1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/DataLayout.h" 77 #include "llvm/Target/TargetLibraryInfo.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/ConstantRange.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GetElementPtrTypeIterator.h" 83 #include "llvm/Support/InstIterator.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/ADT/Statistic.h" 87 #include "llvm/ADT/STLExtras.h" 88 #include "llvm/ADT/SmallPtrSet.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 // FIXME: Enable this with XDEBUG when the test suite is clean. 109 static cl::opt<bool> 110 VerifySCEV("verify-scev", 111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 112 113 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 118 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 119 "Scalar Evolution Analysis", false, true) 120 char ScalarEvolution::ID = 0; 121 122 //===----------------------------------------------------------------------===// 123 // SCEV class definitions 124 //===----------------------------------------------------------------------===// 125 126 //===----------------------------------------------------------------------===// 127 // Implementation of the SCEV class. 128 // 129 130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 131 void SCEV::dump() const { 132 print(dbgs()); 133 dbgs() << '\n'; 134 } 135 #endif 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (getSCEVType()) { 139 case scConstant: 140 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->getNoWrapFlags(FlagNUW)) 170 OS << "nuw><"; 171 if (AR->getNoWrapFlags(FlagNSW)) 172 OS << "nsw><"; 173 if (AR->getNoWrapFlags(FlagNW) && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = 0; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (llvm::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->getNoWrapFlags(FlagNUW)) 204 OS << "<nuw>"; 205 if (NAry->getNoWrapFlags(FlagNSW)) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 WriteAsOperand(OS, FieldNo, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 WriteAsOperand(OS, U->getValue(), false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 default: break; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (getSCEVType()) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 default: 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 } 273 274 bool SCEV::isZero() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isZero(); 277 return false; 278 } 279 280 bool SCEV::isOne() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isOne(); 283 return false; 284 } 285 286 bool SCEV::isAllOnesValue() const { 287 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 288 return SC->getValue()->isAllOnesValue(); 289 return false; 290 } 291 292 /// isNonConstantNegative - Return true if the specified scev is negated, but 293 /// not a constant. 294 bool SCEV::isNonConstantNegative() const { 295 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 296 if (!Mul) return false; 297 298 // If there is a constant factor, it will be first. 299 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 300 if (!SC) return false; 301 302 // Return true if the value is negative, this matches things like (-42 * V). 303 return SC->getValue()->getValue().isNegative(); 304 } 305 306 SCEVCouldNotCompute::SCEVCouldNotCompute() : 307 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 308 309 bool SCEVCouldNotCompute::classof(const SCEV *S) { 310 return S->getSCEVType() == scCouldNotCompute; 311 } 312 313 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 314 FoldingSetNodeID ID; 315 ID.AddInteger(scConstant); 316 ID.AddPointer(V); 317 void *IP = 0; 318 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 319 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 320 UniqueSCEVs.InsertNode(S, IP); 321 return S; 322 } 323 324 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 325 return getConstant(ConstantInt::get(getContext(), Val)); 326 } 327 328 const SCEV * 329 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 330 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 331 return getConstant(ConstantInt::get(ITy, V, isSigned)); 332 } 333 334 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 335 unsigned SCEVTy, const SCEV *op, Type *ty) 336 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 337 338 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 339 const SCEV *op, Type *ty) 340 : SCEVCastExpr(ID, scTruncate, op, ty) { 341 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 342 (Ty->isIntegerTy() || Ty->isPointerTy()) && 343 "Cannot truncate non-integer value!"); 344 } 345 346 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 347 const SCEV *op, Type *ty) 348 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 349 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 350 (Ty->isIntegerTy() || Ty->isPointerTy()) && 351 "Cannot zero extend non-integer value!"); 352 } 353 354 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 355 const SCEV *op, Type *ty) 356 : SCEVCastExpr(ID, scSignExtend, op, ty) { 357 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 358 (Ty->isIntegerTy() || Ty->isPointerTy()) && 359 "Cannot sign extend non-integer value!"); 360 } 361 362 void SCEVUnknown::deleted() { 363 // Clear this SCEVUnknown from various maps. 364 SE->forgetMemoizedResults(this); 365 366 // Remove this SCEVUnknown from the uniquing map. 367 SE->UniqueSCEVs.RemoveNode(this); 368 369 // Release the value. 370 setValPtr(0); 371 } 372 373 void SCEVUnknown::allUsesReplacedWith(Value *New) { 374 // Clear this SCEVUnknown from various maps. 375 SE->forgetMemoizedResults(this); 376 377 // Remove this SCEVUnknown from the uniquing map. 378 SE->UniqueSCEVs.RemoveNode(this); 379 380 // Update this SCEVUnknown to point to the new value. This is needed 381 // because there may still be outstanding SCEVs which still point to 382 // this SCEVUnknown. 383 setValPtr(New); 384 } 385 386 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 387 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 388 if (VCE->getOpcode() == Instruction::PtrToInt) 389 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 390 if (CE->getOpcode() == Instruction::GetElementPtr && 391 CE->getOperand(0)->isNullValue() && 392 CE->getNumOperands() == 2) 393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 394 if (CI->isOne()) { 395 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 396 ->getElementType(); 397 return true; 398 } 399 400 return false; 401 } 402 403 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 404 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 405 if (VCE->getOpcode() == Instruction::PtrToInt) 406 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 407 if (CE->getOpcode() == Instruction::GetElementPtr && 408 CE->getOperand(0)->isNullValue()) { 409 Type *Ty = 410 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 411 if (StructType *STy = dyn_cast<StructType>(Ty)) 412 if (!STy->isPacked() && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(1)->isNullValue()) { 415 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 416 if (CI->isOne() && 417 STy->getNumElements() == 2 && 418 STy->getElementType(0)->isIntegerTy(1)) { 419 AllocTy = STy->getElementType(1); 420 return true; 421 } 422 } 423 } 424 425 return false; 426 } 427 428 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 429 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 430 if (VCE->getOpcode() == Instruction::PtrToInt) 431 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 432 if (CE->getOpcode() == Instruction::GetElementPtr && 433 CE->getNumOperands() == 3 && 434 CE->getOperand(0)->isNullValue() && 435 CE->getOperand(1)->isNullValue()) { 436 Type *Ty = 437 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 438 // Ignore vector types here so that ScalarEvolutionExpander doesn't 439 // emit getelementptrs that index into vectors. 440 if (Ty->isStructTy() || Ty->isArrayTy()) { 441 CTy = Ty; 442 FieldNo = CE->getOperand(2); 443 return true; 444 } 445 } 446 447 return false; 448 } 449 450 //===----------------------------------------------------------------------===// 451 // SCEV Utilities 452 //===----------------------------------------------------------------------===// 453 454 namespace { 455 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 456 /// than the complexity of the RHS. This comparator is used to canonicalize 457 /// expressions. 458 class SCEVComplexityCompare { 459 const LoopInfo *const LI; 460 public: 461 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 462 463 // Return true or false if LHS is less than, or at least RHS, respectively. 464 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 465 return compare(LHS, RHS) < 0; 466 } 467 468 // Return negative, zero, or positive, if LHS is less than, equal to, or 469 // greater than RHS, respectively. A three-way result allows recursive 470 // comparisons to be more efficient. 471 int compare(const SCEV *LHS, const SCEV *RHS) const { 472 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 473 if (LHS == RHS) 474 return 0; 475 476 // Primarily, sort the SCEVs by their getSCEVType(). 477 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 478 if (LType != RType) 479 return (int)LType - (int)RType; 480 481 // Aside from the getSCEVType() ordering, the particular ordering 482 // isn't very important except that it's beneficial to be consistent, 483 // so that (a + b) and (b + a) don't end up as different expressions. 484 switch (LType) { 485 case scUnknown: { 486 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 487 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 488 489 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 490 // not as complete as it could be. 491 const Value *LV = LU->getValue(), *RV = RU->getValue(); 492 493 // Order pointer values after integer values. This helps SCEVExpander 494 // form GEPs. 495 bool LIsPointer = LV->getType()->isPointerTy(), 496 RIsPointer = RV->getType()->isPointerTy(); 497 if (LIsPointer != RIsPointer) 498 return (int)LIsPointer - (int)RIsPointer; 499 500 // Compare getValueID values. 501 unsigned LID = LV->getValueID(), 502 RID = RV->getValueID(); 503 if (LID != RID) 504 return (int)LID - (int)RID; 505 506 // Sort arguments by their position. 507 if (const Argument *LA = dyn_cast<Argument>(LV)) { 508 const Argument *RA = cast<Argument>(RV); 509 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 510 return (int)LArgNo - (int)RArgNo; 511 } 512 513 // For instructions, compare their loop depth, and their operand 514 // count. This is pretty loose. 515 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 516 const Instruction *RInst = cast<Instruction>(RV); 517 518 // Compare loop depths. 519 const BasicBlock *LParent = LInst->getParent(), 520 *RParent = RInst->getParent(); 521 if (LParent != RParent) { 522 unsigned LDepth = LI->getLoopDepth(LParent), 523 RDepth = LI->getLoopDepth(RParent); 524 if (LDepth != RDepth) 525 return (int)LDepth - (int)RDepth; 526 } 527 528 // Compare the number of operands. 529 unsigned LNumOps = LInst->getNumOperands(), 530 RNumOps = RInst->getNumOperands(); 531 return (int)LNumOps - (int)RNumOps; 532 } 533 534 return 0; 535 } 536 537 case scConstant: { 538 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 539 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 540 541 // Compare constant values. 542 const APInt &LA = LC->getValue()->getValue(); 543 const APInt &RA = RC->getValue()->getValue(); 544 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 545 if (LBitWidth != RBitWidth) 546 return (int)LBitWidth - (int)RBitWidth; 547 return LA.ult(RA) ? -1 : 1; 548 } 549 550 case scAddRecExpr: { 551 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 552 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 553 554 // Compare addrec loop depths. 555 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 556 if (LLoop != RLoop) { 557 unsigned LDepth = LLoop->getLoopDepth(), 558 RDepth = RLoop->getLoopDepth(); 559 if (LDepth != RDepth) 560 return (int)LDepth - (int)RDepth; 561 } 562 563 // Addrec complexity grows with operand count. 564 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 565 if (LNumOps != RNumOps) 566 return (int)LNumOps - (int)RNumOps; 567 568 // Lexicographically compare. 569 for (unsigned i = 0; i != LNumOps; ++i) { 570 long X = compare(LA->getOperand(i), RA->getOperand(i)); 571 if (X != 0) 572 return X; 573 } 574 575 return 0; 576 } 577 578 case scAddExpr: 579 case scMulExpr: 580 case scSMaxExpr: 581 case scUMaxExpr: { 582 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 583 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 584 585 // Lexicographically compare n-ary expressions. 586 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 587 for (unsigned i = 0; i != LNumOps; ++i) { 588 if (i >= RNumOps) 589 return 1; 590 long X = compare(LC->getOperand(i), RC->getOperand(i)); 591 if (X != 0) 592 return X; 593 } 594 return (int)LNumOps - (int)RNumOps; 595 } 596 597 case scUDivExpr: { 598 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 599 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 600 601 // Lexicographically compare udiv expressions. 602 long X = compare(LC->getLHS(), RC->getLHS()); 603 if (X != 0) 604 return X; 605 return compare(LC->getRHS(), RC->getRHS()); 606 } 607 608 case scTruncate: 609 case scZeroExtend: 610 case scSignExtend: { 611 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 612 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 613 614 // Compare cast expressions by operand. 615 return compare(LC->getOperand(), RC->getOperand()); 616 } 617 618 default: 619 llvm_unreachable("Unknown SCEV kind!"); 620 } 621 } 622 }; 623 } 624 625 /// GroupByComplexity - Given a list of SCEV objects, order them by their 626 /// complexity, and group objects of the same complexity together by value. 627 /// When this routine is finished, we know that any duplicates in the vector are 628 /// consecutive and that complexity is monotonically increasing. 629 /// 630 /// Note that we go take special precautions to ensure that we get deterministic 631 /// results from this routine. In other words, we don't want the results of 632 /// this to depend on where the addresses of various SCEV objects happened to 633 /// land in memory. 634 /// 635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 636 LoopInfo *LI) { 637 if (Ops.size() < 2) return; // Noop 638 if (Ops.size() == 2) { 639 // This is the common case, which also happens to be trivially simple. 640 // Special case it. 641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 642 if (SCEVComplexityCompare(LI)(RHS, LHS)) 643 std::swap(LHS, RHS); 644 return; 645 } 646 647 // Do the rough sort by complexity. 648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 649 650 // Now that we are sorted by complexity, group elements of the same 651 // complexity. Note that this is, at worst, N^2, but the vector is likely to 652 // be extremely short in practice. Note that we take this approach because we 653 // do not want to depend on the addresses of the objects we are grouping. 654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 655 const SCEV *S = Ops[i]; 656 unsigned Complexity = S->getSCEVType(); 657 658 // If there are any objects of the same complexity and same value as this 659 // one, group them. 660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 661 if (Ops[j] == S) { // Found a duplicate. 662 // Move it to immediately after i'th element. 663 std::swap(Ops[i+1], Ops[j]); 664 ++i; // no need to rescan it. 665 if (i == e-2) return; // Done! 666 } 667 } 668 } 669 } 670 671 672 673 //===----------------------------------------------------------------------===// 674 // Simple SCEV method implementations 675 //===----------------------------------------------------------------------===// 676 677 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 678 /// Assume, K > 0. 679 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 680 ScalarEvolution &SE, 681 Type *ResultTy) { 682 // Handle the simplest case efficiently. 683 if (K == 1) 684 return SE.getTruncateOrZeroExtend(It, ResultTy); 685 686 // We are using the following formula for BC(It, K): 687 // 688 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 689 // 690 // Suppose, W is the bitwidth of the return value. We must be prepared for 691 // overflow. Hence, we must assure that the result of our computation is 692 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 693 // safe in modular arithmetic. 694 // 695 // However, this code doesn't use exactly that formula; the formula it uses 696 // is something like the following, where T is the number of factors of 2 in 697 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 698 // exponentiation: 699 // 700 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 701 // 702 // This formula is trivially equivalent to the previous formula. However, 703 // this formula can be implemented much more efficiently. The trick is that 704 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 705 // arithmetic. To do exact division in modular arithmetic, all we have 706 // to do is multiply by the inverse. Therefore, this step can be done at 707 // width W. 708 // 709 // The next issue is how to safely do the division by 2^T. The way this 710 // is done is by doing the multiplication step at a width of at least W + T 711 // bits. This way, the bottom W+T bits of the product are accurate. Then, 712 // when we perform the division by 2^T (which is equivalent to a right shift 713 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 714 // truncated out after the division by 2^T. 715 // 716 // In comparison to just directly using the first formula, this technique 717 // is much more efficient; using the first formula requires W * K bits, 718 // but this formula less than W + K bits. Also, the first formula requires 719 // a division step, whereas this formula only requires multiplies and shifts. 720 // 721 // It doesn't matter whether the subtraction step is done in the calculation 722 // width or the input iteration count's width; if the subtraction overflows, 723 // the result must be zero anyway. We prefer here to do it in the width of 724 // the induction variable because it helps a lot for certain cases; CodeGen 725 // isn't smart enough to ignore the overflow, which leads to much less 726 // efficient code if the width of the subtraction is wider than the native 727 // register width. 728 // 729 // (It's possible to not widen at all by pulling out factors of 2 before 730 // the multiplication; for example, K=2 can be calculated as 731 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 732 // extra arithmetic, so it's not an obvious win, and it gets 733 // much more complicated for K > 3.) 734 735 // Protection from insane SCEVs; this bound is conservative, 736 // but it probably doesn't matter. 737 if (K > 1000) 738 return SE.getCouldNotCompute(); 739 740 unsigned W = SE.getTypeSizeInBits(ResultTy); 741 742 // Calculate K! / 2^T and T; we divide out the factors of two before 743 // multiplying for calculating K! / 2^T to avoid overflow. 744 // Other overflow doesn't matter because we only care about the bottom 745 // W bits of the result. 746 APInt OddFactorial(W, 1); 747 unsigned T = 1; 748 for (unsigned i = 3; i <= K; ++i) { 749 APInt Mult(W, i); 750 unsigned TwoFactors = Mult.countTrailingZeros(); 751 T += TwoFactors; 752 Mult = Mult.lshr(TwoFactors); 753 OddFactorial *= Mult; 754 } 755 756 // We need at least W + T bits for the multiplication step 757 unsigned CalculationBits = W + T; 758 759 // Calculate 2^T, at width T+W. 760 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 761 762 // Calculate the multiplicative inverse of K! / 2^T; 763 // this multiplication factor will perform the exact division by 764 // K! / 2^T. 765 APInt Mod = APInt::getSignedMinValue(W+1); 766 APInt MultiplyFactor = OddFactorial.zext(W+1); 767 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 768 MultiplyFactor = MultiplyFactor.trunc(W); 769 770 // Calculate the product, at width T+W 771 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 772 CalculationBits); 773 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 774 for (unsigned i = 1; i != K; ++i) { 775 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 776 Dividend = SE.getMulExpr(Dividend, 777 SE.getTruncateOrZeroExtend(S, CalculationTy)); 778 } 779 780 // Divide by 2^T 781 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 782 783 // Truncate the result, and divide by K! / 2^T. 784 785 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 786 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 787 } 788 789 /// evaluateAtIteration - Return the value of this chain of recurrences at 790 /// the specified iteration number. We can evaluate this recurrence by 791 /// multiplying each element in the chain by the binomial coefficient 792 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 793 /// 794 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 795 /// 796 /// where BC(It, k) stands for binomial coefficient. 797 /// 798 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 799 ScalarEvolution &SE) const { 800 const SCEV *Result = getStart(); 801 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 802 // The computation is correct in the face of overflow provided that the 803 // multiplication is performed _after_ the evaluation of the binomial 804 // coefficient. 805 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 806 if (isa<SCEVCouldNotCompute>(Coeff)) 807 return Coeff; 808 809 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 810 } 811 return Result; 812 } 813 814 //===----------------------------------------------------------------------===// 815 // SCEV Expression folder implementations 816 //===----------------------------------------------------------------------===// 817 818 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 819 Type *Ty) { 820 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 821 "This is not a truncating conversion!"); 822 assert(isSCEVable(Ty) && 823 "This is not a conversion to a SCEVable type!"); 824 Ty = getEffectiveSCEVType(Ty); 825 826 FoldingSetNodeID ID; 827 ID.AddInteger(scTruncate); 828 ID.AddPointer(Op); 829 ID.AddPointer(Ty); 830 void *IP = 0; 831 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 832 833 // Fold if the operand is constant. 834 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 835 return getConstant( 836 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 837 838 // trunc(trunc(x)) --> trunc(x) 839 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 840 return getTruncateExpr(ST->getOperand(), Ty); 841 842 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 843 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 844 return getTruncateOrSignExtend(SS->getOperand(), Ty); 845 846 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 847 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 848 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 849 850 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 851 // eliminate all the truncates. 852 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 853 SmallVector<const SCEV *, 4> Operands; 854 bool hasTrunc = false; 855 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 856 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 857 hasTrunc = isa<SCEVTruncateExpr>(S); 858 Operands.push_back(S); 859 } 860 if (!hasTrunc) 861 return getAddExpr(Operands); 862 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 863 } 864 865 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 866 // eliminate all the truncates. 867 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 868 SmallVector<const SCEV *, 4> Operands; 869 bool hasTrunc = false; 870 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 871 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 872 hasTrunc = isa<SCEVTruncateExpr>(S); 873 Operands.push_back(S); 874 } 875 if (!hasTrunc) 876 return getMulExpr(Operands); 877 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 878 } 879 880 // If the input value is a chrec scev, truncate the chrec's operands. 881 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 882 SmallVector<const SCEV *, 4> Operands; 883 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 884 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 885 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 886 } 887 888 // The cast wasn't folded; create an explicit cast node. We can reuse 889 // the existing insert position since if we get here, we won't have 890 // made any changes which would invalidate it. 891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 892 Op, Ty); 893 UniqueSCEVs.InsertNode(S, IP); 894 return S; 895 } 896 897 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 898 Type *Ty) { 899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 900 "This is not an extending conversion!"); 901 assert(isSCEVable(Ty) && 902 "This is not a conversion to a SCEVable type!"); 903 Ty = getEffectiveSCEVType(Ty); 904 905 // Fold if the operand is constant. 906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 907 return getConstant( 908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 909 910 // zext(zext(x)) --> zext(x) 911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 912 return getZeroExtendExpr(SZ->getOperand(), Ty); 913 914 // Before doing any expensive analysis, check to see if we've already 915 // computed a SCEV for this Op and Ty. 916 FoldingSetNodeID ID; 917 ID.AddInteger(scZeroExtend); 918 ID.AddPointer(Op); 919 ID.AddPointer(Ty); 920 void *IP = 0; 921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 922 923 // zext(trunc(x)) --> zext(x) or x or trunc(x) 924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 925 // It's possible the bits taken off by the truncate were all zero bits. If 926 // so, we should be able to simplify this further. 927 const SCEV *X = ST->getOperand(); 928 ConstantRange CR = getUnsignedRange(X); 929 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 930 unsigned NewBits = getTypeSizeInBits(Ty); 931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 932 CR.zextOrTrunc(NewBits))) 933 return getTruncateOrZeroExtend(X, Ty); 934 } 935 936 // If the input value is a chrec scev, and we can prove that the value 937 // did not overflow the old, smaller, value, we can zero extend all of the 938 // operands (often constants). This allows analysis of something like 939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 941 if (AR->isAffine()) { 942 const SCEV *Start = AR->getStart(); 943 const SCEV *Step = AR->getStepRecurrence(*this); 944 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 945 const Loop *L = AR->getLoop(); 946 947 // If we have special knowledge that this addrec won't overflow, 948 // we don't need to do any further analysis. 949 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 950 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 951 getZeroExtendExpr(Step, Ty), 952 L, AR->getNoWrapFlags()); 953 954 // Check whether the backedge-taken count is SCEVCouldNotCompute. 955 // Note that this serves two purposes: It filters out loops that are 956 // simply not analyzable, and it covers the case where this code is 957 // being called from within backedge-taken count analysis, such that 958 // attempting to ask for the backedge-taken count would likely result 959 // in infinite recursion. In the later case, the analysis code will 960 // cope with a conservative value, and it will take care to purge 961 // that value once it has finished. 962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 964 // Manually compute the final value for AR, checking for 965 // overflow. 966 967 // Check whether the backedge-taken count can be losslessly casted to 968 // the addrec's type. The count is always unsigned. 969 const SCEV *CastedMaxBECount = 970 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 971 const SCEV *RecastedMaxBECount = 972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 973 if (MaxBECount == RecastedMaxBECount) { 974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 975 // Check whether Start+Step*MaxBECount has no unsigned overflow. 976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 977 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 978 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 979 const SCEV *WideMaxBECount = 980 getZeroExtendExpr(CastedMaxBECount, WideTy); 981 const SCEV *OperandExtendedAdd = 982 getAddExpr(WideStart, 983 getMulExpr(WideMaxBECount, 984 getZeroExtendExpr(Step, WideTy))); 985 if (ZAdd == OperandExtendedAdd) { 986 // Cache knowledge of AR NUW, which is propagated to this AddRec. 987 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 988 // Return the expression with the addrec on the outside. 989 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 990 getZeroExtendExpr(Step, Ty), 991 L, AR->getNoWrapFlags()); 992 } 993 // Similar to above, only this time treat the step value as signed. 994 // This covers loops that count down. 995 OperandExtendedAdd = 996 getAddExpr(WideStart, 997 getMulExpr(WideMaxBECount, 998 getSignExtendExpr(Step, WideTy))); 999 if (ZAdd == OperandExtendedAdd) { 1000 // Cache knowledge of AR NW, which is propagated to this AddRec. 1001 // Negative step causes unsigned wrap, but it still can't self-wrap. 1002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1003 // Return the expression with the addrec on the outside. 1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1005 getSignExtendExpr(Step, Ty), 1006 L, AR->getNoWrapFlags()); 1007 } 1008 } 1009 1010 // If the backedge is guarded by a comparison with the pre-inc value 1011 // the addrec is safe. Also, if the entry is guarded by a comparison 1012 // with the start value and the backedge is guarded by a comparison 1013 // with the post-inc value, the addrec is safe. 1014 if (isKnownPositive(Step)) { 1015 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1016 getUnsignedRange(Step).getUnsignedMax()); 1017 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1018 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1019 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1020 AR->getPostIncExpr(*this), N))) { 1021 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1022 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1023 // Return the expression with the addrec on the outside. 1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1025 getZeroExtendExpr(Step, Ty), 1026 L, AR->getNoWrapFlags()); 1027 } 1028 } else if (isKnownNegative(Step)) { 1029 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1030 getSignedRange(Step).getSignedMin()); 1031 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1032 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1033 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1034 AR->getPostIncExpr(*this), N))) { 1035 // Cache knowledge of AR NW, which is propagated to this AddRec. 1036 // Negative step causes unsigned wrap, but it still can't self-wrap. 1037 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1038 // Return the expression with the addrec on the outside. 1039 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1040 getSignExtendExpr(Step, Ty), 1041 L, AR->getNoWrapFlags()); 1042 } 1043 } 1044 } 1045 } 1046 1047 // The cast wasn't folded; create an explicit cast node. 1048 // Recompute the insert position, as it may have been invalidated. 1049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1050 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1051 Op, Ty); 1052 UniqueSCEVs.InsertNode(S, IP); 1053 return S; 1054 } 1055 1056 // Get the limit of a recurrence such that incrementing by Step cannot cause 1057 // signed overflow as long as the value of the recurrence within the loop does 1058 // not exceed this limit before incrementing. 