076     if (ICmpInst::isFalseWhenEqual(Pred))
7077       goto trivially_false;
7078   }
7079 
7080   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7081   // adding or subtracting 1 from one of the operands.
7082   switch (Pred) {
7083   case ICmpInst::ICMP_SLE:
7084     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7085       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7086                        SCEV::FlagNSW);
7087       Pred = ICmpInst::ICMP_SLT;
7088       Changed = true;
7089     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7090       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7091                        SCEV::FlagNSW);
7092       Pred = ICmpInst::ICMP_SLT;
7093       Changed = true;
7094     }
7095     break;
7096   case ICmpInst::ICMP_SGE:
7097     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7098       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7099                        SCEV::FlagNSW);
7100       Pred = ICmpInst::ICMP_SGT;
7101       Changed = true;
7102     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7103       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7104                        SCEV::FlagNSW);
7105       Pred = ICmpInst::ICMP_SGT;
7106       Changed = true;
7107     }
7108     break;
7109   case ICmpInst::ICMP_ULE:
7110     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7111       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7112                        SCEV::FlagNUW);
7113       Pred = ICmpInst::ICMP_ULT;
7114       Changed = true;
7115     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7116       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7117       Pred = ICmpInst::ICMP_ULT;
7118       Changed = true;
7119     }
7120     break;
7121   case ICmpInst::ICMP_UGE:
7122     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7123       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7124       Pred = ICmpInst::ICMP_UGT;
7125       Changed = true;
7126     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7127       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7128                        SCEV::FlagNUW);
7129       Pred = ICmpInst::ICMP_UGT;
7130       Changed = true;
7131     }
7132     break;
7133   default:
7134     break;
7135   }
7136 
7137   // TODO: More simplifications are possible here.
7138 
7139   // Recursively simplify until we either hit a recursion limit or nothing
7140   // changes.
7141   if (Changed)
7142     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7143 
7144   return Changed;
7145 
7146 trivially_true:
7147   // Return 0 == 0.
7148   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7149   Pred = ICmpInst::ICMP_EQ;
7150   return true;
7151 
7152 trivially_false:
7153   // Return 0 != 0.
7154   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7155   Pred = ICmpInst::ICMP_NE;
7156   return true;
7157 }
7158 
7159 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7160   return getSignedRange(S).getSignedMax().isNegative();
7161 }
7162 
7163 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7164   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7165 }
7166 
7167 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7168   return !getSignedRange(S).getSignedMin().isNegative();
7169 }
7170 
7171 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7172   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7173 }
7174 
7175 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7176   return isKnownNegative(S) || isKnownPositive(S);
7177 }
7178 
7179 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7180                                        const SCEV *LHS, const SCEV *RHS) {
7181   // Canonicalize the inputs first.
7182   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7183 
7184   // If LHS or RHS is an addrec, check to see if the condition is true in
7185   // every iteration of the loop.
7186   // If LHS and RHS are both addrec, both conditions must be true in
7187   // every iteration of the loop.
7188   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7189   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7190   bool LeftGuarded = false;
7191   bool RightGuarded = false;
7192   if (LAR) {
7193     const Loop *L = LAR->getLoop();
7194     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7195         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7196       if (!RAR) return true;
7197       LeftGuarded = true;
7198     }
7199   }
7200   if (RAR) {
7201     const Loop *L = RAR->getLoop();
7202     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7203         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7204       if (!LAR) return true;
7205       RightGuarded = true;
7206     }
7207   }
7208   if (LeftGuarded && RightGuarded)
7209     return true;
7210 
7211   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7212     return true;
7213 
7214   // Otherwise see what can be done with known constant ranges.
7215   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7216 }
7217 
7218 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7219                                            ICmpInst::Predicate Pred,
7220                                            bool &Increasing) {
7221   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7222 
7223 #ifndef NDEBUG
7224   // Verify an invariant: inverting the predicate should turn a monotonically
7225   // increasing change to a monotonically decreasing one, and vice versa.
7226   bool IncreasingSwapped;
7227   bool ResultSwapped = isMonotonicPredicateImpl(
7228       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7229 
7230   assert(Result == ResultSwapped && "should be able to analyze both!");
7231   if (ResultSwapped)
7232     assert(Increasing == !IncreasingSwapped &&
7233            "monotonicity should flip as we flip the predicate");
7234 #endif
7235 
7236   return Result;
7237 }
7238 
7239 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7240                                                ICmpInst::Predicate Pred,
7241                                                bool &Increasing) {
7242 
7243   // A zero step value for LHS means the induction variable is essentially a
7244   // loop invariant value. We don't really depend on the predicate actually
7245   // flipping from false to true (for increasing predicates, and the other way
7246   // around for decreasing predicates), all we care about is that *if* the
7247   // predicate changes then it only changes from false to true.
7248   //
7249   // A zero step value in itself is not very useful, but there may be places
7250   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7251   // as general as possible.
7252 
7253   switch (Pred) {
7254   default:
7255     return false; // Conservative answer
7256 
7257   case ICmpInst::ICMP_UGT:
7258   case ICmpInst::ICMP_UGE:
7259   case ICmpInst::ICMP_ULT:
7260   case ICmpInst::ICMP_ULE:
7261     if (!LHS->hasNoUnsignedWrap())
7262       return false;
7263 
7264     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7265     return true;
7266 
7267   case ICmpInst::ICMP_SGT:
7268   case ICmpInst::ICMP_SGE:
7269   case ICmpInst::ICMP_SLT:
7270   case ICmpInst::ICMP_SLE: {
7271     if (!LHS->hasNoSignedWrap())
7272       return false;
7273 
7274     const SCEV *Step = LHS->getStepRecurrence(*this);
7275 
7276     if (isKnownNonNegative(Step)) {
7277       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7278       return true;
7279     }
7280 
7281     if (isKnownNonPositive(Step)) {
7282       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7283       return true;
7284     }
7285 
7286     return false;
7287   }
7288 
7289   }
7290 
7291   llvm_unreachable("switch has default clause!");
7292 }
7293 
7294 bool ScalarEvolution::isLoopInvariantPredicate(
7295     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7296     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7297     const SCEV *&InvariantRHS) {
7298 
7299   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7300   if (!isLoopInvariant(RHS, L)) {
7301     if (!isLoopInvariant(LHS, L))
7302       return false;
7303 
7304     std::swap(LHS, RHS);
7305     Pred = ICmpInst::getSwappedPredicate(Pred);
7306   }
7307 
7308   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7309   if (!ArLHS || ArLHS->getLoop() != L)
7310     return false;
7311 
7312   bool Increasing;
7313   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7314     return false;
7315 
7316   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7317   // true as the loop iterates, and the backedge is control dependent on
7318   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7319   //
7320   //   * if the predicate was false in the first iteration then the predicate
7321   //     is never evaluated again, since the loop exits without taking the
7322   //     backedge.
7323   //   * if the predicate was true in the first iteration then it will
7324   //     continue to be true for all future iterations since it is
7325   //     monotonically increasing.
7326   //
7327   // For both the above possibilities, we can replace the loop varying
7328   // predicate with its value on the first iteration of the loop (which is
7329   // loop invariant).
7330   //
7331   // A similar reasoning applies for a monotonically decreasing predicate, by
7332   // replacing true with false and false with true in the above two bullets.
7333 
7334   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7335 
7336   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7337     return false;
7338 
7339   InvariantPred = Pred;
7340   InvariantLHS = ArLHS->getStart();
7341   InvariantRHS = RHS;
7342   return true;
7343 }
7344 
7345 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7346     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7347   if (HasSameValue(LHS, RHS))
7348     return ICmpInst::isTrueWhenEqual(Pred);
7349 
7350   // This code is split out from isKnownPredicate because it is called from
7351   // within isLoopEntryGuardedByCond.
7352 
7353   auto CheckRanges =
7354       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7355     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7356         .contains(RangeLHS);
7357   };
7358 
7359   // The check at the top of the function catches the case where the values are
7360   // known to be equal.
7361   if (Pred == CmpInst::ICMP_EQ)
7362     return false;
7363 
7364   if (Pred == CmpInst::ICMP_NE)
7365     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7366            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7367            isKnownNonZero(getMinusSCEV(LHS, RHS));
7368 
7369   if (CmpInst::isSigned(Pred))
7370     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7371 
7372   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7373 }
7374 
7375 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7376                                                     const SCEV *LHS,
7377                                                     const SCEV *RHS) {
7378 
7379   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7380   // Return Y via OutY.
7381   auto MatchBinaryAddToConst =
7382       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7383              SCEV::NoWrapFlags ExpectedFlags) {
7384     const SCEV *NonConstOp, *ConstOp;
7385     SCEV::NoWrapFlags FlagsPresent;
7386 
7387     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7388         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7389       return false;
7390 
7391     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7392     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7393   };
7394 
7395   APInt C;
7396 
7397   switch (Pred) {
7398   default:
7399     break;
7400 
7401   case ICmpInst::ICMP_SGE:
7402     std::swap(LHS, RHS);
7403   case ICmpInst::ICMP_SLE:
7404     // X s<= (X + C)<nsw> if C >= 0
7405     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7406       return true;
7407 
7408     // (X + C)<nsw> s<= X if C <= 0
7409     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7410         !C.isStrictlyPositive())
7411       return true;
7412     break;
7413 
7414   case ICmpInst::ICMP_SGT:
7415     std::swap(LHS, RHS);
7416   case ICmpInst::ICMP_SLT:
7417     // X s< (X + C)<nsw> if C > 0
7418     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7419         C.isStrictlyPositive())
7420       return true;
7421 
7422     // (X + C)<nsw> s< X if C < 0
7423     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7424       return true;
7425     break;
7426   }
7427 
7428   return false;
7429 }
7430 
7431 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7432                                                    const SCEV *LHS,
7433                                                    const SCEV *RHS) {
7434   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7435     return false;
7436 
7437   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7438   // the stack can result in exponential time complexity.
7439   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7440 
7441   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7442   //
7443   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7444   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7445   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7446   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7447   // use isKnownPredicate later if needed.
7448   return isKnownNonNegative(RHS) &&
7449          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7450          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7451 }
7452 
7453 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7454 /// protected by a conditional between LHS and RHS.  This is used to
7455 /// to eliminate casts.
7456 bool
7457 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7458                                              ICmpInst::Predicate Pred,
7459                                              const SCEV *LHS, const SCEV *RHS) {
7460   // Interpret a null as meaning no loop, where there is obviously no guard
7461   // (interprocedural conditions notwithstanding).
