1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/GetElementPtrTypeIterator.h" 77 #include "llvm/Support/InstIterator.h" 78 #include "llvm/Support/ManagedStatic.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/ADT/Statistic.h" 82 #include "llvm/ADT/STLExtras.h" 83 #include <algorithm> 84 using namespace llvm; 85 86 STATISTIC(NumArrayLenItCounts, 87 "Number of trip counts computed with array length"); 88 STATISTIC(NumTripCountsComputed, 89 "Number of loops with predictable loop counts"); 90 STATISTIC(NumTripCountsNotComputed, 91 "Number of loops without predictable loop counts"); 92 STATISTIC(NumBruteForceTripCountsComputed, 93 "Number of loops with trip counts computed by force"); 94 95 static cl::opt<unsigned> 96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 97 cl::desc("Maximum number of iterations SCEV will " 98 "symbolically execute a constant derived loop"), 99 cl::init(100)); 100 101 static RegisterPass<ScalarEvolution> 102 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 103 char ScalarEvolution::ID = 0; 104 105 //===----------------------------------------------------------------------===// 106 // SCEV class definitions 107 //===----------------------------------------------------------------------===// 108 109 //===----------------------------------------------------------------------===// 110 // Implementation of the SCEV class. 111 // 112 SCEV::~SCEV() {} 113 void SCEV::dump() const { 114 print(errs()); 115 errs() << '\n'; 116 } 117 118 void SCEV::print(std::ostream &o) const { 119 raw_os_ostream OS(o); 120 print(OS); 121 } 122 123 bool SCEV::isZero() const { 124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 125 return SC->getValue()->isZero(); 126 return false; 127 } 128 129 bool SCEV::isOne() const { 130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 131 return SC->getValue()->isOne(); 132 return false; 133 } 134 135 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 136 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 137 138 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 140 return false; 141 } 142 143 const Type *SCEVCouldNotCompute::getType() const { 144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 145 return 0; 146 } 147 148 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 149 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 150 return false; 151 } 152 153 SCEVHandle SCEVCouldNotCompute:: 154 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 155 const SCEVHandle &Conc, 156 ScalarEvolution &SE) const { 157 return this; 158 } 159 160 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 161 OS << "***COULDNOTCOMPUTE***"; 162 } 163 164 bool SCEVCouldNotCompute::classof(const SCEV *S) { 165 return S->getSCEVType() == scCouldNotCompute; 166 } 167 168 169 // SCEVConstants - Only allow the creation of one SCEVConstant for any 170 // particular value. Don't use a SCEVHandle here, or else the object will 171 // never be deleted! 172 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 173 174 175 SCEVConstant::~SCEVConstant() { 176 SCEVConstants->erase(V); 177 } 178 179 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 180 SCEVConstant *&R = (*SCEVConstants)[V]; 181 if (R == 0) R = new SCEVConstant(V); 182 return R; 183 } 184 185 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(Val)); 187 } 188 189 const Type *SCEVConstant::getType() const { return V->getType(); } 190 191 void SCEVConstant::print(raw_ostream &OS) const { 192 WriteAsOperand(OS, V, false); 193 } 194 195 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 196 const SCEVHandle &op, const Type *ty) 197 : SCEV(SCEVTy), Op(op), Ty(ty) {} 198 199 SCEVCastExpr::~SCEVCastExpr() {} 200 201 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 202 return Op->dominates(BB, DT); 203 } 204 205 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 206 // particular input. Don't use a SCEVHandle here, or else the object will 207 // never be deleted! 208 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 209 SCEVTruncateExpr*> > SCEVTruncates; 210 211 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 212 : SCEVCastExpr(scTruncate, op, ty) { 213 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 214 (Ty->isInteger() || isa<PointerType>(Ty)) && 215 "Cannot truncate non-integer value!"); 216 } 217 218 SCEVTruncateExpr::~SCEVTruncateExpr() { 219 SCEVTruncates->erase(std::make_pair(Op, Ty)); 220 } 221 222 void SCEVTruncateExpr::print(raw_ostream &OS) const { 223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 224 } 225 226 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 227 // particular input. Don't use a SCEVHandle here, or else the object will never 228 // be deleted! 229 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 230 SCEVZeroExtendExpr*> > SCEVZeroExtends; 231 232 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 233 : SCEVCastExpr(scZeroExtend, op, ty) { 234 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 235 (Ty->isInteger() || isa<PointerType>(Ty)) && 236 "Cannot zero extend non-integer value!"); 237 } 238 239 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 240 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 241 } 242 243 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 244 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 245 } 246 247 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 248 // particular input. Don't use a SCEVHandle here, or else the object will never 249 // be deleted! 250 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 251 SCEVSignExtendExpr*> > SCEVSignExtends; 252 253 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 254 : SCEVCastExpr(scSignExtend, op, ty) { 255 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 256 (Ty->isInteger() || isa<PointerType>(Ty)) && 257 "Cannot sign extend non-integer value!"); 258 } 259 260 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 261 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 262 } 263 264 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 265 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 266 } 267 268 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 269 // particular input. Don't use a SCEVHandle here, or else the object will never 270 // be deleted! 271 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, 272 SCEVCommutativeExpr*> > SCEVCommExprs; 273 274 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 275 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 276 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); 277 } 278 279 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 281 const char *OpStr = getOperationStr(); 282 OS << "(" << *Operands[0]; 283 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 284 OS << OpStr << *Operands[i]; 285 OS << ")"; 286 } 287 288 SCEVHandle SCEVCommutativeExpr:: 289 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 290 const SCEVHandle &Conc, 291 ScalarEvolution &SE) const { 292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 293 SCEVHandle H = 294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 295 if (H != getOperand(i)) { 296 std::vector<SCEVHandle> NewOps; 297 NewOps.reserve(getNumOperands()); 298 for (unsigned j = 0; j != i; ++j) 299 NewOps.push_back(getOperand(j)); 300 NewOps.push_back(H); 301 for (++i; i != e; ++i) 302 NewOps.push_back(getOperand(i)-> 303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 304 305 if (isa<SCEVAddExpr>(this)) 306 return SE.getAddExpr(NewOps); 307 else if (isa<SCEVMulExpr>(this)) 308 return SE.getMulExpr(NewOps); 309 else if (isa<SCEVSMaxExpr>(this)) 310 return SE.getSMaxExpr(NewOps); 311 else if (isa<SCEVUMaxExpr>(this)) 312 return SE.getUMaxExpr(NewOps); 313 else 314 assert(0 && "Unknown commutative expr!"); 315 } 316 } 317 return this; 318 } 319 320 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 322 if (!getOperand(i)->dominates(BB, DT)) 323 return false; 324 } 325 return true; 326 } 327 328 329 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, 333 SCEVUDivExpr*> > SCEVUDivs; 334 335 SCEVUDivExpr::~SCEVUDivExpr() { 336 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 341 } 342 343 void SCEVUDivExpr::print(raw_ostream &OS) const { 344 OS << "(" << *LHS << " /u " << *RHS << ")"; 345 } 346 347 const Type *SCEVUDivExpr::getType() const { 348 // In most cases the types of LHS and RHS will be the same, but in some 349 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 350 // depend on the type for correctness, but handling types carefully can 351 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 352 // a pointer type than the RHS, so use the RHS' type here. 353 return RHS->getType(); 354 } 355 356 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 357 // particular input. Don't use a SCEVHandle here, or else the object will never 358 // be deleted! 359 static ManagedStatic<std::map<std::pair<const Loop *, 360 std::vector<const SCEV*> >, 361 SCEVAddRecExpr*> > SCEVAddRecExprs; 362 363 SCEVAddRecExpr::~SCEVAddRecExpr() { 364 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 365 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); 366 } 367 368 SCEVHandle SCEVAddRecExpr:: 369 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 370 const SCEVHandle &Conc, 371 ScalarEvolution &SE) const { 372 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 373 SCEVHandle H = 374 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 375 if (H != getOperand(i)) { 376 std::vector<SCEVHandle> NewOps; 377 NewOps.reserve(getNumOperands()); 378 for (unsigned j = 0; j != i; ++j) 379 NewOps.push_back(getOperand(j)); 380 NewOps.push_back(H); 381 for (++i; i != e; ++i) 382 NewOps.push_back(getOperand(i)-> 383 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 384 385 return SE.getAddRecExpr(NewOps, L); 386 } 387 } 388 return this; 389 } 390 391 392 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 393 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 394 // contain L and if the start is invariant. 395 // Add recurrences are never invariant in the function-body (null loop). 396 return QueryLoop && 397 !QueryLoop->contains(L->getHeader()) && 398 getOperand(0)->isLoopInvariant(QueryLoop); 399 } 400 401 402 void SCEVAddRecExpr::print(raw_ostream &OS) const { 403 OS << "{" << *Operands[0]; 404 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 405 OS << ",+," << *Operands[i]; 406 OS << "}<" << L->getHeader()->getName() + ">"; 407 } 408 409 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 410 // value. Don't use a SCEVHandle here, or else the object will never be 411 // deleted! 412 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 413 414 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 415 416 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 417 // All non-instruction values are loop invariant. All instructions are loop 418 // invariant if they are not contained in the specified loop. 419 // Instructions are never considered invariant in the function body 420 // (null loop) because they are defined within the "loop". 421 if (Instruction *I = dyn_cast<Instruction>(V)) 422 return L && !L->contains(I->getParent()); 423 return true; 424 } 425 426 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 427 if (Instruction *I = dyn_cast<Instruction>(getValue())) 428 return DT->dominates(I->getParent(), BB); 429 return true; 430 } 431 432 const Type *SCEVUnknown::getType() const { 433 return V->getType(); 434 } 435 436 void SCEVUnknown::print(raw_ostream &OS) const { 437 WriteAsOperand(OS, V, false); 438 } 439 440 //===----------------------------------------------------------------------===// 441 // SCEV Utilities 442 //===----------------------------------------------------------------------===// 443 444 namespace { 445 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 446 /// than the complexity of the RHS. This comparator is used to canonicalize 447 /// expressions. 448 class VISIBILITY_HIDDEN SCEVComplexityCompare { 449 LoopInfo *LI; 450 public: 451 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 452 453 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 454 // Primarily, sort the SCEVs by their getSCEVType(). 455 if (LHS->getSCEVType() != RHS->getSCEVType()) 456 return LHS->getSCEVType() < RHS->getSCEVType(); 457 458 // Aside from the getSCEVType() ordering, the particular ordering 459 // isn't very important except that it's beneficial to be consistent, 460 // so that (a + b) and (b + a) don't end up as different expressions. 461 462 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 463 // not as complete as it could be. 464 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 465 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 466 467 // Order pointer values after integer values. This helps SCEVExpander 468 // form GEPs. 469 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 470 return false; 471 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 472 return true; 473 474 // Compare getValueID values. 475 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 476 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 477 478 // Sort arguments by their position. 479 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 480 const Argument *RA = cast<Argument>(RU->getValue()); 481 return LA->getArgNo() < RA->getArgNo(); 482 } 483 484 // For instructions, compare their loop depth, and their opcode. 485 // This is pretty loose. 486 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 487 Instruction *RV = cast<Instruction>(RU->getValue()); 488 489 // Compare loop depths. 490 if (LI->getLoopDepth(LV->getParent()) != 491 LI->getLoopDepth(RV->getParent())) 492 return LI->getLoopDepth(LV->getParent()) < 493 LI->getLoopDepth(RV->getParent()); 494 495 // Compare opcodes. 496 if (LV->getOpcode() != RV->getOpcode()) 497 return LV->getOpcode() < RV->getOpcode(); 498 499 // Compare the number of operands. 500 if (LV->getNumOperands() != RV->getNumOperands()) 501 return LV->getNumOperands() < RV->getNumOperands(); 502 } 503 504 return false; 505 } 506 507 // Constant sorting doesn't matter since they'll be folded. 508 if (isa<SCEVConstant>(LHS)) 509 return false; 510 511 // Lexicographically compare n-ary expressions. 512 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 513 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 514 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 515 if (i >= RC->getNumOperands()) 516 return false; 517 if (operator()(LC->getOperand(i), RC->getOperand(i))) 518 return true; 519 if (operator()(RC->getOperand(i), LC->getOperand(i))) 520 return false; 521 } 522 return LC->getNumOperands() < RC->getNumOperands(); 523 } 524 525 // Lexicographically compare udiv expressions. 526 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 527 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 528 if (operator()(LC->getLHS(), RC->getLHS())) 529 return true; 530 if (operator()(RC->getLHS(), LC->getLHS())) 531 return false; 532 if (operator()(LC->getRHS(), RC->getRHS())) 533 return true; 534 if (operator()(RC->getRHS(), LC->getRHS())) 535 return false; 536 return false; 537 } 538 539 // Compare cast expressions by operand. 540 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 541 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 542 return operator()(LC->getOperand(), RC->getOperand()); 543 } 544 545 assert(0 && "Unknown SCEV kind!"); 546 return false; 547 } 548 }; 549 } 550 551 /// GroupByComplexity - Given a list of SCEV objects, order them by their 552 /// complexity, and group objects of the same complexity together by value. 553 /// When this routine is finished, we know that any duplicates in the vector are 554 /// consecutive and that complexity is monotonically increasing. 555 /// 556 /// Note that we go take special precautions to ensure that we get determinstic 557 /// results from this routine. In other words, we don't want the results of 558 /// this to depend on where the addresses of various SCEV objects happened to 559 /// land in memory. 560 /// 561 static void GroupByComplexity(std::vector<SCEVHandle> &Ops, 562 LoopInfo *LI) { 563 if (Ops.size() < 2) return; // Noop 564 if (Ops.size() == 2) { 565 // This is the common case, which also happens to be trivially simple. 566 // Special case it. 567 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 568 std::swap(Ops[0], Ops[1]); 569 return; 570 } 571 572 // Do the rough sort by complexity. 573 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 574 575 // Now that we are sorted by complexity, group elements of the same 576 // complexity. Note that this is, at worst, N^2, but the vector is likely to 577 // be extremely short in practice. Note that we take this approach because we 578 // do not want to depend on the addresses of the objects we are grouping. 579 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 580 const SCEV *S = Ops[i]; 581 unsigned Complexity = S->getSCEVType(); 582 583 // If there are any objects of the same complexity and same value as this 584 // one, group them. 585 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 586 if (Ops[j] == S) { // Found a duplicate. 587 // Move it to immediately after i'th element. 588 std::swap(Ops[i+1], Ops[j]); 589 ++i; // no need to rescan it. 590 if (i == e-2) return; // Done! 591 } 592 } 593 } 594 } 595 596 597 598 //===----------------------------------------------------------------------===// 599 // Simple SCEV method implementations 600 //===----------------------------------------------------------------------===// 601 602 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 603 /// Assume, K > 0. 604 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 605 ScalarEvolution &SE, 606 const Type* ResultTy) { 607 // Handle the simplest case efficiently. 