1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 if (AR->hasNoUnsignedWrap()) 161 OS << "nuw><"; 162 if (AR->hasNoSignedWrap()) 163 OS << "nsw><"; 164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 165 OS << ">"; 166 return; 167 } 168 case scAddExpr: 169 case scMulExpr: 170 case scUMaxExpr: 171 case scSMaxExpr: { 172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 173 const char *OpStr = 0; 174 switch (NAry->getSCEVType()) { 175 case scAddExpr: OpStr = " + "; break; 176 case scMulExpr: OpStr = " * "; break; 177 case scUMaxExpr: OpStr = " umax "; break; 178 case scSMaxExpr: OpStr = " smax "; break; 179 } 180 OS << "("; 181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 182 I != E; ++I) { 183 OS << **I; 184 if (llvm::next(I) != E) 185 OS << OpStr; 186 } 187 OS << ")"; 188 return; 189 } 190 case scUDivExpr: { 191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 193 return; 194 } 195 case scUnknown: { 196 const SCEVUnknown *U = cast<SCEVUnknown>(this); 197 const Type *AllocTy; 198 if (U->isSizeOf(AllocTy)) { 199 OS << "sizeof(" << *AllocTy << ")"; 200 return; 201 } 202 if (U->isAlignOf(AllocTy)) { 203 OS << "alignof(" << *AllocTy << ")"; 204 return; 205 } 206 207 const Type *CTy; 208 Constant *FieldNo; 209 if (U->isOffsetOf(CTy, FieldNo)) { 210 OS << "offsetof(" << *CTy << ", "; 211 WriteAsOperand(OS, FieldNo, false); 212 OS << ")"; 213 return; 214 } 215 216 // Otherwise just print it normally. 217 WriteAsOperand(OS, U->getValue(), false); 218 return; 219 } 220 case scCouldNotCompute: 221 OS << "***COULDNOTCOMPUTE***"; 222 return; 223 default: break; 224 } 225 llvm_unreachable("Unknown SCEV kind!"); 226 } 227 228 const Type *SCEV::getType() const { 229 switch (getSCEVType()) { 230 case scConstant: 231 return cast<SCEVConstant>(this)->getType(); 232 case scTruncate: 233 case scZeroExtend: 234 case scSignExtend: 235 return cast<SCEVCastExpr>(this)->getType(); 236 case scAddRecExpr: 237 case scMulExpr: 238 case scUMaxExpr: 239 case scSMaxExpr: 240 return cast<SCEVNAryExpr>(this)->getType(); 241 case scAddExpr: 242 return cast<SCEVAddExpr>(this)->getType(); 243 case scUDivExpr: 244 return cast<SCEVUDivExpr>(this)->getType(); 245 case scUnknown: 246 return cast<SCEVUnknown>(this)->getType(); 247 case scCouldNotCompute: 248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 249 return 0; 250 default: break; 251 } 252 llvm_unreachable("Unknown SCEV kind!"); 253 return 0; 254 } 255 256 bool SCEV::isZero() const { 257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 258 return SC->getValue()->isZero(); 259 return false; 260 } 261 262 bool SCEV::isOne() const { 263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 264 return SC->getValue()->isOne(); 265 return false; 266 } 267 268 bool SCEV::isAllOnesValue() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isAllOnesValue(); 271 return false; 272 } 273 274 SCEVCouldNotCompute::SCEVCouldNotCompute() : 275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 276 277 bool SCEVCouldNotCompute::classof(const SCEV *S) { 278 return S->getSCEVType() == scCouldNotCompute; 279 } 280 281 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 282 FoldingSetNodeID ID; 283 ID.AddInteger(scConstant); 284 ID.AddPointer(V); 285 void *IP = 0; 286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 288 UniqueSCEVs.InsertNode(S, IP); 289 return S; 290 } 291 292 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 293 return getConstant(ConstantInt::get(getContext(), Val)); 294 } 295 296 const SCEV * 297 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 299 return getConstant(ConstantInt::get(ITy, V, isSigned)); 300 } 301 302 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 303 unsigned SCEVTy, const SCEV *op, const Type *ty) 304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 305 306 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 307 const SCEV *op, const Type *ty) 308 : SCEVCastExpr(ID, scTruncate, op, ty) { 309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 310 (Ty->isIntegerTy() || Ty->isPointerTy()) && 311 "Cannot truncate non-integer value!"); 312 } 313 314 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 315 const SCEV *op, const Type *ty) 316 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 318 (Ty->isIntegerTy() || Ty->isPointerTy()) && 319 "Cannot zero extend non-integer value!"); 320 } 321 322 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 323 const SCEV *op, const Type *ty) 324 : SCEVCastExpr(ID, scSignExtend, op, ty) { 325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 326 (Ty->isIntegerTy() || Ty->isPointerTy()) && 327 "Cannot sign extend non-integer value!"); 328 } 329 330 void SCEVUnknown::deleted() { 331 // Clear this SCEVUnknown from various maps. 332 SE->forgetMemoizedResults(this); 333 334 // Remove this SCEVUnknown from the uniquing map. 335 SE->UniqueSCEVs.RemoveNode(this); 336 337 // Release the value. 338 setValPtr(0); 339 } 340 341 void SCEVUnknown::allUsesReplacedWith(Value *New) { 342 // Clear this SCEVUnknown from various maps. 343 SE->forgetMemoizedResults(this); 344 345 // Remove this SCEVUnknown from the uniquing map. 346 SE->UniqueSCEVs.RemoveNode(this); 347 348 // Update this SCEVUnknown to point to the new value. This is needed 349 // because there may still be outstanding SCEVs which still point to 350 // this SCEVUnknown. 351 setValPtr(New); 352 } 353 354 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 356 if (VCE->getOpcode() == Instruction::PtrToInt) 357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 358 if (CE->getOpcode() == Instruction::GetElementPtr && 359 CE->getOperand(0)->isNullValue() && 360 CE->getNumOperands() == 2) 361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 362 if (CI->isOne()) { 363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 364 ->getElementType(); 365 return true; 366 } 367 368 return false; 369 } 370 371 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 373 if (VCE->getOpcode() == Instruction::PtrToInt) 374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 375 if (CE->getOpcode() == Instruction::GetElementPtr && 376 CE->getOperand(0)->isNullValue()) { 377 const Type *Ty = 378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 379 if (const StructType *STy = dyn_cast<StructType>(Ty)) 380 if (!STy->isPacked() && 381 CE->getNumOperands() == 3 && 382 CE->getOperand(1)->isNullValue()) { 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 384 if (CI->isOne() && 385 STy->getNumElements() == 2 && 386 STy->getElementType(0)->isIntegerTy(1)) { 387 AllocTy = STy->getElementType(1); 388 return true; 389 } 390 } 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getNumOperands() == 3 && 402 CE->getOperand(0)->isNullValue() && 403 CE->getOperand(1)->isNullValue()) { 404 const Type *Ty = 405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 406 // Ignore vector types here so that ScalarEvolutionExpander doesn't 407 // emit getelementptrs that index into vectors. 408 if (Ty->isStructTy() || Ty->isArrayTy()) { 409 CTy = Ty; 410 FieldNo = CE->getOperand(2); 411 return true; 412 } 413 } 414 415 return false; 416 } 417 418 //===----------------------------------------------------------------------===// 419 // SCEV Utilities 420 //===----------------------------------------------------------------------===// 421 422 namespace { 423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 424 /// than the complexity of the RHS. This comparator is used to canonicalize 425 /// expressions. 426 class SCEVComplexityCompare { 427 const LoopInfo *const LI; 428 public: 429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 430 431 // Return true or false if LHS is less than, or at least RHS, respectively. 432 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 433 return compare(LHS, RHS) < 0; 434 } 435 436 // Return negative, zero, or positive, if LHS is less than, equal to, or 437 // greater than RHS, respectively. A three-way result allows recursive 438 // comparisons to be more efficient. 439 int compare(const SCEV *LHS, const SCEV *RHS) const { 440 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 441 if (LHS == RHS) 442 return 0; 443 444 // Primarily, sort the SCEVs by their getSCEVType(). 445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 446 if (LType != RType) 447 return (int)LType - (int)RType; 448 449 // Aside from the getSCEVType() ordering, the particular ordering 450 // isn't very important except that it's beneficial to be consistent, 451 // so that (a + b) and (b + a) don't end up as different expressions. 452 switch (LType) { 453 case scUnknown: { 454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 456 457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 458 // not as complete as it could be. 459 const Value *LV = LU->getValue(), *RV = RU->getValue(); 460 461 // Order pointer values after integer values. This helps SCEVExpander 462 // form GEPs. 463 bool LIsPointer = LV->getType()->isPointerTy(), 464 RIsPointer = RV->getType()->isPointerTy(); 465 if (LIsPointer != RIsPointer) 466 return (int)LIsPointer - (int)RIsPointer; 467 468 // Compare getValueID values. 