7462   if (!L) return true;
7463 
7464   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7465     return true;
7466 
7467   BasicBlock *Latch = L->getLoopLatch();
7468   if (!Latch)
7469     return false;
7470 
7471   BranchInst *LoopContinuePredicate =
7472     dyn_cast<BranchInst>(Latch->getTerminator());
7473   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7474       isImpliedCond(Pred, LHS, RHS,
7475                     LoopContinuePredicate->getCondition(),
7476                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7477     return true;
7478 
7479   // We don't want more than one activation of the following loops on the stack
7480   // -- that can lead to O(n!) time complexity.
7481   if (WalkingBEDominatingConds)
7482     return false;
7483 
7484   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7485 
7486   // See if we can exploit a trip count to prove the predicate.
7487   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7488   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7489   if (LatchBECount != getCouldNotCompute()) {
7490     // We know that Latch branches back to the loop header exactly
7491     // LatchBECount times.  This means the backdege condition at Latch is
7492     // equivalent to  "{0,+,1} u< LatchBECount".
7493     Type *Ty = LatchBECount->getType();
7494     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7495     const SCEV *LoopCounter =
7496       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7497     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7498                       LatchBECount))
7499       return true;
7500   }
7501 
7502   // Check conditions due to any @llvm.assume intrinsics.
7503   for (auto &AssumeVH : AC.assumptions()) {
7504     if (!AssumeVH)
7505       continue;
7506     auto *CI = cast<CallInst>(AssumeVH);
7507     if (!DT.dominates(CI, Latch->getTerminator()))
7508       continue;
7509 
7510     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7511       return true;
7512   }
7513 
7514   // If the loop is not reachable from the entry block, we risk running into an
7515   // infinite loop as we walk up into the dom tree.  These loops do not matter
7516   // anyway, so we just return a conservative answer when we see them.
7517   if (!DT.isReachableFromEntry(L->getHeader()))
7518     return false;
7519 
7520   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7521        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7522 
7523     assert(DTN && "should reach the loop header before reaching the root!");
7524 
7525     BasicBlock *BB = DTN->getBlock();
7526     BasicBlock *PBB = BB->getSinglePredecessor();
7527     if (!PBB)
7528       continue;
7529 
7530     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7531     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7532       continue;
7533 
7534     Value *Condition = ContinuePredicate->getCondition();
7535 
7536     // If we have an edge `E` within the loop body that dominates the only
7537     // latch, the condition guarding `E` also guards the backedge.  This
7538     // reasoning works only for loops with a single latch.
7539 
7540     BasicBlockEdge DominatingEdge(PBB, BB);
7541     if (DominatingEdge.isSingleEdge()) {
7542       // We're constructively (and conservatively) enumerating edges within the
7543       // loop body that dominate the latch.  The dominator tree better agree
7544       // with us on this:
7545       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7546 
7547       if (isImpliedCond(Pred, LHS, RHS, Condition,
7548                         BB != ContinuePredicate->getSuccessor(0)))
7549         return true;
7550     }
7551   }
7552 
7553   return false;
7554 }
7555 
7556 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7557 /// by a conditional between LHS and RHS.  This is used to help avoid max
7558 /// expressions in loop trip counts, and to eliminate casts.
7559 bool
7560 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7561                                           ICmpInst::Predicate Pred,
7562                                           const SCEV *LHS, const SCEV *RHS) {
7563   // Interpret a null as meaning no loop, where there is obviously no guard
7564   // (interprocedural conditions notwithstanding).
7565   if (!L) return false;
7566 
7567   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7568     return true;
7569 
7570   // Starting at the loop predecessor, climb up the predecessor chain, as long
7571   // as there are predecessors that can be found that have unique successors
7572   // leading to the original header.
7573   for (std::pair<BasicBlock *, BasicBlock *>
7574          Pair(L->getLoopPredecessor(), L->getHeader());
7575        Pair.first;
7576        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7577 
7578     BranchInst *LoopEntryPredicate =
7579       dyn_cast<BranchInst>(Pair.first->getTerminator());
7580     if (!LoopEntryPredicate ||
7581         LoopEntryPredicate->isUnconditional())
7582       continue;
7583 
7584     if (isImpliedCond(Pred, LHS, RHS,
7585                       LoopEntryPredicate->getCondition(),
7586                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7587       return true;
7588   }
7589 
7590   // Check conditions due to any @llvm.assume intrinsics.
7591   for (auto &AssumeVH : AC.assumptions()) {
7592     if (!AssumeVH)
7593       continue;
7594     auto *CI = cast<CallInst>(AssumeVH);
7595     if (!DT.dominates(CI, L->getHeader()))
7596       continue;
7597 
7598     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7599       return true;
7600   }
7601 
7602   return false;
7603 }
7604 
7605 namespace {
7606 /// RAII wrapper to prevent recursive application of isImpliedCond.
7607 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7608 /// currently evaluating isImpliedCond.
7609 struct MarkPendingLoopPredicate {
7610   Value *Cond;
7611   DenseSet<Value*> &LoopPreds;
7612   bool Pending;
7613 
7614   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7615     : Cond(C), LoopPreds(LP) {
7616     Pending = !LoopPreds.insert(Cond).second;
7617   }
7618   ~MarkPendingLoopPredicate() {
7619     if (!Pending)
7620       LoopPreds.erase(Cond);
7621   }
7622 };
7623 } // end anonymous namespace
7624 
7625 /// isImpliedCond - Test whether the condition described by Pred, LHS,
7626 /// and RHS is true whenever the given Cond value evaluates to true.
7627 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7628                                     const SCEV *LHS, const SCEV *RHS,
7629                                     Value *FoundCondValue,
7630                                     bool Inverse) {
7631   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7632   if (Mark.Pending)
7633     return false;
7634 
7635   // Recursively handle And and Or conditions.
7636   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7637     if (BO->getOpcode() == Instruction::And) {
7638       if (!Inverse)
7639         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7640                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7641     } else if (BO->getOpcode() == Instruction::Or) {
7642       if (Inverse)
7643         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7644                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7645     }
7646   }
7647 
7648   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7649   if (!ICI) return false;
7650 
7651   // Now that we found a conditional branch that dominates the loop or controls
7652   // the loop latch. Check to see if it is the comparison we are looking for.
7653   ICmpInst::Predicate FoundPred;
7654   if (Inverse)
7655     FoundPred = ICI->getInversePredicate();
7656   else
7657     FoundPred = ICI->getPredicate();
7658 
7659   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7660   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7661 
7662   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7663 }
7664 
7665 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7666                                     const SCEV *RHS,
7667                                     ICmpInst::Predicate FoundPred,
7668                                     const SCEV *FoundLHS,
7669                                     const SCEV *FoundRHS) {
7670   // Balance the types.
7671   if (getTypeSizeInBits(LHS->getType()) <
7672       getTypeSizeInBits(FoundLHS->getType())) {
7673     if (CmpInst::isSigned(Pred)) {
7674       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7675       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7676     } else {
7677       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7678       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7679     }
7680   } else if (getTypeSizeInBits(LHS->getType()) >
7681       getTypeSizeInBits(FoundLHS->getType())) {
7682     if (CmpInst::isSigned(FoundPred)) {
7683       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7684       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7685     } else {
7686       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7687       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7688     }
7689   }
7690 
7691   // Canonicalize the query to match the way instcombine will have
7692   // canonicalized the comparison.
7693   if (SimplifyICmpOperands(Pred, LHS, RHS))
7694     if (LHS == RHS)
7695       return CmpInst::isTrueWhenEqual(Pred);
7696   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7697     if (FoundLHS == FoundRHS)
7698       return CmpInst::isFalseWhenEqual(FoundPred);
7699 
7700   // Check to see if we can make the LHS or RHS match.
7701   if (LHS == FoundRHS || RHS == FoundLHS) {
7702     if (isa<SCEVConstant>(RHS)) {
7703       std::swap(FoundLHS, FoundRHS);
7704       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7705     } else {
7706       std::swap(LHS, RHS);
7707       Pred = ICmpInst::getSwappedPredicate(Pred);
7708     }
7709   }
7710 
7711   // Check whether the found predicate is the same as the desired predicate.
7712   if (FoundPred == Pred)
7713     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7714 
7715   // Check whether swapping the found predicate makes it the same as the
7716   // desired predicate.
7717   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7718     if (isa<SCEVConstant>(RHS))
7719       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7720     else
7721       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7722                                    RHS, LHS, FoundLHS, FoundRHS);
7723   }
7724 
7725   // Unsigned comparison is the same as signed comparison when both the operands
7726   // are non-negative.
7727   if (CmpInst::isUnsigned(FoundPred) &&
7728       CmpInst::getSignedPredicate(FoundPred) == Pred &&
7729       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7730     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7731 
7732   // Check if we can make progress by sharpening ranges.
7733   if (FoundPred == ICmpInst::ICMP_NE &&
7734       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7735 
7736     const SCEVConstant *C = nullptr;
7737     const SCEV *V = nullptr;
7738 
7739     if (isa<SCEVConstant>(FoundLHS)) {
7740       C = cast<SCEVConstant>(FoundLHS);
7741       V = FoundRHS;
7742     } else {
7743       C = cast<SCEVConstant>(FoundRHS);
7744       V = FoundLHS;
7745     }
7746 
7747     // The guarding predicate tells us that C != V. If the known range
7748     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
7749     // range we consider has to correspond to same signedness as the
7750     // predicate we're interested in folding.
7751 
7752     APInt Min = ICmpInst::isSigned(Pred) ?
7753         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7754 
7755     if (Min == C->getAPInt()) {
7756       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7757       // This is true even if (Min + 1) wraps around -- in case of
7758       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7759 
7760       APInt SharperMin = Min + 1;
7761 
7762       switch (Pred) {
7763         case ICmpInst::ICMP_SGE:
7764         case ICmpInst::ICMP_UGE:
7765           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
7766           // RHS, we're done.
7767           if (isImpliedCondOperands(Pred, LHS, RHS, V,
7768                                     getConstant(SharperMin)))
7769             return true;
7770 
7771         case ICmpInst::ICMP_SGT:
7772         case ICmpInst::ICMP_UGT:
7773           // We know from the range information that (V `Pred` Min ||
7774           // V == Min).  We know from the guarding condition that !(V
7775           // == Min).  This gives us
7776           //
7777           //       V `Pred` Min || V == Min && !(V == Min)
7778           //   =>  V `Pred` Min
7779           //
7780           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7781 
7782           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7783             return true;
7784 
7785         default:
7786           // No change
7787           break;
7788       }
7789     }
7790   }
7791 
7792   // Check whether the actual condition is beyond sufficient.
7793   if (FoundPred == ICmpInst::ICMP_EQ)
7794     if (ICmpInst::isTrueWhenEqual(Pred))
7795       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7796         return true;
7797   if (Pred == ICmpInst::ICMP_NE)
7798     if (!ICmpInst::isTrueWhenEqual(FoundPred))
7799       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7800         return true;
7801 
7802   // Otherwise assume the worst.