608 if (K == 1) 609 return SE.getTruncateOrZeroExtend(It, ResultTy); 610 611 // We are using the following formula for BC(It, K): 612 // 613 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 614 // 615 // Suppose, W is the bitwidth of the return value. We must be prepared for 616 // overflow. Hence, we must assure that the result of our computation is 617 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 618 // safe in modular arithmetic. 619 // 620 // However, this code doesn't use exactly that formula; the formula it uses 621 // is something like the following, where T is the number of factors of 2 in 622 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 623 // exponentiation: 624 // 625 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 626 // 627 // This formula is trivially equivalent to the previous formula. However, 628 // this formula can be implemented much more efficiently. The trick is that 629 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 630 // arithmetic. To do exact division in modular arithmetic, all we have 631 // to do is multiply by the inverse. Therefore, this step can be done at 632 // width W. 633 // 634 // The next issue is how to safely do the division by 2^T. The way this 635 // is done is by doing the multiplication step at a width of at least W + T 636 // bits. This way, the bottom W+T bits of the product are accurate. Then, 637 // when we perform the division by 2^T (which is equivalent to a right shift 638 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 639 // truncated out after the division by 2^T. 640 // 641 // In comparison to just directly using the first formula, this technique 642 // is much more efficient; using the first formula requires W * K bits, 643 // but this formula less than W + K bits. Also, the first formula requires 644 // a division step, whereas this formula only requires multiplies and shifts. 645 // 646 // It doesn't matter whether the subtraction step is done in the calculation 647 // width or the input iteration count's width; if the subtraction overflows, 648 // the result must be zero anyway. We prefer here to do it in the width of 649 // the induction variable because it helps a lot for certain cases; CodeGen 650 // isn't smart enough to ignore the overflow, which leads to much less 651 // efficient code if the width of the subtraction is wider than the native 652 // register width. 653 // 654 // (It's possible to not widen at all by pulling out factors of 2 before 655 // the multiplication; for example, K=2 can be calculated as 656 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 657 // extra arithmetic, so it's not an obvious win, and it gets 658 // much more complicated for K > 3.) 659 660 // Protection from insane SCEVs; this bound is conservative, 661 // but it probably doesn't matter. 662 if (K > 1000) 663 return SE.getCouldNotCompute(); 664 665 unsigned W = SE.getTypeSizeInBits(ResultTy); 666 667 // Calculate K! / 2^T and T; we divide out the factors of two before 668 // multiplying for calculating K! / 2^T to avoid overflow. 669 // Other overflow doesn't matter because we only care about the bottom 670 // W bits of the result. 671 APInt OddFactorial(W, 1); 672 unsigned T = 1; 673 for (unsigned i = 3; i <= K; ++i) { 674 APInt Mult(W, i); 675 unsigned TwoFactors = Mult.countTrailingZeros(); 676 T += TwoFactors; 677 Mult = Mult.lshr(TwoFactors); 678 OddFactorial *= Mult; 679 } 680 681 // We need at least W + T bits for the multiplication step 682 unsigned CalculationBits = W + T; 683 684 // Calcuate 2^T, at width T+W. 685 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 686 687 // Calculate the multiplicative inverse of K! / 2^T; 688 // this multiplication factor will perform the exact division by 689 // K! / 2^T. 690 APInt Mod = APInt::getSignedMinValue(W+1); 691 APInt MultiplyFactor = OddFactorial.zext(W+1); 692 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 693 MultiplyFactor = MultiplyFactor.trunc(W); 694 695 // Calculate the product, at width T+W 696 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 697 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 698 for (unsigned i = 1; i != K; ++i) { 699 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 700 Dividend = SE.getMulExpr(Dividend, 701 SE.getTruncateOrZeroExtend(S, CalculationTy)); 702 } 703 704 // Divide by 2^T 705 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 706 707 // Truncate the result, and divide by K! / 2^T. 708 709 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 710 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 711 } 712 713 /// evaluateAtIteration - Return the value of this chain of recurrences at 714 /// the specified iteration number. We can evaluate this recurrence by 715 /// multiplying each element in the chain by the binomial coefficient 716 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 717 /// 718 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 719 /// 720 /// where BC(It, k) stands for binomial coefficient. 721 /// 722 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 723 ScalarEvolution &SE) const { 724 SCEVHandle Result = getStart(); 725 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 726 // The computation is correct in the face of overflow provided that the 727 // multiplication is performed _after_ the evaluation of the binomial 728 // coefficient. 729 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 730 if (isa<SCEVCouldNotCompute>(Coeff)) 731 return Coeff; 732 733 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 734 } 735 return Result; 736 } 737 738 //===----------------------------------------------------------------------===// 739 // SCEV Expression folder implementations 740 //===----------------------------------------------------------------------===// 741 742 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 743 const Type *Ty) { 744 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 745 "This is not a truncating conversion!"); 746 assert(isSCEVable(Ty) && 747 "This is not a conversion to a SCEVable type!"); 748 Ty = getEffectiveSCEVType(Ty); 749 750 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 751 return getUnknown( 752 ConstantExpr::getTrunc(SC->getValue(), Ty)); 753 754 // trunc(trunc(x)) --> trunc(x) 755 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 756 return getTruncateExpr(ST->getOperand(), Ty); 757 758 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 759 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 760 return getTruncateOrSignExtend(SS->getOperand(), Ty); 761 762 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 763 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 764 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 765 766 // If the input value is a chrec scev made out of constants, truncate 767 // all of the constants. 768 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 769 std::vector<SCEVHandle> Operands; 770 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 771 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 772 return getAddRecExpr(Operands, AddRec->getLoop()); 773 } 774 775 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 776 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 777 return Result; 778 } 779 780 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 781 const Type *Ty) { 782 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 783 "This is not an extending conversion!"); 784 assert(isSCEVable(Ty) && 785 "This is not a conversion to a SCEVable type!"); 786 Ty = getEffectiveSCEVType(Ty); 787 788 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 789 const Type *IntTy = getEffectiveSCEVType(Ty); 790 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 791 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 792 return getUnknown(C); 793 } 794 795 // zext(zext(x)) --> zext(x) 796 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 797 return getZeroExtendExpr(SZ->getOperand(), Ty); 798 799 // If the input value is a chrec scev, and we can prove that the value 800 // did not overflow the old, smaller, value, we can zero extend all of the 801 // operands (often constants). This allows analysis of something like 802 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 803 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 804 if (AR->isAffine()) { 805 // Check whether the backedge-taken count is SCEVCouldNotCompute. 806 // Note that this serves two purposes: It filters out loops that are 807 // simply not analyzable, and it covers the case where this code is 808 // being called from within backedge-taken count analysis, such that 809 // attempting to ask for the backedge-taken count would likely result 810 // in infinite recursion. In the later case, the analysis code will 811 // cope with a conservative value, and it will take care to purge 812 // that value once it has finished. 813 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 814 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 815 // Manually compute the final value for AR, checking for 816 // overflow. 817 SCEVHandle Start = AR->getStart(); 818 SCEVHandle Step = AR->getStepRecurrence(*this); 819 820 // Check whether the backedge-taken count can be losslessly casted to 821 // the addrec's type. The count is always unsigned. 822 SCEVHandle CastedMaxBECount = 823 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 824 SCEVHandle RecastedMaxBECount = 825 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 826 if (MaxBECount == RecastedMaxBECount) { 827 const Type *WideTy = 828 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 829 // Check whether Start+Step*MaxBECount has no unsigned overflow. 830 SCEVHandle ZMul = 831 getMulExpr(CastedMaxBECount, 832 getTruncateOrZeroExtend(Step, Start->getType())); 833 SCEVHandle Add = getAddExpr(Start, ZMul); 834 SCEVHandle OperandExtendedAdd = 835 getAddExpr(getZeroExtendExpr(Start, WideTy), 836 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 837 getZeroExtendExpr(Step, WideTy))); 838 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 839 // Return the expression with the addrec on the outside. 840 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 841 getZeroExtendExpr(Step, Ty), 842 AR->getLoop()); 843 844 // Similar to above, only this time treat the step value as signed. 845 // This covers loops that count down. 846 SCEVHandle SMul = 847 getMulExpr(CastedMaxBECount, 848 getTruncateOrSignExtend(Step, Start->getType())); 849 Add = getAddExpr(Start, SMul); 850 OperandExtendedAdd = 851 getAddExpr(getZeroExtendExpr(Start, WideTy), 852 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 853 getSignExtendExpr(Step, WideTy))); 854 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 855 // Return the expression with the addrec on the outside. 856 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 857 getSignExtendExpr(Step, Ty), 858 AR->getLoop()); 859 } 860 } 861 } 862 863 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 864 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 865 return Result; 866 } 867 868 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 869 const Type *Ty) { 870 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 871 "This is not an extending conversion!"); 872 assert(isSCEVable(Ty) && 873 "This is not a conversion to a SCEVable type!"); 874 Ty = getEffectiveSCEVType(Ty); 875 876 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 877 const Type *IntTy = getEffectiveSCEVType(Ty); 878 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 879 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 880 return getUnknown(C); 881 } 882 883 // sext(sext(x)) --> sext(x) 884 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 885 return getSignExtendExpr(SS->getOperand(), Ty); 886 887 // If the input value is a chrec scev, and we can prove that the value 888 // did not overflow the old, smaller, value, we can sign extend all of the 889 // operands (often constants). This allows analysis of something like 890 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 892 if (AR->isAffine()) { 893 // Check whether the backedge-taken count is SCEVCouldNotCompute. 894 // Note that this serves two purposes: It filters out loops that are 895 // simply not analyzable, and it covers the case where this code is 896 // being called from within backedge-taken count analysis, such that 897 // attempting to ask for the backedge-taken count would likely result 898 // in infinite recursion. In the later case, the analysis code will 899 // cope with a conservative value, and it will take care to purge 900 // that value once it has finished. 901 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 902 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 903 // Manually compute the final value for AR, checking for 904 // overflow. 905 SCEVHandle Start = AR->getStart(); 906 SCEVHandle Step = AR->getStepRecurrence(*this); 907 908 // Check whether the backedge-taken count can be losslessly casted to 909 // the addrec's type. The count is always unsigned. 910 SCEVHandle CastedMaxBECount = 911 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 912 SCEVHandle RecastedMaxBECount = 913 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 914 if (MaxBECount == RecastedMaxBECount) { 915 const Type *WideTy = 916 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 917 // Check whether Start+Step*MaxBECount has no signed overflow. 918 SCEVHandle SMul = 919 getMulExpr(CastedMaxBECount, 920 getTruncateOrSignExtend(Step, Start->getType())); 921 SCEVHandle Add = getAddExpr(Start, SMul); 922 SCEVHandle OperandExtendedAdd = 923 getAddExpr(getSignExtendExpr(Start, WideTy), 924 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 925 getSignExtendExpr(Step, WideTy))); 926 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 927 // Return the expression with the addrec on the outside. 928 return getAddRecExpr(getSignExtendExpr(Start, Ty), 929 getSignExtendExpr(Step, Ty), 930 AR->getLoop()); 931 } 932 } 933 } 934 935 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 936 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 937 return Result; 938 } 939 940 /// getAddExpr - Get a canonical add expression, or something simpler if 941 /// possible. 942 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 943 assert(!Ops.empty() && "Cannot get empty add!"); 944 if (Ops.size() == 1) return Ops[0]; 945 #ifndef NDEBUG 946 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 947 assert(getEffectiveSCEVType(Ops[i]->getType()) == 948 getEffectiveSCEVType(Ops[0]->getType()) && 949 "SCEVAddExpr operand types don't match!"); 950 #endif 951 952 // Sort by complexity, this groups all similar expression types together. 953 GroupByComplexity(Ops, LI); 954 955 // If there are any constants, fold them together. 956 unsigned Idx = 0; 957 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 958 ++Idx; 959 assert(Idx < Ops.size()); 960 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 961 // We found two constants, fold them together! 962 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 963 RHSC->getValue()->getValue()); 964 Ops[0] = getConstant(Fold); 965 Ops.erase(Ops.begin()+1); // Erase the folded element 966 if (Ops.size() == 1) return Ops[0]; 967 LHSC = cast<SCEVConstant>(Ops[0]); 968 } 969 970 // If we are left with a constant zero being added, strip it off. 971 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 972 Ops.erase(Ops.begin()); 973 --Idx; 974 } 975 } 976 977 if (Ops.size() == 1) return Ops[0]; 978 979 // Okay, check to see if the same value occurs in the operand list twice. If 980 // so, merge them together into an multiply expression. Since we sorted the 981 // list, these values are required to be adjacent. 982 const Type *Ty = Ops[0]->getType(); 983 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 984 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 985 // Found a match, merge the two values into a multiply, and add any 986 // remaining values to the result. 987 SCEVHandle Two = getIntegerSCEV(2, Ty); 988 SCEVHandle Mul = getMulExpr(Ops[i], Two); 989 if (Ops.size() == 2) 990 return Mul; 991 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 992 Ops.push_back(Mul); 993 return getAddExpr(Ops); 994 } 995 996 // Check for truncates. If all the operands are truncated from the same 997 // type, see if factoring out the truncate would permit the result to be 998 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 999 // if the contents of the resulting outer trunc fold to something simple. 1000 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1001 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1002 const Type *DstType = Trunc->getType(); 1003 const Type *SrcType = Trunc->getOperand()->getType(); 1004 std::vector<SCEVHandle> LargeOps; 1005 bool Ok = true; 1006 // Check all the operands to see if they can be represented in the 1007 // source type of the truncate. 1008 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1009 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1010 if (T->getOperand()->getType() != SrcType) { 1011 Ok = false; 1012 break; 1013 } 1014 LargeOps.push_back(T->getOperand()); 1015 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1016 // This could be either sign or zero extension, but sign extension 1017 // is much more likely to be foldable here. 1018 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1019 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1020 std::vector<SCEVHandle> LargeMulOps; 1021 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1022 if (const SCEVTruncateExpr *T = 1023 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1024 if (T->getOperand()->getType() != SrcType) { 1025 Ok = false; 1026 break; 1027 } 1028 LargeMulOps.push_back(T->getOperand()); 1029 } else if (const SCEVConstant *C = 1030 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1031 // This could be either sign or zero extension, but sign extension 1032 // is much more likely to be foldable here. 1033 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1034 } else { 1035 Ok = false; 1036 break; 1037 } 1038 } 1039 if (Ok) 1040 LargeOps.push_back(getMulExpr(LargeMulOps)); 1041 } else { 1042 Ok = false; 1043 break; 1044 } 1045 } 1046 if (Ok) { 1047 // Evaluate the expression in the larger type. 1048 SCEVHandle Fold = getAddExpr(LargeOps); 1049 // If it folds to something simple, use it. Otherwise, don't. 1050 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1051 return getTruncateExpr(Fold, DstType); 1052 } 1053 } 1054 1055 // Skip past any other cast SCEVs. 