1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1307 return PreStart; 1308 } 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 // Give up if we don't already have the add recurrence we need because 1380 // actually constructing an add recurrence is relatively expensive. 1381 const SCEVAddRecExpr *PreAR = [&]() { 1382 FoldingSetNodeID ID; 1383 ID.AddInteger(scAddRecExpr); 1384 ID.AddPointer(PreStart); 1385 ID.AddPointer(Step); 1386 ID.AddPointer(L); 1387 void *IP = nullptr; 1388 return static_cast<SCEVAddRecExpr *>( 1389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1390 }(); 1391 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 // The cast wasn't folded; create an explicit cast node. 1563 // Recompute the insert position, as it may have been invalidated. 1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1566 Op, Ty); 1567 UniqueSCEVs.InsertNode(S, IP); 1568 return S; 1569 } 1570 1571 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1572 Type *Ty) { 1573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1574 "This is not an extending conversion!"); 1575 assert(isSCEVable(Ty) && 1576 "This is not a conversion to a SCEVable type!"); 1577 Ty = getEffectiveSCEVType(Ty); 1578 1579 // Fold if the operand is constant. 1580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1581 return getConstant( 1582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1583 1584 // sext(sext(x)) --> sext(x) 1585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1586 return getSignExtendExpr(SS->getOperand(), Ty); 1587 1588 // sext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scSignExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 1601 // If the input value is provably positive, build a zext instead. 1602 if (isKnownNonNegative(Op)) 1603 return getZeroExtendExpr(Op, Ty); 1604 1605 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1607 // It's possible the bits taken off by the truncate were all sign bits. If 1608 // so, we should be able to simplify this further. 1609 const SCEV *X = ST->getOperand(); 1610 ConstantRange CR = getSignedRange(X); 1611 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1612 unsigned NewBits = getTypeSizeInBits(Ty); 1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1614 CR.sextOrTrunc(NewBits))) 1615 return getTruncateOrSignExtend(X, Ty); 1616 } 1617 1618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1619 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1620 if (SA->getNumOperands() == 2) { 1621 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1622 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1623 if (SMul && SC1) { 1624 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1625 const APInt &C1 = SC1->getValue()->getValue(); 1626 const APInt &C2 = SC2->getValue()->getValue(); 1627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1628 C2.ugt(C1) && C2.isPowerOf2()) 1629 return getAddExpr(getSignExtendExpr(SC1, Ty), 1630 getSignExtendExpr(SMul, Ty)); 1631 } 1632 } 1633 } 1634 } 1635 // If the input value is a chrec scev, and we can prove that the value 1636 // did not overflow the old, smaller, value, we can sign extend all of the 1637 // operands (often constants). This allows analysis of something like 1638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1640 if (AR->isAffine()) { 1641 const SCEV *Start = AR->getStart(); 1642 const SCEV *Step = AR->getStepRecurrence(*this); 1643 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1644 const Loop *L = AR->getLoop(); 1645 1646 // If we have special knowledge that this addrec won't overflow, 1647 // we don't need to do any further analysis. 1648 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1649 return getAddRecExpr( 1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1652 1653 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1654 // Note that this serves two purposes: It filters out loops that are 1655 // simply not analyzable, and it covers the case where this code is 1656 // being called from within backedge-taken count analysis, such that 1657 // attempting to ask for the backedge-taken count would likely result 1658 // in infinite recursion. In the later case, the analysis code will 1659 // cope with a conservative value, and it will take care to purge 1660 // that value once it has finished. 1661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1663 // Manually compute the final value for AR, checking for 1664 // overflow. 1665 1666 // Check whether the backedge-taken count can be losslessly casted to 1667 // the addrec's type. The count is always unsigned. 1668 const SCEV *CastedMaxBECount = 1669 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1670 const SCEV *RecastedMaxBECount = 1671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1672 if (MaxBECount == RecastedMaxBECount) { 1673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1674 // Check whether Start+Step*MaxBECount has no signed overflow. 1675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1678 const SCEV *WideMaxBECount = 1679 getZeroExtendExpr(CastedMaxBECount, WideTy); 1680 const SCEV *OperandExtendedAdd = 1681 getAddExpr(WideStart, 1682 getMulExpr(WideMaxBECount, 1683 getSignExtendExpr(Step, WideTy))); 1684 if (SAdd == OperandExtendedAdd) { 1685 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1687 // Return the expression with the addrec on the outside. 1688 return getAddRecExpr( 1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as unsigned. 1693 // This covers loops that count up with an unsigned step. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy))); 1698 if (SAdd == OperandExtendedAdd) { 1699 // If AR wraps around then 1700 // 1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1702 // => SAdd != OperandExtendedAdd 1703 // 1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1705 // (SAdd == OperandExtendedAdd => AR is NW) 1706 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1708 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 } 1715 1716 // If the backedge is guarded by a comparison with the pre-inc value 1717 // the addrec is safe. Also, if the entry is guarded by a comparison 1718 // with the start value and the backedge is guarded by a comparison 1719 // with the post-inc value, the addrec is safe. 1720 ICmpInst::Predicate Pred; 1721 const SCEV *OverflowLimit = 1722 getSignedOverflowLimitForStep(Step, &Pred, this); 1723 if (OverflowLimit && 1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1727 OverflowLimit)))) { 1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 // If Start and Step are constants, check if we can apply this 1736 // transformation: 1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1738 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1739 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1740 if (SC1 && SC2) { 1741 const APInt &C1 = SC1->getValue()->getValue(); 1742 const APInt &C2 = SC2->getValue()->getValue(); 1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1744 C2.isPowerOf2()) { 1745 Start = getSignExtendExpr(Start, Ty); 1746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1747 AR->getNoWrapFlags()); 1748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1749 } 1750 } 1751 1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 1760 // The cast wasn't folded; create an explicit cast node. 1761 // Recompute the insert position, as it may have been invalidated. 1762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1764 Op, Ty); 1765 UniqueSCEVs.InsertNode(S, IP); 1766 return S; 1767 } 1768 1769 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1770 /// unspecified bits out to the given type. 1771 /// 1772 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1773 Type *Ty) { 1774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1775 "This is not an extending conversion!"); 1776 assert(isSCEVable(Ty) && 1777 "This is not a conversion to a SCEVable type!"); 1778 Ty = getEffectiveSCEVType(Ty); 1779 1780 // Sign-extend negative constants. 1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1782 if (SC->getValue()->getValue().isNegative()) 1783 return getSignExtendExpr(Op, Ty); 1784 1785 // Peel off a truncate cast. 1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1787 const SCEV *NewOp = T->getOperand(); 1788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1789 return getAnyExtendExpr(NewOp, Ty); 1790 return getTruncateOrNoop(NewOp, Ty); 1791 } 1792 1793 // Next try a zext cast. If the cast is folded, use it. 1794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1795 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1796 return ZExt; 1797 1798 // Next try a sext cast. If the cast is folded, use it. 1799 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1800 if (!isa<SCEVSignExtendExpr>(SExt)) 1801 return SExt; 1802 1803 // Force the cast to be folded into the operands of an addrec. 1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1805 SmallVector<const SCEV *, 4> Ops; 1806 for (const SCEV *Op : AR->operands()) 1807 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1809 } 1810 1811 // If the expression is obviously signed, use the sext cast value. 1812 if (isa<SCEVSMaxExpr>(Op)) 1813 return SExt; 1814 1815 // Absent any other information, use the zext cast value. 1816 return ZExt; 1817 } 1818 1819 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1820 /// a list of operands to be added under the given scale, update the given 1821 /// map. This is a helper function for getAddRecExpr. As an example of 1822 /// what it does, given a sequence of operands that would form an add 1823 /// expression like this: 1824 /// 1825 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1826 /// 1827 /// where A and B are constants, update the map with these values: 1828 /// 1829 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1830 /// 1831 /// and add 13 + A*B*29 to AccumulatedConstant. 1832 /// This will allow getAddRecExpr to produce this: 1833 /// 1834 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1835 /// 1836 /// This form often exposes folding opportunities that are hidden in 1837 /// the original operand list. 1838 /// 1839 /// Return true iff it appears that any interesting folding opportunities 1840 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1841 /// the common case where no interesting opportunities are present, and 1842 /// is also used as a check to avoid infinite recursion. 1843 /// 1844 static bool 1845 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1846 SmallVectorImpl<const SCEV *> &NewOps, 1847 APInt &AccumulatedConstant, 1848 const SCEV *const *Ops, size_t NumOperands, 1849 const APInt &Scale, 1850 ScalarEvolution &SE) { 1851 bool Interesting = false; 1852 1853 // Iterate over the add operands. They are sorted, with constants first. 1854 unsigned i = 0; 1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1856 ++i; 1857 // Pull a buried constant out to the outside. 1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1859 Interesting = true; 1860 AccumulatedConstant += Scale * C->getValue()->getValue(); 1861 } 1862 1863 // Next comes everything else. We're especially interested in multiplies 1864 // here, but they're in the middle, so just visit the rest with one loop. 1865 for (; i != NumOperands; ++i) { 1866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1868 APInt NewScale = 1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1871 // A multiplication of a constant with another add; recurse. 1872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1873 Interesting |= 1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1875 Add->op_begin(), Add->getNumOperands(), 1876 NewScale, SE); 1877 } else { 1878 // A multiplication of a constant with some other value. Update 1879 // the map. 1880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1881 const SCEV *Key = SE.getMulExpr(MulOps); 1882 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1883 if (Pair.second) { 1884 NewOps.push_back(Pair.first->first); 1885 } else { 1886 Pair.first->second += NewScale; 1887 // The map already had an entry for this value, which may indicate 1888 // a folding opportunity. 1889 Interesting = true; 1890 } 1891 } 1892 } else { 1893 // An ordinary operand. Update the map. 1894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1895 M.insert(std::make_pair(Ops[i], Scale)); 1896 if (Pair.second) { 1897 NewOps.push_back(Pair.first->first); 1898 } else { 1899 Pair.first->second += Scale; 1900 // The map already had an entry for this value, which may indicate 1901 // a folding opportunity. 1902 Interesting = true; 1903 } 1904 } 1905 } 1906 1907 return Interesting; 1908 } 1909 1910 namespace { 1911 struct APIntCompare { 1912 bool operator()(const APInt &LHS, const APInt &RHS) const { 1913 return LHS.ult(RHS); 1914 } 1915 }; 1916 } 1917 1918 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1919 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1920 // can't-overflow flags for the operation if possible. 1921 static SCEV::NoWrapFlags 1922 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1923 const SmallVectorImpl<const SCEV *> &Ops, 1924 SCEV::NoWrapFlags OldFlags) { 1925 using namespace std::placeholders; 1926 1927 bool CanAnalyze = 1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1929 (void)CanAnalyze; 1930 assert(CanAnalyze && "don't call from other places!"); 1931 1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1933 SCEV::NoWrapFlags SignOrUnsignWrap = 1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1935 1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1937 auto IsKnownNonNegative = 1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1939 1940 if (SignOrUnsignWrap == SCEV::FlagNSW && 1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1942 return ScalarEvolution::setFlags(OldFlags, 1943 (SCEV::NoWrapFlags)SignOrUnsignMask); 1944 1945 return OldFlags; 1946 } 1947 1948 /// getAddExpr - Get a canonical add expression, or something simpler if 1949 /// possible. 1950 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1953 "only nuw or nsw allowed"); 1954 assert(!Ops.empty() && "Cannot get empty add!"); 1955 if (Ops.size() == 1) return Ops[0]; 1956 #ifndef NDEBUG 1957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1958 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1960 "SCEVAddExpr operand types don't match!"); 1961 #endif 1962 1963 // Sort by complexity, this groups all similar expression types together. 1964 GroupByComplexity(Ops, &LI); 1965 1966 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1967 1968 // If there are any constants, fold them together. 1969 unsigned Idx = 0; 1970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1971 ++Idx; 1972 assert(Idx < Ops.size()); 1973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1974 // We found two constants, fold them together! 1975 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1976 RHSC->getValue()->getValue()); 1977 if (Ops.size() == 2) return Ops[0]; 1978 Ops.erase(Ops.begin()+1); // Erase the folded element 1979 LHSC = cast<SCEVConstant>(Ops[0]); 1980 } 1981 1982 // If we are left with a constant zero being added, strip it off. 1983 if (LHSC->getValue()->isZero()) { 1984 Ops.erase(Ops.begin()); 1985 --Idx; 1986 } 1987 1988 if (Ops.size() == 1) return Ops[0]; 1989 } 1990 1991 // Okay, check to see if the same value occurs in the operand list more than 1992 // once. If so, merge them together into an multiply expression. Since we 1993 // sorted the list, these values are required to be adjacent. 1994 Type *Ty = Ops[0]->getType(); 1995 bool FoundMatch = false; 1996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1998 // Scan ahead to count how many equal operands there are. 1999 unsigned Count = 2; 2000 while (i+Count != e && Ops[i+Count] == Ops[i]) 2001 ++Count; 2002 // Merge the values into a multiply. 2003 const SCEV *Scale = getConstant(Ty, Count); 2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2005 if (Ops.size() == Count) 2006 return Mul; 2007 Ops[i] = Mul; 2008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2009 --i; e -= Count - 1; 2010 FoundMatch = true; 2011 } 2012 if (FoundMatch) 2013 return getAddExpr(Ops, Flags); 2014 2015 // Check for truncates. If all the operands are truncated from the same 2016 // type, see if factoring out the truncate would permit the result to be 2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2018 // if the contents of the resulting outer trunc fold to something simple. 2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2021 Type *DstType = Trunc->getType(); 2022 Type *SrcType = Trunc->getOperand()->getType(); 2023 SmallVector<const SCEV *, 8> LargeOps; 2024 bool Ok = true; 2025 // Check all the operands to see if they can be represented in the 2026 // source type of the truncate. 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2029 if (T->getOperand()->getType() != SrcType) { 2030 Ok = false; 2031 break; 2032 } 2033 LargeOps.push_back(T->getOperand()); 2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2035 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2037 SmallVector<const SCEV *, 8> LargeMulOps; 2038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2039 if (const SCEVTruncateExpr *T = 2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeMulOps.push_back(T->getOperand()); 2046 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2047 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2048 } else { 2049 Ok = false; 2050 break; 2051 } 2052 } 2053 if (Ok) 2054 LargeOps.push_back(getMulExpr(LargeMulOps)); 2055 } else { 2056 Ok = false; 2057 break; 2058 } 2059 } 2060 if (Ok) { 2061 // Evaluate the expression in the larger type. 2062 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2063 // If it folds to something simple, use it. Otherwise, don't. 2064 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2065 return getTruncateExpr(Fold, DstType); 2066 } 2067 } 2068 2069 // Skip past any other cast SCEVs. 2070 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2071 ++Idx; 2072 2073 // If there are add operands they would be next. 2074 if (Idx < Ops.size()) { 2075 bool DeletedAdd = false; 2076 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2077 // If we have an add, expand the add operands onto the end of the operands 2078 // list. 2079 Ops.erase(Ops.begin()+Idx); 2080 Ops.append(Add->op_begin(), Add->op_end()); 2081 DeletedAdd = true; 2082 } 2083 2084 // If we deleted at least one add, we added operands to the end of the list, 2085 // and they are not necessarily sorted. Recurse to resort and resimplify 2086 // any operands we just acquired. 2087 if (DeletedAdd) 2088 return getAddExpr(Ops); 2089 } 2090 2091 // Skip over the add expression until we get to a multiply. 2092 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2093 ++Idx; 2094 2095 // Check to see if there are any folding opportunities present with 2096 // operands multiplied by constant values. 2097 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2098 uint64_t BitWidth = getTypeSizeInBits(Ty); 2099 DenseMap<const SCEV *, APInt> M; 2100 SmallVector<const SCEV *, 8> NewOps; 2101 APInt AccumulatedConstant(BitWidth, 0); 2102 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2103 Ops.data(), Ops.size(), 2104 APInt(BitWidth, 1), *this)) { 2105 // Some interesting folding opportunity is present, so its worthwhile to 2106 // re-generate the operands list. Group the operands by constant scale, 2107 // to avoid multiplying by the same constant scale multiple times. 2108 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2109 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2110 E = NewOps.end(); I != E; ++I) 2111 MulOpLists[M.find(*I)->second].push_back(*I); 2112 // Re-generate the operands list. 2113 Ops.clear(); 2114 if (AccumulatedConstant != 0) 2115 Ops.push_back(getConstant(AccumulatedConstant)); 2116 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2117 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2118 if (I->first != 0) 2119 Ops.push_back(getMulExpr(getConstant(I->first), 2120 getAddExpr(I->second))); 2121 if (Ops.empty()) 2122 return getZero(Ty); 2123 if (Ops.size() == 1) 2124 return Ops[0]; 2125 return getAddExpr(Ops); 2126 } 2127 } 2128 2129 // If we are adding something to a multiply expression, make sure the 2130 // something is not already an operand of the multiply. If so, merge it into 2131 // the multiply. 2132 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2133 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2134 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2135 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2136 if (isa<SCEVConstant>(MulOpSCEV)) 2137 continue; 2138 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2139 if (MulOpSCEV == Ops[AddOp]) { 2140 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2141 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2142 if (Mul->getNumOperands() != 2) { 2143 // If the multiply has more than two operands, we must get the 2144 // Y*Z term. 2145 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2146 Mul->op_begin()+MulOp); 2147 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2148 InnerMul = getMulExpr(MulOps); 2149 } 2150 const SCEV *One = getOne(Ty); 2151 const SCEV *AddOne = getAddExpr(One, InnerMul); 2152 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2153 if (Ops.size() == 2) return OuterMul; 2154 if (AddOp < Idx) { 2155 Ops.erase(Ops.begin()+AddOp); 2156 Ops.erase(Ops.begin()+Idx-1); 2157 } else { 2158 Ops.erase(Ops.begin()+Idx); 2159 Ops.erase(Ops.begin()+AddOp-1); 2160 } 2161 Ops.push_back(OuterMul); 2162 return getAddExpr(Ops); 2163 } 2164 2165 // Check this multiply against other multiplies being added together. 2166 for (unsigned OtherMulIdx = Idx+1; 2167 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2168 ++OtherMulIdx) { 2169 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2170 // If MulOp occurs in OtherMul, we can fold the two multiplies 2171 // together. 2172 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2173 OMulOp != e; ++OMulOp) 2174 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2175 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2176 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2177 if (Mul->getNumOperands() != 2) { 2178 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2179 Mul->op_begin()+MulOp); 2180 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2181 InnerMul1 = getMulExpr(MulOps); 2182 } 2183 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2184 if (OtherMul->getNumOperands() != 2) { 2185 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2186 OtherMul->op_begin()+OMulOp); 2187 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2188 InnerMul2 = getMulExpr(MulOps); 2189 } 2190 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2191 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2192 if (Ops.size() == 2) return OuterMul; 2193 Ops.erase(Ops.begin()+Idx); 2194 Ops.erase(Ops.begin()+OtherMulIdx-1); 2195 Ops.push_back(OuterMul); 2196 return getAddExpr(Ops); 2197 } 2198 } 2199 } 2200 } 2201 2202 // If there are any add recurrences in the operands list, see if any other 2203 // added values are loop invariant. If so, we can fold them into the 2204 // recurrence. 2205 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2206 ++Idx; 2207 2208 // Scan over all recurrences, trying to fold loop invariants into them. 2209 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2210 // Scan all of the other operands to this add and add them to the vector if 2211 // they are loop invariant w.r.t. the recurrence. 2212 SmallVector<const SCEV *, 8> LIOps; 2213 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2214 const Loop *AddRecLoop = AddRec->getLoop(); 2215 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2216 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2217 LIOps.push_back(Ops[i]); 2218 Ops.erase(Ops.begin()+i); 2219 --i; --e; 2220 } 2221 2222 // If we found some loop invariants, fold them into the recurrence. 2223 if (!LIOps.empty()) { 2224 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2225 LIOps.push_back(AddRec->getStart()); 2226 2227 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2228 AddRec->op_end()); 2229 AddRecOps[0] = getAddExpr(LIOps); 2230 2231 // Build the new addrec. Propagate the NUW and NSW flags if both the 2232 // outer add and the inner addrec are guaranteed to have no overflow. 2233 // Always propagate NW. 2234 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2235 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2236 2237 // If all of the other operands were loop invariant, we are done. 2238 if (Ops.size() == 1) return NewRec; 2239 2240 // Otherwise, add the folded AddRec by the non-invariant parts. 2241 for (unsigned i = 0;; ++i) 2242 if (Ops[i] == AddRec) { 2243 Ops[i] = NewRec; 2244 break; 2245 } 2246 return getAddExpr(Ops); 2247 } 2248 2249 // Okay, if there weren't any loop invariants to be folded, check to see if 2250 // there are multiple AddRec's with the same loop induction variable being 2251 // added together. If so, we can fold them. 2252 for (unsigned OtherIdx = Idx+1; 2253 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2254 ++OtherIdx) 2255 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2256 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2257 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2258 AddRec->op_end()); 2259 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2260 ++OtherIdx) 2261 if (const SCEVAddRecExpr *OtherAddRec = 2262 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2263 if (OtherAddRec->getLoop() == AddRecLoop) { 2264 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2265 i != e; ++i) { 2266 if (i >= AddRecOps.size()) { 2267 AddRecOps.append(OtherAddRec->op_begin()+i, 2268 OtherAddRec->op_end()); 2269 break; 2270 } 2271 AddRecOps[i] = getAddExpr(AddRecOps[i], 2272 OtherAddRec->getOperand(i)); 2273 } 2274 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2275 } 2276 // Step size has changed, so we cannot guarantee no self-wraparound. 2277 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2278 return getAddExpr(Ops); 2279 } 2280 2281 // Otherwise couldn't fold anything into this recurrence. Move onto the 2282 // next one. 2283 } 2284 2285 // Okay, it looks like we really DO need an add expr. Check to see if we 2286 // already have one, otherwise create a new one. 2287 FoldingSetNodeID ID; 2288 ID.AddInteger(scAddExpr); 2289 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2290 ID.AddPointer(Ops[i]); 2291 void *IP = nullptr; 2292 SCEVAddExpr *S = 2293 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2294 if (!S) { 2295 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2296 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2297 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2298 O, Ops.size()); 2299 UniqueSCEVs.InsertNode(S, IP); 2300 } 2301 S->setNoWrapFlags(Flags); 2302 return S; 2303 } 2304 2305 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2306 uint64_t k = i*j; 2307 if (j > 1 && k / j != i) Overflow = true; 2308 return k; 2309 } 2310 2311 /// Compute the result of "n choose k", the binomial coefficient. If an 2312 /// intermediate computation overflows, Overflow will be set and the return will 2313 /// be garbage. Overflow is not cleared on absence of overflow. 2314 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2315 // We use the multiplicative formula: 2316 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2317 // At each iteration, we take the n-th term of the numeral and divide by the 2318 // (k-n)th term of the denominator. This division will always produce an 2319 // integral result, and helps reduce the chance of overflow in the 2320 // intermediate computations. However, we can still overflow even when the 2321 // final result would fit. 2322 2323 if (n == 0 || n == k) return 1; 2324 if (k > n) return 0; 2325 2326 if (k > n/2) 2327 k = n-k; 2328 2329 uint64_t r = 1; 2330 for (uint64_t i = 1; i <= k; ++i) { 2331 r = umul_ov(r, n-(i-1), Overflow); 2332 r /= i; 2333 } 2334 return r; 2335 } 2336 2337 /// Determine if any of the operands in this SCEV are a constant or if 2338 /// any of the add or multiply expressions in this SCEV contain a constant. 2339 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2340 SmallVector<const SCEV *, 4> Ops; 2341 Ops.push_back(StartExpr); 2342 while (!Ops.empty()) { 2343 const SCEV *CurrentExpr = Ops.pop_back_val(); 2344 if (isa<SCEVConstant>(*CurrentExpr)) 2345 return true; 2346 2347 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2348 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2349 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2350 } 2351 } 2352 return false; 2353 } 2354 2355 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2356 /// possible. 2357 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2358 SCEV::NoWrapFlags Flags) { 2359 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2360 "only nuw or nsw allowed"); 2361 assert(!Ops.empty() && "Cannot get empty mul!"); 2362 if (Ops.size() == 1) return Ops[0]; 2363 #ifndef NDEBUG 2364 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2365 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2366 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2367 "SCEVMulExpr operand types don't match!"); 2368 #endif 2369 2370 // Sort by complexity, this groups all similar expression types together. 2371 GroupByComplexity(Ops, &LI); 2372 2373 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2374 2375 // If there are any constants, fold them together. 2376 unsigned Idx = 0; 2377 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2378 2379 // C1*(C2+V) -> C1*C2 + C1*V 2380 if (Ops.size() == 2) 2381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2382 // If any of Add's ops are Adds or Muls with a constant, 2383 // apply this transformation as well. 2384 if (Add->getNumOperands() == 2) 2385 if (containsConstantSomewhere(Add)) 2386 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2387 getMulExpr(LHSC, Add->getOperand(1))); 2388 2389 ++Idx; 2390 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2391 // We found two constants, fold them together! 2392 ConstantInt *Fold = ConstantInt::get(getContext(), 2393 LHSC->getValue()->getValue() * 2394 RHSC->getValue()->getValue()); 2395 Ops[0] = getConstant(Fold); 2396 Ops.erase(Ops.begin()+1); // Erase the folded element 2397 if (Ops.size() == 1) return Ops[0]; 2398 LHSC = cast<SCEVConstant>(Ops[0]); 2399 } 2400 2401 // If we are left with a constant one being multiplied, strip it off. 2402 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2403 Ops.erase(Ops.begin()); 2404 --Idx; 2405 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2406 // If we have a multiply of zero, it will always be zero. 2407 return Ops[0]; 2408 } else if (Ops[0]->isAllOnesValue()) { 2409 // If we have a mul by -1 of an add, try distributing the -1 among the 2410 // add operands. 2411 if (Ops.size() == 2) { 2412 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2413 SmallVector<const SCEV *, 4> NewOps; 2414 bool AnyFolded = false; 2415 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2416 E = Add->op_end(); I != E; ++I) { 2417 const SCEV *Mul = getMulExpr(Ops[0], *I); 2418 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2419 NewOps.push_back(Mul); 2420 } 2421 if (AnyFolded) 2422 return getAddExpr(NewOps); 2423 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2424 // Negation preserves a recurrence's no self-wrap property. 2425 SmallVector<const SCEV *, 4> Operands; 2426 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2427 E = AddRec->op_end(); I != E; ++I) { 2428 Operands.push_back(getMulExpr(Ops[0], *I)); 2429 } 2430 return getAddRecExpr(Operands, AddRec->getLoop(), 2431 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2432 } 2433 } 2434 } 2435 2436 if (Ops.size() == 1) 2437 return Ops[0]; 2438 } 2439 2440 // Skip over the add expression until we get to a multiply. 2441 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2442 ++Idx; 2443 2444 // If there are mul operands inline them all into this expression. 2445 if (Idx < Ops.size()) { 2446 bool DeletedMul = false; 2447 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2448 // If we have an mul, expand the mul operands onto the end of the operands 2449 // list. 2450 Ops.erase(Ops.begin()+Idx); 2451 Ops.append(Mul->op_begin(), Mul->op_end()); 2452 DeletedMul = true; 2453 } 2454 2455 // If we deleted at least one mul, we added operands to the end of the list, 2456 // and they are not necessarily sorted. Recurse to resort and resimplify 2457 // any operands we just acquired. 2458 if (DeletedMul) 2459 return getMulExpr(Ops); 2460 } 2461 2462 // If there are any add recurrences in the operands list, see if any other 2463 // added values are loop invariant. If so, we can fold them into the 2464 // recurrence. 2465 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2466 ++Idx; 2467 2468 // Scan over all recurrences, trying to fold loop invariants into them. 2469 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2470 // Scan all of the other operands to this mul and add them to the vector if 2471 // they are loop invariant w.r.t. the recurrence. 2472 SmallVector<const SCEV *, 8> LIOps; 2473 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2474 const Loop *AddRecLoop = AddRec->getLoop(); 2475 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2476 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2477 LIOps.push_back(Ops[i]); 2478 Ops.erase(Ops.begin()+i); 2479 --i; --e; 2480 } 2481 2482 // If we found some loop invariants, fold them into the recurrence. 2483 if (!LIOps.empty()) { 2484 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2485 SmallVector<const SCEV *, 4> NewOps; 2486 NewOps.reserve(AddRec->getNumOperands()); 2487 const SCEV *Scale = getMulExpr(LIOps); 2488 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2489 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2490 2491 // Build the new addrec. Propagate the NUW and NSW flags if both the 2492 // outer mul and the inner addrec are guaranteed to have no overflow. 2493 // 2494 // No self-wrap cannot be guaranteed after changing the step size, but 2495 // will be inferred if either NUW or NSW is true. 2496 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2497 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2498 2499 // If all of the other operands were loop invariant, we are done. 2500 if (Ops.size() == 1) return NewRec; 2501 2502 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2503 for (unsigned i = 0;; ++i) 2504 if (Ops[i] == AddRec) { 2505 Ops[i] = NewRec; 2506 break; 2507 } 2508 return getMulExpr(Ops); 2509 } 2510 2511 // Okay, if there weren't any loop invariants to be folded, check to see if 2512 // there are multiple AddRec's with the same loop induction variable being 2513 // multiplied together. If so, we can fold them. 2514 2515 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2516 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2517 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2518 // ]]],+,...up to x=2n}. 