469 unsigned LID = LV->getValueID(), 470 RID = RV->getValueID(); 471 if (LID != RID) 472 return (int)LID - (int)RID; 473 474 // Sort arguments by their position. 475 if (const Argument *LA = dyn_cast<Argument>(LV)) { 476 const Argument *RA = cast<Argument>(RV); 477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 478 return (int)LArgNo - (int)RArgNo; 479 } 480 481 // For instructions, compare their loop depth, and their operand 482 // count. This is pretty loose. 483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 484 const Instruction *RInst = cast<Instruction>(RV); 485 486 // Compare loop depths. 487 const BasicBlock *LParent = LInst->getParent(), 488 *RParent = RInst->getParent(); 489 if (LParent != RParent) { 490 unsigned LDepth = LI->getLoopDepth(LParent), 491 RDepth = LI->getLoopDepth(RParent); 492 if (LDepth != RDepth) 493 return (int)LDepth - (int)RDepth; 494 } 495 496 // Compare the number of operands. 497 unsigned LNumOps = LInst->getNumOperands(), 498 RNumOps = RInst->getNumOperands(); 499 return (int)LNumOps - (int)RNumOps; 500 } 501 502 return 0; 503 } 504 505 case scConstant: { 506 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 507 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 508 509 // Compare constant values. 510 const APInt &LA = LC->getValue()->getValue(); 511 const APInt &RA = RC->getValue()->getValue(); 512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 513 if (LBitWidth != RBitWidth) 514 return (int)LBitWidth - (int)RBitWidth; 515 return LA.ult(RA) ? -1 : 1; 516 } 517 518 case scAddRecExpr: { 519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 521 522 // Compare addrec loop depths. 523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 524 if (LLoop != RLoop) { 525 unsigned LDepth = LLoop->getLoopDepth(), 526 RDepth = RLoop->getLoopDepth(); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Addrec complexity grows with operand count. 532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 533 if (LNumOps != RNumOps) 534 return (int)LNumOps - (int)RNumOps; 535 536 // Lexicographically compare. 537 for (unsigned i = 0; i != LNumOps; ++i) { 538 long X = compare(LA->getOperand(i), RA->getOperand(i)); 539 if (X != 0) 540 return X; 541 } 542 543 return 0; 544 } 545 546 case scAddExpr: 547 case scMulExpr: 548 case scSMaxExpr: 549 case scUMaxExpr: { 550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 552 553 // Lexicographically compare n-ary expressions. 554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 555 for (unsigned i = 0; i != LNumOps; ++i) { 556 if (i >= RNumOps) 557 return 1; 558 long X = compare(LC->getOperand(i), RC->getOperand(i)); 559 if (X != 0) 560 return X; 561 } 562 return (int)LNumOps - (int)RNumOps; 563 } 564 565 case scUDivExpr: { 566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 568 569 // Lexicographically compare udiv expressions. 570 long X = compare(LC->getLHS(), RC->getLHS()); 571 if (X != 0) 572 return X; 573 return compare(LC->getRHS(), RC->getRHS()); 574 } 575 576 case scTruncate: 577 case scZeroExtend: 578 case scSignExtend: { 579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 581 582 // Compare cast expressions by operand. 583 return compare(LC->getOperand(), RC->getOperand()); 584 } 585 586 default: 587 break; 588 } 589 590 llvm_unreachable("Unknown SCEV kind!"); 591 return 0; 592 } 593 }; 594 } 595 596 /// GroupByComplexity - Given a list of SCEV objects, order them by their 597 /// complexity, and group objects of the same complexity together by value. 598 /// When this routine is finished, we know that any duplicates in the vector are 599 /// consecutive and that complexity is monotonically increasing. 600 /// 601 /// Note that we go take special precautions to ensure that we get deterministic 602 /// results from this routine. In other words, we don't want the results of 603 /// this to depend on where the addresses of various SCEV objects happened to 604 /// land in memory. 605 /// 606 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 607 LoopInfo *LI) { 608 if (Ops.size() < 2) return; // Noop 609 if (Ops.size() == 2) { 610 // This is the common case, which also happens to be trivially simple. 611 // Special case it. 612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 613 if (SCEVComplexityCompare(LI)(RHS, LHS)) 614 std::swap(LHS, RHS); 615 return; 616 } 617 618 // Do the rough sort by complexity. 619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 620 621 // Now that we are sorted by complexity, group elements of the same 622 // complexity. Note that this is, at worst, N^2, but the vector is likely to 623 // be extremely short in practice. Note that we take this approach because we 624 // do not want to depend on the addresses of the objects we are grouping. 625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 626 const SCEV *S = Ops[i]; 627 unsigned Complexity = S->getSCEVType(); 628 629 // If there are any objects of the same complexity and same value as this 630 // one, group them. 631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 632 if (Ops[j] == S) { // Found a duplicate. 633 // Move it to immediately after i'th element. 634 std::swap(Ops[i+1], Ops[j]); 635 ++i; // no need to rescan it. 636 if (i == e-2) return; // Done! 637 } 638 } 639 } 640 } 641 642 643 644 //===----------------------------------------------------------------------===// 645 // Simple SCEV method implementations 646 //===----------------------------------------------------------------------===// 647 648 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 649 /// Assume, K > 0. 650 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 651 ScalarEvolution &SE, 652 const Type* ResultTy) { 653 // Handle the simplest case efficiently. 654 if (K == 1) 655 return SE.getTruncateOrZeroExtend(It, ResultTy); 656 657 // We are using the following formula for BC(It, K): 658 // 659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 660 // 661 // Suppose, W is the bitwidth of the return value. We must be prepared for 662 // overflow. Hence, we must assure that the result of our computation is 663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 664 // safe in modular arithmetic. 665 // 666 // However, this code doesn't use exactly that formula; the formula it uses 667 // is something like the following, where T is the number of factors of 2 in 668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 669 // exponentiation: 670 // 671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 672 // 673 // This formula is trivially equivalent to the previous formula. However, 674 // this formula can be implemented much more efficiently. The trick is that 675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 676 // arithmetic. To do exact division in modular arithmetic, all we have 677 // to do is multiply by the inverse. Therefore, this step can be done at 678 // width W. 679 // 680 // The next issue is how to safely do the division by 2^T. The way this 681 // is done is by doing the multiplication step at a width of at least W + T 682 // bits. This way, the bottom W+T bits of the product are accurate. Then, 683 // when we perform the division by 2^T (which is equivalent to a right shift 684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 685 // truncated out after the division by 2^T. 686 // 687 // In comparison to just directly using the first formula, this technique 688 // is much more efficient; using the first formula requires W * K bits, 689 // but this formula less than W + K bits. Also, the first formula requires 690 // a division step, whereas this formula only requires multiplies and shifts. 691 // 692 // It doesn't matter whether the subtraction step is done in the calculation 693 // width or the input iteration count's width; if the subtraction overflows, 694 // the result must be zero anyway. We prefer here to do it in the width of 695 // the induction variable because it helps a lot for certain cases; CodeGen 696 // isn't smart enough to ignore the overflow, which leads to much less 697 // efficient code if the width of the subtraction is wider than the native 698 // register width. 699 // 700 // (It's possible to not widen at all by pulling out factors of 2 before 701 // the multiplication; for example, K=2 can be calculated as 702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 703 // extra arithmetic, so it's not an obvious win, and it gets 704 // much more complicated for K > 3.) 705 706 // Protection from insane SCEVs; this bound is conservative, 707 // but it probably doesn't matter. 708 if (K > 1000) 709 return SE.getCouldNotCompute(); 710 711 unsigned W = SE.getTypeSizeInBits(ResultTy); 712 713 // Calculate K! / 2^T and T; we divide out the factors of two before 714 // multiplying for calculating K! / 2^T to avoid overflow. 715 // Other overflow doesn't matter because we only care about the bottom 716 // W bits of the result. 