1059 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1060 ICmpInst::Predicate *Pred, 1061 ScalarEvolution *SE) { 1062 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1063 if (SE->isKnownPositive(Step)) { 1064 *Pred = ICmpInst::ICMP_SLT; 1065 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1066 SE->getSignedRange(Step).getSignedMax()); 1067 } 1068 if (SE->isKnownNegative(Step)) { 1069 *Pred = ICmpInst::ICMP_SGT; 1070 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1071 SE->getSignedRange(Step).getSignedMin()); 1072 } 1073 return 0; 1074 } 1075 1076 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1077 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1078 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1079 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1080 // result, the expression "Step + sext(PreIncAR)" is congruent with 1081 // "sext(PostIncAR)" 1082 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1083 Type *Ty, 1084 ScalarEvolution *SE) { 1085 const Loop *L = AR->getLoop(); 1086 const SCEV *Start = AR->getStart(); 1087 const SCEV *Step = AR->getStepRecurrence(*SE); 1088 1089 // Check for a simple looking step prior to loop entry. 1090 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1091 if (!SA) 1092 return 0; 1093 1094 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1095 // subtraction is expensive. For this purpose, perform a quick and dirty 1096 // difference, by checking for Step in the operand list. 1097 SmallVector<const SCEV *, 4> DiffOps; 1098 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1099 I != E; ++I) { 1100 if (*I != Step) 1101 DiffOps.push_back(*I); 1102 } 1103 if (DiffOps.size() == SA->getNumOperands()) 1104 return 0; 1105 1106 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1107 // same three conditions that getSignExtendedExpr checks. 1108 1109 // 1. NSW flags on the step increment. 1110 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1111 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1112 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1113 1114 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1115 return PreStart; 1116 1117 // 2. Direct overflow check on the step operation's expression. 1118 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1119 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1120 const SCEV *OperandExtendedStart = 1121 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1122 SE->getSignExtendExpr(Step, WideTy)); 1123 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1124 // Cache knowledge of PreAR NSW. 1125 if (PreAR) 1126 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1127 // FIXME: this optimization needs a unit test 1128 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1129 return PreStart; 1130 } 1131 1132 // 3. Loop precondition. 1133 ICmpInst::Predicate Pred; 1134 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1135 1136 if (OverflowLimit && 1137 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1138 return PreStart; 1139 } 1140 return 0; 1141 } 1142 1143 // Get the normalized sign-extended expression for this AddRec's Start. 1144 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1145 Type *Ty, 1146 ScalarEvolution *SE) { 1147 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1148 if (!PreStart) 1149 return SE->getSignExtendExpr(AR->getStart(), Ty); 1150 1151 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1152 SE->getSignExtendExpr(PreStart, Ty)); 1153 } 1154 1155 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1156 Type *Ty) { 1157 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1158 "This is not an extending conversion!"); 1159 assert(isSCEVable(Ty) && 1160 "This is not a conversion to a SCEVable type!"); 1161 Ty = getEffectiveSCEVType(Ty); 1162 1163 // Fold if the operand is constant. 1164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1165 return getConstant( 1166 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1167 1168 // sext(sext(x)) --> sext(x) 1169 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1170 return getSignExtendExpr(SS->getOperand(), Ty); 1171 1172 // sext(zext(x)) --> zext(x) 1173 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1174 return getZeroExtendExpr(SZ->getOperand(), Ty); 1175 1176 // Before doing any expensive analysis, check to see if we've already 1177 // computed a SCEV for this Op and Ty. 1178 FoldingSetNodeID ID; 1179 ID.AddInteger(scSignExtend); 1180 ID.AddPointer(Op); 1181 ID.AddPointer(Ty); 1182 void *IP = 0; 1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1184 1185 // If the input value is provably positive, build a zext instead. 1186 if (isKnownNonNegative(Op)) 1187 return getZeroExtendExpr(Op, Ty); 1188 1189 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1190 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1191 // It's possible the bits taken off by the truncate were all sign bits. If 1192 // so, we should be able to simplify this further. 1193 const SCEV *X = ST->getOperand(); 1194 ConstantRange CR = getSignedRange(X); 1195 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1196 unsigned NewBits = getTypeSizeInBits(Ty); 1197 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1198 CR.sextOrTrunc(NewBits))) 1199 return getTruncateOrSignExtend(X, Ty); 1200 } 1201 1202 // If the input value is a chrec scev, and we can prove that the value 1203 // did not overflow the old, smaller, value, we can sign extend all of the 1204 // operands (often constants). This allows analysis of something like 1205 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1206 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1207 if (AR->isAffine()) { 1208 const SCEV *Start = AR->getStart(); 1209 const SCEV *Step = AR->getStepRecurrence(*this); 1210 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1211 const Loop *L = AR->getLoop(); 1212 1213 // If we have special knowledge that this addrec won't overflow, 1214 // we don't need to do any further analysis. 1215 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1216 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1217 getSignExtendExpr(Step, Ty), 1218 L, SCEV::FlagNSW); 1219 1220 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1221 // Note that this serves two purposes: It filters out loops that are 1222 // simply not analyzable, and it covers the case where this code is 1223 // being called from within backedge-taken count analysis, such that 1224 // attempting to ask for the backedge-taken count would likely result 1225 // in infinite recursion. In the later case, the analysis code will 1226 // cope with a conservative value, and it will take care to purge 1227 // that value once it has finished. 1228 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1229 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1230 // Manually compute the final value for AR, checking for 1231 // overflow. 1232 1233 // Check whether the backedge-taken count can be losslessly casted to 1234 // the addrec's type. The count is always unsigned. 1235 const SCEV *CastedMaxBECount = 1236 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1237 const SCEV *RecastedMaxBECount = 1238 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1239 if (MaxBECount == RecastedMaxBECount) { 1240 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1241 // Check whether Start+Step*MaxBECount has no signed overflow. 1242 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1243 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1244 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1245 const SCEV *WideMaxBECount = 1246 getZeroExtendExpr(CastedMaxBECount, WideTy); 1247 const SCEV *OperandExtendedAdd = 1248 getAddExpr(WideStart, 1249 getMulExpr(WideMaxBECount, 1250 getSignExtendExpr(Step, WideTy))); 1251 if (SAdd == OperandExtendedAdd) { 1252 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1253 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1254 // Return the expression with the addrec on the outside. 1255 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1256 getSignExtendExpr(Step, Ty), 1257 L, AR->getNoWrapFlags()); 1258 } 1259 // Similar to above, only this time treat the step value as unsigned. 1260 // This covers loops that count up with an unsigned step. 1261 OperandExtendedAdd = 1262 getAddExpr(WideStart, 1263 getMulExpr(WideMaxBECount, 1264 getZeroExtendExpr(Step, WideTy))); 1265 if (SAdd == OperandExtendedAdd) { 1266 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1267 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1268 // Return the expression with the addrec on the outside. 1269 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1270 getZeroExtendExpr(Step, Ty), 1271 L, AR->getNoWrapFlags()); 1272 } 1273 } 1274 1275 // If the backedge is guarded by a comparison with the pre-inc value 1276 // the addrec is safe. Also, if the entry is guarded by a comparison 1277 // with the start value and the backedge is guarded by a comparison 1278 // with the post-inc value, the addrec is safe. 1279 ICmpInst::Predicate Pred; 1280 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1281 if (OverflowLimit && 1282 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1283 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1284 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1285 OverflowLimit)))) { 1286 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1289 getSignExtendExpr(Step, Ty), 1290 L, AR->getNoWrapFlags()); 1291 } 1292 } 1293 } 1294 1295 // The cast wasn't folded; create an explicit cast node. 1296 // Recompute the insert position, as it may have been invalidated. 1297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1298 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1299 Op, Ty); 1300 UniqueSCEVs.InsertNode(S, IP); 1301 return S; 1302 } 1303 1304 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1305 /// unspecified bits out to the given type. 1306 /// 1307 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1308 Type *Ty) { 1309 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1310 "This is not an extending conversion!"); 1311 assert(isSCEVable(Ty) && 1312 "This is not a conversion to a SCEVable type!"); 1313 Ty = getEffectiveSCEVType(Ty); 1314 1315 // Sign-extend negative constants. 1316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1317 if (SC->getValue()->getValue().isNegative()) 1318 return getSignExtendExpr(Op, Ty); 1319 1320 // Peel off a truncate cast. 1321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1322 const SCEV *NewOp = T->getOperand(); 1323 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1324 return getAnyExtendExpr(NewOp, Ty); 1325 return getTruncateOrNoop(NewOp, Ty); 1326 } 1327 1328 // Next try a zext cast. If the cast is folded, use it. 1329 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1330 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1331 return ZExt; 1332 1333 // Next try a sext cast. If the cast is folded, use it. 1334 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1335 if (!isa<SCEVSignExtendExpr>(SExt)) 1336 return SExt; 1337 1338 // Force the cast to be folded into the operands of an addrec. 1339 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1340 SmallVector<const SCEV *, 4> Ops; 1341 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1342 I != E; ++I) 1343 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1344 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1345 } 1346 1347 // If the expression is obviously signed, use the sext cast value. 1348 if (isa<SCEVSMaxExpr>(Op)) 1349 return SExt; 1350 1351 // Absent any other information, use the zext cast value. 1352 return ZExt; 1353 } 1354 1355 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1356 /// a list of operands to be added under the given scale, update the given 1357 /// map. This is a helper function for getAddRecExpr. As an example of 1358 /// what it does, given a sequence of operands that would form an add 1359 /// expression like this: 1360 /// 1361 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1362 /// 1363 /// where A and B are constants, update the map with these values: 1364 /// 1365 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1366 /// 1367 /// and add 13 + A*B*29 to AccumulatedConstant. 1368 /// This will allow getAddRecExpr to produce this: 1369 /// 1370 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1371 /// 1372 /// This form often exposes folding opportunities that are hidden in 1373 /// the original operand list. 1374 /// 1375 /// Return true iff it appears that any interesting folding opportunities 1376 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1377 /// the common case where no interesting opportunities are present, and 1378 /// is also used as a check to avoid infinite recursion. 1379 /// 1380 static bool 1381 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1382 SmallVector<const SCEV *, 8> &NewOps, 1383 APInt &AccumulatedConstant, 1384 const SCEV *const *Ops, size_t NumOperands, 1385 const APInt &Scale, 1386 ScalarEvolution &SE) { 1387 bool Interesting = false; 1388 1389 // Iterate over the add operands. They are sorted, with constants first. 1390 unsigned i = 0; 1391 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1392 ++i; 1393 // Pull a buried constant out to the outside. 1394 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1395 Interesting = true; 1396 AccumulatedConstant += Scale * C->getValue()->getValue(); 1397 } 1398 1399 // Next comes everything else. We're especially interested in multiplies 1400 // here, but they're in the middle, so just visit the rest with one loop. 1401 for (; i != NumOperands; ++i) { 1402 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1403 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1404 APInt NewScale = 1405 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1406 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1407 // A multiplication of a constant with another add; recurse. 1408 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1409 Interesting |= 1410 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1411 Add->op_begin(), Add->getNumOperands(), 1412 NewScale, SE); 1413 } else { 1414 // A multiplication of a constant with some other value. Update 1415 // the map. 1416 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1417 const SCEV *Key = SE.getMulExpr(MulOps); 1418 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1419 M.insert(std::make_pair(Key, NewScale)); 1420 if (Pair.second) { 1421 NewOps.push_back(Pair.first->first); 1422 } else { 1423 Pair.first->second += NewScale; 1424 // The map already had an entry for this value, which may indicate 1425 // a folding opportunity. 1426 Interesting = true; 1427 } 1428 } 1429 } else { 1430 // An ordinary operand. Update the map. 1431 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1432 M.insert(std::make_pair(Ops[i], Scale)); 1433 if (Pair.second) { 1434 NewOps.push_back(Pair.first->first); 1435 } else { 1436 Pair.first->second += Scale; 1437 // The map already had an entry for this value, which may indicate 1438 // a folding opportunity. 1439 Interesting = true; 1440 } 1441 } 1442 } 1443 1444 return Interesting; 1445 } 1446 1447 namespace { 1448 struct APIntCompare { 1449 bool operator()(const APInt &LHS, const APInt &RHS) const { 1450 return LHS.ult(RHS); 1451 } 1452 }; 1453 } 1454 1455 /// getAddExpr - Get a canonical add expression, or something simpler if 1456 /// possible. 1457 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1458 SCEV::NoWrapFlags Flags) { 1459 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1460 "only nuw or nsw allowed"); 1461 assert(!Ops.empty() && "Cannot get empty add!"); 1462 if (Ops.size() == 1) return Ops[0]; 1463 #ifndef NDEBUG 1464 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1465 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1466 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1467 "SCEVAddExpr operand types don't match!"); 1468 #endif 1469 1470 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1471 // And vice-versa. 1472 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1473 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1474 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1475 bool All = true; 1476 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1477 E = Ops.end(); I != E; ++I) 1478 if (!isKnownNonNegative(*I)) { 1479 All = false; 1480 break; 1481 } 1482 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1483 } 1484 1485 // Sort by complexity, this groups all similar expression types together. 1486 GroupByComplexity(Ops, LI); 1487 1488 // If there are any constants, fold them together. 1489 unsigned Idx = 0; 1490 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1491 ++Idx; 1492 assert(Idx < Ops.size()); 1493 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1494 // We found two constants, fold them together! 1495 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1496 RHSC->getValue()->getValue()); 1497 if (Ops.size() == 2) return Ops[0]; 1498 Ops.erase(Ops.begin()+1); // Erase the folded element 1499 LHSC = cast<SCEVConstant>(Ops[0]); 1500 } 1501 1502 // If we are left with a constant zero being added, strip it off. 1503 if (LHSC->getValue()->isZero()) { 1504 Ops.erase(Ops.begin()); 1505 --Idx; 1506 } 1507 1508 if (Ops.size() == 1) return Ops[0]; 1509 } 1510 1511 // Okay, check to see if the same value occurs in the operand list more than 1512 // once. If so, merge them together into an multiply expression. Since we 1513 // sorted the list, these values are required to be adjacent. 1514 Type *Ty = Ops[0]->getType(); 1515 bool FoundMatch = false; 1516 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1517 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1518 // Scan ahead to count how many equal operands there are. 1519 unsigned Count = 2; 1520 while (i+Count != e && Ops[i+Count] == Ops[i]) 1521 ++Count; 1522 // Merge the values into a multiply. 1523 const SCEV *Scale = getConstant(Ty, Count); 1524 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1525 if (Ops.size() == Count) 1526 return Mul; 1527 Ops[i] = Mul; 1528 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1529 --i; e -= Count - 1; 1530 FoundMatch = true; 1531 } 1532 if (FoundMatch) 1533 return getAddExpr(Ops, Flags); 1534 1535 // Check for truncates. If all the operands are truncated from the same 1536 // type, see if factoring out the truncate would permit the result to be 1537 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1538 // if the contents of the resulting outer trunc fold to something simple. 1539 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1540 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1541 Type *DstType = Trunc->getType(); 1542 Type *SrcType = Trunc->getOperand()->getType(); 1543 SmallVector<const SCEV *, 8> LargeOps; 1544 bool Ok = true; 1545 // Check all the operands to see if they can be represented in the 1546 // source type of the truncate. 1547 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1548 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1549 if (T->getOperand()->getType() != SrcType) { 1550 Ok = false; 1551 break; 1552 } 1553 LargeOps.push_back(T->getOperand()); 1554 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1555 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1556 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1557 SmallVector<const SCEV *, 8> LargeMulOps; 1558 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1559 if (const SCEVTruncateExpr *T = 1560 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1561 if (T->getOperand()->getType() != SrcType) { 1562 Ok = false; 1563 break; 1564 } 1565 LargeMulOps.push_back(T->getOperand()); 1566 } else if (const SCEVConstant *C = 1567 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1568 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1569 } else { 1570 Ok = false; 1571 break; 1572 } 1573 } 1574 if (Ok) 1575 LargeOps.push_back(getMulExpr(LargeMulOps)); 1576 } else { 1577 Ok = false; 1578 break; 1579 } 1580 } 1581 if (Ok) { 1582 // Evaluate the expression in the larger type. 1583 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1584 // If it folds to something simple, use it. Otherwise, don't. 1585 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1586 return getTruncateExpr(Fold, DstType); 1587 } 1588 } 1589 1590 // Skip past any other cast SCEVs. 1591 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1592 ++Idx; 1593 1594 // If there are add operands they would be next. 1595 if (Idx < Ops.size()) { 1596 bool DeletedAdd = false; 1597 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1598 // If we have an add, expand the add operands onto the end of the operands 1599 // list. 1600 Ops.erase(Ops.begin()+Idx); 1601 Ops.append(Add->op_begin(), Add->op_end()); 1602 DeletedAdd = true; 1603 } 1604 1605 // If we deleted at least one add, we added operands to the end of the list, 1606 // and they are not necessarily sorted. Recurse to resort and resimplify 1607 // any operands we just acquired. 1608 if (DeletedAdd) 1609 return getAddExpr(Ops); 1610 } 1611 1612 // Skip over the add expression until we get to a multiply. 1613 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1614 ++Idx; 1615 1616 // Check to see if there are any folding opportunities present with 1617 // operands multiplied by constant values. 1618 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1619 uint64_t BitWidth = getTypeSizeInBits(Ty); 1620 DenseMap<const SCEV *, APInt> M; 1621 SmallVector<const SCEV *, 8> NewOps; 1622 APInt AccumulatedConstant(BitWidth, 0); 1623 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1624 Ops.data(), Ops.size(), 1625 APInt(BitWidth, 1), *this)) { 1626 // Some interesting folding opportunity is present, so its worthwhile to 1627 // re-generate the operands list. Group the operands by constant scale, 1628 // to avoid multiplying by the same constant scale multiple times. 1629 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1630 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1631 E = NewOps.end(); I != E; ++I) 1632 MulOpLists[M.find(*I)->second].push_back(*I); 1633 // Re-generate the operands list. 1634 Ops.clear(); 1635 if (AccumulatedConstant != 0) 1636 Ops.push_back(getConstant(AccumulatedConstant)); 1637 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1638 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1639 if (I->first != 0) 1640 Ops.push_back(getMulExpr(getConstant(I->first), 1641 getAddExpr(I->second))); 1642 if (Ops.empty()) 1643 return getConstant(Ty, 0); 1644 if (Ops.size() == 1) 1645 return Ops[0]; 1646 return getAddExpr(Ops); 1647 } 1648 } 1649 1650 // If we are adding something to a multiply expression, make sure the 1651 // something is not already an operand of the multiply. If so, merge it into 1652 // the multiply. 1653 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1654 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1655 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1656 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1657 if (isa<SCEVConstant>(MulOpSCEV)) 1658 continue; 1659 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1660 if (MulOpSCEV == Ops[AddOp]) { 1661 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1662 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1663 if (Mul->getNumOperands() != 2) { 1664 // If the multiply has more than two operands, we must get the 1665 // Y*Z term. 1666 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1667 Mul->op_begin()+MulOp); 1668 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1669 InnerMul = getMulExpr(MulOps); 1670 } 1671 const SCEV *One = getConstant(Ty, 1); 1672 const SCEV *AddOne = getAddExpr(One, InnerMul); 1673 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1674 if (Ops.size() == 2) return OuterMul; 1675 if (AddOp < Idx) { 1676 Ops.erase(Ops.begin()+AddOp); 1677 Ops.erase(Ops.begin()+Idx-1); 1678 } else { 1679 Ops.erase(Ops.begin()+Idx); 1680 Ops.erase(Ops.begin()+AddOp-1); 1681 } 1682 Ops.push_back(OuterMul); 1683 return getAddExpr(Ops); 1684 } 1685 1686 // Check this multiply against other multiplies being added together. 1687 for (unsigned OtherMulIdx = Idx+1; 1688 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1689 ++OtherMulIdx) { 1690 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1691 // If MulOp occurs in OtherMul, we can fold the two multiplies 1692 // together. 1693 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1694 OMulOp != e; ++OMulOp) 1695 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1696 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1697 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1698 if (Mul->getNumOperands() != 2) { 1699 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1700 Mul->op_begin()+MulOp); 1701 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1702 InnerMul1 = getMulExpr(MulOps); 1703 } 1704 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1705 if (OtherMul->getNumOperands() != 2) { 1706 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1707 OtherMul->op_begin()+OMulOp); 1708 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1709 InnerMul2 = getMulExpr(MulOps); 1710 } 1711 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1712 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1713 if (Ops.size() == 2) return OuterMul; 1714 Ops.erase(Ops.begin()+Idx); 1715 Ops.erase(Ops.begin()+OtherMulIdx-1); 1716 Ops.push_back(OuterMul); 1717 return getAddExpr(Ops); 1718 } 1719 } 1720 } 1721 } 1722 1723 // If there are any add recurrences in the operands list, see if any other 1724 // added values are loop invariant. If so, we can fold them into the 1725 // recurrence. 1726 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1727 ++Idx; 1728 1729 // Scan over all recurrences, trying to fold loop invariants into them. 1730 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1731 // Scan all of the other operands to this add and add them to the vector if 1732 // they are loop invariant w.r.t. the recurrence. 1733 SmallVector<const SCEV *, 8> LIOps; 1734 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1735 const Loop *AddRecLoop = AddRec->getLoop(); 1736 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1737 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1738 LIOps.push_back(Ops[i]); 1739 Ops.erase(Ops.begin()+i); 1740 --i; --e; 1741 } 1742 1743 // If we found some loop invariants, fold them into the recurrence. 1744 if (!LIOps.empty()) { 1745 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1746 LIOps.push_back(AddRec->getStart()); 1747 1748 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1749 AddRec->op_end()); 1750 AddRecOps[0] = getAddExpr(LIOps); 1751 1752 // Build the new addrec. Propagate the NUW and NSW flags if both the 1753 // outer add and the inner addrec are guaranteed to have no overflow. 1754 // Always propagate NW. 1755 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1756 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1757 1758 // If all of the other operands were loop invariant, we are done. 1759 if (Ops.size() == 1) return NewRec; 1760 1761 // Otherwise, add the folded AddRec by the non-invariant parts. 1762 for (unsigned i = 0;; ++i) 1763 if (Ops[i] == AddRec) { 1764 Ops[i] = NewRec; 1765 break; 1766 } 1767 return getAddExpr(Ops); 1768 } 1769 1770 // Okay, if there weren't any loop invariants to be folded, check to see if 1771 // there are multiple AddRec's with the same loop induction variable being 1772 // added together. If so, we can fold them. 1773 for (unsigned OtherIdx = Idx+1; 1774 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1775 ++OtherIdx) 1776 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1777 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1778 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1779 AddRec->op_end()); 1780 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1781 ++OtherIdx) 1782 if (const SCEVAddRecExpr *OtherAddRec = 1783 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1784 if (OtherAddRec->getLoop() == AddRecLoop) { 1785 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1786 i != e; ++i) { 1787 if (i >= AddRecOps.size()) { 1788 AddRecOps.append(OtherAddRec->op_begin()+i, 1789 OtherAddRec->op_end()); 1790 break; 1791 } 1792 AddRecOps[i] = getAddExpr(AddRecOps[i], 1793 OtherAddRec->getOperand(i)); 1794 } 1795 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1796 } 1797 // Step size has changed, so we cannot guarantee no self-wraparound. 1798 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1799 return getAddExpr(Ops); 1800 } 1801 1802 // Otherwise couldn't fold anything into this recurrence. Move onto the 1803 // next one. 1804 } 1805 1806 // Okay, it looks like we really DO need an add expr. Check to see if we 1807 // already have one, otherwise create a new one. 1808 FoldingSetNodeID ID; 1809 ID.AddInteger(scAddExpr); 1810 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1811 ID.AddPointer(Ops[i]); 1812 void *IP = 0; 1813 SCEVAddExpr *S = 1814 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1815 if (!S) { 1816 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1817 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1818 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1819 O, Ops.size()); 1820 UniqueSCEVs.InsertNode(S, IP); 1821 } 1822 S->setNoWrapFlags(Flags); 1823 return S; 1824 } 1825 1826 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1827 uint64_t k = i*j; 1828 if (j > 1 && k / j != i) Overflow = true; 1829 return k; 1830 } 1831 1832 /// Compute the result of "n choose k", the binomial coefficient. If an 1833 /// intermediate computation overflows, Overflow will be set and the return will 1834 /// be garbage. Overflow is not cleared on absence of overflow. 1835 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1836 // We use the multiplicative formula: 1837 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1838 // At each iteration, we take the n-th term of the numeral and divide by the 1839 // (k-n)th term of the denominator. This division will always produce an 1840 // integral result, and helps reduce the chance of overflow in the 1841 // intermediate computations. However, we can still overflow even when the 1842 // final result would fit. 1843 1844 if (n == 0 || n == k) return 1; 1845 if (k > n) return 0; 1846 1847 if (k > n/2) 1848 k = n-k; 1849 1850 uint64_t r = 1; 1851 for (uint64_t i = 1; i <= k; ++i) { 1852 r = umul_ov(r, n-(i-1), Overflow); 1853 r /= i; 1854 } 1855 return r; 1856 } 1857 1858 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1859 /// possible. 1860 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1861 SCEV::NoWrapFlags Flags) { 1862 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1863 "only nuw or nsw allowed"); 1864 assert(!Ops.empty() && "Cannot get empty mul!"); 1865 if (Ops.size() == 1) return Ops[0]; 1866 #ifndef NDEBUG 1867 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1868 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1869 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1870 "SCEVMulExpr operand types don't match!"); 1871 #endif 1872 1873 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1874 // And vice-versa. 1875 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1876 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1877 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1878 bool All = true; 1879 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1880 E = Ops.end(); I != E; ++I) 1881 if (!isKnownNonNegative(*I)) { 1882 All = false; 1883 break; 1884 } 1885 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1886 } 1887 1888 // Sort by complexity, this groups all similar expression types together. 1889 GroupByComplexity(Ops, LI); 1890 1891 // If there are any constants, fold them together. 1892 unsigned Idx = 0; 1893 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1894 1895 // C1*(C2+V) -> C1*C2 + C1*V 1896 if (Ops.size() == 2) 1897 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1898 if (Add->getNumOperands() == 2 && 1899 isa<SCEVConstant>(Add->getOperand(0))) 1900 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1901 getMulExpr(LHSC, Add->getOperand(1))); 1902 1903 ++Idx; 1904 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1905 // We found two constants, fold them together! 