2519 // Note that the arguments to choose() are always integers with values 2520 // known at compile time, never SCEV objects. 2521 // 2522 // The implementation avoids pointless extra computations when the two 2523 // addrec's are of different length (mathematically, it's equivalent to 2524 // an infinite stream of zeros on the right). 2525 bool OpsModified = false; 2526 for (unsigned OtherIdx = Idx+1; 2527 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2528 ++OtherIdx) { 2529 const SCEVAddRecExpr *OtherAddRec = 2530 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2531 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2532 continue; 2533 2534 bool Overflow = false; 2535 Type *Ty = AddRec->getType(); 2536 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2537 SmallVector<const SCEV*, 7> AddRecOps; 2538 for (int x = 0, xe = AddRec->getNumOperands() + 2539 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2540 const SCEV *Term = getZero(Ty); 2541 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2542 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2543 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2544 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2545 z < ze && !Overflow; ++z) { 2546 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2547 uint64_t Coeff; 2548 if (LargerThan64Bits) 2549 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2550 else 2551 Coeff = Coeff1*Coeff2; 2552 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2553 const SCEV *Term1 = AddRec->getOperand(y-z); 2554 const SCEV *Term2 = OtherAddRec->getOperand(z); 2555 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2556 } 2557 } 2558 AddRecOps.push_back(Term); 2559 } 2560 if (!Overflow) { 2561 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2562 SCEV::FlagAnyWrap); 2563 if (Ops.size() == 2) return NewAddRec; 2564 Ops[Idx] = NewAddRec; 2565 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2566 OpsModified = true; 2567 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2568 if (!AddRec) 2569 break; 2570 } 2571 } 2572 if (OpsModified) 2573 return getMulExpr(Ops); 2574 2575 // Otherwise couldn't fold anything into this recurrence. Move onto the 2576 // next one. 2577 } 2578 2579 // Okay, it looks like we really DO need an mul expr. Check to see if we 2580 // already have one, otherwise create a new one. 2581 FoldingSetNodeID ID; 2582 ID.AddInteger(scMulExpr); 2583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2584 ID.AddPointer(Ops[i]); 2585 void *IP = nullptr; 2586 SCEVMulExpr *S = 2587 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2588 if (!S) { 2589 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2590 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2591 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2592 O, Ops.size()); 2593 UniqueSCEVs.InsertNode(S, IP); 2594 } 2595 S->setNoWrapFlags(Flags); 2596 return S; 2597 } 2598 2599 /// getUDivExpr - Get a canonical unsigned division expression, or something 2600 /// simpler if possible. 2601 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2602 const SCEV *RHS) { 2603 assert(getEffectiveSCEVType(LHS->getType()) == 2604 getEffectiveSCEVType(RHS->getType()) && 2605 "SCEVUDivExpr operand types don't match!"); 2606 2607 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2608 if (RHSC->getValue()->equalsInt(1)) 2609 return LHS; // X udiv 1 --> x 2610 // If the denominator is zero, the result of the udiv is undefined. Don't 2611 // try to analyze it, because the resolution chosen here may differ from 2612 // the resolution chosen in other parts of the compiler. 2613 if (!RHSC->getValue()->isZero()) { 2614 // Determine if the division can be folded into the operands of 2615 // its operands. 2616 // TODO: Generalize this to non-constants by using known-bits information. 2617 Type *Ty = LHS->getType(); 2618 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2619 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2620 // For non-power-of-two values, effectively round the value up to the 2621 // nearest power of two. 2622 if (!RHSC->getValue()->getValue().isPowerOf2()) 2623 ++MaxShiftAmt; 2624 IntegerType *ExtTy = 2625 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2626 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2627 if (const SCEVConstant *Step = 2628 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2629 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2630 const APInt &StepInt = Step->getValue()->getValue(); 2631 const APInt &DivInt = RHSC->getValue()->getValue(); 2632 if (!StepInt.urem(DivInt) && 2633 getZeroExtendExpr(AR, ExtTy) == 2634 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2635 getZeroExtendExpr(Step, ExtTy), 2636 AR->getLoop(), SCEV::FlagAnyWrap)) { 2637 SmallVector<const SCEV *, 4> Operands; 2638 for (const SCEV *Op : AR->operands()) 2639 Operands.push_back(getUDivExpr(Op, RHS)); 2640 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2641 } 2642 /// Get a canonical UDivExpr for a recurrence. 2643 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2644 // We can currently only fold X%N if X is constant. 2645 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2646 if (StartC && !DivInt.urem(StepInt) && 2647 getZeroExtendExpr(AR, ExtTy) == 2648 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2649 getZeroExtendExpr(Step, ExtTy), 2650 AR->getLoop(), SCEV::FlagAnyWrap)) { 2651 const APInt &StartInt = StartC->getValue()->getValue(); 2652 const APInt &StartRem = StartInt.urem(StepInt); 2653 if (StartRem != 0) 2654 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2655 AR->getLoop(), SCEV::FlagNW); 2656 } 2657 } 2658 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2659 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2660 SmallVector<const SCEV *, 4> Operands; 2661 for (const SCEV *Op : M->operands()) 2662 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2663 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2664 // Find an operand that's safely divisible. 2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2666 const SCEV *Op = M->getOperand(i); 2667 const SCEV *Div = getUDivExpr(Op, RHSC); 2668 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2669 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2670 M->op_end()); 2671 Operands[i] = Div; 2672 return getMulExpr(Operands); 2673 } 2674 } 2675 } 2676 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2677 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2678 SmallVector<const SCEV *, 4> Operands; 2679 for (const SCEV *Op : A->operands()) 2680 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2681 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2682 Operands.clear(); 2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2684 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2685 if (isa<SCEVUDivExpr>(Op) || 2686 getMulExpr(Op, RHS) != A->getOperand(i)) 2687 break; 2688 Operands.push_back(Op); 2689 } 2690 if (Operands.size() == A->getNumOperands()) 2691 return getAddExpr(Operands); 2692 } 2693 } 2694 2695 // Fold if both operands are constant. 2696 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2697 Constant *LHSCV = LHSC->getValue(); 2698 Constant *RHSCV = RHSC->getValue(); 2699 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2700 RHSCV))); 2701 } 2702 } 2703 } 2704 2705 FoldingSetNodeID ID; 2706 ID.AddInteger(scUDivExpr); 2707 ID.AddPointer(LHS); 2708 ID.AddPointer(RHS); 2709 void *IP = nullptr; 2710 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2711 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2712 LHS, RHS); 2713 UniqueSCEVs.InsertNode(S, IP); 2714 return S; 2715 } 2716 2717 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2718 APInt A = C1->getValue()->getValue().abs(); 2719 APInt B = C2->getValue()->getValue().abs(); 2720 uint32_t ABW = A.getBitWidth(); 2721 uint32_t BBW = B.getBitWidth(); 2722 2723 if (ABW > BBW) 2724 B = B.zext(ABW); 2725 else if (ABW < BBW) 2726 A = A.zext(BBW); 2727 2728 return APIntOps::GreatestCommonDivisor(A, B); 2729 } 2730 2731 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2732 /// something simpler if possible. There is no representation for an exact udiv 2733 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2734 /// We can't do this when it's not exact because the udiv may be clearing bits. 2735 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2736 const SCEV *RHS) { 2737 // TODO: we could try to find factors in all sorts of things, but for now we 2738 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2739 // end of this file for inspiration. 2740 2741 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2742 if (!Mul) 2743 return getUDivExpr(LHS, RHS); 2744 2745 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2746 // If the mulexpr multiplies by a constant, then that constant must be the 2747 // first element of the mulexpr. 2748 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2749 if (LHSCst == RHSCst) { 2750 SmallVector<const SCEV *, 2> Operands; 2751 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2752 return getMulExpr(Operands); 2753 } 2754 2755 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2756 // that there's a factor provided by one of the other terms. We need to 2757 // check. 2758 APInt Factor = gcd(LHSCst, RHSCst); 2759 if (!Factor.isIntN(1)) { 2760 LHSCst = cast<SCEVConstant>( 2761 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2762 RHSCst = cast<SCEVConstant>( 2763 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2764 SmallVector<const SCEV *, 2> Operands; 2765 Operands.push_back(LHSCst); 2766 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2767 LHS = getMulExpr(Operands); 2768 RHS = RHSCst; 2769 Mul = dyn_cast<SCEVMulExpr>(LHS); 2770 if (!Mul) 2771 return getUDivExactExpr(LHS, RHS); 2772 } 2773 } 2774 } 2775 2776 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2777 if (Mul->getOperand(i) == RHS) { 2778 SmallVector<const SCEV *, 2> Operands; 2779 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2780 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2781 return getMulExpr(Operands); 2782 } 2783 } 2784 2785 return getUDivExpr(LHS, RHS); 2786 } 2787 2788 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2789 /// Simplify the expression as much as possible. 2790 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2791 const Loop *L, 2792 SCEV::NoWrapFlags Flags) { 2793 SmallVector<const SCEV *, 4> Operands; 2794 Operands.push_back(Start); 2795 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2796 if (StepChrec->getLoop() == L) { 2797 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2798 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2799 } 2800 2801 Operands.push_back(Step); 2802 return getAddRecExpr(Operands, L, Flags); 2803 } 2804 2805 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2806 /// Simplify the expression as much as possible. 2807 const SCEV * 2808 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2809 const Loop *L, SCEV::NoWrapFlags Flags) { 2810 if (Operands.size() == 1) return Operands[0]; 2811 #ifndef NDEBUG 2812 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2813 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2814 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2815 "SCEVAddRecExpr operand types don't match!"); 2816 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2817 assert(isLoopInvariant(Operands[i], L) && 2818 "SCEVAddRecExpr operand is not loop-invariant!"); 2819 #endif 2820 2821 if (Operands.back()->isZero()) { 2822 Operands.pop_back(); 2823 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2824 } 2825 2826 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2827 // use that information to infer NUW and NSW flags. However, computing a 2828 // BE count requires calling getAddRecExpr, so we may not yet have a 2829 // meaningful BE count at this point (and if we don't, we'd be stuck 2830 // with a SCEVCouldNotCompute as the cached BE count). 2831 2832 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2833 2834 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2835 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2836 const Loop *NestedLoop = NestedAR->getLoop(); 2837 if (L->contains(NestedLoop) 2838 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2839 : (!NestedLoop->contains(L) && 2840 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2841 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2842 NestedAR->op_end()); 2843 Operands[0] = NestedAR->getStart(); 2844 // AddRecs require their operands be loop-invariant with respect to their 2845 // loops. Don't perform this transformation if it would break this 2846 // requirement. 2847 bool AllInvariant = 2848 std::all_of(Operands.begin(), Operands.end(), 2849 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2850 2851 if (AllInvariant) { 2852 // Create a recurrence for the outer loop with the same step size. 2853 // 2854 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2855 // inner recurrence has the same property. 2856 SCEV::NoWrapFlags OuterFlags = 2857 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2858 2859 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2860 AllInvariant = std::all_of( 2861 NestedOperands.begin(), NestedOperands.end(), 2862 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2863 2864 if (AllInvariant) { 2865 // Ok, both add recurrences are valid after the transformation. 2866 // 2867 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2868 // the outer recurrence has the same property. 2869 SCEV::NoWrapFlags InnerFlags = 2870 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2871 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2872 } 2873 } 2874 // Reset Operands to its original state. 2875 Operands[0] = NestedAR; 2876 } 2877 } 2878 2879 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2880 // already have one, otherwise create a new one. 2881 FoldingSetNodeID ID; 2882 ID.AddInteger(scAddRecExpr); 2883 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2884 ID.AddPointer(Operands[i]); 2885 ID.AddPointer(L); 2886 void *IP = nullptr; 2887 SCEVAddRecExpr *S = 2888 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2889 if (!S) { 2890 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2891 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2892 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2893 O, Operands.size(), L); 2894 UniqueSCEVs.InsertNode(S, IP); 2895 } 2896 S->setNoWrapFlags(Flags); 2897 return S; 2898 } 2899 2900 const SCEV * 2901 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2902 const SmallVectorImpl<const SCEV *> &IndexExprs, 2903 bool InBounds) { 2904 // getSCEV(Base)->getType() has the same address space as Base->getType() 2905 // because SCEV::getType() preserves the address space. 2906 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2907 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2908 // instruction to its SCEV, because the Instruction may be guarded by control 2909 // flow and the no-overflow bits may not be valid for the expression in any 2910 // context. This can be fixed similarly to how these flags are handled for 2911 // adds. 2912 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2913 2914 const SCEV *TotalOffset = getZero(IntPtrTy); 2915 // The address space is unimportant. The first thing we do on CurTy is getting 2916 // its element type. 2917 Type *CurTy = PointerType::getUnqual(PointeeType); 2918 for (const SCEV *IndexExpr : IndexExprs) { 2919 // Compute the (potentially symbolic) offset in bytes for this index. 2920 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2921 // For a struct, add the member offset. 2922 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2923 unsigned FieldNo = Index->getZExtValue(); 2924 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2925 2926 // Add the field offset to the running total offset. 2927 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2928 2929 // Update CurTy to the type of the field at Index. 2930 CurTy = STy->getTypeAtIndex(Index); 2931 } else { 2932 // Update CurTy to its element type. 2933 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2934 // For an array, add the element offset, explicitly scaled. 2935 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2936 // Getelementptr indices are signed. 2937 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2938 2939 // Multiply the index by the element size to compute the element offset. 2940 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2941 2942 // Add the element offset to the running total offset. 2943 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2944 } 2945 } 2946 2947 // Add the total offset from all the GEP indices to the base. 2948 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2949 } 2950 2951 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2952 const SCEV *RHS) { 2953 SmallVector<const SCEV *, 2> Ops; 2954 Ops.push_back(LHS); 2955 Ops.push_back(RHS); 2956 return getSMaxExpr(Ops); 2957 } 2958 2959 const SCEV * 2960 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2961 assert(!Ops.empty() && "Cannot get empty smax!"); 2962 if (Ops.size() == 1) return Ops[0]; 2963 #ifndef NDEBUG 2964 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2965 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2966 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2967 "SCEVSMaxExpr operand types don't match!"); 2968 #endif 2969 2970 // Sort by complexity, this groups all similar expression types together. 2971 GroupByComplexity(Ops, &LI); 2972 2973 // If there are any constants, fold them together. 2974 unsigned Idx = 0; 2975 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2976 ++Idx; 2977 assert(Idx < Ops.size()); 2978 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2979 // We found two constants, fold them together! 2980 ConstantInt *Fold = ConstantInt::get(getContext(), 2981 APIntOps::smax(LHSC->getValue()->getValue(), 2982 RHSC->getValue()->getValue())); 2983 Ops[0] = getConstant(Fold); 2984 Ops.erase(Ops.begin()+1); // Erase the folded element 2985 if (Ops.size() == 1) return Ops[0]; 2986 LHSC = cast<SCEVConstant>(Ops[0]); 2987 } 2988 2989 // If we are left with a constant minimum-int, strip it off. 2990 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2991 Ops.erase(Ops.begin()); 2992 --Idx; 2993 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2994 // If we have an smax with a constant maximum-int, it will always be 2995 // maximum-int. 2996 return Ops[0]; 2997 } 2998 2999 if (Ops.size() == 1) return Ops[0]; 3000 } 3001 3002 // Find the first SMax 3003 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3004 ++Idx; 3005 3006 // Check to see if one of the operands is an SMax. If so, expand its operands 3007 // onto our operand list, and recurse to simplify. 3008 if (Idx < Ops.size()) { 3009 bool DeletedSMax = false; 3010 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3011 Ops.erase(Ops.begin()+Idx); 3012 Ops.append(SMax->op_begin(), SMax->op_end()); 3013 DeletedSMax = true; 3014 } 3015 3016 if (DeletedSMax) 3017 return getSMaxExpr(Ops); 3018 } 3019 3020 // Okay, check to see if the same value occurs in the operand list twice. If 3021 // so, delete one. Since we sorted the list, these values are required to 3022 // be adjacent. 3023 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3024 // X smax Y smax Y --> X smax Y 3025 // X smax Y --> X, if X is always greater than Y 3026 if (Ops[i] == Ops[i+1] || 3027 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3028 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3029 --i; --e; 3030 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3031 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3032 --i; --e; 3033 } 3034 3035 if (Ops.size() == 1) return Ops[0]; 3036 3037 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3038 3039 // Okay, it looks like we really DO need an smax expr. Check to see if we 3040 // already have one, otherwise create a new one. 3041 FoldingSetNodeID ID; 3042 ID.AddInteger(scSMaxExpr); 3043 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3044 ID.AddPointer(Ops[i]); 3045 void *IP = nullptr; 3046 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3047 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3048 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3049 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3050 O, Ops.size()); 3051 UniqueSCEVs.InsertNode(S, IP); 3052 return S; 3053 } 3054 3055 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3056 const SCEV *RHS) { 3057 SmallVector<const SCEV *, 2> Ops; 3058 Ops.push_back(LHS); 3059 Ops.push_back(RHS); 3060 return getUMaxExpr(Ops); 3061 } 3062 3063 const SCEV * 3064 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3065 assert(!Ops.empty() && "Cannot get empty umax!"); 3066 if (Ops.size() == 1) return Ops[0]; 3067 #ifndef NDEBUG 3068 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3069 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3070 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3071 "SCEVUMaxExpr operand types don't match!"); 3072 #endif 3073 3074 // Sort by complexity, this groups all similar expression types together. 3075 GroupByComplexity(Ops, &LI); 3076 3077 // If there are any constants, fold them together. 3078 unsigned Idx = 0; 3079 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3080 ++Idx; 3081 assert(Idx < Ops.size()); 3082 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3083 // We found two constants, fold them together! 3084 ConstantInt *Fold = ConstantInt::get(getContext(), 3085 APIntOps::umax(LHSC->getValue()->getValue(), 3086 RHSC->getValue()->getValue())); 3087 Ops[0] = getConstant(Fold); 3088 Ops.erase(Ops.begin()+1); // Erase the folded element 3089 if (Ops.size() == 1) return Ops[0]; 3090 LHSC = cast<SCEVConstant>(Ops[0]); 3091 } 3092 3093 // If we are left with a constant minimum-int, strip it off. 3094 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3095 Ops.erase(Ops.begin()); 3096 --Idx; 3097 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3098 // If we have an umax with a constant maximum-int, it will always be 3099 // maximum-int. 3100 return Ops[0]; 3101 } 3102 3103 if (Ops.size() == 1) return Ops[0]; 3104 } 3105 3106 // Find the first UMax 3107 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3108 ++Idx; 3109 3110 // Check to see if one of the operands is a UMax. If so, expand its operands 3111 // onto our operand list, and recurse to simplify. 3112 if (Idx < Ops.size()) { 3113 bool DeletedUMax = false; 3114 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3115 Ops.erase(Ops.begin()+Idx); 3116 Ops.append(UMax->op_begin(), UMax->op_end()); 3117 DeletedUMax = true; 3118 } 3119 3120 if (DeletedUMax) 3121 return getUMaxExpr(Ops); 3122 } 3123 3124 // Okay, check to see if the same value occurs in the operand list twice. If 3125 // so, delete one. Since we sorted the list, these values are required to 3126 // be adjacent. 3127 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3128 // X umax Y umax Y --> X umax Y 3129 // X umax Y --> X, if X is always greater than Y 3130 if (Ops[i] == Ops[i+1] || 3131 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3132 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3133 --i; --e; 3134 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3135 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3136 --i; --e; 3137 } 3138 3139 if (Ops.size() == 1) return Ops[0]; 3140 3141 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3142 3143 // Okay, it looks like we really DO need a umax expr. Check to see if we 3144 // already have one, otherwise create a new one. 3145 FoldingSetNodeID ID; 3146 ID.AddInteger(scUMaxExpr); 3147 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3148 ID.AddPointer(Ops[i]); 3149 void *IP = nullptr; 3150 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3151 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3152 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3153 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3154 O, Ops.size()); 3155 UniqueSCEVs.InsertNode(S, IP); 3156 return S; 3157 } 3158 3159 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3160 const SCEV *RHS) { 3161 // ~smax(~x, ~y) == smin(x, y). 3162 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3163 } 3164 3165 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3166 const SCEV *RHS) { 3167 // ~umax(~x, ~y) == umin(x, y) 3168 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3169 } 3170 3171 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3172 // We can bypass creating a target-independent 3173 // constant expression and then folding it back into a ConstantInt. 3174 // This is just a compile-time optimization. 3175 return getConstant(IntTy, 3176 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3177 } 3178 3179 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3180 StructType *STy, 3181 unsigned FieldNo) { 3182 // We can bypass creating a target-independent 3183 // constant expression and then folding it back into a ConstantInt. 3184 // This is just a compile-time optimization. 3185 return getConstant( 3186 IntTy, 3187 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3188 FieldNo)); 3189 } 3190 3191 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3192 // Don't attempt to do anything other than create a SCEVUnknown object 3193 // here. createSCEV only calls getUnknown after checking for all other 3194 // interesting possibilities, and any other code that calls getUnknown 3195 // is doing so in order to hide a value from SCEV canonicalization. 3196 3197 FoldingSetNodeID ID; 3198 ID.AddInteger(scUnknown); 3199 ID.AddPointer(V); 3200 void *IP = nullptr; 3201 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3202 assert(cast<SCEVUnknown>(S)->getValue() == V && 3203 "Stale SCEVUnknown in uniquing map!"); 3204 return S; 3205 } 3206 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3207 FirstUnknown); 3208 FirstUnknown = cast<SCEVUnknown>(S); 3209 UniqueSCEVs.InsertNode(S, IP); 3210 return S; 3211 } 3212 3213 //===----------------------------------------------------------------------===// 3214 // Basic SCEV Analysis and PHI Idiom Recognition Code 3215 // 3216 3217 /// isSCEVable - Test if values of the given type are analyzable within 3218 /// the SCEV framework. This primarily includes integer types, and it 3219 /// can optionally include pointer types if the ScalarEvolution class 3220 /// has access to target-specific information. 3221 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3222 // Integers and pointers are always SCEVable. 3223 return Ty->isIntegerTy() || Ty->isPointerTy(); 3224 } 3225 3226 /// getTypeSizeInBits - Return the size in bits of the specified type, 3227 /// for which isSCEVable must return true. 3228 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3229 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3230 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3231 } 3232 3233 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3234 /// the given type and which represents how SCEV will treat the given 3235 /// type, for which isSCEVable must return true. For pointer types, 3236 /// this is the pointer-sized integer type. 3237 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3238 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3239 3240 if (Ty->isIntegerTy()) { 3241 return Ty; 3242 } 3243 3244 // The only other support type is pointer. 3245 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3246 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3247 } 3248 3249 const SCEV *ScalarEvolution::getCouldNotCompute() { 3250 return CouldNotCompute.get(); 3251 } 3252 3253 namespace { 3254 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3255 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3256 // is set iff if find such SCEVUnknown. 3257 // 3258 struct FindInvalidSCEVUnknown { 3259 bool FindOne; 3260 FindInvalidSCEVUnknown() { FindOne = false; } 3261 bool follow(const SCEV *S) { 3262 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3263 case scConstant: 3264 return false; 3265 case scUnknown: 3266 if (!cast<SCEVUnknown>(S)->getValue()) 3267 FindOne = true; 3268 return false; 3269 default: 3270 return true; 3271 } 3272 } 3273 bool isDone() const { return FindOne; } 3274 }; 3275 } 3276 3277 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3278 FindInvalidSCEVUnknown F; 3279 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3280 ST.visitAll(S); 3281 3282 return !F.FindOne; 3283 } 3284 3285 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3286 /// expression and create a new one. 3287 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3288 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3289 3290 const SCEV *S = getExistingSCEV(V); 3291 if (S == nullptr) { 3292 S = createSCEV(V); 3293 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3294 } 3295 return S; 3296 } 3297 3298 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3299 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3300 3301 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3302 if (I != ValueExprMap.end()) { 3303 const SCEV *S = I->second; 3304 if (checkValidity(S)) 3305 return S; 3306 ValueExprMap.erase(I); 3307 } 3308 return nullptr; 3309 } 3310 3311 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3312 /// 3313 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3314 SCEV::NoWrapFlags Flags) { 3315 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3316 return getConstant( 3317 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3318 3319 Type *Ty = V->getType(); 3320 Ty = getEffectiveSCEVType(Ty); 3321 return getMulExpr( 3322 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3323 } 3324 3325 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3326 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3327 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3328 return getConstant( 3329 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3330 3331 Type *Ty = V->getType(); 3332 Ty = getEffectiveSCEVType(Ty); 3333 const SCEV *AllOnes = 3334 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3335 return getMinusSCEV(AllOnes, V); 3336 } 3337 3338 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3339 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3340 SCEV::NoWrapFlags Flags) { 3341 // Fast path: X - X --> 0. 3342 if (LHS == RHS) 3343 return getZero(LHS->getType()); 3344 3345 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3346 // makes it so that we cannot make much use of NUW. 3347 auto AddFlags = SCEV::FlagAnyWrap; 3348 const bool RHSIsNotMinSigned = 3349 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3350 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3351 // Let M be the minimum representable signed value. Then (-1)*RHS 3352 // signed-wraps if and only if RHS is M. That can happen even for 3353 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3354 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3355 // (-1)*RHS, we need to prove that RHS != M. 3356 // 3357 // If LHS is non-negative and we know that LHS - RHS does not 3358 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3359 // either by proving that RHS > M or that LHS >= 0. 3360 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3361 AddFlags = SCEV::FlagNSW; 3362 } 3363 } 3364 3365 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3366 // RHS is NSW and LHS >= 0. 3367 // 3368 // The difficulty here is that the NSW flag may have been proven 3369 // relative to a loop that is to be found in a recurrence in LHS and 3370 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3371 // larger scope than intended. 3372 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3373 3374 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3375 } 3376 3377 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3378 /// input value to the specified type. If the type must be extended, it is zero 3379 /// extended. 3380 const SCEV * 3381 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3382 Type *SrcTy = V->getType(); 3383 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3384 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3385 "Cannot truncate or zero extend with non-integer arguments!"); 3386 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3387 return V; // No conversion 3388 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3389 return getTruncateExpr(V, Ty); 3390 return getZeroExtendExpr(V, Ty); 3391 } 3392 3393 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3394 /// input value to the specified type. If the type must be extended, it is sign 3395 /// extended. 3396 const SCEV * 3397 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3398 Type *Ty) { 3399 Type *SrcTy = V->getType(); 3400 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3401 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3402 "Cannot truncate or zero extend with non-integer arguments!"); 3403 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3404 return V; // No conversion 3405 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3406 return getTruncateExpr(V, Ty); 3407 return getSignExtendExpr(V, Ty); 3408 } 3409 3410 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3411 /// input value to the specified type. If the type must be extended, it is zero 3412 /// extended. The conversion must not be narrowing. 3413 const SCEV * 3414 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3415 Type *SrcTy = V->getType(); 3416 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3417 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3418 "Cannot noop or zero extend with non-integer arguments!"); 3419 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3420 "getNoopOrZeroExtend cannot truncate!"); 3421 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3422 return V; // No conversion 3423 return getZeroExtendExpr(V, Ty); 3424 } 3425 3426 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3427 /// input value to the specified type. If the type must be extended, it is sign 3428 /// extended. The conversion must not be narrowing. 3429 const SCEV * 3430 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3431 Type *SrcTy = V->getType(); 3432 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3433 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3434 "Cannot noop or sign extend with non-integer arguments!"); 3435 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3436 "getNoopOrSignExtend cannot truncate!"); 3437 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3438 return V; // No conversion 3439 return getSignExtendExpr(V, Ty); 3440 } 3441 3442 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3443 /// the input value to the specified type. If the type must be extended, 3444 /// it is extended with unspecified bits. The conversion must not be 3445 /// narrowing. 