717 APInt OddFactorial(W, 1); 718 unsigned T = 1; 719 for (unsigned i = 3; i <= K; ++i) { 720 APInt Mult(W, i); 721 unsigned TwoFactors = Mult.countTrailingZeros(); 722 T += TwoFactors; 723 Mult = Mult.lshr(TwoFactors); 724 OddFactorial *= Mult; 725 } 726 727 // We need at least W + T bits for the multiplication step 728 unsigned CalculationBits = W + T; 729 730 // Calculate 2^T, at width T+W. 731 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 732 733 // Calculate the multiplicative inverse of K! / 2^T; 734 // this multiplication factor will perform the exact division by 735 // K! / 2^T. 736 APInt Mod = APInt::getSignedMinValue(W+1); 737 APInt MultiplyFactor = OddFactorial.zext(W+1); 738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 739 MultiplyFactor = MultiplyFactor.trunc(W); 740 741 // Calculate the product, at width T+W 742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 743 CalculationBits); 744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 745 for (unsigned i = 1; i != K; ++i) { 746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 747 Dividend = SE.getMulExpr(Dividend, 748 SE.getTruncateOrZeroExtend(S, CalculationTy)); 749 } 750 751 // Divide by 2^T 752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 753 754 // Truncate the result, and divide by K! / 2^T. 755 756 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 757 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 758 } 759 760 /// evaluateAtIteration - Return the value of this chain of recurrences at 761 /// the specified iteration number. We can evaluate this recurrence by 762 /// multiplying each element in the chain by the binomial coefficient 763 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 764 /// 765 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 766 /// 767 /// where BC(It, k) stands for binomial coefficient. 768 /// 769 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 770 ScalarEvolution &SE) const { 771 const SCEV *Result = getStart(); 772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 773 // The computation is correct in the face of overflow provided that the 774 // multiplication is performed _after_ the evaluation of the binomial 775 // coefficient. 776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 777 if (isa<SCEVCouldNotCompute>(Coeff)) 778 return Coeff; 779 780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 781 } 782 return Result; 783 } 784 785 //===----------------------------------------------------------------------===// 786 // SCEV Expression folder implementations 787 //===----------------------------------------------------------------------===// 788 789 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 790 const Type *Ty) { 791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 792 "This is not a truncating conversion!"); 793 assert(isSCEVable(Ty) && 794 "This is not a conversion to a SCEVable type!"); 795 Ty = getEffectiveSCEVType(Ty); 796 797 FoldingSetNodeID ID; 798 ID.AddInteger(scTruncate); 799 ID.AddPointer(Op); 800 ID.AddPointer(Ty); 801 void *IP = 0; 802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 803 804 // Fold if the operand is constant. 805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 806 return getConstant( 807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 808 getEffectiveSCEVType(Ty)))); 809 810 // trunc(trunc(x)) --> trunc(x) 811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 812 return getTruncateExpr(ST->getOperand(), Ty); 813 814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 816 return getTruncateOrSignExtend(SS->getOperand(), Ty); 817 818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 821 822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 823 // eliminate all the truncates. 824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 825 SmallVector<const SCEV *, 4> Operands; 826 bool hasTrunc = false; 827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 829 hasTrunc = isa<SCEVTruncateExpr>(S); 830 Operands.push_back(S); 831 } 832 if (!hasTrunc) 833 return getAddExpr(Operands, false, false); 834 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 835 } 836 837 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 838 // eliminate all the truncates. 839 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 840 SmallVector<const SCEV *, 4> Operands; 841 bool hasTrunc = false; 842 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 843 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 844 hasTrunc = isa<SCEVTruncateExpr>(S); 845 Operands.push_back(S); 846 } 847 if (!hasTrunc) 848 return getMulExpr(Operands, false, false); 849 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 850 } 851 852 // If the input value is a chrec scev, truncate the chrec's operands. 853 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 854 SmallVector<const SCEV *, 4> Operands; 855 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 856 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 857 return getAddRecExpr(Operands, AddRec->getLoop()); 858 } 859 860 // As a special case, fold trunc(undef) to undef. We don't want to 861 // know too much about SCEVUnknowns, but this special case is handy 862 // and harmless. 863 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 864 if (isa<UndefValue>(U->getValue())) 865 return getSCEV(UndefValue::get(Ty)); 866 867 // The cast wasn't folded; create an explicit cast node. We can reuse 868 // the existing insert position since if we get here, we won't have 869 // made any changes which would invalidate it. 870 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 871 Op, Ty); 872 UniqueSCEVs.InsertNode(S, IP); 873 return S; 874 } 875 876 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 877 const Type *Ty) { 878 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 879 "This is not an extending conversion!"); 880 assert(isSCEVable(Ty) && 881 "This is not a conversion to a SCEVable type!"); 882 Ty = getEffectiveSCEVType(Ty); 883 884 // Fold if the operand is constant. 885 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 886 return getConstant( 887 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 888 getEffectiveSCEVType(Ty)))); 889 890 // zext(zext(x)) --> zext(x) 891 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 892 return getZeroExtendExpr(SZ->getOperand(), Ty); 893 894 // Before doing any expensive analysis, check to see if we've already 895 // computed a SCEV for this Op and Ty. 896 FoldingSetNodeID ID; 897 ID.AddInteger(scZeroExtend); 898 ID.AddPointer(Op); 899 ID.AddPointer(Ty); 900 void *IP = 0; 901 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 902 903 // zext(trunc(x)) --> zext(x) or x or trunc(x) 904 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 905 // It's possible the bits taken off by the truncate were all zero bits. If 906 // so, we should be able to simplify this further. 907 const SCEV *X = ST->getOperand(); 908 ConstantRange CR = getUnsignedRange(X); 909 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 910 unsigned NewBits = getTypeSizeInBits(Ty); 911 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 912 CR.zextOrTrunc(NewBits))) 913 return getTruncateOrZeroExtend(X, Ty); 914 } 915 916 // If the input value is a chrec scev, and we can prove that the value 917 // did not overflow the old, smaller, value, we can zero extend all of the 918 // operands (often constants). This allows analysis of something like 919 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 920 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 921 if (AR->isAffine()) { 922 const SCEV *Start = AR->getStart(); 923 const SCEV *Step = AR->getStepRecurrence(*this); 924 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 925 const Loop *L = AR->getLoop(); 926 927 // If we have special knowledge that this addrec won't overflow, 928 // we don't need to do any further analysis. 929 if (AR->hasNoUnsignedWrap()) 930 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 931 getZeroExtendExpr(Step, Ty), 932 L); 933 934 // Check whether the backedge-taken count is SCEVCouldNotCompute. 935 // Note that this serves two purposes: It filters out loops that are 936 // simply not analyzable, and it covers the case where this code is 937 // being called from within backedge-taken count analysis, such that 938 // attempting to ask for the backedge-taken count would likely result 939 // in infinite recursion. In the later case, the analysis code will 940 // cope with a conservative value, and it will take care to purge 941 // that value once it has finished. 942 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 943 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 944 // Manually compute the final value for AR, checking for 945 // overflow. 946 947 // Check whether the backedge-taken count can be losslessly casted to 948 // the addrec's type. The count is always unsigned. 