1906 ConstantInt *Fold = ConstantInt::get(getContext(), 1907 LHSC->getValue()->getValue() * 1908 RHSC->getValue()->getValue()); 1909 Ops[0] = getConstant(Fold); 1910 Ops.erase(Ops.begin()+1); // Erase the folded element 1911 if (Ops.size() == 1) return Ops[0]; 1912 LHSC = cast<SCEVConstant>(Ops[0]); 1913 } 1914 1915 // If we are left with a constant one being multiplied, strip it off. 1916 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1917 Ops.erase(Ops.begin()); 1918 --Idx; 1919 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1920 // If we have a multiply of zero, it will always be zero. 1921 return Ops[0]; 1922 } else if (Ops[0]->isAllOnesValue()) { 1923 // If we have a mul by -1 of an add, try distributing the -1 among the 1924 // add operands. 1925 if (Ops.size() == 2) { 1926 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1927 SmallVector<const SCEV *, 4> NewOps; 1928 bool AnyFolded = false; 1929 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1930 E = Add->op_end(); I != E; ++I) { 1931 const SCEV *Mul = getMulExpr(Ops[0], *I); 1932 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1933 NewOps.push_back(Mul); 1934 } 1935 if (AnyFolded) 1936 return getAddExpr(NewOps); 1937 } 1938 else if (const SCEVAddRecExpr * 1939 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1940 // Negation preserves a recurrence's no self-wrap property. 1941 SmallVector<const SCEV *, 4> Operands; 1942 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1943 E = AddRec->op_end(); I != E; ++I) { 1944 Operands.push_back(getMulExpr(Ops[0], *I)); 1945 } 1946 return getAddRecExpr(Operands, AddRec->getLoop(), 1947 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1948 } 1949 } 1950 } 1951 1952 if (Ops.size() == 1) 1953 return Ops[0]; 1954 } 1955 1956 // Skip over the add expression until we get to a multiply. 1957 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1958 ++Idx; 1959 1960 // If there are mul operands inline them all into this expression. 1961 if (Idx < Ops.size()) { 1962 bool DeletedMul = false; 1963 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1964 // If we have an mul, expand the mul operands onto the end of the operands 1965 // list. 1966 Ops.erase(Ops.begin()+Idx); 1967 Ops.append(Mul->op_begin(), Mul->op_end()); 1968 DeletedMul = true; 1969 } 1970 1971 // If we deleted at least one mul, we added operands to the end of the list, 1972 // and they are not necessarily sorted. Recurse to resort and resimplify 1973 // any operands we just acquired. 1974 if (DeletedMul) 1975 return getMulExpr(Ops); 1976 } 1977 1978 // If there are any add recurrences in the operands list, see if any other 1979 // added values are loop invariant. If so, we can fold them into the 1980 // recurrence. 1981 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1982 ++Idx; 1983 1984 // Scan over all recurrences, trying to fold loop invariants into them. 1985 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1986 // Scan all of the other operands to this mul and add them to the vector if 1987 // they are loop invariant w.r.t. the recurrence. 1988 SmallVector<const SCEV *, 8> LIOps; 1989 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1990 const Loop *AddRecLoop = AddRec->getLoop(); 1991 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1992 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1993 LIOps.push_back(Ops[i]); 1994 Ops.erase(Ops.begin()+i); 1995 --i; --e; 1996 } 1997 1998 // If we found some loop invariants, fold them into the recurrence. 1999 if (!LIOps.empty()) { 2000 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2001 SmallVector<const SCEV *, 4> NewOps; 2002 NewOps.reserve(AddRec->getNumOperands()); 2003 const SCEV *Scale = getMulExpr(LIOps); 2004 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2005 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2006 2007 // Build the new addrec. Propagate the NUW and NSW flags if both the 2008 // outer mul and the inner addrec are guaranteed to have no overflow. 2009 // 2010 // No self-wrap cannot be guaranteed after changing the step size, but 2011 // will be inferred if either NUW or NSW is true. 2012 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2013 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2014 2015 // If all of the other operands were loop invariant, we are done. 2016 if (Ops.size() == 1) return NewRec; 2017 2018 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2019 for (unsigned i = 0;; ++i) 2020 if (Ops[i] == AddRec) { 2021 Ops[i] = NewRec; 2022 break; 2023 } 2024 return getMulExpr(Ops); 2025 } 2026 2027 // Okay, if there weren't any loop invariants to be folded, check to see if 2028 // there are multiple AddRec's with the same loop induction variable being 2029 // multiplied together. If so, we can fold them. 2030 for (unsigned OtherIdx = Idx+1; 2031 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2032 ++OtherIdx) { 2033 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2034 continue; 2035 2036 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2037 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2038 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2039 // ]]],+,...up to x=2n}. 2040 // Note that the arguments to choose() are always integers with values 2041 // known at compile time, never SCEV objects. 2042 // 2043 // The implementation avoids pointless extra computations when the two 2044 // addrec's are of different length (mathematically, it's equivalent to 2045 // an infinite stream of zeros on the right). 2046 bool OpsModified = false; 2047 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2048 ++OtherIdx) { 2049 const SCEVAddRecExpr *OtherAddRec = 2050 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2051 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2052 continue; 2053 2054 bool Overflow = false; 2055 Type *Ty = AddRec->getType(); 2056 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2057 SmallVector<const SCEV*, 7> AddRecOps; 2058 for (int x = 0, xe = AddRec->getNumOperands() + 2059 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2060 const SCEV *Term = getConstant(Ty, 0); 2061 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2062 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2063 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2064 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2065 z < ze && !Overflow; ++z) { 2066 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2067 uint64_t Coeff; 2068 if (LargerThan64Bits) 2069 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2070 else 2071 Coeff = Coeff1*Coeff2; 2072 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2073 const SCEV *Term1 = AddRec->getOperand(y-z); 2074 const SCEV *Term2 = OtherAddRec->getOperand(z); 2075 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2076 } 2077 } 2078 AddRecOps.push_back(Term); 2079 } 2080 if (!Overflow) { 2081 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2082 SCEV::FlagAnyWrap); 2083 if (Ops.size() == 2) return NewAddRec; 2084 Ops[Idx] = NewAddRec; 2085 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2086 OpsModified = true; 2087 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2088 if (!AddRec) 2089 break; 2090 } 2091 } 2092 if (OpsModified) 2093 return getMulExpr(Ops); 2094 } 2095 2096 // Otherwise couldn't fold anything into this recurrence. Move onto the 2097 // next one. 2098 } 2099 2100 // Okay, it looks like we really DO need an mul expr. Check to see if we 2101 // already have one, otherwise create a new one. 2102 FoldingSetNodeID ID; 2103 ID.AddInteger(scMulExpr); 2104 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2105 ID.AddPointer(Ops[i]); 2106 void *IP = 0; 2107 SCEVMulExpr *S = 2108 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2109 if (!S) { 2110 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2111 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2112 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2113 O, Ops.size()); 2114 UniqueSCEVs.InsertNode(S, IP); 2115 } 2116 S->setNoWrapFlags(Flags); 2117 return S; 2118 } 2119 2120 /// getUDivExpr - Get a canonical unsigned division expression, or something 2121 /// simpler if possible. 2122 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2123 const SCEV *RHS) { 2124 assert(getEffectiveSCEVType(LHS->getType()) == 2125 getEffectiveSCEVType(RHS->getType()) && 2126 "SCEVUDivExpr operand types don't match!"); 2127 2128 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2129 if (RHSC->getValue()->equalsInt(1)) 2130 return LHS; // X udiv 1 --> x 2131 // If the denominator is zero, the result of the udiv is undefined. Don't 2132 // try to analyze it, because the resolution chosen here may differ from 2133 // the resolution chosen in other parts of the compiler. 2134 if (!RHSC->getValue()->isZero()) { 2135 // Determine if the division can be folded into the operands of 2136 // its operands. 2137 // TODO: Generalize this to non-constants by using known-bits information. 2138 Type *Ty = LHS->getType(); 2139 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2140 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2141 // For non-power-of-two values, effectively round the value up to the 2142 // nearest power of two. 2143 if (!RHSC->getValue()->getValue().isPowerOf2()) 2144 ++MaxShiftAmt; 2145 IntegerType *ExtTy = 2146 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2148 if (const SCEVConstant *Step = 2149 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2150 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2151 const APInt &StepInt = Step->getValue()->getValue(); 2152 const APInt &DivInt = RHSC->getValue()->getValue(); 2153 if (!StepInt.urem(DivInt) && 2154 getZeroExtendExpr(AR, ExtTy) == 2155 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2156 getZeroExtendExpr(Step, ExtTy), 2157 AR->getLoop(), SCEV::FlagAnyWrap)) { 2158 SmallVector<const SCEV *, 4> Operands; 2159 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2160 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2161 return getAddRecExpr(Operands, AR->getLoop(), 2162 SCEV::FlagNW); 2163 } 2164 /// Get a canonical UDivExpr for a recurrence. 2165 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2166 // We can currently only fold X%N if X is constant. 2167 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2168 if (StartC && !DivInt.urem(StepInt) && 2169 getZeroExtendExpr(AR, ExtTy) == 2170 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2171 getZeroExtendExpr(Step, ExtTy), 2172 AR->getLoop(), SCEV::FlagAnyWrap)) { 2173 const APInt &StartInt = StartC->getValue()->getValue(); 2174 const APInt &StartRem = StartInt.urem(StepInt); 2175 if (StartRem != 0) 2176 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2177 AR->getLoop(), SCEV::FlagNW); 2178 } 2179 } 2180 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2181 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2182 SmallVector<const SCEV *, 4> Operands; 2183 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2184 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2185 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2186 // Find an operand that's safely divisible. 2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2188 const SCEV *Op = M->getOperand(i); 2189 const SCEV *Div = getUDivExpr(Op, RHSC); 2190 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2191 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2192 M->op_end()); 2193 Operands[i] = Div; 2194 return getMulExpr(Operands); 2195 } 2196 } 2197 } 2198 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2199 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2200 SmallVector<const SCEV *, 4> Operands; 2201 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2202 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2203 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2204 Operands.clear(); 2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2206 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2207 if (isa<SCEVUDivExpr>(Op) || 2208 getMulExpr(Op, RHS) != A->getOperand(i)) 2209 break; 2210 Operands.push_back(Op); 2211 } 2212 if (Operands.size() == A->getNumOperands()) 2213 return getAddExpr(Operands); 2214 } 2215 } 2216 2217 // Fold if both operands are constant. 2218 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2219 Constant *LHSCV = LHSC->getValue(); 2220 Constant *RHSCV = RHSC->getValue(); 2221 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2222 RHSCV))); 2223 } 2224 } 2225 } 2226 2227 FoldingSetNodeID ID; 2228 ID.AddInteger(scUDivExpr); 2229 ID.AddPointer(LHS); 2230 ID.AddPointer(RHS); 2231 void *IP = 0; 2232 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2233 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2234 LHS, RHS); 2235 UniqueSCEVs.InsertNode(S, IP); 2236 return S; 2237 } 2238 2239 2240 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2241 /// Simplify the expression as much as possible. 2242 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2243 const Loop *L, 2244 SCEV::NoWrapFlags Flags) { 2245 SmallVector<const SCEV *, 4> Operands; 2246 Operands.push_back(Start); 2247 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2248 if (StepChrec->getLoop() == L) { 2249 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2250 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2251 } 2252 2253 Operands.push_back(Step); 2254 return getAddRecExpr(Operands, L, Flags); 2255 } 2256 2257 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2258 /// Simplify the expression as much as possible. 2259 const SCEV * 2260 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2261 const Loop *L, SCEV::NoWrapFlags Flags) { 2262 if (Operands.size() == 1) return Operands[0]; 2263 #ifndef NDEBUG 2264 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2265 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2266 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2267 "SCEVAddRecExpr operand types don't match!"); 2268 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2269 assert(isLoopInvariant(Operands[i], L) && 2270 "SCEVAddRecExpr operand is not loop-invariant!"); 2271 #endif 2272 2273 if (Operands.back()->isZero()) { 2274 Operands.pop_back(); 2275 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2276 } 2277 2278 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2279 // use that information to infer NUW and NSW flags. However, computing a 2280 // BE count requires calling getAddRecExpr, so we may not yet have a 2281 // meaningful BE count at this point (and if we don't, we'd be stuck 2282 // with a SCEVCouldNotCompute as the cached BE count). 2283 2284 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2285 // And vice-versa. 2286 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2287 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2288 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2289 bool All = true; 2290 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2291 E = Operands.end(); I != E; ++I) 2292 if (!isKnownNonNegative(*I)) { 2293 All = false; 2294 break; 2295 } 2296 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2297 } 2298 2299 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2300 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2301 const Loop *NestedLoop = NestedAR->getLoop(); 2302 if (L->contains(NestedLoop) ? 2303 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2304 (!NestedLoop->contains(L) && 2305 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2306 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2307 NestedAR->op_end()); 2308 Operands[0] = NestedAR->getStart(); 2309 // AddRecs require their operands be loop-invariant with respect to their 2310 // loops. Don't perform this transformation if it would break this 2311 // requirement. 2312 bool AllInvariant = true; 2313 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2314 if (!isLoopInvariant(Operands[i], L)) { 2315 AllInvariant = false; 2316 break; 2317 } 2318 if (AllInvariant) { 2319 // Create a recurrence for the outer loop with the same step size. 2320 // 2321 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2322 // inner recurrence has the same property. 2323 SCEV::NoWrapFlags OuterFlags = 2324 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2325 2326 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2327 AllInvariant = true; 2328 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2329 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2330 AllInvariant = false; 2331 break; 2332 } 2333 if (AllInvariant) { 2334 // Ok, both add recurrences are valid after the transformation. 2335 // 2336 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2337 // the outer recurrence has the same property. 2338 SCEV::NoWrapFlags InnerFlags = 2339 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2340 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2341 } 2342 } 2343 // Reset Operands to its original state. 2344 Operands[0] = NestedAR; 2345 } 2346 } 2347 2348 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2349 // already have one, otherwise create a new one. 2350 FoldingSetNodeID ID; 2351 ID.AddInteger(scAddRecExpr); 2352 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2353 ID.AddPointer(Operands[i]); 2354 ID.AddPointer(L); 2355 void *IP = 0; 2356 SCEVAddRecExpr *S = 2357 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2358 if (!S) { 2359 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2360 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2361 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2362 O, Operands.size(), L); 2363 UniqueSCEVs.InsertNode(S, IP); 2364 } 2365 S->setNoWrapFlags(Flags); 2366 return S; 2367 } 2368 2369 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2370 const SCEV *RHS) { 2371 SmallVector<const SCEV *, 2> Ops; 2372 Ops.push_back(LHS); 2373 Ops.push_back(RHS); 2374 return getSMaxExpr(Ops); 2375 } 2376 2377 const SCEV * 2378 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2379 assert(!Ops.empty() && "Cannot get empty smax!"); 2380 if (Ops.size() == 1) return Ops[0]; 2381 #ifndef NDEBUG 2382 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2383 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2384 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2385 "SCEVSMaxExpr operand types don't match!"); 2386 #endif 2387 2388 // Sort by complexity, this groups all similar expression types together. 2389 GroupByComplexity(Ops, LI); 2390 2391 // If there are any constants, fold them together. 2392 unsigned Idx = 0; 2393 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2394 ++Idx; 2395 assert(Idx < Ops.size()); 2396 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2397 // We found two constants, fold them together! 2398 ConstantInt *Fold = ConstantInt::get(getContext(), 2399 APIntOps::smax(LHSC->getValue()->getValue(), 2400 RHSC->getValue()->getValue())); 2401 Ops[0] = getConstant(Fold); 2402 Ops.erase(Ops.begin()+1); // Erase the folded element 2403 if (Ops.size() == 1) return Ops[0]; 2404 LHSC = cast<SCEVConstant>(Ops[0]); 2405 } 2406 2407 // If we are left with a constant minimum-int, strip it off. 2408 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2409 Ops.erase(Ops.begin()); 2410 --Idx; 2411 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2412 // If we have an smax with a constant maximum-int, it will always be 2413 // maximum-int. 2414 return Ops[0]; 2415 } 2416 2417 if (Ops.size() == 1) return Ops[0]; 2418 } 2419 2420 // Find the first SMax 2421 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2422 ++Idx; 2423 2424 // Check to see if one of the operands is an SMax. If so, expand its operands 2425 // onto our operand list, and recurse to simplify. 2426 if (Idx < Ops.size()) { 2427 bool DeletedSMax = false; 2428 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2429 Ops.erase(Ops.begin()+Idx); 2430 Ops.append(SMax->op_begin(), SMax->op_end()); 2431 DeletedSMax = true; 2432 } 2433 2434 if (DeletedSMax) 2435 return getSMaxExpr(Ops); 2436 } 2437 2438 // Okay, check to see if the same value occurs in the operand list twice. If 2439 // so, delete one. Since we sorted the list, these values are required to 2440 // be adjacent. 2441 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2442 // X smax Y smax Y --> X smax Y 2443 // X smax Y --> X, if X is always greater than Y 2444 if (Ops[i] == Ops[i+1] || 2445 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2446 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2447 --i; --e; 2448 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2449 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2450 --i; --e; 2451 } 2452 2453 if (Ops.size() == 1) return Ops[0]; 2454 2455 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2456 2457 // Okay, it looks like we really DO need an smax expr. Check to see if we 2458 // already have one, otherwise create a new one. 2459 FoldingSetNodeID ID; 2460 ID.AddInteger(scSMaxExpr); 2461 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2462 ID.AddPointer(Ops[i]); 2463 void *IP = 0; 2464 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2465 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2466 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2467 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2468 O, Ops.size()); 2469 UniqueSCEVs.InsertNode(S, IP); 2470 return S; 2471 } 2472 2473 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2474 const SCEV *RHS) { 2475 SmallVector<const SCEV *, 2> Ops; 2476 Ops.push_back(LHS); 2477 Ops.push_back(RHS); 2478 return getUMaxExpr(Ops); 2479 } 2480 2481 const SCEV * 2482 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2483 assert(!Ops.empty() && "Cannot get empty umax!"); 2484 if (Ops.size() == 1) return Ops[0]; 2485 #ifndef NDEBUG 2486 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2487 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2488 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2489 "SCEVUMaxExpr operand types don't match!"); 2490 #endif 2491 2492 // Sort by complexity, this groups all similar expression types together. 2493 GroupByComplexity(Ops, LI); 2494 2495 // If there are any constants, fold them together. 2496 unsigned Idx = 0; 2497 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2498 ++Idx; 2499 assert(Idx < Ops.size()); 2500 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2501 // We found two constants, fold them together! 2502 ConstantInt *Fold = ConstantInt::get(getContext(), 2503 APIntOps::umax(LHSC->getValue()->getValue(), 2504 RHSC->getValue()->getValue())); 2505 Ops[0] = getConstant(Fold); 2506 Ops.erase(Ops.begin()+1); // Erase the folded element 2507 if (Ops.size() == 1) return Ops[0]; 2508 LHSC = cast<SCEVConstant>(Ops[0]); 2509 } 2510 2511 // If we are left with a constant minimum-int, strip it off. 2512 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2513 Ops.erase(Ops.begin()); 2514 --Idx; 2515 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2516 // If we have an umax with a constant maximum-int, it will always be 2517 // maximum-int. 2518 return Ops[0]; 2519 } 2520 2521 if (Ops.size() == 1) return Ops[0]; 2522 } 2523 2524 // Find the first UMax 2525 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2526 ++Idx; 2527 2528 // Check to see if one of the operands is a UMax. If so, expand its operands 2529 // onto our operand list, and recurse to simplify. 2530 if (Idx < Ops.size()) { 2531 bool DeletedUMax = false; 2532 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2533 Ops.erase(Ops.begin()+Idx); 2534 Ops.append(UMax->op_begin(), UMax->op_end()); 2535 DeletedUMax = true; 2536 } 2537 2538 if (DeletedUMax) 2539 return getUMaxExpr(Ops); 2540 } 2541 2542 // Okay, check to see if the same value occurs in the operand list twice. If 2543 // so, delete one. Since we sorted the list, these values are required to 2544 // be adjacent. 2545 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2546 // X umax Y umax Y --> X umax Y 2547 // X umax Y --> X, if X is always greater than Y 2548 if (Ops[i] == Ops[i+1] || 2549 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2550 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2551 --i; --e; 2552 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2553 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2554 --i; --e; 2555 } 2556 2557 if (Ops.size() == 1) return Ops[0]; 2558 2559 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2560 2561 // Okay, it looks like we really DO need a umax expr. Check to see if we 2562 // already have one, otherwise create a new one. 2563 FoldingSetNodeID ID; 2564 ID.AddInteger(scUMaxExpr); 2565 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2566 ID.AddPointer(Ops[i]); 2567 void *IP = 0; 2568 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2569 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2570 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2571 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2572 O, Ops.size()); 2573 UniqueSCEVs.InsertNode(S, IP); 2574 return S; 2575 } 2576 2577 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2578 const SCEV *RHS) { 2579 // ~smax(~x, ~y) == smin(x, y). 2580 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2581 } 2582 2583 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2584 const SCEV *RHS) { 2585 // ~umax(~x, ~y) == umin(x, y) 2586 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2587 } 2588 2589 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2590 // If we have DataLayout, we can bypass creating a target-independent 2591 // constant expression and then folding it back into a ConstantInt. 2592 // This is just a compile-time optimization. 2593 if (TD) 2594 return getConstant(TD->getIntPtrType(getContext()), 2595 TD->getTypeAllocSize(AllocTy)); 2596 2597 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2598 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2599 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2600 C = Folded; 2601 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2602 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2603 } 2604 2605 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2606 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2608 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2609 C = Folded; 2610 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2611 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2612 } 2613 2614 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2615 unsigned FieldNo) { 2616 // If we have DataLayout, we can bypass creating a target-independent 2617 // constant expression and then folding it back into a ConstantInt. 2618 // This is just a compile-time optimization. 2619 if (TD) 2620 return getConstant(TD->getIntPtrType(getContext()), 2621 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2622 2623 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2624 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2625 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2626 C = Folded; 2627 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2628 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2629 } 2630 2631 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2632 Constant *FieldNo) { 2633 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2634 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2635 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2636 C = Folded; 2637 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2638 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2639 } 2640 2641 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2642 // Don't attempt to do anything other than create a SCEVUnknown object 2643 // here. createSCEV only calls getUnknown after checking for all other 2644 // interesting possibilities, and any other code that calls getUnknown 2645 // is doing so in order to hide a value from SCEV canonicalization. 2646 2647 FoldingSetNodeID ID; 2648 ID.AddInteger(scUnknown); 2649 ID.AddPointer(V); 2650 void *IP = 0; 2651 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2652 assert(cast<SCEVUnknown>(S)->getValue() == V && 2653 "Stale SCEVUnknown in uniquing map!"); 2654 return S; 2655 } 2656 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2657 FirstUnknown); 2658 FirstUnknown = cast<SCEVUnknown>(S); 2659 UniqueSCEVs.InsertNode(S, IP); 2660 return S; 2661 } 2662 2663 //===----------------------------------------------------------------------===// 2664 // Basic SCEV Analysis and PHI Idiom Recognition Code 2665 // 2666 2667 /// isSCEVable - Test if values of the given type are analyzable within 2668 /// the SCEV framework. This primarily includes integer types, and it 2669 /// can optionally include pointer types if the ScalarEvolution class 2670 /// has access to target-specific information. 2671 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2672 // Integers and pointers are always SCEVable. 2673 return Ty->isIntegerTy() || Ty->isPointerTy(); 2674 } 2675 2676 /// getTypeSizeInBits - Return the size in bits of the specified type, 2677 /// for which isSCEVable must return true. 2678 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2679 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2680 2681 // If we have a DataLayout, use it! 2682 if (TD) 2683 return TD->getTypeSizeInBits(Ty); 2684 2685 // Integer types have fixed sizes. 2686 if (Ty->isIntegerTy()) 2687 return Ty->getPrimitiveSizeInBits(); 2688 2689 // The only other support type is pointer. Without DataLayout, conservatively 2690 // assume pointers are 64-bit. 2691 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2692 return 64; 2693 } 2694 2695 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2696 /// the given type and which represents how SCEV will treat the given 2697 /// type, for which isSCEVable must return true. For pointer types, 2698 /// this is the pointer-sized integer type. 2699 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2700 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2701 2702 if (Ty->isIntegerTy()) 2703 return Ty; 2704 2705 // The only other support type is pointer. 2706 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2707 if (TD) return TD->getIntPtrType(getContext()); 2708 2709 // Without DataLayout, conservatively assume pointers are 64-bit. 2710 return Type::getInt64Ty(getContext()); 2711 } 2712 2713 const SCEV *ScalarEvolution::getCouldNotCompute() { 2714 return &CouldNotCompute; 2715 } 2716 2717 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2718 /// expression and create a new one. 2719 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2720 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2721 2722 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V); 2723 if (I != ValueExprMap.end()) return I->second; 2724 const SCEV *S = createSCEV(V); 2725 2726 // The process of creating a SCEV for V may have caused other SCEVs 2727 // to have been created, so it's necessary to insert the new entry 2728 // from scratch, rather than trying to remember the insert position 2729 // above. 2730 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2731 return S; 2732 } 2733 2734 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2735 /// 2736 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2737 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2738 return getConstant( 2739 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2740 2741 Type *Ty = V->getType(); 2742 Ty = getEffectiveSCEVType(Ty); 2743 return getMulExpr(V, 2744 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2745 } 2746 2747 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2748 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2749 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2750 return getConstant( 2751 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2752 2753 Type *Ty = V->getType(); 2754 Ty = getEffectiveSCEVType(Ty); 2755 const SCEV *AllOnes = 2756 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2757 return getMinusSCEV(AllOnes, V); 2758 } 2759 2760 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2761 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2762 SCEV::NoWrapFlags Flags) { 2763 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2764 2765 // Fast path: X - X --> 0. 