3446 const SCEV * 3447 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3448 Type *SrcTy = V->getType(); 3449 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3450 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3451 "Cannot noop or any extend with non-integer arguments!"); 3452 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3453 "getNoopOrAnyExtend cannot truncate!"); 3454 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3455 return V; // No conversion 3456 return getAnyExtendExpr(V, Ty); 3457 } 3458 3459 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3460 /// input value to the specified type. The conversion must not be widening. 3461 const SCEV * 3462 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3463 Type *SrcTy = V->getType(); 3464 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3465 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3466 "Cannot truncate or noop with non-integer arguments!"); 3467 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3468 "getTruncateOrNoop cannot extend!"); 3469 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3470 return V; // No conversion 3471 return getTruncateExpr(V, Ty); 3472 } 3473 3474 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3475 /// the types using zero-extension, and then perform a umax operation 3476 /// with them. 3477 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3478 const SCEV *RHS) { 3479 const SCEV *PromotedLHS = LHS; 3480 const SCEV *PromotedRHS = RHS; 3481 3482 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3483 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3484 else 3485 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3486 3487 return getUMaxExpr(PromotedLHS, PromotedRHS); 3488 } 3489 3490 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3491 /// the types using zero-extension, and then perform a umin operation 3492 /// with them. 3493 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3494 const SCEV *RHS) { 3495 const SCEV *PromotedLHS = LHS; 3496 const SCEV *PromotedRHS = RHS; 3497 3498 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3499 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3500 else 3501 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3502 3503 return getUMinExpr(PromotedLHS, PromotedRHS); 3504 } 3505 3506 /// getPointerBase - Transitively follow the chain of pointer-type operands 3507 /// until reaching a SCEV that does not have a single pointer operand. This 3508 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3509 /// but corner cases do exist. 3510 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3511 // A pointer operand may evaluate to a nonpointer expression, such as null. 3512 if (!V->getType()->isPointerTy()) 3513 return V; 3514 3515 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3516 return getPointerBase(Cast->getOperand()); 3517 } 3518 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3519 const SCEV *PtrOp = nullptr; 3520 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3521 I != E; ++I) { 3522 if ((*I)->getType()->isPointerTy()) { 3523 // Cannot find the base of an expression with multiple pointer operands. 3524 if (PtrOp) 3525 return V; 3526 PtrOp = *I; 3527 } 3528 } 3529 if (!PtrOp) 3530 return V; 3531 return getPointerBase(PtrOp); 3532 } 3533 return V; 3534 } 3535 3536 /// PushDefUseChildren - Push users of the given Instruction 3537 /// onto the given Worklist. 3538 static void 3539 PushDefUseChildren(Instruction *I, 3540 SmallVectorImpl<Instruction *> &Worklist) { 3541 // Push the def-use children onto the Worklist stack. 3542 for (User *U : I->users()) 3543 Worklist.push_back(cast<Instruction>(U)); 3544 } 3545 3546 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3547 /// instructions that depend on the given instruction and removes them from 3548 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3549 /// resolution. 3550 void 3551 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3552 SmallVector<Instruction *, 16> Worklist; 3553 PushDefUseChildren(PN, Worklist); 3554 3555 SmallPtrSet<Instruction *, 8> Visited; 3556 Visited.insert(PN); 3557 while (!Worklist.empty()) { 3558 Instruction *I = Worklist.pop_back_val(); 3559 if (!Visited.insert(I).second) 3560 continue; 3561 3562 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3563 if (It != ValueExprMap.end()) { 3564 const SCEV *Old = It->second; 3565 3566 // Short-circuit the def-use traversal if the symbolic name 3567 // ceases to appear in expressions. 3568 if (Old != SymName && !hasOperand(Old, SymName)) 3569 continue; 3570 3571 // SCEVUnknown for a PHI either means that it has an unrecognized 3572 // structure, it's a PHI that's in the progress of being computed 3573 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3574 // additional loop trip count information isn't going to change anything. 3575 // In the second case, createNodeForPHI will perform the necessary 3576 // updates on its own when it gets to that point. In the third, we do 3577 // want to forget the SCEVUnknown. 3578 if (!isa<PHINode>(I) || 3579 !isa<SCEVUnknown>(Old) || 3580 (I != PN && Old == SymName)) { 3581 forgetMemoizedResults(Old); 3582 ValueExprMap.erase(It); 3583 } 3584 } 3585 3586 PushDefUseChildren(I, Worklist); 3587 } 3588 } 3589 3590 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3591 const Loop *L = LI.getLoopFor(PN->getParent()); 3592 if (!L || L->getHeader() != PN->getParent()) 3593 return nullptr; 3594 3595 // The loop may have multiple entrances or multiple exits; we can analyze 3596 // this phi as an addrec if it has a unique entry value and a unique 3597 // backedge value. 3598 Value *BEValueV = nullptr, *StartValueV = nullptr; 3599 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3600 Value *V = PN->getIncomingValue(i); 3601 if (L->contains(PN->getIncomingBlock(i))) { 3602 if (!BEValueV) { 3603 BEValueV = V; 3604 } else if (BEValueV != V) { 3605 BEValueV = nullptr; 3606 break; 3607 } 3608 } else if (!StartValueV) { 3609 StartValueV = V; 3610 } else if (StartValueV != V) { 3611 StartValueV = nullptr; 3612 break; 3613 } 3614 } 3615 if (BEValueV && StartValueV) { 3616 // While we are analyzing this PHI node, handle its value symbolically. 3617 const SCEV *SymbolicName = getUnknown(PN); 3618 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3619 "PHI node already processed?"); 3620 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3621 3622 // Using this symbolic name for the PHI, analyze the value coming around 3623 // the back-edge. 3624 const SCEV *BEValue = getSCEV(BEValueV); 3625 3626 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3627 // has a special value for the first iteration of the loop. 3628 3629 // If the value coming around the backedge is an add with the symbolic 3630 // value we just inserted, then we found a simple induction variable! 3631 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3632 // If there is a single occurrence of the symbolic value, replace it 3633 // with a recurrence. 3634 unsigned FoundIndex = Add->getNumOperands(); 3635 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3636 if (Add->getOperand(i) == SymbolicName) 3637 if (FoundIndex == e) { 3638 FoundIndex = i; 3639 break; 3640 } 3641 3642 if (FoundIndex != Add->getNumOperands()) { 3643 // Create an add with everything but the specified operand. 3644 SmallVector<const SCEV *, 8> Ops; 3645 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3646 if (i != FoundIndex) 3647 Ops.push_back(Add->getOperand(i)); 3648 const SCEV *Accum = getAddExpr(Ops); 3649 3650 // This is not a valid addrec if the step amount is varying each 3651 // loop iteration, but is not itself an addrec in this loop. 3652 if (isLoopInvariant(Accum, L) || 3653 (isa<SCEVAddRecExpr>(Accum) && 3654 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3655 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3656 3657 // If the increment doesn't overflow, then neither the addrec nor 3658 // the post-increment will overflow. 3659 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3660 if (OBO->getOperand(0) == PN) { 3661 if (OBO->hasNoUnsignedWrap()) 3662 Flags = setFlags(Flags, SCEV::FlagNUW); 3663 if (OBO->hasNoSignedWrap()) 3664 Flags = setFlags(Flags, SCEV::FlagNSW); 3665 } 3666 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3667 // If the increment is an inbounds GEP, then we know the address 3668 // space cannot be wrapped around. We cannot make any guarantee 3669 // about signed or unsigned overflow because pointers are 3670 // unsigned but we may have a negative index from the base 3671 // pointer. We can guarantee that no unsigned wrap occurs if the 3672 // indices form a positive value. 3673 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3674 Flags = setFlags(Flags, SCEV::FlagNW); 3675 3676 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3677 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3678 Flags = setFlags(Flags, SCEV::FlagNUW); 3679 } 3680 3681 // We cannot transfer nuw and nsw flags from subtraction 3682 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3683 // for instance. 3684 } 3685 3686 const SCEV *StartVal = getSCEV(StartValueV); 3687 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3688 3689 // Since the no-wrap flags are on the increment, they apply to the 3690 // post-incremented value as well. 3691 if (isLoopInvariant(Accum, L)) 3692 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3693 3694 // Okay, for the entire analysis of this edge we assumed the PHI 3695 // to be symbolic. We now need to go back and purge all of the 3696 // entries for the scalars that use the symbolic expression. 3697 ForgetSymbolicName(PN, SymbolicName); 3698 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3699 return PHISCEV; 3700 } 3701 } 3702 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3703 // Otherwise, this could be a loop like this: 3704 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3705 // In this case, j = {1,+,1} and BEValue is j. 3706 // Because the other in-value of i (0) fits the evolution of BEValue 3707 // i really is an addrec evolution. 3708 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3709 const SCEV *StartVal = getSCEV(StartValueV); 3710 3711 // If StartVal = j.start - j.stride, we can use StartVal as the 3712 // initial step of the addrec evolution. 3713 if (StartVal == 3714 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3715 // FIXME: For constant StartVal, we should be able to infer 3716 // no-wrap flags. 3717 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3718 L, SCEV::FlagAnyWrap); 3719 3720 // Okay, for the entire analysis of this edge we assumed the PHI 3721 // to be symbolic. We now need to go back and purge all of the 3722 // entries for the scalars that use the symbolic expression. 3723 ForgetSymbolicName(PN, SymbolicName); 3724 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3725 return PHISCEV; 3726 } 3727 } 3728 } 3729 } 3730 3731 return nullptr; 3732 } 3733 3734 // Checks if the SCEV S is available at BB. S is considered available at BB 3735 // if S can be materialized at BB without introducing a fault. 3736 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3737 BasicBlock *BB) { 3738 struct CheckAvailable { 3739 bool TraversalDone = false; 3740 bool Available = true; 3741 3742 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3743 BasicBlock *BB = nullptr; 3744 DominatorTree &DT; 3745 3746 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3747 : L(L), BB(BB), DT(DT) {} 3748 3749 bool setUnavailable() { 3750 TraversalDone = true; 3751 Available = false; 3752 return false; 3753 } 3754 3755 bool follow(const SCEV *S) { 3756 switch (S->getSCEVType()) { 3757 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3758 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3759 // These expressions are available if their operand(s) is/are. 3760 return true; 3761 3762 case scAddRecExpr: { 3763 // We allow add recurrences that are on the loop BB is in, or some 3764 // outer loop. This guarantees availability because the value of the 3765 // add recurrence at BB is simply the "current" value of the induction 3766 // variable. We can relax this in the future; for instance an add 3767 // recurrence on a sibling dominating loop is also available at BB. 3768 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3769 if (L && (ARLoop == L || ARLoop->contains(L))) 3770 return true; 3771 3772 return setUnavailable(); 3773 } 3774 3775 case scUnknown: { 3776 // For SCEVUnknown, we check for simple dominance. 3777 const auto *SU = cast<SCEVUnknown>(S); 3778 Value *V = SU->getValue(); 3779 3780 if (isa<Argument>(V)) 3781 return false; 3782 3783 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3784 return false; 3785 3786 return setUnavailable(); 3787 } 3788 3789 case scUDivExpr: 3790 case scCouldNotCompute: 3791 // We do not try to smart about these at all. 3792 return setUnavailable(); 3793 } 3794 llvm_unreachable("switch should be fully covered!"); 3795 } 3796 3797 bool isDone() { return TraversalDone; } 3798 }; 3799 3800 CheckAvailable CA(L, BB, DT); 3801 SCEVTraversal<CheckAvailable> ST(CA); 3802 3803 ST.visitAll(S); 3804 return CA.Available; 3805 } 3806 3807 // Try to match a control flow sequence that branches out at BI and merges back 3808 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3809 // match. 3810 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3811 Value *&C, Value *&LHS, Value *&RHS) { 3812 C = BI->getCondition(); 3813 3814 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3815 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3816 3817 if (!LeftEdge.isSingleEdge()) 3818 return false; 3819 3820 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3821 3822 Use &LeftUse = Merge->getOperandUse(0); 3823 Use &RightUse = Merge->getOperandUse(1); 3824 3825 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3826 LHS = LeftUse; 3827 RHS = RightUse; 3828 return true; 3829 } 3830 3831 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3832 LHS = RightUse; 3833 RHS = LeftUse; 3834 return true; 3835 } 3836 3837 return false; 3838 } 3839 3840 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3841 if (PN->getNumIncomingValues() == 2) { 3842 const Loop *L = LI.getLoopFor(PN->getParent()); 3843 3844 // Try to match 3845 // 3846 // br %cond, label %left, label %right 3847 // left: 3848 // br label %merge 3849 // right: 3850 // br label %merge 3851 // merge: 3852 // V = phi [ %x, %left ], [ %y, %right ] 3853 // 3854 // as "select %cond, %x, %y" 3855 3856 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3857 assert(IDom && "At least the entry block should dominate PN"); 3858 3859 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3860 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3861 3862 if (BI && BI->isConditional() && 3863 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3864 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3865 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3866 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3867 } 3868 3869 return nullptr; 3870 } 3871 3872 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3873 if (const SCEV *S = createAddRecFromPHI(PN)) 3874 return S; 3875 3876 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3877 return S; 3878 3879 // If the PHI has a single incoming value, follow that value, unless the 3880 // PHI's incoming blocks are in a different loop, in which case doing so 3881 // risks breaking LCSSA form. Instcombine would normally zap these, but 3882 // it doesn't have DominatorTree information, so it may miss cases. 3883 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3884 &DT, &AC)) 3885 if (LI.replacementPreservesLCSSAForm(PN, V)) 3886 return getSCEV(V); 3887 3888 // If it's not a loop phi, we can't handle it yet. 3889 return getUnknown(PN); 3890 } 3891 3892 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3893 Value *Cond, 3894 Value *TrueVal, 3895 Value *FalseVal) { 3896 // Handle "constant" branch or select. This can occur for instance when a 3897 // loop pass transforms an inner loop and moves on to process the outer loop. 3898 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3899 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3900 3901 // Try to match some simple smax or umax patterns. 3902 auto *ICI = dyn_cast<ICmpInst>(Cond); 3903 if (!ICI) 3904 return getUnknown(I); 3905 3906 Value *LHS = ICI->getOperand(0); 3907 Value *RHS = ICI->getOperand(1); 3908 3909 switch (ICI->getPredicate()) { 3910 case ICmpInst::ICMP_SLT: 3911 case ICmpInst::ICMP_SLE: 3912 std::swap(LHS, RHS); 3913 // fall through 3914 case ICmpInst::ICMP_SGT: 3915 case ICmpInst::ICMP_SGE: 3916 // a >s b ? a+x : b+x -> smax(a, b)+x 3917 // a >s b ? b+x : a+x -> smin(a, b)+x 3918 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3919 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3920 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3921 const SCEV *LA = getSCEV(TrueVal); 3922 const SCEV *RA = getSCEV(FalseVal); 3923 const SCEV *LDiff = getMinusSCEV(LA, LS); 3924 const SCEV *RDiff = getMinusSCEV(RA, RS); 3925 if (LDiff == RDiff) 3926 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3927 LDiff = getMinusSCEV(LA, RS); 3928 RDiff = getMinusSCEV(RA, LS); 3929 if (LDiff == RDiff) 3930 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3931 } 3932 break; 3933 case ICmpInst::ICMP_ULT: 3934 case ICmpInst::ICMP_ULE: 3935 std::swap(LHS, RHS); 3936 // fall through 3937 case ICmpInst::ICMP_UGT: 3938 case ICmpInst::ICMP_UGE: 3939 // a >u b ? a+x : b+x -> umax(a, b)+x 3940 // a >u b ? b+x : a+x -> umin(a, b)+x 3941 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3942 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3943 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3944 const SCEV *LA = getSCEV(TrueVal); 3945 const SCEV *RA = getSCEV(FalseVal); 3946 const SCEV *LDiff = getMinusSCEV(LA, LS); 3947 const SCEV *RDiff = getMinusSCEV(RA, RS); 3948 if (LDiff == RDiff) 3949 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3950 LDiff = getMinusSCEV(LA, RS); 3951 RDiff = getMinusSCEV(RA, LS); 3952 if (LDiff == RDiff) 3953 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3954 } 3955 break; 3956 case ICmpInst::ICMP_NE: 3957 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3958 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3959 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3960 const SCEV *One = getOne(I->getType()); 3961 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3962 const SCEV *LA = getSCEV(TrueVal); 3963 const SCEV *RA = getSCEV(FalseVal); 3964 const SCEV *LDiff = getMinusSCEV(LA, LS); 3965 const SCEV *RDiff = getMinusSCEV(RA, One); 3966 if (LDiff == RDiff) 3967 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3968 } 3969 break; 3970 case ICmpInst::ICMP_EQ: 3971 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3972 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3973 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3974 const SCEV *One = getOne(I->getType()); 3975 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3976 const SCEV *LA = getSCEV(TrueVal); 3977 const SCEV *RA = getSCEV(FalseVal); 3978 const SCEV *LDiff = getMinusSCEV(LA, One); 3979 const SCEV *RDiff = getMinusSCEV(RA, LS); 3980 if (LDiff == RDiff) 3981 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3982 } 3983 break; 3984 default: 3985 break; 3986 } 3987 3988 return getUnknown(I); 3989 } 3990 3991 /// createNodeForGEP - Expand GEP instructions into add and multiply 3992 /// operations. This allows them to be analyzed by regular SCEV code. 3993 /// 3994 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3995 Value *Base = GEP->getOperand(0); 3996 // Don't attempt to analyze GEPs over unsized objects. 3997 if (!Base->getType()->getPointerElementType()->isSized()) 3998 return getUnknown(GEP); 3999 4000 SmallVector<const SCEV *, 4> IndexExprs; 4001 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4002 IndexExprs.push_back(getSCEV(*Index)); 4003 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4004 GEP->isInBounds()); 4005 } 4006 4007 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4008 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4009 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4010 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4011 uint32_t 4012 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4013 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4014 return C->getValue()->getValue().countTrailingZeros(); 4015 4016 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4017 return std::min(GetMinTrailingZeros(T->getOperand()), 4018 (uint32_t)getTypeSizeInBits(T->getType())); 4019 4020 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4021 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4022 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4023 getTypeSizeInBits(E->getType()) : OpRes; 4024 } 4025 4026 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4027 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4028 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4029 getTypeSizeInBits(E->getType()) : OpRes; 4030 } 4031 4032 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4033 // The result is the min of all operands results. 4034 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4035 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4036 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4037 return MinOpRes; 4038 } 4039 4040 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4041 // The result is the sum of all operands results. 4042 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4043 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4044 for (unsigned i = 1, e = M->getNumOperands(); 4045 SumOpRes != BitWidth && i != e; ++i) 4046 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4047 BitWidth); 4048 return SumOpRes; 4049 } 4050 4051 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4052 // The result is the min of all operands results. 4053 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4054 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4055 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4056 return MinOpRes; 4057 } 4058 4059 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4060 // The result is the min of all operands results. 4061 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4062 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4063 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4064 return MinOpRes; 4065 } 4066 4067 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4068 // The result is the min of all operands results. 4069 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4070 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4071 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4072 return MinOpRes; 4073 } 4074 4075 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4076 // For a SCEVUnknown, ask ValueTracking. 4077 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4078 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4079 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4080 0, &AC, nullptr, &DT); 4081 return Zeros.countTrailingOnes(); 4082 } 4083 4084 // SCEVUDivExpr 4085 return 0; 4086 } 4087 4088 /// GetRangeFromMetadata - Helper method to assign a range to V from 4089 /// metadata present in the IR. 4090 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4091 if (Instruction *I = dyn_cast<Instruction>(V)) { 4092 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 4093 ConstantRange TotalRange( 4094 cast<IntegerType>(I->getType())->getBitWidth(), false); 4095 4096 unsigned NumRanges = MD->getNumOperands() / 2; 4097 assert(NumRanges >= 1); 4098 4099 for (unsigned i = 0; i < NumRanges; ++i) { 4100 ConstantInt *Lower = 4101 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 4102 ConstantInt *Upper = 4103 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 4104 ConstantRange Range(Lower->getValue(), Upper->getValue()); 4105 TotalRange = TotalRange.unionWith(Range); 4106 } 4107 4108 return TotalRange; 4109 } 4110 } 4111 4112 return None; 4113 } 4114 4115 /// getRange - Determine the range for a particular SCEV. If SignHint is 4116 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4117 /// with a "cleaner" unsigned (resp. signed) representation. 4118 /// 4119 ConstantRange 4120 ScalarEvolution::getRange(const SCEV *S, 4121 ScalarEvolution::RangeSignHint SignHint) { 4122 DenseMap<const SCEV *, ConstantRange> &Cache = 4123 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4124 : SignedRanges; 4125 4126 // See if we've computed this range already. 4127 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4128 if (I != Cache.end()) 4129 return I->second; 4130 4131 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4132 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4133 4134 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4135 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4136 4137 // If the value has known zeros, the maximum value will have those known zeros 4138 // as well. 4139 uint32_t TZ = GetMinTrailingZeros(S); 4140 if (TZ != 0) { 4141 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4142 ConservativeResult = 4143 ConstantRange(APInt::getMinValue(BitWidth), 4144 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4145 else 4146 ConservativeResult = ConstantRange( 4147 APInt::getSignedMinValue(BitWidth), 4148 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4149 } 4150 4151 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4152 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4153 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4154 X = X.add(getRange(Add->getOperand(i), SignHint)); 4155 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4156 } 4157 4158 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4159 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4160 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4161 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4162 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4163 } 4164 4165 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4166 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4167 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4168 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4169 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4170 } 4171 4172 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4173 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4174 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4175 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4176 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4177 } 4178 4179 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4180 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4181 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4182 return setRange(UDiv, SignHint, 4183 ConservativeResult.intersectWith(X.udiv(Y))); 4184 } 4185 4186 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4187 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4188 return setRange(ZExt, SignHint, 4189 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4190 } 4191 4192 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4193 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4194 return setRange(SExt, SignHint, 4195 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4196 } 4197 4198 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4199 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4200 return setRange(Trunc, SignHint, 4201 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4202 } 4203 4204 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4205 // If there's no unsigned wrap, the value will never be less than its 4206 // initial value. 4207 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4208 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4209 if (!C->getValue()->isZero()) 4210 ConservativeResult = 4211 ConservativeResult.intersectWith( 4212 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4213 4214 // If there's no signed wrap, and all the operands have the same sign or 4215 // zero, the value won't ever change sign. 4216 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4217 bool AllNonNeg = true; 4218 bool AllNonPos = true; 4219 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4220 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4221 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4222 } 4223 if (AllNonNeg) 4224 ConservativeResult = ConservativeResult.intersectWith( 4225 ConstantRange(APInt(BitWidth, 0), 4226 APInt::getSignedMinValue(BitWidth))); 4227 else if (AllNonPos) 4228 ConservativeResult = ConservativeResult.intersectWith( 4229 ConstantRange(APInt::getSignedMinValue(BitWidth), 4230 APInt(BitWidth, 1))); 4231 } 4232 4233 // TODO: non-affine addrec 4234 if (AddRec->isAffine()) { 4235 Type *Ty = AddRec->getType(); 4236 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4237 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4238 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4239 4240 // Check for overflow. This must be done with ConstantRange arithmetic 4241 // because we could be called from within the ScalarEvolution overflow 4242 // checking code. 4243 4244 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4245 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4246 ConstantRange ZExtMaxBECountRange = 4247 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4248 4249 const SCEV *Start = AddRec->getStart(); 4250 const SCEV *Step = AddRec->getStepRecurrence(*this); 4251 ConstantRange StepSRange = getSignedRange(Step); 4252 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4253 4254 ConstantRange StartURange = getUnsignedRange(Start); 4255 ConstantRange EndURange = 4256 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4257 4258 // Check for unsigned overflow. 4259 ConstantRange ZExtStartURange = 4260 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4261 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4262 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4263 ZExtEndURange) { 4264 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4265 EndURange.getUnsignedMin()); 4266 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4267 EndURange.getUnsignedMax()); 4268 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4269 if (!IsFullRange) 4270 ConservativeResult = 4271 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4272 } 4273 4274 ConstantRange StartSRange = getSignedRange(Start); 4275 ConstantRange EndSRange = 4276 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4277 4278 // Check for signed overflow. This must be done with ConstantRange 4279 // arithmetic because we could be called from within the ScalarEvolution 4280 // overflow checking code. 4281 ConstantRange SExtStartSRange = 4282 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4283 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4284 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4285 SExtEndSRange) { 4286 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4287 EndSRange.getSignedMin()); 4288 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4289 EndSRange.getSignedMax()); 4290 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4291 if (!IsFullRange) 4292 ConservativeResult = 4293 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4294 } 4295 } 4296 } 4297 4298 return setRange(AddRec, SignHint, ConservativeResult); 4299 } 4300 4301 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4302 // Check if the IR explicitly contains !range metadata. 4303 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4304 if (MDRange.hasValue()) 4305 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4306 4307 // Split here to avoid paying the compile-time cost of calling both 4308 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4309 // if needed. 4310 const DataLayout &DL = F.getParent()->getDataLayout(); 4311 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4312 // For a SCEVUnknown, ask ValueTracking. 4313 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4314 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4315 if (Ones != ~Zeros + 1) 4316 ConservativeResult = 4317 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4318 } else { 4319 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4320 "generalize as needed!"); 4321 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4322 if (NS > 1) 4323 ConservativeResult = ConservativeResult.intersectWith( 4324 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4325 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4326 } 4327 4328 return setRange(U, SignHint, ConservativeResult); 4329 } 4330 4331 return setRange(S, SignHint, ConservativeResult); 4332 } 4333 4334 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4335 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4336 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4337 4338 // Return early if there are no flags to propagate to the SCEV. 4339 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4340 if (BinOp->hasNoUnsignedWrap()) 4341 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4342 if (BinOp->hasNoSignedWrap()) 4343 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4344 if (Flags == SCEV::FlagAnyWrap) { 4345 return SCEV::FlagAnyWrap; 4346 } 4347 4348 // Here we check that BinOp is in the header of the innermost loop 4349 // containing BinOp, since we only deal with instructions in the loop 4350 // header. The actual loop we need to check later will come from an add 4351 // recurrence, but getting that requires computing the SCEV of the operands, 4352 // which can be expensive. This check we can do cheaply to rule out some 4353 // cases early. 4354 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4355 if (innermostContainingLoop == nullptr || 4356 innermostContainingLoop->getHeader() != BinOp->getParent()) 4357 return SCEV::FlagAnyWrap; 4358 4359 // Only proceed if we can prove that BinOp does not yield poison. 4360 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4361 4362 // At this point we know that if V is executed, then it does not wrap 4363 // according to at least one of NSW or NUW. If V is not executed, then we do 4364 // not know if the calculation that V represents would wrap. Multiple 4365 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4366 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4367 // derived from other instructions that map to the same SCEV. We cannot make 4368 // that guarantee for cases where V is not executed. So we need to find the 4369 // loop that V is considered in relation to and prove that V is executed for 4370 // every iteration of that loop. That implies that the value that V 4371 // calculates does not wrap anywhere in the loop, so then we can apply the 4372 // flags to the SCEV. 4373 // 4374 // We check isLoopInvariant to disambiguate in case we are adding two 4375 // recurrences from different loops, so that we know which loop to prove 4376 // that V is executed in. 4377 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4378 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4379 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4380 const int OtherOpIndex = 1 - OpIndex; 4381 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4382 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4383 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4384 return Flags; 4385 } 4386 } 4387 return SCEV::FlagAnyWrap; 4388 } 4389 4390 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4391 /// the expression. 