7803   return false;
7804 }
7805 
7806 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7807                                      const SCEV *&L, const SCEV *&R,
7808                                      SCEV::NoWrapFlags &Flags) {
7809   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7810   if (!AE || AE->getNumOperands() != 2)
7811     return false;
7812 
7813   L = AE->getOperand(0);
7814   R = AE->getOperand(1);
7815   Flags = AE->getNoWrapFlags();
7816   return true;
7817 }
7818 
7819 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7820                                                 const SCEV *More,
7821                                                 APInt &C) {
7822   // We avoid subtracting expressions here because this function is usually
7823   // fairly deep in the call stack (i.e. is called many times).
7824 
7825   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7826     const auto *LAR = cast<SCEVAddRecExpr>(Less);
7827     const auto *MAR = cast<SCEVAddRecExpr>(More);
7828 
7829     if (LAR->getLoop() != MAR->getLoop())
7830       return false;
7831 
7832     // We look at affine expressions only; not for correctness but to keep
7833     // getStepRecurrence cheap.
7834     if (!LAR->isAffine() || !MAR->isAffine())
7835       return false;
7836 
7837     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
7838       return false;
7839 
7840     Less = LAR->getStart();
7841     More = MAR->getStart();
7842 
7843     // fall through
7844   }
7845 
7846   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7847     const auto &M = cast<SCEVConstant>(More)->getAPInt();
7848     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
7849     C = M - L;
7850     return true;
7851   }
7852 
7853   const SCEV *L, *R;
7854   SCEV::NoWrapFlags Flags;
7855   if (splitBinaryAdd(Less, L, R, Flags))
7856     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7857       if (R == More) {
7858         C = -(LC->getAPInt());
7859         return true;
7860       }
7861 
7862   if (splitBinaryAdd(More, L, R, Flags))
7863     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7864       if (R == Less) {
7865         C = LC->getAPInt();
7866         return true;
7867       }
7868 
7869   return false;
7870 }
7871 
7872 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7873     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7874     const SCEV *FoundLHS, const SCEV *FoundRHS) {
7875   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7876     return false;
7877 
7878   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7879   if (!AddRecLHS)
7880     return false;
7881 
7882   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7883   if (!AddRecFoundLHS)
7884     return false;
7885 
7886   // We'd like to let SCEV reason about control dependencies, so we constrain
7887   // both the inequalities to be about add recurrences on the same loop.  This
7888   // way we can use isLoopEntryGuardedByCond later.
7889 
7890   const Loop *L = AddRecFoundLHS->getLoop();
7891   if (L != AddRecLHS->getLoop())
7892     return false;
7893 
7894   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
7895   //
7896   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7897   //                                                                  ... (2)
7898   //
7899   // Informal proof for (2), assuming (1) [*]:
7900   //
7901   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7902   //
7903   // Then
7904   //
7905   //       FoundLHS s< FoundRHS s< INT_MIN - C
7906   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
7907   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7908   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
7909   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7910   // <=>  FoundLHS + C s< FoundRHS + C
7911   //
7912   // [*]: (1) can be proved by ruling out overflow.
7913   //
7914   // [**]: This can be proved by analyzing all the four possibilities:
7915   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7916   //    (A s>= 0, B s>= 0).
7917   //
7918   // Note:
7919   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7920   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
7921   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
7922   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
7923   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7924   // C)".
7925 
7926   APInt LDiff, RDiff;
7927   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7928       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
7929       LDiff != RDiff)
7930     return false;
7931 
7932   if (LDiff == 0)
7933     return true;
7934 
7935   APInt FoundRHSLimit;
7936 
7937   if (Pred == CmpInst::ICMP_ULT) {
7938     FoundRHSLimit = -RDiff;
7939   } else {
7940     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
7941     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
7942   }
7943 
7944   // Try to prove (1) or (2), as needed.
7945   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7946                                   getConstant(FoundRHSLimit));
7947 }
7948 
7949 /// isImpliedCondOperands - Test whether the condition described by Pred,
7950 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
7951 /// and FoundRHS is true.
7952 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7953                                             const SCEV *LHS, const SCEV *RHS,
7954                                             const SCEV *FoundLHS,
7955                                             const SCEV *FoundRHS) {
7956   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7957     return true;
7958 
7959   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7960     return true;
7961 
7962   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7963                                      FoundLHS, FoundRHS) ||
7964          // ~x < ~y --> x > y
7965          isImpliedCondOperandsHelper(Pred, LHS, RHS,
7966                                      getNotSCEV(FoundRHS),
7967                                      getNotSCEV(FoundLHS));
7968 }
7969 
7970 
7971 /// If Expr computes ~A, return A else return nullptr
7972 static const SCEV *MatchNotExpr(const SCEV *Expr) {
7973   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7974   if (!Add || Add->getNumOperands() != 2 ||
7975       !Add->getOperand(0)->isAllOnesValue())
7976     return nullptr;
7977 
7978   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7979   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7980       !AddRHS->getOperand(0)->isAllOnesValue())
7981     return nullptr;
7982 
7983   return AddRHS->getOperand(1);
7984 }
7985 
7986 
7987 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7988 template<typename MaxExprType>
7989 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7990                               const SCEV *Candidate) {
7991   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7992   if (!MaxExpr) return false;
7993 
7994   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
7995 }
7996 
7997 
7998 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7999 template<typename MaxExprType>
8000 static bool IsMinConsistingOf(ScalarEvolution &SE,
8001                               const SCEV *MaybeMinExpr,
8002                               const SCEV *Candidate) {
8003   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8004   if (!MaybeMaxExpr)
8005     return false;
8006 
8007   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8008 }
8009 
8010 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8011                                            ICmpInst::Predicate Pred,
8012                                            const SCEV *LHS, const SCEV *RHS) {
8013 
8014   // If both sides are affine addrecs for the same loop, with equal
8015   // steps, and we know the recurrences don't wrap, then we only
8016   // need to check the predicate on the starting values.
8017 
8018   if (!ICmpInst::isRelational(Pred))
8019     return false;
8020 
8021   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8022   if (!LAR)
8023     return false;
8024   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8025   if (!RAR)
8026     return false;
8027   if (LAR->getLoop() != RAR->getLoop())
8028     return false;
8029   if (!LAR->isAffine() || !RAR->isAffine())
8030     return false;
8031 
8032   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8033     return false;
8034 
8035   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8036                          SCEV::FlagNSW : SCEV::FlagNUW;
8037   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8038     return false;
8039 
8040   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8041 }
8042 
8043 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8044 /// expression?
8045 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8046                                         ICmpInst::Predicate Pred,
8047                                         const SCEV *LHS, const SCEV *RHS) {
8048   switch (Pred) {
8049   default:
8050     return false;
8051 
8052   case ICmpInst::ICMP_SGE:
8053     std::swap(LHS, RHS);
8054     // fall through
8055   case ICmpInst::ICMP_SLE:
8056     return
8057       // min(A, ...) <= A
8058       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8059       // A <= max(A, ...)
8060       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8061 
8062   case ICmpInst::ICMP_UGE:
8063     std::swap(LHS, RHS);
8064     // fall through
8065   case ICmpInst::ICMP_ULE:
8066     return
8067       // min(A, ...) <= A
8068       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8069       // A <= max(A, ...)
8070       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8071   }
8072 
8073   llvm_unreachable("covered switch fell through?!");
8074 }
8075 
8076 /// isImpliedCondOperandsHelper - Test whether the condition described by
8077 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8078 /// FoundLHS, and FoundRHS is true.
8079 bool
8080 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8081                                              const SCEV *LHS, const SCEV *RHS,
8082                                              const SCEV *FoundLHS,
8083                                              const SCEV *FoundRHS) {
8084   auto IsKnownPredicateFull =
8085       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8086     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8087            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8088            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8089            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8090   };
8091 
8092   switch (Pred) {
8093   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8094   case ICmpInst::ICMP_EQ:
8095   case ICmpInst::ICMP_NE:
8096     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8097       return true;
8098     break;
8099   case ICmpInst::ICMP_SLT:
8100   case ICmpInst::ICMP_SLE:
8101     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8102         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8103       return true;
8104     break;
8105   case ICmpInst::ICMP_SGT:
8106   case ICmpInst::ICMP_SGE:
8107     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8108         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8109       return true;
8110     break;
8111   case ICmpInst::ICMP_ULT:
8112   case ICmpInst::ICMP_ULE:
8113     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8114         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8115       return true;
8116     break;
8117   case ICmpInst::ICMP_UGT:
8118   case ICmpInst::ICMP_UGE:
8119     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8120         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8121       return true;
8122     break;
8123   }
8124 
8125   return false;
8126 }
8127 
8128 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8129 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8130 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8131                                                      const SCEV *LHS,
8132                                                      const SCEV *RHS,
8133                                                      const SCEV *FoundLHS,
8134                                                      const SCEV *FoundRHS) {
8135   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8136     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8137     // reduce the compile time impact of this optimization.
8138     return false;
8139 
8140   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8141   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8142       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8143     return false;
8144 
8145   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8146 
8147   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8148   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8149   ConstantRange FoundLHSRange =
8150       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8151 
8152   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8153   // for `LHS`:
8154   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8155   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8156 
8157   // We can also compute the range of values for `LHS` that satisfy the
8158   // consequent, "`LHS` `Pred` `RHS`":
8159   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8160   ConstantRange SatisfyingLHSRange =
8161       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8162 
8163   // The antecedent implies the consequent if every value of `LHS` that
8164   // satisfies the antecedent also satisfies the consequent.
8165   return SatisfyingLHSRange.contains(LHSRange);
8166 }
8167 
8168 // Verify if an linear IV with positive stride can overflow when in a
8169 // less-than comparison, knowing the invariant term of the comparison, the
8170 // stride and the knowledge of NSW/NUW flags on the recurrence.
8171 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8172                                          bool IsSigned, bool NoWrap) {
8173   if (NoWrap) return false;
8174 
8175   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8176   const SCEV *One = getOne(Stride->getType());
8177 
8178   if (IsSigned) {
8179     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8180     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8181     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8182                                 .getSignedMax();
8183 
8184     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8185     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8186   }
8187 
8188   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8189   APInt MaxValue = APInt::getMaxValue(BitWidth);
8190   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8191                               .getUnsignedMax();
8192 
8193   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8194   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8195 }
8196 
8197 // Verify if an linear IV with negative stride can overflow when in a
8198 // greater-than comparison, knowing the invariant term of the comparison,
8199 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8200 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8201                                          bool IsSigned, bool NoWrap) {
8202   if (NoWrap) return false;
8203 
8204   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8205   const SCEV *One = getOne(Stride->getType());
8206 
8207   if (IsSigned) {
8208     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8209     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8210     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8211                                .getSignedMax();
8212 
8213     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8214     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8215   }
8216 
8217   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8218   APInt MinValue = APInt::getMinValue(BitWidth);
8219   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8220                             .getUnsignedMax();
8221 
8222   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8223   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8224 }
8225 
8226 // Compute the backedge taken count knowing the interval difference, the
8227 // stride and presence of the equality in the comparison.