1056 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1057 ++Idx; 1058 1059 // If there are add operands they would be next. 1060 if (Idx < Ops.size()) { 1061 bool DeletedAdd = false; 1062 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1063 // If we have an add, expand the add operands onto the end of the operands 1064 // list. 1065 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1066 Ops.erase(Ops.begin()+Idx); 1067 DeletedAdd = true; 1068 } 1069 1070 // If we deleted at least one add, we added operands to the end of the list, 1071 // and they are not necessarily sorted. Recurse to resort and resimplify 1072 // any operands we just aquired. 1073 if (DeletedAdd) 1074 return getAddExpr(Ops); 1075 } 1076 1077 // Skip over the add expression until we get to a multiply. 1078 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1079 ++Idx; 1080 1081 // If we are adding something to a multiply expression, make sure the 1082 // something is not already an operand of the multiply. If so, merge it into 1083 // the multiply. 1084 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1085 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1086 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1087 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1088 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1089 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 1090 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1091 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1092 if (Mul->getNumOperands() != 2) { 1093 // If the multiply has more than two operands, we must get the 1094 // Y*Z term. 1095 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 1096 MulOps.erase(MulOps.begin()+MulOp); 1097 InnerMul = getMulExpr(MulOps); 1098 } 1099 SCEVHandle One = getIntegerSCEV(1, Ty); 1100 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1101 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1102 if (Ops.size() == 2) return OuterMul; 1103 if (AddOp < Idx) { 1104 Ops.erase(Ops.begin()+AddOp); 1105 Ops.erase(Ops.begin()+Idx-1); 1106 } else { 1107 Ops.erase(Ops.begin()+Idx); 1108 Ops.erase(Ops.begin()+AddOp-1); 1109 } 1110 Ops.push_back(OuterMul); 1111 return getAddExpr(Ops); 1112 } 1113 1114 // Check this multiply against other multiplies being added together. 1115 for (unsigned OtherMulIdx = Idx+1; 1116 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1117 ++OtherMulIdx) { 1118 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1119 // If MulOp occurs in OtherMul, we can fold the two multiplies 1120 // together. 1121 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1122 OMulOp != e; ++OMulOp) 1123 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1124 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1125 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1126 if (Mul->getNumOperands() != 2) { 1127 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 1128 MulOps.erase(MulOps.begin()+MulOp); 1129 InnerMul1 = getMulExpr(MulOps); 1130 } 1131 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1132 if (OtherMul->getNumOperands() != 2) { 1133 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 1134 OtherMul->op_end()); 1135 MulOps.erase(MulOps.begin()+OMulOp); 1136 InnerMul2 = getMulExpr(MulOps); 1137 } 1138 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1139 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1140 if (Ops.size() == 2) return OuterMul; 1141 Ops.erase(Ops.begin()+Idx); 1142 Ops.erase(Ops.begin()+OtherMulIdx-1); 1143 Ops.push_back(OuterMul); 1144 return getAddExpr(Ops); 1145 } 1146 } 1147 } 1148 } 1149 1150 // If there are any add recurrences in the operands list, see if any other 1151 // added values are loop invariant. If so, we can fold them into the 1152 // recurrence. 1153 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1154 ++Idx; 1155 1156 // Scan over all recurrences, trying to fold loop invariants into them. 1157 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1158 // Scan all of the other operands to this add and add them to the vector if 1159 // they are loop invariant w.r.t. the recurrence. 1160 std::vector<SCEVHandle> LIOps; 1161 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1162 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1163 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1164 LIOps.push_back(Ops[i]); 1165 Ops.erase(Ops.begin()+i); 1166 --i; --e; 1167 } 1168 1169 // If we found some loop invariants, fold them into the recurrence. 1170 if (!LIOps.empty()) { 1171 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1172 LIOps.push_back(AddRec->getStart()); 1173 1174 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 1175 AddRecOps[0] = getAddExpr(LIOps); 1176 1177 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1178 // If all of the other operands were loop invariant, we are done. 1179 if (Ops.size() == 1) return NewRec; 1180 1181 // Otherwise, add the folded AddRec by the non-liv parts. 1182 for (unsigned i = 0;; ++i) 1183 if (Ops[i] == AddRec) { 1184 Ops[i] = NewRec; 1185 break; 1186 } 1187 return getAddExpr(Ops); 1188 } 1189 1190 // Okay, if there weren't any loop invariants to be folded, check to see if 1191 // there are multiple AddRec's with the same loop induction variable being 1192 // added together. If so, we can fold them. 1193 for (unsigned OtherIdx = Idx+1; 1194 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1195 if (OtherIdx != Idx) { 1196 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1197 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1198 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1199 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 1200 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1201 if (i >= NewOps.size()) { 1202 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1203 OtherAddRec->op_end()); 1204 break; 1205 } 1206 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1207 } 1208 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1209 1210 if (Ops.size() == 2) return NewAddRec; 1211 1212 Ops.erase(Ops.begin()+Idx); 1213 Ops.erase(Ops.begin()+OtherIdx-1); 1214 Ops.push_back(NewAddRec); 1215 return getAddExpr(Ops); 1216 } 1217 } 1218 1219 // Otherwise couldn't fold anything into this recurrence. Move onto the 1220 // next one. 1221 } 1222 1223 // Okay, it looks like we really DO need an add expr. Check to see if we 1224 // already have one, otherwise create a new one. 1225 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1226 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1227 SCEVOps)]; 1228 if (Result == 0) Result = new SCEVAddExpr(Ops); 1229 return Result; 1230 } 1231 1232 1233 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1234 /// possible. 1235 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 1236 assert(!Ops.empty() && "Cannot get empty mul!"); 1237 #ifndef NDEBUG 1238 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1239 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1240 getEffectiveSCEVType(Ops[0]->getType()) && 1241 "SCEVMulExpr operand types don't match!"); 1242 #endif 1243 1244 // Sort by complexity, this groups all similar expression types together. 1245 GroupByComplexity(Ops, LI); 1246 1247 // If there are any constants, fold them together. 1248 unsigned Idx = 0; 1249 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1250 1251 // C1*(C2+V) -> C1*C2 + C1*V 1252 if (Ops.size() == 2) 1253 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1254 if (Add->getNumOperands() == 2 && 1255 isa<SCEVConstant>(Add->getOperand(0))) 1256 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1257 getMulExpr(LHSC, Add->getOperand(1))); 1258 1259 1260 ++Idx; 1261 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1262 // We found two constants, fold them together! 1263 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1264 RHSC->getValue()->getValue()); 1265 Ops[0] = getConstant(Fold); 1266 Ops.erase(Ops.begin()+1); // Erase the folded element 1267 if (Ops.size() == 1) return Ops[0]; 1268 LHSC = cast<SCEVConstant>(Ops[0]); 1269 } 1270 1271 // If we are left with a constant one being multiplied, strip it off. 1272 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1273 Ops.erase(Ops.begin()); 1274 --Idx; 1275 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1276 // If we have a multiply of zero, it will always be zero. 1277 return Ops[0]; 1278 } 1279 } 1280 1281 // Skip over the add expression until we get to a multiply. 1282 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1283 ++Idx; 1284 1285 if (Ops.size() == 1) 1286 return Ops[0]; 1287 1288 // If there are mul operands inline them all into this expression. 1289 if (Idx < Ops.size()) { 1290 bool DeletedMul = false; 1291 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1292 // If we have an mul, expand the mul operands onto the end of the operands 1293 // list. 1294 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1295 Ops.erase(Ops.begin()+Idx); 1296 DeletedMul = true; 1297 } 1298 1299 // If we deleted at least one mul, we added operands to the end of the list, 1300 // and they are not necessarily sorted. Recurse to resort and resimplify 1301 // any operands we just aquired. 1302 if (DeletedMul) 1303 return getMulExpr(Ops); 1304 } 1305 1306 // If there are any add recurrences in the operands list, see if any other 1307 // added values are loop invariant. If so, we can fold them into the 1308 // recurrence. 1309 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1310 ++Idx; 1311 1312 // Scan over all recurrences, trying to fold loop invariants into them. 1313 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1314 // Scan all of the other operands to this mul and add them to the vector if 1315 // they are loop invariant w.r.t. the recurrence. 1316 std::vector<SCEVHandle> LIOps; 1317 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1318 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1319 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1320 LIOps.push_back(Ops[i]); 1321 Ops.erase(Ops.begin()+i); 1322 --i; --e; 1323 } 1324 1325 // If we found some loop invariants, fold them into the recurrence. 1326 if (!LIOps.empty()) { 1327 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1328 std::vector<SCEVHandle> NewOps; 1329 NewOps.reserve(AddRec->getNumOperands()); 1330 if (LIOps.size() == 1) { 1331 const SCEV *Scale = LIOps[0]; 1332 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1333 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1334 } else { 1335 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1336 std::vector<SCEVHandle> MulOps(LIOps); 1337 MulOps.push_back(AddRec->getOperand(i)); 1338 NewOps.push_back(getMulExpr(MulOps)); 1339 } 1340 } 1341 1342 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1343 1344 // If all of the other operands were loop invariant, we are done. 1345 if (Ops.size() == 1) return NewRec; 1346 1347 // Otherwise, multiply the folded AddRec by the non-liv parts. 1348 for (unsigned i = 0;; ++i) 1349 if (Ops[i] == AddRec) { 1350 Ops[i] = NewRec; 1351 break; 1352 } 1353 return getMulExpr(Ops); 1354 } 1355 1356 // Okay, if there weren't any loop invariants to be folded, check to see if 1357 // there are multiple AddRec's with the same loop induction variable being 1358 // multiplied together. If so, we can fold them. 1359 for (unsigned OtherIdx = Idx+1; 1360 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1361 if (OtherIdx != Idx) { 1362 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1363 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1364 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1365 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1366 SCEVHandle NewStart = getMulExpr(F->getStart(), 1367 G->getStart()); 1368 SCEVHandle B = F->getStepRecurrence(*this); 1369 SCEVHandle D = G->getStepRecurrence(*this); 1370 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1371 getMulExpr(G, B), 1372 getMulExpr(B, D)); 1373 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1374 F->getLoop()); 1375 if (Ops.size() == 2) return NewAddRec; 1376 1377 Ops.erase(Ops.begin()+Idx); 1378 Ops.erase(Ops.begin()+OtherIdx-1); 1379 Ops.push_back(NewAddRec); 1380 return getMulExpr(Ops); 1381 } 1382 } 1383 1384 // Otherwise couldn't fold anything into this recurrence. Move onto the 1385 // next one. 1386 } 1387 1388 // Okay, it looks like we really DO need an mul expr. Check to see if we 1389 // already have one, otherwise create a new one. 1390 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1391 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1392 SCEVOps)]; 1393 if (Result == 0) 1394 Result = new SCEVMulExpr(Ops); 1395 return Result; 1396 } 1397 1398 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1399 /// possible. 1400 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1401 const SCEVHandle &RHS) { 1402 assert(getEffectiveSCEVType(LHS->getType()) == 1403 getEffectiveSCEVType(RHS->getType()) && 1404 "SCEVUDivExpr operand types don't match!"); 1405 1406 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1407 if (RHSC->getValue()->equalsInt(1)) 1408 return LHS; // X udiv 1 --> x 1409 if (RHSC->isZero()) 1410 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1411 1412 // Determine if the division can be folded into the operands of 1413 // its operands. 1414 // TODO: Generalize this to non-constants by using known-bits information. 1415 const Type *Ty = LHS->getType(); 1416 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1417 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1418 // For non-power-of-two values, effectively round the value up to the 1419 // nearest power of two. 1420 if (!RHSC->getValue()->getValue().isPowerOf2()) 1421 ++MaxShiftAmt; 1422 const IntegerType *ExtTy = 1423 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1424 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1425 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1426 if (const SCEVConstant *Step = 1427 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1428 if (!Step->getValue()->getValue() 1429 .urem(RHSC->getValue()->getValue()) && 1430 getZeroExtendExpr(AR, ExtTy) == 1431 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1432 getZeroExtendExpr(Step, ExtTy), 1433 AR->getLoop())) { 1434 std::vector<SCEVHandle> Operands; 1435 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1436 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1437 return getAddRecExpr(Operands, AR->getLoop()); 1438 } 1439 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1440 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1441 std::vector<SCEVHandle> Operands; 1442 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1443 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1444 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1445 // Find an operand that's safely divisible. 1446 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1447 SCEVHandle Op = M->getOperand(i); 1448 SCEVHandle Div = getUDivExpr(Op, RHSC); 1449 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1450 Operands = M->getOperands(); 1451 Operands[i] = Div; 1452 return getMulExpr(Operands); 1453 } 1454 } 1455 } 1456 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1457 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1458 std::vector<SCEVHandle> Operands; 1459 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1460 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1461 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1462 Operands.clear(); 1463 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1464 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1465 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1466 break; 1467 Operands.push_back(Op); 1468 } 1469 if (Operands.size() == A->getNumOperands()) 1470 return getAddExpr(Operands); 1471 } 1472 } 1473 1474 // Fold if both operands are constant. 1475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1476 Constant *LHSCV = LHSC->getValue(); 1477 Constant *RHSCV = RHSC->getValue(); 1478 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1479 } 1480 } 1481 1482 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1483 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1484 return Result; 1485 } 1486 1487 1488 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1489 /// Simplify the expression as much as possible. 1490 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1491 const SCEVHandle &Step, const Loop *L) { 1492 std::vector<SCEVHandle> Operands; 1493 Operands.push_back(Start); 1494 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1495 if (StepChrec->getLoop() == L) { 1496 Operands.insert(Operands.end(), StepChrec->op_begin(), 1497 StepChrec->op_end()); 1498 return getAddRecExpr(Operands, L); 1499 } 1500 1501 Operands.push_back(Step); 1502 return getAddRecExpr(Operands, L); 1503 } 1504 1505 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1506 /// Simplify the expression as much as possible. 