949 const SCEV *CastedMaxBECount = 950 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 951 const SCEV *RecastedMaxBECount = 952 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 953 if (MaxBECount == RecastedMaxBECount) { 954 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 955 // Check whether Start+Step*MaxBECount has no unsigned overflow. 956 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 957 const SCEV *Add = getAddExpr(Start, ZMul); 958 const SCEV *OperandExtendedAdd = 959 getAddExpr(getZeroExtendExpr(Start, WideTy), 960 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 961 getZeroExtendExpr(Step, WideTy))); 962 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 963 // Return the expression with the addrec on the outside. 964 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 965 getZeroExtendExpr(Step, Ty), 966 L); 967 968 // Similar to above, only this time treat the step value as signed. 969 // This covers loops that count down. 970 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 971 Add = getAddExpr(Start, SMul); 972 OperandExtendedAdd = 973 getAddExpr(getZeroExtendExpr(Start, WideTy), 974 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 975 getSignExtendExpr(Step, WideTy))); 976 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 977 // Return the expression with the addrec on the outside. 978 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 979 getSignExtendExpr(Step, Ty), 980 L); 981 } 982 983 // If the backedge is guarded by a comparison with the pre-inc value 984 // the addrec is safe. Also, if the entry is guarded by a comparison 985 // with the start value and the backedge is guarded by a comparison 986 // with the post-inc value, the addrec is safe. 987 if (isKnownPositive(Step)) { 988 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 989 getUnsignedRange(Step).getUnsignedMax()); 990 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 991 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 992 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 993 AR->getPostIncExpr(*this), N))) 994 // Return the expression with the addrec on the outside. 995 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 996 getZeroExtendExpr(Step, Ty), 997 L); 998 } else if (isKnownNegative(Step)) { 999 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1000 getSignedRange(Step).getSignedMin()); 1001 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1002 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1003 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1004 AR->getPostIncExpr(*this), N))) 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getSignExtendExpr(Step, Ty), 1008 L); 1009 } 1010 } 1011 } 1012 1013 // The cast wasn't folded; create an explicit cast node. 1014 // Recompute the insert position, as it may have been invalidated. 1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1016 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1017 Op, Ty); 1018 UniqueSCEVs.InsertNode(S, IP); 1019 return S; 1020 } 1021 1022 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1023 const Type *Ty) { 1024 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1025 "This is not an extending conversion!"); 1026 assert(isSCEVable(Ty) && 1027 "This is not a conversion to a SCEVable type!"); 1028 Ty = getEffectiveSCEVType(Ty); 1029 1030 // Fold if the operand is constant. 1031 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1032 return getConstant( 1033 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1034 getEffectiveSCEVType(Ty)))); 1035 1036 // sext(sext(x)) --> sext(x) 1037 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1038 return getSignExtendExpr(SS->getOperand(), Ty); 1039 1040 // sext(zext(x)) --> zext(x) 1041 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1042 return getZeroExtendExpr(SZ->getOperand(), Ty); 1043 1044 // Before doing any expensive analysis, check to see if we've already 1045 // computed a SCEV for this Op and Ty. 1046 FoldingSetNodeID ID; 1047 ID.AddInteger(scSignExtend); 1048 ID.AddPointer(Op); 1049 ID.AddPointer(Ty); 1050 void *IP = 0; 1051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1052 1053 // If the input value is provably positive, build a zext instead. 1054 if (isKnownNonNegative(Op)) 1055 return getZeroExtendExpr(Op, Ty); 1056 1057 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1058 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1059 // It's possible the bits taken off by the truncate were all sign bits. If 1060 // so, we should be able to simplify this further. 1061 const SCEV *X = ST->getOperand(); 1062 ConstantRange CR = getSignedRange(X); 1063 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1064 unsigned NewBits = getTypeSizeInBits(Ty); 1065 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1066 CR.sextOrTrunc(NewBits))) 1067 return getTruncateOrSignExtend(X, Ty); 1068 } 1069 1070 // If the input value is a chrec scev, and we can prove that the value 1071 // did not overflow the old, smaller, value, we can sign extend all of the 1072 // operands (often constants). This allows analysis of something like 1073 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1074 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1075 if (AR->isAffine()) { 1076 const SCEV *Start = AR->getStart(); 1077 const SCEV *Step = AR->getStepRecurrence(*this); 1078 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1079 const Loop *L = AR->getLoop(); 1080 1081 // If we have special knowledge that this addrec won't overflow, 1082 // we don't need to do any further analysis. 1083 if (AR->hasNoSignedWrap()) 1084 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1085 getSignExtendExpr(Step, Ty), 1086 L); 1087 1088 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1089 // Note that this serves two purposes: It filters out loops that are 1090 // simply not analyzable, and it covers the case where this code is 1091 // being called from within backedge-taken count analysis, such that 1092 // attempting to ask for the backedge-taken count would likely result 1093 // in infinite recursion. In the later case, the analysis code will 1094 // cope with a conservative value, and it will take care to purge 1095 // that value once it has finished. 1096 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1097 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1098 // Manually compute the final value for AR, checking for 1099 // overflow. 1100 1101 // Check whether the backedge-taken count can be losslessly casted to 1102 // the addrec's type. The count is always unsigned. 1103 const SCEV *CastedMaxBECount = 1104 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1105 const SCEV *RecastedMaxBECount = 1106 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1107 if (MaxBECount == RecastedMaxBECount) { 1108 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1109 // Check whether Start+Step*MaxBECount has no signed overflow. 1110 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1111 const SCEV *Add = getAddExpr(Start, SMul); 1112 const SCEV *OperandExtendedAdd = 1113 getAddExpr(getSignExtendExpr(Start, WideTy), 1114 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1115 getSignExtendExpr(Step, WideTy))); 1116 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1117 // Return the expression with the addrec on the outside. 1118 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1119 getSignExtendExpr(Step, Ty), 1120 L); 1121 1122 // Similar to above, only this time treat the step value as unsigned. 1123 // This covers loops that count up with an unsigned step. 1124 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1125 Add = getAddExpr(Start, UMul); 1126 OperandExtendedAdd = 1127 getAddExpr(getSignExtendExpr(Start, WideTy), 1128 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1129 getZeroExtendExpr(Step, WideTy))); 1130 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1131 // Return the expression with the addrec on the outside. 1132 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1133 getZeroExtendExpr(Step, Ty), 1134 L); 1135 } 1136 1137 // If the backedge is guarded by a comparison with the pre-inc value 1138 // the addrec is safe. Also, if the entry is guarded by a comparison 1139 // with the start value and the backedge is guarded by a comparison 1140 // with the post-inc value, the addrec is safe. 1141 if (isKnownPositive(Step)) { 1142 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1143 getSignedRange(Step).getSignedMax()); 1144 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1145 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1146 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1147 AR->getPostIncExpr(*this), N))) 1148 // Return the expression with the addrec on the outside. 1149 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1150 getSignExtendExpr(Step, Ty), 1151 L); 1152 } else if (isKnownNegative(Step)) { 1153 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1154 getSignedRange(Step).getSignedMin()); 1155 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1156 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1157 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1158 AR->getPostIncExpr(*this), N))) 1159 // Return the expression with the addrec on the outside. 