4392 /// 4393 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4394 if (!isSCEVable(V->getType())) 4395 return getUnknown(V); 4396 4397 unsigned Opcode = Instruction::UserOp1; 4398 if (Instruction *I = dyn_cast<Instruction>(V)) { 4399 Opcode = I->getOpcode(); 4400 4401 // Don't attempt to analyze instructions in blocks that aren't 4402 // reachable. Such instructions don't matter, and they aren't required 4403 // to obey basic rules for definitions dominating uses which this 4404 // analysis depends on. 4405 if (!DT.isReachableFromEntry(I->getParent())) 4406 return getUnknown(V); 4407 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4408 Opcode = CE->getOpcode(); 4409 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4410 return getConstant(CI); 4411 else if (isa<ConstantPointerNull>(V)) 4412 return getZero(V->getType()); 4413 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4414 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4415 else 4416 return getUnknown(V); 4417 4418 Operator *U = cast<Operator>(V); 4419 switch (Opcode) { 4420 case Instruction::Add: { 4421 // The simple thing to do would be to just call getSCEV on both operands 4422 // and call getAddExpr with the result. However if we're looking at a 4423 // bunch of things all added together, this can be quite inefficient, 4424 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4425 // Instead, gather up all the operands and make a single getAddExpr call. 4426 // LLVM IR canonical form means we need only traverse the left operands. 4427 SmallVector<const SCEV *, 4> AddOps; 4428 for (Value *Op = U;; Op = U->getOperand(0)) { 4429 U = dyn_cast<Operator>(Op); 4430 unsigned Opcode = U ? U->getOpcode() : 0; 4431 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4432 assert(Op != V && "V should be an add"); 4433 AddOps.push_back(getSCEV(Op)); 4434 break; 4435 } 4436 4437 if (auto *OpSCEV = getExistingSCEV(U)) { 4438 AddOps.push_back(OpSCEV); 4439 break; 4440 } 4441 4442 // If a NUW or NSW flag can be applied to the SCEV for this 4443 // addition, then compute the SCEV for this addition by itself 4444 // with a separate call to getAddExpr. We need to do that 4445 // instead of pushing the operands of the addition onto AddOps, 4446 // since the flags are only known to apply to this particular 4447 // addition - they may not apply to other additions that can be 4448 // formed with operands from AddOps. 4449 const SCEV *RHS = getSCEV(U->getOperand(1)); 4450 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4451 if (Flags != SCEV::FlagAnyWrap) { 4452 const SCEV *LHS = getSCEV(U->getOperand(0)); 4453 if (Opcode == Instruction::Sub) 4454 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4455 else 4456 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4457 break; 4458 } 4459 4460 if (Opcode == Instruction::Sub) 4461 AddOps.push_back(getNegativeSCEV(RHS)); 4462 else 4463 AddOps.push_back(RHS); 4464 } 4465 return getAddExpr(AddOps); 4466 } 4467 4468 case Instruction::Mul: { 4469 SmallVector<const SCEV *, 4> MulOps; 4470 for (Value *Op = U;; Op = U->getOperand(0)) { 4471 U = dyn_cast<Operator>(Op); 4472 if (!U || U->getOpcode() != Instruction::Mul) { 4473 assert(Op != V && "V should be a mul"); 4474 MulOps.push_back(getSCEV(Op)); 4475 break; 4476 } 4477 4478 if (auto *OpSCEV = getExistingSCEV(U)) { 4479 MulOps.push_back(OpSCEV); 4480 break; 4481 } 4482 4483 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4484 if (Flags != SCEV::FlagAnyWrap) { 4485 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4486 getSCEV(U->getOperand(1)), Flags)); 4487 break; 4488 } 4489 4490 MulOps.push_back(getSCEV(U->getOperand(1))); 4491 } 4492 return getMulExpr(MulOps); 4493 } 4494 case Instruction::UDiv: 4495 return getUDivExpr(getSCEV(U->getOperand(0)), 4496 getSCEV(U->getOperand(1))); 4497 case Instruction::Sub: 4498 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4499 getNoWrapFlagsFromUB(U)); 4500 case Instruction::And: 4501 // For an expression like x&255 that merely masks off the high bits, 4502 // use zext(trunc(x)) as the SCEV expression. 4503 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4504 if (CI->isNullValue()) 4505 return getSCEV(U->getOperand(1)); 4506 if (CI->isAllOnesValue()) 4507 return getSCEV(U->getOperand(0)); 4508 const APInt &A = CI->getValue(); 4509 4510 // Instcombine's ShrinkDemandedConstant may strip bits out of 4511 // constants, obscuring what would otherwise be a low-bits mask. 4512 // Use computeKnownBits to compute what ShrinkDemandedConstant 4513 // knew about to reconstruct a low-bits mask value. 4514 unsigned LZ = A.countLeadingZeros(); 4515 unsigned TZ = A.countTrailingZeros(); 4516 unsigned BitWidth = A.getBitWidth(); 4517 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4518 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4519 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4520 4521 APInt EffectiveMask = 4522 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4523 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4524 const SCEV *MulCount = getConstant( 4525 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4526 return getMulExpr( 4527 getZeroExtendExpr( 4528 getTruncateExpr( 4529 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4530 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4531 U->getType()), 4532 MulCount); 4533 } 4534 } 4535 break; 4536 4537 case Instruction::Or: 4538 // If the RHS of the Or is a constant, we may have something like: 4539 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4540 // optimizations will transparently handle this case. 4541 // 4542 // In order for this transformation to be safe, the LHS must be of the 4543 // form X*(2^n) and the Or constant must be less than 2^n. 4544 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4545 const SCEV *LHS = getSCEV(U->getOperand(0)); 4546 const APInt &CIVal = CI->getValue(); 4547 if (GetMinTrailingZeros(LHS) >= 4548 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4549 // Build a plain add SCEV. 4550 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4551 // If the LHS of the add was an addrec and it has no-wrap flags, 4552 // transfer the no-wrap flags, since an or won't introduce a wrap. 4553 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4554 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4555 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4556 OldAR->getNoWrapFlags()); 4557 } 4558 return S; 4559 } 4560 } 4561 break; 4562 case Instruction::Xor: 4563 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4564 // If the RHS of the xor is a signbit, then this is just an add. 4565 // Instcombine turns add of signbit into xor as a strength reduction step. 4566 if (CI->getValue().isSignBit()) 4567 return getAddExpr(getSCEV(U->getOperand(0)), 4568 getSCEV(U->getOperand(1))); 4569 4570 // If the RHS of xor is -1, then this is a not operation. 4571 if (CI->isAllOnesValue()) 4572 return getNotSCEV(getSCEV(U->getOperand(0))); 4573 4574 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4575 // This is a variant of the check for xor with -1, and it handles 4576 // the case where instcombine has trimmed non-demanded bits out 4577 // of an xor with -1. 4578 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4579 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4580 if (BO->getOpcode() == Instruction::And && 4581 LCI->getValue() == CI->getValue()) 4582 if (const SCEVZeroExtendExpr *Z = 4583 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4584 Type *UTy = U->getType(); 4585 const SCEV *Z0 = Z->getOperand(); 4586 Type *Z0Ty = Z0->getType(); 4587 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4588 4589 // If C is a low-bits mask, the zero extend is serving to 4590 // mask off the high bits. Complement the operand and 4591 // re-apply the zext. 4592 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4593 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4594 4595 // If C is a single bit, it may be in the sign-bit position 4596 // before the zero-extend. In this case, represent the xor 4597 // using an add, which is equivalent, and re-apply the zext. 4598 APInt Trunc = CI->getValue().trunc(Z0TySize); 4599 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4600 Trunc.isSignBit()) 4601 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4602 UTy); 4603 } 4604 } 4605 break; 4606 4607 case Instruction::Shl: 4608 // Turn shift left of a constant amount into a multiply. 4609 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4610 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4611 4612 // If the shift count is not less than the bitwidth, the result of 4613 // the shift is undefined. Don't try to analyze it, because the 4614 // resolution chosen here may differ from the resolution chosen in 4615 // other parts of the compiler. 4616 if (SA->getValue().uge(BitWidth)) 4617 break; 4618 4619 // It is currently not resolved how to interpret NSW for left 4620 // shift by BitWidth - 1, so we avoid applying flags in that 4621 // case. Remove this check (or this comment) once the situation 4622 // is resolved. See 4623 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4624 // and http://reviews.llvm.org/D8890 . 4625 auto Flags = SCEV::FlagAnyWrap; 4626 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4627 4628 Constant *X = ConstantInt::get(getContext(), 4629 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4630 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4631 } 4632 break; 4633 4634 case Instruction::LShr: 4635 // Turn logical shift right of a constant into a unsigned divide. 4636 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4637 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4638 4639 // If the shift count is not less than the bitwidth, the result of 4640 // the shift is undefined. Don't try to analyze it, because the 4641 // resolution chosen here may differ from the resolution chosen in 4642 // other parts of the compiler. 4643 if (SA->getValue().uge(BitWidth)) 4644 break; 4645 4646 Constant *X = ConstantInt::get(getContext(), 4647 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4648 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4649 } 4650 break; 4651 4652 case Instruction::AShr: 4653 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4654 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4655 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4656 if (L->getOpcode() == Instruction::Shl && 4657 L->getOperand(1) == U->getOperand(1)) { 4658 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4659 4660 // If the shift count is not less than the bitwidth, the result of 4661 // the shift is undefined. Don't try to analyze it, because the 4662 // resolution chosen here may differ from the resolution chosen in 4663 // other parts of the compiler. 4664 if (CI->getValue().uge(BitWidth)) 4665 break; 4666 4667 uint64_t Amt = BitWidth - CI->getZExtValue(); 4668 if (Amt == BitWidth) 4669 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4670 return 4671 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4672 IntegerType::get(getContext(), 4673 Amt)), 4674 U->getType()); 4675 } 4676 break; 4677 4678 case Instruction::Trunc: 4679 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4680 4681 case Instruction::ZExt: 4682 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4683 4684 case Instruction::SExt: 4685 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4686 4687 case Instruction::BitCast: 4688 // BitCasts are no-op casts so we just eliminate the cast. 4689 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4690 return getSCEV(U->getOperand(0)); 4691 break; 4692 4693 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4694 // lead to pointer expressions which cannot safely be expanded to GEPs, 4695 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4696 // simplifying integer expressions. 4697 4698 case Instruction::GetElementPtr: 4699 return createNodeForGEP(cast<GEPOperator>(U)); 4700 4701 case Instruction::PHI: 4702 return createNodeForPHI(cast<PHINode>(U)); 4703 4704 case Instruction::Select: 4705 // U can also be a select constant expr, which let fall through. Since 4706 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4707 // constant expressions cannot have instructions as operands, we'd have 4708 // returned getUnknown for a select constant expressions anyway. 4709 if (isa<Instruction>(U)) 4710 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4711 U->getOperand(1), U->getOperand(2)); 4712 4713 default: // We cannot analyze this expression. 4714 break; 4715 } 4716 4717 return getUnknown(V); 4718 } 4719 4720 4721 4722 //===----------------------------------------------------------------------===// 4723 // Iteration Count Computation Code 4724 // 4725 4726 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4727 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4728 return getSmallConstantTripCount(L, ExitingBB); 4729 4730 // No trip count information for multiple exits. 4731 return 0; 4732 } 4733 4734 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4735 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4736 /// constant. Will also return 0 if the maximum trip count is very large (>= 4737 /// 2^32). 4738 /// 4739 /// This "trip count" assumes that control exits via ExitingBlock. More 4740 /// precisely, it is the number of times that control may reach ExitingBlock 4741 /// before taking the branch. For loops with multiple exits, it may not be the 4742 /// number times that the loop header executes because the loop may exit 4743 /// prematurely via another branch. 4744 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4745 BasicBlock *ExitingBlock) { 4746 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4747 assert(L->isLoopExiting(ExitingBlock) && 4748 "Exiting block must actually branch out of the loop!"); 4749 const SCEVConstant *ExitCount = 4750 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4751 if (!ExitCount) 4752 return 0; 4753 4754 ConstantInt *ExitConst = ExitCount->getValue(); 4755 4756 // Guard against huge trip counts. 4757 if (ExitConst->getValue().getActiveBits() > 32) 4758 return 0; 4759 4760 // In case of integer overflow, this returns 0, which is correct. 4761 return ((unsigned)ExitConst->getZExtValue()) + 1; 4762 } 4763 4764 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4765 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4766 return getSmallConstantTripMultiple(L, ExitingBB); 4767 4768 // No trip multiple information for multiple exits. 4769 return 0; 4770 } 4771 4772 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4773 /// trip count of this loop as a normal unsigned value, if possible. This 4774 /// means that the actual trip count is always a multiple of the returned 4775 /// value (don't forget the trip count could very well be zero as well!). 4776 /// 4777 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4778 /// multiple of a constant (which is also the case if the trip count is simply 4779 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4780 /// if the trip count is very large (>= 2^32). 4781 /// 4782 /// As explained in the comments for getSmallConstantTripCount, this assumes 4783 /// that control exits the loop via ExitingBlock. 4784 unsigned 4785 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4786 BasicBlock *ExitingBlock) { 4787 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4788 assert(L->isLoopExiting(ExitingBlock) && 4789 "Exiting block must actually branch out of the loop!"); 4790 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4791 if (ExitCount == getCouldNotCompute()) 4792 return 1; 4793 4794 // Get the trip count from the BE count by adding 1. 4795 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4796 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4797 // to factor simple cases. 4798 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4799 TCMul = Mul->getOperand(0); 4800 4801 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4802 if (!MulC) 4803 return 1; 4804 4805 ConstantInt *Result = MulC->getValue(); 4806 4807 // Guard against huge trip counts (this requires checking 4808 // for zero to handle the case where the trip count == -1 and the 4809 // addition wraps). 4810 if (!Result || Result->getValue().getActiveBits() > 32 || 4811 Result->getValue().getActiveBits() == 0) 4812 return 1; 4813 4814 return (unsigned)Result->getZExtValue(); 4815 } 4816 4817 // getExitCount - Get the expression for the number of loop iterations for which 4818 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4819 // SCEVCouldNotCompute. 4820 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4821 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4822 } 4823 4824 /// getBackedgeTakenCount - If the specified loop has a predictable 4825 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4826 /// object. The backedge-taken count is the number of times the loop header 4827 /// will be branched to from within the loop. This is one less than the 4828 /// trip count of the loop, since it doesn't count the first iteration, 4829 /// when the header is branched to from outside the loop. 4830 /// 4831 /// Note that it is not valid to call this method on a loop without a 4832 /// loop-invariant backedge-taken count (see 4833 /// hasLoopInvariantBackedgeTakenCount). 4834 /// 4835 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4836 return getBackedgeTakenInfo(L).getExact(this); 4837 } 4838 4839 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4840 /// return the least SCEV value that is known never to be less than the 4841 /// actual backedge taken count. 4842 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4843 return getBackedgeTakenInfo(L).getMax(this); 4844 } 4845 4846 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4847 /// onto the given Worklist. 4848 static void 4849 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4850 BasicBlock *Header = L->getHeader(); 4851 4852 // Push all Loop-header PHIs onto the Worklist stack. 4853 for (BasicBlock::iterator I = Header->begin(); 4854 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4855 Worklist.push_back(PN); 4856 } 4857 4858 const ScalarEvolution::BackedgeTakenInfo & 4859 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4860 // Initially insert an invalid entry for this loop. If the insertion 4861 // succeeds, proceed to actually compute a backedge-taken count and 4862 // update the value. The temporary CouldNotCompute value tells SCEV 4863 // code elsewhere that it shouldn't attempt to request a new 4864 // backedge-taken count, which could result in infinite recursion. 4865 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4866 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4867 if (!Pair.second) 4868 return Pair.first->second; 4869 4870 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4871 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4872 // must be cleared in this scope. 4873 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4874 4875 if (Result.getExact(this) != getCouldNotCompute()) { 4876 assert(isLoopInvariant(Result.getExact(this), L) && 4877 isLoopInvariant(Result.getMax(this), L) && 4878 "Computed backedge-taken count isn't loop invariant for loop!"); 4879 ++NumTripCountsComputed; 4880 } 4881 else if (Result.getMax(this) == getCouldNotCompute() && 4882 isa<PHINode>(L->getHeader()->begin())) { 4883 // Only count loops that have phi nodes as not being computable. 4884 ++NumTripCountsNotComputed; 4885 } 4886 4887 // Now that we know more about the trip count for this loop, forget any 4888 // existing SCEV values for PHI nodes in this loop since they are only 4889 // conservative estimates made without the benefit of trip count 4890 // information. This is similar to the code in forgetLoop, except that 4891 // it handles SCEVUnknown PHI nodes specially. 4892 if (Result.hasAnyInfo()) { 4893 SmallVector<Instruction *, 16> Worklist; 4894 PushLoopPHIs(L, Worklist); 4895 4896 SmallPtrSet<Instruction *, 8> Visited; 4897 while (!Worklist.empty()) { 4898 Instruction *I = Worklist.pop_back_val(); 4899 if (!Visited.insert(I).second) 4900 continue; 4901 4902 ValueExprMapType::iterator It = 4903 ValueExprMap.find_as(static_cast<Value *>(I)); 4904 if (It != ValueExprMap.end()) { 4905 const SCEV *Old = It->second; 4906 4907 // SCEVUnknown for a PHI either means that it has an unrecognized 4908 // structure, or it's a PHI that's in the progress of being computed 4909 // by createNodeForPHI. In the former case, additional loop trip 4910 // count information isn't going to change anything. In the later 4911 // case, createNodeForPHI will perform the necessary updates on its 4912 // own when it gets to that point. 4913 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4914 forgetMemoizedResults(Old); 4915 ValueExprMap.erase(It); 4916 } 4917 if (PHINode *PN = dyn_cast<PHINode>(I)) 4918 ConstantEvolutionLoopExitValue.erase(PN); 4919 } 4920 4921 PushDefUseChildren(I, Worklist); 4922 } 4923 } 4924 4925 // Re-lookup the insert position, since the call to 4926 // computeBackedgeTakenCount above could result in a 4927 // recusive call to getBackedgeTakenInfo (on a different 4928 // loop), which would invalidate the iterator computed 4929 // earlier. 4930 return BackedgeTakenCounts.find(L)->second = Result; 4931 } 4932 4933 /// forgetLoop - This method should be called by the client when it has 4934 /// changed a loop in a way that may effect ScalarEvolution's ability to 4935 /// compute a trip count, or if the loop is deleted. 4936 void ScalarEvolution::forgetLoop(const Loop *L) { 4937 // Drop any stored trip count value. 4938 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4939 BackedgeTakenCounts.find(L); 4940 if (BTCPos != BackedgeTakenCounts.end()) { 4941 BTCPos->second.clear(); 4942 BackedgeTakenCounts.erase(BTCPos); 4943 } 4944 4945 // Drop information about expressions based on loop-header PHIs. 4946 SmallVector<Instruction *, 16> Worklist; 4947 PushLoopPHIs(L, Worklist); 4948 4949 SmallPtrSet<Instruction *, 8> Visited; 4950 while (!Worklist.empty()) { 4951 Instruction *I = Worklist.pop_back_val(); 4952 if (!Visited.insert(I).second) 4953 continue; 4954 4955 ValueExprMapType::iterator It = 4956 ValueExprMap.find_as(static_cast<Value *>(I)); 4957 if (It != ValueExprMap.end()) { 4958 forgetMemoizedResults(It->second); 4959 ValueExprMap.erase(It); 4960 if (PHINode *PN = dyn_cast<PHINode>(I)) 4961 ConstantEvolutionLoopExitValue.erase(PN); 4962 } 4963 4964 PushDefUseChildren(I, Worklist); 4965 } 4966 4967 // Forget all contained loops too, to avoid dangling entries in the 4968 // ValuesAtScopes map. 4969 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4970 forgetLoop(*I); 4971 } 4972 4973 /// forgetValue - This method should be called by the client when it has 4974 /// changed a value in a way that may effect its value, or which may 4975 /// disconnect it from a def-use chain linking it to a loop. 4976 void ScalarEvolution::forgetValue(Value *V) { 4977 Instruction *I = dyn_cast<Instruction>(V); 4978 if (!I) return; 4979 4980 // Drop information about expressions based on loop-header PHIs. 4981 SmallVector<Instruction *, 16> Worklist; 4982 Worklist.push_back(I); 4983 4984 SmallPtrSet<Instruction *, 8> Visited; 4985 while (!Worklist.empty()) { 4986 I = Worklist.pop_back_val(); 4987 if (!Visited.insert(I).second) 4988 continue; 4989 4990 ValueExprMapType::iterator It = 4991 ValueExprMap.find_as(static_cast<Value *>(I)); 4992 if (It != ValueExprMap.end()) { 4993 forgetMemoizedResults(It->second); 4994 ValueExprMap.erase(It); 4995 if (PHINode *PN = dyn_cast<PHINode>(I)) 4996 ConstantEvolutionLoopExitValue.erase(PN); 4997 } 4998 4999 PushDefUseChildren(I, Worklist); 5000 } 5001 } 5002 5003 /// getExact - Get the exact loop backedge taken count considering all loop 5004 /// exits. A computable result can only be returned for loops with a single 5005 /// exit. Returning the minimum taken count among all exits is incorrect 5006 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5007 /// assumes that the limit of each loop test is never skipped. This is a valid 5008 /// assumption as long as the loop exits via that test. For precise results, it 5009 /// is the caller's responsibility to specify the relevant loop exit using 5010 /// getExact(ExitingBlock, SE). 5011 const SCEV * 5012 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5013 // If any exits were not computable, the loop is not computable. 5014 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5015 5016 // We need exactly one computable exit. 5017 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5018 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5019 5020 const SCEV *BECount = nullptr; 5021 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5022 ENT != nullptr; ENT = ENT->getNextExit()) { 5023 5024 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5025 5026 if (!BECount) 5027 BECount = ENT->ExactNotTaken; 5028 else if (BECount != ENT->ExactNotTaken) 5029 return SE->getCouldNotCompute(); 5030 } 5031 assert(BECount && "Invalid not taken count for loop exit"); 5032 return BECount; 5033 } 5034 5035 /// getExact - Get the exact not taken count for this loop exit. 5036 const SCEV * 5037 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5038 ScalarEvolution *SE) const { 5039 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5040 ENT != nullptr; ENT = ENT->getNextExit()) { 5041 5042 if (ENT->ExitingBlock == ExitingBlock) 5043 return ENT->ExactNotTaken; 5044 } 5045 return SE->getCouldNotCompute(); 5046 } 5047 5048 /// getMax - Get the max backedge taken count for the loop. 5049 const SCEV * 5050 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5051 return Max ? Max : SE->getCouldNotCompute(); 5052 } 5053 5054 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5055 ScalarEvolution *SE) const { 5056 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5057 return true; 5058 5059 if (!ExitNotTaken.ExitingBlock) 5060 return false; 5061 5062 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5063 ENT != nullptr; ENT = ENT->getNextExit()) { 5064 5065 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5066 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5067 return true; 5068 } 5069 } 5070 return false; 5071 } 5072 5073 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5074 /// computable exit into a persistent ExitNotTakenInfo array. 5075 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5076 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5077 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5078 5079 if (!Complete) 5080 ExitNotTaken.setIncomplete(); 5081 5082 unsigned NumExits = ExitCounts.size(); 5083 if (NumExits == 0) return; 5084 5085 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5086 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5087 if (NumExits == 1) return; 5088 5089 // Handle the rare case of multiple computable exits. 5090 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5091 5092 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5093 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5094 PrevENT->setNextExit(ENT); 5095 ENT->ExitingBlock = ExitCounts[i].first; 5096 ENT->ExactNotTaken = ExitCounts[i].second; 5097 } 5098 } 5099 5100 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5101 void ScalarEvolution::BackedgeTakenInfo::clear() { 5102 ExitNotTaken.ExitingBlock = nullptr; 5103 ExitNotTaken.ExactNotTaken = nullptr; 5104 delete[] ExitNotTaken.getNextExit(); 5105 } 5106 5107 /// computeBackedgeTakenCount - Compute the number of times the backedge 5108 /// of the specified loop will execute. 5109 ScalarEvolution::BackedgeTakenInfo 5110 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5111 SmallVector<BasicBlock *, 8> ExitingBlocks; 5112 L->getExitingBlocks(ExitingBlocks); 5113 5114 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5115 bool CouldComputeBECount = true; 5116 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5117 const SCEV *MustExitMaxBECount = nullptr; 5118 const SCEV *MayExitMaxBECount = nullptr; 5119 5120 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5121 // and compute maxBECount. 5122 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5123 BasicBlock *ExitBB = ExitingBlocks[i]; 5124 ExitLimit EL = computeExitLimit(L, ExitBB); 5125 5126 // 1. For each exit that can be computed, add an entry to ExitCounts. 5127 // CouldComputeBECount is true only if all exits can be computed. 5128 if (EL.Exact == getCouldNotCompute()) 5129 // We couldn't compute an exact value for this exit, so 5130 // we won't be able to compute an exact value for the loop. 5131 CouldComputeBECount = false; 5132 else 5133 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5134 5135 // 2. Derive the loop's MaxBECount from each exit's max number of 5136 // non-exiting iterations. Partition the loop exits into two kinds: 5137 // LoopMustExits and LoopMayExits. 5138 // 5139 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5140 // is a LoopMayExit. If any computable LoopMustExit is found, then 5141 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5142 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5143 // considered greater than any computable EL.Max. 5144 if (EL.Max != getCouldNotCompute() && Latch && 5145 DT.dominates(ExitBB, Latch)) { 5146 if (!MustExitMaxBECount) 5147 MustExitMaxBECount = EL.Max; 5148 else { 5149 MustExitMaxBECount = 5150 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5151 } 5152 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5153 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5154 MayExitMaxBECount = EL.Max; 5155 else { 5156 MayExitMaxBECount = 5157 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5158 } 5159 } 5160 } 5161 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5162 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5163 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5164 } 5165 5166 ScalarEvolution::ExitLimit 5167 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5168 5169 // Okay, we've chosen an exiting block. See what condition causes us to exit 5170 // at this block and remember the exit block and whether all other targets 5171 // lead to the loop header. 5172 bool MustExecuteLoopHeader = true; 5173 BasicBlock *Exit = nullptr; 5174 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5175 SI != SE; ++SI) 5176 if (!L->contains(*SI)) { 5177 if (Exit) // Multiple exit successors. 5178 return getCouldNotCompute(); 5179 Exit = *SI; 5180 } else if (*SI != L->getHeader()) { 5181 MustExecuteLoopHeader = false; 5182 } 5183 5184 // At this point, we know we have a conditional branch that determines whether 5185 // the loop is exited. However, we don't know if the branch is executed each 5186 // time through the loop. If not, then the execution count of the branch will 5187 // not be equal to the trip count of the loop. 5188 // 5189 // Currently we check for this by checking to see if the Exit branch goes to 5190 // the loop header. If so, we know it will always execute the same number of 5191 // times as the loop. We also handle the case where the exit block *is* the 5192 // loop header. This is common for un-rotated loops. 5193 // 5194 // If both of those tests fail, walk up the unique predecessor chain to the 5195 // header, stopping if there is an edge that doesn't exit the loop. If the 5196 // header is reached, the execution count of the branch will be equal to the 5197 // trip count of the loop. 5198 // 5199 // More extensive analysis could be done to handle more cases here. 5200 // 5201 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5202 // The simple checks failed, try climbing the unique predecessor chain 5203 // up to the header. 5204 bool Ok = false; 5205 for (BasicBlock *BB = ExitingBlock; BB; ) { 5206 BasicBlock *Pred = BB->getUniquePredecessor(); 5207 if (!Pred) 5208 return getCouldNotCompute(); 5209 TerminatorInst *PredTerm = Pred->getTerminator(); 5210 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5211 if (PredSucc == BB) 5212 continue; 5213 // If the predecessor has a successor that isn't BB and isn't 5214 // outside the loop, assume the worst. 5215 if (L->contains(PredSucc)) 5216 return getCouldNotCompute(); 5217 } 5218 if (Pred == L->getHeader()) { 5219 Ok = true; 5220 break; 5221 } 5222 BB = Pred; 5223 } 5224 if (!Ok) 5225 return getCouldNotCompute(); 5226 } 5227 5228 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5229 TerminatorInst *Term = ExitingBlock->getTerminator(); 5230 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5231 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5232 // Proceed to the next level to examine the exit condition expression. 5233 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5234 BI->getSuccessor(1), 5235 /*ControlsExit=*/IsOnlyExit); 5236 } 5237 5238 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5239 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5240 /*ControlsExit=*/IsOnlyExit); 5241 5242 return getCouldNotCompute(); 5243 } 5244 5245 /// computeExitLimitFromCond - Compute the number of times the 5246 /// backedge of the specified loop will execute if its exit condition 5247 /// were a conditional branch of ExitCond, TBB, and FBB. 5248 /// 5249 /// @param ControlsExit is true if ExitCond directly controls the exit 5250 /// branch. In this case, we can assume that the loop exits only if the 5251 /// condition is true and can infer that failing to meet the condition prior to 5252 /// integer wraparound results in undefined behavior. 5253 ScalarEvolution::ExitLimit 5254 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5255 Value *ExitCond, 5256 BasicBlock *TBB, 5257 BasicBlock *FBB, 5258 bool ControlsExit) { 5259 // Check if the controlling expression for this loop is an And or Or. 5260 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5261 if (BO->getOpcode() == Instruction::And) { 5262 // Recurse on the operands of the and. 5263 bool EitherMayExit = L->contains(TBB); 5264 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5265 ControlsExit && !EitherMayExit); 5266 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5267 ControlsExit && !EitherMayExit); 5268 const SCEV *BECount = getCouldNotCompute(); 5269 const SCEV *MaxBECount = getCouldNotCompute(); 5270 if (EitherMayExit) { 5271 // Both conditions must be true for the loop to continue executing. 5272 // Choose the less conservative count. 5273 if (EL0.Exact == getCouldNotCompute() || 5274 EL1.Exact == getCouldNotCompute()) 5275 BECount = getCouldNotCompute(); 5276 else 5277 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5278 if (EL0.Max == getCouldNotCompute()) 5279 MaxBECount = EL1.Max; 5280 else if (EL1.Max == getCouldNotCompute()) 5281 MaxBECount = EL0.Max; 5282 else 5283 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5284 } else { 5285 // Both conditions must be true at the same time for the loop to exit. 5286 // For now, be conservative. 