1507 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1508 const Loop *L) { 1509 if (Operands.size() == 1) return Operands[0]; 1510 #ifndef NDEBUG 1511 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1512 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1513 getEffectiveSCEVType(Operands[0]->getType()) && 1514 "SCEVAddRecExpr operand types don't match!"); 1515 #endif 1516 1517 if (Operands.back()->isZero()) { 1518 Operands.pop_back(); 1519 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1520 } 1521 1522 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1523 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1524 const Loop* NestedLoop = NestedAR->getLoop(); 1525 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1526 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1527 NestedAR->op_end()); 1528 SCEVHandle NestedARHandle(NestedAR); 1529 Operands[0] = NestedAR->getStart(); 1530 NestedOperands[0] = getAddRecExpr(Operands, L); 1531 return getAddRecExpr(NestedOperands, NestedLoop); 1532 } 1533 } 1534 1535 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1536 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; 1537 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1538 return Result; 1539 } 1540 1541 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1542 const SCEVHandle &RHS) { 1543 std::vector<SCEVHandle> Ops; 1544 Ops.push_back(LHS); 1545 Ops.push_back(RHS); 1546 return getSMaxExpr(Ops); 1547 } 1548 1549 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1550 assert(!Ops.empty() && "Cannot get empty smax!"); 1551 if (Ops.size() == 1) return Ops[0]; 1552 #ifndef NDEBUG 1553 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1554 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1555 getEffectiveSCEVType(Ops[0]->getType()) && 1556 "SCEVSMaxExpr operand types don't match!"); 1557 #endif 1558 1559 // Sort by complexity, this groups all similar expression types together. 1560 GroupByComplexity(Ops, LI); 1561 1562 // If there are any constants, fold them together. 1563 unsigned Idx = 0; 1564 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1565 ++Idx; 1566 assert(Idx < Ops.size()); 1567 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1568 // We found two constants, fold them together! 1569 ConstantInt *Fold = ConstantInt::get( 1570 APIntOps::smax(LHSC->getValue()->getValue(), 1571 RHSC->getValue()->getValue())); 1572 Ops[0] = getConstant(Fold); 1573 Ops.erase(Ops.begin()+1); // Erase the folded element 1574 if (Ops.size() == 1) return Ops[0]; 1575 LHSC = cast<SCEVConstant>(Ops[0]); 1576 } 1577 1578 // If we are left with a constant -inf, strip it off. 1579 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1580 Ops.erase(Ops.begin()); 1581 --Idx; 1582 } 1583 } 1584 1585 if (Ops.size() == 1) return Ops[0]; 1586 1587 // Find the first SMax 1588 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1589 ++Idx; 1590 1591 // Check to see if one of the operands is an SMax. If so, expand its operands 1592 // onto our operand list, and recurse to simplify. 1593 if (Idx < Ops.size()) { 1594 bool DeletedSMax = false; 1595 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1596 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1597 Ops.erase(Ops.begin()+Idx); 1598 DeletedSMax = true; 1599 } 1600 1601 if (DeletedSMax) 1602 return getSMaxExpr(Ops); 1603 } 1604 1605 // Okay, check to see if the same value occurs in the operand list twice. If 1606 // so, delete one. Since we sorted the list, these values are required to 1607 // be adjacent. 1608 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1609 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1610 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1611 --i; --e; 1612 } 1613 1614 if (Ops.size() == 1) return Ops[0]; 1615 1616 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1617 1618 // Okay, it looks like we really DO need an smax expr. Check to see if we 1619 // already have one, otherwise create a new one. 1620 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1621 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1622 SCEVOps)]; 1623 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1624 return Result; 1625 } 1626 1627 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1628 const SCEVHandle &RHS) { 1629 std::vector<SCEVHandle> Ops; 1630 Ops.push_back(LHS); 1631 Ops.push_back(RHS); 1632 return getUMaxExpr(Ops); 1633 } 1634 1635 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1636 assert(!Ops.empty() && "Cannot get empty umax!"); 1637 if (Ops.size() == 1) return Ops[0]; 1638 #ifndef NDEBUG 1639 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1640 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1641 getEffectiveSCEVType(Ops[0]->getType()) && 1642 "SCEVUMaxExpr operand types don't match!"); 1643 #endif 1644 1645 // Sort by complexity, this groups all similar expression types together. 1646 GroupByComplexity(Ops, LI); 1647 1648 // If there are any constants, fold them together. 1649 unsigned Idx = 0; 1650 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1651 ++Idx; 1652 assert(Idx < Ops.size()); 1653 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1654 // We found two constants, fold them together! 1655 ConstantInt *Fold = ConstantInt::get( 1656 APIntOps::umax(LHSC->getValue()->getValue(), 1657 RHSC->getValue()->getValue())); 1658 Ops[0] = getConstant(Fold); 1659 Ops.erase(Ops.begin()+1); // Erase the folded element 1660 if (Ops.size() == 1) return Ops[0]; 1661 LHSC = cast<SCEVConstant>(Ops[0]); 1662 } 1663 1664 // If we are left with a constant zero, strip it off. 1665 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1666 Ops.erase(Ops.begin()); 1667 --Idx; 1668 } 1669 } 1670 1671 if (Ops.size() == 1) return Ops[0]; 1672 1673 // Find the first UMax 1674 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1675 ++Idx; 1676 1677 // Check to see if one of the operands is a UMax. If so, expand its operands 1678 // onto our operand list, and recurse to simplify. 1679 if (Idx < Ops.size()) { 1680 bool DeletedUMax = false; 1681 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1682 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1683 Ops.erase(Ops.begin()+Idx); 1684 DeletedUMax = true; 1685 } 1686 1687 if (DeletedUMax) 1688 return getUMaxExpr(Ops); 1689 } 1690 1691 // Okay, check to see if the same value occurs in the operand list twice. If 1692 // so, delete one. Since we sorted the list, these values are required to 1693 // be adjacent. 1694 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1695 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1696 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1697 --i; --e; 1698 } 1699 1700 if (Ops.size() == 1) return Ops[0]; 1701 1702 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1703 1704 // Okay, it looks like we really DO need a umax expr. Check to see if we 1705 // already have one, otherwise create a new one. 1706 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1707 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1708 SCEVOps)]; 1709 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1710 return Result; 1711 } 1712 1713 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1714 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1715 return getConstant(CI); 1716 if (isa<ConstantPointerNull>(V)) 1717 return getIntegerSCEV(0, V->getType()); 1718 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1719 if (Result == 0) Result = new SCEVUnknown(V); 1720 return Result; 1721 } 1722 1723 //===----------------------------------------------------------------------===// 1724 // Basic SCEV Analysis and PHI Idiom Recognition Code 1725 // 1726 1727 /// isSCEVable - Test if values of the given type are analyzable within 1728 /// the SCEV framework. This primarily includes integer types, and it 1729 /// can optionally include pointer types if the ScalarEvolution class 1730 /// has access to target-specific information. 1731 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1732 // Integers are always SCEVable. 1733 if (Ty->isInteger()) 1734 return true; 1735 1736 // Pointers are SCEVable if TargetData information is available 1737 // to provide pointer size information. 1738 if (isa<PointerType>(Ty)) 1739 return TD != NULL; 1740 1741 // Otherwise it's not SCEVable. 1742 return false; 1743 } 1744 1745 /// getTypeSizeInBits - Return the size in bits of the specified type, 1746 /// for which isSCEVable must return true. 1747 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1748 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1749 1750 // If we have a TargetData, use it! 1751 if (TD) 1752 return TD->getTypeSizeInBits(Ty); 1753 1754 // Otherwise, we support only integer types. 1755 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1756 return Ty->getPrimitiveSizeInBits(); 1757 } 1758 1759 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1760 /// the given type and which represents how SCEV will treat the given 1761 /// type, for which isSCEVable must return true. For pointer types, 1762 /// this is the pointer-sized integer type. 1763 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1764 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1765 1766 if (Ty->isInteger()) 1767 return Ty; 1768 1769 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1770 return TD->getIntPtrType(); 1771 } 1772 1773 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1774 return UnknownValue; 1775 } 1776 1777 /// hasSCEV - Return true if the SCEV for this value has already been 1778 /// computed. 1779 bool ScalarEvolution::hasSCEV(Value *V) const { 1780 return Scalars.count(V); 1781 } 1782 1783 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1784 /// expression and create a new one. 1785 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1786 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1787 1788 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1789 if (I != Scalars.end()) return I->second; 1790 SCEVHandle S = createSCEV(V); 1791 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1792 return S; 1793 } 1794 1795 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1796 /// specified signed integer value and return a SCEV for the constant. 1797 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1798 Ty = getEffectiveSCEVType(Ty); 1799 Constant *C; 1800 if (Val == 0) 1801 C = Constant::getNullValue(Ty); 1802 else if (Ty->isFloatingPoint()) 1803 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1804 APFloat::IEEEdouble, Val)); 1805 else 1806 C = ConstantInt::get(Ty, Val); 1807 return getUnknown(C); 1808 } 1809 1810 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1811 /// 1812 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 1813 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1814 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 1815 1816 const Type *Ty = V->getType(); 1817 Ty = getEffectiveSCEVType(Ty); 1818 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 1819 } 1820 1821 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1822 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 1823 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1824 return getUnknown(ConstantExpr::getNot(VC->getValue())); 1825 1826 const Type *Ty = V->getType(); 1827 Ty = getEffectiveSCEVType(Ty); 1828 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 1829 return getMinusSCEV(AllOnes, V); 1830 } 1831 1832 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1833 /// 1834 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 1835 const SCEVHandle &RHS) { 1836 // X - Y --> X + -Y 1837 return getAddExpr(LHS, getNegativeSCEV(RHS)); 1838 } 1839 1840 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1841 /// input value to the specified type. If the type must be extended, it is zero 1842 /// extended. 1843 SCEVHandle 1844 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 1845 const Type *Ty) { 1846 const Type *SrcTy = V->getType(); 1847 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1848 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1849 "Cannot truncate or zero extend with non-integer arguments!"); 1850 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1851 return V; // No conversion 1852 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1853 return getTruncateExpr(V, Ty); 1854 return getZeroExtendExpr(V, Ty); 1855 } 1856 1857 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 1858 /// input value to the specified type. If the type must be extended, it is sign 1859 /// extended. 1860 SCEVHandle 1861 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 1862 const Type *Ty) { 1863 const Type *SrcTy = V->getType(); 1864 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1865 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1866 "Cannot truncate or zero extend with non-integer arguments!"); 1867 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1868 return V; // No conversion 1869 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1870 return getTruncateExpr(V, Ty); 1871 return getSignExtendExpr(V, Ty); 1872 } 1873 1874 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 1875 /// input value to the specified type. If the type must be extended, it is zero 1876 /// extended. The conversion must not be narrowing. 1877 SCEVHandle 1878 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 1879 const Type *SrcTy = V->getType(); 1880 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1881 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1882 "Cannot noop or zero extend with non-integer arguments!"); 1883 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 1884 "getNoopOrZeroExtend cannot truncate!"); 1885 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1886 return V; // No conversion 1887 return getZeroExtendExpr(V, Ty); 1888 } 1889 1890 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 1891 /// input value to the specified type. If the type must be extended, it is sign 1892 /// extended. The conversion must not be narrowing. 1893 SCEVHandle 1894 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { 1895 const Type *SrcTy = V->getType(); 1896 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1897 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1898 "Cannot noop or sign extend with non-integer arguments!"); 1899 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 1900 "getNoopOrSignExtend cannot truncate!"); 1901 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1902 return V; // No conversion 1903 return getSignExtendExpr(V, Ty); 1904 } 1905 1906 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 1907 /// input value to the specified type. The conversion must not be widening. 1908 SCEVHandle 1909 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { 1910 const Type *SrcTy = V->getType(); 1911 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1912 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1913 "Cannot truncate or noop with non-integer arguments!"); 1914 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 1915 "getTruncateOrNoop cannot extend!"); 1916 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1917 return V; // No conversion 1918 return getTruncateExpr(V, Ty); 1919 } 1920 1921 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1922 /// the specified instruction and replaces any references to the symbolic value 1923 /// SymName with the specified value. This is used during PHI resolution. 1924 void ScalarEvolution:: 1925 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1926 const SCEVHandle &NewVal) { 1927 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 1928 Scalars.find(SCEVCallbackVH(I, this)); 1929 if (SI == Scalars.end()) return; 1930 1931 SCEVHandle NV = 1932 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 1933 if (NV == SI->second) return; // No change. 1934 1935 SI->second = NV; // Update the scalars map! 1936 1937 // Any instruction values that use this instruction might also need to be 1938 // updated! 1939 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1940 UI != E; ++UI) 1941 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1942 } 1943 1944 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1945 /// a loop header, making it a potential recurrence, or it doesn't. 1946 /// 1947 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 1948 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1949 if (const Loop *L = LI->getLoopFor(PN->getParent())) 1950 if (L->getHeader() == PN->getParent()) { 1951 // If it lives in the loop header, it has two incoming values, one 1952 // from outside the loop, and one from inside. 1953 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1954 unsigned BackEdge = IncomingEdge^1; 1955 1956 // While we are analyzing this PHI node, handle its value symbolically. 1957 SCEVHandle SymbolicName = getUnknown(PN); 1958 assert(Scalars.find(PN) == Scalars.end() && 1959 "PHI node already processed?"); 1960 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 1961 1962 // Using this symbolic name for the PHI, analyze the value coming around 1963 // the back-edge. 1964 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1965 1966 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1967 // has a special value for the first iteration of the loop. 1968 1969 // If the value coming around the backedge is an add with the symbolic 1970 // value we just inserted, then we found a simple induction variable! 1971 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1972 // If there is a single occurrence of the symbolic value, replace it 1973 // with a recurrence. 1974 unsigned FoundIndex = Add->getNumOperands(); 1975 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1976 if (Add->getOperand(i) == SymbolicName) 1977 if (FoundIndex == e) { 1978 FoundIndex = i; 1979 break; 1980 } 1981 1982 if (FoundIndex != Add->getNumOperands()) { 1983 // Create an add with everything but the specified operand. 