1160 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1161 getSignExtendExpr(Step, Ty), 1162 L); 1163 } 1164 } 1165 } 1166 1167 // The cast wasn't folded; create an explicit cast node. 1168 // Recompute the insert position, as it may have been invalidated. 1169 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1170 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1171 Op, Ty); 1172 UniqueSCEVs.InsertNode(S, IP); 1173 return S; 1174 } 1175 1176 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1177 /// unspecified bits out to the given type. 1178 /// 1179 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1180 const Type *Ty) { 1181 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1182 "This is not an extending conversion!"); 1183 assert(isSCEVable(Ty) && 1184 "This is not a conversion to a SCEVable type!"); 1185 Ty = getEffectiveSCEVType(Ty); 1186 1187 // Sign-extend negative constants. 1188 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1189 if (SC->getValue()->getValue().isNegative()) 1190 return getSignExtendExpr(Op, Ty); 1191 1192 // Peel off a truncate cast. 1193 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1194 const SCEV *NewOp = T->getOperand(); 1195 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1196 return getAnyExtendExpr(NewOp, Ty); 1197 return getTruncateOrNoop(NewOp, Ty); 1198 } 1199 1200 // Next try a zext cast. If the cast is folded, use it. 1201 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1202 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1203 return ZExt; 1204 1205 // Next try a sext cast. If the cast is folded, use it. 1206 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1207 if (!isa<SCEVSignExtendExpr>(SExt)) 1208 return SExt; 1209 1210 // Force the cast to be folded into the operands of an addrec. 1211 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1212 SmallVector<const SCEV *, 4> Ops; 1213 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1214 I != E; ++I) 1215 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1216 return getAddRecExpr(Ops, AR->getLoop()); 1217 } 1218 1219 // As a special case, fold anyext(undef) to undef. We don't want to 1220 // know too much about SCEVUnknowns, but this special case is handy 1221 // and harmless. 1222 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1223 if (isa<UndefValue>(U->getValue())) 1224 return getSCEV(UndefValue::get(Ty)); 1225 1226 // If the expression is obviously signed, use the sext cast value. 1227 if (isa<SCEVSMaxExpr>(Op)) 1228 return SExt; 1229 1230 // Absent any other information, use the zext cast value. 1231 return ZExt; 1232 } 1233 1234 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1235 /// a list of operands to be added under the given scale, update the given 1236 /// map. This is a helper function for getAddRecExpr. As an example of 1237 /// what it does, given a sequence of operands that would form an add 1238 /// expression like this: 1239 /// 1240 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1241 /// 1242 /// where A and B are constants, update the map with these values: 1243 /// 1244 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1245 /// 1246 /// and add 13 + A*B*29 to AccumulatedConstant. 1247 /// This will allow getAddRecExpr to produce this: 1248 /// 1249 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1250 /// 1251 /// This form often exposes folding opportunities that are hidden in 1252 /// the original operand list. 1253 /// 1254 /// Return true iff it appears that any interesting folding opportunities 1255 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1256 /// the common case where no interesting opportunities are present, and 1257 /// is also used as a check to avoid infinite recursion. 1258 /// 1259 static bool 1260 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1261 SmallVector<const SCEV *, 8> &NewOps, 1262 APInt &AccumulatedConstant, 1263 const SCEV *const *Ops, size_t NumOperands, 1264 const APInt &Scale, 1265 ScalarEvolution &SE) { 1266 bool Interesting = false; 1267 1268 // Iterate over the add operands. They are sorted, with constants first. 1269 unsigned i = 0; 1270 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1271 ++i; 1272 // Pull a buried constant out to the outside. 1273 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1274 Interesting = true; 1275 AccumulatedConstant += Scale * C->getValue()->getValue(); 1276 } 1277 1278 // Next comes everything else. We're especially interested in multiplies 1279 // here, but they're in the middle, so just visit the rest with one loop. 1280 for (; i != NumOperands; ++i) { 1281 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1282 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1283 APInt NewScale = 1284 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1285 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1286 // A multiplication of a constant with another add; recurse. 1287 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1288 Interesting |= 1289 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1290 Add->op_begin(), Add->getNumOperands(), 1291 NewScale, SE); 1292 } else { 1293 // A multiplication of a constant with some other value. Update 1294 // the map. 1295 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1296 const SCEV *Key = SE.getMulExpr(MulOps); 1297 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1298 M.insert(std::make_pair(Key, NewScale)); 1299 if (Pair.second) { 1300 NewOps.push_back(Pair.first->first); 1301 } else { 1302 Pair.first->second += NewScale; 1303 // The map already had an entry for this value, which may indicate 1304 // a folding opportunity. 1305 Interesting = true; 1306 } 1307 } 1308 } else { 1309 // An ordinary operand. Update the map. 1310 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1311 M.insert(std::make_pair(Ops[i], Scale)); 1312 if (Pair.second) { 1313 NewOps.push_back(Pair.first->first); 1314 } else { 1315 Pair.first->second += Scale; 1316 // The map already had an entry for this value, which may indicate 1317 // a folding opportunity. 1318 Interesting = true; 1319 } 1320 } 1321 } 1322 1323 return Interesting; 1324 } 1325 1326 namespace { 1327 struct APIntCompare { 1328 bool operator()(const APInt &LHS, const APInt &RHS) const { 1329 return LHS.ult(RHS); 1330 } 1331 }; 1332 } 1333 1334 /// getAddExpr - Get a canonical add expression, or something simpler if 1335 /// possible. 1336 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1337 bool HasNUW, bool HasNSW) { 1338 assert(!Ops.empty() && "Cannot get empty add!"); 1339 if (Ops.size() == 1) return Ops[0]; 1340 #ifndef NDEBUG 1341 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1342 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1343 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1344 "SCEVAddExpr operand types don't match!"); 1345 #endif 1346 1347 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1348 if (!HasNUW && HasNSW) { 1349 bool All = true; 1350 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1351 E = Ops.end(); I != E; ++I) 1352 if (!isKnownNonNegative(*I)) { 1353 All = false; 1354 break; 1355 } 1356 if (All) HasNUW = true; 1357 } 1358 1359 // Sort by complexity, this groups all similar expression types together. 1360 GroupByComplexity(Ops, LI); 1361 1362 // If there are any constants, fold them together. 1363 unsigned Idx = 0; 1364 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1365 ++Idx; 1366 assert(Idx < Ops.size()); 1367 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1368 // We found two constants, fold them together! 1369 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1370 RHSC->getValue()->getValue()); 1371 if (Ops.size() == 2) return Ops[0]; 1372 Ops.erase(Ops.begin()+1); // Erase the folded element 1373 LHSC = cast<SCEVConstant>(Ops[0]); 1374 } 1375 1376 // If we are left with a constant zero being added, strip it off. 1377 if (LHSC->getValue()->isZero()) { 1378 Ops.erase(Ops.begin()); 1379 --Idx; 1380 } 1381 1382 if (Ops.size() == 1) return Ops[0]; 1383 } 1384 1385 // Okay, check to see if the same value occurs in the operand list more than 1386 // once. If so, merge them together into an multiply expression. Since we 1387 // sorted the list, these values are required to be adjacent. 1388 const Type *Ty = Ops[0]->getType(); 1389 bool FoundMatch = false; 1390 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1391 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1392 // Scan ahead to count how many equal operands there are. 1393 unsigned Count = 2; 1394 while (i+Count != e && Ops[i+Count] == Ops[i]) 1395 ++Count; 1396 // Merge the values into a multiply. 