5287 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5288 if (EL0.Max == EL1.Max) 5289 MaxBECount = EL0.Max; 5290 if (EL0.Exact == EL1.Exact) 5291 BECount = EL0.Exact; 5292 } 5293 5294 return ExitLimit(BECount, MaxBECount); 5295 } 5296 if (BO->getOpcode() == Instruction::Or) { 5297 // Recurse on the operands of the or. 5298 bool EitherMayExit = L->contains(FBB); 5299 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5300 ControlsExit && !EitherMayExit); 5301 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5302 ControlsExit && !EitherMayExit); 5303 const SCEV *BECount = getCouldNotCompute(); 5304 const SCEV *MaxBECount = getCouldNotCompute(); 5305 if (EitherMayExit) { 5306 // Both conditions must be false for the loop to continue executing. 5307 // Choose the less conservative count. 5308 if (EL0.Exact == getCouldNotCompute() || 5309 EL1.Exact == getCouldNotCompute()) 5310 BECount = getCouldNotCompute(); 5311 else 5312 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5313 if (EL0.Max == getCouldNotCompute()) 5314 MaxBECount = EL1.Max; 5315 else if (EL1.Max == getCouldNotCompute()) 5316 MaxBECount = EL0.Max; 5317 else 5318 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5319 } else { 5320 // Both conditions must be false at the same time for the loop to exit. 5321 // For now, be conservative. 5322 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5323 if (EL0.Max == EL1.Max) 5324 MaxBECount = EL0.Max; 5325 if (EL0.Exact == EL1.Exact) 5326 BECount = EL0.Exact; 5327 } 5328 5329 return ExitLimit(BECount, MaxBECount); 5330 } 5331 } 5332 5333 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5334 // Proceed to the next level to examine the icmp. 5335 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5336 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5337 5338 // Check for a constant condition. These are normally stripped out by 5339 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5340 // preserve the CFG and is temporarily leaving constant conditions 5341 // in place. 5342 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5343 if (L->contains(FBB) == !CI->getZExtValue()) 5344 // The backedge is always taken. 5345 return getCouldNotCompute(); 5346 else 5347 // The backedge is never taken. 5348 return getZero(CI->getType()); 5349 } 5350 5351 // If it's not an integer or pointer comparison then compute it the hard way. 5352 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5353 } 5354 5355 ScalarEvolution::ExitLimit 5356 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5357 ICmpInst *ExitCond, 5358 BasicBlock *TBB, 5359 BasicBlock *FBB, 5360 bool ControlsExit) { 5361 5362 // If the condition was exit on true, convert the condition to exit on false 5363 ICmpInst::Predicate Cond; 5364 if (!L->contains(FBB)) 5365 Cond = ExitCond->getPredicate(); 5366 else 5367 Cond = ExitCond->getInversePredicate(); 5368 5369 // Handle common loops like: for (X = "string"; *X; ++X) 5370 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5371 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5372 ExitLimit ItCnt = 5373 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5374 if (ItCnt.hasAnyInfo()) 5375 return ItCnt; 5376 } 5377 5378 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5379 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5380 5381 // Try to evaluate any dependencies out of the loop. 5382 LHS = getSCEVAtScope(LHS, L); 5383 RHS = getSCEVAtScope(RHS, L); 5384 5385 // At this point, we would like to compute how many iterations of the 5386 // loop the predicate will return true for these inputs. 5387 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5388 // If there is a loop-invariant, force it into the RHS. 5389 std::swap(LHS, RHS); 5390 Cond = ICmpInst::getSwappedPredicate(Cond); 5391 } 5392 5393 // Simplify the operands before analyzing them. 5394 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5395 5396 // If we have a comparison of a chrec against a constant, try to use value 5397 // ranges to answer this query. 5398 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5399 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5400 if (AddRec->getLoop() == L) { 5401 // Form the constant range. 5402 ConstantRange CompRange( 5403 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5404 5405 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5406 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5407 } 5408 5409 switch (Cond) { 5410 case ICmpInst::ICMP_NE: { // while (X != Y) 5411 // Convert to: while (X-Y != 0) 5412 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5413 if (EL.hasAnyInfo()) return EL; 5414 break; 5415 } 5416 case ICmpInst::ICMP_EQ: { // while (X == Y) 5417 // Convert to: while (X-Y == 0) 5418 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5419 if (EL.hasAnyInfo()) return EL; 5420 break; 5421 } 5422 case ICmpInst::ICMP_SLT: 5423 case ICmpInst::ICMP_ULT: { // while (X < Y) 5424 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5425 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5426 if (EL.hasAnyInfo()) return EL; 5427 break; 5428 } 5429 case ICmpInst::ICMP_SGT: 5430 case ICmpInst::ICMP_UGT: { // while (X > Y) 5431 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5432 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5433 if (EL.hasAnyInfo()) return EL; 5434 break; 5435 } 5436 default: 5437 #if 0 5438 dbgs() << "computeBackedgeTakenCount "; 5439 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5440 dbgs() << "[unsigned] "; 5441 dbgs() << *LHS << " " 5442 << Instruction::getOpcodeName(Instruction::ICmp) 5443 << " " << *RHS << "\n"; 5444 #endif 5445 break; 5446 } 5447 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5448 } 5449 5450 ScalarEvolution::ExitLimit 5451 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5452 SwitchInst *Switch, 5453 BasicBlock *ExitingBlock, 5454 bool ControlsExit) { 5455 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5456 5457 // Give up if the exit is the default dest of a switch. 5458 if (Switch->getDefaultDest() == ExitingBlock) 5459 return getCouldNotCompute(); 5460 5461 assert(L->contains(Switch->getDefaultDest()) && 5462 "Default case must not exit the loop!"); 5463 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5464 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5465 5466 // while (X != Y) --> while (X-Y != 0) 5467 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5468 if (EL.hasAnyInfo()) 5469 return EL; 5470 5471 return getCouldNotCompute(); 5472 } 5473 5474 static ConstantInt * 5475 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5476 ScalarEvolution &SE) { 5477 const SCEV *InVal = SE.getConstant(C); 5478 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5479 assert(isa<SCEVConstant>(Val) && 5480 "Evaluation of SCEV at constant didn't fold correctly?"); 5481 return cast<SCEVConstant>(Val)->getValue(); 5482 } 5483 5484 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5485 /// 'icmp op load X, cst', try to see if we can compute the backedge 5486 /// execution count. 5487 ScalarEvolution::ExitLimit 5488 ScalarEvolution::computeLoadConstantCompareExitLimit( 5489 LoadInst *LI, 5490 Constant *RHS, 5491 const Loop *L, 5492 ICmpInst::Predicate predicate) { 5493 5494 if (LI->isVolatile()) return getCouldNotCompute(); 5495 5496 // Check to see if the loaded pointer is a getelementptr of a global. 5497 // TODO: Use SCEV instead of manually grubbing with GEPs. 5498 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5499 if (!GEP) return getCouldNotCompute(); 5500 5501 // Make sure that it is really a constant global we are gepping, with an 5502 // initializer, and make sure the first IDX is really 0. 5503 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5504 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5505 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5506 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5507 return getCouldNotCompute(); 5508 5509 // Okay, we allow one non-constant index into the GEP instruction. 5510 Value *VarIdx = nullptr; 5511 std::vector<Constant*> Indexes; 5512 unsigned VarIdxNum = 0; 5513 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5514 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5515 Indexes.push_back(CI); 5516 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5517 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5518 VarIdx = GEP->getOperand(i); 5519 VarIdxNum = i-2; 5520 Indexes.push_back(nullptr); 5521 } 5522 5523 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5524 if (!VarIdx) 5525 return getCouldNotCompute(); 5526 5527 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5528 // Check to see if X is a loop variant variable value now. 5529 const SCEV *Idx = getSCEV(VarIdx); 5530 Idx = getSCEVAtScope(Idx, L); 5531 5532 // We can only recognize very limited forms of loop index expressions, in 5533 // particular, only affine AddRec's like {C1,+,C2}. 5534 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5535 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5536 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5537 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5538 return getCouldNotCompute(); 5539 5540 unsigned MaxSteps = MaxBruteForceIterations; 5541 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5542 ConstantInt *ItCst = ConstantInt::get( 5543 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5544 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5545 5546 // Form the GEP offset. 5547 Indexes[VarIdxNum] = Val; 5548 5549 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5550 Indexes); 5551 if (!Result) break; // Cannot compute! 5552 5553 // Evaluate the condition for this iteration. 5554 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5555 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5556 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5557 #if 0 5558 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5559 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5560 << "***\n"; 5561 #endif 5562 ++NumArrayLenItCounts; 5563 return getConstant(ItCst); // Found terminating iteration! 5564 } 5565 } 5566 return getCouldNotCompute(); 5567 } 5568 5569 5570 /// CanConstantFold - Return true if we can constant fold an instruction of the 5571 /// specified type, assuming that all operands were constants. 5572 static bool CanConstantFold(const Instruction *I) { 5573 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5574 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5575 isa<LoadInst>(I)) 5576 return true; 5577 5578 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5579 if (const Function *F = CI->getCalledFunction()) 5580 return canConstantFoldCallTo(F); 5581 return false; 5582 } 5583 5584 /// Determine whether this instruction can constant evolve within this loop 5585 /// assuming its operands can all constant evolve. 5586 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5587 // An instruction outside of the loop can't be derived from a loop PHI. 5588 if (!L->contains(I)) return false; 5589 5590 if (isa<PHINode>(I)) { 5591 // We don't currently keep track of the control flow needed to evaluate 5592 // PHIs, so we cannot handle PHIs inside of loops. 5593 return L->getHeader() == I->getParent(); 5594 } 5595 5596 // If we won't be able to constant fold this expression even if the operands 5597 // are constants, bail early. 5598 return CanConstantFold(I); 5599 } 5600 5601 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5602 /// recursing through each instruction operand until reaching a loop header phi. 5603 static PHINode * 5604 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5605 DenseMap<Instruction *, PHINode *> &PHIMap) { 5606 5607 // Otherwise, we can evaluate this instruction if all of its operands are 5608 // constant or derived from a PHI node themselves. 5609 PHINode *PHI = nullptr; 5610 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5611 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5612 5613 if (isa<Constant>(*OpI)) continue; 5614 5615 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5616 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5617 5618 PHINode *P = dyn_cast<PHINode>(OpInst); 5619 if (!P) 5620 // If this operand is already visited, reuse the prior result. 5621 // We may have P != PHI if this is the deepest point at which the 5622 // inconsistent paths meet. 5623 P = PHIMap.lookup(OpInst); 5624 if (!P) { 5625 // Recurse and memoize the results, whether a phi is found or not. 5626 // This recursive call invalidates pointers into PHIMap. 5627 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5628 PHIMap[OpInst] = P; 5629 } 5630 if (!P) 5631 return nullptr; // Not evolving from PHI 5632 if (PHI && PHI != P) 5633 return nullptr; // Evolving from multiple different PHIs. 5634 PHI = P; 5635 } 5636 // This is a expression evolving from a constant PHI! 5637 return PHI; 5638 } 5639 5640 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5641 /// in the loop that V is derived from. We allow arbitrary operations along the 5642 /// way, but the operands of an operation must either be constants or a value 5643 /// derived from a constant PHI. If this expression does not fit with these 5644 /// constraints, return null. 5645 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5646 Instruction *I = dyn_cast<Instruction>(V); 5647 if (!I || !canConstantEvolve(I, L)) return nullptr; 5648 5649 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5650 return PN; 5651 } 5652 5653 // Record non-constant instructions contained by the loop. 5654 DenseMap<Instruction *, PHINode *> PHIMap; 5655 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5656 } 5657 5658 /// EvaluateExpression - Given an expression that passes the 5659 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5660 /// in the loop has the value PHIVal. If we can't fold this expression for some 5661 /// reason, return null. 5662 static Constant *EvaluateExpression(Value *V, const Loop *L, 5663 DenseMap<Instruction *, Constant *> &Vals, 5664 const DataLayout &DL, 5665 const TargetLibraryInfo *TLI) { 5666 // Convenient constant check, but redundant for recursive calls. 5667 if (Constant *C = dyn_cast<Constant>(V)) return C; 5668 Instruction *I = dyn_cast<Instruction>(V); 5669 if (!I) return nullptr; 5670 5671 if (Constant *C = Vals.lookup(I)) return C; 5672 5673 // An instruction inside the loop depends on a value outside the loop that we 5674 // weren't given a mapping for, or a value such as a call inside the loop. 5675 if (!canConstantEvolve(I, L)) return nullptr; 5676 5677 // An unmapped PHI can be due to a branch or another loop inside this loop, 5678 // or due to this not being the initial iteration through a loop where we 5679 // couldn't compute the evolution of this particular PHI last time. 5680 if (isa<PHINode>(I)) return nullptr; 5681 5682 std::vector<Constant*> Operands(I->getNumOperands()); 5683 5684 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5685 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5686 if (!Operand) { 5687 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5688 if (!Operands[i]) return nullptr; 5689 continue; 5690 } 5691 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5692 Vals[Operand] = C; 5693 if (!C) return nullptr; 5694 Operands[i] = C; 5695 } 5696 5697 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5698 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5699 Operands[1], DL, TLI); 5700 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5701 if (!LI->isVolatile()) 5702 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5703 } 5704 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5705 TLI); 5706 } 5707 5708 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5709 /// in the header of its containing loop, we know the loop executes a 5710 /// constant number of times, and the PHI node is just a recurrence 5711 /// involving constants, fold it. 5712 Constant * 5713 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5714 const APInt &BEs, 5715 const Loop *L) { 5716 auto I = ConstantEvolutionLoopExitValue.find(PN); 5717 if (I != ConstantEvolutionLoopExitValue.end()) 5718 return I->second; 5719 5720 if (BEs.ugt(MaxBruteForceIterations)) 5721 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5722 5723 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5724 5725 DenseMap<Instruction *, Constant *> CurrentIterVals; 5726 BasicBlock *Header = L->getHeader(); 5727 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5728 5729 BasicBlock *Latch = L->getLoopLatch(); 5730 if (!Latch) 5731 return nullptr; 5732 5733 // Since the loop has one latch, the PHI node must have two entries. One 5734 // entry must be a constant (coming in from outside of the loop), and the 5735 // second must be derived from the same PHI. 5736 5737 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5738 ? PN->getIncomingBlock(1) 5739 : PN->getIncomingBlock(0); 5740 5741 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5742 5743 // Note: not all PHI nodes in the same block have to have their incoming 5744 // values in the same order, so we use the basic block to look up the incoming 5745 // value, not an index. 5746 5747 for (auto &I : *Header) { 5748 PHINode *PHI = dyn_cast<PHINode>(&I); 5749 if (!PHI) break; 5750 auto *StartCST = 5751 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5752 if (!StartCST) continue; 5753 CurrentIterVals[PHI] = StartCST; 5754 } 5755 if (!CurrentIterVals.count(PN)) 5756 return RetVal = nullptr; 5757 5758 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5759 5760 // Execute the loop symbolically to determine the exit value. 5761 if (BEs.getActiveBits() >= 32) 5762 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5763 5764 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5765 unsigned IterationNum = 0; 5766 const DataLayout &DL = F.getParent()->getDataLayout(); 5767 for (; ; ++IterationNum) { 5768 if (IterationNum == NumIterations) 5769 return RetVal = CurrentIterVals[PN]; // Got exit value! 5770 5771 // Compute the value of the PHIs for the next iteration. 5772 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5773 DenseMap<Instruction *, Constant *> NextIterVals; 5774 Constant *NextPHI = 5775 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5776 if (!NextPHI) 5777 return nullptr; // Couldn't evaluate! 5778 NextIterVals[PN] = NextPHI; 5779 5780 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5781 5782 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5783 // cease to be able to evaluate one of them or if they stop evolving, 5784 // because that doesn't necessarily prevent us from computing PN. 5785 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5786 for (const auto &I : CurrentIterVals) { 5787 PHINode *PHI = dyn_cast<PHINode>(I.first); 5788 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5789 PHIsToCompute.emplace_back(PHI, I.second); 5790 } 5791 // We use two distinct loops because EvaluateExpression may invalidate any 5792 // iterators into CurrentIterVals. 5793 for (const auto &I : PHIsToCompute) { 5794 PHINode *PHI = I.first; 5795 Constant *&NextPHI = NextIterVals[PHI]; 5796 if (!NextPHI) { // Not already computed. 5797 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5798 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5799 } 5800 if (NextPHI != I.second) 5801 StoppedEvolving = false; 5802 } 5803 5804 // If all entries in CurrentIterVals == NextIterVals then we can stop 5805 // iterating, the loop can't continue to change. 5806 if (StoppedEvolving) 5807 return RetVal = CurrentIterVals[PN]; 5808 5809 CurrentIterVals.swap(NextIterVals); 5810 } 5811 } 5812 5813 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5814 Value *Cond, 5815 bool ExitWhen) { 5816 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5817 if (!PN) return getCouldNotCompute(); 5818 5819 // If the loop is canonicalized, the PHI will have exactly two entries. 5820 // That's the only form we support here. 5821 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5822 5823 DenseMap<Instruction *, Constant *> CurrentIterVals; 5824 BasicBlock *Header = L->getHeader(); 5825 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5826 5827 BasicBlock *Latch = L->getLoopLatch(); 5828 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5829 5830 // NonLatch is the preheader, or something equivalent. 5831 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5832 ? PN->getIncomingBlock(1) 5833 : PN->getIncomingBlock(0); 5834 5835 // Note: not all PHI nodes in the same block have to have their incoming 5836 // values in the same order, so we use the basic block to look up the incoming 5837 // value, not an index. 5838 5839 for (auto &I : *Header) { 5840 PHINode *PHI = dyn_cast<PHINode>(&I); 5841 if (!PHI) 5842 break; 5843 auto *StartCST = 5844 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5845 if (!StartCST) continue; 5846 CurrentIterVals[PHI] = StartCST; 5847 } 5848 if (!CurrentIterVals.count(PN)) 5849 return getCouldNotCompute(); 5850 5851 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5852 // the loop symbolically to determine when the condition gets a value of 5853 // "ExitWhen". 5854 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5855 const DataLayout &DL = F.getParent()->getDataLayout(); 5856 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5857 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5858 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5859 5860 // Couldn't symbolically evaluate. 5861 if (!CondVal) return getCouldNotCompute(); 5862 5863 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5864 ++NumBruteForceTripCountsComputed; 5865 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5866 } 5867 5868 // Update all the PHI nodes for the next iteration. 5869 DenseMap<Instruction *, Constant *> NextIterVals; 5870 5871 // Create a list of which PHIs we need to compute. We want to do this before 5872 // calling EvaluateExpression on them because that may invalidate iterators 5873 // into CurrentIterVals. 5874 SmallVector<PHINode *, 8> PHIsToCompute; 5875 for (const auto &I : CurrentIterVals) { 5876 PHINode *PHI = dyn_cast<PHINode>(I.first); 5877 if (!PHI || PHI->getParent() != Header) continue; 5878 PHIsToCompute.push_back(PHI); 5879 } 5880 for (PHINode *PHI : PHIsToCompute) { 5881 Constant *&NextPHI = NextIterVals[PHI]; 5882 if (NextPHI) continue; // Already computed! 5883 5884 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5885 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5886 } 5887 CurrentIterVals.swap(NextIterVals); 5888 } 5889 5890 // Too many iterations were needed to evaluate. 5891 return getCouldNotCompute(); 5892 } 5893 5894 /// getSCEVAtScope - Return a SCEV expression for the specified value 5895 /// at the specified scope in the program. The L value specifies a loop 5896 /// nest to evaluate the expression at, where null is the top-level or a 5897 /// specified loop is immediately inside of the loop. 5898 /// 5899 /// This method can be used to compute the exit value for a variable defined 5900 /// in a loop by querying what the value will hold in the parent loop. 5901 /// 5902 /// In the case that a relevant loop exit value cannot be computed, the 5903 /// original value V is returned. 5904 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5905 // Check to see if we've folded this expression at this loop before. 5906 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5907 for (unsigned u = 0; u < Values.size(); u++) { 5908 if (Values[u].first == L) 5909 return Values[u].second ? Values[u].second : V; 5910 } 5911 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5912 // Otherwise compute it. 5913 const SCEV *C = computeSCEVAtScope(V, L); 5914 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5915 for (unsigned u = Values2.size(); u > 0; u--) { 5916 if (Values2[u - 1].first == L) { 5917 Values2[u - 1].second = C; 5918 break; 5919 } 5920 } 5921 return C; 5922 } 5923 5924 /// This builds up a Constant using the ConstantExpr interface. That way, we 5925 /// will return Constants for objects which aren't represented by a 5926 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5927 /// Returns NULL if the SCEV isn't representable as a Constant. 5928 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5929 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5930 case scCouldNotCompute: 5931 case scAddRecExpr: 5932 break; 5933 case scConstant: 5934 return cast<SCEVConstant>(V)->getValue(); 5935 case scUnknown: 5936 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5937 case scSignExtend: { 5938 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5939 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5940 return ConstantExpr::getSExt(CastOp, SS->getType()); 5941 break; 5942 } 5943 case scZeroExtend: { 5944 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5945 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5946 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5947 break; 5948 } 5949 case scTruncate: { 5950 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5951 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5952 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5953 break; 5954 } 5955 case scAddExpr: { 5956 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5957 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5958 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5959 unsigned AS = PTy->getAddressSpace(); 5960 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5961 C = ConstantExpr::getBitCast(C, DestPtrTy); 5962 } 5963 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5964 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5965 if (!C2) return nullptr; 5966 5967 // First pointer! 5968 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5969 unsigned AS = C2->getType()->getPointerAddressSpace(); 5970 std::swap(C, C2); 5971 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5972 // The offsets have been converted to bytes. We can add bytes to an 5973 // i8* by GEP with the byte count in the first index. 5974 C = ConstantExpr::getBitCast(C, DestPtrTy); 5975 } 5976 5977 // Don't bother trying to sum two pointers. We probably can't 5978 // statically compute a load that results from it anyway. 5979 if (C2->getType()->isPointerTy()) 5980 return nullptr; 5981 5982 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5983 if (PTy->getElementType()->isStructTy()) 5984 C2 = ConstantExpr::getIntegerCast( 5985 C2, Type::getInt32Ty(C->getContext()), true); 5986 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5987 } else 5988 C = ConstantExpr::getAdd(C, C2); 5989 } 5990 return C; 5991 } 5992 break; 5993 } 5994 case scMulExpr: { 5995 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5996 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5997 // Don't bother with pointers at all. 5998 if (C->getType()->isPointerTy()) return nullptr; 5999 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6000 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6001 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6002 C = ConstantExpr::getMul(C, C2); 6003 } 6004 return C; 6005 } 6006 break; 6007 } 6008 case scUDivExpr: { 6009 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6010 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6011 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6012 if (LHS->getType() == RHS->getType()) 6013 return ConstantExpr::getUDiv(LHS, RHS); 6014 break; 6015 } 6016 case scSMaxExpr: 6017 case scUMaxExpr: 6018 break; // TODO: smax, umax. 6019 } 6020 return nullptr; 6021 } 6022 6023 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6024 if (isa<SCEVConstant>(V)) return V; 6025 6026 // If this instruction is evolved from a constant-evolving PHI, compute the 6027 // exit value from the loop without using SCEVs. 6028 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6029 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6030 const Loop *LI = this->LI[I->getParent()]; 6031 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6032 if (PHINode *PN = dyn_cast<PHINode>(I)) 6033 if (PN->getParent() == LI->getHeader()) { 6034 // Okay, there is no closed form solution for the PHI node. Check 6035 // to see if the loop that contains it has a known backedge-taken 6036 // count. If so, we may be able to force computation of the exit 6037 // value. 6038 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6039 if (const SCEVConstant *BTCC = 6040 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6041 // Okay, we know how many times the containing loop executes. If 6042 // this is a constant evolving PHI node, get the final value at 6043 // the specified iteration number. 6044 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6045 BTCC->getValue()->getValue(), 6046 LI); 6047 if (RV) return getSCEV(RV); 6048 } 6049 } 6050 6051 // Okay, this is an expression that we cannot symbolically evaluate 6052 // into a SCEV. Check to see if it's possible to symbolically evaluate 6053 // the arguments into constants, and if so, try to constant propagate the 6054 // result. This is particularly useful for computing loop exit values. 6055 if (CanConstantFold(I)) { 6056 SmallVector<Constant *, 4> Operands; 6057 bool MadeImprovement = false; 6058 for (Value *Op : I->operands()) { 6059 if (Constant *C = dyn_cast<Constant>(Op)) { 6060 Operands.push_back(C); 6061 continue; 6062 } 6063 6064 // If any of the operands is non-constant and if they are 6065 // non-integer and non-pointer, don't even try to analyze them 6066 // with scev techniques. 6067 if (!isSCEVable(Op->getType())) 6068 return V; 6069 6070 const SCEV *OrigV = getSCEV(Op); 6071 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6072 MadeImprovement |= OrigV != OpV; 6073 6074 Constant *C = BuildConstantFromSCEV(OpV); 6075 if (!C) return V; 6076 if (C->getType() != Op->getType()) 6077 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6078 Op->getType(), 6079 false), 6080 C, Op->getType()); 6081 Operands.push_back(C); 6082 } 6083 6084 // Check to see if getSCEVAtScope actually made an improvement. 6085 if (MadeImprovement) { 6086 Constant *C = nullptr; 6087 const DataLayout &DL = F.getParent()->getDataLayout(); 6088 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6089 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6090 Operands[1], DL, &TLI); 6091 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6092 if (!LI->isVolatile()) 6093 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6094 } else 6095 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6096 DL, &TLI); 6097 if (!C) return V; 6098 return getSCEV(C); 6099 } 6100 } 6101 } 6102 6103 // This is some other type of SCEVUnknown, just return it. 6104 return V; 6105 } 6106 6107 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6108 // Avoid performing the look-up in the common case where the specified 6109 // expression has no loop-variant portions. 6110 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6111 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6112 if (OpAtScope != Comm->getOperand(i)) { 6113 // Okay, at least one of these operands is loop variant but might be 6114 // foldable. Build a new instance of the folded commutative expression. 6115 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6116 Comm->op_begin()+i); 6117 NewOps.push_back(OpAtScope); 6118 6119 for (++i; i != e; ++i) { 6120 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6121 NewOps.push_back(OpAtScope); 6122 } 6123 if (isa<SCEVAddExpr>(Comm)) 6124 return getAddExpr(NewOps); 6125 if (isa<SCEVMulExpr>(Comm)) 6126 return getMulExpr(NewOps); 6127 if (isa<SCEVSMaxExpr>(Comm)) 6128 return getSMaxExpr(NewOps); 6129 if (isa<SCEVUMaxExpr>(Comm)) 6130 return getUMaxExpr(NewOps); 6131 llvm_unreachable("Unknown commutative SCEV type!"); 6132 } 6133 } 6134 // If we got here, all operands are loop invariant. 6135 return Comm; 6136 } 6137 6138 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6139 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6140 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6141 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6142 return Div; // must be loop invariant 6143 return getUDivExpr(LHS, RHS); 6144 } 6145 6146 // If this is a loop recurrence for a loop that does not contain L, then we 6147 // are dealing with the final value computed by the loop. 6148 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6149 // First, attempt to evaluate each operand. 6150 // Avoid performing the look-up in the common case where the specified 6151 // expression has no loop-variant portions. 6152 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6153 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6154 if (OpAtScope == AddRec->getOperand(i)) 6155 continue; 6156 6157 // Okay, at least one of these operands is loop variant but might be 6158 // foldable. Build a new instance of the folded commutative expression. 6159 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6160 AddRec->op_begin()+i); 6161 NewOps.push_back(OpAtScope); 6162 for (++i; i != e; ++i) 6163 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6164 6165 const SCEV *FoldedRec = 6166 getAddRecExpr(NewOps, AddRec->getLoop(), 6167 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6168 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6169 // The addrec may be folded to a nonrecurrence, for example, if the 6170 // induction variable is multiplied by zero after constant folding. Go 6171 // ahead and return the folded value. 6172 if (!AddRec) 6173 return FoldedRec; 6174 break; 6175 } 6176 6177 // If the scope is outside the addrec's loop, evaluate it by using the 6178 // loop exit value of the addrec. 6179 if (!AddRec->getLoop()->contains(L)) { 6180 // To evaluate this recurrence, we need to know how many times the AddRec 6181 // loop iterates. Compute this now. 6182 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6183 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6184 6185 // Then, evaluate the AddRec. 6186 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6187 } 6188 6189 return AddRec; 6190 } 6191 6192 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6193 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6194 if (Op == Cast->getOperand()) 6195 return Cast; // must be loop invariant 6196 return getZeroExtendExpr(Op, Cast->getType()); 6197 } 6198 6199 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6200 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6201 if (Op == Cast->getOperand()) 6202 return Cast; // must be loop invariant 6203 return getSignExtendExpr(Op, Cast->getType()); 6204 } 6205 6206 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6207 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6208 if (Op == Cast->getOperand()) 6209 return Cast; // must be loop invariant 6210 return getTruncateExpr(Op, Cast->getType()); 6211 } 6212 6213 llvm_unreachable("Unknown SCEV type!"); 6214 } 6215 6216 /// getSCEVAtScope - This is a convenience function which does 6217 /// getSCEVAtScope(getSCEV(V), L). 