2766 if (LHS == RHS) 2767 return getConstant(LHS->getType(), 0); 2768 2769 // X - Y --> X + -Y 2770 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2771 } 2772 2773 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2774 /// input value to the specified type. If the type must be extended, it is zero 2775 /// extended. 2776 const SCEV * 2777 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2778 Type *SrcTy = V->getType(); 2779 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2780 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2781 "Cannot truncate or zero extend with non-integer arguments!"); 2782 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2783 return V; // No conversion 2784 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2785 return getTruncateExpr(V, Ty); 2786 return getZeroExtendExpr(V, Ty); 2787 } 2788 2789 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2790 /// input value to the specified type. If the type must be extended, it is sign 2791 /// extended. 2792 const SCEV * 2793 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2794 Type *Ty) { 2795 Type *SrcTy = V->getType(); 2796 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2797 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2798 "Cannot truncate or zero extend with non-integer arguments!"); 2799 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2800 return V; // No conversion 2801 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2802 return getTruncateExpr(V, Ty); 2803 return getSignExtendExpr(V, Ty); 2804 } 2805 2806 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2807 /// input value to the specified type. If the type must be extended, it is zero 2808 /// extended. The conversion must not be narrowing. 2809 const SCEV * 2810 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2811 Type *SrcTy = V->getType(); 2812 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2813 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2814 "Cannot noop or zero extend with non-integer arguments!"); 2815 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2816 "getNoopOrZeroExtend cannot truncate!"); 2817 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2818 return V; // No conversion 2819 return getZeroExtendExpr(V, Ty); 2820 } 2821 2822 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2823 /// input value to the specified type. If the type must be extended, it is sign 2824 /// extended. The conversion must not be narrowing. 2825 const SCEV * 2826 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2827 Type *SrcTy = V->getType(); 2828 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2829 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2830 "Cannot noop or sign extend with non-integer arguments!"); 2831 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2832 "getNoopOrSignExtend cannot truncate!"); 2833 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2834 return V; // No conversion 2835 return getSignExtendExpr(V, Ty); 2836 } 2837 2838 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2839 /// the input value to the specified type. If the type must be extended, 2840 /// it is extended with unspecified bits. The conversion must not be 2841 /// narrowing. 2842 const SCEV * 2843 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2844 Type *SrcTy = V->getType(); 2845 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2846 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2847 "Cannot noop or any extend with non-integer arguments!"); 2848 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2849 "getNoopOrAnyExtend cannot truncate!"); 2850 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2851 return V; // No conversion 2852 return getAnyExtendExpr(V, Ty); 2853 } 2854 2855 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2856 /// input value to the specified type. The conversion must not be widening. 2857 const SCEV * 2858 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2859 Type *SrcTy = V->getType(); 2860 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2861 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2862 "Cannot truncate or noop with non-integer arguments!"); 2863 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2864 "getTruncateOrNoop cannot extend!"); 2865 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2866 return V; // No conversion 2867 return getTruncateExpr(V, Ty); 2868 } 2869 2870 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2871 /// the types using zero-extension, and then perform a umax operation 2872 /// with them. 2873 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2874 const SCEV *RHS) { 2875 const SCEV *PromotedLHS = LHS; 2876 const SCEV *PromotedRHS = RHS; 2877 2878 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2879 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2880 else 2881 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2882 2883 return getUMaxExpr(PromotedLHS, PromotedRHS); 2884 } 2885 2886 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2887 /// the types using zero-extension, and then perform a umin operation 2888 /// with them. 2889 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2890 const SCEV *RHS) { 2891 const SCEV *PromotedLHS = LHS; 2892 const SCEV *PromotedRHS = RHS; 2893 2894 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2895 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2896 else 2897 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2898 2899 return getUMinExpr(PromotedLHS, PromotedRHS); 2900 } 2901 2902 /// getPointerBase - Transitively follow the chain of pointer-type operands 2903 /// until reaching a SCEV that does not have a single pointer operand. This 2904 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2905 /// but corner cases do exist. 2906 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2907 // A pointer operand may evaluate to a nonpointer expression, such as null. 2908 if (!V->getType()->isPointerTy()) 2909 return V; 2910 2911 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2912 return getPointerBase(Cast->getOperand()); 2913 } 2914 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2915 const SCEV *PtrOp = 0; 2916 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2917 I != E; ++I) { 2918 if ((*I)->getType()->isPointerTy()) { 2919 // Cannot find the base of an expression with multiple pointer operands. 2920 if (PtrOp) 2921 return V; 2922 PtrOp = *I; 2923 } 2924 } 2925 if (!PtrOp) 2926 return V; 2927 return getPointerBase(PtrOp); 2928 } 2929 return V; 2930 } 2931 2932 /// PushDefUseChildren - Push users of the given Instruction 2933 /// onto the given Worklist. 2934 static void 2935 PushDefUseChildren(Instruction *I, 2936 SmallVectorImpl<Instruction *> &Worklist) { 2937 // Push the def-use children onto the Worklist stack. 2938 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2939 UI != UE; ++UI) 2940 Worklist.push_back(cast<Instruction>(*UI)); 2941 } 2942 2943 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2944 /// instructions that depend on the given instruction and removes them from 2945 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2946 /// resolution. 2947 void 2948 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2949 SmallVector<Instruction *, 16> Worklist; 2950 PushDefUseChildren(PN, Worklist); 2951 2952 SmallPtrSet<Instruction *, 8> Visited; 2953 Visited.insert(PN); 2954 while (!Worklist.empty()) { 2955 Instruction *I = Worklist.pop_back_val(); 2956 if (!Visited.insert(I)) continue; 2957 2958 ValueExprMapType::iterator It = 2959 ValueExprMap.find_as(static_cast<Value *>(I)); 2960 if (It != ValueExprMap.end()) { 2961 const SCEV *Old = It->second; 2962 2963 // Short-circuit the def-use traversal if the symbolic name 2964 // ceases to appear in expressions. 2965 if (Old != SymName && !hasOperand(Old, SymName)) 2966 continue; 2967 2968 // SCEVUnknown for a PHI either means that it has an unrecognized 2969 // structure, it's a PHI that's in the progress of being computed 2970 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2971 // additional loop trip count information isn't going to change anything. 2972 // In the second case, createNodeForPHI will perform the necessary 2973 // updates on its own when it gets to that point. In the third, we do 2974 // want to forget the SCEVUnknown. 2975 if (!isa<PHINode>(I) || 2976 !isa<SCEVUnknown>(Old) || 2977 (I != PN && Old == SymName)) { 2978 forgetMemoizedResults(Old); 2979 ValueExprMap.erase(It); 2980 } 2981 } 2982 2983 PushDefUseChildren(I, Worklist); 2984 } 2985 } 2986 2987 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2988 /// a loop header, making it a potential recurrence, or it doesn't. 2989 /// 2990 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2991 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2992 if (L->getHeader() == PN->getParent()) { 2993 // The loop may have multiple entrances or multiple exits; we can analyze 2994 // this phi as an addrec if it has a unique entry value and a unique 2995 // backedge value. 2996 Value *BEValueV = 0, *StartValueV = 0; 2997 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2998 Value *V = PN->getIncomingValue(i); 2999 if (L->contains(PN->getIncomingBlock(i))) { 3000 if (!BEValueV) { 3001 BEValueV = V; 3002 } else if (BEValueV != V) { 3003 BEValueV = 0; 3004 break; 3005 } 3006 } else if (!StartValueV) { 3007 StartValueV = V; 3008 } else if (StartValueV != V) { 3009 StartValueV = 0; 3010 break; 3011 } 3012 } 3013 if (BEValueV && StartValueV) { 3014 // While we are analyzing this PHI node, handle its value symbolically. 3015 const SCEV *SymbolicName = getUnknown(PN); 3016 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3017 "PHI node already processed?"); 3018 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3019 3020 // Using this symbolic name for the PHI, analyze the value coming around 3021 // the back-edge. 3022 const SCEV *BEValue = getSCEV(BEValueV); 3023 3024 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3025 // has a special value for the first iteration of the loop. 3026 3027 // If the value coming around the backedge is an add with the symbolic 3028 // value we just inserted, then we found a simple induction variable! 3029 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3030 // If there is a single occurrence of the symbolic value, replace it 3031 // with a recurrence. 3032 unsigned FoundIndex = Add->getNumOperands(); 3033 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3034 if (Add->getOperand(i) == SymbolicName) 3035 if (FoundIndex == e) { 3036 FoundIndex = i; 3037 break; 3038 } 3039 3040 if (FoundIndex != Add->getNumOperands()) { 3041 // Create an add with everything but the specified operand. 3042 SmallVector<const SCEV *, 8> Ops; 3043 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3044 if (i != FoundIndex) 3045 Ops.push_back(Add->getOperand(i)); 3046 const SCEV *Accum = getAddExpr(Ops); 3047 3048 // This is not a valid addrec if the step amount is varying each 3049 // loop iteration, but is not itself an addrec in this loop. 3050 if (isLoopInvariant(Accum, L) || 3051 (isa<SCEVAddRecExpr>(Accum) && 3052 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3053 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3054 3055 // If the increment doesn't overflow, then neither the addrec nor 3056 // the post-increment will overflow. 3057 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3058 if (OBO->hasNoUnsignedWrap()) 3059 Flags = setFlags(Flags, SCEV::FlagNUW); 3060 if (OBO->hasNoSignedWrap()) 3061 Flags = setFlags(Flags, SCEV::FlagNSW); 3062 } else if (const GEPOperator *GEP = 3063 dyn_cast<GEPOperator>(BEValueV)) { 3064 // If the increment is an inbounds GEP, then we know the address 3065 // space cannot be wrapped around. We cannot make any guarantee 3066 // about signed or unsigned overflow because pointers are 3067 // unsigned but we may have a negative index from the base 3068 // pointer. 3069 if (GEP->isInBounds()) 3070 Flags = setFlags(Flags, SCEV::FlagNW); 3071 } 3072 3073 const SCEV *StartVal = getSCEV(StartValueV); 3074 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3075 3076 // Since the no-wrap flags are on the increment, they apply to the 3077 // post-incremented value as well. 3078 if (isLoopInvariant(Accum, L)) 3079 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3080 Accum, L, Flags); 3081 3082 // Okay, for the entire analysis of this edge we assumed the PHI 3083 // to be symbolic. We now need to go back and purge all of the 3084 // entries for the scalars that use the symbolic expression. 3085 ForgetSymbolicName(PN, SymbolicName); 3086 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3087 return PHISCEV; 3088 } 3089 } 3090 } else if (const SCEVAddRecExpr *AddRec = 3091 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3092 // Otherwise, this could be a loop like this: 3093 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3094 // In this case, j = {1,+,1} and BEValue is j. 3095 // Because the other in-value of i (0) fits the evolution of BEValue 3096 // i really is an addrec evolution. 3097 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3098 const SCEV *StartVal = getSCEV(StartValueV); 3099 3100 // If StartVal = j.start - j.stride, we can use StartVal as the 3101 // initial step of the addrec evolution. 3102 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3103 AddRec->getOperand(1))) { 3104 // FIXME: For constant StartVal, we should be able to infer 3105 // no-wrap flags. 3106 const SCEV *PHISCEV = 3107 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3108 SCEV::FlagAnyWrap); 3109 3110 // Okay, for the entire analysis of this edge we assumed the PHI 3111 // to be symbolic. We now need to go back and purge all of the 3112 // entries for the scalars that use the symbolic expression. 3113 ForgetSymbolicName(PN, SymbolicName); 3114 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3115 return PHISCEV; 3116 } 3117 } 3118 } 3119 } 3120 } 3121 3122 // If the PHI has a single incoming value, follow that value, unless the 3123 // PHI's incoming blocks are in a different loop, in which case doing so 3124 // risks breaking LCSSA form. Instcombine would normally zap these, but 3125 // it doesn't have DominatorTree information, so it may miss cases. 3126 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3127 if (LI->replacementPreservesLCSSAForm(PN, V)) 3128 return getSCEV(V); 3129 3130 // If it's not a loop phi, we can't handle it yet. 3131 return getUnknown(PN); 3132 } 3133 3134 /// createNodeForGEP - Expand GEP instructions into add and multiply 3135 /// operations. This allows them to be analyzed by regular SCEV code. 3136 /// 3137 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3138 3139 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3140 // Add expression, because the Instruction may be guarded by control flow 3141 // and the no-overflow bits may not be valid for the expression in any 3142 // context. 3143 bool isInBounds = GEP->isInBounds(); 3144 3145 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3146 Value *Base = GEP->getOperand(0); 3147 // Don't attempt to analyze GEPs over unsized objects. 3148 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3149 return getUnknown(GEP); 3150 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3151 gep_type_iterator GTI = gep_type_begin(GEP); 3152 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3153 E = GEP->op_end(); 3154 I != E; ++I) { 3155 Value *Index = *I; 3156 // Compute the (potentially symbolic) offset in bytes for this index. 3157 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3158 // For a struct, add the member offset. 3159 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3160 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3161 3162 // Add the field offset to the running total offset. 3163 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3164 } else { 3165 // For an array, add the element offset, explicitly scaled. 3166 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3167 const SCEV *IndexS = getSCEV(Index); 3168 // Getelementptr indices are signed. 3169 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3170 3171 // Multiply the index by the element size to compute the element offset. 3172 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3173 isInBounds ? SCEV::FlagNSW : 3174 SCEV::FlagAnyWrap); 3175 3176 // Add the element offset to the running total offset. 3177 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3178 } 3179 } 3180 3181 // Get the SCEV for the GEP base. 3182 const SCEV *BaseS = getSCEV(Base); 3183 3184 // Add the total offset from all the GEP indices to the base. 3185 return getAddExpr(BaseS, TotalOffset, 3186 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3187 } 3188 3189 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3190 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3191 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3192 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3193 uint32_t 3194 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3195 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3196 return C->getValue()->getValue().countTrailingZeros(); 3197 3198 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3199 return std::min(GetMinTrailingZeros(T->getOperand()), 3200 (uint32_t)getTypeSizeInBits(T->getType())); 3201 3202 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3203 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3204 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3205 getTypeSizeInBits(E->getType()) : OpRes; 3206 } 3207 3208 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3209 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3210 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3211 getTypeSizeInBits(E->getType()) : OpRes; 3212 } 3213 3214 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3215 // The result is the min of all operands results. 3216 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3217 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3218 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3219 return MinOpRes; 3220 } 3221 3222 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3223 // The result is the sum of all operands results. 3224 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3225 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3226 for (unsigned i = 1, e = M->getNumOperands(); 3227 SumOpRes != BitWidth && i != e; ++i) 3228 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3229 BitWidth); 3230 return SumOpRes; 3231 } 3232 3233 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3234 // The result is the min of all operands results. 3235 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3236 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3237 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3238 return MinOpRes; 3239 } 3240 3241 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3242 // The result is the min of all operands results. 3243 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3244 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3245 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3246 return MinOpRes; 3247 } 3248 3249 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3250 // The result is the min of all operands results. 3251 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3252 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3253 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3254 return MinOpRes; 3255 } 3256 3257 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3258 // For a SCEVUnknown, ask ValueTracking. 3259 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3260 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3261 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3262 return Zeros.countTrailingOnes(); 3263 } 3264 3265 // SCEVUDivExpr 3266 return 0; 3267 } 3268 3269 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3270 /// 3271 ConstantRange 3272 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3273 // See if we've computed this range already. 3274 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3275 if (I != UnsignedRanges.end()) 3276 return I->second; 3277 3278 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3279 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3280 3281 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3282 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3283 3284 // If the value has known zeros, the maximum unsigned value will have those 3285 // known zeros as well. 3286 uint32_t TZ = GetMinTrailingZeros(S); 3287 if (TZ != 0) 3288 ConservativeResult = 3289 ConstantRange(APInt::getMinValue(BitWidth), 3290 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3291 3292 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3293 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3294 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3295 X = X.add(getUnsignedRange(Add->getOperand(i))); 3296 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3297 } 3298 3299 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3300 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3301 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3302 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3303 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3304 } 3305 3306 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3307 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3308 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3309 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3310 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3311 } 3312 3313 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3314 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3315 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3316 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3317 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3318 } 3319 3320 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3321 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3322 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3323 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3324 } 3325 3326 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3327 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3328 return setUnsignedRange(ZExt, 3329 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3330 } 3331 3332 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3333 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3334 return setUnsignedRange(SExt, 3335 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3336 } 3337 3338 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3339 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3340 return setUnsignedRange(Trunc, 3341 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3342 } 3343 3344 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3345 // If there's no unsigned wrap, the value will never be less than its 3346 // initial value. 3347 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3348 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3349 if (!C->getValue()->isZero()) 3350 ConservativeResult = 3351 ConservativeResult.intersectWith( 3352 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3353 3354 // TODO: non-affine addrec 3355 if (AddRec->isAffine()) { 3356 Type *Ty = AddRec->getType(); 3357 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3358 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3359 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3360 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3361 3362 const SCEV *Start = AddRec->getStart(); 3363 const SCEV *Step = AddRec->getStepRecurrence(*this); 3364 3365 ConstantRange StartRange = getUnsignedRange(Start); 3366 ConstantRange StepRange = getSignedRange(Step); 3367 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3368 ConstantRange EndRange = 3369 StartRange.add(MaxBECountRange.multiply(StepRange)); 3370 3371 // Check for overflow. This must be done with ConstantRange arithmetic 3372 // because we could be called from within the ScalarEvolution overflow 3373 // checking code. 3374 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3375 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3376 ConstantRange ExtMaxBECountRange = 3377 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3378 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3379 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3380 ExtEndRange) 3381 return setUnsignedRange(AddRec, ConservativeResult); 3382 3383 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3384 EndRange.getUnsignedMin()); 3385 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3386 EndRange.getUnsignedMax()); 3387 if (Min.isMinValue() && Max.isMaxValue()) 3388 return setUnsignedRange(AddRec, ConservativeResult); 3389 return setUnsignedRange(AddRec, 3390 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3391 } 3392 } 3393 3394 return setUnsignedRange(AddRec, ConservativeResult); 3395 } 3396 3397 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3398 // For a SCEVUnknown, ask ValueTracking. 3399 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3400 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3401 if (Ones == ~Zeros + 1) 3402 return setUnsignedRange(U, ConservativeResult); 3403 return setUnsignedRange(U, 3404 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3405 } 3406 3407 return setUnsignedRange(S, ConservativeResult); 3408 } 3409 3410 /// getSignedRange - Determine the signed range for a particular SCEV. 3411 /// 3412 ConstantRange 3413 ScalarEvolution::getSignedRange(const SCEV *S) { 3414 // See if we've computed this range already. 3415 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3416 if (I != SignedRanges.end()) 3417 return I->second; 3418 3419 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3420 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3421 3422 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3423 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3424 3425 // If the value has known zeros, the maximum signed value will have those 3426 // known zeros as well. 3427 uint32_t TZ = GetMinTrailingZeros(S); 3428 if (TZ != 0) 3429 ConservativeResult = 3430 ConstantRange(APInt::getSignedMinValue(BitWidth), 3431 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3432 3433 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3434 ConstantRange X = getSignedRange(Add->getOperand(0)); 3435 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3436 X = X.add(getSignedRange(Add->getOperand(i))); 3437 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3438 } 3439 3440 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3441 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3442 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3443 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3444 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3445 } 3446 3447 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3448 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3449 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3450 X = X.smax(getSignedRange(SMax->getOperand(i))); 3451 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3452 } 3453 3454 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3455 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3456 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3457 X = X.umax(getSignedRange(UMax->getOperand(i))); 3458 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3459 } 3460 3461 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3462 ConstantRange X = getSignedRange(UDiv->getLHS()); 3463 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3464 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3465 } 3466 3467 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3468 ConstantRange X = getSignedRange(ZExt->getOperand()); 3469 return setSignedRange(ZExt, 3470 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3471 } 3472 3473 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3474 ConstantRange X = getSignedRange(SExt->getOperand()); 3475 return setSignedRange(SExt, 3476 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3477 } 3478 3479 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3480 ConstantRange X = getSignedRange(Trunc->getOperand()); 3481 return setSignedRange(Trunc, 3482 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3483 } 3484 3485 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3486 // If there's no signed wrap, and all the operands have the same sign or 3487 // zero, the value won't ever change sign. 3488 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3489 bool AllNonNeg = true; 3490 bool AllNonPos = true; 3491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3492 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3493 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3494 } 3495 if (AllNonNeg) 3496 ConservativeResult = ConservativeResult.intersectWith( 3497 ConstantRange(APInt(BitWidth, 0), 3498 APInt::getSignedMinValue(BitWidth))); 3499 else if (AllNonPos) 3500 ConservativeResult = ConservativeResult.intersectWith( 3501 ConstantRange(APInt::getSignedMinValue(BitWidth), 3502 APInt(BitWidth, 1))); 3503 } 3504 3505 // TODO: non-affine addrec 3506 if (AddRec->isAffine()) { 3507 Type *Ty = AddRec->getType(); 3508 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3509 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3510 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3511 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3512 3513 const SCEV *Start = AddRec->getStart(); 3514 const SCEV *Step = AddRec->getStepRecurrence(*this); 3515 3516 ConstantRange StartRange = getSignedRange(Start); 3517 ConstantRange StepRange = getSignedRange(Step); 3518 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3519 ConstantRange EndRange = 3520 StartRange.add(MaxBECountRange.multiply(StepRange)); 3521 3522 // Check for overflow. This must be done with ConstantRange arithmetic 3523 // because we could be called from within the ScalarEvolution overflow 3524 // checking code. 3525 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3526 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3527 ConstantRange ExtMaxBECountRange = 3528 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3529 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3530 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3531 ExtEndRange) 3532 return setSignedRange(AddRec, ConservativeResult); 3533 3534 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3535 EndRange.getSignedMin()); 3536 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3537 EndRange.getSignedMax()); 3538 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3539 return setSignedRange(AddRec, ConservativeResult); 3540 return setSignedRange(AddRec, 3541 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3542 } 3543 } 3544 3545 return setSignedRange(AddRec, ConservativeResult); 3546 } 3547 3548 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3549 // For a SCEVUnknown, ask ValueTracking. 3550 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3551 return setSignedRange(U, ConservativeResult); 3552 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3553 if (NS == 1) 3554 return setSignedRange(U, ConservativeResult); 3555 return setSignedRange(U, ConservativeResult.intersectWith( 3556 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3557 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3558 } 3559 3560 return setSignedRange(S, ConservativeResult); 3561 } 3562 3563 /// createSCEV - We know that there is no SCEV for the specified value. 3564 /// Analyze the expression. 