8228 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8229                                             bool Equality) {
8230   const SCEV *One = getOne(Step->getType());
8231   Delta = Equality ? getAddExpr(Delta, Step)
8232                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8233   return getUDivExpr(Delta, Step);
8234 }
8235 
8236 /// HowManyLessThans - Return the number of times a backedge containing the
8237 /// specified less-than comparison will execute.  If not computable, return
8238 /// CouldNotCompute.
8239 ///
8240 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8241 /// the branch (loops exits only if condition is true). In this case, we can use
8242 /// NoWrapFlags to skip overflow checks.
8243 ScalarEvolution::ExitLimit
8244 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8245                                   const Loop *L, bool IsSigned,
8246                                   bool ControlsExit) {
8247   // We handle only IV < Invariant
8248   if (!isLoopInvariant(RHS, L))
8249     return getCouldNotCompute();
8250 
8251   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8252 
8253   // Avoid weird loops
8254   if (!IV || IV->getLoop() != L || !IV->isAffine())
8255     return getCouldNotCompute();
8256 
8257   bool NoWrap = ControlsExit &&
8258                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8259 
8260   const SCEV *Stride = IV->getStepRecurrence(*this);
8261 
8262   // Avoid negative or zero stride values
8263   if (!isKnownPositive(Stride))
8264     return getCouldNotCompute();
8265 
8266   // Avoid proven overflow cases: this will ensure that the backedge taken count
8267   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8268   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8269   // behaviors like the case of C language.
8270   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8271     return getCouldNotCompute();
8272 
8273   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8274                                       : ICmpInst::ICMP_ULT;
8275   const SCEV *Start = IV->getStart();
8276   const SCEV *End = RHS;
8277   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8278     const SCEV *Diff = getMinusSCEV(RHS, Start);
8279     // If we have NoWrap set, then we can assume that the increment won't
8280     // overflow, in which case if RHS - Start is a constant, we don't need to
8281     // do a max operation since we can just figure it out statically
8282     if (NoWrap && isa<SCEVConstant>(Diff)) {
8283       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8284       if (D.isNegative())
8285         End = Start;
8286     } else
8287       End = IsSigned ? getSMaxExpr(RHS, Start)
8288                      : getUMaxExpr(RHS, Start);
8289   }
8290 
8291   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8292 
8293   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8294                             : getUnsignedRange(Start).getUnsignedMin();
8295 
8296   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8297                              : getUnsignedRange(Stride).getUnsignedMin();
8298 
8299   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8300   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8301                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8302 
8303   // Although End can be a MAX expression we estimate MaxEnd considering only
8304   // the case End = RHS. This is safe because in the other case (End - Start)
8305   // is zero, leading to a zero maximum backedge taken count.
8306   APInt MaxEnd =
8307     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8308              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8309 
8310   const SCEV *MaxBECount;
8311   if (isa<SCEVConstant>(BECount))
8312     MaxBECount = BECount;
8313   else
8314     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8315                                 getConstant(MinStride), false);
8316 
8317   if (isa<SCEVCouldNotCompute>(MaxBECount))
8318     MaxBECount = BECount;
8319 
8320   return ExitLimit(BECount, MaxBECount);
8321 }
8322 
8323 ScalarEvolution::ExitLimit
8324 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8325                                      const Loop *L, bool IsSigned,
8326                                      bool ControlsExit) {
8327   // We handle only IV > Invariant
8328   if (!isLoopInvariant(RHS, L))
8329     return getCouldNotCompute();
8330 
8331   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8332 
8333   // Avoid weird loops
8334   if (!IV || IV->getLoop() != L || !IV->isAffine())
8335     return getCouldNotCompute();
8336 
8337   bool NoWrap = ControlsExit &&
8338                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8339 
8340   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8341 
8342   // Avoid negative or zero stride values
8343   if (!isKnownPositive(Stride))
8344     return getCouldNotCompute();
8345 
8346   // Avoid proven overflow cases: this will ensure that the backedge taken count
8347   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8348   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8349   // behaviors like the case of C language.
8350   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8351     return getCouldNotCompute();
8352 
8353   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8354                                       : ICmpInst::ICMP_UGT;
8355 
8356   const SCEV *Start = IV->getStart();
8357   const SCEV *End = RHS;
8358   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8359     const SCEV *Diff = getMinusSCEV(RHS, Start);
8360     // If we have NoWrap set, then we can assume that the increment won't
8361     // overflow, in which case if RHS - Start is a constant, we don't need to
8362     // do a max operation since we can just figure it out statically
8363     if (NoWrap && isa<SCEVConstant>(Diff)) {
8364       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8365       if (!D.isNegative())
8366         End = Start;
8367     } else
8368       End = IsSigned ? getSMinExpr(RHS, Start)
8369                      : getUMinExpr(RHS, Start);
8370   }
8371 
8372   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8373 
8374   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8375                             : getUnsignedRange(Start).getUnsignedMax();
8376 
8377   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8378                              : getUnsignedRange(Stride).getUnsignedMin();
8379 
8380   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8381   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8382                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8383 
8384   // Although End can be a MIN expression we estimate MinEnd considering only
8385   // the case End = RHS. This is safe because in the other case (Start - End)
8386   // is zero, leading to a zero maximum backedge taken count.
8387   APInt MinEnd =
8388     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8389              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8390 
8391 
8392   const SCEV *MaxBECount = getCouldNotCompute();
8393   if (isa<SCEVConstant>(BECount))
8394     MaxBECount = BECount;
8395   else
8396     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8397                                 getConstant(MinStride), false);
8398 
8399   if (isa<SCEVCouldNotCompute>(MaxBECount))
8400     MaxBECount = BECount;
8401 
8402   return ExitLimit(BECount, MaxBECount);
8403 }
8404 
8405 /// getNumIterationsInRange - Return the number of iterations of this loop that
8406 /// produce values in the specified constant range.  Another way of looking at
8407 /// this is that it returns the first iteration number where the value is not in
8408 /// the condition, thus computing the exit count. If the iteration count can't
8409 /// be computed, an instance of SCEVCouldNotCompute is returned.
8410 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8411                                                     ScalarEvolution &SE) const {
8412   if (Range.isFullSet())  // Infinite loop.
8413     return SE.getCouldNotCompute();
8414 
8415   // If the start is a non-zero constant, shift the range to simplify things.
8416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8417     if (!SC->getValue()->isZero()) {
8418       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8419       Operands[0] = SE.getZero(SC->getType());
8420       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8421                                              getNoWrapFlags(FlagNW));
8422       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8423         return ShiftedAddRec->getNumIterationsInRange(
8424             Range.subtract(SC->getAPInt()), SE);
8425       // This is strange and shouldn't happen.
8426       return SE.getCouldNotCompute();
8427     }
8428 
8429   // The only time we can solve this is when we have all constant indices.
8430   // Otherwise, we cannot determine the overflow conditions.
8431   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8432     return SE.getCouldNotCompute();
8433 
8434   // Okay at this point we know that all elements of the chrec are constants and
8435   // that the start element is zero.
8436 
8437   // First check to see if the range contains zero.  If not, the first
8438   // iteration exits.
8439   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8440   if (!Range.contains(APInt(BitWidth, 0)))
8441     return SE.getZero(getType());
8442 
8443   if (isAffine()) {
8444     // If this is an affine expression then we have this situation:
8445     //   Solve {0,+,A} in Range  ===  Ax in Range
8446 
8447     // We know that zero is in the range.  If A is positive then we know that
8448     // the upper value of the range must be the first possible exit value.
8449     // If A is negative then the lower of the range is the last possible loop
8450     // value.  Also note that we already checked for a full range.
8451     APInt One(BitWidth,1);
8452     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8453     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8454 
8455     // The exit value should be (End+A)/A.
8456     APInt ExitVal = (End + A).udiv(A);
8457     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8458 
8459     // Evaluate at the exit value.  If we really did fall out of the valid
8460     // range, then we computed our trip count, otherwise wrap around or other
8461     // things must have happened.
8462     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8463     if (Range.contains(Val->getValue()))
8464       return SE.getCouldNotCompute();  // Something strange happened
8465 
8466     // Ensure that the previous value is in the range.  This is a sanity check.
8467     assert(Range.contains(
8468            EvaluateConstantChrecAtConstant(this,
8469            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8470            "Linear scev computation is off in a bad way!");
8471     return SE.getConstant(ExitValue);
8472   } else if (isQuadratic()) {
8473     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8474     // quadratic equation to solve it.  To do this, we must frame our problem in
8475     // terms of figuring out when zero is crossed, instead of when
8476     // Range.getUpper() is crossed.
8477     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8478     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8479     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8480                                              // getNoWrapFlags(FlagNW)
8481                                              FlagAnyWrap);
8482 
8483     // Next, solve the constructed addrec
8484     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8485     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8486     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8487     if (R1) {
8488       // Pick the smallest positive root value.
8489       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8490               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8491         if (!CB->getZExtValue())
8492           std::swap(R1, R2);   // R1 is the minimum root now.
8493 
8494         // Make sure the root is not off by one.  The returned iteration should
8495         // not be in the range, but the previous one should be.  When solving
8496         // for "X*X < 5", for example, we should not return a root of 2.
8497         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8498                                                              R1->getValue(),
8499                                                              SE);
8500         if (Range.contains(R1Val->getValue())) {
8501           // The next iteration must be out of the range...
8502           ConstantInt *NextVal =
8503               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8504 
8505           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8506           if (!Range.contains(R1Val->getValue()))
8507             return SE.getConstant(NextVal);
8508           return SE.getCouldNotCompute();  // Something strange happened
8509         }
8510 
8511         // If R1 was not in the range, then it is a good return value.  Make
8512         // sure that R1-1 WAS in the range though, just in case.
8513         ConstantInt *NextVal =
8514             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8515         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8516         if (Range.contains(R1Val->getValue()))
8517           return R1;
8518         return SE.getCouldNotCompute();  // Something strange happened
8519       }
8520     }
8521   }
8522 
8523   return SE.getCouldNotCompute();
8524 }
8525 
8526 namespace {
8527 struct FindUndefs {
8528   bool Found;
8529   FindUndefs() : Found(false) {}
8530 
8531   bool follow(const SCEV *S) {
8532     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8533       if (isa<UndefValue>(C->getValue()))
8534         Found = true;
8535     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8536       if (isa<UndefValue>(C->getValue()))
8537         Found = true;
8538     }
8539 
8540     // Keep looking if we haven't found it yet.
8541     return !Found;
8542   }
8543   bool isDone() const {
8544     // Stop recursion if we have found an undef.