6218 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6219 return getSCEVAtScope(getSCEV(V), L); 6220 } 6221 6222 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6223 /// following equation: 6224 /// 6225 /// A * X = B (mod N) 6226 /// 6227 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6228 /// A and B isn't important. 6229 /// 6230 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6231 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6232 ScalarEvolution &SE) { 6233 uint32_t BW = A.getBitWidth(); 6234 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6235 assert(A != 0 && "A must be non-zero."); 6236 6237 // 1. D = gcd(A, N) 6238 // 6239 // The gcd of A and N may have only one prime factor: 2. The number of 6240 // trailing zeros in A is its multiplicity 6241 uint32_t Mult2 = A.countTrailingZeros(); 6242 // D = 2^Mult2 6243 6244 // 2. Check if B is divisible by D. 6245 // 6246 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6247 // is not less than multiplicity of this prime factor for D. 6248 if (B.countTrailingZeros() < Mult2) 6249 return SE.getCouldNotCompute(); 6250 6251 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6252 // modulo (N / D). 6253 // 6254 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6255 // bit width during computations. 6256 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6257 APInt Mod(BW + 1, 0); 6258 Mod.setBit(BW - Mult2); // Mod = N / D 6259 APInt I = AD.multiplicativeInverse(Mod); 6260 6261 // 4. Compute the minimum unsigned root of the equation: 6262 // I * (B / D) mod (N / D) 6263 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6264 6265 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6266 // bits. 6267 return SE.getConstant(Result.trunc(BW)); 6268 } 6269 6270 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6271 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6272 /// might be the same) or two SCEVCouldNotCompute objects. 6273 /// 6274 static std::pair<const SCEV *,const SCEV *> 6275 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6276 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6277 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6278 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6279 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6280 6281 // We currently can only solve this if the coefficients are constants. 6282 if (!LC || !MC || !NC) { 6283 const SCEV *CNC = SE.getCouldNotCompute(); 6284 return std::make_pair(CNC, CNC); 6285 } 6286 6287 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6288 const APInt &L = LC->getValue()->getValue(); 6289 const APInt &M = MC->getValue()->getValue(); 6290 const APInt &N = NC->getValue()->getValue(); 6291 APInt Two(BitWidth, 2); 6292 APInt Four(BitWidth, 4); 6293 6294 { 6295 using namespace APIntOps; 6296 const APInt& C = L; 6297 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6298 // The B coefficient is M-N/2 6299 APInt B(M); 6300 B -= sdiv(N,Two); 6301 6302 // The A coefficient is N/2 6303 APInt A(N.sdiv(Two)); 6304 6305 // Compute the B^2-4ac term. 6306 APInt SqrtTerm(B); 6307 SqrtTerm *= B; 6308 SqrtTerm -= Four * (A * C); 6309 6310 if (SqrtTerm.isNegative()) { 6311 // The loop is provably infinite. 6312 const SCEV *CNC = SE.getCouldNotCompute(); 6313 return std::make_pair(CNC, CNC); 6314 } 6315 6316 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6317 // integer value or else APInt::sqrt() will assert. 6318 APInt SqrtVal(SqrtTerm.sqrt()); 6319 6320 // Compute the two solutions for the quadratic formula. 6321 // The divisions must be performed as signed divisions. 6322 APInt NegB(-B); 6323 APInt TwoA(A << 1); 6324 if (TwoA.isMinValue()) { 6325 const SCEV *CNC = SE.getCouldNotCompute(); 6326 return std::make_pair(CNC, CNC); 6327 } 6328 6329 LLVMContext &Context = SE.getContext(); 6330 6331 ConstantInt *Solution1 = 6332 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6333 ConstantInt *Solution2 = 6334 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6335 6336 return std::make_pair(SE.getConstant(Solution1), 6337 SE.getConstant(Solution2)); 6338 } // end APIntOps namespace 6339 } 6340 6341 /// HowFarToZero - Return the number of times a backedge comparing the specified 6342 /// value to zero will execute. If not computable, return CouldNotCompute. 6343 /// 6344 /// This is only used for loops with a "x != y" exit test. The exit condition is 6345 /// now expressed as a single expression, V = x-y. So the exit test is 6346 /// effectively V != 0. We know and take advantage of the fact that this 6347 /// expression only being used in a comparison by zero context. 6348 ScalarEvolution::ExitLimit 6349 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6350 // If the value is a constant 6351 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6352 // If the value is already zero, the branch will execute zero times. 6353 if (C->getValue()->isZero()) return C; 6354 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6355 } 6356 6357 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6358 if (!AddRec || AddRec->getLoop() != L) 6359 return getCouldNotCompute(); 6360 6361 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6362 // the quadratic equation to solve it. 6363 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6364 std::pair<const SCEV *,const SCEV *> Roots = 6365 SolveQuadraticEquation(AddRec, *this); 6366 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6367 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6368 if (R1 && R2) { 6369 #if 0 6370 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6371 << " sol#2: " << *R2 << "\n"; 6372 #endif 6373 // Pick the smallest positive root value. 6374 if (ConstantInt *CB = 6375 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6376 R1->getValue(), 6377 R2->getValue()))) { 6378 if (!CB->getZExtValue()) 6379 std::swap(R1, R2); // R1 is the minimum root now. 6380 6381 // We can only use this value if the chrec ends up with an exact zero 6382 // value at this index. When solving for "X*X != 5", for example, we 6383 // should not accept a root of 2. 6384 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6385 if (Val->isZero()) 6386 return R1; // We found a quadratic root! 6387 } 6388 } 6389 return getCouldNotCompute(); 6390 } 6391 6392 // Otherwise we can only handle this if it is affine. 6393 if (!AddRec->isAffine()) 6394 return getCouldNotCompute(); 6395 6396 // If this is an affine expression, the execution count of this branch is 6397 // the minimum unsigned root of the following equation: 6398 // 6399 // Start + Step*N = 0 (mod 2^BW) 6400 // 6401 // equivalent to: 6402 // 6403 // Step*N = -Start (mod 2^BW) 6404 // 6405 // where BW is the common bit width of Start and Step. 6406 6407 // Get the initial value for the loop. 6408 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6409 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6410 6411 // For now we handle only constant steps. 6412 // 6413 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6414 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6415 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6416 // We have not yet seen any such cases. 6417 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6418 if (!StepC || StepC->getValue()->equalsInt(0)) 6419 return getCouldNotCompute(); 6420 6421 // For positive steps (counting up until unsigned overflow): 6422 // N = -Start/Step (as unsigned) 6423 // For negative steps (counting down to zero): 6424 // N = Start/-Step 6425 // First compute the unsigned distance from zero in the direction of Step. 6426 bool CountDown = StepC->getValue()->getValue().isNegative(); 6427 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6428 6429 // Handle unitary steps, which cannot wraparound. 6430 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6431 // N = Distance (as unsigned) 6432 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6433 ConstantRange CR = getUnsignedRange(Start); 6434 const SCEV *MaxBECount; 6435 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6436 // When counting up, the worst starting value is 1, not 0. 6437 MaxBECount = CR.getUnsignedMax().isMinValue() 6438 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6439 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6440 else 6441 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6442 : -CR.getUnsignedMin()); 6443 return ExitLimit(Distance, MaxBECount); 6444 } 6445 6446 // As a special case, handle the instance where Step is a positive power of 6447 // two. In this case, determining whether Step divides Distance evenly can be 6448 // done by counting and comparing the number of trailing zeros of Step and 6449 // Distance. 6450 if (!CountDown) { 6451 const APInt &StepV = StepC->getValue()->getValue(); 6452 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6453 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6454 // case is not handled as this code is guarded by !CountDown. 6455 if (StepV.isPowerOf2() && 6456 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6457 // Here we've constrained the equation to be of the form 6458 // 6459 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6460 // 6461 // where we're operating on a W bit wide integer domain and k is 6462 // non-negative. The smallest unsigned solution for X is the trip count. 6463 // 6464 // (0) is equivalent to: 6465 // 6466 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6467 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6468 // <=> 2^k * Distance' - X = L * 2^(W - N) 6469 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6470 // 6471 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6472 // by 2^(W - N). 6473 // 6474 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6475 // 6476 // E.g. say we're solving 6477 // 6478 // 2 * Val = 2 * X (in i8) ... (3) 6479 // 6480 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6481 // 6482 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6483 // necessarily the smallest unsigned value of X that satisfies (3). 6484 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6485 // is i8 1, not i8 -127 6486 6487 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6488 6489 // Since SCEV does not have a URem node, we construct one using a truncate 6490 // and a zero extend. 6491 6492 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6493 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6494 auto *WideTy = Distance->getType(); 6495 6496 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6497 } 6498 } 6499 6500 // If the condition controls loop exit (the loop exits only if the expression 6501 // is true) and the addition is no-wrap we can use unsigned divide to 6502 // compute the backedge count. In this case, the step may not divide the 6503 // distance, but we don't care because if the condition is "missed" the loop 6504 // will have undefined behavior due to wrapping. 6505 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6506 const SCEV *Exact = 6507 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6508 return ExitLimit(Exact, Exact); 6509 } 6510 6511 // Then, try to solve the above equation provided that Start is constant. 6512 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6513 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6514 -StartC->getValue()->getValue(), 6515 *this); 6516 return getCouldNotCompute(); 6517 } 6518 6519 /// HowFarToNonZero - Return the number of times a backedge checking the 6520 /// specified value for nonzero will execute. If not computable, return 6521 /// CouldNotCompute 6522 ScalarEvolution::ExitLimit 6523 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6524 // Loops that look like: while (X == 0) are very strange indeed. We don't 6525 // handle them yet except for the trivial case. This could be expanded in the 6526 // future as needed. 6527 6528 // If the value is a constant, check to see if it is known to be non-zero 6529 // already. If so, the backedge will execute zero times. 6530 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6531 if (!C->getValue()->isNullValue()) 6532 return getZero(C->getType()); 6533 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6534 } 6535 6536 // We could implement others, but I really doubt anyone writes loops like 6537 // this, and if they did, they would already be constant folded. 6538 return getCouldNotCompute(); 6539 } 6540 6541 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6542 /// (which may not be an immediate predecessor) which has exactly one 6543 /// successor from which BB is reachable, or null if no such block is 6544 /// found. 6545 /// 6546 std::pair<BasicBlock *, BasicBlock *> 6547 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6548 // If the block has a unique predecessor, then there is no path from the 6549 // predecessor to the block that does not go through the direct edge 6550 // from the predecessor to the block. 6551 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6552 return std::make_pair(Pred, BB); 6553 6554 // A loop's header is defined to be a block that dominates the loop. 6555 // If the header has a unique predecessor outside the loop, it must be 6556 // a block that has exactly one successor that can reach the loop. 6557 if (Loop *L = LI.getLoopFor(BB)) 6558 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6559 6560 return std::pair<BasicBlock *, BasicBlock *>(); 6561 } 6562 6563 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6564 /// testing whether two expressions are equal, however for the purposes of 6565 /// looking for a condition guarding a loop, it can be useful to be a little 6566 /// more general, since a front-end may have replicated the controlling 6567 /// expression. 6568 /// 6569 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6570 // Quick check to see if they are the same SCEV. 6571 if (A == B) return true; 6572 6573 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6574 // Not all instructions that are "identical" compute the same value. For 6575 // instance, two distinct alloca instructions allocating the same type are 6576 // identical and do not read memory; but compute distinct values. 6577 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6578 }; 6579 6580 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6581 // two different instructions with the same value. Check for this case. 6582 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6583 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6584 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6585 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6586 if (ComputesEqualValues(AI, BI)) 6587 return true; 6588 6589 // Otherwise assume they may have a different value. 6590 return false; 6591 } 6592 6593 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6594 /// predicate Pred. Return true iff any changes were made. 6595 /// 6596 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6597 const SCEV *&LHS, const SCEV *&RHS, 6598 unsigned Depth) { 6599 bool Changed = false; 6600 6601 // If we hit the max recursion limit bail out. 6602 if (Depth >= 3) 6603 return false; 6604 6605 // Canonicalize a constant to the right side. 6606 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6607 // Check for both operands constant. 6608 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6609 if (ConstantExpr::getICmp(Pred, 6610 LHSC->getValue(), 6611 RHSC->getValue())->isNullValue()) 6612 goto trivially_false; 6613 else 6614 goto trivially_true; 6615 } 6616 // Otherwise swap the operands to put the constant on the right. 6617 std::swap(LHS, RHS); 6618 Pred = ICmpInst::getSwappedPredicate(Pred); 6619 Changed = true; 6620 } 6621 6622 // If we're comparing an addrec with a value which is loop-invariant in the 6623 // addrec's loop, put the addrec on the left. Also make a dominance check, 6624 // as both operands could be addrecs loop-invariant in each other's loop. 6625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6626 const Loop *L = AR->getLoop(); 6627 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6628 std::swap(LHS, RHS); 6629 Pred = ICmpInst::getSwappedPredicate(Pred); 6630 Changed = true; 6631 } 6632 } 6633 6634 // If there's a constant operand, canonicalize comparisons with boundary 6635 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6636 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6637 const APInt &RA = RC->getValue()->getValue(); 6638 switch (Pred) { 6639 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6640 case ICmpInst::ICMP_EQ: 6641 case ICmpInst::ICMP_NE: 6642 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6643 if (!RA) 6644 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6645 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6646 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6647 ME->getOperand(0)->isAllOnesValue()) { 6648 RHS = AE->getOperand(1); 6649 LHS = ME->getOperand(1); 6650 Changed = true; 6651 } 6652 break; 6653 case ICmpInst::ICMP_UGE: 6654 if ((RA - 1).isMinValue()) { 6655 Pred = ICmpInst::ICMP_NE; 6656 RHS = getConstant(RA - 1); 6657 Changed = true; 6658 break; 6659 } 6660 if (RA.isMaxValue()) { 6661 Pred = ICmpInst::ICMP_EQ; 6662 Changed = true; 6663 break; 6664 } 6665 if (RA.isMinValue()) goto trivially_true; 6666 6667 Pred = ICmpInst::ICMP_UGT; 6668 RHS = getConstant(RA - 1); 6669 Changed = true; 6670 break; 6671 case ICmpInst::ICMP_ULE: 6672 if ((RA + 1).isMaxValue()) { 6673 Pred = ICmpInst::ICMP_NE; 6674 RHS = getConstant(RA + 1); 6675 Changed = true; 6676 break; 6677 } 6678 if (RA.isMinValue()) { 6679 Pred = ICmpInst::ICMP_EQ; 6680 Changed = true; 6681 break; 6682 } 6683 if (RA.isMaxValue()) goto trivially_true; 6684 6685 Pred = ICmpInst::ICMP_ULT; 6686 RHS = getConstant(RA + 1); 6687 Changed = true; 6688 break; 6689 case ICmpInst::ICMP_SGE: 6690 if ((RA - 1).isMinSignedValue()) { 6691 Pred = ICmpInst::ICMP_NE; 6692 RHS = getConstant(RA - 1); 6693 Changed = true; 6694 break; 6695 } 6696 if (RA.isMaxSignedValue()) { 6697 Pred = ICmpInst::ICMP_EQ; 6698 Changed = true; 6699 break; 6700 } 6701 if (RA.isMinSignedValue()) goto trivially_true; 6702 6703 Pred = ICmpInst::ICMP_SGT; 6704 RHS = getConstant(RA - 1); 6705 Changed = true; 6706 break; 6707 case ICmpInst::ICMP_SLE: 6708 if ((RA + 1).isMaxSignedValue()) { 6709 Pred = ICmpInst::ICMP_NE; 6710 RHS = getConstant(RA + 1); 6711 Changed = true; 6712 break; 6713 } 6714 if (RA.isMinSignedValue()) { 6715 Pred = ICmpInst::ICMP_EQ; 6716 Changed = true; 6717 break; 6718 } 6719 if (RA.isMaxSignedValue()) goto trivially_true; 6720 6721 Pred = ICmpInst::ICMP_SLT; 6722 RHS = getConstant(RA + 1); 6723 Changed = true; 6724 break; 6725 case ICmpInst::ICMP_UGT: 6726 if (RA.isMinValue()) { 6727 Pred = ICmpInst::ICMP_NE; 6728 Changed = true; 6729 break; 6730 } 6731 if ((RA + 1).isMaxValue()) { 6732 Pred = ICmpInst::ICMP_EQ; 6733 RHS = getConstant(RA + 1); 6734 Changed = true; 6735 break; 6736 } 6737 if (RA.isMaxValue()) goto trivially_false; 6738 break; 6739 case ICmpInst::ICMP_ULT: 6740 if (RA.isMaxValue()) { 6741 Pred = ICmpInst::ICMP_NE; 6742 Changed = true; 6743 break; 6744 } 6745 if ((RA - 1).isMinValue()) { 6746 Pred = ICmpInst::ICMP_EQ; 6747 RHS = getConstant(RA - 1); 6748 Changed = true; 6749 break; 6750 } 6751 if (RA.isMinValue()) goto trivially_false; 6752 break; 6753 case ICmpInst::ICMP_SGT: 6754 if (RA.isMinSignedValue()) { 6755 Pred = ICmpInst::ICMP_NE; 6756 Changed = true; 6757 break; 6758 } 6759 if ((RA + 1).isMaxSignedValue()) { 6760 Pred = ICmpInst::ICMP_EQ; 6761 RHS = getConstant(RA + 1); 6762 Changed = true; 6763 break; 6764 } 6765 if (RA.isMaxSignedValue()) goto trivially_false; 6766 break; 6767 case ICmpInst::ICMP_SLT: 6768 if (RA.isMaxSignedValue()) { 6769 Pred = ICmpInst::ICMP_NE; 6770 Changed = true; 6771 break; 6772 } 6773 if ((RA - 1).isMinSignedValue()) { 6774 Pred = ICmpInst::ICMP_EQ; 6775 RHS = getConstant(RA - 1); 6776 Changed = true; 6777 break; 6778 } 6779 if (RA.isMinSignedValue()) goto trivially_false; 6780 break; 6781 } 6782 } 6783 6784 // Check for obvious equality. 6785 if (HasSameValue(LHS, RHS)) { 6786 if (ICmpInst::isTrueWhenEqual(Pred)) 6787 goto trivially_true; 6788 if (ICmpInst::isFalseWhenEqual(Pred)) 6789 goto trivially_false; 6790 } 6791 6792 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6793 // adding or subtracting 1 from one of the operands. 6794 switch (Pred) { 6795 case ICmpInst::ICMP_SLE: 6796 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6797 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6798 SCEV::FlagNSW); 6799 Pred = ICmpInst::ICMP_SLT; 6800 Changed = true; 6801 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6802 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6803 SCEV::FlagNSW); 6804 Pred = ICmpInst::ICMP_SLT; 6805 Changed = true; 6806 } 6807 break; 6808 case ICmpInst::ICMP_SGE: 6809 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6810 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6811 SCEV::FlagNSW); 6812 Pred = ICmpInst::ICMP_SGT; 6813 Changed = true; 6814 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6815 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6816 SCEV::FlagNSW); 6817 Pred = ICmpInst::ICMP_SGT; 6818 Changed = true; 6819 } 6820 break; 6821 case ICmpInst::ICMP_ULE: 6822 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6823 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6824 SCEV::FlagNUW); 6825 Pred = ICmpInst::ICMP_ULT; 6826 Changed = true; 6827 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6828 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6829 SCEV::FlagNUW); 6830 Pred = ICmpInst::ICMP_ULT; 6831 Changed = true; 6832 } 6833 break; 6834 case ICmpInst::ICMP_UGE: 6835 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6836 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6837 SCEV::FlagNUW); 6838 Pred = ICmpInst::ICMP_UGT; 6839 Changed = true; 6840 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6841 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6842 SCEV::FlagNUW); 6843 Pred = ICmpInst::ICMP_UGT; 6844 Changed = true; 6845 } 6846 break; 6847 default: 6848 break; 6849 } 6850 6851 // TODO: More simplifications are possible here. 6852 6853 // Recursively simplify until we either hit a recursion limit or nothing 6854 // changes. 6855 if (Changed) 6856 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6857 6858 return Changed; 6859 6860 trivially_true: 6861 // Return 0 == 0. 6862 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6863 Pred = ICmpInst::ICMP_EQ; 6864 return true; 6865 6866 trivially_false: 6867 // Return 0 != 0. 6868 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6869 Pred = ICmpInst::ICMP_NE; 6870 return true; 6871 } 6872 6873 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6874 return getSignedRange(S).getSignedMax().isNegative(); 6875 } 6876 6877 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6878 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6879 } 6880 6881 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6882 return !getSignedRange(S).getSignedMin().isNegative(); 6883 } 6884 6885 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6886 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6887 } 6888 6889 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6890 return isKnownNegative(S) || isKnownPositive(S); 6891 } 6892 6893 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6894 const SCEV *LHS, const SCEV *RHS) { 6895 // Canonicalize the inputs first. 6896 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6897 6898 // If LHS or RHS is an addrec, check to see if the condition is true in 6899 // every iteration of the loop. 6900 // If LHS and RHS are both addrec, both conditions must be true in 6901 // every iteration of the loop. 6902 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6903 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6904 bool LeftGuarded = false; 6905 bool RightGuarded = false; 6906 if (LAR) { 6907 const Loop *L = LAR->getLoop(); 6908 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6909 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6910 if (!RAR) return true; 6911 LeftGuarded = true; 6912 } 6913 } 6914 if (RAR) { 6915 const Loop *L = RAR->getLoop(); 6916 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6917 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6918 if (!LAR) return true; 6919 RightGuarded = true; 6920 } 6921 } 6922 if (LeftGuarded && RightGuarded) 6923 return true; 6924 6925 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6926 return true; 6927 6928 // Otherwise see what can be done with known constant ranges. 6929 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6930 } 6931 6932 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6933 ICmpInst::Predicate Pred, 6934 bool &Increasing) { 6935 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6936 6937 #ifndef NDEBUG 6938 // Verify an invariant: inverting the predicate should turn a monotonically 6939 // increasing change to a monotonically decreasing one, and vice versa. 6940 bool IncreasingSwapped; 6941 bool ResultSwapped = isMonotonicPredicateImpl( 6942 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6943 6944 assert(Result == ResultSwapped && "should be able to analyze both!"); 6945 if (ResultSwapped) 6946 assert(Increasing == !IncreasingSwapped && 6947 "monotonicity should flip as we flip the predicate"); 6948 #endif 6949 6950 return Result; 6951 } 6952 6953 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6954 ICmpInst::Predicate Pred, 6955 bool &Increasing) { 6956 6957 // A zero step value for LHS means the induction variable is essentially a 6958 // loop invariant value. We don't really depend on the predicate actually 6959 // flipping from false to true (for increasing predicates, and the other way 6960 // around for decreasing predicates), all we care about is that *if* the 6961 // predicate changes then it only changes from false to true. 6962 // 6963 // A zero step value in itself is not very useful, but there may be places 6964 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6965 // as general as possible. 6966 6967 switch (Pred) { 6968 default: 6969 return false; // Conservative answer 6970 6971 case ICmpInst::ICMP_UGT: 6972 case ICmpInst::ICMP_UGE: 6973 case ICmpInst::ICMP_ULT: 6974 case ICmpInst::ICMP_ULE: 6975 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6976 return false; 6977 6978 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6979 return true; 6980 6981 case ICmpInst::ICMP_SGT: 6982 case ICmpInst::ICMP_SGE: 6983 case ICmpInst::ICMP_SLT: 6984 case ICmpInst::ICMP_SLE: { 6985 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6986 return false; 6987 6988 const SCEV *Step = LHS->getStepRecurrence(*this); 6989 6990 if (isKnownNonNegative(Step)) { 6991 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6992 return true; 6993 } 6994 6995 if (isKnownNonPositive(Step)) { 6996 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6997 return true; 6998 } 6999 7000 return false; 7001 } 7002 7003 } 7004 7005 llvm_unreachable("switch has default clause!"); 7006 } 7007 7008 bool ScalarEvolution::isLoopInvariantPredicate( 7009 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7010 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7011 const SCEV *&InvariantRHS) { 7012 7013 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7014 if (!isLoopInvariant(RHS, L)) { 7015 if (!isLoopInvariant(LHS, L)) 7016 return false; 7017 7018 std::swap(LHS, RHS); 7019 Pred = ICmpInst::getSwappedPredicate(Pred); 7020 } 7021 7022 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7023 if (!ArLHS || ArLHS->getLoop() != L) 7024 return false; 7025 7026 bool Increasing; 7027 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7028 return false; 7029 7030 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7031 // true as the loop iterates, and the backedge is control dependent on 7032 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7033 // 7034 // * if the predicate was false in the first iteration then the predicate 7035 // is never evaluated again, since the loop exits without taking the 7036 // backedge. 7037 // * if the predicate was true in the first iteration then it will 7038 // continue to be true for all future iterations since it is 7039 // monotonically increasing. 7040 // 7041 // For both the above possibilities, we can replace the loop varying 7042 // predicate with its value on the first iteration of the loop (which is 7043 // loop invariant). 7044 // 7045 // A similar reasoning applies for a monotonically decreasing predicate, by 7046 // replacing true with false and false with true in the above two bullets. 7047 7048 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7049 7050 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7051 return false; 7052 7053 InvariantPred = Pred; 7054 InvariantLHS = ArLHS->getStart(); 7055 InvariantRHS = RHS; 7056 return true; 7057 } 7058 7059 bool 7060 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7061 const SCEV *LHS, const SCEV *RHS) { 7062 if (HasSameValue(LHS, RHS)) 7063 return ICmpInst::isTrueWhenEqual(Pred); 7064 7065 // This code is split out from isKnownPredicate because it is called from 7066 // within isLoopEntryGuardedByCond. 7067 switch (Pred) { 7068 default: 7069 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7070 case ICmpInst::ICMP_SGT: 7071 std::swap(LHS, RHS); 7072 case ICmpInst::ICMP_SLT: { 7073 ConstantRange LHSRange = getSignedRange(LHS); 7074 ConstantRange RHSRange = getSignedRange(RHS); 7075 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7076 return true; 7077 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7078 return false; 7079 break; 7080 } 7081 case ICmpInst::ICMP_SGE: 7082 std::swap(LHS, RHS); 7083 case ICmpInst::ICMP_SLE: { 7084 ConstantRange LHSRange = getSignedRange(LHS); 7085 ConstantRange RHSRange = getSignedRange(RHS); 7086 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7087 return true; 7088 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7089 return false; 7090 break; 7091 } 7092 case ICmpInst::ICMP_UGT: 7093 std::swap(LHS, RHS); 7094 case ICmpInst::ICMP_ULT: { 7095 ConstantRange LHSRange = getUnsignedRange(LHS); 7096 ConstantRange RHSRange = getUnsignedRange(RHS); 7097 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7098 return true; 7099 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7100 return false; 7101 break; 7102 } 7103 case ICmpInst::ICMP_UGE: 7104 std::swap(LHS, RHS); 7105 case ICmpInst::ICMP_ULE: { 7106 ConstantRange LHSRange = getUnsignedRange(LHS); 7107 ConstantRange RHSRange = getUnsignedRange(RHS); 7108 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7109 return true; 7110 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7111 return false; 7112 break; 7113 } 7114 case ICmpInst::ICMP_NE: { 7115 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7116 return true; 7117 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7118 return true; 7119 7120 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7121 if (isKnownNonZero(Diff)) 7122 return true; 7123 break; 7124 } 7125 case ICmpInst::ICMP_EQ: 7126 // The check at the top of the function catches the case where 7127 // the values are known to be equal. 7128 break; 7129 } 7130 return false; 7131 } 7132 7133 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7134 const SCEV *LHS, 7135 const SCEV *RHS) { 7136 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7137 return false; 7138 7139 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7140 // the stack can result in exponential time complexity. 7141 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7142 7143 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7144 // 7145 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7146 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7147 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7148 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7149 // use isKnownPredicate later if needed. 7150 if (isKnownNonNegative(RHS) && 7151 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7152 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7153 return true; 7154 7155 return false; 7156 } 7157 7158 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7159 /// protected by a conditional between LHS and RHS. This is used to 7160 /// to eliminate casts. 7161 bool 7162 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7163 ICmpInst::Predicate Pred, 7164 const SCEV *LHS, const SCEV *RHS) { 7165 // Interpret a null as meaning no loop, where there is obviously no guard 7166 // (interprocedural conditions notwithstanding). 7167 if (!L) return true; 7168 7169 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7170 7171 BasicBlock *Latch = L->getLoopLatch(); 7172 if (!Latch) 7173 return false; 7174 7175 BranchInst *LoopContinuePredicate = 7176 dyn_cast<BranchInst>(Latch->getTerminator()); 7177 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7178 isImpliedCond(Pred, LHS, RHS, 7179 LoopContinuePredicate->getCondition(), 7180 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7181 return true; 7182 7183 // We don't want more than one activation of the following loops on the stack 7184 // -- that can lead to O(n!) time complexity. 7185 if (WalkingBEDominatingConds) 7186 return false; 7187 7188 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7189 7190 // See if we can exploit a trip count to prove the predicate. 7191 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7192 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7193 if (LatchBECount != getCouldNotCompute()) { 7194 // We know that Latch branches back to the loop header exactly 7195 // LatchBECount times. This means the backdege condition at Latch is 7196 // equivalent to "{0,+,1} u< LatchBECount". 7197 Type *Ty = LatchBECount->getType(); 7198 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7199 const SCEV *LoopCounter = 7200 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7201 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7202 LatchBECount)) 7203 return true; 7204 } 7205 7206 // Check conditions due to any @llvm.assume intrinsics. 7207 for (auto &AssumeVH : AC.assumptions()) { 7208 if (!AssumeVH) 7209 continue; 7210 auto *CI = cast<CallInst>(AssumeVH); 7211 if (!DT.dominates(CI, Latch->getTerminator())) 7212 continue; 7213 7214 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7215 return true; 7216 } 7217 7218 // If the loop is not reachable from the entry block, we risk running into an 7219 // infinite loop as we walk up into the dom tree. These loops do not matter 7220 // anyway, so we just return a conservative answer when we see them. 7221 if (!DT.isReachableFromEntry(L->getHeader())) 7222 return false; 7223 7224 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7225 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7226 7227 assert(DTN && "should reach the loop header before reaching the root!"); 7228 7229 BasicBlock *BB = DTN->getBlock(); 7230 BasicBlock *PBB = BB->getSinglePredecessor(); 7231 if (!PBB) 7232 continue; 7233 7234 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7235 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7236 continue; 7237 7238 Value *Condition = ContinuePredicate->getCondition(); 7239 7240 // If we have an edge `E` within the loop body that dominates the only 7241 // latch, the condition guarding `E` also guards the backedge. This 7242 // reasoning works only for loops with a single latch. 