1984 std::vector<SCEVHandle> Ops; 1985 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1986 if (i != FoundIndex) 1987 Ops.push_back(Add->getOperand(i)); 1988 SCEVHandle Accum = getAddExpr(Ops); 1989 1990 // This is not a valid addrec if the step amount is varying each 1991 // loop iteration, but is not itself an addrec in this loop. 1992 if (Accum->isLoopInvariant(L) || 1993 (isa<SCEVAddRecExpr>(Accum) && 1994 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1995 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1996 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 1997 1998 // Okay, for the entire analysis of this edge we assumed the PHI 1999 // to be symbolic. We now need to go back and update all of the 2000 // entries for the scalars that use the PHI (except for the PHI 2001 // itself) to use the new analyzed value instead of the "symbolic" 2002 // value. 2003 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2004 return PHISCEV; 2005 } 2006 } 2007 } else if (const SCEVAddRecExpr *AddRec = 2008 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2009 // Otherwise, this could be a loop like this: 2010 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2011 // In this case, j = {1,+,1} and BEValue is j. 2012 // Because the other in-value of i (0) fits the evolution of BEValue 2013 // i really is an addrec evolution. 2014 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2015 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2016 2017 // If StartVal = j.start - j.stride, we can use StartVal as the 2018 // initial step of the addrec evolution. 2019 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2020 AddRec->getOperand(1))) { 2021 SCEVHandle PHISCEV = 2022 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2023 2024 // Okay, for the entire analysis of this edge we assumed the PHI 2025 // to be symbolic. We now need to go back and update all of the 2026 // entries for the scalars that use the PHI (except for the PHI 2027 // itself) to use the new analyzed value instead of the "symbolic" 2028 // value. 2029 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2030 return PHISCEV; 2031 } 2032 } 2033 } 2034 2035 return SymbolicName; 2036 } 2037 2038 // If it's not a loop phi, we can't handle it yet. 2039 return getUnknown(PN); 2040 } 2041 2042 /// createNodeForGEP - Expand GEP instructions into add and multiply 2043 /// operations. This allows them to be analyzed by regular SCEV code. 2044 /// 2045 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 2046 2047 const Type *IntPtrTy = TD->getIntPtrType(); 2048 Value *Base = GEP->getOperand(0); 2049 // Don't attempt to analyze GEPs over unsized objects. 2050 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2051 return getUnknown(GEP); 2052 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 2053 gep_type_iterator GTI = gep_type_begin(GEP); 2054 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2055 E = GEP->op_end(); 2056 I != E; ++I) { 2057 Value *Index = *I; 2058 // Compute the (potentially symbolic) offset in bytes for this index. 2059 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2060 // For a struct, add the member offset. 2061 const StructLayout &SL = *TD->getStructLayout(STy); 2062 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2063 uint64_t Offset = SL.getElementOffset(FieldNo); 2064 TotalOffset = getAddExpr(TotalOffset, 2065 getIntegerSCEV(Offset, IntPtrTy)); 2066 } else { 2067 // For an array, add the element offset, explicitly scaled. 2068 SCEVHandle LocalOffset = getSCEV(Index); 2069 if (!isa<PointerType>(LocalOffset->getType())) 2070 // Getelementptr indicies are signed. 2071 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2072 IntPtrTy); 2073 LocalOffset = 2074 getMulExpr(LocalOffset, 2075 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2076 IntPtrTy)); 2077 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2078 } 2079 } 2080 return getAddExpr(getSCEV(Base), TotalOffset); 2081 } 2082 2083 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2084 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2085 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2086 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2087 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { 2088 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2089 return C->getValue()->getValue().countTrailingZeros(); 2090 2091 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2092 return std::min(GetMinTrailingZeros(T->getOperand(), SE), 2093 (uint32_t)SE.getTypeSizeInBits(T->getType())); 2094 2095 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2096 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 2097 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 2098 SE.getTypeSizeInBits(E->getType()) : OpRes; 2099 } 2100 2101 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2102 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 2103 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 2104 SE.getTypeSizeInBits(E->getType()) : OpRes; 2105 } 2106 2107 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2108 // The result is the min of all operands results. 2109 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2110 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2111 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2112 return MinOpRes; 2113 } 2114 2115 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2116 // The result is the sum of all operands results. 2117 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2118 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); 2119 for (unsigned i = 1, e = M->getNumOperands(); 2120 SumOpRes != BitWidth && i != e; ++i) 2121 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), 2122 BitWidth); 2123 return SumOpRes; 2124 } 2125 2126 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2127 // The result is the min of all operands results. 2128 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2129 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2130 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2131 return MinOpRes; 2132 } 2133 2134 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2135 // The result is the min of all operands results. 2136 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2137 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2138 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2139 return MinOpRes; 2140 } 2141 2142 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2143 // The result is the min of all operands results. 2144 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2145 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2146 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2147 return MinOpRes; 2148 } 2149 2150 // SCEVUDivExpr, SCEVUnknown 2151 return 0; 2152 } 2153 2154 /// createSCEV - We know that there is no SCEV for the specified value. 2155 /// Analyze the expression. 2156 /// 2157 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2158 if (!isSCEVable(V->getType())) 2159 return getUnknown(V); 2160 2161 unsigned Opcode = Instruction::UserOp1; 2162 if (Instruction *I = dyn_cast<Instruction>(V)) 2163 Opcode = I->getOpcode(); 2164 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2165 Opcode = CE->getOpcode(); 2166 else 2167 return getUnknown(V); 2168 2169 User *U = cast<User>(V); 2170 switch (Opcode) { 2171 case Instruction::Add: 2172 return getAddExpr(getSCEV(U->getOperand(0)), 2173 getSCEV(U->getOperand(1))); 2174 case Instruction::Mul: 2175 return getMulExpr(getSCEV(U->getOperand(0)), 2176 getSCEV(U->getOperand(1))); 2177 case Instruction::UDiv: 2178 return getUDivExpr(getSCEV(U->getOperand(0)), 2179 getSCEV(U->getOperand(1))); 2180 case Instruction::Sub: 2181 return getMinusSCEV(getSCEV(U->getOperand(0)), 2182 getSCEV(U->getOperand(1))); 2183 case Instruction::And: 2184 // For an expression like x&255 that merely masks off the high bits, 2185 // use zext(trunc(x)) as the SCEV expression. 2186 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2187 if (CI->isNullValue()) 2188 return getSCEV(U->getOperand(1)); 2189 if (CI->isAllOnesValue()) 2190 return getSCEV(U->getOperand(0)); 2191 const APInt &A = CI->getValue(); 2192 unsigned Ones = A.countTrailingOnes(); 2193 if (APIntOps::isMask(Ones, A)) 2194 return 2195 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2196 IntegerType::get(Ones)), 2197 U->getType()); 2198 } 2199 break; 2200 case Instruction::Or: 2201 // If the RHS of the Or is a constant, we may have something like: 2202 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2203 // optimizations will transparently handle this case. 2204 // 2205 // In order for this transformation to be safe, the LHS must be of the 2206 // form X*(2^n) and the Or constant must be less than 2^n. 2207 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2208 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2209 const APInt &CIVal = CI->getValue(); 2210 if (GetMinTrailingZeros(LHS, *this) >= 2211 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2212 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2213 } 2214 break; 2215 case Instruction::Xor: 2216 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2217 // If the RHS of the xor is a signbit, then this is just an add. 2218 // Instcombine turns add of signbit into xor as a strength reduction step. 2219 if (CI->getValue().isSignBit()) 2220 return getAddExpr(getSCEV(U->getOperand(0)), 2221 getSCEV(U->getOperand(1))); 2222 2223 // If the RHS of xor is -1, then this is a not operation. 2224 if (CI->isAllOnesValue()) 2225 return getNotSCEV(getSCEV(U->getOperand(0))); 2226 2227 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2228 // This is a variant of the check for xor with -1, and it handles 2229 // the case where instcombine has trimmed non-demanded bits out 2230 // of an xor with -1. 2231 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2232 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2233 if (BO->getOpcode() == Instruction::And && 2234 LCI->getValue() == CI->getValue()) 2235 if (const SCEVZeroExtendExpr *Z = 2236 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) 2237 return getZeroExtendExpr(getNotSCEV(Z->getOperand()), 2238 U->getType()); 2239 } 2240 break; 2241 2242 case Instruction::Shl: 2243 // Turn shift left of a constant amount into a multiply. 2244 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2245 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2246 Constant *X = ConstantInt::get( 2247 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2248 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2249 } 2250 break; 2251 2252 case Instruction::LShr: 2253 // Turn logical shift right of a constant into a unsigned divide. 2254 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2255 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2256 Constant *X = ConstantInt::get( 2257 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2258 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2259 } 2260 break; 2261 2262 case Instruction::AShr: 2263 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2264 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2265 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2266 if (L->getOpcode() == Instruction::Shl && 2267 L->getOperand(1) == U->getOperand(1)) { 2268 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2269 uint64_t Amt = BitWidth - CI->getZExtValue(); 2270 if (Amt == BitWidth) 2271 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2272 if (Amt > BitWidth) 2273 return getIntegerSCEV(0, U->getType()); // value is undefined 2274 return 2275 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2276 IntegerType::get(Amt)), 2277 U->getType()); 2278 } 2279 break; 2280 2281 case Instruction::Trunc: 2282 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2283 2284 case Instruction::ZExt: 2285 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2286 2287 case Instruction::SExt: 2288 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2289 2290 case Instruction::BitCast: 2291 // BitCasts are no-op casts so we just eliminate the cast. 2292 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2293 return getSCEV(U->getOperand(0)); 2294 break; 2295 2296 case Instruction::IntToPtr: 2297 if (!TD) break; // Without TD we can't analyze pointers. 2298 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2299 TD->getIntPtrType()); 2300 2301 case Instruction::PtrToInt: 2302 if (!TD) break; // Without TD we can't analyze pointers. 2303 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2304 U->getType()); 2305 2306 case Instruction::GetElementPtr: 2307 if (!TD) break; // Without TD we can't analyze pointers. 2308 return createNodeForGEP(U); 2309 2310 case Instruction::PHI: 2311 return createNodeForPHI(cast<PHINode>(U)); 2312 2313 case Instruction::Select: 2314 // This could be a smax or umax that was lowered earlier. 2315 // Try to recover it. 2316 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2317 Value *LHS = ICI->getOperand(0); 2318 Value *RHS = ICI->getOperand(1); 2319 switch (ICI->getPredicate()) { 2320 case ICmpInst::ICMP_SLT: 2321 case ICmpInst::ICMP_SLE: 2322 std::swap(LHS, RHS); 2323 // fall through 2324 case ICmpInst::ICMP_SGT: 2325 case ICmpInst::ICMP_SGE: 2326 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2327 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2328 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2329 // ~smax(~x, ~y) == smin(x, y). 2330 return getNotSCEV(getSMaxExpr( 2331 getNotSCEV(getSCEV(LHS)), 2332 getNotSCEV(getSCEV(RHS)))); 2333 break; 2334 case ICmpInst::ICMP_ULT: 2335 case ICmpInst::ICMP_ULE: 2336 std::swap(LHS, RHS); 2337 // fall through 2338 case ICmpInst::ICMP_UGT: 2339 case ICmpInst::ICMP_UGE: 2340 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2341 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2342 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2343 // ~umax(~x, ~y) == umin(x, y) 2344 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2345 getNotSCEV(getSCEV(RHS)))); 2346 break; 2347 default: 2348 break; 2349 } 2350 } 2351 2352 default: // We cannot analyze this expression. 2353 break; 2354 } 2355 2356 return getUnknown(V); 2357 } 2358 2359 2360 2361 //===----------------------------------------------------------------------===// 2362 // Iteration Count Computation Code 2363 // 2364 2365 /// getBackedgeTakenCount - If the specified loop has a predictable 2366 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2367 /// object. The backedge-taken count is the number of times the loop header 2368 /// will be branched to from within the loop. This is one less than the 2369 /// trip count of the loop, since it doesn't count the first iteration, 2370 /// when the header is branched to from outside the loop. 2371 /// 2372 /// Note that it is not valid to call this method on a loop without a 2373 /// loop-invariant backedge-taken count (see 2374 /// hasLoopInvariantBackedgeTakenCount). 2375 /// 2376 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2377 return getBackedgeTakenInfo(L).Exact; 2378 } 2379 2380 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2381 /// return the least SCEV value that is known never to be less than the 2382 /// actual backedge taken count. 2383 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2384 return getBackedgeTakenInfo(L).Max; 2385 } 2386 2387 const ScalarEvolution::BackedgeTakenInfo & 2388 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2389 // Initially insert a CouldNotCompute for this loop. If the insertion 2390 // succeeds, procede to actually compute a backedge-taken count and 2391 // update the value. The temporary CouldNotCompute value tells SCEV 2392 // code elsewhere that it shouldn't attempt to request a new 2393 // backedge-taken count, which could result in infinite recursion. 2394 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2395 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2396 if (Pair.second) { 2397 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2398 if (ItCount.Exact != UnknownValue) { 2399 assert(ItCount.Exact->isLoopInvariant(L) && 2400 ItCount.Max->isLoopInvariant(L) && 2401 "Computed trip count isn't loop invariant for loop!"); 2402 ++NumTripCountsComputed; 2403 2404 // Update the value in the map. 2405 Pair.first->second = ItCount; 2406 } else if (isa<PHINode>(L->getHeader()->begin())) { 2407 // Only count loops that have phi nodes as not being computable. 2408 ++NumTripCountsNotComputed; 2409 } 2410 2411 // Now that we know more about the trip count for this loop, forget any 2412 // existing SCEV values for PHI nodes in this loop since they are only 2413 // conservative estimates made without the benefit 2414 // of trip count information. 2415 if (ItCount.hasAnyInfo()) 2416 forgetLoopPHIs(L); 2417 } 2418 return Pair.first->second; 2419 } 2420 2421 /// forgetLoopBackedgeTakenCount - This method should be called by the 2422 /// client when it has changed a loop in a way that may effect 2423 /// ScalarEvolution's ability to compute a trip count, or if the loop 2424 /// is deleted. 2425 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2426 BackedgeTakenCounts.erase(L); 2427 forgetLoopPHIs(L); 2428 } 2429 2430 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2431 /// PHI nodes in the given loop. This is used when the trip count of 2432 /// the loop may have changed. 2433 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2434 BasicBlock *Header = L->getHeader(); 2435 2436 // Push all Loop-header PHIs onto the Worklist stack, except those 2437 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2438 // a PHI either means that it has an unrecognized structure, or it's 2439 // a PHI that's in the progress of being computed by createNodeForPHI. 