1397 const SCEV *Scale = getConstant(Ty, Count); 1398 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1399 if (Ops.size() == Count) 1400 return Mul; 1401 Ops[i] = Mul; 1402 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1403 --i; e -= Count - 1; 1404 FoundMatch = true; 1405 } 1406 if (FoundMatch) 1407 return getAddExpr(Ops, HasNUW, HasNSW); 1408 1409 // Check for truncates. If all the operands are truncated from the same 1410 // type, see if factoring out the truncate would permit the result to be 1411 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1412 // if the contents of the resulting outer trunc fold to something simple. 1413 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1414 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1415 const Type *DstType = Trunc->getType(); 1416 const Type *SrcType = Trunc->getOperand()->getType(); 1417 SmallVector<const SCEV *, 8> LargeOps; 1418 bool Ok = true; 1419 // Check all the operands to see if they can be represented in the 1420 // source type of the truncate. 1421 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1422 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1423 if (T->getOperand()->getType() != SrcType) { 1424 Ok = false; 1425 break; 1426 } 1427 LargeOps.push_back(T->getOperand()); 1428 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1429 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1430 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1431 SmallVector<const SCEV *, 8> LargeMulOps; 1432 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1433 if (const SCEVTruncateExpr *T = 1434 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1435 if (T->getOperand()->getType() != SrcType) { 1436 Ok = false; 1437 break; 1438 } 1439 LargeMulOps.push_back(T->getOperand()); 1440 } else if (const SCEVConstant *C = 1441 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1442 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1443 } else { 1444 Ok = false; 1445 break; 1446 } 1447 } 1448 if (Ok) 1449 LargeOps.push_back(getMulExpr(LargeMulOps)); 1450 } else { 1451 Ok = false; 1452 break; 1453 } 1454 } 1455 if (Ok) { 1456 // Evaluate the expression in the larger type. 1457 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1458 // If it folds to something simple, use it. Otherwise, don't. 1459 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1460 return getTruncateExpr(Fold, DstType); 1461 } 1462 } 1463 1464 // Skip past any other cast SCEVs. 1465 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1466 ++Idx; 1467 1468 // If there are add operands they would be next. 1469 if (Idx < Ops.size()) { 1470 bool DeletedAdd = false; 1471 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1472 // If we have an add, expand the add operands onto the end of the operands 1473 // list. 1474 Ops.erase(Ops.begin()+Idx); 1475 Ops.append(Add->op_begin(), Add->op_end()); 1476 DeletedAdd = true; 1477 } 1478 1479 // If we deleted at least one add, we added operands to the end of the list, 1480 // and they are not necessarily sorted. Recurse to resort and resimplify 1481 // any operands we just acquired. 1482 if (DeletedAdd) 1483 return getAddExpr(Ops); 1484 } 1485 1486 // Skip over the add expression until we get to a multiply. 1487 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1488 ++Idx; 1489 1490 // Check to see if there are any folding opportunities present with 1491 // operands multiplied by constant values. 1492 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1493 uint64_t BitWidth = getTypeSizeInBits(Ty); 1494 DenseMap<const SCEV *, APInt> M; 1495 SmallVector<const SCEV *, 8> NewOps; 1496 APInt AccumulatedConstant(BitWidth, 0); 1497 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1498 Ops.data(), Ops.size(), 1499 APInt(BitWidth, 1), *this)) { 1500 // Some interesting folding opportunity is present, so its worthwhile to 1501 // re-generate the operands list. Group the operands by constant scale, 1502 // to avoid multiplying by the same constant scale multiple times. 1503 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1504 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1505 E = NewOps.end(); I != E; ++I) 1506 MulOpLists[M.find(*I)->second].push_back(*I); 1507 // Re-generate the operands list. 1508 Ops.clear(); 1509 if (AccumulatedConstant != 0) 1510 Ops.push_back(getConstant(AccumulatedConstant)); 1511 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1512 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1513 if (I->first != 0) 1514 Ops.push_back(getMulExpr(getConstant(I->first), 1515 getAddExpr(I->second))); 1516 if (Ops.empty()) 1517 return getConstant(Ty, 0); 1518 if (Ops.size() == 1) 1519 return Ops[0]; 1520 return getAddExpr(Ops); 1521 } 1522 } 1523 1524 // If we are adding something to a multiply expression, make sure the 1525 // something is not already an operand of the multiply. If so, merge it into 1526 // the multiply. 1527 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1528 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1529 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1530 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1531 if (isa<SCEVConstant>(MulOpSCEV)) 1532 continue; 1533 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1534 if (MulOpSCEV == Ops[AddOp]) { 1535 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1536 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1537 if (Mul->getNumOperands() != 2) { 1538 // If the multiply has more than two operands, we must get the 1539 // Y*Z term. 1540 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1541 Mul->op_begin()+MulOp); 1542 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1543 InnerMul = getMulExpr(MulOps); 1544 } 1545 const SCEV *One = getConstant(Ty, 1); 1546 const SCEV *AddOne = getAddExpr(One, InnerMul); 1547 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1548 if (Ops.size() == 2) return OuterMul; 1549 if (AddOp < Idx) { 1550 Ops.erase(Ops.begin()+AddOp); 1551 Ops.erase(Ops.begin()+Idx-1); 1552 } else { 1553 Ops.erase(Ops.begin()+Idx); 1554 Ops.erase(Ops.begin()+AddOp-1); 1555 } 1556 Ops.push_back(OuterMul); 1557 return getAddExpr(Ops); 1558 } 1559 1560 // Check this multiply against other multiplies being added together. 1561 for (unsigned OtherMulIdx = Idx+1; 1562 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1563 ++OtherMulIdx) { 1564 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1565 // If MulOp occurs in OtherMul, we can fold the two multiplies 1566 // together. 1567 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1568 OMulOp != e; ++OMulOp) 1569 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1570 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1571 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1572 if (Mul->getNumOperands() != 2) { 1573 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1574 Mul->op_begin()+MulOp); 1575 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1576 InnerMul1 = getMulExpr(MulOps); 1577 } 1578 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1579 if (OtherMul->getNumOperands() != 2) { 1580 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1581 OtherMul->op_begin()+OMulOp); 1582 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1583 InnerMul2 = getMulExpr(MulOps); 1584 } 1585 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1586 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1587 if (Ops.size() == 2) return OuterMul; 1588 Ops.erase(Ops.begin()+Idx); 1589 Ops.erase(Ops.begin()+OtherMulIdx-1); 1590 Ops.push_back(OuterMul); 1591 return getAddExpr(Ops); 1592 } 1593 } 1594 } 1595 } 1596 1597 // If there are any add recurrences in the operands list, see if any other 1598 // added values are loop invariant. If so, we can fold them into the 1599 // recurrence. 1600 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1601 ++Idx; 1602 1603 // Scan over all recurrences, trying to fold loop invariants into them. 1604 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1605 // Scan all of the other operands to this add and add them to the vector if 1606 // they are loop invariant w.r.t. the recurrence. 1607 SmallVector<const SCEV *, 8> LIOps; 1608 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1609 const Loop *AddRecLoop = AddRec->getLoop(); 1610 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1611 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1612 LIOps.push_back(Ops[i]); 1613 Ops.erase(Ops.begin()+i); 1614 --i; --e; 1615 } 1616 1617 // If we found some loop invariants, fold them into the recurrence. 1618 if (!LIOps.empty()) { 1619 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1620 LIOps.push_back(AddRec->getStart()); 1621 1622 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1623 AddRec->op_end()); 1624 AddRecOps[0] = getAddExpr(LIOps); 1625 1626 // Build the new addrec. Propagate the NUW and NSW flags if both the 1627 // outer add and the inner addrec are guaranteed to have no overflow. 1628 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1629 HasNUW && AddRec->hasNoUnsignedWrap(), 1630 HasNSW && AddRec->hasNoSignedWrap()); 1631 1632 // If all of the other operands were loop invariant, we are done. 1633 if (Ops.size() == 1) return NewRec; 1634 1635 // Otherwise, add the folded AddRec by the non-liv parts. 