7243 7244 BasicBlockEdge DominatingEdge(PBB, BB); 7245 if (DominatingEdge.isSingleEdge()) { 7246 // We're constructively (and conservatively) enumerating edges within the 7247 // loop body that dominate the latch. The dominator tree better agree 7248 // with us on this: 7249 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7250 7251 if (isImpliedCond(Pred, LHS, RHS, Condition, 7252 BB != ContinuePredicate->getSuccessor(0))) 7253 return true; 7254 } 7255 } 7256 7257 return false; 7258 } 7259 7260 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7261 /// by a conditional between LHS and RHS. This is used to help avoid max 7262 /// expressions in loop trip counts, and to eliminate casts. 7263 bool 7264 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7265 ICmpInst::Predicate Pred, 7266 const SCEV *LHS, const SCEV *RHS) { 7267 // Interpret a null as meaning no loop, where there is obviously no guard 7268 // (interprocedural conditions notwithstanding). 7269 if (!L) return false; 7270 7271 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7272 7273 // Starting at the loop predecessor, climb up the predecessor chain, as long 7274 // as there are predecessors that can be found that have unique successors 7275 // leading to the original header. 7276 for (std::pair<BasicBlock *, BasicBlock *> 7277 Pair(L->getLoopPredecessor(), L->getHeader()); 7278 Pair.first; 7279 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7280 7281 BranchInst *LoopEntryPredicate = 7282 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7283 if (!LoopEntryPredicate || 7284 LoopEntryPredicate->isUnconditional()) 7285 continue; 7286 7287 if (isImpliedCond(Pred, LHS, RHS, 7288 LoopEntryPredicate->getCondition(), 7289 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7290 return true; 7291 } 7292 7293 // Check conditions due to any @llvm.assume intrinsics. 7294 for (auto &AssumeVH : AC.assumptions()) { 7295 if (!AssumeVH) 7296 continue; 7297 auto *CI = cast<CallInst>(AssumeVH); 7298 if (!DT.dominates(CI, L->getHeader())) 7299 continue; 7300 7301 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7302 return true; 7303 } 7304 7305 return false; 7306 } 7307 7308 /// RAII wrapper to prevent recursive application of isImpliedCond. 7309 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7310 /// currently evaluating isImpliedCond. 7311 struct MarkPendingLoopPredicate { 7312 Value *Cond; 7313 DenseSet<Value*> &LoopPreds; 7314 bool Pending; 7315 7316 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7317 : Cond(C), LoopPreds(LP) { 7318 Pending = !LoopPreds.insert(Cond).second; 7319 } 7320 ~MarkPendingLoopPredicate() { 7321 if (!Pending) 7322 LoopPreds.erase(Cond); 7323 } 7324 }; 7325 7326 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7327 /// and RHS is true whenever the given Cond value evaluates to true. 7328 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7329 const SCEV *LHS, const SCEV *RHS, 7330 Value *FoundCondValue, 7331 bool Inverse) { 7332 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7333 if (Mark.Pending) 7334 return false; 7335 7336 // Recursively handle And and Or conditions. 7337 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7338 if (BO->getOpcode() == Instruction::And) { 7339 if (!Inverse) 7340 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7341 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7342 } else if (BO->getOpcode() == Instruction::Or) { 7343 if (Inverse) 7344 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7345 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7346 } 7347 } 7348 7349 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7350 if (!ICI) return false; 7351 7352 // Now that we found a conditional branch that dominates the loop or controls 7353 // the loop latch. Check to see if it is the comparison we are looking for. 7354 ICmpInst::Predicate FoundPred; 7355 if (Inverse) 7356 FoundPred = ICI->getInversePredicate(); 7357 else 7358 FoundPred = ICI->getPredicate(); 7359 7360 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7361 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7362 7363 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7364 } 7365 7366 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7367 const SCEV *RHS, 7368 ICmpInst::Predicate FoundPred, 7369 const SCEV *FoundLHS, 7370 const SCEV *FoundRHS) { 7371 // Balance the types. 7372 if (getTypeSizeInBits(LHS->getType()) < 7373 getTypeSizeInBits(FoundLHS->getType())) { 7374 if (CmpInst::isSigned(Pred)) { 7375 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7376 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7377 } else { 7378 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7379 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7380 } 7381 } else if (getTypeSizeInBits(LHS->getType()) > 7382 getTypeSizeInBits(FoundLHS->getType())) { 7383 if (CmpInst::isSigned(FoundPred)) { 7384 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7385 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7386 } else { 7387 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7388 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7389 } 7390 } 7391 7392 // Canonicalize the query to match the way instcombine will have 7393 // canonicalized the comparison. 7394 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7395 if (LHS == RHS) 7396 return CmpInst::isTrueWhenEqual(Pred); 7397 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7398 if (FoundLHS == FoundRHS) 7399 return CmpInst::isFalseWhenEqual(FoundPred); 7400 7401 // Check to see if we can make the LHS or RHS match. 7402 if (LHS == FoundRHS || RHS == FoundLHS) { 7403 if (isa<SCEVConstant>(RHS)) { 7404 std::swap(FoundLHS, FoundRHS); 7405 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7406 } else { 7407 std::swap(LHS, RHS); 7408 Pred = ICmpInst::getSwappedPredicate(Pred); 7409 } 7410 } 7411 7412 // Check whether the found predicate is the same as the desired predicate. 7413 if (FoundPred == Pred) 7414 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7415 7416 // Check whether swapping the found predicate makes it the same as the 7417 // desired predicate. 7418 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7419 if (isa<SCEVConstant>(RHS)) 7420 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7421 else 7422 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7423 RHS, LHS, FoundLHS, FoundRHS); 7424 } 7425 7426 // Check if we can make progress by sharpening ranges. 7427 if (FoundPred == ICmpInst::ICMP_NE && 7428 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7429 7430 const SCEVConstant *C = nullptr; 7431 const SCEV *V = nullptr; 7432 7433 if (isa<SCEVConstant>(FoundLHS)) { 7434 C = cast<SCEVConstant>(FoundLHS); 7435 V = FoundRHS; 7436 } else { 7437 C = cast<SCEVConstant>(FoundRHS); 7438 V = FoundLHS; 7439 } 7440 7441 // The guarding predicate tells us that C != V. If the known range 7442 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7443 // range we consider has to correspond to same signedness as the 7444 // predicate we're interested in folding. 7445 7446 APInt Min = ICmpInst::isSigned(Pred) ? 7447 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7448 7449 if (Min == C->getValue()->getValue()) { 7450 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7451 // This is true even if (Min + 1) wraps around -- in case of 7452 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7453 7454 APInt SharperMin = Min + 1; 7455 7456 switch (Pred) { 7457 case ICmpInst::ICMP_SGE: 7458 case ICmpInst::ICMP_UGE: 7459 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7460 // RHS, we're done. 7461 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7462 getConstant(SharperMin))) 7463 return true; 7464 7465 case ICmpInst::ICMP_SGT: 7466 case ICmpInst::ICMP_UGT: 7467 // We know from the range information that (V `Pred` Min || 7468 // V == Min). We know from the guarding condition that !(V 7469 // == Min). This gives us 7470 // 7471 // V `Pred` Min || V == Min && !(V == Min) 7472 // => V `Pred` Min 7473 // 7474 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7475 7476 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7477 return true; 7478 7479 default: 7480 // No change 7481 break; 7482 } 7483 } 7484 } 7485 7486 // Check whether the actual condition is beyond sufficient. 7487 if (FoundPred == ICmpInst::ICMP_EQ) 7488 if (ICmpInst::isTrueWhenEqual(Pred)) 7489 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7490 return true; 7491 if (Pred == ICmpInst::ICMP_NE) 7492 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7493 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7494 return true; 7495 7496 // Otherwise assume the worst. 7497 return false; 7498 } 7499 7500 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7501 const SCEV *&L, const SCEV *&R, 7502 SCEV::NoWrapFlags &Flags) { 7503 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7504 if (!AE || AE->getNumOperands() != 2) 7505 return false; 7506 7507 L = AE->getOperand(0); 7508 R = AE->getOperand(1); 7509 Flags = AE->getNoWrapFlags(); 7510 return true; 7511 } 7512 7513 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7514 const SCEV *More, 7515 APInt &C) { 7516 // We avoid subtracting expressions here because this function is usually 7517 // fairly deep in the call stack (i.e. is called many times). 7518 7519 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7520 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7521 const auto *MAR = cast<SCEVAddRecExpr>(More); 7522 7523 if (LAR->getLoop() != MAR->getLoop()) 7524 return false; 7525 7526 // We look at affine expressions only; not for correctness but to keep 7527 // getStepRecurrence cheap. 7528 if (!LAR->isAffine() || !MAR->isAffine()) 7529 return false; 7530 7531 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7532 return false; 7533 7534 Less = LAR->getStart(); 7535 More = MAR->getStart(); 7536 7537 // fall through 7538 } 7539 7540 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7541 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7542 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7543 C = M - L; 7544 return true; 7545 } 7546 7547 const SCEV *L, *R; 7548 SCEV::NoWrapFlags Flags; 7549 if (splitBinaryAdd(Less, L, R, Flags)) 7550 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7551 if (R == More) { 7552 C = -(LC->getValue()->getValue()); 7553 return true; 7554 } 7555 7556 if (splitBinaryAdd(More, L, R, Flags)) 7557 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7558 if (R == Less) { 7559 C = LC->getValue()->getValue(); 7560 return true; 7561 } 7562 7563 return false; 7564 } 7565 7566 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7567 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7568 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7569 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7570 return false; 7571 7572 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7573 if (!AddRecLHS) 7574 return false; 7575 7576 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7577 if (!AddRecFoundLHS) 7578 return false; 7579 7580 // We'd like to let SCEV reason about control dependencies, so we constrain 7581 // both the inequalities to be about add recurrences on the same loop. This 7582 // way we can use isLoopEntryGuardedByCond later. 7583 7584 const Loop *L = AddRecFoundLHS->getLoop(); 7585 if (L != AddRecLHS->getLoop()) 7586 return false; 7587 7588 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7589 // 7590 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7591 // ... (2) 7592 // 7593 // Informal proof for (2), assuming (1) [*]: 7594 // 7595 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7596 // 7597 // Then 7598 // 7599 // FoundLHS s< FoundRHS s< INT_MIN - C 7600 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7601 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7602 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7603 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7604 // <=> FoundLHS + C s< FoundRHS + C 7605 // 7606 // [*]: (1) can be proved by ruling out overflow. 7607 // 7608 // [**]: This can be proved by analyzing all the four possibilities: 7609 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7610 // (A s>= 0, B s>= 0). 7611 // 7612 // Note: 7613 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7614 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7615 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7616 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7617 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7618 // C)". 7619 7620 APInt LDiff, RDiff; 7621 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7622 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7623 LDiff != RDiff) 7624 return false; 7625 7626 if (LDiff == 0) 7627 return true; 7628 7629 APInt FoundRHSLimit; 7630 7631 if (Pred == CmpInst::ICMP_ULT) { 7632 FoundRHSLimit = -RDiff; 7633 } else { 7634 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7635 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7636 } 7637 7638 // Try to prove (1) or (2), as needed. 7639 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7640 getConstant(FoundRHSLimit)); 7641 } 7642 7643 /// isImpliedCondOperands - Test whether the condition described by Pred, 7644 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7645 /// and FoundRHS is true. 7646 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7647 const SCEV *LHS, const SCEV *RHS, 7648 const SCEV *FoundLHS, 7649 const SCEV *FoundRHS) { 7650 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7651 return true; 7652 7653 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7654 return true; 7655 7656 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7657 FoundLHS, FoundRHS) || 7658 // ~x < ~y --> x > y 7659 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7660 getNotSCEV(FoundRHS), 7661 getNotSCEV(FoundLHS)); 7662 } 7663 7664 7665 /// If Expr computes ~A, return A else return nullptr 7666 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7667 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7668 if (!Add || Add->getNumOperands() != 2 || 7669 !Add->getOperand(0)->isAllOnesValue()) 7670 return nullptr; 7671 7672 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7673 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7674 !AddRHS->getOperand(0)->isAllOnesValue()) 7675 return nullptr; 7676 7677 return AddRHS->getOperand(1); 7678 } 7679 7680 7681 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7682 template<typename MaxExprType> 7683 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7684 const SCEV *Candidate) { 7685 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7686 if (!MaxExpr) return false; 7687 7688 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7689 return It != MaxExpr->op_end(); 7690 } 7691 7692 7693 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7694 template<typename MaxExprType> 7695 static bool IsMinConsistingOf(ScalarEvolution &SE, 7696 const SCEV *MaybeMinExpr, 7697 const SCEV *Candidate) { 7698 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7699 if (!MaybeMaxExpr) 7700 return false; 7701 7702 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7703 } 7704 7705 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7706 ICmpInst::Predicate Pred, 7707 const SCEV *LHS, const SCEV *RHS) { 7708 7709 // If both sides are affine addrecs for the same loop, with equal 7710 // steps, and we know the recurrences don't wrap, then we only 7711 // need to check the predicate on the starting values. 7712 7713 if (!ICmpInst::isRelational(Pred)) 7714 return false; 7715 7716 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7717 if (!LAR) 7718 return false; 7719 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7720 if (!RAR) 7721 return false; 7722 if (LAR->getLoop() != RAR->getLoop()) 7723 return false; 7724 if (!LAR->isAffine() || !RAR->isAffine()) 7725 return false; 7726 7727 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7728 return false; 7729 7730 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7731 SCEV::FlagNSW : SCEV::FlagNUW; 7732 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7733 return false; 7734 7735 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7736 } 7737 7738 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7739 /// expression? 7740 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7741 ICmpInst::Predicate Pred, 7742 const SCEV *LHS, const SCEV *RHS) { 7743 switch (Pred) { 7744 default: 7745 return false; 7746 7747 case ICmpInst::ICMP_SGE: 7748 std::swap(LHS, RHS); 7749 // fall through 7750 case ICmpInst::ICMP_SLE: 7751 return 7752 // min(A, ...) <= A 7753 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7754 // A <= max(A, ...) 7755 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7756 7757 case ICmpInst::ICMP_UGE: 7758 std::swap(LHS, RHS); 7759 // fall through 7760 case ICmpInst::ICMP_ULE: 7761 return 7762 // min(A, ...) <= A 7763 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7764 // A <= max(A, ...) 7765 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7766 } 7767 7768 llvm_unreachable("covered switch fell through?!"); 7769 } 7770 7771 /// isImpliedCondOperandsHelper - Test whether the condition described by 7772 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7773 /// FoundLHS, and FoundRHS is true. 7774 bool 7775 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7776 const SCEV *LHS, const SCEV *RHS, 7777 const SCEV *FoundLHS, 7778 const SCEV *FoundRHS) { 7779 auto IsKnownPredicateFull = 7780 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7781 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7782 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7783 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7784 }; 7785 7786 switch (Pred) { 7787 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7788 case ICmpInst::ICMP_EQ: 7789 case ICmpInst::ICMP_NE: 7790 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7791 return true; 7792 break; 7793 case ICmpInst::ICMP_SLT: 7794 case ICmpInst::ICMP_SLE: 7795 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7796 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7797 return true; 7798 break; 7799 case ICmpInst::ICMP_SGT: 7800 case ICmpInst::ICMP_SGE: 7801 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7802 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7803 return true; 7804 break; 7805 case ICmpInst::ICMP_ULT: 7806 case ICmpInst::ICMP_ULE: 7807 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7808 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7809 return true; 7810 break; 7811 case ICmpInst::ICMP_UGT: 7812 case ICmpInst::ICMP_UGE: 7813 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7814 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7815 return true; 7816 break; 7817 } 7818 7819 return false; 7820 } 7821 7822 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7823 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7824 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7825 const SCEV *LHS, 7826 const SCEV *RHS, 7827 const SCEV *FoundLHS, 7828 const SCEV *FoundRHS) { 7829 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7830 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7831 // reduce the compile time impact of this optimization. 7832 return false; 7833 7834 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7835 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7836 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7837 return false; 7838 7839 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7840 7841 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7842 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7843 ConstantRange FoundLHSRange = 7844 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7845 7846 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7847 // for `LHS`: 7848 APInt Addend = 7849 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7850 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7851 7852 // We can also compute the range of values for `LHS` that satisfy the 7853 // consequent, "`LHS` `Pred` `RHS`": 7854 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7855 ConstantRange SatisfyingLHSRange = 7856 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7857 7858 // The antecedent implies the consequent if every value of `LHS` that 7859 // satisfies the antecedent also satisfies the consequent. 7860 return SatisfyingLHSRange.contains(LHSRange); 7861 } 7862 7863 // Verify if an linear IV with positive stride can overflow when in a 7864 // less-than comparison, knowing the invariant term of the comparison, the 7865 // stride and the knowledge of NSW/NUW flags on the recurrence. 7866 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7867 bool IsSigned, bool NoWrap) { 7868 if (NoWrap) return false; 7869 7870 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7871 const SCEV *One = getOne(Stride->getType()); 7872 7873 if (IsSigned) { 7874 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7875 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7876 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7877 .getSignedMax(); 7878 7879 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7880 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7881 } 7882 7883 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7884 APInt MaxValue = APInt::getMaxValue(BitWidth); 7885 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7886 .getUnsignedMax(); 7887 7888 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7889 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7890 } 7891 7892 // Verify if an linear IV with negative stride can overflow when in a 7893 // greater-than comparison, knowing the invariant term of the comparison, 7894 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7895 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7896 bool IsSigned, bool NoWrap) { 7897 if (NoWrap) return false; 7898 7899 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7900 const SCEV *One = getOne(Stride->getType()); 7901 7902 if (IsSigned) { 7903 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7904 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7905 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7906 .getSignedMax(); 7907 7908 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7909 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7910 } 7911 7912 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7913 APInt MinValue = APInt::getMinValue(BitWidth); 7914 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7915 .getUnsignedMax(); 7916 7917 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7918 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7919 } 7920 7921 // Compute the backedge taken count knowing the interval difference, the 7922 // stride and presence of the equality in the comparison. 7923 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7924 bool Equality) { 7925 const SCEV *One = getOne(Step->getType()); 7926 Delta = Equality ? getAddExpr(Delta, Step) 7927 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7928 return getUDivExpr(Delta, Step); 7929 } 7930 7931 /// HowManyLessThans - Return the number of times a backedge containing the 7932 /// specified less-than comparison will execute. If not computable, return 7933 /// CouldNotCompute. 7934 /// 7935 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7936 /// the branch (loops exits only if condition is true). In this case, we can use 7937 /// NoWrapFlags to skip overflow checks. 7938 ScalarEvolution::ExitLimit 7939 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7940 const Loop *L, bool IsSigned, 7941 bool ControlsExit) { 7942 // We handle only IV < Invariant 7943 if (!isLoopInvariant(RHS, L)) 7944 return getCouldNotCompute(); 7945 7946 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7947 7948 // Avoid weird loops 7949 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7950 return getCouldNotCompute(); 7951 7952 bool NoWrap = ControlsExit && 7953 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7954 7955 const SCEV *Stride = IV->getStepRecurrence(*this); 7956 7957 // Avoid negative or zero stride values 7958 if (!isKnownPositive(Stride)) 7959 return getCouldNotCompute(); 7960 7961 // Avoid proven overflow cases: this will ensure that the backedge taken count 7962 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7963 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7964 // behaviors like the case of C language. 7965 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7966 return getCouldNotCompute(); 7967 7968 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7969 : ICmpInst::ICMP_ULT; 7970 const SCEV *Start = IV->getStart(); 7971 const SCEV *End = RHS; 7972 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7973 const SCEV *Diff = getMinusSCEV(RHS, Start); 7974 // If we have NoWrap set, then we can assume that the increment won't 7975 // overflow, in which case if RHS - Start is a constant, we don't need to 7976 // do a max operation since we can just figure it out statically 7977 if (NoWrap && isa<SCEVConstant>(Diff)) { 7978 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7979 if (D.isNegative()) 7980 End = Start; 7981 } else 7982 End = IsSigned ? getSMaxExpr(RHS, Start) 7983 : getUMaxExpr(RHS, Start); 7984 } 7985 7986 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7987 7988 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7989 : getUnsignedRange(Start).getUnsignedMin(); 7990 7991 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7992 : getUnsignedRange(Stride).getUnsignedMin(); 7993 7994 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7995 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7996 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7997 7998 // Although End can be a MAX expression we estimate MaxEnd considering only 7999 // the case End = RHS. This is safe because in the other case (End - Start) 8000 // is zero, leading to a zero maximum backedge taken count. 8001 APInt MaxEnd = 8002 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8003 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8004 8005 const SCEV *MaxBECount; 8006 if (isa<SCEVConstant>(BECount)) 8007 MaxBECount = BECount; 8008 else 8009 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8010 getConstant(MinStride), false); 8011 8012 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8013 MaxBECount = BECount; 8014 8015 return ExitLimit(BECount, MaxBECount); 8016 } 8017 8018 ScalarEvolution::ExitLimit 8019 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8020 const Loop *L, bool IsSigned, 8021 bool ControlsExit) { 8022 // We handle only IV > Invariant 8023 if (!isLoopInvariant(RHS, L)) 8024 return getCouldNotCompute(); 8025 8026 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8027 8028 // Avoid weird loops 8029 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8030 return getCouldNotCompute(); 8031 8032 bool NoWrap = ControlsExit && 8033 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8034 8035 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8036 8037 // Avoid negative or zero stride values 8038 if (!isKnownPositive(Stride)) 8039 return getCouldNotCompute(); 8040 8041 // Avoid proven overflow cases: this will ensure that the backedge taken count 8042 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8043 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8044 // behaviors like the case of C language. 8045 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8046 return getCouldNotCompute(); 8047 8048 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8049 : ICmpInst::ICMP_UGT; 8050 8051 const SCEV *Start = IV->getStart(); 8052 const SCEV *End = RHS; 8053 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8054 const SCEV *Diff = getMinusSCEV(RHS, Start); 8055 // If we have NoWrap set, then we can assume that the increment won't 8056 // overflow, in which case if RHS - Start is a constant, we don't need to 8057 // do a max operation since we can just figure it out statically 8058 if (NoWrap && isa<SCEVConstant>(Diff)) { 8059 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8060 if (!D.isNegative()) 8061 End = Start; 8062 } else 8063 End = IsSigned ? getSMinExpr(RHS, Start) 8064 : getUMinExpr(RHS, Start); 8065 } 8066 8067 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8068 8069 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8070 : getUnsignedRange(Start).getUnsignedMax(); 8071 8072 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8073 : getUnsignedRange(Stride).getUnsignedMin(); 8074 8075 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8076 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8077 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8078 8079 // Although End can be a MIN expression we estimate MinEnd considering only 8080 // the case End = RHS. This is safe because in the other case (Start - End) 8081 // is zero, leading to a zero maximum backedge taken count. 8082 APInt MinEnd = 8083 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8084 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8085 8086 8087 const SCEV *MaxBECount = getCouldNotCompute(); 8088 if (isa<SCEVConstant>(BECount)) 8089 MaxBECount = BECount; 8090 else 8091 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8092 getConstant(MinStride), false); 8093 8094 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8095 MaxBECount = BECount; 8096 8097 return ExitLimit(BECount, MaxBECount); 8098 } 8099 8100 /// getNumIterationsInRange - Return the number of iterations of this loop that 8101 /// produce values in the specified constant range. Another way of looking at 8102 /// this is that it returns the first iteration number where the value is not in 8103 /// the condition, thus computing the exit count. If the iteration count can't 8104 /// be computed, an instance of SCEVCouldNotCompute is returned. 8105 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8106 ScalarEvolution &SE) const { 8107 if (Range.isFullSet()) // Infinite loop. 8108 return SE.getCouldNotCompute(); 8109 8110 // If the start is a non-zero constant, shift the range to simplify things. 8111 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8112 if (!SC->getValue()->isZero()) { 8113 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8114 Operands[0] = SE.getZero(SC->getType()); 8115 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8116 getNoWrapFlags(FlagNW)); 8117 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8118 return ShiftedAddRec->getNumIterationsInRange( 8119 Range.subtract(SC->getValue()->getValue()), SE); 8120 // This is strange and shouldn't happen. 8121 return SE.getCouldNotCompute(); 8122 } 8123 8124 // The only time we can solve this is when we have all constant indices. 8125 // Otherwise, we cannot determine the overflow conditions. 8126 if (std::any_of(op_begin(), op_end(), 8127 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8128 return SE.getCouldNotCompute(); 8129 8130 // Okay at this point we know that all elements of the chrec are constants and 8131 // that the start element is zero. 8132 8133 // First check to see if the range contains zero. If not, the first 8134 // iteration exits. 8135 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8136 if (!Range.contains(APInt(BitWidth, 0))) 8137 return SE.getZero(getType()); 8138 8139 if (isAffine()) { 8140 // If this is an affine expression then we have this situation: 8141 // Solve {0,+,A} in Range === Ax in Range 8142 8143 // We know that zero is in the range. If A is positive then we know that 8144 // the upper value of the range must be the first possible exit value. 8145 // If A is negative then the lower of the range is the last possible loop 8146 // value. Also note that we already checked for a full range. 8147 APInt One(BitWidth,1); 8148 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8149 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8150 8151 // The exit value should be (End+A)/A. 8152 APInt ExitVal = (End + A).udiv(A); 8153 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8154 8155 // Evaluate at the exit value. If we really did fall out of the valid 8156 // range, then we computed our trip count, otherwise wrap around or other 8157 // things must have happened. 8158 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8159 if (Range.contains(Val->getValue())) 8160 return SE.getCouldNotCompute(); // Something strange happened 8161 8162 // Ensure that the previous value is in the range. This is a sanity check. 8163 assert(Range.contains( 8164 EvaluateConstantChrecAtConstant(this, 8165 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8166 "Linear scev computation is off in a bad way!"); 8167 return SE.getConstant(ExitValue); 8168 } else if (isQuadratic()) { 8169 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8170 // quadratic equation to solve it. To do this, we must frame our problem in 8171 // terms of figuring out when zero is crossed, instead of when 8172 // Range.getUpper() is crossed. 8173 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8174 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8175 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8176 // getNoWrapFlags(FlagNW) 8177 FlagAnyWrap); 8178 8179 // Next, solve the constructed addrec 8180 std::pair<const SCEV *,const SCEV *> Roots = 8181 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8182 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8183 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8184 if (R1) { 8185 // Pick the smallest positive root value. 8186 if (ConstantInt *CB = 8187 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8188 R1->getValue(), R2->getValue()))) { 8189 if (!CB->getZExtValue()) 8190 std::swap(R1, R2); // R1 is the minimum root now. 8191 8192 // Make sure the root is not off by one. The returned iteration should 8193 // not be in the range, but the previous one should be. When solving 8194 // for "X*X < 5", for example, we should not return a root of 2. 8195 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8196 R1->getValue(), 8197 SE); 8198 if (Range.contains(R1Val->getValue())) { 8199 // The next iteration must be out of the range... 8200 ConstantInt *NextVal = 8201 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8202 8203 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8204 if (!Range.contains(R1Val->getValue())) 8205 return SE.getConstant(NextVal); 8206 return SE.getCouldNotCompute(); // Something strange happened 8207 } 8208 8209 // If R1 was not in the range, then it is a good return value. Make 8210 // sure that R1-1 WAS in the range though, just in case. 8211 ConstantInt *NextVal = 8212 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8213 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8214 if (Range.contains(R1Val->getValue())) 8215 return R1; 8216 return SE.getCouldNotCompute(); // Something strange happened 8217 } 8218 } 8219 } 8220 8221 return SE.getCouldNotCompute(); 8222 } 8223 8224 namespace { 8225 struct FindUndefs { 8226 bool Found; 8227 FindUndefs() : Found(false) {} 8228 8229 bool follow(const SCEV *S) { 8230 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8231 if (isa<UndefValue>(C->getValue())) 8232 Found = true; 8233 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8234 if (isa<UndefValue>(C->getValue())) 8235 Found = true; 8236 } 8237 8238 // Keep looking if we haven't found it yet. 8239 return !Found; 8240 } 8241 bool isDone() const { 8242 // Stop recursion if we have found an undef. 