2440 // In the former case, additional loop trip count information isn't 2441 // going to change anything. In the later case, createNodeForPHI will 2442 // perform the necessary updates on its own when it gets to that point. 2443 SmallVector<Instruction *, 16> Worklist; 2444 for (BasicBlock::iterator I = Header->begin(); 2445 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2446 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); 2447 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2448 Worklist.push_back(PN); 2449 } 2450 2451 while (!Worklist.empty()) { 2452 Instruction *I = Worklist.pop_back_val(); 2453 if (Scalars.erase(I)) 2454 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2455 UI != UE; ++UI) 2456 Worklist.push_back(cast<Instruction>(UI)); 2457 } 2458 } 2459 2460 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2461 /// of the specified loop will execute. 2462 ScalarEvolution::BackedgeTakenInfo 2463 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2464 // If the loop has a non-one exit block count, we can't analyze it. 2465 SmallVector<BasicBlock*, 8> ExitBlocks; 2466 L->getExitBlocks(ExitBlocks); 2467 if (ExitBlocks.size() != 1) return UnknownValue; 2468 2469 // Okay, there is one exit block. Try to find the condition that causes the 2470 // loop to be exited. 2471 BasicBlock *ExitBlock = ExitBlocks[0]; 2472 2473 BasicBlock *ExitingBlock = 0; 2474 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 2475 PI != E; ++PI) 2476 if (L->contains(*PI)) { 2477 if (ExitingBlock == 0) 2478 ExitingBlock = *PI; 2479 else 2480 return UnknownValue; // More than one block exiting! 2481 } 2482 assert(ExitingBlock && "No exits from loop, something is broken!"); 2483 2484 // Okay, we've computed the exiting block. See what condition causes us to 2485 // exit. 2486 // 2487 // FIXME: we should be able to handle switch instructions (with a single exit) 2488 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2489 if (ExitBr == 0) return UnknownValue; 2490 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2491 2492 // At this point, we know we have a conditional branch that determines whether 2493 // the loop is exited. However, we don't know if the branch is executed each 2494 // time through the loop. If not, then the execution count of the branch will 2495 // not be equal to the trip count of the loop. 2496 // 2497 // Currently we check for this by checking to see if the Exit branch goes to 2498 // the loop header. If so, we know it will always execute the same number of 2499 // times as the loop. We also handle the case where the exit block *is* the 2500 // loop header. This is common for un-rotated loops. More extensive analysis 2501 // could be done to handle more cases here. 2502 if (ExitBr->getSuccessor(0) != L->getHeader() && 2503 ExitBr->getSuccessor(1) != L->getHeader() && 2504 ExitBr->getParent() != L->getHeader()) 2505 return UnknownValue; 2506 2507 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2508 2509 // If it's not an integer or pointer comparison then compute it the hard way. 2510 if (ExitCond == 0) 2511 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2512 ExitBr->getSuccessor(0) == ExitBlock); 2513 2514 // If the condition was exit on true, convert the condition to exit on false 2515 ICmpInst::Predicate Cond; 2516 if (ExitBr->getSuccessor(1) == ExitBlock) 2517 Cond = ExitCond->getPredicate(); 2518 else 2519 Cond = ExitCond->getInversePredicate(); 2520 2521 // Handle common loops like: for (X = "string"; *X; ++X) 2522 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2523 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2524 SCEVHandle ItCnt = 2525 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2526 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2527 } 2528 2529 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2530 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2531 2532 // Try to evaluate any dependencies out of the loop. 2533 LHS = getSCEVAtScope(LHS, L); 2534 RHS = getSCEVAtScope(RHS, L); 2535 2536 // At this point, we would like to compute how many iterations of the 2537 // loop the predicate will return true for these inputs. 2538 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2539 // If there is a loop-invariant, force it into the RHS. 2540 std::swap(LHS, RHS); 2541 Cond = ICmpInst::getSwappedPredicate(Cond); 2542 } 2543 2544 // If we have a comparison of a chrec against a constant, try to use value 2545 // ranges to answer this query. 2546 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2547 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2548 if (AddRec->getLoop() == L) { 2549 // Form the constant range. 2550 ConstantRange CompRange( 2551 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 2552 2553 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2554 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2555 } 2556 2557 switch (Cond) { 2558 case ICmpInst::ICMP_NE: { // while (X != Y) 2559 // Convert to: while (X-Y != 0) 2560 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2561 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2562 break; 2563 } 2564 case ICmpInst::ICMP_EQ: { 2565 // Convert to: while (X-Y == 0) // while (X == Y) 2566 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2567 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2568 break; 2569 } 2570 case ICmpInst::ICMP_SLT: { 2571 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 2572 if (BTI.hasAnyInfo()) return BTI; 2573 break; 2574 } 2575 case ICmpInst::ICMP_SGT: { 2576 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2577 getNotSCEV(RHS), L, true); 2578 if (BTI.hasAnyInfo()) return BTI; 2579 break; 2580 } 2581 case ICmpInst::ICMP_ULT: { 2582 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 2583 if (BTI.hasAnyInfo()) return BTI; 2584 break; 2585 } 2586 case ICmpInst::ICMP_UGT: { 2587 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2588 getNotSCEV(RHS), L, false); 2589 if (BTI.hasAnyInfo()) return BTI; 2590 break; 2591 } 2592 default: 2593 #if 0 2594 errs() << "ComputeBackedgeTakenCount "; 2595 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2596 errs() << "[unsigned] "; 2597 errs() << *LHS << " " 2598 << Instruction::getOpcodeName(Instruction::ICmp) 2599 << " " << *RHS << "\n"; 2600 #endif 2601 break; 2602 } 2603 return 2604 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2605 ExitBr->getSuccessor(0) == ExitBlock); 2606 } 2607 2608 static ConstantInt * 2609 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2610 ScalarEvolution &SE) { 2611 SCEVHandle InVal = SE.getConstant(C); 2612 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2613 assert(isa<SCEVConstant>(Val) && 2614 "Evaluation of SCEV at constant didn't fold correctly?"); 2615 return cast<SCEVConstant>(Val)->getValue(); 2616 } 2617 2618 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2619 /// and a GEP expression (missing the pointer index) indexing into it, return 2620 /// the addressed element of the initializer or null if the index expression is 2621 /// invalid. 2622 static Constant * 2623 GetAddressedElementFromGlobal(GlobalVariable *GV, 2624 const std::vector<ConstantInt*> &Indices) { 2625 Constant *Init = GV->getInitializer(); 2626 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2627 uint64_t Idx = Indices[i]->getZExtValue(); 2628 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2629 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2630 Init = cast<Constant>(CS->getOperand(Idx)); 2631 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2632 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2633 Init = cast<Constant>(CA->getOperand(Idx)); 2634 } else if (isa<ConstantAggregateZero>(Init)) { 2635 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2636 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2637 Init = Constant::getNullValue(STy->getElementType(Idx)); 2638 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2639 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2640 Init = Constant::getNullValue(ATy->getElementType()); 2641 } else { 2642 assert(0 && "Unknown constant aggregate type!"); 2643 } 2644 return 0; 2645 } else { 2646 return 0; // Unknown initializer type 2647 } 2648 } 2649 return Init; 2650 } 2651 2652 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2653 /// 'icmp op load X, cst', try to see if we can compute the backedge 2654 /// execution count. 2655 SCEVHandle ScalarEvolution:: 2656 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2657 const Loop *L, 2658 ICmpInst::Predicate predicate) { 2659 if (LI->isVolatile()) return UnknownValue; 2660 2661 // Check to see if the loaded pointer is a getelementptr of a global. 2662 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2663 if (!GEP) return UnknownValue; 2664 2665 // Make sure that it is really a constant global we are gepping, with an 2666 // initializer, and make sure the first IDX is really 0. 2667 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2668 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2669 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2670 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2671 return UnknownValue; 2672 2673 // Okay, we allow one non-constant index into the GEP instruction. 2674 Value *VarIdx = 0; 2675 std::vector<ConstantInt*> Indexes; 2676 unsigned VarIdxNum = 0; 2677 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2678 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2679 Indexes.push_back(CI); 2680 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2681 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2682 VarIdx = GEP->getOperand(i); 2683 VarIdxNum = i-2; 2684 Indexes.push_back(0); 2685 } 2686 2687 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2688 // Check to see if X is a loop variant variable value now. 2689 SCEVHandle Idx = getSCEV(VarIdx); 2690 Idx = getSCEVAtScope(Idx, L); 2691 2692 // We can only recognize very limited forms of loop index expressions, in 2693 // particular, only affine AddRec's like {C1,+,C2}. 2694 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2695 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2696 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2697 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2698 return UnknownValue; 2699 2700 unsigned MaxSteps = MaxBruteForceIterations; 2701 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2702 ConstantInt *ItCst = 2703 ConstantInt::get(IdxExpr->getType(), IterationNum); 2704 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 2705 2706 // Form the GEP offset. 2707 Indexes[VarIdxNum] = Val; 2708 2709 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2710 if (Result == 0) break; // Cannot compute! 2711 2712 // Evaluate the condition for this iteration. 2713 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2714 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2715 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2716 #if 0 2717 errs() << "\n***\n*** Computed loop count " << *ItCst 2718 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2719 << "***\n"; 2720 #endif 2721 ++NumArrayLenItCounts; 2722 return getConstant(ItCst); // Found terminating iteration! 2723 } 2724 } 2725 return UnknownValue; 2726 } 2727 2728 2729 /// CanConstantFold - Return true if we can constant fold an instruction of the 2730 /// specified type, assuming that all operands were constants. 2731 static bool CanConstantFold(const Instruction *I) { 2732 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2733 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2734 return true; 2735 2736 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2737 if (const Function *F = CI->getCalledFunction()) 2738 return canConstantFoldCallTo(F); 2739 return false; 2740 } 2741 2742 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2743 /// in the loop that V is derived from. We allow arbitrary operations along the 2744 /// way, but the operands of an operation must either be constants or a value 2745 /// derived from a constant PHI. If this expression does not fit with these 2746 /// constraints, return null. 2747 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2748 // If this is not an instruction, or if this is an instruction outside of the 2749 // loop, it can't be derived from a loop PHI. 2750 Instruction *I = dyn_cast<Instruction>(V); 2751 if (I == 0 || !L->contains(I->getParent())) return 0; 2752 2753 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2754 if (L->getHeader() == I->getParent()) 2755 return PN; 2756 else 2757 // We don't currently keep track of the control flow needed to evaluate 2758 // PHIs, so we cannot handle PHIs inside of loops. 2759 return 0; 2760 } 2761 2762 // If we won't be able to constant fold this expression even if the operands 2763 // are constants, return early. 2764 if (!CanConstantFold(I)) return 0; 2765 2766 // Otherwise, we can evaluate this instruction if all of its operands are 2767 // constant or derived from a PHI node themselves. 2768 PHINode *PHI = 0; 2769 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2770 if (!(isa<Constant>(I->getOperand(Op)) || 2771 isa<GlobalValue>(I->getOperand(Op)))) { 2772 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2773 if (P == 0) return 0; // Not evolving from PHI 2774 if (PHI == 0) 2775 PHI = P; 2776 else if (PHI != P) 2777 return 0; // Evolving from multiple different PHIs. 2778 } 2779 2780 // This is a expression evolving from a constant PHI! 2781 return PHI; 2782 } 2783 2784 /// EvaluateExpression - Given an expression that passes the 2785 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2786 /// in the loop has the value PHIVal. If we can't fold this expression for some 2787 /// reason, return null. 2788 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2789 if (isa<PHINode>(V)) return PHIVal; 2790 if (Constant *C = dyn_cast<Constant>(V)) return C; 2791 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2792 Instruction *I = cast<Instruction>(V); 2793 2794 std::vector<Constant*> Operands; 2795 Operands.resize(I->getNumOperands()); 2796 2797 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2798 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2799 if (Operands[i] == 0) return 0; 2800 } 2801 2802 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2803 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2804 &Operands[0], Operands.size()); 2805 else 2806 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2807 &Operands[0], Operands.size()); 2808 } 2809 2810 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2811 /// in the header of its containing loop, we know the loop executes a 2812 /// constant number of times, and the PHI node is just a recurrence 2813 /// involving constants, fold it. 2814 Constant *ScalarEvolution:: 2815 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 2816 std::map<PHINode*, Constant*>::iterator I = 2817 ConstantEvolutionLoopExitValue.find(PN); 2818 if (I != ConstantEvolutionLoopExitValue.end()) 2819 return I->second; 2820 2821 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 2822 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2823 2824 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2825 2826 // Since the loop is canonicalized, the PHI node must have two entries. One 2827 // entry must be a constant (coming in from outside of the loop), and the 2828 // second must be derived from the same PHI. 2829 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2830 Constant *StartCST = 2831 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2832 if (StartCST == 0) 2833 return RetVal = 0; // Must be a constant. 2834 2835 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2836 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2837 if (PN2 != PN) 2838 return RetVal = 0; // Not derived from same PHI. 2839 2840 // Execute the loop symbolically to determine the exit value. 2841 if (BEs.getActiveBits() >= 32) 2842 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2843 2844 unsigned NumIterations = BEs.getZExtValue(); // must be in range 2845 unsigned IterationNum = 0; 2846 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2847 if (IterationNum == NumIterations) 2848 return RetVal = PHIVal; // Got exit value! 2849 2850 // Compute the value of the PHI node for the next iteration. 2851 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2852 if (NextPHI == PHIVal) 2853 return RetVal = NextPHI; // Stopped evolving! 2854 if (NextPHI == 0) 2855 return 0; // Couldn't evaluate! 2856 PHIVal = NextPHI; 2857 } 2858 } 2859 2860 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 2861 /// constant number of times (the condition evolves only from constants), 2862 /// try to evaluate a few iterations of the loop until we get the exit 2863 /// condition gets a value of ExitWhen (true or false). If we cannot 2864 /// evaluate the trip count of the loop, return UnknownValue. 2865 SCEVHandle ScalarEvolution:: 2866 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2867 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2868 if (PN == 0) return UnknownValue; 2869 2870 // Since the loop is canonicalized, the PHI node must have two entries. One 2871 // entry must be a constant (coming in from outside of the loop), and the 2872 // second must be derived from the same PHI. 2873 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2874 Constant *StartCST = 2875 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2876 if (StartCST == 0) return UnknownValue; // Must be a constant. 