8545     return Found;
8546   }
8547 };
8548 }
8549 
8550 // Return true when S contains at least an undef value.
8551 static inline bool
8552 containsUndefs(const SCEV *S) {
8553   FindUndefs F;
8554   SCEVTraversal<FindUndefs> ST(F);
8555   ST.visitAll(S);
8556 
8557   return F.Found;
8558 }
8559 
8560 namespace {
8561 // Collect all steps of SCEV expressions.
8562 struct SCEVCollectStrides {
8563   ScalarEvolution &SE;
8564   SmallVectorImpl<const SCEV *> &Strides;
8565 
8566   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8567       : SE(SE), Strides(S) {}
8568 
8569   bool follow(const SCEV *S) {
8570     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8571       Strides.push_back(AR->getStepRecurrence(SE));
8572     return true;
8573   }
8574   bool isDone() const { return false; }
8575 };
8576 
8577 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8578 struct SCEVCollectTerms {
8579   SmallVectorImpl<const SCEV *> &Terms;
8580 
8581   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8582       : Terms(T) {}
8583 
8584   bool follow(const SCEV *S) {
8585     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8586       if (!containsUndefs(S))
8587         Terms.push_back(S);
8588 
8589       // Stop recursion: once we collected a term, do not walk its operands.
8590       return false;
8591     }
8592 
8593     // Keep looking.
8594     return true;
8595   }
8596   bool isDone() const { return false; }
8597 };
8598 
8599 // Check if a SCEV contains an AddRecExpr.
8600 struct SCEVHasAddRec {
8601   bool &ContainsAddRec;
8602 
8603   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8604    ContainsAddRec = false;
8605   }
8606 
8607   bool follow(const SCEV *S) {
8608     if (isa<SCEVAddRecExpr>(S)) {
8609       ContainsAddRec = true;
8610 
8611       // Stop recursion: once we collected a term, do not walk its operands.
8612       return false;
8613     }
8614 
8615     // Keep looking.
8616     return true;
8617   }
8618   bool isDone() const { return false; }
8619 };
8620 
8621 // Find factors that are multiplied with an expression that (possibly as a
8622 // subexpression) contains an AddRecExpr. In the expression:
8623 //
8624 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
8625 //
8626 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8627 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8628 // parameters as they form a product with an induction variable.
8629 //
8630 // This collector expects all array size parameters to be in the same MulExpr.
8631 // It might be necessary to later add support for collecting parameters that are
8632 // spread over different nested MulExpr.
8633 struct SCEVCollectAddRecMultiplies {
8634   SmallVectorImpl<const SCEV *> &Terms;
8635   ScalarEvolution &SE;
8636 
8637   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8638       : Terms(T), SE(SE) {}
8639 
8640   bool follow(const SCEV *S) {
8641     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8642       bool HasAddRec = false;
8643       SmallVector<const SCEV *, 0> Operands;
8644       for (auto Op : Mul->operands()) {
8645         if (isa<SCEVUnknown>(Op)) {
8646           Operands.push_back(Op);
8647         } else {
8648           bool ContainsAddRec;
8649           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8650           visitAll(Op, ContiansAddRec);
8651           HasAddRec |= ContainsAddRec;
8652         }
8653       }
8654       if (Operands.size() == 0)
8655         return true;
8656 
8657       if (!HasAddRec)
8658         return false;
8659 
8660       Terms.push_back(SE.getMulExpr(Operands));
8661       // Stop recursion: once we collected a term, do not walk its operands.
8662       return false;
8663     }
8664 
8665     // Keep looking.
8666     return true;
8667   }
8668   bool isDone() const { return false; }
8669 };
8670 }
8671 
8672 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8673 /// two places:
8674 ///   1) The strides of AddRec expressions.
8675 ///   2) Unknowns that are multiplied with AddRec expressions.
8676 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8677     SmallVectorImpl<const SCEV *> &Terms) {
8678   SmallVector<const SCEV *, 4> Strides;
8679   SCEVCollectStrides StrideCollector(*this, Strides);
8680   visitAll(Expr, StrideCollector);
8681 
8682   DEBUG({
8683       dbgs() << "Strides:\n";
8684       for (const SCEV *S : Strides)
8685         dbgs() << *S << "\n";
8686     });
8687 
8688   for (const SCEV *S : Strides) {
8689     SCEVCollectTerms TermCollector(Terms);
8690     visitAll(S, TermCollector);
8691   }
8692 
8693   DEBUG({
8694       dbgs() << "Terms:\n";
8695       for (const SCEV *T : Terms)
8696         dbgs() << *T << "\n";
8697     });
8698 
8699   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8700   visitAll(Expr, MulCollector);
8701 }
8702 
8703 static bool findArrayDimensionsRec(ScalarEvolution &SE,
8704                                    SmallVectorImpl<const SCEV *> &Terms,
8705                                    SmallVectorImpl<const SCEV *> &Sizes) {
8706   int Last = Terms.size() - 1;
8707   const SCEV *Step = Terms[Last];
8708 
8709   // End of recursion.
8710   if (Last == 0) {
8711     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8712       SmallVector<const SCEV *, 2> Qs;
8713       for (const SCEV *Op : M->operands())
8714         if (!isa<SCEVConstant>(Op))
8715           Qs.push_back(Op);
8716 
8717       Step = SE.getMulExpr(Qs);
8718     }
8719 
8720     Sizes.push_back(Step);
8721     return true;
8722   }
8723 
8724   for (const SCEV *&Term : Terms) {
8725     // Normalize the terms before the next call to findArrayDimensionsRec.
8726     const SCEV *Q, *R;
8727     SCEVDivision::divide(SE, Term, Step, &Q, &R);
8728 
8729     // Bail out when GCD does not evenly divide one of the terms.
8730     if (!R->isZero())
8731       return false;
8732 
8733     Term = Q;
8734   }
8735 
8736   // Remove all SCEVConstants.
8737   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8738                 return isa<SCEVConstant>(E);
8739               }),
8740               Terms.end());
8741 
8742   if (Terms.size() > 0)
8743     if (!findArrayDimensionsRec(SE, Terms, Sizes))
8744       return false;
8745 
8746   Sizes.push_back(Step);
8747   return true;
8748 }
8749 
8750 // Returns true when S contains at least a SCEVUnknown parameter.
8751 static inline bool
8752 containsParameters(const SCEV *S) {
8753   struct FindParameter {
8754     bool FoundParameter;
8755     FindParameter() : FoundParameter(false) {}
8756 
8757     bool follow(const SCEV *S) {
8758       if (isa<SCEVUnknown>(S)) {
8759         FoundParameter = true;
8760         // Stop recursion: we found a parameter.
8761         return false;
8762       }
8763       // Keep looking.
8764       return true;
8765     }
8766     bool isDone() const {
8767       // Stop recursion if we have found a parameter.
8768       return FoundParameter;
8769     }
8770   };
8771 
8772   FindParameter F;
8773   SCEVTraversal<FindParameter> ST(F);
8774   ST.visitAll(S);
8775 
8776   return F.FoundParameter;
8777 }
8778 
8779 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8780 static inline bool
8781 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8782   for (const SCEV *T : Terms)
8783     if (containsParameters(T))
8784       return true;
8785   return false;
8786 }
8787 
8788 // Return the number of product terms in S.
8789 static inline int numberOfTerms(const SCEV *S) {
8790   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8791     return Expr->getNumOperands();
8792   return 1;
8793 }
8794 
8795 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8796   if (isa<SCEVConstant>(T))
8797     return nullptr;
8798 
8799   if (isa<SCEVUnknown>(T))
8800     return T;
8801 
8802   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8803     SmallVector<const SCEV *, 2> Factors;
8804     for (const SCEV *Op : M->operands())
8805       if (!isa<SCEVConstant>(Op))
8806         Factors.push_back(Op);
8807 
8808     return SE.getMulExpr(Factors);
8809   }
8810 
8811   return T;
8812 }
8813 
8814 /// Return the size of an element read or written by Inst.
8815 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8816   Type *Ty;
8817   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8818     Ty = Store->getValueOperand()->getType();
8819   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
8820     Ty = Load->getType();
8821   else
8822     return nullptr;
8823 
8824   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8825   return getSizeOfExpr(ETy, Ty);
8826 }
8827 
8828 /// Second step of delinearization: compute the array dimensions Sizes from the
8829 /// set of Terms extracted from the memory access function of this SCEVAddRec.
8830 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8831                                           SmallVectorImpl<const SCEV *> &Sizes,
8832                                           const SCEV *ElementSize) const {
8833 
8834   if (Terms.size() < 1 || !ElementSize)
8835     return;
8836 
8837   // Early return when Terms do not contain parameters: we do not delinearize
8838   // non parametric SCEVs.
8839   if (!containsParameters(Terms))
8840     return;
8841 
8842   DEBUG({
8843       dbgs() << "Terms:\n";
8844       for (const SCEV *T : Terms)
8845         dbgs() << *T << "\n";
8846     });
8847 
8848   // Remove duplicates.
8849   std::sort(Terms.begin(), Terms.end());
8850   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8851 
8852   // Put larger terms first.
8853   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8854     return numberOfTerms(LHS) > numberOfTerms(RHS);
8855   });
8856 
8857   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8858 
8859   // Try to divide all terms by the element size. If term is not divisible by
8860   // element size, proceed with the original term.
8861   for (const SCEV *&Term : Terms) {
8862     const SCEV *Q, *R;
8863     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
8864     if (!Q->isZero())
8865       Term = Q;
8866   }
8867 
8868   SmallVector<const SCEV *, 4> NewTerms;
8869 
8870   // Remove constant factors.
8871   for (const SCEV *T : Terms)
8872     if (const SCEV *NewT = removeConstantFactors(SE, T))
8873       NewTerms.push_back(NewT);
8874 
8875   DEBUG({
8876       dbgs() << "Terms after sorting:\n";
8877       for (const SCEV *T : NewTerms)
8878         dbgs() << *T << "\n";
8879     });
8880 
8881   if (NewTerms.empty() ||
8882       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
8883     Sizes.clear();
8884     return;
8885   }
8886 
8887   // The last element to be pushed into Sizes is the size of an element.
8888   Sizes.push_back(ElementSize);
8889 
8890   DEBUG({
8891       dbgs() << "Sizes:\n";
8892       for (const SCEV *S : Sizes)
8893         dbgs() << *S << "\n";
8894     });
8895 }
8896 
8897 /// Third step of delinearization: compute the access functions for the
8898 /// Subscripts based on the dimensions in Sizes.
8899 void ScalarEvolution::computeAccessFunctions(
8900     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8901     SmallVectorImpl<const SCEV *> &Sizes) {
8902 
8903   // Early exit in case this SCEV is not an affine multivariate function.