1636 for (unsigned i = 0;; ++i) 1637 if (Ops[i] == AddRec) { 1638 Ops[i] = NewRec; 1639 break; 1640 } 1641 return getAddExpr(Ops); 1642 } 1643 1644 // Okay, if there weren't any loop invariants to be folded, check to see if 1645 // there are multiple AddRec's with the same loop induction variable being 1646 // added together. If so, we can fold them. 1647 for (unsigned OtherIdx = Idx+1; 1648 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1649 ++OtherIdx) 1650 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1651 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1652 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1653 AddRec->op_end()); 1654 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1655 ++OtherIdx) 1656 if (const SCEVAddRecExpr *OtherAddRec = 1657 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1658 if (OtherAddRec->getLoop() == AddRecLoop) { 1659 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1660 i != e; ++i) { 1661 if (i >= AddRecOps.size()) { 1662 AddRecOps.append(OtherAddRec->op_begin()+i, 1663 OtherAddRec->op_end()); 1664 break; 1665 } 1666 AddRecOps[i] = getAddExpr(AddRecOps[i], 1667 OtherAddRec->getOperand(i)); 1668 } 1669 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1670 } 1671 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop); 1672 return getAddExpr(Ops); 1673 } 1674 1675 // Otherwise couldn't fold anything into this recurrence. Move onto the 1676 // next one. 1677 } 1678 1679 // Okay, it looks like we really DO need an add expr. Check to see if we 1680 // already have one, otherwise create a new one. 1681 FoldingSetNodeID ID; 1682 ID.AddInteger(scAddExpr); 1683 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1684 ID.AddPointer(Ops[i]); 1685 void *IP = 0; 1686 SCEVAddExpr *S = 1687 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1688 if (!S) { 1689 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1690 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1691 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1692 O, Ops.size()); 1693 UniqueSCEVs.InsertNode(S, IP); 1694 } 1695 if (HasNUW) S->setHasNoUnsignedWrap(true); 1696 if (HasNSW) S->setHasNoSignedWrap(true); 1697 return S; 1698 } 1699 1700 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1701 /// possible. 1702 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1703 bool HasNUW, bool HasNSW) { 1704 assert(!Ops.empty() && "Cannot get empty mul!"); 1705 if (Ops.size() == 1) return Ops[0]; 1706 #ifndef NDEBUG 1707 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1708 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1709 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1710 "SCEVMulExpr operand types don't match!"); 1711 #endif 1712 1713 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1714 if (!HasNUW && HasNSW) { 1715 bool All = true; 1716 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1717 E = Ops.end(); I != E; ++I) 1718 if (!isKnownNonNegative(*I)) { 1719 All = false; 1720 break; 1721 } 1722 if (All) HasNUW = true; 1723 } 1724 1725 // Sort by complexity, this groups all similar expression types together. 1726 GroupByComplexity(Ops, LI); 1727 1728 // If there are any constants, fold them together. 1729 unsigned Idx = 0; 1730 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1731 1732 // C1*(C2+V) -> C1*C2 + C1*V 1733 if (Ops.size() == 2) 1734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1735 if (Add->getNumOperands() == 2 && 1736 isa<SCEVConstant>(Add->getOperand(0))) 1737 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1738 getMulExpr(LHSC, Add->getOperand(1))); 1739 1740 ++Idx; 1741 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1742 // We found two constants, fold them together! 1743 ConstantInt *Fold = ConstantInt::get(getContext(), 1744 LHSC->getValue()->getValue() * 1745 RHSC->getValue()->getValue()); 1746 Ops[0] = getConstant(Fold); 1747 Ops.erase(Ops.begin()+1); // Erase the folded element 1748 if (Ops.size() == 1) return Ops[0]; 1749 LHSC = cast<SCEVConstant>(Ops[0]); 1750 } 1751 1752 // If we are left with a constant one being multiplied, strip it off. 1753 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1754 Ops.erase(Ops.begin()); 1755 --Idx; 1756 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1757 // If we have a multiply of zero, it will always be zero. 1758 return Ops[0]; 1759 } else if (Ops[0]->isAllOnesValue()) { 1760 // If we have a mul by -1 of an add, try distributing the -1 among the 1761 // add operands. 1762 if (Ops.size() == 2) 1763 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1764 SmallVector<const SCEV *, 4> NewOps; 1765 bool AnyFolded = false; 1766 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1767 I != E; ++I) { 1768 const SCEV *Mul = getMulExpr(Ops[0], *I); 1769 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1770 NewOps.push_back(Mul); 1771 } 1772 if (AnyFolded) 1773 return getAddExpr(NewOps); 1774 } 1775 } 1776 1777 if (Ops.size() == 1) 1778 return Ops[0]; 1779 } 1780 1781 // Skip over the add expression until we get to a multiply. 1782 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1783 ++Idx; 1784 1785 // If there are mul operands inline them all into this expression. 1786 if (Idx < Ops.size()) { 1787 bool DeletedMul = false; 1788 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1789 // If we have an mul, expand the mul operands onto the end of the operands 1790 // list. 1791 Ops.erase(Ops.begin()+Idx); 1792 Ops.append(Mul->op_begin(), Mul->op_end()); 1793 DeletedMul = true; 1794 } 1795 1796 // If we deleted at least one mul, we added operands to the end of the list, 1797 // and they are not necessarily sorted. Recurse to resort and resimplify 1798 // any operands we just acquired. 1799 if (DeletedMul) 1800 return getMulExpr(Ops); 1801 } 1802 1803 // If there are any add recurrences in the operands list, see if any other 1804 // added values are loop invariant. If so, we can fold them into the 1805 // recurrence. 1806 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1807 ++Idx; 1808 1809 // Scan over all recurrences, trying to fold loop invariants into them. 1810 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1811 // Scan all of the other operands to this mul and add them to the vector if 1812 // they are loop invariant w.r.t. the recurrence. 1813 SmallVector<const SCEV *, 8> LIOps; 1814 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1815 const Loop *AddRecLoop = AddRec->getLoop(); 1816 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1817 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1818 LIOps.push_back(Ops[i]); 1819 Ops.erase(Ops.begin()+i); 1820 --i; --e; 1821 } 1822 1823 // If we found some loop invariants, fold them into the recurrence. 1824 if (!LIOps.empty()) { 1825 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1826 SmallVector<const SCEV *, 4> NewOps; 1827 NewOps.reserve(AddRec->getNumOperands()); 1828 const SCEV *Scale = getMulExpr(LIOps); 1829 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1830 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1831 1832 // Build the new addrec. Propagate the NUW and NSW flags if both the 1833 // outer mul and the inner addrec are guaranteed to have no overflow. 1834 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, 1835 HasNUW && AddRec->hasNoUnsignedWrap(), 1836 HasNSW && AddRec->hasNoSignedWrap()); 1837 1838 // If all of the other operands were loop invariant, we are done. 1839 if (Ops.size() == 1) return NewRec; 1840 1841 // Otherwise, multiply the folded AddRec by the non-liv parts. 1842 for (unsigned i = 0;; ++i) 1843 if (Ops[i] == AddRec) { 1844 Ops[i] = NewRec; 1845 break; 1846 } 1847 return getMulExpr(Ops); 1848 } 1849 1850 // Okay, if there weren't any loop invariants to be folded, check to see if 1851 // there are multiple AddRec's with the same loop induction variable being 1852 // multiplied together. If so, we can fold them. 1853 for (unsigned OtherIdx = Idx+1; 1854 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1855 ++OtherIdx) 1856 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1857 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> --> 1858 // {A*C,+,F*D + G*B + B*D}<L> 1859 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1860 ++OtherIdx) 1861 if (const SCEVAddRecExpr *OtherAddRec = 1862 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1863 if (OtherAddRec->getLoop() == AddRecLoop) { 1864 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1865 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); 1866 const SCEV *B = F->getStepRecurrence(*this); 1867 const SCEV *D = G->getStepRecurrence(*this); 1868 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1869 getMulExpr(G, B), 1870 getMulExpr(B, D)); 1871 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1872 F->getLoop()); 1873 if (Ops.size() == 2) return NewAddRec; 1874 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 1875 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1876 } 1877 return getMulExpr(Ops); 1878 } 1879 1880 // Otherwise couldn't fold anything into this recurrence. Move onto the 1881 // next one. 1882 } 1883 1884 // Okay, it looks like we really DO need an mul expr. Check to see if we 1885 // already have one, otherwise create a new one. 1886 FoldingSetNodeID ID; 1887 ID.AddInteger(scMulExpr); 1888 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1889 ID.AddPointer(Ops[i]); 1890 void *IP = 0; 1891 SCEVMulExpr *S = 1892 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1893 if (!S) { 1894 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1895 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1896 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1897 O, Ops.size()); 1898 UniqueSCEVs.InsertNode(S, IP); 1899 } 1900 if (HasNUW) S->setHasNoUnsignedWrap(true); 1901 if (HasNSW) S->setHasNoSignedWrap(true); 1902 return S; 1903 } 1904 1905 /// getUDivExpr - Get a canonical unsigned division expression, or something 1906 /// simpler if possible. 