3565 /// 3566 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3567 if (!isSCEVable(V->getType())) 3568 return getUnknown(V); 3569 3570 unsigned Opcode = Instruction::UserOp1; 3571 if (Instruction *I = dyn_cast<Instruction>(V)) { 3572 Opcode = I->getOpcode(); 3573 3574 // Don't attempt to analyze instructions in blocks that aren't 3575 // reachable. Such instructions don't matter, and they aren't required 3576 // to obey basic rules for definitions dominating uses which this 3577 // analysis depends on. 3578 if (!DT->isReachableFromEntry(I->getParent())) 3579 return getUnknown(V); 3580 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3581 Opcode = CE->getOpcode(); 3582 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3583 return getConstant(CI); 3584 else if (isa<ConstantPointerNull>(V)) 3585 return getConstant(V->getType(), 0); 3586 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3587 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3588 else 3589 return getUnknown(V); 3590 3591 Operator *U = cast<Operator>(V); 3592 switch (Opcode) { 3593 case Instruction::Add: { 3594 // The simple thing to do would be to just call getSCEV on both operands 3595 // and call getAddExpr with the result. However if we're looking at a 3596 // bunch of things all added together, this can be quite inefficient, 3597 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3598 // Instead, gather up all the operands and make a single getAddExpr call. 3599 // LLVM IR canonical form means we need only traverse the left operands. 3600 // 3601 // Don't apply this instruction's NSW or NUW flags to the new 3602 // expression. The instruction may be guarded by control flow that the 3603 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3604 // mapped to the same SCEV expression, and it would be incorrect to transfer 3605 // NSW/NUW semantics to those operations. 3606 SmallVector<const SCEV *, 4> AddOps; 3607 AddOps.push_back(getSCEV(U->getOperand(1))); 3608 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3609 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3610 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3611 break; 3612 U = cast<Operator>(Op); 3613 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3614 if (Opcode == Instruction::Sub) 3615 AddOps.push_back(getNegativeSCEV(Op1)); 3616 else 3617 AddOps.push_back(Op1); 3618 } 3619 AddOps.push_back(getSCEV(U->getOperand(0))); 3620 return getAddExpr(AddOps); 3621 } 3622 case Instruction::Mul: { 3623 // Don't transfer NSW/NUW for the same reason as AddExpr. 3624 SmallVector<const SCEV *, 4> MulOps; 3625 MulOps.push_back(getSCEV(U->getOperand(1))); 3626 for (Value *Op = U->getOperand(0); 3627 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3628 Op = U->getOperand(0)) { 3629 U = cast<Operator>(Op); 3630 MulOps.push_back(getSCEV(U->getOperand(1))); 3631 } 3632 MulOps.push_back(getSCEV(U->getOperand(0))); 3633 return getMulExpr(MulOps); 3634 } 3635 case Instruction::UDiv: 3636 return getUDivExpr(getSCEV(U->getOperand(0)), 3637 getSCEV(U->getOperand(1))); 3638 case Instruction::Sub: 3639 return getMinusSCEV(getSCEV(U->getOperand(0)), 3640 getSCEV(U->getOperand(1))); 3641 case Instruction::And: 3642 // For an expression like x&255 that merely masks off the high bits, 3643 // use zext(trunc(x)) as the SCEV expression. 3644 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3645 if (CI->isNullValue()) 3646 return getSCEV(U->getOperand(1)); 3647 if (CI->isAllOnesValue()) 3648 return getSCEV(U->getOperand(0)); 3649 const APInt &A = CI->getValue(); 3650 3651 // Instcombine's ShrinkDemandedConstant may strip bits out of 3652 // constants, obscuring what would otherwise be a low-bits mask. 3653 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3654 // knew about to reconstruct a low-bits mask value. 3655 unsigned LZ = A.countLeadingZeros(); 3656 unsigned BitWidth = A.getBitWidth(); 3657 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3658 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3659 3660 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3661 3662 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3663 return 3664 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3665 IntegerType::get(getContext(), BitWidth - LZ)), 3666 U->getType()); 3667 } 3668 break; 3669 3670 case Instruction::Or: 3671 // If the RHS of the Or is a constant, we may have something like: 3672 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3673 // optimizations will transparently handle this case. 3674 // 3675 // In order for this transformation to be safe, the LHS must be of the 3676 // form X*(2^n) and the Or constant must be less than 2^n. 3677 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3678 const SCEV *LHS = getSCEV(U->getOperand(0)); 3679 const APInt &CIVal = CI->getValue(); 3680 if (GetMinTrailingZeros(LHS) >= 3681 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3682 // Build a plain add SCEV. 3683 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3684 // If the LHS of the add was an addrec and it has no-wrap flags, 3685 // transfer the no-wrap flags, since an or won't introduce a wrap. 3686 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3687 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3688 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3689 OldAR->getNoWrapFlags()); 3690 } 3691 return S; 3692 } 3693 } 3694 break; 3695 case Instruction::Xor: 3696 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3697 // If the RHS of the xor is a signbit, then this is just an add. 3698 // Instcombine turns add of signbit into xor as a strength reduction step. 3699 if (CI->getValue().isSignBit()) 3700 return getAddExpr(getSCEV(U->getOperand(0)), 3701 getSCEV(U->getOperand(1))); 3702 3703 // If the RHS of xor is -1, then this is a not operation. 3704 if (CI->isAllOnesValue()) 3705 return getNotSCEV(getSCEV(U->getOperand(0))); 3706 3707 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3708 // This is a variant of the check for xor with -1, and it handles 3709 // the case where instcombine has trimmed non-demanded bits out 3710 // of an xor with -1. 3711 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3712 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3713 if (BO->getOpcode() == Instruction::And && 3714 LCI->getValue() == CI->getValue()) 3715 if (const SCEVZeroExtendExpr *Z = 3716 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3717 Type *UTy = U->getType(); 3718 const SCEV *Z0 = Z->getOperand(); 3719 Type *Z0Ty = Z0->getType(); 3720 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3721 3722 // If C is a low-bits mask, the zero extend is serving to 3723 // mask off the high bits. Complement the operand and 3724 // re-apply the zext. 3725 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3726 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3727 3728 // If C is a single bit, it may be in the sign-bit position 3729 // before the zero-extend. In this case, represent the xor 3730 // using an add, which is equivalent, and re-apply the zext. 3731 APInt Trunc = CI->getValue().trunc(Z0TySize); 3732 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3733 Trunc.isSignBit()) 3734 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3735 UTy); 3736 } 3737 } 3738 break; 3739 3740 case Instruction::Shl: 3741 // Turn shift left of a constant amount into a multiply. 3742 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3743 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3744 3745 // If the shift count is not less than the bitwidth, the result of 3746 // the shift is undefined. Don't try to analyze it, because the 3747 // resolution chosen here may differ from the resolution chosen in 3748 // other parts of the compiler. 3749 if (SA->getValue().uge(BitWidth)) 3750 break; 3751 3752 Constant *X = ConstantInt::get(getContext(), 3753 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3754 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3755 } 3756 break; 3757 3758 case Instruction::LShr: 3759 // Turn logical shift right of a constant into a unsigned divide. 3760 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3761 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3762 3763 // If the shift count is not less than the bitwidth, the result of 3764 // the shift is undefined. Don't try to analyze it, because the 3765 // resolution chosen here may differ from the resolution chosen in 3766 // other parts of the compiler. 3767 if (SA->getValue().uge(BitWidth)) 3768 break; 3769 3770 Constant *X = ConstantInt::get(getContext(), 3771 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3772 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3773 } 3774 break; 3775 3776 case Instruction::AShr: 3777 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3778 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3779 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3780 if (L->getOpcode() == Instruction::Shl && 3781 L->getOperand(1) == U->getOperand(1)) { 3782 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3783 3784 // If the shift count is not less than the bitwidth, the result of 3785 // the shift is undefined. Don't try to analyze it, because the 3786 // resolution chosen here may differ from the resolution chosen in 3787 // other parts of the compiler. 3788 if (CI->getValue().uge(BitWidth)) 3789 break; 3790 3791 uint64_t Amt = BitWidth - CI->getZExtValue(); 3792 if (Amt == BitWidth) 3793 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3794 return 3795 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3796 IntegerType::get(getContext(), 3797 Amt)), 3798 U->getType()); 3799 } 3800 break; 3801 3802 case Instruction::Trunc: 3803 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3804 3805 case Instruction::ZExt: 3806 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3807 3808 case Instruction::SExt: 3809 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3810 3811 case Instruction::BitCast: 3812 // BitCasts are no-op casts so we just eliminate the cast. 3813 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3814 return getSCEV(U->getOperand(0)); 3815 break; 3816 3817 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3818 // lead to pointer expressions which cannot safely be expanded to GEPs, 3819 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3820 // simplifying integer expressions. 3821 3822 case Instruction::GetElementPtr: 3823 return createNodeForGEP(cast<GEPOperator>(U)); 3824 3825 case Instruction::PHI: 3826 return createNodeForPHI(cast<PHINode>(U)); 3827 3828 case Instruction::Select: 3829 // This could be a smax or umax that was lowered earlier. 3830 // Try to recover it. 3831 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3832 Value *LHS = ICI->getOperand(0); 3833 Value *RHS = ICI->getOperand(1); 3834 switch (ICI->getPredicate()) { 3835 case ICmpInst::ICMP_SLT: 3836 case ICmpInst::ICMP_SLE: 3837 std::swap(LHS, RHS); 3838 // fall through 3839 case ICmpInst::ICMP_SGT: 3840 case ICmpInst::ICMP_SGE: 3841 // a >s b ? a+x : b+x -> smax(a, b)+x 3842 // a >s b ? b+x : a+x -> smin(a, b)+x 3843 if (LHS->getType() == U->getType()) { 3844 const SCEV *LS = getSCEV(LHS); 3845 const SCEV *RS = getSCEV(RHS); 3846 const SCEV *LA = getSCEV(U->getOperand(1)); 3847 const SCEV *RA = getSCEV(U->getOperand(2)); 3848 const SCEV *LDiff = getMinusSCEV(LA, LS); 3849 const SCEV *RDiff = getMinusSCEV(RA, RS); 3850 if (LDiff == RDiff) 3851 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3852 LDiff = getMinusSCEV(LA, RS); 3853 RDiff = getMinusSCEV(RA, LS); 3854 if (LDiff == RDiff) 3855 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3856 } 3857 break; 3858 case ICmpInst::ICMP_ULT: 3859 case ICmpInst::ICMP_ULE: 3860 std::swap(LHS, RHS); 3861 // fall through 3862 case ICmpInst::ICMP_UGT: 3863 case ICmpInst::ICMP_UGE: 3864 // a >u b ? a+x : b+x -> umax(a, b)+x 3865 // a >u b ? b+x : a+x -> umin(a, b)+x 3866 if (LHS->getType() == U->getType()) { 3867 const SCEV *LS = getSCEV(LHS); 3868 const SCEV *RS = getSCEV(RHS); 3869 const SCEV *LA = getSCEV(U->getOperand(1)); 3870 const SCEV *RA = getSCEV(U->getOperand(2)); 3871 const SCEV *LDiff = getMinusSCEV(LA, LS); 3872 const SCEV *RDiff = getMinusSCEV(RA, RS); 3873 if (LDiff == RDiff) 3874 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3875 LDiff = getMinusSCEV(LA, RS); 3876 RDiff = getMinusSCEV(RA, LS); 3877 if (LDiff == RDiff) 3878 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3879 } 3880 break; 3881 case ICmpInst::ICMP_NE: 3882 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3883 if (LHS->getType() == U->getType() && 3884 isa<ConstantInt>(RHS) && 3885 cast<ConstantInt>(RHS)->isZero()) { 3886 const SCEV *One = getConstant(LHS->getType(), 1); 3887 const SCEV *LS = getSCEV(LHS); 3888 const SCEV *LA = getSCEV(U->getOperand(1)); 3889 const SCEV *RA = getSCEV(U->getOperand(2)); 3890 const SCEV *LDiff = getMinusSCEV(LA, LS); 3891 const SCEV *RDiff = getMinusSCEV(RA, One); 3892 if (LDiff == RDiff) 3893 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3894 } 3895 break; 3896 case ICmpInst::ICMP_EQ: 3897 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3898 if (LHS->getType() == U->getType() && 3899 isa<ConstantInt>(RHS) && 3900 cast<ConstantInt>(RHS)->isZero()) { 3901 const SCEV *One = getConstant(LHS->getType(), 1); 3902 const SCEV *LS = getSCEV(LHS); 3903 const SCEV *LA = getSCEV(U->getOperand(1)); 3904 const SCEV *RA = getSCEV(U->getOperand(2)); 3905 const SCEV *LDiff = getMinusSCEV(LA, One); 3906 const SCEV *RDiff = getMinusSCEV(RA, LS); 3907 if (LDiff == RDiff) 3908 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3909 } 3910 break; 3911 default: 3912 break; 3913 } 3914 } 3915 3916 default: // We cannot analyze this expression. 3917 break; 3918 } 3919 3920 return getUnknown(V); 3921 } 3922 3923 3924 3925 //===----------------------------------------------------------------------===// 3926 // Iteration Count Computation Code 3927 // 3928 3929 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3930 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3931 /// constant. Will also return 0 if the maximum trip count is very large (>= 3932 /// 2^32). 3933 /// 3934 /// This "trip count" assumes that control exits via ExitingBlock. More 3935 /// precisely, it is the number of times that control may reach ExitingBlock 3936 /// before taking the branch. For loops with multiple exits, it may not be the 3937 /// number times that the loop header executes because the loop may exit 3938 /// prematurely via another branch. 3939 unsigned ScalarEvolution:: 3940 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) { 3941 const SCEVConstant *ExitCount = 3942 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 3943 if (!ExitCount) 3944 return 0; 3945 3946 ConstantInt *ExitConst = ExitCount->getValue(); 3947 3948 // Guard against huge trip counts. 3949 if (ExitConst->getValue().getActiveBits() > 32) 3950 return 0; 3951 3952 // In case of integer overflow, this returns 0, which is correct. 3953 return ((unsigned)ExitConst->getZExtValue()) + 1; 3954 } 3955 3956 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3957 /// trip count of this loop as a normal unsigned value, if possible. This 3958 /// means that the actual trip count is always a multiple of the returned 3959 /// value (don't forget the trip count could very well be zero as well!). 3960 /// 3961 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3962 /// multiple of a constant (which is also the case if the trip count is simply 3963 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3964 /// if the trip count is very large (>= 2^32). 3965 /// 3966 /// As explained in the comments for getSmallConstantTripCount, this assumes 3967 /// that control exits the loop via ExitingBlock. 3968 unsigned ScalarEvolution:: 3969 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) { 3970 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 3971 if (ExitCount == getCouldNotCompute()) 3972 return 1; 3973 3974 // Get the trip count from the BE count by adding 1. 3975 const SCEV *TCMul = getAddExpr(ExitCount, 3976 getConstant(ExitCount->getType(), 1)); 3977 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3978 // to factor simple cases. 3979 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3980 TCMul = Mul->getOperand(0); 3981 3982 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3983 if (!MulC) 3984 return 1; 3985 3986 ConstantInt *Result = MulC->getValue(); 3987 3988 // Guard against huge trip counts (this requires checking 3989 // for zero to handle the case where the trip count == -1 and the 3990 // addition wraps). 3991 if (!Result || Result->getValue().getActiveBits() > 32 || 3992 Result->getValue().getActiveBits() == 0) 3993 return 1; 3994 3995 return (unsigned)Result->getZExtValue(); 3996 } 3997 3998 // getExitCount - Get the expression for the number of loop iterations for which 3999 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 4000 // SCEVCouldNotCompute. 4001 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4002 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4003 } 4004 4005 /// getBackedgeTakenCount - If the specified loop has a predictable 4006 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4007 /// object. The backedge-taken count is the number of times the loop header 4008 /// will be branched to from within the loop. This is one less than the 4009 /// trip count of the loop, since it doesn't count the first iteration, 4010 /// when the header is branched to from outside the loop. 4011 /// 4012 /// Note that it is not valid to call this method on a loop without a 4013 /// loop-invariant backedge-taken count (see 4014 /// hasLoopInvariantBackedgeTakenCount). 4015 /// 4016 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4017 return getBackedgeTakenInfo(L).getExact(this); 4018 } 4019 4020 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4021 /// return the least SCEV value that is known never to be less than the 4022 /// actual backedge taken count. 4023 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4024 return getBackedgeTakenInfo(L).getMax(this); 4025 } 4026 4027 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4028 /// onto the given Worklist. 4029 static void 4030 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4031 BasicBlock *Header = L->getHeader(); 4032 4033 // Push all Loop-header PHIs onto the Worklist stack. 4034 for (BasicBlock::iterator I = Header->begin(); 4035 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4036 Worklist.push_back(PN); 4037 } 4038 4039 const ScalarEvolution::BackedgeTakenInfo & 4040 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4041 // Initially insert an invalid entry for this loop. If the insertion 4042 // succeeds, proceed to actually compute a backedge-taken count and 4043 // update the value. The temporary CouldNotCompute value tells SCEV 4044 // code elsewhere that it shouldn't attempt to request a new 4045 // backedge-taken count, which could result in infinite recursion. 4046 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4047 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4048 if (!Pair.second) 4049 return Pair.first->second; 4050 4051 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4052 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4053 // must be cleared in this scope. 4054 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4055 4056 if (Result.getExact(this) != getCouldNotCompute()) { 4057 assert(isLoopInvariant(Result.getExact(this), L) && 4058 isLoopInvariant(Result.getMax(this), L) && 4059 "Computed backedge-taken count isn't loop invariant for loop!"); 4060 ++NumTripCountsComputed; 4061 } 4062 else if (Result.getMax(this) == getCouldNotCompute() && 4063 isa<PHINode>(L->getHeader()->begin())) { 4064 // Only count loops that have phi nodes as not being computable. 4065 ++NumTripCountsNotComputed; 4066 } 4067 4068 // Now that we know more about the trip count for this loop, forget any 4069 // existing SCEV values for PHI nodes in this loop since they are only 4070 // conservative estimates made without the benefit of trip count 4071 // information. This is similar to the code in forgetLoop, except that 4072 // it handles SCEVUnknown PHI nodes specially. 4073 if (Result.hasAnyInfo()) { 4074 SmallVector<Instruction *, 16> Worklist; 4075 PushLoopPHIs(L, Worklist); 4076 4077 SmallPtrSet<Instruction *, 8> Visited; 4078 while (!Worklist.empty()) { 4079 Instruction *I = Worklist.pop_back_val(); 4080 if (!Visited.insert(I)) continue; 4081 4082 ValueExprMapType::iterator It = 4083 ValueExprMap.find_as(static_cast<Value *>(I)); 4084 if (It != ValueExprMap.end()) { 4085 const SCEV *Old = It->second; 4086 4087 // SCEVUnknown for a PHI either means that it has an unrecognized 4088 // structure, or it's a PHI that's in the progress of being computed 4089 // by createNodeForPHI. In the former case, additional loop trip 4090 // count information isn't going to change anything. In the later 4091 // case, createNodeForPHI will perform the necessary updates on its 4092 // own when it gets to that point. 4093 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4094 forgetMemoizedResults(Old); 4095 ValueExprMap.erase(It); 4096 } 4097 if (PHINode *PN = dyn_cast<PHINode>(I)) 4098 ConstantEvolutionLoopExitValue.erase(PN); 4099 } 4100 4101 PushDefUseChildren(I, Worklist); 4102 } 4103 } 4104 4105 // Re-lookup the insert position, since the call to 4106 // ComputeBackedgeTakenCount above could result in a 4107 // recusive call to getBackedgeTakenInfo (on a different 4108 // loop), which would invalidate the iterator computed 4109 // earlier. 4110 return BackedgeTakenCounts.find(L)->second = Result; 4111 } 4112 4113 /// forgetLoop - This method should be called by the client when it has 4114 /// changed a loop in a way that may effect ScalarEvolution's ability to 4115 /// compute a trip count, or if the loop is deleted. 4116 void ScalarEvolution::forgetLoop(const Loop *L) { 4117 // Drop any stored trip count value. 4118 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4119 BackedgeTakenCounts.find(L); 4120 if (BTCPos != BackedgeTakenCounts.end()) { 4121 BTCPos->second.clear(); 4122 BackedgeTakenCounts.erase(BTCPos); 4123 } 4124 4125 // Drop information about expressions based on loop-header PHIs. 4126 SmallVector<Instruction *, 16> Worklist; 4127 PushLoopPHIs(L, Worklist); 4128 4129 SmallPtrSet<Instruction *, 8> Visited; 4130 while (!Worklist.empty()) { 4131 Instruction *I = Worklist.pop_back_val(); 4132 if (!Visited.insert(I)) continue; 4133 4134 ValueExprMapType::iterator It = 4135 ValueExprMap.find_as(static_cast<Value *>(I)); 4136 if (It != ValueExprMap.end()) { 4137 forgetMemoizedResults(It->second); 4138 ValueExprMap.erase(It); 4139 if (PHINode *PN = dyn_cast<PHINode>(I)) 4140 ConstantEvolutionLoopExitValue.erase(PN); 4141 } 4142 4143 PushDefUseChildren(I, Worklist); 4144 } 4145 4146 // Forget all contained loops too, to avoid dangling entries in the 4147 // ValuesAtScopes map. 4148 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4149 forgetLoop(*I); 4150 } 4151 4152 /// forgetValue - This method should be called by the client when it has 4153 /// changed a value in a way that may effect its value, or which may 4154 /// disconnect it from a def-use chain linking it to a loop. 4155 void ScalarEvolution::forgetValue(Value *V) { 4156 Instruction *I = dyn_cast<Instruction>(V); 4157 if (!I) return; 4158 4159 // Drop information about expressions based on loop-header PHIs. 4160 SmallVector<Instruction *, 16> Worklist; 4161 Worklist.push_back(I); 4162 4163 SmallPtrSet<Instruction *, 8> Visited; 4164 while (!Worklist.empty()) { 4165 I = Worklist.pop_back_val(); 4166 if (!Visited.insert(I)) continue; 4167 4168 ValueExprMapType::iterator It = 4169 ValueExprMap.find_as(static_cast<Value *>(I)); 4170 if (It != ValueExprMap.end()) { 4171 forgetMemoizedResults(It->second); 4172 ValueExprMap.erase(It); 4173 if (PHINode *PN = dyn_cast<PHINode>(I)) 4174 ConstantEvolutionLoopExitValue.erase(PN); 4175 } 4176 4177 PushDefUseChildren(I, Worklist); 4178 } 4179 } 4180 4181 /// getExact - Get the exact loop backedge taken count considering all loop 4182 /// exits. A computable result can only be return for loops with a single exit. 4183 /// Returning the minimum taken count among all exits is incorrect because one 4184 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4185 /// the limit of each loop test is never skipped. This is a valid assumption as 4186 /// long as the loop exits via that test. For precise results, it is the 4187 /// caller's responsibility to specify the relevant loop exit using 4188 /// getExact(ExitingBlock, SE). 4189 const SCEV * 4190 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4191 // If any exits were not computable, the loop is not computable. 4192 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4193 4194 // We need exactly one computable exit. 4195 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4196 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4197 4198 const SCEV *BECount = 0; 4199 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4200 ENT != 0; ENT = ENT->getNextExit()) { 4201 4202 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4203 4204 if (!BECount) 4205 BECount = ENT->ExactNotTaken; 4206 else if (BECount != ENT->ExactNotTaken) 4207 return SE->getCouldNotCompute(); 4208 } 4209 assert(BECount && "Invalid not taken count for loop exit"); 4210 return BECount; 4211 } 4212 4213 /// getExact - Get the exact not taken count for this loop exit. 4214 const SCEV * 4215 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4216 ScalarEvolution *SE) const { 4217 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4218 ENT != 0; ENT = ENT->getNextExit()) { 4219 4220 if (ENT->ExitingBlock == ExitingBlock) 4221 return ENT->ExactNotTaken; 4222 } 4223 return SE->getCouldNotCompute(); 4224 } 4225 4226 /// getMax - Get the max backedge taken count for the loop. 4227 const SCEV * 4228 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4229 return Max ? Max : SE->getCouldNotCompute(); 4230 } 4231 4232 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4233 /// computable exit into a persistent ExitNotTakenInfo array. 4234 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4235 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4236 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4237 4238 if (!Complete) 4239 ExitNotTaken.setIncomplete(); 4240 4241 unsigned NumExits = ExitCounts.size(); 4242 if (NumExits == 0) return; 4243 4244 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4245 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4246 if (NumExits == 1) return; 4247 4248 // Handle the rare case of multiple computable exits. 4249 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4250 4251 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4252 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4253 PrevENT->setNextExit(ENT); 4254 ENT->ExitingBlock = ExitCounts[i].first; 4255 ENT->ExactNotTaken = ExitCounts[i].second; 4256 } 4257 } 4258 4259 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4260 void ScalarEvolution::BackedgeTakenInfo::clear() { 4261 ExitNotTaken.ExitingBlock = 0; 4262 ExitNotTaken.ExactNotTaken = 0; 4263 delete[] ExitNotTaken.getNextExit(); 4264 } 4265 4266 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4267 /// of the specified loop will execute. 4268 ScalarEvolution::BackedgeTakenInfo 4269 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4270 SmallVector<BasicBlock *, 8> ExitingBlocks; 4271 L->getExitingBlocks(ExitingBlocks); 4272 4273 // Examine all exits and pick the most conservative values. 4274 const SCEV *MaxBECount = getCouldNotCompute(); 4275 bool CouldComputeBECount = true; 4276 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4277 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4278 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4279 if (EL.Exact == getCouldNotCompute()) 4280 // We couldn't compute an exact value for this exit, so 4281 // we won't be able to compute an exact value for the loop. 4282 CouldComputeBECount = false; 4283 else 4284 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4285 4286 if (MaxBECount == getCouldNotCompute()) 4287 MaxBECount = EL.Max; 4288 else if (EL.Max != getCouldNotCompute()) { 4289 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4290 // skip some loop tests. Taking the max over the exits is sufficiently 4291 // conservative. TODO: We could do better taking into consideration 4292 // that (1) the loop has unit stride (2) the last loop test is 4293 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4294 // falls-through some constant times less then the other tests. 4295 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4296 } 4297 } 4298 4299 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4300 } 4301 4302 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4303 /// loop will execute if it exits via the specified block. 4304 ScalarEvolution::ExitLimit 4305 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4306 4307 // Okay, we've chosen an exiting block. See what condition causes us to 4308 // exit at this block. 4309 // 4310 // FIXME: we should be able to handle switch instructions (with a single exit) 4311 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4312 if (ExitBr == 0) return getCouldNotCompute(); 4313 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4314 4315 // At this point, we know we have a conditional branch that determines whether 4316 // the loop is exited. However, we don't know if the branch is executed each 4317 // time through the loop. If not, then the execution count of the branch will 4318 // not be equal to the trip count of the loop. 4319 // 4320 // Currently we check for this by checking to see if the Exit branch goes to 4321 // the loop header. If so, we know it will always execute the same number of 4322 // times as the loop. We also handle the case where the exit block *is* the 4323 // loop header. This is common for un-rotated loops. 4324 // 4325 // If both of those tests fail, walk up the unique predecessor chain to the 4326 // header, stopping if there is an edge that doesn't exit the loop. If the 4327 // header is reached, the execution count of the branch will be equal to the 4328 // trip count of the loop. 4329 // 4330 // More extensive analysis could be done to handle more cases here. 4331 // 4332 if (ExitBr->getSuccessor(0) != L->getHeader() && 4333 ExitBr->getSuccessor(1) != L->getHeader() && 4334 ExitBr->getParent() != L->getHeader()) { 4335 // The simple checks failed, try climbing the unique predecessor chain 4336 // up to the header. 4337 bool Ok = false; 4338 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4339 BasicBlock *Pred = BB->getUniquePredecessor(); 4340 if (!Pred) 4341 return getCouldNotCompute(); 4342 TerminatorInst *PredTerm = Pred->getTerminator(); 4343 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4344 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4345 if (PredSucc == BB) 4346 continue; 4347 // If the predecessor has a successor that isn't BB and isn't 4348 // outside the loop, assume the worst. 4349 if (L->contains(PredSucc)) 4350 return getCouldNotCompute(); 4351 } 4352 if (Pred == L->getHeader()) { 4353 Ok = true; 4354 break; 4355 } 4356 BB = Pred; 4357 } 4358 if (!Ok) 4359 return getCouldNotCompute(); 4360 } 4361 4362 // Proceed to the next level to examine the exit condition expression. 4363 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4364 ExitBr->getSuccessor(0), 4365 ExitBr->getSuccessor(1)); 4366 } 4367 4368 /// ComputeExitLimitFromCond - Compute the number of times the 4369 /// backedge of the specified loop will execute if its exit condition 4370 /// were a conditional branch of ExitCond, TBB, and FBB. 4371 ScalarEvolution::ExitLimit 4372 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4373 Value *ExitCond, 4374 BasicBlock *TBB, 4375 BasicBlock *FBB) { 4376 // Check if the controlling expression for this loop is an And or Or. 4377 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4378 if (BO->getOpcode() == Instruction::And) { 4379 // Recurse on the operands of the and. 4380 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4381 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4382 const SCEV *BECount = getCouldNotCompute(); 4383 const SCEV *MaxBECount = getCouldNotCompute(); 4384 if (L->contains(TBB)) { 4385 // Both conditions must be true for the loop to continue executing. 4386 // Choose the less conservative count. 