8904   if (Sizes.empty())
8905     return;
8906 
8907   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
8908     if (!AR->isAffine())
8909       return;
8910 
8911   const SCEV *Res = Expr;
8912   int Last = Sizes.size() - 1;
8913   for (int i = Last; i >= 0; i--) {
8914     const SCEV *Q, *R;
8915     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
8916 
8917     DEBUG({
8918         dbgs() << "Res: " << *Res << "\n";
8919         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8920         dbgs() << "Res divided by Sizes[i]:\n";
8921         dbgs() << "Quotient: " << *Q << "\n";
8922         dbgs() << "Remainder: " << *R << "\n";
8923       });
8924 
8925     Res = Q;
8926 
8927     // Do not record the last subscript corresponding to the size of elements in
8928     // the array.
8929     if (i == Last) {
8930 
8931       // Bail out if the remainder is too complex.
8932       if (isa<SCEVAddRecExpr>(R)) {
8933         Subscripts.clear();
8934         Sizes.clear();
8935         return;
8936       }
8937 
8938       continue;
8939     }
8940 
8941     // Record the access function for the current subscript.
8942     Subscripts.push_back(R);
8943   }
8944 
8945   // Also push in last position the remainder of the last division: it will be
8946   // the access function of the innermost dimension.
8947   Subscripts.push_back(Res);
8948 
8949   std::reverse(Subscripts.begin(), Subscripts.end());
8950 
8951   DEBUG({
8952       dbgs() << "Subscripts:\n";
8953       for (const SCEV *S : Subscripts)
8954         dbgs() << *S << "\n";
8955     });
8956 }
8957 
8958 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8959 /// sizes of an array access. Returns the remainder of the delinearization that
8960 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
8961 /// the multiples of SCEV coefficients: that is a pattern matching of sub
8962 /// expressions in the stride and base of a SCEV corresponding to the
8963 /// computation of a GCD (greatest common divisor) of base and stride.  When
8964 /// SCEV->delinearize fails, it returns the SCEV unchanged.
8965 ///
8966 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
8967 ///
8968 ///  void foo(long n, long m, long o, double A[n][m][o]) {
8969 ///
8970 ///    for (long i = 0; i < n; i++)
8971 ///      for (long j = 0; j < m; j++)
8972 ///        for (long k = 0; k < o; k++)
8973 ///          A[i][j][k] = 1.0;
8974 ///  }
8975 ///
8976 /// the delinearization input is the following AddRec SCEV:
8977 ///
8978 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8979 ///
8980 /// From this SCEV, we are able to say that the base offset of the access is %A
8981 /// because it appears as an offset that does not divide any of the strides in
8982 /// the loops:
8983 ///
8984 ///  CHECK: Base offset: %A
8985 ///
8986 /// and then SCEV->delinearize determines the size of some of the dimensions of
8987 /// the array as these are the multiples by which the strides are happening:
8988 ///
8989 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8990 ///
8991 /// Note that the outermost dimension remains of UnknownSize because there are
8992 /// no strides that would help identifying the size of the last dimension: when
8993 /// the array has been statically allocated, one could compute the size of that
8994 /// dimension by dividing the overall size of the array by the size of the known
8995 /// dimensions: %m * %o * 8.
8996 ///
8997 /// Finally delinearize provides the access functions for the array reference
8998 /// that does correspond to A[i][j][k] of the above C testcase:
8999 ///
9000 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9001 ///
9002 /// The testcases are checking the output of a function pass:
9003 /// DelinearizationPass that walks through all loads and stores of a function
9004 /// asking for the SCEV of the memory access with respect to all enclosing
9005 /// loops, calling SCEV->delinearize on that and printing the results.
9006 
9007 void ScalarEvolution::delinearize(const SCEV *Expr,
9008                                  SmallVectorImpl<const SCEV *> &Subscripts,
9009                                  SmallVectorImpl<const SCEV *> &Sizes,
9010                                  const SCEV *ElementSize) {
9011   // First step: collect parametric terms.
9012   SmallVector<const SCEV *, 4> Terms;
9013   collectParametricTerms(Expr, Terms);
9014 
9015   if (Terms.empty())
9016     return;
9017 
9018   // Second step: find subscript sizes.
9019   findArrayDimensions(Terms, Sizes, ElementSize);
9020 
9021   if (Sizes.empty())
9022     return;
9023 
9024   // Third step: compute the access functions for each subscript.
9025   computeAccessFunctions(Expr, Subscripts, Sizes);
9026 
9027   if (Subscripts.empty())
9028     return;
9029 
9030   DEBUG({
9031       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9032       dbgs() << "ArrayDecl[UnknownSize]";
9033       for (const SCEV *S : Sizes)
9034         dbgs() << "[" << *S << "]";
9035 
9036       dbgs() << "\nArrayRef";
9037       for (const SCEV *S : Subscripts)
9038         dbgs() << "[" << *S << "]";
9039       dbgs() << "\n";
9040     });
9041 }
9042 
9043 //===----------------------------------------------------------------------===//
9044 //                   SCEVCallbackVH Class Implementation
9045 //===----------------------------------------------------------------------===//
9046 
9047 void ScalarEvolution::SCEVCallbackVH::deleted() {
9048   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9049   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9050     SE->ConstantEvolutionLoopExitValue.erase(PN);
9051   SE->eraseValueFromMap(getValPtr());
9052   // this now dangles!
9053 }
9054 
9055 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9056   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9057 
9058   // Forget all the expressions associated with users of the old value,
9059   // so that future queries will recompute the expressions using the new
9060   // value.
9061   Value *Old = getValPtr();
9062   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9063   SmallPtrSet<User *, 8> Visited;
9064   while (!Worklist.empty()) {
9065     User *U = Worklist.pop_back_val();
9066     // Deleting the Old value will cause this to dangle. Postpone
9067     // that until everything else is done.
9068     if (U == Old)
9069       continue;
9070     if (!Visited.insert(U).second)
9071       continue;
9072     if (PHINode *PN = dyn_cast<PHINode>(U))
9073       SE->ConstantEvolutionLoopExitValue.erase(PN);
9074     SE->eraseValueFromMap(U);
9075     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9076   }
9077   // Delete the Old value.
9078   if (PHINode *PN = dyn_cast<PHINode>(Old))
9079     SE->ConstantEvolutionLoopExitValue.erase(PN);
9080   SE->eraseValueFromMap(Old);
9081   // this now dangles!
9082 }
9083 
9084 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9085   : CallbackVH(V), SE(se) {}
9086 
9087 //===----------------------------------------------------------------------===//
9088 //                   ScalarEvolution Class Implementation
9089 //===----------------------------------------------------------------------===//
9090 
9091 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9092                                  AssumptionCache &AC, DominatorTree &DT,
9093                                  LoopInfo &LI)
9094     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9095       CouldNotCompute(new SCEVCouldNotCompute()),
9096       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9097       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9098       FirstUnknown(nullptr) {}
9099 
9100 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9101     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9102       CouldNotCompute(std::move(Arg.CouldNotCompute)),
9103       ValueExprMap(std::move(Arg.ValueExprMap)),
9104       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9105       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9106       ConstantEvolutionLoopExitValue(
9107           std::move(Arg.ConstantEvolutionLoopExitValue)),
9108       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9109       LoopDispositions(std::move(Arg.LoopDispositions)),
9110       BlockDispositions(std::move(Arg.BlockDispositions)),
9111       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9112       SignedRanges(std::move(Arg.SignedRanges)),
9113       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9114       UniquePreds(std::move(Arg.UniquePreds)),
9115       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9116       FirstUnknown(Arg.FirstUnknown) {
9117   Arg.FirstUnknown = nullptr;
9118 }
9119 
9120 ScalarEvolution::~ScalarEvolution() {
9121   // Iterate through all the SCEVUnknown instances and call their
9122   // destructors, so that they release their references to their values.
9123   for (SCEVUnknown *U = FirstUnknown; U;) {
9124     SCEVUnknown *Tmp = U;
9125     U = U->Next;
9126     Tmp->~SCEVUnknown();
9127   }
9128   FirstUnknown = nullptr;
9129 
9130   ExprValueMap.clear();
9131   ValueExprMap.clear();
9132   HasRecMap.clear();
9133 
9134   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9135   // that a loop had multiple computable exits.
9136   for (auto &BTCI : BackedgeTakenCounts)
9137     BTCI.second.clear();
9138 
9139   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9140   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9141   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9142 }
9143 
9144 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9145   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9146 }
9147 
9148 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9149                           const Loop *L) {
9150   // Print all inner loops first
9151   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9152     PrintLoopInfo(OS, SE, *I);
9153 
9154   OS << "Loop ";
9155   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9156   OS << ": ";
9157 
9158   SmallVector<BasicBlock *, 8> ExitBlocks;
9159   L->getExitBlocks(ExitBlocks);
9160   if (ExitBlocks.size() != 1)
9161     OS << "<multiple exits> ";
9162 
9163   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9164     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9165   } else {
9166     OS << "Unpredictable backedge-taken count. ";
9167   }
9168 
9169   OS << "\n"
9170         "Loop ";
9171   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9172   OS << ": ";
9173 
9174   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9175     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9176   } else {
9177     OS << "Unpredictable max backedge-taken count. ";
9178   }
9179 
9180   OS << "\n";
9181 }
9182 
9183 void ScalarEvolution::print(raw_ostream &OS) const {
9184   // ScalarEvolution's implementation of the print method is to print
9185   // out SCEV values of all instructions that are interesting. Doing
9186   // this potentially causes it to create new SCEV objects though,
9187   // which technically conflicts with the const qualifier. This isn't
9188   // observable from outside the class though, so casting away the
9189   // const isn't dangerous.