2877 2878 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2879 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2880 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2881 2882 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2883 // the loop symbolically to determine when the condition gets a value of 2884 // "ExitWhen". 2885 unsigned IterationNum = 0; 2886 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2887 for (Constant *PHIVal = StartCST; 2888 IterationNum != MaxIterations; ++IterationNum) { 2889 ConstantInt *CondVal = 2890 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2891 2892 // Couldn't symbolically evaluate. 2893 if (!CondVal) return UnknownValue; 2894 2895 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2896 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2897 ++NumBruteForceTripCountsComputed; 2898 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2899 } 2900 2901 // Compute the value of the PHI node for the next iteration. 2902 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2903 if (NextPHI == 0 || NextPHI == PHIVal) 2904 return UnknownValue; // Couldn't evaluate or not making progress... 2905 PHIVal = NextPHI; 2906 } 2907 2908 // Too many iterations were needed to evaluate. 2909 return UnknownValue; 2910 } 2911 2912 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 2913 /// at the specified scope in the program. The L value specifies a loop 2914 /// nest to evaluate the expression at, where null is the top-level or a 2915 /// specified loop is immediately inside of the loop. 2916 /// 2917 /// This method can be used to compute the exit value for a variable defined 2918 /// in a loop by querying what the value will hold in the parent loop. 2919 /// 2920 /// In the case that a relevant loop exit value cannot be computed, the 2921 /// original value V is returned. 2922 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 2923 // FIXME: this should be turned into a virtual method on SCEV! 2924 2925 if (isa<SCEVConstant>(V)) return V; 2926 2927 // If this instruction is evolved from a constant-evolving PHI, compute the 2928 // exit value from the loop without using SCEVs. 2929 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2930 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2931 const Loop *LI = (*this->LI)[I->getParent()]; 2932 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2933 if (PHINode *PN = dyn_cast<PHINode>(I)) 2934 if (PN->getParent() == LI->getHeader()) { 2935 // Okay, there is no closed form solution for the PHI node. Check 2936 // to see if the loop that contains it has a known backedge-taken 2937 // count. If so, we may be able to force computation of the exit 2938 // value. 2939 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 2940 if (const SCEVConstant *BTCC = 2941 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 2942 // Okay, we know how many times the containing loop executes. If 2943 // this is a constant evolving PHI node, get the final value at 2944 // the specified iteration number. 2945 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2946 BTCC->getValue()->getValue(), 2947 LI); 2948 if (RV) return getUnknown(RV); 2949 } 2950 } 2951 2952 // Okay, this is an expression that we cannot symbolically evaluate 2953 // into a SCEV. Check to see if it's possible to symbolically evaluate 2954 // the arguments into constants, and if so, try to constant propagate the 2955 // result. This is particularly useful for computing loop exit values. 2956 if (CanConstantFold(I)) { 2957 // Check to see if we've folded this instruction at this loop before. 2958 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 2959 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 2960 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 2961 if (!Pair.second) 2962 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 2963 2964 std::vector<Constant*> Operands; 2965 Operands.reserve(I->getNumOperands()); 2966 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2967 Value *Op = I->getOperand(i); 2968 if (Constant *C = dyn_cast<Constant>(Op)) { 2969 Operands.push_back(C); 2970 } else { 2971 // If any of the operands is non-constant and if they are 2972 // non-integer and non-pointer, don't even try to analyze them 2973 // with scev techniques. 2974 if (!isSCEVable(Op->getType())) 2975 return V; 2976 2977 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2978 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 2979 Constant *C = SC->getValue(); 2980 if (C->getType() != Op->getType()) 2981 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 2982 Op->getType(), 2983 false), 2984 C, Op->getType()); 2985 Operands.push_back(C); 2986 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2987 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 2988 if (C->getType() != Op->getType()) 2989 C = 2990 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 2991 Op->getType(), 2992 false), 2993 C, Op->getType()); 2994 Operands.push_back(C); 2995 } else 2996 return V; 2997 } else { 2998 return V; 2999 } 3000 } 3001 } 3002 3003 Constant *C; 3004 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3005 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3006 &Operands[0], Operands.size()); 3007 else 3008 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3009 &Operands[0], Operands.size()); 3010 Pair.first->second = C; 3011 return getUnknown(C); 3012 } 3013 } 3014 3015 // This is some other type of SCEVUnknown, just return it. 3016 return V; 3017 } 3018 3019 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3020 // Avoid performing the look-up in the common case where the specified 3021 // expression has no loop-variant portions. 3022 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3023 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3024 if (OpAtScope != Comm->getOperand(i)) { 3025 // Okay, at least one of these operands is loop variant but might be 3026 // foldable. Build a new instance of the folded commutative expression. 3027 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 3028 NewOps.push_back(OpAtScope); 3029 3030 for (++i; i != e; ++i) { 3031 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3032 NewOps.push_back(OpAtScope); 3033 } 3034 if (isa<SCEVAddExpr>(Comm)) 3035 return getAddExpr(NewOps); 3036 if (isa<SCEVMulExpr>(Comm)) 3037 return getMulExpr(NewOps); 3038 if (isa<SCEVSMaxExpr>(Comm)) 3039 return getSMaxExpr(NewOps); 3040 if (isa<SCEVUMaxExpr>(Comm)) 3041 return getUMaxExpr(NewOps); 3042 assert(0 && "Unknown commutative SCEV type!"); 3043 } 3044 } 3045 // If we got here, all operands are loop invariant. 3046 return Comm; 3047 } 3048 3049 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3050 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 3051 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 3052 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3053 return Div; // must be loop invariant 3054 return getUDivExpr(LHS, RHS); 3055 } 3056 3057 // If this is a loop recurrence for a loop that does not contain L, then we 3058 // are dealing with the final value computed by the loop. 3059 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3060 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3061 // To evaluate this recurrence, we need to know how many times the AddRec 3062 // loop iterates. Compute this now. 3063 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3064 if (BackedgeTakenCount == UnknownValue) return AddRec; 3065 3066 // Then, evaluate the AddRec. 3067 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3068 } 3069 return AddRec; 3070 } 3071 3072 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3073 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3074 if (Op == Cast->getOperand()) 3075 return Cast; // must be loop invariant 3076 return getZeroExtendExpr(Op, Cast->getType()); 3077 } 3078 3079 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3080 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3081 if (Op == Cast->getOperand()) 3082 return Cast; // must be loop invariant 3083 return getSignExtendExpr(Op, Cast->getType()); 3084 } 3085 3086 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3087 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3088 if (Op == Cast->getOperand()) 3089 return Cast; // must be loop invariant 3090 return getTruncateExpr(Op, Cast->getType()); 3091 } 3092 3093 assert(0 && "Unknown SCEV type!"); 3094 return 0; 3095 } 3096 3097 /// getSCEVAtScope - This is a convenience function which does 3098 /// getSCEVAtScope(getSCEV(V), L). 3099 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3100 return getSCEVAtScope(getSCEV(V), L); 3101 } 3102 3103 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3104 /// following equation: 3105 /// 3106 /// A * X = B (mod N) 3107 /// 3108 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3109 /// A and B isn't important. 3110 /// 3111 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3112 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3113 ScalarEvolution &SE) { 3114 uint32_t BW = A.getBitWidth(); 3115 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3116 assert(A != 0 && "A must be non-zero."); 3117 3118 // 1. D = gcd(A, N) 3119 // 3120 // The gcd of A and N may have only one prime factor: 2. The number of 3121 // trailing zeros in A is its multiplicity 3122 uint32_t Mult2 = A.countTrailingZeros(); 3123 // D = 2^Mult2 3124 3125 // 2. Check if B is divisible by D. 3126 // 3127 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3128 // is not less than multiplicity of this prime factor for D. 3129 if (B.countTrailingZeros() < Mult2) 3130 return SE.getCouldNotCompute(); 3131 3132 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3133 // modulo (N / D). 3134 // 3135 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3136 // bit width during computations. 3137 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3138 APInt Mod(BW + 1, 0); 3139 Mod.set(BW - Mult2); // Mod = N / D 3140 APInt I = AD.multiplicativeInverse(Mod); 3141 3142 // 4. Compute the minimum unsigned root of the equation: 3143 // I * (B / D) mod (N / D) 3144 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3145 3146 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3147 // bits. 3148 return SE.getConstant(Result.trunc(BW)); 3149 } 3150 3151 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3152 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3153 /// might be the same) or two SCEVCouldNotCompute objects. 3154 /// 3155 static std::pair<SCEVHandle,SCEVHandle> 3156 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3157 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3158 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3159 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3160 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3161 3162 // We currently can only solve this if the coefficients are constants. 3163 if (!LC || !MC || !NC) { 3164 const SCEV *CNC = SE.getCouldNotCompute(); 3165 return std::make_pair(CNC, CNC); 3166 } 3167 3168 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3169 const APInt &L = LC->getValue()->getValue(); 3170 const APInt &M = MC->getValue()->getValue(); 3171 const APInt &N = NC->getValue()->getValue(); 3172 APInt Two(BitWidth, 2); 3173 APInt Four(BitWidth, 4); 3174 3175 { 3176 using namespace APIntOps; 3177 const APInt& C = L; 3178 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3179 // The B coefficient is M-N/2 3180 APInt B(M); 3181 B -= sdiv(N,Two); 3182 3183 // The A coefficient is N/2 3184 APInt A(N.sdiv(Two)); 3185 3186 // Compute the B^2-4ac term. 3187 APInt SqrtTerm(B); 3188 SqrtTerm *= B; 3189 SqrtTerm -= Four * (A * C); 3190 3191 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3192 // integer value or else APInt::sqrt() will assert. 3193 APInt SqrtVal(SqrtTerm.sqrt()); 3194 3195 // Compute the two solutions for the quadratic formula. 3196 // The divisions must be performed as signed divisions. 3197 APInt NegB(-B); 3198 APInt TwoA( A << 1 ); 3199 if (TwoA.isMinValue()) { 3200 const SCEV *CNC = SE.getCouldNotCompute(); 3201 return std::make_pair(CNC, CNC); 3202 } 3203 3204 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3205 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3206 3207 return std::make_pair(SE.getConstant(Solution1), 3208 SE.getConstant(Solution2)); 3209 } // end APIntOps namespace 3210 } 3211 3212 /// HowFarToZero - Return the number of times a backedge comparing the specified 3213 /// value to zero will execute. If not computable, return UnknownValue. 3214 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3215 // If the value is a constant 3216 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3217 // If the value is already zero, the branch will execute zero times. 3218 if (C->getValue()->isZero()) return C; 3219 return UnknownValue; // Otherwise it will loop infinitely. 3220 } 3221 3222 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3223 if (!AddRec || AddRec->getLoop() != L) 3224 return UnknownValue; 3225 3226 if (AddRec->isAffine()) { 3227 // If this is an affine expression, the execution count of this branch is 3228 // the minimum unsigned root of the following equation: 3229 // 3230 // Start + Step*N = 0 (mod 2^BW) 3231 // 3232 // equivalent to: 3233 // 3234 // Step*N = -Start (mod 2^BW) 3235 // 3236 // where BW is the common bit width of Start and Step. 3237 3238 // Get the initial value for the loop. 3239 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3240 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3241 3242 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3243 // For now we handle only constant steps. 3244 3245 // First, handle unitary steps. 3246 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3247 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3248 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3249 return Start; // N = Start (as unsigned) 3250 3251 // Then, try to solve the above equation provided that Start is constant. 3252 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3253 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3254 -StartC->getValue()->getValue(), 3255 *this); 3256 } 3257 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3258 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3259 // the quadratic equation to solve it. 3260 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3261 *this); 3262 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3263 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3264 if (R1) { 3265 #if 0 3266 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3267 << " sol#2: " << *R2 << "\n"; 3268 #endif 3269 // Pick the smallest positive root value. 3270 if (ConstantInt *CB = 3271 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3272 R1->getValue(), R2->getValue()))) { 3273 if (CB->getZExtValue() == false) 3274 std::swap(R1, R2); // R1 is the minimum root now. 3275 3276 // We can only use this value if the chrec ends up with an exact zero 3277 // value at this index. When solving for "X*X != 5", for example, we 3278 // should not accept a root of 2. 3279 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3280 if (Val->isZero()) 3281 return R1; // We found a quadratic root! 3282 } 3283 } 3284 } 3285 3286 return UnknownValue; 3287 } 3288 3289 /// HowFarToNonZero - Return the number of times a backedge checking the 3290 /// specified value for nonzero will execute. If not computable, return 3291 /// UnknownValue 3292 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3293 // Loops that look like: while (X == 0) are very strange indeed. We don't 3294 // handle them yet except for the trivial case. This could be expanded in the 3295 // future as needed. 3296 3297 // If the value is a constant, check to see if it is known to be non-zero 3298 // already. If so, the backedge will execute zero times. 3299 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3300 if (!C->getValue()->isNullValue()) 3301 return getIntegerSCEV(0, C->getType()); 3302 return UnknownValue; // Otherwise it will loop infinitely. 3303 } 3304 3305 // We could implement others, but I really doubt anyone writes loops like 3306 // this, and if they did, they would already be constant folded. 3307 return UnknownValue; 3308 } 3309 3310 /// getLoopPredecessor - If the given loop's header has exactly one unique 3311 /// predecessor outside the loop, return it. Otherwise return null. 3312 /// 3313 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3314 BasicBlock *Header = L->getHeader(); 3315 BasicBlock *Pred = 0; 3316 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3317 PI != E; ++PI) 3318 if (!L->contains(*PI)) { 3319 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3320 Pred = *PI; 3321 } 3322 return Pred; 3323 } 3324 3325 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3326 /// (which may not be an immediate predecessor) which has exactly one 3327 /// successor from which BB is reachable, or null if no such block is 3328 /// found. 3329 /// 3330 BasicBlock * 3331 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3332 // If the block has a unique predecessor, then there is no path from the 3333 // predecessor to the block that does not go through the direct edge 3334 // from the predecessor to the block. 3335 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3336 return Pred; 3337 3338 // A loop's header is defined to be a block that dominates the loop. 3339 // If the header has a unique predecessor outside the loop, it must be 3340 // a block that has exactly one successor that can reach the loop. 3341 if (Loop *L = LI->getLoopFor(BB)) 3342 return getLoopPredecessor(L); 3343 3344 return 0; 3345 } 3346 3347 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3348 /// a conditional between LHS and RHS. This is used to help avoid max 3349 /// expressions in loop trip counts. 