4387 if (EL0.Exact == getCouldNotCompute() || 4388 EL1.Exact == getCouldNotCompute()) 4389 BECount = getCouldNotCompute(); 4390 else 4391 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4392 if (EL0.Max == getCouldNotCompute()) 4393 MaxBECount = EL1.Max; 4394 else if (EL1.Max == getCouldNotCompute()) 4395 MaxBECount = EL0.Max; 4396 else 4397 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4398 } else { 4399 // Both conditions must be true at the same time for the loop to exit. 4400 // For now, be conservative. 4401 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4402 if (EL0.Max == EL1.Max) 4403 MaxBECount = EL0.Max; 4404 if (EL0.Exact == EL1.Exact) 4405 BECount = EL0.Exact; 4406 } 4407 4408 return ExitLimit(BECount, MaxBECount); 4409 } 4410 if (BO->getOpcode() == Instruction::Or) { 4411 // Recurse on the operands of the or. 4412 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4413 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4414 const SCEV *BECount = getCouldNotCompute(); 4415 const SCEV *MaxBECount = getCouldNotCompute(); 4416 if (L->contains(FBB)) { 4417 // Both conditions must be false for the loop to continue executing. 4418 // Choose the less conservative count. 4419 if (EL0.Exact == getCouldNotCompute() || 4420 EL1.Exact == getCouldNotCompute()) 4421 BECount = getCouldNotCompute(); 4422 else 4423 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4424 if (EL0.Max == getCouldNotCompute()) 4425 MaxBECount = EL1.Max; 4426 else if (EL1.Max == getCouldNotCompute()) 4427 MaxBECount = EL0.Max; 4428 else 4429 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4430 } else { 4431 // Both conditions must be false at the same time for the loop to exit. 4432 // For now, be conservative. 4433 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4434 if (EL0.Max == EL1.Max) 4435 MaxBECount = EL0.Max; 4436 if (EL0.Exact == EL1.Exact) 4437 BECount = EL0.Exact; 4438 } 4439 4440 return ExitLimit(BECount, MaxBECount); 4441 } 4442 } 4443 4444 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4445 // Proceed to the next level to examine the icmp. 4446 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4447 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4448 4449 // Check for a constant condition. These are normally stripped out by 4450 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4451 // preserve the CFG and is temporarily leaving constant conditions 4452 // in place. 4453 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4454 if (L->contains(FBB) == !CI->getZExtValue()) 4455 // The backedge is always taken. 4456 return getCouldNotCompute(); 4457 else 4458 // The backedge is never taken. 4459 return getConstant(CI->getType(), 0); 4460 } 4461 4462 // If it's not an integer or pointer comparison then compute it the hard way. 4463 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4464 } 4465 4466 /// ComputeExitLimitFromICmp - Compute the number of times the 4467 /// backedge of the specified loop will execute if its exit condition 4468 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4469 ScalarEvolution::ExitLimit 4470 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4471 ICmpInst *ExitCond, 4472 BasicBlock *TBB, 4473 BasicBlock *FBB) { 4474 4475 // If the condition was exit on true, convert the condition to exit on false 4476 ICmpInst::Predicate Cond; 4477 if (!L->contains(FBB)) 4478 Cond = ExitCond->getPredicate(); 4479 else 4480 Cond = ExitCond->getInversePredicate(); 4481 4482 // Handle common loops like: for (X = "string"; *X; ++X) 4483 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4484 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4485 ExitLimit ItCnt = 4486 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4487 if (ItCnt.hasAnyInfo()) 4488 return ItCnt; 4489 } 4490 4491 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4492 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4493 4494 // Try to evaluate any dependencies out of the loop. 4495 LHS = getSCEVAtScope(LHS, L); 4496 RHS = getSCEVAtScope(RHS, L); 4497 4498 // At this point, we would like to compute how many iterations of the 4499 // loop the predicate will return true for these inputs. 4500 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4501 // If there is a loop-invariant, force it into the RHS. 4502 std::swap(LHS, RHS); 4503 Cond = ICmpInst::getSwappedPredicate(Cond); 4504 } 4505 4506 // Simplify the operands before analyzing them. 4507 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4508 4509 // If we have a comparison of a chrec against a constant, try to use value 4510 // ranges to answer this query. 4511 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4512 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4513 if (AddRec->getLoop() == L) { 4514 // Form the constant range. 4515 ConstantRange CompRange( 4516 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4517 4518 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4519 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4520 } 4521 4522 switch (Cond) { 4523 case ICmpInst::ICMP_NE: { // while (X != Y) 4524 // Convert to: while (X-Y != 0) 4525 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4526 if (EL.hasAnyInfo()) return EL; 4527 break; 4528 } 4529 case ICmpInst::ICMP_EQ: { // while (X == Y) 4530 // Convert to: while (X-Y == 0) 4531 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4532 if (EL.hasAnyInfo()) return EL; 4533 break; 4534 } 4535 case ICmpInst::ICMP_SLT: { 4536 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4537 if (EL.hasAnyInfo()) return EL; 4538 break; 4539 } 4540 case ICmpInst::ICMP_SGT: { 4541 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4542 getNotSCEV(RHS), L, true); 4543 if (EL.hasAnyInfo()) return EL; 4544 break; 4545 } 4546 case ICmpInst::ICMP_ULT: { 4547 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4548 if (EL.hasAnyInfo()) return EL; 4549 break; 4550 } 4551 case ICmpInst::ICMP_UGT: { 4552 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4553 getNotSCEV(RHS), L, false); 4554 if (EL.hasAnyInfo()) return EL; 4555 break; 4556 } 4557 default: 4558 #if 0 4559 dbgs() << "ComputeBackedgeTakenCount "; 4560 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4561 dbgs() << "[unsigned] "; 4562 dbgs() << *LHS << " " 4563 << Instruction::getOpcodeName(Instruction::ICmp) 4564 << " " << *RHS << "\n"; 4565 #endif 4566 break; 4567 } 4568 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4569 } 4570 4571 static ConstantInt * 4572 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4573 ScalarEvolution &SE) { 4574 const SCEV *InVal = SE.getConstant(C); 4575 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4576 assert(isa<SCEVConstant>(Val) && 4577 "Evaluation of SCEV at constant didn't fold correctly?"); 4578 return cast<SCEVConstant>(Val)->getValue(); 4579 } 4580 4581 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4582 /// 'icmp op load X, cst', try to see if we can compute the backedge 4583 /// execution count. 4584 ScalarEvolution::ExitLimit 4585 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4586 LoadInst *LI, 4587 Constant *RHS, 4588 const Loop *L, 4589 ICmpInst::Predicate predicate) { 4590 4591 if (LI->isVolatile()) return getCouldNotCompute(); 4592 4593 // Check to see if the loaded pointer is a getelementptr of a global. 4594 // TODO: Use SCEV instead of manually grubbing with GEPs. 4595 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4596 if (!GEP) return getCouldNotCompute(); 4597 4598 // Make sure that it is really a constant global we are gepping, with an 4599 // initializer, and make sure the first IDX is really 0. 4600 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4601 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4602 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4603 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4604 return getCouldNotCompute(); 4605 4606 // Okay, we allow one non-constant index into the GEP instruction. 4607 Value *VarIdx = 0; 4608 std::vector<Constant*> Indexes; 4609 unsigned VarIdxNum = 0; 4610 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4611 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4612 Indexes.push_back(CI); 4613 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4614 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4615 VarIdx = GEP->getOperand(i); 4616 VarIdxNum = i-2; 4617 Indexes.push_back(0); 4618 } 4619 4620 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4621 if (!VarIdx) 4622 return getCouldNotCompute(); 4623 4624 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4625 // Check to see if X is a loop variant variable value now. 4626 const SCEV *Idx = getSCEV(VarIdx); 4627 Idx = getSCEVAtScope(Idx, L); 4628 4629 // We can only recognize very limited forms of loop index expressions, in 4630 // particular, only affine AddRec's like {C1,+,C2}. 4631 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4632 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4633 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4634 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4635 return getCouldNotCompute(); 4636 4637 unsigned MaxSteps = MaxBruteForceIterations; 4638 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4639 ConstantInt *ItCst = ConstantInt::get( 4640 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4641 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4642 4643 // Form the GEP offset. 4644 Indexes[VarIdxNum] = Val; 4645 4646 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4647 Indexes); 4648 if (Result == 0) break; // Cannot compute! 4649 4650 // Evaluate the condition for this iteration. 4651 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4652 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4653 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4654 #if 0 4655 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4656 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4657 << "***\n"; 4658 #endif 4659 ++NumArrayLenItCounts; 4660 return getConstant(ItCst); // Found terminating iteration! 4661 } 4662 } 4663 return getCouldNotCompute(); 4664 } 4665 4666 4667 /// CanConstantFold - Return true if we can constant fold an instruction of the 4668 /// specified type, assuming that all operands were constants. 4669 static bool CanConstantFold(const Instruction *I) { 4670 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4671 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4672 isa<LoadInst>(I)) 4673 return true; 4674 4675 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4676 if (const Function *F = CI->getCalledFunction()) 4677 return canConstantFoldCallTo(F); 4678 return false; 4679 } 4680 4681 /// Determine whether this instruction can constant evolve within this loop 4682 /// assuming its operands can all constant evolve. 4683 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4684 // An instruction outside of the loop can't be derived from a loop PHI. 4685 if (!L->contains(I)) return false; 4686 4687 if (isa<PHINode>(I)) { 4688 if (L->getHeader() == I->getParent()) 4689 return true; 4690 else 4691 // We don't currently keep track of the control flow needed to evaluate 4692 // PHIs, so we cannot handle PHIs inside of loops. 4693 return false; 4694 } 4695 4696 // If we won't be able to constant fold this expression even if the operands 4697 // are constants, bail early. 4698 return CanConstantFold(I); 4699 } 4700 4701 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4702 /// recursing through each instruction operand until reaching a loop header phi. 4703 static PHINode * 4704 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4705 DenseMap<Instruction *, PHINode *> &PHIMap) { 4706 4707 // Otherwise, we can evaluate this instruction if all of its operands are 4708 // constant or derived from a PHI node themselves. 4709 PHINode *PHI = 0; 4710 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4711 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4712 4713 if (isa<Constant>(*OpI)) continue; 4714 4715 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4716 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4717 4718 PHINode *P = dyn_cast<PHINode>(OpInst); 4719 if (!P) 4720 // If this operand is already visited, reuse the prior result. 4721 // We may have P != PHI if this is the deepest point at which the 4722 // inconsistent paths meet. 4723 P = PHIMap.lookup(OpInst); 4724 if (!P) { 4725 // Recurse and memoize the results, whether a phi is found or not. 4726 // This recursive call invalidates pointers into PHIMap. 4727 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4728 PHIMap[OpInst] = P; 4729 } 4730 if (P == 0) return 0; // Not evolving from PHI 4731 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4732 PHI = P; 4733 } 4734 // This is a expression evolving from a constant PHI! 4735 return PHI; 4736 } 4737 4738 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4739 /// in the loop that V is derived from. We allow arbitrary operations along the 4740 /// way, but the operands of an operation must either be constants or a value 4741 /// derived from a constant PHI. If this expression does not fit with these 4742 /// constraints, return null. 4743 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4744 Instruction *I = dyn_cast<Instruction>(V); 4745 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4746 4747 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4748 return PN; 4749 } 4750 4751 // Record non-constant instructions contained by the loop. 4752 DenseMap<Instruction *, PHINode *> PHIMap; 4753 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4754 } 4755 4756 /// EvaluateExpression - Given an expression that passes the 4757 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4758 /// in the loop has the value PHIVal. If we can't fold this expression for some 4759 /// reason, return null. 4760 static Constant *EvaluateExpression(Value *V, const Loop *L, 4761 DenseMap<Instruction *, Constant *> &Vals, 4762 const DataLayout *TD, 4763 const TargetLibraryInfo *TLI) { 4764 // Convenient constant check, but redundant for recursive calls. 4765 if (Constant *C = dyn_cast<Constant>(V)) return C; 4766 Instruction *I = dyn_cast<Instruction>(V); 4767 if (!I) return 0; 4768 4769 if (Constant *C = Vals.lookup(I)) return C; 4770 4771 // An instruction inside the loop depends on a value outside the loop that we 4772 // weren't given a mapping for, or a value such as a call inside the loop. 4773 if (!canConstantEvolve(I, L)) return 0; 4774 4775 // An unmapped PHI can be due to a branch or another loop inside this loop, 4776 // or due to this not being the initial iteration through a loop where we 4777 // couldn't compute the evolution of this particular PHI last time. 4778 if (isa<PHINode>(I)) return 0; 4779 4780 std::vector<Constant*> Operands(I->getNumOperands()); 4781 4782 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4783 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4784 if (!Operand) { 4785 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4786 if (!Operands[i]) return 0; 4787 continue; 4788 } 4789 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4790 Vals[Operand] = C; 4791 if (!C) return 0; 4792 Operands[i] = C; 4793 } 4794 4795 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4796 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4797 Operands[1], TD, TLI); 4798 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4799 if (!LI->isVolatile()) 4800 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4801 } 4802 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4803 TLI); 4804 } 4805 4806 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4807 /// in the header of its containing loop, we know the loop executes a 4808 /// constant number of times, and the PHI node is just a recurrence 4809 /// involving constants, fold it. 4810 Constant * 4811 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4812 const APInt &BEs, 4813 const Loop *L) { 4814 DenseMap<PHINode*, Constant*>::const_iterator I = 4815 ConstantEvolutionLoopExitValue.find(PN); 4816 if (I != ConstantEvolutionLoopExitValue.end()) 4817 return I->second; 4818 4819 if (BEs.ugt(MaxBruteForceIterations)) 4820 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4821 4822 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4823 4824 DenseMap<Instruction *, Constant *> CurrentIterVals; 4825 BasicBlock *Header = L->getHeader(); 4826 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4827 4828 // Since the loop is canonicalized, the PHI node must have two entries. One 4829 // entry must be a constant (coming in from outside of the loop), and the 4830 // second must be derived from the same PHI. 4831 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4832 PHINode *PHI = 0; 4833 for (BasicBlock::iterator I = Header->begin(); 4834 (PHI = dyn_cast<PHINode>(I)); ++I) { 4835 Constant *StartCST = 4836 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4837 if (StartCST == 0) continue; 4838 CurrentIterVals[PHI] = StartCST; 4839 } 4840 if (!CurrentIterVals.count(PN)) 4841 return RetVal = 0; 4842 4843 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4844 4845 // Execute the loop symbolically to determine the exit value. 4846 if (BEs.getActiveBits() >= 32) 4847 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4848 4849 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4850 unsigned IterationNum = 0; 4851 for (; ; ++IterationNum) { 4852 if (IterationNum == NumIterations) 4853 return RetVal = CurrentIterVals[PN]; // Got exit value! 4854 4855 // Compute the value of the PHIs for the next iteration. 4856 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4857 DenseMap<Instruction *, Constant *> NextIterVals; 4858 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4859 TLI); 4860 if (NextPHI == 0) 4861 return 0; // Couldn't evaluate! 4862 NextIterVals[PN] = NextPHI; 4863 4864 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4865 4866 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4867 // cease to be able to evaluate one of them or if they stop evolving, 4868 // because that doesn't necessarily prevent us from computing PN. 4869 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4870 for (DenseMap<Instruction *, Constant *>::const_iterator 4871 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4872 PHINode *PHI = dyn_cast<PHINode>(I->first); 4873 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4874 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4875 } 4876 // We use two distinct loops because EvaluateExpression may invalidate any 4877 // iterators into CurrentIterVals. 4878 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4879 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4880 PHINode *PHI = I->first; 4881 Constant *&NextPHI = NextIterVals[PHI]; 4882 if (!NextPHI) { // Not already computed. 4883 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4884 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4885 } 4886 if (NextPHI != I->second) 4887 StoppedEvolving = false; 4888 } 4889 4890 // If all entries in CurrentIterVals == NextIterVals then we can stop 4891 // iterating, the loop can't continue to change. 4892 if (StoppedEvolving) 4893 return RetVal = CurrentIterVals[PN]; 4894 4895 CurrentIterVals.swap(NextIterVals); 4896 } 4897 } 4898 4899 /// ComputeExitCountExhaustively - If the loop is known to execute a 4900 /// constant number of times (the condition evolves only from constants), 4901 /// try to evaluate a few iterations of the loop until we get the exit 4902 /// condition gets a value of ExitWhen (true or false). If we cannot 4903 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4904 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4905 Value *Cond, 4906 bool ExitWhen) { 4907 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4908 if (PN == 0) return getCouldNotCompute(); 4909 4910 // If the loop is canonicalized, the PHI will have exactly two entries. 4911 // That's the only form we support here. 4912 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4913 4914 DenseMap<Instruction *, Constant *> CurrentIterVals; 4915 BasicBlock *Header = L->getHeader(); 4916 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4917 4918 // One entry must be a constant (coming in from outside of the loop), and the 4919 // second must be derived from the same PHI. 4920 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4921 PHINode *PHI = 0; 4922 for (BasicBlock::iterator I = Header->begin(); 4923 (PHI = dyn_cast<PHINode>(I)); ++I) { 4924 Constant *StartCST = 4925 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4926 if (StartCST == 0) continue; 4927 CurrentIterVals[PHI] = StartCST; 4928 } 4929 if (!CurrentIterVals.count(PN)) 4930 return getCouldNotCompute(); 4931 4932 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4933 // the loop symbolically to determine when the condition gets a value of 4934 // "ExitWhen". 4935 4936 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4937 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 4938 ConstantInt *CondVal = 4939 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 4940 TD, TLI)); 4941 4942 // Couldn't symbolically evaluate. 4943 if (!CondVal) return getCouldNotCompute(); 4944 4945 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4946 ++NumBruteForceTripCountsComputed; 4947 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4948 } 4949 4950 // Update all the PHI nodes for the next iteration. 4951 DenseMap<Instruction *, Constant *> NextIterVals; 4952 4953 // Create a list of which PHIs we need to compute. We want to do this before 4954 // calling EvaluateExpression on them because that may invalidate iterators 4955 // into CurrentIterVals. 4956 SmallVector<PHINode *, 8> PHIsToCompute; 4957 for (DenseMap<Instruction *, Constant *>::const_iterator 4958 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4959 PHINode *PHI = dyn_cast<PHINode>(I->first); 4960 if (!PHI || PHI->getParent() != Header) continue; 4961 PHIsToCompute.push_back(PHI); 4962 } 4963 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 4964 E = PHIsToCompute.end(); I != E; ++I) { 4965 PHINode *PHI = *I; 4966 Constant *&NextPHI = NextIterVals[PHI]; 4967 if (NextPHI) continue; // Already computed! 4968 4969 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4970 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4971 } 4972 CurrentIterVals.swap(NextIterVals); 4973 } 4974 4975 // Too many iterations were needed to evaluate. 4976 return getCouldNotCompute(); 4977 } 4978 4979 /// getSCEVAtScope - Return a SCEV expression for the specified value 4980 /// at the specified scope in the program. The L value specifies a loop 4981 /// nest to evaluate the expression at, where null is the top-level or a 4982 /// specified loop is immediately inside of the loop. 4983 /// 4984 /// This method can be used to compute the exit value for a variable defined 4985 /// in a loop by querying what the value will hold in the parent loop. 4986 /// 4987 /// In the case that a relevant loop exit value cannot be computed, the 4988 /// original value V is returned. 4989 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4990 // Check to see if we've folded this expression at this loop before. 4991 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4992 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4993 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4994 if (!Pair.second) 4995 return Pair.first->second ? Pair.first->second : V; 4996 4997 // Otherwise compute it. 4998 const SCEV *C = computeSCEVAtScope(V, L); 4999 ValuesAtScopes[V][L] = C; 5000 return C; 5001 } 5002 5003 /// This builds up a Constant using the ConstantExpr interface. That way, we 5004 /// will return Constants for objects which aren't represented by a 5005 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5006 /// Returns NULL if the SCEV isn't representable as a Constant. 5007 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5008 switch (V->getSCEVType()) { 5009 default: // TODO: smax, umax. 5010 case scCouldNotCompute: 5011 case scAddRecExpr: 5012 break; 5013 case scConstant: 5014 return cast<SCEVConstant>(V)->getValue(); 5015 case scUnknown: 5016 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5017 case scSignExtend: { 5018 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5019 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5020 return ConstantExpr::getSExt(CastOp, SS->getType()); 5021 break; 5022 } 5023 case scZeroExtend: { 5024 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5025 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5026 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5027 break; 5028 } 5029 case scTruncate: { 5030 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5031 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5032 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5033 break; 5034 } 5035 case scAddExpr: { 5036 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5037 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5038 if (C->getType()->isPointerTy()) 5039 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5040 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5041 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5042 if (!C2) return 0; 5043 5044 // First pointer! 5045 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5046 std::swap(C, C2); 5047 // The offsets have been converted to bytes. We can add bytes to an 5048 // i8* by GEP with the byte count in the first index. 5049 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5050 } 5051 5052 // Don't bother trying to sum two pointers. We probably can't 5053 // statically compute a load that results from it anyway. 5054 if (C2->getType()->isPointerTy()) 5055 return 0; 5056 5057 if (C->getType()->isPointerTy()) { 5058 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5059 C2 = ConstantExpr::getIntegerCast( 5060 C2, Type::getInt32Ty(C->getContext()), true); 5061 C = ConstantExpr::getGetElementPtr(C, C2); 5062 } else 5063 C = ConstantExpr::getAdd(C, C2); 5064 } 5065 return C; 5066 } 5067 break; 5068 } 5069 case scMulExpr: { 5070 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5071 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5072 // Don't bother with pointers at all. 5073 if (C->getType()->isPointerTy()) return 0; 5074 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5075 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5076 if (!C2 || C2->getType()->isPointerTy()) return 0; 5077 C = ConstantExpr::getMul(C, C2); 5078 } 5079 return C; 5080 } 5081 break; 5082 } 5083 case scUDivExpr: { 5084 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5085 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5086 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5087 if (LHS->getType() == RHS->getType()) 5088 return ConstantExpr::getUDiv(LHS, RHS); 5089 break; 5090 } 5091 } 5092 return 0; 5093 } 5094 5095 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5096 if (isa<SCEVConstant>(V)) return V; 5097 5098 // If this instruction is evolved from a constant-evolving PHI, compute the 5099 // exit value from the loop without using SCEVs. 5100 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5101 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5102 const Loop *LI = (*this->LI)[I->getParent()]; 5103 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5104 if (PHINode *PN = dyn_cast<PHINode>(I)) 5105 if (PN->getParent() == LI->getHeader()) { 5106 // Okay, there is no closed form solution for the PHI node. Check 5107 // to see if the loop that contains it has a known backedge-taken 5108 // count. If so, we may be able to force computation of the exit 5109 // value. 5110 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5111 if (const SCEVConstant *BTCC = 5112 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5113 // Okay, we know how many times the containing loop executes. If 5114 // this is a constant evolving PHI node, get the final value at 5115 // the specified iteration number. 5116 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5117 BTCC->getValue()->getValue(), 5118 LI); 5119 if (RV) return getSCEV(RV); 5120 } 5121 } 5122 5123 // Okay, this is an expression that we cannot symbolically evaluate 5124 // into a SCEV. Check to see if it's possible to symbolically evaluate 5125 // the arguments into constants, and if so, try to constant propagate the 5126 // result. This is particularly useful for computing loop exit values. 5127 if (CanConstantFold(I)) { 5128 SmallVector<Constant *, 4> Operands; 5129 bool MadeImprovement = false; 5130 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5131 Value *Op = I->getOperand(i); 5132 if (Constant *C = dyn_cast<Constant>(Op)) { 5133 Operands.push_back(C); 5134 continue; 5135 } 5136 5137 // If any of the operands is non-constant and if they are 5138 // non-integer and non-pointer, don't even try to analyze them 5139 // with scev techniques. 5140 if (!isSCEVable(Op->getType())) 5141 return V; 5142 5143 const SCEV *OrigV = getSCEV(Op); 5144 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5145 MadeImprovement |= OrigV != OpV; 5146 5147 Constant *C = BuildConstantFromSCEV(OpV); 5148 if (!C) return V; 5149 if (C->getType() != Op->getType()) 5150 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5151 Op->getType(), 5152 false), 5153 C, Op->getType()); 5154 Operands.push_back(C); 5155 } 5156 5157 // Check to see if getSCEVAtScope actually made an improvement. 5158 if (MadeImprovement) { 5159 Constant *C = 0; 5160 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5161 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5162 Operands[0], Operands[1], TD, 5163 TLI); 5164 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5165 if (!LI->isVolatile()) 5166 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5167 } else 5168 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5169 Operands, TD, TLI); 5170 if (!C) return V; 5171 return getSCEV(C); 5172 } 5173 } 5174 } 5175 5176 // This is some other type of SCEVUnknown, just return it. 5177 return V; 5178 } 5179 5180 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5181 // Avoid performing the look-up in the common case where the specified 5182 // expression has no loop-variant portions. 5183 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5184 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5185 if (OpAtScope != Comm->getOperand(i)) { 5186 // Okay, at least one of these operands is loop variant but might be 5187 // foldable. Build a new instance of the folded commutative expression. 5188 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5189 Comm->op_begin()+i); 5190 NewOps.push_back(OpAtScope); 5191 5192 for (++i; i != e; ++i) { 5193 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5194 NewOps.push_back(OpAtScope); 5195 } 5196 if (isa<SCEVAddExpr>(Comm)) 5197 return getAddExpr(NewOps); 5198 if (isa<SCEVMulExpr>(Comm)) 5199 return getMulExpr(NewOps); 5200 if (isa<SCEVSMaxExpr>(Comm)) 5201 return getSMaxExpr(NewOps); 5202 if (isa<SCEVUMaxExpr>(Comm)) 5203 return getUMaxExpr(NewOps); 5204 llvm_unreachable("Unknown commutative SCEV type!"); 5205 } 5206 } 5207 // If we got here, all operands are loop invariant. 5208 return Comm; 5209 } 5210 5211 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5212 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5213 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5214 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5215 return Div; // must be loop invariant 5216 return getUDivExpr(LHS, RHS); 5217 } 5218 5219 // If this is a loop recurrence for a loop that does not contain L, then we 5220 // are dealing with the final value computed by the loop. 5221 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5222 // First, attempt to evaluate each operand. 5223 // Avoid performing the look-up in the common case where the specified 5224 // expression has no loop-variant portions. 5225 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5226 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5227 if (OpAtScope == AddRec->getOperand(i)) 5228 continue; 5229 5230 // Okay, at least one of these operands is loop variant but might be 5231 // foldable. Build a new instance of the folded commutative expression. 