9190   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9191 
9192   OS << "Classifying expressions for: ";
9193   F.printAsOperand(OS, /*PrintType=*/false);
9194   OS << "\n";
9195   for (Instruction &I : instructions(F))
9196     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9197       OS << I << '\n';
9198       OS << "  -->  ";
9199       const SCEV *SV = SE.getSCEV(&I);
9200       SV->print(OS);
9201       if (!isa<SCEVCouldNotCompute>(SV)) {
9202         OS << " U: ";
9203         SE.getUnsignedRange(SV).print(OS);
9204         OS << " S: ";
9205         SE.getSignedRange(SV).print(OS);
9206       }
9207 
9208       const Loop *L = LI.getLoopFor(I.getParent());
9209 
9210       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9211       if (AtUse != SV) {
9212         OS << "  -->  ";
9213         AtUse->print(OS);
9214         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9215           OS << " U: ";
9216           SE.getUnsignedRange(AtUse).print(OS);
9217           OS << " S: ";
9218           SE.getSignedRange(AtUse).print(OS);
9219         }
9220       }
9221 
9222       if (L) {
9223         OS << "\t\t" "Exits: ";
9224         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9225         if (!SE.isLoopInvariant(ExitValue, L)) {
9226           OS << "<<Unknown>>";
9227         } else {
9228           OS << *ExitValue;
9229         }
9230       }
9231 
9232       OS << "\n";
9233     }
9234 
9235   OS << "Determining loop execution counts for: ";
9236   F.printAsOperand(OS, /*PrintType=*/false);
9237   OS << "\n";
9238   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9239     PrintLoopInfo(OS, &SE, *I);
9240 }
9241 
9242 ScalarEvolution::LoopDisposition
9243 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9244   auto &Values = LoopDispositions[S];
9245   for (auto &V : Values) {
9246     if (V.getPointer() == L)
9247       return V.getInt();
9248   }
9249   Values.emplace_back(L, LoopVariant);
9250   LoopDisposition D = computeLoopDisposition(S, L);
9251   auto &Values2 = LoopDispositions[S];
9252   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9253     if (V.getPointer() == L) {
9254       V.setInt(D);
9255       break;
9256     }
9257   }
9258   return D;
9259 }
9260 
9261 ScalarEvolution::LoopDisposition
9262 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9263   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9264   case scConstant:
9265     return LoopInvariant;
9266   case scTruncate:
9267   case scZeroExtend:
9268   case scSignExtend:
9269     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9270   case scAddRecExpr: {
9271     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9272 
9273     // If L is the addrec's loop, it's computable.
9274     if (AR->getLoop() == L)
9275       return LoopComputable;
9276 
9277     // Add recurrences are never invariant in the function-body (null loop).
9278     if (!L)
9279       return LoopVariant;
9280 
9281     // This recurrence is variant w.r.t. L if L contains AR's loop.
9282     if (L->contains(AR->getLoop()))
9283       return LoopVariant;
9284 
9285     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9286     if (AR->getLoop()->contains(L))
9287       return LoopInvariant;
9288 
9289     // This recurrence is variant w.r.t. L if any of its operands
9290     // are variant.
9291     for (auto *Op : AR->operands())
9292       if (!isLoopInvariant(Op, L))
9293         return LoopVariant;
9294 
9295     // Otherwise it's loop-invariant.
9296     return LoopInvariant;
9297   }
9298   case scAddExpr:
9299   case scMulExpr:
9300   case scUMaxExpr:
9301   case scSMaxExpr: {
9302     bool HasVarying = false;
9303     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9304       LoopDisposition D = getLoopDisposition(Op, L);
9305       if (D == LoopVariant)
9306         return LoopVariant;
9307       if (D == LoopComputable)
9308         HasVarying = true;
9309     }
9310     return HasVarying ? LoopComputable : LoopInvariant;
9311   }
9312   case scUDivExpr: {
9313     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9314     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9315     if (LD == LoopVariant)
9316       return LoopVariant;
9317     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9318     if (RD == LoopVariant)
9319       return LoopVariant;
9320     return (LD == LoopInvariant && RD == LoopInvariant) ?
9321            LoopInvariant : LoopComputable;
9322   }
9323   case scUnknown:
9324     // All non-instruction values are loop invariant.  All instructions are loop
9325     // invariant if they are not contained in the specified loop.
9326     // Instructions are never considered invariant in the function body
9327     // (null loop) because they are defined within the "loop".
9328     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9329       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9330     return LoopInvariant;
9331   case scCouldNotCompute:
9332     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9333   }
9334   llvm_unreachable("Unknown SCEV kind!");
9335 }
9336 
9337 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9338   return getLoopDisposition(S, L) == LoopInvariant;
9339 }
9340 
9341 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9342   return getLoopDisposition(S, L) == LoopComputable;
9343 }
9344 
9345 ScalarEvolution::BlockDisposition
9346 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9347   auto &Values = BlockDispositions[S];
9348   for (auto &V : Values) {
9349     if (V.getPointer() == BB)
9350       return V.getInt();
9351   }
9352   Values.emplace_back(BB, DoesNotDominateBlock);
9353   BlockDisposition D = computeBlockDisposition(S, BB);
9354   auto &Values2 = BlockDispositions[S];
9355   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9356     if (V.getPointer() == BB) {
9357       V.setInt(D);
9358       break;
9359     }
9360   }
9361   return D;
9362 }
9363 
9364 ScalarEvolution::BlockDisposition
9365 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9366   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9367   case scConstant:
9368     return ProperlyDominatesBlock;
9369   case scTruncate:
9370   case scZeroExtend:
9371   case scSignExtend:
9372     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9373   case scAddRecExpr: {
9374     // This uses a "dominates" query instead of "properly dominates" query
9375     // to test for proper dominance too, because the instruction which
9376     // produces the addrec's value is a PHI, and a PHI effectively properly
9377     // dominates its entire containing block.
9378     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9379     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9380       return DoesNotDominateBlock;
9381   }
9382   // FALL THROUGH into SCEVNAryExpr handling.
9383   case scAddExpr:
9384   case scMulExpr:
9385   case scUMaxExpr:
9386   case scSMaxExpr: {
9387     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9388     bool Proper = true;
9389     for (const SCEV *NAryOp : NAry->operands()) {
9390       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9391       if (D == DoesNotDominateBlock)
9392         return DoesNotDominateBlock;
9393       if (D == DominatesBlock)
9394         Proper = false;
9395     }
9396     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9397   }
9398   case scUDivExpr: {
9399     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9400     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9401     BlockDisposition LD = getBlockDisposition(LHS, BB);
9402     if (LD == DoesNotDominateBlock)
9403       return DoesNotDominateBlock;
9404     BlockDisposition RD = getBlockDisposition(RHS, BB);
9405     if (RD == DoesNotDominateBlock)
9406       return DoesNotDominateBlock;
9407     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9408       ProperlyDominatesBlock : DominatesBlock;
9409   }
9410   case scUnknown:
9411     if (Instruction *I =
9412           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9413       if (I->getParent() == BB)
9414         return DominatesBlock;
9415       if (DT.properlyDominates(I->getParent(), BB))
9416         return ProperlyDominatesBlock;
9417       return DoesNotDominateBlock;
9418     }
9419     return ProperlyDominatesBlock;
9420   case scCouldNotCompute:
9421     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9422   }
9423   llvm_unreachable("Unknown SCEV kind!");
9424 }
9425 
9426 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9427   return getBlockDisposition(S, BB) >= DominatesBlock;
9428 }
9429 
9430 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9431   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9432 }
9433 
9434 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9435   // Search for a SCEV expression node within an expression tree.
9436   // Implements SCEVTraversal::Visitor.
9437   struct SCEVSearch {
9438     const SCEV *Node;
9439     bool IsFound;
9440 
9441     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9442 
9443     bool follow(const SCEV *S) {
9444       IsFound |= (S == Node);
9445       return !IsFound;
9446     }
9447     bool isDone() const { return IsFound; }
9448   };
9449 
9450   SCEVSearch Search(Op);
9451   visitAll(S, Search);
9452   return Search.IsFound;
9453 }
9454 
9455 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9456   ValuesAtScopes.erase(S);
9457   LoopDispositions.erase(S);
9458   BlockDispositions.erase(S);
9459   UnsignedRanges.erase(S);
9460   SignedRanges.erase(S);
9461   ExprValueMap.erase(S);
9462   HasRecMap.erase(S);
9463 
9464   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9465          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9466     BackedgeTakenInfo &BEInfo = I->second;
9467     if (BEInfo.hasOperand(S, this)) {
9468       BEInfo.clear();
9469       BackedgeTakenCounts.erase(I++);
9470     }
9471     else
9472       ++I;
9473   }
9474 }
9475 
9476 typedef DenseMap<const Loop *, std::string> VerifyMap;
9477 
9478 /// replaceSubString - Replaces all occurrences of From in Str with To.
9479 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9480   size_t Pos = 0;
9481   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9482     Str.replace(Pos, From.size(), To.data(), To.size());
9483     Pos += To.size();
9484   }
9485 }
9486 
9487 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9488 static void
9489 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9490   std::string &S = Map[L];
9491   if (S.empty()) {
9492     raw_string_ostream OS(S);
9493     SE.getBackedgeTakenCount(L)->print(OS);
9494 
9495     // false and 0 are semantically equivalent. This can happen in dead loops.
9496     replaceSubString(OS.str(), "false", "0");
9497     // Remove wrap flags, their use in SCEV is highly fragile.
9498     // FIXME: Remove this when SCEV gets smarter about them.
9499     replaceSubString(OS.str(), "<nw>", "");
9500     replaceSubString(OS.str(), "<nsw>", "");
9501     replaceSubString(OS.str(), "<nuw>", "");
9502   }
9503 
9504   for (auto *R : reverse(*L))
9505     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9506 }
9507 
9508 void ScalarEvolution::verify() const {
9509   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9510 
9511   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9512   // FIXME: It would be much better to store actual values instead of strings,
9513   //        but SCEV pointers will change if we drop the caches.
9514   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9515   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9516     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9517 
9518   // Gather stringified backedge taken counts for all loops using a fresh
9519   // ScalarEvolution object.
9520   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9521   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9522     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9523 
9524   // Now compare whether they're the same with and without caches. This allows
9525   // verifying that no pass changed the cache.
9526   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9527          "New loops suddenly appeared!");
9528 
9529   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9530                            OldE = BackedgeDumpsOld.end(),
9531                            NewI = BackedgeDumpsNew.begin();
9532        OldI != OldE; ++OldI, ++NewI) {
9533     assert(OldI->first == NewI->first && "Loop order changed!");
9534 
9535     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9536     // changes.
9537     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9538     // means that a pass is buggy or SCEV has to learn a new pattern but is
9539     // usually not harmful.
9540     if (OldI->second != NewI->second &&
9541         OldI->second.find("undef") == std::string::npos &&
9542         NewI->second.find("undef") == std::string::npos &&
9543         OldI->second != "***COULDNOTCOMPUTE***" &&
9544         NewI->second != "***COULDNOTCOMPUTE***") {
9545       dbgs() << "SCEVValidator: SCEV for loop '"
9546              << OldI->first->getHeader()->getName()
9547              << "' changed from '" << OldI->second
9548              << "' to '" << NewI->second << "'!\n";
9549       std::abort();
9550     }
9551   }
9552 
9553   // TODO: Verify more things.