3350 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3351 ICmpInst::Predicate Pred, 3352 const SCEV *LHS, const SCEV *RHS) { 3353 // Interpret a null as meaning no loop, where there is obviously no guard 3354 // (interprocedural conditions notwithstanding). 3355 if (!L) return false; 3356 3357 BasicBlock *Predecessor = getLoopPredecessor(L); 3358 BasicBlock *PredecessorDest = L->getHeader(); 3359 3360 // Starting at the loop predecessor, climb up the predecessor chain, as long 3361 // as there are predecessors that can be found that have unique successors 3362 // leading to the original header. 3363 for (; Predecessor; 3364 PredecessorDest = Predecessor, 3365 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 3366 3367 BranchInst *LoopEntryPredicate = 3368 dyn_cast<BranchInst>(Predecessor->getTerminator()); 3369 if (!LoopEntryPredicate || 3370 LoopEntryPredicate->isUnconditional()) 3371 continue; 3372 3373 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3374 if (!ICI) continue; 3375 3376 // Now that we found a conditional branch that dominates the loop, check to 3377 // see if it is the comparison we are looking for. 3378 Value *PreCondLHS = ICI->getOperand(0); 3379 Value *PreCondRHS = ICI->getOperand(1); 3380 ICmpInst::Predicate Cond; 3381 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) 3382 Cond = ICI->getPredicate(); 3383 else 3384 Cond = ICI->getInversePredicate(); 3385 3386 if (Cond == Pred) 3387 ; // An exact match. 3388 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3389 ; // The actual condition is beyond sufficient. 3390 else 3391 // Check a few special cases. 3392 switch (Cond) { 3393 case ICmpInst::ICMP_UGT: 3394 if (Pred == ICmpInst::ICMP_ULT) { 3395 std::swap(PreCondLHS, PreCondRHS); 3396 Cond = ICmpInst::ICMP_ULT; 3397 break; 3398 } 3399 continue; 3400 case ICmpInst::ICMP_SGT: 3401 if (Pred == ICmpInst::ICMP_SLT) { 3402 std::swap(PreCondLHS, PreCondRHS); 3403 Cond = ICmpInst::ICMP_SLT; 3404 break; 3405 } 3406 continue; 3407 case ICmpInst::ICMP_NE: 3408 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3409 // so check for this case by checking if the NE is comparing against 3410 // a minimum or maximum constant. 3411 if (!ICmpInst::isTrueWhenEqual(Pred)) 3412 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3413 const APInt &A = CI->getValue(); 3414 switch (Pred) { 3415 case ICmpInst::ICMP_SLT: 3416 if (A.isMaxSignedValue()) break; 3417 continue; 3418 case ICmpInst::ICMP_SGT: 3419 if (A.isMinSignedValue()) break; 3420 continue; 3421 case ICmpInst::ICMP_ULT: 3422 if (A.isMaxValue()) break; 3423 continue; 3424 case ICmpInst::ICMP_UGT: 3425 if (A.isMinValue()) break; 3426 continue; 3427 default: 3428 continue; 3429 } 3430 Cond = ICmpInst::ICMP_NE; 3431 // NE is symmetric but the original comparison may not be. Swap 3432 // the operands if necessary so that they match below. 3433 if (isa<SCEVConstant>(LHS)) 3434 std::swap(PreCondLHS, PreCondRHS); 3435 break; 3436 } 3437 continue; 3438 default: 3439 // We weren't able to reconcile the condition. 3440 continue; 3441 } 3442 3443 if (!PreCondLHS->getType()->isInteger()) continue; 3444 3445 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3446 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3447 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3448 (LHS == getNotSCEV(PreCondRHSSCEV) && 3449 RHS == getNotSCEV(PreCondLHSSCEV))) 3450 return true; 3451 } 3452 3453 return false; 3454 } 3455 3456 /// HowManyLessThans - Return the number of times a backedge containing the 3457 /// specified less-than comparison will execute. If not computable, return 3458 /// UnknownValue. 3459 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3460 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 3461 const Loop *L, bool isSigned) { 3462 // Only handle: "ADDREC < LoopInvariant". 3463 if (!RHS->isLoopInvariant(L)) return UnknownValue; 3464 3465 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3466 if (!AddRec || AddRec->getLoop() != L) 3467 return UnknownValue; 3468 3469 if (AddRec->isAffine()) { 3470 // FORNOW: We only support unit strides. 3471 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 3472 SCEVHandle Step = AddRec->getStepRecurrence(*this); 3473 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); 3474 3475 // TODO: handle non-constant strides. 3476 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 3477 if (!CStep || CStep->isZero()) 3478 return UnknownValue; 3479 if (CStep->isOne()) { 3480 // With unit stride, the iteration never steps past the limit value. 3481 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 3482 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 3483 // Test whether a positive iteration iteration can step past the limit 3484 // value and past the maximum value for its type in a single step. 3485 if (isSigned) { 3486 APInt Max = APInt::getSignedMaxValue(BitWidth); 3487 if ((Max - CStep->getValue()->getValue()) 3488 .slt(CLimit->getValue()->getValue())) 3489 return UnknownValue; 3490 } else { 3491 APInt Max = APInt::getMaxValue(BitWidth); 3492 if ((Max - CStep->getValue()->getValue()) 3493 .ult(CLimit->getValue()->getValue())) 3494 return UnknownValue; 3495 } 3496 } else 3497 // TODO: handle non-constant limit values below. 3498 return UnknownValue; 3499 } else 3500 // TODO: handle negative strides below. 3501 return UnknownValue; 3502 3503 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 3504 // m. So, we count the number of iterations in which {n,+,s} < m is true. 3505 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 3506 // treat m-n as signed nor unsigned due to overflow possibility. 3507 3508 // First, we get the value of the LHS in the first iteration: n 3509 SCEVHandle Start = AddRec->getOperand(0); 3510 3511 // Determine the minimum constant start value. 3512 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 3513 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 3514 APInt::getMinValue(BitWidth)); 3515 3516 // If we know that the condition is true in order to enter the loop, 3517 // then we know that it will run exactly (m-n)/s times. Otherwise, we 3518 // only know that it will execute (max(m,n)-n)/s times. In both cases, 3519 // the division must round up. 3520 SCEVHandle End = RHS; 3521 if (!isLoopGuardedByCond(L, 3522 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3523 getMinusSCEV(Start, Step), RHS)) 3524 End = isSigned ? getSMaxExpr(RHS, Start) 3525 : getUMaxExpr(RHS, Start); 3526 3527 // Determine the maximum constant end value. 3528 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : 3529 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : 3530 APInt::getMaxValue(BitWidth)); 3531 3532 // Finally, we subtract these two values and divide, rounding up, to get 3533 // the number of times the backedge is executed. 3534 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), 3535 getAddExpr(Step, NegOne)), 3536 Step); 3537 3538 // The maximum backedge count is similar, except using the minimum start 3539 // value and the maximum end value. 3540 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, 3541 MinStart), 3542 getAddExpr(Step, NegOne)), 3543 Step); 3544 3545 return BackedgeTakenInfo(BECount, MaxBECount); 3546 } 3547 3548 return UnknownValue; 3549 } 3550 3551 /// getNumIterationsInRange - Return the number of iterations of this loop that 3552 /// produce values in the specified constant range. Another way of looking at 3553 /// this is that it returns the first iteration number where the value is not in 3554 /// the condition, thus computing the exit count. If the iteration count can't 3555 /// be computed, an instance of SCEVCouldNotCompute is returned. 3556 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3557 ScalarEvolution &SE) const { 3558 if (Range.isFullSet()) // Infinite loop. 3559 return SE.getCouldNotCompute(); 3560 3561 // If the start is a non-zero constant, shift the range to simplify things. 3562 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3563 if (!SC->getValue()->isZero()) { 3564 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3565 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3566 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3567 if (const SCEVAddRecExpr *ShiftedAddRec = 3568 dyn_cast<SCEVAddRecExpr>(Shifted)) 3569 return ShiftedAddRec->getNumIterationsInRange( 3570 Range.subtract(SC->getValue()->getValue()), SE); 3571 // This is strange and shouldn't happen. 3572 return SE.getCouldNotCompute(); 3573 } 3574 3575 // The only time we can solve this is when we have all constant indices. 3576 // Otherwise, we cannot determine the overflow conditions. 3577 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3578 if (!isa<SCEVConstant>(getOperand(i))) 3579 return SE.getCouldNotCompute(); 3580 3581 3582 // Okay at this point we know that all elements of the chrec are constants and 3583 // that the start element is zero. 3584 3585 // First check to see if the range contains zero. If not, the first 3586 // iteration exits. 3587 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3588 if (!Range.contains(APInt(BitWidth, 0))) 3589 return SE.getConstant(ConstantInt::get(getType(),0)); 3590 3591 if (isAffine()) { 3592 // If this is an affine expression then we have this situation: 3593 // Solve {0,+,A} in Range === Ax in Range 3594 3595 // We know that zero is in the range. If A is positive then we know that 3596 // the upper value of the range must be the first possible exit value. 3597 // If A is negative then the lower of the range is the last possible loop 3598 // value. Also note that we already checked for a full range. 3599 APInt One(BitWidth,1); 3600 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3601 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3602 3603 // The exit value should be (End+A)/A. 3604 APInt ExitVal = (End + A).udiv(A); 3605 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3606 3607 // Evaluate at the exit value. If we really did fall out of the valid 3608 // range, then we computed our trip count, otherwise wrap around or other 3609 // things must have happened. 3610 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3611 if (Range.contains(Val->getValue())) 3612 return SE.getCouldNotCompute(); // Something strange happened 3613 3614 // Ensure that the previous value is in the range. This is a sanity check. 3615 assert(Range.contains( 3616 EvaluateConstantChrecAtConstant(this, 3617 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3618 "Linear scev computation is off in a bad way!"); 3619 return SE.getConstant(ExitValue); 3620 } else if (isQuadratic()) { 3621 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3622 // quadratic equation to solve it. To do this, we must frame our problem in 3623 // terms of figuring out when zero is crossed, instead of when 3624 // Range.getUpper() is crossed. 3625 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3626 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3627 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3628 3629 // Next, solve the constructed addrec 3630 std::pair<SCEVHandle,SCEVHandle> Roots = 3631 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3632 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3633 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3634 if (R1) { 3635 // Pick the smallest positive root value. 3636 if (ConstantInt *CB = 3637 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3638 R1->getValue(), R2->getValue()))) { 3639 if (CB->getZExtValue() == false) 3640 std::swap(R1, R2); // R1 is the minimum root now. 3641 3642 // Make sure the root is not off by one. The returned iteration should 3643 // not be in the range, but the previous one should be. When solving 3644 // for "X*X < 5", for example, we should not return a root of 2. 3645 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3646 R1->getValue(), 3647 SE); 3648 if (Range.contains(R1Val->getValue())) { 3649 // The next iteration must be out of the range... 3650 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3651 3652 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3653 if (!Range.contains(R1Val->getValue())) 3654 return SE.getConstant(NextVal); 3655 return SE.getCouldNotCompute(); // Something strange happened 3656 } 3657 3658 // If R1 was not in the range, then it is a good return value. Make 3659 // sure that R1-1 WAS in the range though, just in case. 3660 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3661 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3662 if (Range.contains(R1Val->getValue())) 3663 return R1; 3664 return SE.getCouldNotCompute(); // Something strange happened 3665 } 3666 } 3667 } 3668 3669 return SE.getCouldNotCompute(); 3670 } 3671 3672 3673 3674 //===----------------------------------------------------------------------===// 3675 // SCEVCallbackVH Class Implementation 3676 //===----------------------------------------------------------------------===// 3677 3678 void ScalarEvolution::SCEVCallbackVH::deleted() { 3679 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3680 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 3681 SE->ConstantEvolutionLoopExitValue.erase(PN); 3682 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 3683 SE->ValuesAtScopes.erase(I); 3684 SE->Scalars.erase(getValPtr()); 3685 // this now dangles! 3686 } 3687 3688 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 3689 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3690 3691 // Forget all the expressions associated with users of the old value, 3692 // so that future queries will recompute the expressions using the new 3693 // value. 3694 SmallVector<User *, 16> Worklist; 3695 Value *Old = getValPtr(); 3696 bool DeleteOld = false; 3697 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 3698 UI != UE; ++UI) 3699 Worklist.push_back(*UI); 3700 while (!Worklist.empty()) { 3701 User *U = Worklist.pop_back_val(); 3702 // Deleting the Old value will cause this to dangle. Postpone 3703 // that until everything else is done. 3704 if (U == Old) { 3705 DeleteOld = true; 3706 continue; 3707 } 3708 if (PHINode *PN = dyn_cast<PHINode>(U)) 3709 SE->ConstantEvolutionLoopExitValue.erase(PN); 3710 if (Instruction *I = dyn_cast<Instruction>(U)) 3711 SE->ValuesAtScopes.erase(I); 3712 if (SE->Scalars.erase(U)) 3713 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 3714 UI != UE; ++UI) 3715 Worklist.push_back(*UI); 3716 } 3717 if (DeleteOld) { 3718 if (PHINode *PN = dyn_cast<PHINode>(Old)) 3719 SE->ConstantEvolutionLoopExitValue.erase(PN); 3720 if (Instruction *I = dyn_cast<Instruction>(Old)) 3721 SE->ValuesAtScopes.erase(I); 3722 SE->Scalars.erase(Old); 3723 // this now dangles! 3724 } 3725 // this may dangle! 3726 } 3727 3728 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 3729 : CallbackVH(V), SE(se) {} 3730 3731 //===----------------------------------------------------------------------===// 3732 // ScalarEvolution Class Implementation 3733 //===----------------------------------------------------------------------===// 3734 3735 ScalarEvolution::ScalarEvolution() 3736 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) { 3737 } 3738 3739 bool ScalarEvolution::runOnFunction(Function &F) { 3740 this->F = &F; 3741 LI = &getAnalysis<LoopInfo>(); 3742 TD = getAnalysisIfAvailable<TargetData>(); 3743 return false; 3744 } 3745 3746 void ScalarEvolution::releaseMemory() { 3747 Scalars.clear(); 3748 BackedgeTakenCounts.clear(); 3749 ConstantEvolutionLoopExitValue.clear(); 3750 ValuesAtScopes.clear(); 3751 } 3752 3753 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3754 AU.setPreservesAll(); 3755 AU.addRequiredTransitive<LoopInfo>(); 3756 } 3757 3758 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 3759 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3760 } 3761 3762 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 3763 const Loop *L) { 3764 // Print all inner loops first 3765 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3766 PrintLoopInfo(OS, SE, *I); 3767 3768 OS << "Loop " << L->getHeader()->getName() << ": "; 3769 3770 SmallVector<BasicBlock*, 8> ExitBlocks; 3771 L->getExitBlocks(ExitBlocks); 3772 if (ExitBlocks.size() != 1) 3773 OS << "<multiple exits> "; 3774 3775 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3776 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3777 } else { 3778 OS << "Unpredictable backedge-taken count. "; 3779 } 3780 3781 OS << "\n"; 3782 } 3783 3784 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 3785 // ScalarEvolution's implementaiton of the print method is to print 3786 // out SCEV values of all instructions that are interesting. Doing 3787 // this potentially causes it to create new SCEV objects though, 3788 // which technically conflicts with the const qualifier. This isn't 3789 // observable from outside the class though (the hasSCEV function 3790 // notwithstanding), so casting away the const isn't dangerous. 3791 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 3792 3793 OS << "Classifying expressions for: " << F->getName() << "\n"; 3794 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3795 if (isSCEVable(I->getType())) { 3796 OS << *I; 3797 OS << " --> "; 3798 SCEVHandle SV = SE.getSCEV(&*I); 3799 SV->print(OS); 3800 OS << "\t\t"; 3801 3802 if (const Loop *L = LI->getLoopFor((*I).getParent())) { 3803 OS << "Exits: "; 3804 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); 3805 if (!ExitValue->isLoopInvariant(L)) { 3806 OS << "<<Unknown>>"; 3807 } else { 3808 OS << *ExitValue; 3809 } 3810 } 3811 3812 OS << "\n"; 3813 } 3814 3815 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 3816 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 3817 PrintLoopInfo(OS, &SE, *I); 3818 } 3819 3820 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 3821 raw_os_ostream OS(o); 3822 print(OS, M); 3823 } 3824