5232 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5233 AddRec->op_begin()+i); 5234 NewOps.push_back(OpAtScope); 5235 for (++i; i != e; ++i) 5236 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5237 5238 const SCEV *FoldedRec = 5239 getAddRecExpr(NewOps, AddRec->getLoop(), 5240 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5241 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5242 // The addrec may be folded to a nonrecurrence, for example, if the 5243 // induction variable is multiplied by zero after constant folding. Go 5244 // ahead and return the folded value. 5245 if (!AddRec) 5246 return FoldedRec; 5247 break; 5248 } 5249 5250 // If the scope is outside the addrec's loop, evaluate it by using the 5251 // loop exit value of the addrec. 5252 if (!AddRec->getLoop()->contains(L)) { 5253 // To evaluate this recurrence, we need to know how many times the AddRec 5254 // loop iterates. Compute this now. 5255 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5256 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5257 5258 // Then, evaluate the AddRec. 5259 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5260 } 5261 5262 return AddRec; 5263 } 5264 5265 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5266 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5267 if (Op == Cast->getOperand()) 5268 return Cast; // must be loop invariant 5269 return getZeroExtendExpr(Op, Cast->getType()); 5270 } 5271 5272 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5273 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5274 if (Op == Cast->getOperand()) 5275 return Cast; // must be loop invariant 5276 return getSignExtendExpr(Op, Cast->getType()); 5277 } 5278 5279 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5280 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5281 if (Op == Cast->getOperand()) 5282 return Cast; // must be loop invariant 5283 return getTruncateExpr(Op, Cast->getType()); 5284 } 5285 5286 llvm_unreachable("Unknown SCEV type!"); 5287 } 5288 5289 /// getSCEVAtScope - This is a convenience function which does 5290 /// getSCEVAtScope(getSCEV(V), L). 5291 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5292 return getSCEVAtScope(getSCEV(V), L); 5293 } 5294 5295 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5296 /// following equation: 5297 /// 5298 /// A * X = B (mod N) 5299 /// 5300 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5301 /// A and B isn't important. 5302 /// 5303 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5304 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5305 ScalarEvolution &SE) { 5306 uint32_t BW = A.getBitWidth(); 5307 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5308 assert(A != 0 && "A must be non-zero."); 5309 5310 // 1. D = gcd(A, N) 5311 // 5312 // The gcd of A and N may have only one prime factor: 2. The number of 5313 // trailing zeros in A is its multiplicity 5314 uint32_t Mult2 = A.countTrailingZeros(); 5315 // D = 2^Mult2 5316 5317 // 2. Check if B is divisible by D. 5318 // 5319 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5320 // is not less than multiplicity of this prime factor for D. 5321 if (B.countTrailingZeros() < Mult2) 5322 return SE.getCouldNotCompute(); 5323 5324 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5325 // modulo (N / D). 5326 // 5327 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5328 // bit width during computations. 5329 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5330 APInt Mod(BW + 1, 0); 5331 Mod.setBit(BW - Mult2); // Mod = N / D 5332 APInt I = AD.multiplicativeInverse(Mod); 5333 5334 // 4. Compute the minimum unsigned root of the equation: 5335 // I * (B / D) mod (N / D) 5336 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5337 5338 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5339 // bits. 5340 return SE.getConstant(Result.trunc(BW)); 5341 } 5342 5343 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5344 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5345 /// might be the same) or two SCEVCouldNotCompute objects. 5346 /// 5347 static std::pair<const SCEV *,const SCEV *> 5348 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5349 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5350 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5351 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5352 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5353 5354 // We currently can only solve this if the coefficients are constants. 5355 if (!LC || !MC || !NC) { 5356 const SCEV *CNC = SE.getCouldNotCompute(); 5357 return std::make_pair(CNC, CNC); 5358 } 5359 5360 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5361 const APInt &L = LC->getValue()->getValue(); 5362 const APInt &M = MC->getValue()->getValue(); 5363 const APInt &N = NC->getValue()->getValue(); 5364 APInt Two(BitWidth, 2); 5365 APInt Four(BitWidth, 4); 5366 5367 { 5368 using namespace APIntOps; 5369 const APInt& C = L; 5370 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5371 // The B coefficient is M-N/2 5372 APInt B(M); 5373 B -= sdiv(N,Two); 5374 5375 // The A coefficient is N/2 5376 APInt A(N.sdiv(Two)); 5377 5378 // Compute the B^2-4ac term. 5379 APInt SqrtTerm(B); 5380 SqrtTerm *= B; 5381 SqrtTerm -= Four * (A * C); 5382 5383 if (SqrtTerm.isNegative()) { 5384 // The loop is provably infinite. 5385 const SCEV *CNC = SE.getCouldNotCompute(); 5386 return std::make_pair(CNC, CNC); 5387 } 5388 5389 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5390 // integer value or else APInt::sqrt() will assert. 5391 APInt SqrtVal(SqrtTerm.sqrt()); 5392 5393 // Compute the two solutions for the quadratic formula. 5394 // The divisions must be performed as signed divisions. 5395 APInt NegB(-B); 5396 APInt TwoA(A << 1); 5397 if (TwoA.isMinValue()) { 5398 const SCEV *CNC = SE.getCouldNotCompute(); 5399 return std::make_pair(CNC, CNC); 5400 } 5401 5402 LLVMContext &Context = SE.getContext(); 5403 5404 ConstantInt *Solution1 = 5405 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5406 ConstantInt *Solution2 = 5407 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5408 5409 return std::make_pair(SE.getConstant(Solution1), 5410 SE.getConstant(Solution2)); 5411 } // end APIntOps namespace 5412 } 5413 5414 /// HowFarToZero - Return the number of times a backedge comparing the specified 5415 /// value to zero will execute. If not computable, return CouldNotCompute. 5416 /// 5417 /// This is only used for loops with a "x != y" exit test. The exit condition is 5418 /// now expressed as a single expression, V = x-y. So the exit test is 5419 /// effectively V != 0. We know and take advantage of the fact that this 5420 /// expression only being used in a comparison by zero context. 5421 ScalarEvolution::ExitLimit 5422 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5423 // If the value is a constant 5424 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5425 // If the value is already zero, the branch will execute zero times. 5426 if (C->getValue()->isZero()) return C; 5427 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5428 } 5429 5430 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5431 if (!AddRec || AddRec->getLoop() != L) 5432 return getCouldNotCompute(); 5433 5434 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5435 // the quadratic equation to solve it. 5436 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5437 std::pair<const SCEV *,const SCEV *> Roots = 5438 SolveQuadraticEquation(AddRec, *this); 5439 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5440 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5441 if (R1 && R2) { 5442 #if 0 5443 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5444 << " sol#2: " << *R2 << "\n"; 5445 #endif 5446 // Pick the smallest positive root value. 5447 if (ConstantInt *CB = 5448 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5449 R1->getValue(), 5450 R2->getValue()))) { 5451 if (CB->getZExtValue() == false) 5452 std::swap(R1, R2); // R1 is the minimum root now. 5453 5454 // We can only use this value if the chrec ends up with an exact zero 5455 // value at this index. When solving for "X*X != 5", for example, we 5456 // should not accept a root of 2. 5457 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5458 if (Val->isZero()) 5459 return R1; // We found a quadratic root! 5460 } 5461 } 5462 return getCouldNotCompute(); 5463 } 5464 5465 // Otherwise we can only handle this if it is affine. 5466 if (!AddRec->isAffine()) 5467 return getCouldNotCompute(); 5468 5469 // If this is an affine expression, the execution count of this branch is 5470 // the minimum unsigned root of the following equation: 5471 // 5472 // Start + Step*N = 0 (mod 2^BW) 5473 // 5474 // equivalent to: 5475 // 5476 // Step*N = -Start (mod 2^BW) 5477 // 5478 // where BW is the common bit width of Start and Step. 5479 5480 // Get the initial value for the loop. 5481 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5482 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5483 5484 // For now we handle only constant steps. 5485 // 5486 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5487 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5488 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5489 // We have not yet seen any such cases. 5490 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5491 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5492 return getCouldNotCompute(); 5493 5494 // For positive steps (counting up until unsigned overflow): 5495 // N = -Start/Step (as unsigned) 5496 // For negative steps (counting down to zero): 5497 // N = Start/-Step 5498 // First compute the unsigned distance from zero in the direction of Step. 5499 bool CountDown = StepC->getValue()->getValue().isNegative(); 5500 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5501 5502 // Handle unitary steps, which cannot wraparound. 5503 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5504 // N = Distance (as unsigned) 5505 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5506 ConstantRange CR = getUnsignedRange(Start); 5507 const SCEV *MaxBECount; 5508 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5509 // When counting up, the worst starting value is 1, not 0. 5510 MaxBECount = CR.getUnsignedMax().isMinValue() 5511 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5512 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5513 else 5514 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5515 : -CR.getUnsignedMin()); 5516 return ExitLimit(Distance, MaxBECount); 5517 } 5518 5519 // If the recurrence is known not to wraparound, unsigned divide computes the 5520 // back edge count. We know that the value will either become zero (and thus 5521 // the loop terminates), that the loop will terminate through some other exit 5522 // condition first, or that the loop has undefined behavior. This means 5523 // we can't "miss" the exit value, even with nonunit stride. 5524 // 5525 // FIXME: Prove that loops always exhibits *acceptable* undefined 5526 // behavior. Loops must exhibit defined behavior until a wrapped value is 5527 // actually used. So the trip count computed by udiv could be smaller than the 5528 // number of well-defined iterations. 5529 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5530 // FIXME: We really want an "isexact" bit for udiv. 5531 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5532 } 5533 // Then, try to solve the above equation provided that Start is constant. 5534 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5535 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5536 -StartC->getValue()->getValue(), 5537 *this); 5538 return getCouldNotCompute(); 5539 } 5540 5541 /// HowFarToNonZero - Return the number of times a backedge checking the 5542 /// specified value for nonzero will execute. If not computable, return 5543 /// CouldNotCompute 5544 ScalarEvolution::ExitLimit 5545 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5546 // Loops that look like: while (X == 0) are very strange indeed. We don't 5547 // handle them yet except for the trivial case. This could be expanded in the 5548 // future as needed. 5549 5550 // If the value is a constant, check to see if it is known to be non-zero 5551 // already. If so, the backedge will execute zero times. 5552 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5553 if (!C->getValue()->isNullValue()) 5554 return getConstant(C->getType(), 0); 5555 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5556 } 5557 5558 // We could implement others, but I really doubt anyone writes loops like 5559 // this, and if they did, they would already be constant folded. 5560 return getCouldNotCompute(); 5561 } 5562 5563 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5564 /// (which may not be an immediate predecessor) which has exactly one 5565 /// successor from which BB is reachable, or null if no such block is 5566 /// found. 5567 /// 5568 std::pair<BasicBlock *, BasicBlock *> 5569 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5570 // If the block has a unique predecessor, then there is no path from the 5571 // predecessor to the block that does not go through the direct edge 5572 // from the predecessor to the block. 5573 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5574 return std::make_pair(Pred, BB); 5575 5576 // A loop's header is defined to be a block that dominates the loop. 5577 // If the header has a unique predecessor outside the loop, it must be 5578 // a block that has exactly one successor that can reach the loop. 5579 if (Loop *L = LI->getLoopFor(BB)) 5580 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5581 5582 return std::pair<BasicBlock *, BasicBlock *>(); 5583 } 5584 5585 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5586 /// testing whether two expressions are equal, however for the purposes of 5587 /// looking for a condition guarding a loop, it can be useful to be a little 5588 /// more general, since a front-end may have replicated the controlling 5589 /// expression. 5590 /// 5591 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5592 // Quick check to see if they are the same SCEV. 5593 if (A == B) return true; 5594 5595 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5596 // two different instructions with the same value. Check for this case. 5597 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5598 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5599 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5600 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5601 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5602 return true; 5603 5604 // Otherwise assume they may have a different value. 5605 return false; 5606 } 5607 5608 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5609 /// predicate Pred. Return true iff any changes were made. 5610 /// 5611 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5612 const SCEV *&LHS, const SCEV *&RHS, 5613 unsigned Depth) { 5614 bool Changed = false; 5615 5616 // If we hit the max recursion limit bail out. 5617 if (Depth >= 3) 5618 return false; 5619 5620 // Canonicalize a constant to the right side. 5621 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5622 // Check for both operands constant. 5623 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5624 if (ConstantExpr::getICmp(Pred, 5625 LHSC->getValue(), 5626 RHSC->getValue())->isNullValue()) 5627 goto trivially_false; 5628 else 5629 goto trivially_true; 5630 } 5631 // Otherwise swap the operands to put the constant on the right. 5632 std::swap(LHS, RHS); 5633 Pred = ICmpInst::getSwappedPredicate(Pred); 5634 Changed = true; 5635 } 5636 5637 // If we're comparing an addrec with a value which is loop-invariant in the 5638 // addrec's loop, put the addrec on the left. Also make a dominance check, 5639 // as both operands could be addrecs loop-invariant in each other's loop. 5640 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5641 const Loop *L = AR->getLoop(); 5642 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5643 std::swap(LHS, RHS); 5644 Pred = ICmpInst::getSwappedPredicate(Pred); 5645 Changed = true; 5646 } 5647 } 5648 5649 // If there's a constant operand, canonicalize comparisons with boundary 5650 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5651 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5652 const APInt &RA = RC->getValue()->getValue(); 5653 switch (Pred) { 5654 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5655 case ICmpInst::ICMP_EQ: 5656 case ICmpInst::ICMP_NE: 5657 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5658 if (!RA) 5659 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5660 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5661 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5662 ME->getOperand(0)->isAllOnesValue()) { 5663 RHS = AE->getOperand(1); 5664 LHS = ME->getOperand(1); 5665 Changed = true; 5666 } 5667 break; 5668 case ICmpInst::ICMP_UGE: 5669 if ((RA - 1).isMinValue()) { 5670 Pred = ICmpInst::ICMP_NE; 5671 RHS = getConstant(RA - 1); 5672 Changed = true; 5673 break; 5674 } 5675 if (RA.isMaxValue()) { 5676 Pred = ICmpInst::ICMP_EQ; 5677 Changed = true; 5678 break; 5679 } 5680 if (RA.isMinValue()) goto trivially_true; 5681 5682 Pred = ICmpInst::ICMP_UGT; 5683 RHS = getConstant(RA - 1); 5684 Changed = true; 5685 break; 5686 case ICmpInst::ICMP_ULE: 5687 if ((RA + 1).isMaxValue()) { 5688 Pred = ICmpInst::ICMP_NE; 5689 RHS = getConstant(RA + 1); 5690 Changed = true; 5691 break; 5692 } 5693 if (RA.isMinValue()) { 5694 Pred = ICmpInst::ICMP_EQ; 5695 Changed = true; 5696 break; 5697 } 5698 if (RA.isMaxValue()) goto trivially_true; 5699 5700 Pred = ICmpInst::ICMP_ULT; 5701 RHS = getConstant(RA + 1); 5702 Changed = true; 5703 break; 5704 case ICmpInst::ICMP_SGE: 5705 if ((RA - 1).isMinSignedValue()) { 5706 Pred = ICmpInst::ICMP_NE; 5707 RHS = getConstant(RA - 1); 5708 Changed = true; 5709 break; 5710 } 5711 if (RA.isMaxSignedValue()) { 5712 Pred = ICmpInst::ICMP_EQ; 5713 Changed = true; 5714 break; 5715 } 5716 if (RA.isMinSignedValue()) goto trivially_true; 5717 5718 Pred = ICmpInst::ICMP_SGT; 5719 RHS = getConstant(RA - 1); 5720 Changed = true; 5721 break; 5722 case ICmpInst::ICMP_SLE: 5723 if ((RA + 1).isMaxSignedValue()) { 5724 Pred = ICmpInst::ICMP_NE; 5725 RHS = getConstant(RA + 1); 5726 Changed = true; 5727 break; 5728 } 5729 if (RA.isMinSignedValue()) { 5730 Pred = ICmpInst::ICMP_EQ; 5731 Changed = true; 5732 break; 5733 } 5734 if (RA.isMaxSignedValue()) goto trivially_true; 5735 5736 Pred = ICmpInst::ICMP_SLT; 5737 RHS = getConstant(RA + 1); 5738 Changed = true; 5739 break; 5740 case ICmpInst::ICMP_UGT: 5741 if (RA.isMinValue()) { 5742 Pred = ICmpInst::ICMP_NE; 5743 Changed = true; 5744 break; 5745 } 5746 if ((RA + 1).isMaxValue()) { 5747 Pred = ICmpInst::ICMP_EQ; 5748 RHS = getConstant(RA + 1); 5749 Changed = true; 5750 break; 5751 } 5752 if (RA.isMaxValue()) goto trivially_false; 5753 break; 5754 case ICmpInst::ICMP_ULT: 5755 if (RA.isMaxValue()) { 5756 Pred = ICmpInst::ICMP_NE; 5757 Changed = true; 5758 break; 5759 } 5760 if ((RA - 1).isMinValue()) { 5761 Pred = ICmpInst::ICMP_EQ; 5762 RHS = getConstant(RA - 1); 5763 Changed = true; 5764 break; 5765 } 5766 if (RA.isMinValue()) goto trivially_false; 5767 break; 5768 case ICmpInst::ICMP_SGT: 5769 if (RA.isMinSignedValue()) { 5770 Pred = ICmpInst::ICMP_NE; 5771 Changed = true; 5772 break; 5773 } 5774 if ((RA + 1).isMaxSignedValue()) { 5775 Pred = ICmpInst::ICMP_EQ; 5776 RHS = getConstant(RA + 1); 5777 Changed = true; 5778 break; 5779 } 5780 if (RA.isMaxSignedValue()) goto trivially_false; 5781 break; 5782 case ICmpInst::ICMP_SLT: 5783 if (RA.isMaxSignedValue()) { 5784 Pred = ICmpInst::ICMP_NE; 5785 Changed = true; 5786 break; 5787 } 5788 if ((RA - 1).isMinSignedValue()) { 5789 Pred = ICmpInst::ICMP_EQ; 5790 RHS = getConstant(RA - 1); 5791 Changed = true; 5792 break; 5793 } 5794 if (RA.isMinSignedValue()) goto trivially_false; 5795 break; 5796 } 5797 } 5798 5799 // Check for obvious equality. 5800 if (HasSameValue(LHS, RHS)) { 5801 if (ICmpInst::isTrueWhenEqual(Pred)) 5802 goto trivially_true; 5803 if (ICmpInst::isFalseWhenEqual(Pred)) 5804 goto trivially_false; 5805 } 5806 5807 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5808 // adding or subtracting 1 from one of the operands. 5809 switch (Pred) { 5810 case ICmpInst::ICMP_SLE: 5811 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5812 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5813 SCEV::FlagNSW); 5814 Pred = ICmpInst::ICMP_SLT; 5815 Changed = true; 5816 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5817 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5818 SCEV::FlagNSW); 5819 Pred = ICmpInst::ICMP_SLT; 5820 Changed = true; 5821 } 5822 break; 5823 case ICmpInst::ICMP_SGE: 5824 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5825 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5826 SCEV::FlagNSW); 5827 Pred = ICmpInst::ICMP_SGT; 5828 Changed = true; 5829 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5830 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5831 SCEV::FlagNSW); 5832 Pred = ICmpInst::ICMP_SGT; 5833 Changed = true; 5834 } 5835 break; 5836 case ICmpInst::ICMP_ULE: 5837 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5838 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5839 SCEV::FlagNUW); 5840 Pred = ICmpInst::ICMP_ULT; 5841 Changed = true; 5842 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5843 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5844 SCEV::FlagNUW); 5845 Pred = ICmpInst::ICMP_ULT; 5846 Changed = true; 5847 } 5848 break; 5849 case ICmpInst::ICMP_UGE: 5850 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5851 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5852 SCEV::FlagNUW); 5853 Pred = ICmpInst::ICMP_UGT; 5854 Changed = true; 5855 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5856 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5857 SCEV::FlagNUW); 5858 Pred = ICmpInst::ICMP_UGT; 5859 Changed = true; 5860 } 5861 break; 5862 default: 5863 break; 5864 } 5865 5866 // TODO: More simplifications are possible here. 5867 5868 // Recursively simplify until we either hit a recursion limit or nothing 5869 // changes. 5870 if (Changed) 5871 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 5872 5873 return Changed; 5874 5875 trivially_true: 5876 // Return 0 == 0. 5877 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5878 Pred = ICmpInst::ICMP_EQ; 5879 return true; 5880 5881 trivially_false: 5882 // Return 0 != 0. 5883 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5884 Pred = ICmpInst::ICMP_NE; 5885 return true; 5886 } 5887 5888 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5889 return getSignedRange(S).getSignedMax().isNegative(); 5890 } 5891 5892 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5893 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5894 } 5895 5896 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5897 return !getSignedRange(S).getSignedMin().isNegative(); 5898 } 5899 5900 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5901 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5902 } 5903 5904 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5905 return isKnownNegative(S) || isKnownPositive(S); 5906 } 5907 5908 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5909 const SCEV *LHS, const SCEV *RHS) { 5910 // Canonicalize the inputs first. 5911 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5912 5913 // If LHS or RHS is an addrec, check to see if the condition is true in 5914 // every iteration of the loop. 5915 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5916 if (isLoopEntryGuardedByCond( 5917 AR->getLoop(), Pred, AR->getStart(), RHS) && 5918 isLoopBackedgeGuardedByCond( 5919 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5920 return true; 5921 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5922 if (isLoopEntryGuardedByCond( 5923 AR->getLoop(), Pred, LHS, AR->getStart()) && 5924 isLoopBackedgeGuardedByCond( 5925 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5926 return true; 5927 5928 // Otherwise see what can be done with known constant ranges. 5929 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5930 } 5931 5932 bool 5933 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5934 const SCEV *LHS, const SCEV *RHS) { 5935 if (HasSameValue(LHS, RHS)) 5936 return ICmpInst::isTrueWhenEqual(Pred); 5937 5938 // This code is split out from isKnownPredicate because it is called from 5939 // within isLoopEntryGuardedByCond. 5940 switch (Pred) { 5941 default: 5942 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5943 case ICmpInst::ICMP_SGT: 5944 Pred = ICmpInst::ICMP_SLT; 5945 std::swap(LHS, RHS); 5946 case ICmpInst::ICMP_SLT: { 5947 ConstantRange LHSRange = getSignedRange(LHS); 5948 ConstantRange RHSRange = getSignedRange(RHS); 5949 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5950 return true; 5951 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5952 return false; 5953 break; 5954 } 5955 case ICmpInst::ICMP_SGE: 5956 Pred = ICmpInst::ICMP_SLE; 5957 std::swap(LHS, RHS); 5958 case ICmpInst::ICMP_SLE: { 5959 ConstantRange LHSRange = getSignedRange(LHS); 5960 ConstantRange RHSRange = getSignedRange(RHS); 5961 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5962 return true; 5963 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5964 return false; 5965 break; 5966 } 5967 case ICmpInst::ICMP_UGT: 5968 Pred = ICmpInst::ICMP_ULT; 5969 std::swap(LHS, RHS); 5970 case ICmpInst::ICMP_ULT: { 5971 ConstantRange LHSRange = getUnsignedRange(LHS); 5972 ConstantRange RHSRange = getUnsignedRange(RHS); 5973 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5974 return true; 5975 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5976 return false; 5977 break; 5978 } 5979 case ICmpInst::ICMP_UGE: 5980 Pred = ICmpInst::ICMP_ULE; 5981 std::swap(LHS, RHS); 5982 case ICmpInst::ICMP_ULE: { 5983 ConstantRange LHSRange = getUnsignedRange(LHS); 5984 ConstantRange RHSRange = getUnsignedRange(RHS); 5985 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5986 return true; 5987 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5988 return false; 5989 break; 5990 } 5991 case ICmpInst::ICMP_NE: { 5992 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5993 return true; 5994 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5995 return true; 5996 5997 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5998 if (isKnownNonZero(Diff)) 5999 return true; 6000 break; 6001 } 6002 case ICmpInst::ICMP_EQ: 6003 // The check at the top of the function catches the case where 6004 // the values are known to be equal. 6005 break; 6006 } 6007 return false; 6008 } 6009 6010 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6011 /// protected by a conditional between LHS and RHS. This is used to 6012 /// to eliminate casts. 6013 bool 6014 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6015 ICmpInst::Predicate Pred, 6016 const SCEV *LHS, const SCEV *RHS) { 6017 // Interpret a null as meaning no loop, where there is obviously no guard 6018 // (interprocedural conditions notwithstanding). 6019 if (!L) return true; 6020 6021 BasicBlock *Latch = L->getLoopLatch(); 6022 if (!Latch) 6023 return false; 6024 6025 BranchInst *LoopContinuePredicate = 6026 dyn_cast<BranchInst>(Latch->getTerminator()); 6027 if (!LoopContinuePredicate || 6028 LoopContinuePredicate->isUnconditional()) 6029 return false; 6030 6031 return isImpliedCond(Pred, LHS, RHS, 6032 LoopContinuePredicate->getCondition(), 6033 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6034 } 6035 6036 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6037 /// by a conditional between LHS and RHS. This is used to help avoid max 6038 /// expressions in loop trip counts, and to eliminate casts. 6039 bool 6040 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6041 ICmpInst::Predicate Pred, 6042 const SCEV *LHS, const SCEV *RHS) { 6043 // Interpret a null as meaning no loop, where there is obviously no guard 6044 // (interprocedural conditions notwithstanding). 6045 if (!L) return false; 6046 6047 // Starting at the loop predecessor, climb up the predecessor chain, as long 6048 // as there are predecessors that can be found that have unique successors 6049 // leading to the original header. 6050 for (std::pair<BasicBlock *, BasicBlock *> 6051 Pair(L->getLoopPredecessor(), L->getHeader()); 6052 Pair.first; 6053 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6054 6055 BranchInst *LoopEntryPredicate = 6056 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6057 if (!LoopEntryPredicate || 6058 LoopEntryPredicate->isUnconditional()) 6059 continue; 6060 6061 if (isImpliedCond(Pred, LHS, RHS, 6062 LoopEntryPredicate->getCondition(), 6063 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6064 return true; 6065 } 6066 6067 return false; 6068 } 6069 6070 /// RAII wrapper to prevent recursive application of isImpliedCond. 6071 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6072 /// currently evaluating isImpliedCond. 6073 struct MarkPendingLoopPredicate { 6074 Value *Cond; 6075 DenseSet<Value*> &LoopPreds; 6076 bool Pending; 6077 6078 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6079 : Cond(C), LoopPreds(LP) { 6080 Pending = !LoopPreds.insert(Cond).second; 6081 } 6082 ~MarkPendingLoopPredicate() { 6083 if (!Pending) 6084 LoopPreds.erase(Cond); 6085 } 6086 }; 6087 6088 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6089 /// and RHS is true whenever the given Cond value evaluates to true. 6090 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6091 const SCEV *LHS, const SCEV *RHS, 6092 Value *FoundCondValue, 6093 bool Inverse) { 6094 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6095 if (Mark.Pending) 6096 return false; 6097 6098 // Recursively handle And and Or conditions. 6099 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6100 if (BO->getOpcode() == Instruction::And) { 6101 if (!Inverse) 6102 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6103 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6104 } else if (BO->getOpcode() == Instruction::Or) { 6105 if (Inverse) 6106 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6107 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6108 } 6109 } 6110 6111 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6112 if (!ICI) return false; 6113 6114 // Bail if the ICmp's operands' types are wider than the needed type 6115 // before attempting to call getSCEV on them. This avoids infinite 6116 // recursion, since the analysis of widening casts can require loop 6117 // exit condition information for overflow checking, which would 6118 // lead back here. 6119 if (getTypeSizeInBits(LHS->getType()) < 6120 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6121 return false; 6122 6123 // Now that we found a conditional branch that dominates the loop, check to 6124 // see if it is the comparison we are looking for. 6125 ICmpInst::Predicate FoundPred; 6126 if (Inverse) 6127 FoundPred = ICI->getInversePredicate(); 6128 else 6129 FoundPred = ICI->getPredicate(); 6130 6131 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6132 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6133 6134 // Balance the types. The case where FoundLHS' type is wider than 6135 // LHS' type is checked for above. 6136 if (getTypeSizeInBits(LHS->getType()) > 6137 getTypeSizeInBits(FoundLHS->getType())) { 6138 if (CmpInst::isSigned(Pred)) { 6139 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6140 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6141 } else { 6142 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6143 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6144 } 6145 } 6146 6147 // Canonicalize the query to match the way instcombine will have 6148 // canonicalized the comparison. 6149 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6150 if (LHS == RHS) 6151 return CmpInst::isTrueWhenEqual(Pred); 6152 6153 // Canonicalize the found cond too. We can't conclude a result from the 6154 // simplified values. 