9554 }
9555 
9556 template class llvm::AnalysisBase<ScalarEvolutionAnalysis>;
9557 
9558 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9559                                              AnalysisManager<Function> *AM) {
9560   return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9561                          AM->getResult<AssumptionAnalysis>(F),
9562                          AM->getResult<DominatorTreeAnalysis>(F),
9563                          AM->getResult<LoopAnalysis>(F));
9564 }
9565 
9566 PreservedAnalyses
9567 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9568   AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9569   return PreservedAnalyses::all();
9570 }
9571 
9572 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9573                       "Scalar Evolution Analysis", false, true)
9574 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9575 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9576 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9577 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9578 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9579                     "Scalar Evolution Analysis", false, true)
9580 char ScalarEvolutionWrapperPass::ID = 0;
9581 
9582 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9583   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9584 }
9585 
9586 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9587   SE.reset(new ScalarEvolution(
9588       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9589       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9590       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9591       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9592   return false;
9593 }
9594 
9595 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9596 
9597 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9598   SE->print(OS);
9599 }
9600 
9601 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9602   if (!VerifySCEV)
9603     return;
9604 
9605   SE->verify();
9606 }
9607 
9608 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9609   AU.setPreservesAll();
9610   AU.addRequiredTransitive<AssumptionCacheTracker>();
9611   AU.addRequiredTransitive<LoopInfoWrapperPass>();
9612   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9613   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9614 }
9615 
9616 const SCEVPredicate *
9617 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9618                                    const SCEVConstant *RHS) {
9619   FoldingSetNodeID ID;
9620   // Unique this node based on the arguments
9621   ID.AddInteger(SCEVPredicate::P_Equal);
9622   ID.AddPointer(LHS);
9623   ID.AddPointer(RHS);
9624   void *IP = nullptr;
9625   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9626     return S;
9627   SCEVEqualPredicate *Eq = new (SCEVAllocator)
9628       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9629   UniquePreds.InsertNode(Eq, IP);
9630   return Eq;
9631 }
9632 
9633 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
9634     const SCEVAddRecExpr *AR,
9635     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9636   FoldingSetNodeID ID;
9637   // Unique this node based on the arguments
9638   ID.AddInteger(SCEVPredicate::P_Wrap);
9639   ID.AddPointer(AR);
9640   ID.AddInteger(AddedFlags);
9641   void *IP = nullptr;
9642   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9643     return S;
9644   auto *OF = new (SCEVAllocator)
9645       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
9646   UniquePreds.InsertNode(OF, IP);
9647   return OF;
9648 }
9649 
9650 namespace {
9651 
9652 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9653 public:
9654   // Rewrites \p S in the context of a loop L and the predicate A.
9655   // If Assume is true, rewrite is free to add further predicates to A
9656   // such that the result will be an AddRecExpr.
9657   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
9658                              SCEVUnionPredicate &A, bool Assume) {
9659     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
9660     return Rewriter.visit(S);
9661   }
9662 
9663   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
9664                         SCEVUnionPredicate &P, bool Assume)
9665       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
9666 
9667   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9668     auto ExprPreds = P.getPredicatesForExpr(Expr);
9669     for (auto *Pred : ExprPreds)
9670       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9671         if (IPred->getLHS() == Expr)
9672           return IPred->getRHS();
9673 
9674     return Expr;
9675   }
9676 
9677   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
9678     const SCEV *Operand = visit(Expr->getOperand());
9679     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9680     if (AR && AR->getLoop() == L && AR->isAffine()) {
9681       // This couldn't be folded because the operand didn't have the nuw
9682       // flag. Add the nusw flag as an assumption that we could make.
9683       const SCEV *Step = AR->getStepRecurrence(SE);
9684       Type *Ty = Expr->getType();
9685       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
9686         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
9687                                 SE.getSignExtendExpr(Step, Ty), L,
9688                                 AR->getNoWrapFlags());
9689     }
9690     return SE.getZeroExtendExpr(Operand, Expr->getType());
9691   }
9692 
9693   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
9694     const SCEV *Operand = visit(Expr->getOperand());
9695     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9696     if (AR && AR->getLoop() == L && AR->isAffine()) {
9697       // This couldn't be folded because the operand didn't have the nsw
9698       // flag. Add the nssw flag as an assumption that we could make.
9699       const SCEV *Step = AR->getStepRecurrence(SE);
9700       Type *Ty = Expr->getType();
9701       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
9702         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
9703                                 SE.getSignExtendExpr(Step, Ty), L,
9704                                 AR->getNoWrapFlags());
9705     }
9706     return SE.getSignExtendExpr(Operand, Expr->getType());
9707   }
9708 
9709 private:
9710   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
9711                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9712     auto *A = SE.getWrapPredicate(AR, AddedFlags);
9713     if (!Assume) {
9714       // Check if we've already made this assumption.
9715       if (P.implies(A))
9716         return true;
9717       return false;
9718     }
9719     P.add(A);
9720     return true;
9721   }
9722 
9723   SCEVUnionPredicate &P;
9724   const Loop *L;
9725   bool Assume;
9726 };
9727 } // end anonymous namespace
9728 
9729 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
9730                                                    SCEVUnionPredicate &Preds) {
9731   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
9732 }
9733 
9734 const SCEV *
9735 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
9736                                                    SCEVUnionPredicate &Preds) {
9737   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, true);
9738 }
9739 
9740 /// SCEV predicates
9741 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9742                              SCEVPredicateKind Kind)
9743     : FastID(ID), Kind(Kind) {}
9744 
9745 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9746                                        const SCEVUnknown *LHS,
9747                                        const SCEVConstant *RHS)
9748     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9749 
9750 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9751   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9752 
9753   if (!Op)
9754     return false;
9755 
9756   return Op->LHS == LHS && Op->RHS == RHS;
9757 }
9758 
9759 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9760 
9761 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9762 
9763 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9764   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9765 }
9766 
9767 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
9768                                      const SCEVAddRecExpr *AR,
9769                                      IncrementWrapFlags Flags)
9770     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
9771 
9772 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
9773 
9774 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
9775   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
9776 
9777   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
9778 }
9779 
9780 bool SCEVWrapPredicate::isAlwaysTrue() const {
9781   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
9782   IncrementWrapFlags IFlags = Flags;
9783 
9784   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
9785     IFlags = clearFlags(IFlags, IncrementNSSW);
9786 
9787   return IFlags == IncrementAnyWrap;
9788 }
9789 
9790 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
9791   OS.indent(Depth) << *getExpr() << " Added Flags: ";
9792   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
9793     OS << "<nusw>";
9794   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
9795     OS << "<nssw>";
9796   OS << "\n";
9797 }
9798 
9799 SCEVWrapPredicate::IncrementWrapFlags
9800 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
9801                                    ScalarEvolution &SE) {
9802   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
9803   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
9804 
9805   // We can safely transfer the NSW flag as NSSW.
9806   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
9807     ImpliedFlags = IncrementNSSW;
9808 
9809   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
9810     // If the increment is positive, the SCEV NUW flag will also imply the
9811     // WrapPredicate NUSW flag.
9812     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
9813       if (Step->getValue()->getValue().isNonNegative())
9814         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
9815   }
9816 
9817   return ImpliedFlags;
9818 }
9819 
9820 /// Union predicates don't get cached so create a dummy set ID for it.
9821 SCEVUnionPredicate::SCEVUnionPredicate()
9822     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9823 
9824 bool SCEVUnionPredicate::isAlwaysTrue() const {
9825   return all_of(Preds,
9826                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
9827 }
9828 
9829 ArrayRef<const SCEVPredicate *>
9830 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9831   auto I = SCEVToPreds.find(Expr);
9832   if (I == SCEVToPreds.end())
9833     return ArrayRef<const SCEVPredicate *>();
9834   return I->second;
9835 }
9836 
9837 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9838   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
9839     return all_of(Set->Preds,
9840                   [this](const SCEVPredicate *I) { return this->implies(I); });
9841 
9842   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9843   if (ScevPredsIt == SCEVToPreds.end())
9844     return false;
9845   auto &SCEVPreds = ScevPredsIt->second;
9846 
9847   return any_of(SCEVPreds,
9848                 [N](const SCEVPredicate *I) { return I->implies(N); });
9849 }
9850 
9851 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9852 
9853 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9854   for (auto Pred : Preds)
9855     Pred->print(OS, Depth);
9856 }
9857 
9858 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9859   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9860     for (auto Pred : Set->Preds)
9861       add(Pred);
9862     return;
9863   }
9864 
9865   if (implies(N))
9866     return;
9867 
9868   const SCEV *Key = N->getExpr();
9869   assert(Key && "Only SCEVUnionPredicate doesn't have an "
9870                 " associated expression!");
9871 
9872   SCEVToPreds[Key].push_back(N);
9873   Preds.push_back(N);
9874 }
9875 
9876 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
9877                                                      Loop &L)
9878     : SE(SE), L(L), Generation(0) {}
9879 
9880 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9881   const SCEV *Expr = SE.getSCEV(V);
9882   RewriteEntry &Entry = RewriteMap[Expr];
9883 
9884   // If we already have an entry and the version matches, return it.
9885   if (Entry.second && Generation == Entry.first)
9886     return Entry.second;
9887 
9888   // We found an entry but it's stale. Rewrite the stale entry
9889   // acording to the current predicate.
9890   if (Entry.second)
9891     Expr = Entry.second;
9892 
9893   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
9894   Entry = {Generation, NewSCEV};
9895 
9896   return NewSCEV;
9897 }
9898 
9899 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9900   if (Preds.implies(&Pred))
9901     return;
9902   Preds.add(&Pred);
9903   updateGeneration();
9904 }
9905 
9906 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9907   return Preds;
9908 }
9909 
9910 void PredicatedScalarEvolution::updateGeneration() {
9911   // If the generation number wrapped recompute everything.
9912   if (++Generation == 0) {
9913     for (auto &II : RewriteMap) {
9914       const SCEV *Rewritten = II.second.second;
9915       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
9916     }
9917   }
9918 }
9919 
9920 void PredicatedScalarEvolution::setNoOverflow(
9921     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9922   const SCEV *Expr = getSCEV(V);
9923   const auto *AR = cast<SCEVAddRecExpr>(Expr);
9924 
9925   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
9926 
9927   // Clear the statically implied flags.
9928   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
9929   addPredicate(*SE.getWrapPredicate(AR, Flags));
9930 
9931   auto II = FlagsMap.insert({V, Flags});
9932   if (!II.second)
9933     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
9934 }
9935 
9936 bool PredicatedScalarEvolution::hasNoOverflow(
9937     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9938   const SCEV *Expr = getSCEV(V);
9939   const auto *AR = cast<SCEVAddRecExpr>(Expr);
9940 
9941   Flags = SCEVWrapPredicate::clearFlags(
9942       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
9943 
9944   auto II = FlagsMap.find(V);
9945 
9946   if (II != FlagsMap.end())
9947     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
9948 
9949   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
9950 }
9951 
9952 const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) {
9953   const SCEV *Expr = this->getSCEV(V);
9954   const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
9955   updateGeneration();
9956   RewriteMap[SE.getSCEV(V)] = {Generation, New};
9957   return New;
9958 }
9959 
9960 PredicatedScalarEvolution::
9961 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) :
9962   RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
9963   Generation(Init.Generation) {
9964   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
9965     FlagsMap.insert(*I);
9966 }
9967