8243 return Found; 8244 } 8245 }; 8246 } 8247 8248 // Return true when S contains at least an undef value. 8249 static inline bool 8250 containsUndefs(const SCEV *S) { 8251 FindUndefs F; 8252 SCEVTraversal<FindUndefs> ST(F); 8253 ST.visitAll(S); 8254 8255 return F.Found; 8256 } 8257 8258 namespace { 8259 // Collect all steps of SCEV expressions. 8260 struct SCEVCollectStrides { 8261 ScalarEvolution &SE; 8262 SmallVectorImpl<const SCEV *> &Strides; 8263 8264 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8265 : SE(SE), Strides(S) {} 8266 8267 bool follow(const SCEV *S) { 8268 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8269 Strides.push_back(AR->getStepRecurrence(SE)); 8270 return true; 8271 } 8272 bool isDone() const { return false; } 8273 }; 8274 8275 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8276 struct SCEVCollectTerms { 8277 SmallVectorImpl<const SCEV *> &Terms; 8278 8279 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8280 : Terms(T) {} 8281 8282 bool follow(const SCEV *S) { 8283 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8284 if (!containsUndefs(S)) 8285 Terms.push_back(S); 8286 8287 // Stop recursion: once we collected a term, do not walk its operands. 8288 return false; 8289 } 8290 8291 // Keep looking. 8292 return true; 8293 } 8294 bool isDone() const { return false; } 8295 }; 8296 8297 // Check if a SCEV contains an AddRecExpr. 8298 struct SCEVHasAddRec { 8299 bool &ContainsAddRec; 8300 8301 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8302 ContainsAddRec = false; 8303 } 8304 8305 bool follow(const SCEV *S) { 8306 if (isa<SCEVAddRecExpr>(S)) { 8307 ContainsAddRec = true; 8308 8309 // Stop recursion: once we collected a term, do not walk its operands. 8310 return false; 8311 } 8312 8313 // Keep looking. 8314 return true; 8315 } 8316 bool isDone() const { return false; } 8317 }; 8318 8319 // Find factors that are multiplied with an expression that (possibly as a 8320 // subexpression) contains an AddRecExpr. In the expression: 8321 // 8322 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8323 // 8324 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8325 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8326 // parameters as they form a product with an induction variable. 8327 // 8328 // This collector expects all array size parameters to be in the same MulExpr. 8329 // It might be necessary to later add support for collecting parameters that are 8330 // spread over different nested MulExpr. 8331 struct SCEVCollectAddRecMultiplies { 8332 SmallVectorImpl<const SCEV *> &Terms; 8333 ScalarEvolution &SE; 8334 8335 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8336 : Terms(T), SE(SE) {} 8337 8338 bool follow(const SCEV *S) { 8339 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8340 bool HasAddRec = false; 8341 SmallVector<const SCEV *, 0> Operands; 8342 for (auto Op : Mul->operands()) { 8343 if (isa<SCEVUnknown>(Op)) { 8344 Operands.push_back(Op); 8345 } else { 8346 bool ContainsAddRec; 8347 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8348 visitAll(Op, ContiansAddRec); 8349 HasAddRec |= ContainsAddRec; 8350 } 8351 } 8352 if (Operands.size() == 0) 8353 return true; 8354 8355 if (!HasAddRec) 8356 return false; 8357 8358 Terms.push_back(SE.getMulExpr(Operands)); 8359 // Stop recursion: once we collected a term, do not walk its operands. 8360 return false; 8361 } 8362 8363 // Keep looking. 8364 return true; 8365 } 8366 bool isDone() const { return false; } 8367 }; 8368 } 8369 8370 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8371 /// two places: 8372 /// 1) The strides of AddRec expressions. 8373 /// 2) Unknowns that are multiplied with AddRec expressions. 8374 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8375 SmallVectorImpl<const SCEV *> &Terms) { 8376 SmallVector<const SCEV *, 4> Strides; 8377 SCEVCollectStrides StrideCollector(*this, Strides); 8378 visitAll(Expr, StrideCollector); 8379 8380 DEBUG({ 8381 dbgs() << "Strides:\n"; 8382 for (const SCEV *S : Strides) 8383 dbgs() << *S << "\n"; 8384 }); 8385 8386 for (const SCEV *S : Strides) { 8387 SCEVCollectTerms TermCollector(Terms); 8388 visitAll(S, TermCollector); 8389 } 8390 8391 DEBUG({ 8392 dbgs() << "Terms:\n"; 8393 for (const SCEV *T : Terms) 8394 dbgs() << *T << "\n"; 8395 }); 8396 8397 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8398 visitAll(Expr, MulCollector); 8399 } 8400 8401 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8402 SmallVectorImpl<const SCEV *> &Terms, 8403 SmallVectorImpl<const SCEV *> &Sizes) { 8404 int Last = Terms.size() - 1; 8405 const SCEV *Step = Terms[Last]; 8406 8407 // End of recursion. 8408 if (Last == 0) { 8409 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8410 SmallVector<const SCEV *, 2> Qs; 8411 for (const SCEV *Op : M->operands()) 8412 if (!isa<SCEVConstant>(Op)) 8413 Qs.push_back(Op); 8414 8415 Step = SE.getMulExpr(Qs); 8416 } 8417 8418 Sizes.push_back(Step); 8419 return true; 8420 } 8421 8422 for (const SCEV *&Term : Terms) { 8423 // Normalize the terms before the next call to findArrayDimensionsRec. 8424 const SCEV *Q, *R; 8425 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8426 8427 // Bail out when GCD does not evenly divide one of the terms. 8428 if (!R->isZero()) 8429 return false; 8430 8431 Term = Q; 8432 } 8433 8434 // Remove all SCEVConstants. 8435 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8436 return isa<SCEVConstant>(E); 8437 }), 8438 Terms.end()); 8439 8440 if (Terms.size() > 0) 8441 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8442 return false; 8443 8444 Sizes.push_back(Step); 8445 return true; 8446 } 8447 8448 namespace { 8449 struct FindParameter { 8450 bool FoundParameter; 8451 FindParameter() : FoundParameter(false) {} 8452 8453 bool follow(const SCEV *S) { 8454 if (isa<SCEVUnknown>(S)) { 8455 FoundParameter = true; 8456 // Stop recursion: we found a parameter. 8457 return false; 8458 } 8459 // Keep looking. 8460 return true; 8461 } 8462 bool isDone() const { 8463 // Stop recursion if we have found a parameter. 8464 return FoundParameter; 8465 } 8466 }; 8467 } 8468 8469 // Returns true when S contains at least a SCEVUnknown parameter. 8470 static inline bool 8471 containsParameters(const SCEV *S) { 8472 FindParameter F; 8473 SCEVTraversal<FindParameter> ST(F); 8474 ST.visitAll(S); 8475 8476 return F.FoundParameter; 8477 } 8478 8479 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8480 static inline bool 8481 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8482 for (const SCEV *T : Terms) 8483 if (containsParameters(T)) 8484 return true; 8485 return false; 8486 } 8487 8488 // Return the number of product terms in S. 8489 static inline int numberOfTerms(const SCEV *S) { 8490 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8491 return Expr->getNumOperands(); 8492 return 1; 8493 } 8494 8495 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8496 if (isa<SCEVConstant>(T)) 8497 return nullptr; 8498 8499 if (isa<SCEVUnknown>(T)) 8500 return T; 8501 8502 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8503 SmallVector<const SCEV *, 2> Factors; 8504 for (const SCEV *Op : M->operands()) 8505 if (!isa<SCEVConstant>(Op)) 8506 Factors.push_back(Op); 8507 8508 return SE.getMulExpr(Factors); 8509 } 8510 8511 return T; 8512 } 8513 8514 /// Return the size of an element read or written by Inst. 8515 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8516 Type *Ty; 8517 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8518 Ty = Store->getValueOperand()->getType(); 8519 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8520 Ty = Load->getType(); 8521 else 8522 return nullptr; 8523 8524 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8525 return getSizeOfExpr(ETy, Ty); 8526 } 8527 8528 /// Second step of delinearization: compute the array dimensions Sizes from the 8529 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8530 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8531 SmallVectorImpl<const SCEV *> &Sizes, 8532 const SCEV *ElementSize) const { 8533 8534 if (Terms.size() < 1 || !ElementSize) 8535 return; 8536 8537 // Early return when Terms do not contain parameters: we do not delinearize 8538 // non parametric SCEVs. 8539 if (!containsParameters(Terms)) 8540 return; 8541 8542 DEBUG({ 8543 dbgs() << "Terms:\n"; 8544 for (const SCEV *T : Terms) 8545 dbgs() << *T << "\n"; 8546 }); 8547 8548 // Remove duplicates. 8549 std::sort(Terms.begin(), Terms.end()); 8550 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8551 8552 // Put larger terms first. 8553 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8554 return numberOfTerms(LHS) > numberOfTerms(RHS); 8555 }); 8556 8557 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8558 8559 // Try to divide all terms by the element size. If term is not divisible by 8560 // element size, proceed with the original term. 8561 for (const SCEV *&Term : Terms) { 8562 const SCEV *Q, *R; 8563 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8564 if (!Q->isZero()) 8565 Term = Q; 8566 } 8567 8568 SmallVector<const SCEV *, 4> NewTerms; 8569 8570 // Remove constant factors. 8571 for (const SCEV *T : Terms) 8572 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8573 NewTerms.push_back(NewT); 8574 8575 DEBUG({ 8576 dbgs() << "Terms after sorting:\n"; 8577 for (const SCEV *T : NewTerms) 8578 dbgs() << *T << "\n"; 8579 }); 8580 8581 if (NewTerms.empty() || 8582 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8583 Sizes.clear(); 8584 return; 8585 } 8586 8587 // The last element to be pushed into Sizes is the size of an element. 8588 Sizes.push_back(ElementSize); 8589 8590 DEBUG({ 8591 dbgs() << "Sizes:\n"; 8592 for (const SCEV *S : Sizes) 8593 dbgs() << *S << "\n"; 8594 }); 8595 } 8596 8597 /// Third step of delinearization: compute the access functions for the 8598 /// Subscripts based on the dimensions in Sizes. 8599 void ScalarEvolution::computeAccessFunctions( 8600 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8601 SmallVectorImpl<const SCEV *> &Sizes) { 8602 8603 // Early exit in case this SCEV is not an affine multivariate function. 8604 if (Sizes.empty()) 8605 return; 8606 8607 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8608 if (!AR->isAffine()) 8609 return; 8610 8611 const SCEV *Res = Expr; 8612 int Last = Sizes.size() - 1; 8613 for (int i = Last; i >= 0; i--) { 8614 const SCEV *Q, *R; 8615 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8616 8617 DEBUG({ 8618 dbgs() << "Res: " << *Res << "\n"; 8619 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8620 dbgs() << "Res divided by Sizes[i]:\n"; 8621 dbgs() << "Quotient: " << *Q << "\n"; 8622 dbgs() << "Remainder: " << *R << "\n"; 8623 }); 8624 8625 Res = Q; 8626 8627 // Do not record the last subscript corresponding to the size of elements in 8628 // the array. 8629 if (i == Last) { 8630 8631 // Bail out if the remainder is too complex. 8632 if (isa<SCEVAddRecExpr>(R)) { 8633 Subscripts.clear(); 8634 Sizes.clear(); 8635 return; 8636 } 8637 8638 continue; 8639 } 8640 8641 // Record the access function for the current subscript. 8642 Subscripts.push_back(R); 8643 } 8644 8645 // Also push in last position the remainder of the last division: it will be 8646 // the access function of the innermost dimension. 8647 Subscripts.push_back(Res); 8648 8649 std::reverse(Subscripts.begin(), Subscripts.end()); 8650 8651 DEBUG({ 8652 dbgs() << "Subscripts:\n"; 8653 for (const SCEV *S : Subscripts) 8654 dbgs() << *S << "\n"; 8655 }); 8656 } 8657 8658 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8659 /// sizes of an array access. Returns the remainder of the delinearization that 8660 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8661 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8662 /// expressions in the stride and base of a SCEV corresponding to the 8663 /// computation of a GCD (greatest common divisor) of base and stride. When 8664 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8665 /// 8666 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8667 /// 8668 /// void foo(long n, long m, long o, double A[n][m][o]) { 8669 /// 8670 /// for (long i = 0; i < n; i++) 8671 /// for (long j = 0; j < m; j++) 8672 /// for (long k = 0; k < o; k++) 8673 /// A[i][j][k] = 1.0; 8674 /// } 8675 /// 8676 /// the delinearization input is the following AddRec SCEV: 8677 /// 8678 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8679 /// 8680 /// From this SCEV, we are able to say that the base offset of the access is %A 8681 /// because it appears as an offset that does not divide any of the strides in 8682 /// the loops: 8683 /// 8684 /// CHECK: Base offset: %A 8685 /// 8686 /// and then SCEV->delinearize determines the size of some of the dimensions of 8687 /// the array as these are the multiples by which the strides are happening: 8688 /// 8689 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8690 /// 8691 /// Note that the outermost dimension remains of UnknownSize because there are 8692 /// no strides that would help identifying the size of the last dimension: when 8693 /// the array has been statically allocated, one could compute the size of that 8694 /// dimension by dividing the overall size of the array by the size of the known 8695 /// dimensions: %m * %o * 8. 8696 /// 8697 /// Finally delinearize provides the access functions for the array reference 8698 /// that does correspond to A[i][j][k] of the above C testcase: 8699 /// 8700 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8701 /// 8702 /// The testcases are checking the output of a function pass: 8703 /// DelinearizationPass that walks through all loads and stores of a function 8704 /// asking for the SCEV of the memory access with respect to all enclosing 8705 /// loops, calling SCEV->delinearize on that and printing the results. 8706 8707 void ScalarEvolution::delinearize(const SCEV *Expr, 8708 SmallVectorImpl<const SCEV *> &Subscripts, 8709 SmallVectorImpl<const SCEV *> &Sizes, 8710 const SCEV *ElementSize) { 8711 // First step: collect parametric terms. 8712 SmallVector<const SCEV *, 4> Terms; 8713 collectParametricTerms(Expr, Terms); 8714 8715 if (Terms.empty()) 8716 return; 8717 8718 // Second step: find subscript sizes. 8719 findArrayDimensions(Terms, Sizes, ElementSize); 8720 8721 if (Sizes.empty()) 8722 return; 8723 8724 // Third step: compute the access functions for each subscript. 8725 computeAccessFunctions(Expr, Subscripts, Sizes); 8726 8727 if (Subscripts.empty()) 8728 return; 8729 8730 DEBUG({ 8731 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8732 dbgs() << "ArrayDecl[UnknownSize]"; 8733 for (const SCEV *S : Sizes) 8734 dbgs() << "[" << *S << "]"; 8735 8736 dbgs() << "\nArrayRef"; 8737 for (const SCEV *S : Subscripts) 8738 dbgs() << "[" << *S << "]"; 8739 dbgs() << "\n"; 8740 }); 8741 } 8742 8743 //===----------------------------------------------------------------------===// 8744 // SCEVCallbackVH Class Implementation 8745 //===----------------------------------------------------------------------===// 8746 8747 void ScalarEvolution::SCEVCallbackVH::deleted() { 8748 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8749 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8750 SE->ConstantEvolutionLoopExitValue.erase(PN); 8751 SE->ValueExprMap.erase(getValPtr()); 8752 // this now dangles! 8753 } 8754 8755 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8756 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8757 8758 // Forget all the expressions associated with users of the old value, 8759 // so that future queries will recompute the expressions using the new 8760 // value. 8761 Value *Old = getValPtr(); 8762 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8763 SmallPtrSet<User *, 8> Visited; 8764 while (!Worklist.empty()) { 8765 User *U = Worklist.pop_back_val(); 8766 // Deleting the Old value will cause this to dangle. Postpone 8767 // that until everything else is done. 8768 if (U == Old) 8769 continue; 8770 if (!Visited.insert(U).second) 8771 continue; 8772 if (PHINode *PN = dyn_cast<PHINode>(U)) 8773 SE->ConstantEvolutionLoopExitValue.erase(PN); 8774 SE->ValueExprMap.erase(U); 8775 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8776 } 8777 // Delete the Old value. 8778 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8779 SE->ConstantEvolutionLoopExitValue.erase(PN); 8780 SE->ValueExprMap.erase(Old); 8781 // this now dangles! 8782 } 8783 8784 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8785 : CallbackVH(V), SE(se) {} 8786 8787 //===----------------------------------------------------------------------===// 8788 // ScalarEvolution Class Implementation 8789 //===----------------------------------------------------------------------===// 8790 8791 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8792 AssumptionCache &AC, DominatorTree &DT, 8793 LoopInfo &LI) 8794 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8795 CouldNotCompute(new SCEVCouldNotCompute()), 8796 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8797 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8798 FirstUnknown(nullptr) {} 8799 8800 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8801 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8802 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8803 ValueExprMap(std::move(Arg.ValueExprMap)), 8804 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8805 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8806 ConstantEvolutionLoopExitValue( 8807 std::move(Arg.ConstantEvolutionLoopExitValue)), 8808 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8809 LoopDispositions(std::move(Arg.LoopDispositions)), 8810 BlockDispositions(std::move(Arg.BlockDispositions)), 8811 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8812 SignedRanges(std::move(Arg.SignedRanges)), 8813 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8814 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8815 FirstUnknown(Arg.FirstUnknown) { 8816 Arg.FirstUnknown = nullptr; 8817 } 8818 8819 ScalarEvolution::~ScalarEvolution() { 8820 // Iterate through all the SCEVUnknown instances and call their 8821 // destructors, so that they release their references to their values. 8822 for (SCEVUnknown *U = FirstUnknown; U;) { 8823 SCEVUnknown *Tmp = U; 8824 U = U->Next; 8825 Tmp->~SCEVUnknown(); 8826 } 8827 FirstUnknown = nullptr; 8828 8829 ValueExprMap.clear(); 8830 8831 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8832 // that a loop had multiple computable exits. 8833 for (auto &BTCI : BackedgeTakenCounts) 8834 BTCI.second.clear(); 8835 8836 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8837 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8838 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8839 } 8840 8841 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8842 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8843 } 8844 8845 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8846 const Loop *L) { 8847 // Print all inner loops first 8848 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8849 PrintLoopInfo(OS, SE, *I); 8850 8851 OS << "Loop "; 8852 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8853 OS << ": "; 8854 8855 SmallVector<BasicBlock *, 8> ExitBlocks; 8856 L->getExitBlocks(ExitBlocks); 8857 if (ExitBlocks.size() != 1) 8858 OS << "<multiple exits> "; 8859 8860 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8861 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8862 } else { 8863 OS << "Unpredictable backedge-taken count. "; 8864 } 8865 8866 OS << "\n" 8867 "Loop "; 8868 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8869 OS << ": "; 8870 8871 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8872 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8873 } else { 8874 OS << "Unpredictable max backedge-taken count. "; 8875 } 8876 8877 OS << "\n"; 8878 } 8879 8880 void ScalarEvolution::print(raw_ostream &OS) const { 8881 // ScalarEvolution's implementation of the print method is to print 8882 // out SCEV values of all instructions that are interesting. Doing 8883 // this potentially causes it to create new SCEV objects though, 8884 // which technically conflicts with the const qualifier. This isn't 8885 // observable from outside the class though, so casting away the 8886 // const isn't dangerous. 8887 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8888 8889 OS << "Classifying expressions for: "; 8890 F.printAsOperand(OS, /*PrintType=*/false); 8891 OS << "\n"; 8892 for (Instruction &I : instructions(F)) 8893 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 8894 OS << I << '\n'; 8895 OS << " --> "; 8896 const SCEV *SV = SE.getSCEV(&I); 8897 SV->print(OS); 8898 if (!isa<SCEVCouldNotCompute>(SV)) { 8899 OS << " U: "; 8900 SE.getUnsignedRange(SV).print(OS); 8901 OS << " S: "; 8902 SE.getSignedRange(SV).print(OS); 8903 } 8904 8905 const Loop *L = LI.getLoopFor(I.getParent()); 8906 8907 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8908 if (AtUse != SV) { 8909 OS << " --> "; 8910 AtUse->print(OS); 8911 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8912 OS << " U: "; 8913 SE.getUnsignedRange(AtUse).print(OS); 8914 OS << " S: "; 8915 SE.getSignedRange(AtUse).print(OS); 8916 } 8917 } 8918 8919 if (L) { 8920 OS << "\t\t" "Exits: "; 8921 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8922 if (!SE.isLoopInvariant(ExitValue, L)) { 8923 OS << "<<Unknown>>"; 8924 } else { 8925 OS << *ExitValue; 8926 } 8927 } 8928 8929 OS << "\n"; 8930 } 8931 8932 OS << "Determining loop execution counts for: "; 8933 F.printAsOperand(OS, /*PrintType=*/false); 8934 OS << "\n"; 8935 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8936 PrintLoopInfo(OS, &SE, *I); 8937 } 8938 8939 ScalarEvolution::LoopDisposition 8940 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8941 auto &Values = LoopDispositions[S]; 8942 for (auto &V : Values) { 8943 if (V.getPointer() == L) 8944 return V.getInt(); 8945 } 8946 Values.emplace_back(L, LoopVariant); 8947 LoopDisposition D = computeLoopDisposition(S, L); 8948 auto &Values2 = LoopDispositions[S]; 8949 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8950 if (V.getPointer() == L) { 8951 V.setInt(D); 8952 break; 8953 } 8954 } 8955 return D; 8956 } 8957 8958 ScalarEvolution::LoopDisposition 8959 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8960 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8961 case scConstant: 8962 return LoopInvariant; 8963 case scTruncate: 8964 case scZeroExtend: 8965 case scSignExtend: 8966 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8967 case scAddRecExpr: { 8968 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8969 8970 // If L is the addrec's loop, it's computable. 8971 if (AR->getLoop() == L) 8972 return LoopComputable; 8973 8974 // Add recurrences are never invariant in the function-body (null loop). 8975 if (!L) 8976 return LoopVariant; 8977 8978 // This recurrence is variant w.r.t. L if L contains AR's loop. 8979 if (L->contains(AR->getLoop())) 8980 return LoopVariant; 8981 8982 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8983 if (AR->getLoop()->contains(L)) 8984 return LoopInvariant; 8985 8986 // This recurrence is variant w.r.t. L if any of its operands 8987 // are variant. 8988 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8989 I != E; ++I) 8990 if (!isLoopInvariant(*I, L)) 8991 return LoopVariant; 8992 8993 // Otherwise it's loop-invariant. 8994 return LoopInvariant; 8995 } 8996 case scAddExpr: 8997 case scMulExpr: 8998 case scUMaxExpr: 8999 case scSMaxExpr: { 9000 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9001 bool HasVarying = false; 9002 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9003 I != E; ++I) { 9004 LoopDisposition D = getLoopDisposition(*I, L); 9005 if (D == LoopVariant) 9006 return LoopVariant; 9007 if (D == LoopComputable) 9008 HasVarying = true; 9009 } 9010 return HasVarying ? LoopComputable : LoopInvariant; 9011 } 9012 case scUDivExpr: { 9013 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9014 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9015 if (LD == LoopVariant) 9016 return LoopVariant; 9017 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9018 if (RD == LoopVariant) 9019 return LoopVariant; 9020 return (LD == LoopInvariant && RD == LoopInvariant) ? 9021 LoopInvariant : LoopComputable; 9022 } 9023 case scUnknown: 9024 // All non-instruction values are loop invariant. All instructions are loop 9025 // invariant if they are not contained in the specified loop. 9026 // Instructions are never considered invariant in the function body 9027 // (null loop) because they are defined within the "loop". 9028 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9029 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9030 return LoopInvariant; 9031 case scCouldNotCompute: 9032 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9033 } 9034 llvm_unreachable("Unknown SCEV kind!"); 9035 } 9036 9037 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9038 return getLoopDisposition(S, L) == LoopInvariant; 9039 } 9040 9041 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9042 return getLoopDisposition(S, L) == LoopComputable; 9043 } 9044 9045 ScalarEvolution::BlockDisposition 9046 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9047 auto &Values = BlockDispositions[S]; 9048 for (auto &V : Values) { 9049 if (V.getPointer() == BB) 9050 return V.getInt(); 9051 } 9052 Values.emplace_back(BB, DoesNotDominateBlock); 9053 BlockDisposition D = computeBlockDisposition(S, BB); 9054 auto &Values2 = BlockDispositions[S]; 9055 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9056 if (V.getPointer() == BB) { 9057 V.setInt(D); 9058 break; 9059 } 9060 } 9061 return D; 9062 } 9063 9064 ScalarEvolution::BlockDisposition 9065 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9066 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9067 case scConstant: 9068 return ProperlyDominatesBlock; 9069 case scTruncate: 9070 case scZeroExtend: 9071 case scSignExtend: 9072 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9073 case scAddRecExpr: { 9074 // This uses a "dominates" query instead of "properly dominates" query 9075 // to test for proper dominance too, because the instruction which 9076 // produces the addrec's value is a PHI, and a PHI effectively properly 9077 // dominates its entire containing block. 9078 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9079 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9080 return DoesNotDominateBlock; 9081 } 9082 // FALL THROUGH into SCEVNAryExpr handling. 9083 case scAddExpr: 9084 case scMulExpr: 9085 case scUMaxExpr: 9086 case scSMaxExpr: { 9087 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9088 bool Proper = true; 9089 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9090 I != E; ++I) { 9091 BlockDisposition D = getBlockDisposition(*I, BB); 9092 if (D == DoesNotDominateBlock) 9093 return DoesNotDominateBlock; 9094 if (D == DominatesBlock) 9095 Proper = false; 9096 } 9097 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9098 } 9099 case scUDivExpr: { 9100 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9101 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9102 BlockDisposition LD = getBlockDisposition(LHS, BB); 9103 if (LD == DoesNotDominateBlock) 9104 return DoesNotDominateBlock; 9105 BlockDisposition RD = getBlockDisposition(RHS, BB); 9106 if (RD == DoesNotDominateBlock) 9107 return DoesNotDominateBlock; 9108 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9109 ProperlyDominatesBlock : DominatesBlock; 9110 } 9111 case scUnknown: 9112 if (Instruction *I = 9113 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9114 if (I->getParent() == BB) 9115 return DominatesBlock; 9116 if (DT.properlyDominates(I->getParent(), BB)) 9117 return ProperlyDominatesBlock; 9118 return DoesNotDominateBlock; 9119 } 9120 return ProperlyDominatesBlock; 9121 case scCouldNotCompute: 9122 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9123 } 9124 llvm_unreachable("Unknown SCEV kind!"); 9125 } 9126 9127 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9128 return getBlockDisposition(S, BB) >= DominatesBlock; 9129 } 9130 9131 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9132 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9133 } 9134 9135 namespace { 9136 // Search for a SCEV expression node within an expression tree. 9137 // Implements SCEVTraversal::Visitor. 9138 struct SCEVSearch { 9139 const SCEV *Node; 9140 bool IsFound; 9141 9142 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9143 9144 bool follow(const SCEV *S) { 9145 IsFound |= (S == Node); 9146 return !IsFound; 9147 } 9148 bool isDone() const { return IsFound; } 9149 }; 9150 } 9151 9152 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9153 SCEVSearch Search(Op); 9154 visitAll(S, Search); 9155 return Search.IsFound; 9156 } 9157 9158 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9159 ValuesAtScopes.erase(S); 9160 LoopDispositions.erase(S); 9161 BlockDispositions.erase(S); 9162 UnsignedRanges.erase(S); 9163 SignedRanges.erase(S); 9164 9165 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9166 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9167 BackedgeTakenInfo &BEInfo = I->second; 9168 if (BEInfo.hasOperand(S, this)) { 9169 BEInfo.clear(); 9170 BackedgeTakenCounts.erase(I++); 9171 } 9172 else 9173 ++I; 9174 } 9175 } 9176 9177 typedef DenseMap<const Loop *, std::string> VerifyMap; 9178 9179 /// replaceSubString - Replaces all occurrences of From in Str with To. 9180 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9181 size_t Pos = 0; 9182 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9183 Str.replace(Pos, From.size(), To.data(), To.size()); 9184 Pos += To.size(); 9185 } 9186 } 9187 9188 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9189 static void 9190 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9191 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9192 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9193 9194 std::string &S = Map[L]; 9195 if (S.empty()) { 9196 raw_string_ostream OS(S); 9197 SE.getBackedgeTakenCount(L)->print(OS); 9198 9199 // false and 0 are semantically equivalent. This can happen in dead loops. 9200 replaceSubString(OS.str(), "false", "0"); 9201 // Remove wrap flags, their use in SCEV is highly fragile. 9202 // FIXME: Remove this when SCEV gets smarter about them. 9203 replaceSubString(OS.str(), "<nw>", ""); 9204 replaceSubString(OS.str(), "<nsw>", ""); 9205 replaceSubString(OS.str(), "<nuw>", ""); 9206 } 9207 } 9208 } 9209 9210 void ScalarEvolution::verify() const { 9211 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9212 9213 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9214 // FIXME: It would be much better to store actual values instead of strings, 9215 // but SCEV pointers will change if we drop the caches. 9216 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9217 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9218 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9219 9220 // Gather stringified backedge taken counts for all loops using a fresh 9221 // ScalarEvolution object. 9222 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9223 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9224 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9225 9226 // Now compare whether they're the same with and without caches. This allows 9227 // verifying that no pass changed the cache. 9228 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9229 "New loops suddenly appeared!"); 9230 9231 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9232 OldE = BackedgeDumpsOld.end(), 9233 NewI = BackedgeDumpsNew.begin(); 9234 OldI != OldE; ++OldI, ++NewI) { 9235 assert(OldI->first == NewI->first && "Loop order changed!"); 9236 9237 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9238 // changes. 9239 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9240 // means that a pass is buggy or SCEV has to learn a new pattern but is 9241 // usually not harmful. 9242 if (OldI->second != NewI->second && 9243 OldI->second.find("undef") == std::string::npos && 9244 NewI->second.find("undef") == std::string::npos && 9245 OldI->second != "***COULDNOTCOMPUTE***" && 9246 NewI->second != "***COULDNOTCOMPUTE***") { 9247 dbgs() << "SCEVValidator: SCEV for loop '" 9248 << OldI->first->getHeader()->getName() 9249 << "' changed from '" << OldI->second 9250 << "' to '" << NewI->second << "'!\n"; 9251 std::abort(); 9252 } 9253 } 9254 9255 // TODO: Verify more things. 9256 } 9257 9258 char ScalarEvolutionAnalysis::PassID; 9259 9260 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9261 AnalysisManager<Function> *AM) { 9262 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9263 AM->getResult<AssumptionAnalysis>(F), 9264 AM->getResult<DominatorTreeAnalysis>(F), 9265 AM->getResult<LoopAnalysis>(F)); 9266 } 9267 9268 PreservedAnalyses 9269 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9270 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9271 return PreservedAnalyses::all(); 9272 } 9273 9274 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9275 "Scalar Evolution Analysis", false, true) 9276 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9277 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9278 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9279 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9280 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9281 "Scalar Evolution Analysis", false, true) 9282 char ScalarEvolutionWrapperPass::ID = 0; 9283 9284 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9285 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9286 } 9287 9288 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9289 SE.reset(new ScalarEvolution( 9290 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9291 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9292 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9293 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9294 return false; 9295 } 9296 9297 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9298 9299 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9300 SE->print(OS); 9301 } 9302 9303 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9304 if (!VerifySCEV) 9305 return; 9306 9307 SE->verify(); 9308 } 9309 9310 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9311 AU.setPreservesAll(); 9312 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9313 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9314 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9315 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9316 } 9317