6155 SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS); 6156 6157 // Check to see if we can make the LHS or RHS match. 6158 if (LHS == FoundRHS || RHS == FoundLHS) { 6159 if (isa<SCEVConstant>(RHS)) { 6160 std::swap(FoundLHS, FoundRHS); 6161 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6162 } else { 6163 std::swap(LHS, RHS); 6164 Pred = ICmpInst::getSwappedPredicate(Pred); 6165 } 6166 } 6167 6168 // Check whether the found predicate is the same as the desired predicate. 6169 if (FoundPred == Pred) 6170 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6171 6172 // Check whether swapping the found predicate makes it the same as the 6173 // desired predicate. 6174 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6175 if (isa<SCEVConstant>(RHS)) 6176 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6177 else 6178 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6179 RHS, LHS, FoundLHS, FoundRHS); 6180 } 6181 6182 // Check whether the actual condition is beyond sufficient. 6183 if (FoundPred == ICmpInst::ICMP_EQ) 6184 if (ICmpInst::isTrueWhenEqual(Pred)) 6185 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6186 return true; 6187 if (Pred == ICmpInst::ICMP_NE) 6188 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6189 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6190 return true; 6191 6192 // Otherwise assume the worst. 6193 return false; 6194 } 6195 6196 /// isImpliedCondOperands - Test whether the condition described by Pred, 6197 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6198 /// and FoundRHS is true. 6199 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6200 const SCEV *LHS, const SCEV *RHS, 6201 const SCEV *FoundLHS, 6202 const SCEV *FoundRHS) { 6203 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6204 FoundLHS, FoundRHS) || 6205 // ~x < ~y --> x > y 6206 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6207 getNotSCEV(FoundRHS), 6208 getNotSCEV(FoundLHS)); 6209 } 6210 6211 /// isImpliedCondOperandsHelper - Test whether the condition described by 6212 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6213 /// FoundLHS, and FoundRHS is true. 6214 bool 6215 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6216 const SCEV *LHS, const SCEV *RHS, 6217 const SCEV *FoundLHS, 6218 const SCEV *FoundRHS) { 6219 switch (Pred) { 6220 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6221 case ICmpInst::ICMP_EQ: 6222 case ICmpInst::ICMP_NE: 6223 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6224 return true; 6225 break; 6226 case ICmpInst::ICMP_SLT: 6227 case ICmpInst::ICMP_SLE: 6228 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6229 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6230 return true; 6231 break; 6232 case ICmpInst::ICMP_SGT: 6233 case ICmpInst::ICMP_SGE: 6234 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6235 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6236 return true; 6237 break; 6238 case ICmpInst::ICMP_ULT: 6239 case ICmpInst::ICMP_ULE: 6240 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6241 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6242 return true; 6243 break; 6244 case ICmpInst::ICMP_UGT: 6245 case ICmpInst::ICMP_UGE: 6246 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6247 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6248 return true; 6249 break; 6250 } 6251 6252 return false; 6253 } 6254 6255 /// getBECount - Subtract the end and start values and divide by the step, 6256 /// rounding up, to get the number of times the backedge is executed. Return 6257 /// CouldNotCompute if an intermediate computation overflows. 6258 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6259 const SCEV *End, 6260 const SCEV *Step, 6261 bool NoWrap) { 6262 assert(!isKnownNegative(Step) && 6263 "This code doesn't handle negative strides yet!"); 6264 6265 Type *Ty = Start->getType(); 6266 6267 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6268 // here because SCEV may not be able to determine that the unsigned division 6269 // after rounding is zero. 6270 if (Start == End) 6271 return getConstant(Ty, 0); 6272 6273 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6274 const SCEV *Diff = getMinusSCEV(End, Start); 6275 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6276 6277 // Add an adjustment to the difference between End and Start so that 6278 // the division will effectively round up. 6279 const SCEV *Add = getAddExpr(Diff, RoundUp); 6280 6281 if (!NoWrap) { 6282 // Check Add for unsigned overflow. 6283 // TODO: More sophisticated things could be done here. 6284 Type *WideTy = IntegerType::get(getContext(), 6285 getTypeSizeInBits(Ty) + 1); 6286 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6287 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6288 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6289 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6290 return getCouldNotCompute(); 6291 } 6292 6293 return getUDivExpr(Add, Step); 6294 } 6295 6296 /// HowManyLessThans - Return the number of times a backedge containing the 6297 /// specified less-than comparison will execute. If not computable, return 6298 /// CouldNotCompute. 6299 ScalarEvolution::ExitLimit 6300 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6301 const Loop *L, bool isSigned) { 6302 // Only handle: "ADDREC < LoopInvariant". 6303 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6304 6305 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6306 if (!AddRec || AddRec->getLoop() != L) 6307 return getCouldNotCompute(); 6308 6309 // Check to see if we have a flag which makes analysis easy. 6310 bool NoWrap = isSigned ? 6311 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) : 6312 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW)); 6313 6314 if (AddRec->isAffine()) { 6315 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6316 const SCEV *Step = AddRec->getStepRecurrence(*this); 6317 6318 if (Step->isZero()) 6319 return getCouldNotCompute(); 6320 if (Step->isOne()) { 6321 // With unit stride, the iteration never steps past the limit value. 6322 } else if (isKnownPositive(Step)) { 6323 // Test whether a positive iteration can step past the limit 6324 // value and past the maximum value for its type in a single step. 6325 // Note that it's not sufficient to check NoWrap here, because even 6326 // though the value after a wrap is undefined, it's not undefined 6327 // behavior, so if wrap does occur, the loop could either terminate or 6328 // loop infinitely, but in either case, the loop is guaranteed to 6329 // iterate at least until the iteration where the wrapping occurs. 6330 const SCEV *One = getConstant(Step->getType(), 1); 6331 if (isSigned) { 6332 APInt Max = APInt::getSignedMaxValue(BitWidth); 6333 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6334 .slt(getSignedRange(RHS).getSignedMax())) 6335 return getCouldNotCompute(); 6336 } else { 6337 APInt Max = APInt::getMaxValue(BitWidth); 6338 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6339 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6340 return getCouldNotCompute(); 6341 } 6342 } else 6343 // TODO: Handle negative strides here and below. 6344 return getCouldNotCompute(); 6345 6346 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6347 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6348 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6349 // treat m-n as signed nor unsigned due to overflow possibility. 6350 6351 // First, we get the value of the LHS in the first iteration: n 6352 const SCEV *Start = AddRec->getOperand(0); 6353 6354 // Determine the minimum constant start value. 6355 const SCEV *MinStart = getConstant(isSigned ? 6356 getSignedRange(Start).getSignedMin() : 6357 getUnsignedRange(Start).getUnsignedMin()); 6358 6359 // If we know that the condition is true in order to enter the loop, 6360 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6361 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6362 // the division must round up. 6363 const SCEV *End = RHS; 6364 if (!isLoopEntryGuardedByCond(L, 6365 isSigned ? ICmpInst::ICMP_SLT : 6366 ICmpInst::ICMP_ULT, 6367 getMinusSCEV(Start, Step), RHS)) 6368 End = isSigned ? getSMaxExpr(RHS, Start) 6369 : getUMaxExpr(RHS, Start); 6370 6371 // Determine the maximum constant end value. 6372 const SCEV *MaxEnd = getConstant(isSigned ? 6373 getSignedRange(End).getSignedMax() : 6374 getUnsignedRange(End).getUnsignedMax()); 6375 6376 // If MaxEnd is within a step of the maximum integer value in its type, 6377 // adjust it down to the minimum value which would produce the same effect. 6378 // This allows the subsequent ceiling division of (N+(step-1))/step to 6379 // compute the correct value. 6380 const SCEV *StepMinusOne = getMinusSCEV(Step, 6381 getConstant(Step->getType(), 1)); 6382 MaxEnd = isSigned ? 6383 getSMinExpr(MaxEnd, 6384 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6385 StepMinusOne)) : 6386 getUMinExpr(MaxEnd, 6387 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6388 StepMinusOne)); 6389 6390 // Finally, we subtract these two values and divide, rounding up, to get 6391 // the number of times the backedge is executed. 6392 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6393 6394 // The maximum backedge count is similar, except using the minimum start 6395 // value and the maximum end value. 6396 // If we already have an exact constant BECount, use it instead. 6397 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6398 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6399 6400 // If the stride is nonconstant, and NoWrap == true, then 6401 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6402 // exact BECount and invalid MaxBECount, which should be avoided to catch 6403 // more optimization opportunities. 6404 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6405 MaxBECount = BECount; 6406 6407 return ExitLimit(BECount, MaxBECount); 6408 } 6409 6410 return getCouldNotCompute(); 6411 } 6412 6413 /// getNumIterationsInRange - Return the number of iterations of this loop that 6414 /// produce values in the specified constant range. Another way of looking at 6415 /// this is that it returns the first iteration number where the value is not in 6416 /// the condition, thus computing the exit count. If the iteration count can't 6417 /// be computed, an instance of SCEVCouldNotCompute is returned. 6418 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6419 ScalarEvolution &SE) const { 6420 if (Range.isFullSet()) // Infinite loop. 6421 return SE.getCouldNotCompute(); 6422 6423 // If the start is a non-zero constant, shift the range to simplify things. 6424 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6425 if (!SC->getValue()->isZero()) { 6426 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6427 Operands[0] = SE.getConstant(SC->getType(), 0); 6428 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6429 getNoWrapFlags(FlagNW)); 6430 if (const SCEVAddRecExpr *ShiftedAddRec = 6431 dyn_cast<SCEVAddRecExpr>(Shifted)) 6432 return ShiftedAddRec->getNumIterationsInRange( 6433 Range.subtract(SC->getValue()->getValue()), SE); 6434 // This is strange and shouldn't happen. 6435 return SE.getCouldNotCompute(); 6436 } 6437 6438 // The only time we can solve this is when we have all constant indices. 6439 // Otherwise, we cannot determine the overflow conditions. 6440 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6441 if (!isa<SCEVConstant>(getOperand(i))) 6442 return SE.getCouldNotCompute(); 6443 6444 6445 // Okay at this point we know that all elements of the chrec are constants and 6446 // that the start element is zero. 6447 6448 // First check to see if the range contains zero. If not, the first 6449 // iteration exits. 6450 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6451 if (!Range.contains(APInt(BitWidth, 0))) 6452 return SE.getConstant(getType(), 0); 6453 6454 if (isAffine()) { 6455 // If this is an affine expression then we have this situation: 6456 // Solve {0,+,A} in Range === Ax in Range 6457 6458 // We know that zero is in the range. If A is positive then we know that 6459 // the upper value of the range must be the first possible exit value. 6460 // If A is negative then the lower of the range is the last possible loop 6461 // value. Also note that we already checked for a full range. 6462 APInt One(BitWidth,1); 6463 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6464 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6465 6466 // The exit value should be (End+A)/A. 6467 APInt ExitVal = (End + A).udiv(A); 6468 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6469 6470 // Evaluate at the exit value. If we really did fall out of the valid 6471 // range, then we computed our trip count, otherwise wrap around or other 6472 // things must have happened. 6473 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6474 if (Range.contains(Val->getValue())) 6475 return SE.getCouldNotCompute(); // Something strange happened 6476 6477 // Ensure that the previous value is in the range. This is a sanity check. 6478 assert(Range.contains( 6479 EvaluateConstantChrecAtConstant(this, 6480 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6481 "Linear scev computation is off in a bad way!"); 6482 return SE.getConstant(ExitValue); 6483 } else if (isQuadratic()) { 6484 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6485 // quadratic equation to solve it. To do this, we must frame our problem in 6486 // terms of figuring out when zero is crossed, instead of when 6487 // Range.getUpper() is crossed. 6488 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6489 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6490 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6491 // getNoWrapFlags(FlagNW) 6492 FlagAnyWrap); 6493 6494 // Next, solve the constructed addrec 6495 std::pair<const SCEV *,const SCEV *> Roots = 6496 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6497 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6498 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6499 if (R1) { 6500 // Pick the smallest positive root value. 6501 if (ConstantInt *CB = 6502 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6503 R1->getValue(), R2->getValue()))) { 6504 if (CB->getZExtValue() == false) 6505 std::swap(R1, R2); // R1 is the minimum root now. 6506 6507 // Make sure the root is not off by one. The returned iteration should 6508 // not be in the range, but the previous one should be. When solving 6509 // for "X*X < 5", for example, we should not return a root of 2. 6510 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6511 R1->getValue(), 6512 SE); 6513 if (Range.contains(R1Val->getValue())) { 6514 // The next iteration must be out of the range... 6515 ConstantInt *NextVal = 6516 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6517 6518 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6519 if (!Range.contains(R1Val->getValue())) 6520 return SE.getConstant(NextVal); 6521 return SE.getCouldNotCompute(); // Something strange happened 6522 } 6523 6524 // If R1 was not in the range, then it is a good return value. Make 6525 // sure that R1-1 WAS in the range though, just in case. 6526 ConstantInt *NextVal = 6527 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6528 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6529 if (Range.contains(R1Val->getValue())) 6530 return R1; 6531 return SE.getCouldNotCompute(); // Something strange happened 6532 } 6533 } 6534 } 6535 6536 return SE.getCouldNotCompute(); 6537 } 6538 6539 6540 6541 //===----------------------------------------------------------------------===// 6542 // SCEVCallbackVH Class Implementation 6543 //===----------------------------------------------------------------------===// 6544 6545 void ScalarEvolution::SCEVCallbackVH::deleted() { 6546 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6547 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6548 SE->ConstantEvolutionLoopExitValue.erase(PN); 6549 SE->ValueExprMap.erase(getValPtr()); 6550 // this now dangles! 6551 } 6552 6553 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6554 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6555 6556 // Forget all the expressions associated with users of the old value, 6557 // so that future queries will recompute the expressions using the new 6558 // value. 6559 Value *Old = getValPtr(); 6560 SmallVector<User *, 16> Worklist; 6561 SmallPtrSet<User *, 8> Visited; 6562 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6563 UI != UE; ++UI) 6564 Worklist.push_back(*UI); 6565 while (!Worklist.empty()) { 6566 User *U = Worklist.pop_back_val(); 6567 // Deleting the Old value will cause this to dangle. Postpone 6568 // that until everything else is done. 6569 if (U == Old) 6570 continue; 6571 if (!Visited.insert(U)) 6572 continue; 6573 if (PHINode *PN = dyn_cast<PHINode>(U)) 6574 SE->ConstantEvolutionLoopExitValue.erase(PN); 6575 SE->ValueExprMap.erase(U); 6576 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6577 UI != UE; ++UI) 6578 Worklist.push_back(*UI); 6579 } 6580 // Delete the Old value. 6581 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6582 SE->ConstantEvolutionLoopExitValue.erase(PN); 6583 SE->ValueExprMap.erase(Old); 6584 // this now dangles! 6585 } 6586 6587 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6588 : CallbackVH(V), SE(se) {} 6589 6590 //===----------------------------------------------------------------------===// 6591 // ScalarEvolution Class Implementation 6592 //===----------------------------------------------------------------------===// 6593 6594 ScalarEvolution::ScalarEvolution() 6595 : FunctionPass(ID), FirstUnknown(0) { 6596 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6597 } 6598 6599 bool ScalarEvolution::runOnFunction(Function &F) { 6600 this->F = &F; 6601 LI = &getAnalysis<LoopInfo>(); 6602 TD = getAnalysisIfAvailable<DataLayout>(); 6603 TLI = &getAnalysis<TargetLibraryInfo>(); 6604 DT = &getAnalysis<DominatorTree>(); 6605 return false; 6606 } 6607 6608 void ScalarEvolution::releaseMemory() { 6609 // Iterate through all the SCEVUnknown instances and call their 6610 // destructors, so that they release their references to their values. 6611 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6612 U->~SCEVUnknown(); 6613 FirstUnknown = 0; 6614 6615 ValueExprMap.clear(); 6616 6617 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6618 // that a loop had multiple computable exits. 6619 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6620 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6621 I != E; ++I) { 6622 I->second.clear(); 6623 } 6624 6625 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 6626 6627 BackedgeTakenCounts.clear(); 6628 ConstantEvolutionLoopExitValue.clear(); 6629 ValuesAtScopes.clear(); 6630 LoopDispositions.clear(); 6631 BlockDispositions.clear(); 6632 UnsignedRanges.clear(); 6633 SignedRanges.clear(); 6634 UniqueSCEVs.clear(); 6635 SCEVAllocator.Reset(); 6636 } 6637 6638 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6639 AU.setPreservesAll(); 6640 AU.addRequiredTransitive<LoopInfo>(); 6641 AU.addRequiredTransitive<DominatorTree>(); 6642 AU.addRequired<TargetLibraryInfo>(); 6643 } 6644 6645 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6646 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6647 } 6648 6649 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6650 const Loop *L) { 6651 // Print all inner loops first 6652 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6653 PrintLoopInfo(OS, SE, *I); 6654 6655 OS << "Loop "; 6656 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6657 OS << ": "; 6658 6659 SmallVector<BasicBlock *, 8> ExitBlocks; 6660 L->getExitBlocks(ExitBlocks); 6661 if (ExitBlocks.size() != 1) 6662 OS << "<multiple exits> "; 6663 6664 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6665 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6666 } else { 6667 OS << "Unpredictable backedge-taken count. "; 6668 } 6669 6670 OS << "\n" 6671 "Loop "; 6672 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6673 OS << ": "; 6674 6675 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6676 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6677 } else { 6678 OS << "Unpredictable max backedge-taken count. "; 6679 } 6680 6681 OS << "\n"; 6682 } 6683 6684 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6685 // ScalarEvolution's implementation of the print method is to print 6686 // out SCEV values of all instructions that are interesting. Doing 6687 // this potentially causes it to create new SCEV objects though, 6688 // which technically conflicts with the const qualifier. This isn't 6689 // observable from outside the class though, so casting away the 6690 // const isn't dangerous. 6691 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6692 6693 OS << "Classifying expressions for: "; 6694 WriteAsOperand(OS, F, /*PrintType=*/false); 6695 OS << "\n"; 6696 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6697 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6698 OS << *I << '\n'; 6699 OS << " --> "; 6700 const SCEV *SV = SE.getSCEV(&*I); 6701 SV->print(OS); 6702 6703 const Loop *L = LI->getLoopFor((*I).getParent()); 6704 6705 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6706 if (AtUse != SV) { 6707 OS << " --> "; 6708 AtUse->print(OS); 6709 } 6710 6711 if (L) { 6712 OS << "\t\t" "Exits: "; 6713 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6714 if (!SE.isLoopInvariant(ExitValue, L)) { 6715 OS << "<<Unknown>>"; 6716 } else { 6717 OS << *ExitValue; 6718 } 6719 } 6720 6721 OS << "\n"; 6722 } 6723 6724 OS << "Determining loop execution counts for: "; 6725 WriteAsOperand(OS, F, /*PrintType=*/false); 6726 OS << "\n"; 6727 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6728 PrintLoopInfo(OS, &SE, *I); 6729 } 6730 6731 ScalarEvolution::LoopDisposition 6732 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6733 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6734 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6735 Values.insert(std::make_pair(L, LoopVariant)); 6736 if (!Pair.second) 6737 return Pair.first->second; 6738 6739 LoopDisposition D = computeLoopDisposition(S, L); 6740 return LoopDispositions[S][L] = D; 6741 } 6742 6743 ScalarEvolution::LoopDisposition 6744 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6745 switch (S->getSCEVType()) { 6746 case scConstant: 6747 return LoopInvariant; 6748 case scTruncate: 6749 case scZeroExtend: 6750 case scSignExtend: 6751 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6752 case scAddRecExpr: { 6753 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6754 6755 // If L is the addrec's loop, it's computable. 6756 if (AR->getLoop() == L) 6757 return LoopComputable; 6758 6759 // Add recurrences are never invariant in the function-body (null loop). 6760 if (!L) 6761 return LoopVariant; 6762 6763 // This recurrence is variant w.r.t. L if L contains AR's loop. 6764 if (L->contains(AR->getLoop())) 6765 return LoopVariant; 6766 6767 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6768 if (AR->getLoop()->contains(L)) 6769 return LoopInvariant; 6770 6771 // This recurrence is variant w.r.t. L if any of its operands 6772 // are variant. 6773 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6774 I != E; ++I) 6775 if (!isLoopInvariant(*I, L)) 6776 return LoopVariant; 6777 6778 // Otherwise it's loop-invariant. 6779 return LoopInvariant; 6780 } 6781 case scAddExpr: 6782 case scMulExpr: 6783 case scUMaxExpr: 6784 case scSMaxExpr: { 6785 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6786 bool HasVarying = false; 6787 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6788 I != E; ++I) { 6789 LoopDisposition D = getLoopDisposition(*I, L); 6790 if (D == LoopVariant) 6791 return LoopVariant; 6792 if (D == LoopComputable) 6793 HasVarying = true; 6794 } 6795 return HasVarying ? LoopComputable : LoopInvariant; 6796 } 6797 case scUDivExpr: { 6798 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6799 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6800 if (LD == LoopVariant) 6801 return LoopVariant; 6802 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6803 if (RD == LoopVariant) 6804 return LoopVariant; 6805 return (LD == LoopInvariant && RD == LoopInvariant) ? 6806 LoopInvariant : LoopComputable; 6807 } 6808 case scUnknown: 6809 // All non-instruction values are loop invariant. All instructions are loop 6810 // invariant if they are not contained in the specified loop. 6811 // Instructions are never considered invariant in the function body 6812 // (null loop) because they are defined within the "loop". 6813 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6814 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6815 return LoopInvariant; 6816 case scCouldNotCompute: 6817 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6818 default: llvm_unreachable("Unknown SCEV kind!"); 6819 } 6820 } 6821 6822 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6823 return getLoopDisposition(S, L) == LoopInvariant; 6824 } 6825 6826 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6827 return getLoopDisposition(S, L) == LoopComputable; 6828 } 6829 6830 ScalarEvolution::BlockDisposition 6831 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6832 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6833 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6834 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6835 if (!Pair.second) 6836 return Pair.first->second; 6837 6838 BlockDisposition D = computeBlockDisposition(S, BB); 6839 return BlockDispositions[S][BB] = D; 6840 } 6841 6842 ScalarEvolution::BlockDisposition 6843 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6844 switch (S->getSCEVType()) { 6845 case scConstant: 6846 return ProperlyDominatesBlock; 6847 case scTruncate: 6848 case scZeroExtend: 6849 case scSignExtend: 6850 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6851 case scAddRecExpr: { 6852 // This uses a "dominates" query instead of "properly dominates" query 6853 // to test for proper dominance too, because the instruction which 6854 // produces the addrec's value is a PHI, and a PHI effectively properly 6855 // dominates its entire containing block. 6856 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6857 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6858 return DoesNotDominateBlock; 6859 } 6860 // FALL THROUGH into SCEVNAryExpr handling. 6861 case scAddExpr: 6862 case scMulExpr: 6863 case scUMaxExpr: 6864 case scSMaxExpr: { 6865 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6866 bool Proper = true; 6867 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6868 I != E; ++I) { 6869 BlockDisposition D = getBlockDisposition(*I, BB); 6870 if (D == DoesNotDominateBlock) 6871 return DoesNotDominateBlock; 6872 if (D == DominatesBlock) 6873 Proper = false; 6874 } 6875 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6876 } 6877 case scUDivExpr: { 6878 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6879 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6880 BlockDisposition LD = getBlockDisposition(LHS, BB); 6881 if (LD == DoesNotDominateBlock) 6882 return DoesNotDominateBlock; 6883 BlockDisposition RD = getBlockDisposition(RHS, BB); 6884 if (RD == DoesNotDominateBlock) 6885 return DoesNotDominateBlock; 6886 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6887 ProperlyDominatesBlock : DominatesBlock; 6888 } 6889 case scUnknown: 6890 if (Instruction *I = 6891 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6892 if (I->getParent() == BB) 6893 return DominatesBlock; 6894 if (DT->properlyDominates(I->getParent(), BB)) 6895 return ProperlyDominatesBlock; 6896 return DoesNotDominateBlock; 6897 } 6898 return ProperlyDominatesBlock; 6899 case scCouldNotCompute: 6900 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6901 default: 6902 llvm_unreachable("Unknown SCEV kind!"); 6903 } 6904 } 6905 6906 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6907 return getBlockDisposition(S, BB) >= DominatesBlock; 6908 } 6909 6910 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6911 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6912 } 6913 6914 namespace { 6915 // Search for a SCEV expression node within an expression tree. 6916 // Implements SCEVTraversal::Visitor. 6917 struct SCEVSearch { 6918 const SCEV *Node; 6919 bool IsFound; 6920 6921 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 6922 6923 bool follow(const SCEV *S) { 6924 IsFound |= (S == Node); 6925 return !IsFound; 6926 } 6927 bool isDone() const { return IsFound; } 6928 }; 6929 } 6930 6931 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6932 SCEVSearch Search(Op); 6933 visitAll(S, Search); 6934 return Search.IsFound; 6935 } 6936 6937 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6938 ValuesAtScopes.erase(S); 6939 LoopDispositions.erase(S); 6940 BlockDispositions.erase(S); 6941 UnsignedRanges.erase(S); 6942 SignedRanges.erase(S); 6943 } 6944 6945 typedef DenseMap<const Loop *, std::string> VerifyMap; 6946 6947 /// replaceSubString - Replaces all occurences of From in Str with To. 6948 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 6949 size_t Pos = 0; 6950 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 6951 Str.replace(Pos, From.size(), To.data(), To.size()); 6952 Pos += To.size(); 6953 } 6954 } 6955 6956 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 6957 static void 6958 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 6959 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 6960 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 6961 6962 std::string &S = Map[L]; 6963 if (S.empty()) { 6964 raw_string_ostream OS(S); 6965 SE.getBackedgeTakenCount(L)->print(OS); 6966 6967 // false and 0 are semantically equivalent. This can happen in dead loops. 6968 replaceSubString(OS.str(), "false", "0"); 6969 // Remove wrap flags, their use in SCEV is highly fragile. 6970 // FIXME: Remove this when SCEV gets smarter about them. 6971 replaceSubString(OS.str(), "<nw>", ""); 6972 replaceSubString(OS.str(), "<nsw>", ""); 6973 replaceSubString(OS.str(), "<nuw>", ""); 6974 } 6975 } 6976 } 6977 6978 void ScalarEvolution::verifyAnalysis() const { 6979 if (!VerifySCEV) 6980 return; 6981 6982 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6983 6984 // Gather stringified backedge taken counts for all loops using SCEV's caches. 6985 // FIXME: It would be much better to store actual values instead of strings, 6986 // but SCEV pointers will change if we drop the caches. 6987 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 6988 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 6989 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 6990 6991 // Gather stringified backedge taken counts for all loops without using 6992 // SCEV's caches. 6993 SE.releaseMemory(); 6994 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 6995 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 6996 6997 // Now compare whether they're the same with and without caches. This allows 6998 // verifying that no pass changed the cache. 6999 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7000 "New loops suddenly appeared!"); 7001 7002 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7003 OldE = BackedgeDumpsOld.end(), 7004 NewI = BackedgeDumpsNew.begin(); 7005 OldI != OldE; ++OldI, ++NewI) { 7006 assert(OldI->first == NewI->first && "Loop order changed!"); 7007 7008 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7009 // changes. 7010 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7011 // means that a pass is buggy or SCEV has to learn a new pattern but is 7012 // usually not harmful. 7013 if (OldI->second != NewI->second && 7014 OldI->second.find("undef") == std::string::npos && 7015 NewI->second.find("undef") == std::string::npos && 7016 OldI->second != "***COULDNOTCOMPUTE***" && 7017 NewI->second != "***COULDNOTCOMPUTE***") { 7018 dbgs() << "SCEVValidator: SCEV for loop '" 7019 << OldI->first->getHeader()->getName() 7020 << "' changed from '" << OldI->second 7021 << "' to '" << NewI->second << "'!\n"; 7022 std::abort(); 7023 } 7024 } 7025 7026 // TODO: Verify more things. 7027 } 7028