1907 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1908 const SCEV *RHS) { 1909 assert(getEffectiveSCEVType(LHS->getType()) == 1910 getEffectiveSCEVType(RHS->getType()) && 1911 "SCEVUDivExpr operand types don't match!"); 1912 1913 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1914 if (RHSC->getValue()->equalsInt(1)) 1915 return LHS; // X udiv 1 --> x 1916 // If the denominator is zero, the result of the udiv is undefined. Don't 1917 // try to analyze it, because the resolution chosen here may differ from 1918 // the resolution chosen in other parts of the compiler. 1919 if (!RHSC->getValue()->isZero()) { 1920 // Determine if the division can be folded into the operands of 1921 // its operands. 1922 // TODO: Generalize this to non-constants by using known-bits information. 1923 const Type *Ty = LHS->getType(); 1924 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1925 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1926 // For non-power-of-two values, effectively round the value up to the 1927 // nearest power of two. 1928 if (!RHSC->getValue()->getValue().isPowerOf2()) 1929 ++MaxShiftAmt; 1930 const IntegerType *ExtTy = 1931 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1932 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1934 if (const SCEVConstant *Step = 1935 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1936 if (!Step->getValue()->getValue() 1937 .urem(RHSC->getValue()->getValue()) && 1938 getZeroExtendExpr(AR, ExtTy) == 1939 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1940 getZeroExtendExpr(Step, ExtTy), 1941 AR->getLoop())) { 1942 SmallVector<const SCEV *, 4> Operands; 1943 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1944 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1945 return getAddRecExpr(Operands, AR->getLoop()); 1946 } 1947 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1948 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1949 SmallVector<const SCEV *, 4> Operands; 1950 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1951 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1952 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1953 // Find an operand that's safely divisible. 1954 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1955 const SCEV *Op = M->getOperand(i); 1956 const SCEV *Div = getUDivExpr(Op, RHSC); 1957 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1958 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1959 M->op_end()); 1960 Operands[i] = Div; 1961 return getMulExpr(Operands); 1962 } 1963 } 1964 } 1965 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1966 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1967 SmallVector<const SCEV *, 4> Operands; 1968 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1969 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1970 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1971 Operands.clear(); 1972 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1973 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1974 if (isa<SCEVUDivExpr>(Op) || 1975 getMulExpr(Op, RHS) != A->getOperand(i)) 1976 break; 1977 Operands.push_back(Op); 1978 } 1979 if (Operands.size() == A->getNumOperands()) 1980 return getAddExpr(Operands); 1981 } 1982 } 1983 1984 // Fold if both operands are constant. 1985 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1986 Constant *LHSCV = LHSC->getValue(); 1987 Constant *RHSCV = RHSC->getValue(); 1988 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1989 RHSCV))); 1990 } 1991 } 1992 } 1993 1994 FoldingSetNodeID ID; 1995 ID.AddInteger(scUDivExpr); 1996 ID.AddPointer(LHS); 1997 ID.AddPointer(RHS); 1998 void *IP = 0; 1999 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2000 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2001 LHS, RHS); 2002 UniqueSCEVs.InsertNode(S, IP); 2003 return S; 2004 } 2005 2006 2007 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2008 /// Simplify the expression as much as possible. 2009 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 2010 const SCEV *Step, const Loop *L, 2011 bool HasNUW, bool HasNSW) { 2012 SmallVector<const SCEV *, 4> Operands; 2013 Operands.push_back(Start); 2014 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2015 if (StepChrec->getLoop() == L) { 2016 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2017 return getAddRecExpr(Operands, L); 2018 } 2019 2020 Operands.push_back(Step); 2021 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 2022 } 2023 2024 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2025 /// Simplify the expression as much as possible. 2026 const SCEV * 2027 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2028 const Loop *L, 2029 bool HasNUW, bool HasNSW) { 2030 if (Operands.size() == 1) return Operands[0]; 2031 #ifndef NDEBUG 2032 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2033 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2034 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2035 "SCEVAddRecExpr operand types don't match!"); 2036 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2037 assert(isLoopInvariant(Operands[i], L) && 2038 "SCEVAddRecExpr operand is not loop-invariant!"); 2039 #endif 2040 2041 if (Operands.back()->isZero()) { 2042 Operands.pop_back(); 2043 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 2044 } 2045 2046 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2047 // use that information to infer NUW and NSW flags. However, computing a 2048 // BE count requires calling getAddRecExpr, so we may not yet have a 2049 // meaningful BE count at this point (and if we don't, we'd be stuck 2050 // with a SCEVCouldNotCompute as the cached BE count). 2051 2052 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 2053 if (!HasNUW && HasNSW) { 2054 bool All = true; 2055 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2056 E = Operands.end(); I != E; ++I) 2057 if (!isKnownNonNegative(*I)) { 2058 All = false; 2059 break; 2060 } 2061 if (All) HasNUW = true; 2062 } 2063 2064 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2065 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2066 const Loop *NestedLoop = NestedAR->getLoop(); 2067 if (L->contains(NestedLoop) ? 2068 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2069 (!NestedLoop->contains(L) && 2070 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2071 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2072 NestedAR->op_end()); 2073 Operands[0] = NestedAR->getStart(); 2074 // AddRecs require their operands be loop-invariant with respect to their 2075 // loops. Don't perform this transformation if it would break this 2076 // requirement. 2077 bool AllInvariant = true; 2078 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2079 if (!isLoopInvariant(Operands[i], L)) { 2080 AllInvariant = false; 2081 break; 2082 } 2083 if (AllInvariant) { 2084 NestedOperands[0] = getAddRecExpr(Operands, L); 2085 AllInvariant = true; 2086 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2087 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2088 AllInvariant = false; 2089 break; 2090 } 2091 if (AllInvariant) 2092 // Ok, both add recurrences are valid after the transformation. 2093 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2094 } 2095 // Reset Operands to its original state. 2096 Operands[0] = NestedAR; 2097 } 2098 } 2099 2100 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2101 // already have one, otherwise create a new one. 2102 FoldingSetNodeID ID; 2103 ID.AddInteger(scAddRecExpr); 2104 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2105 ID.AddPointer(Operands[i]); 2106 ID.AddPointer(L); 2107 void *IP = 0; 2108 SCEVAddRecExpr *S = 2109 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2110 if (!S) { 2111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2112 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2113 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2114 O, Operands.size(), L); 2115 UniqueSCEVs.InsertNode(S, IP); 2116 } 2117 if (HasNUW) S->setHasNoUnsignedWrap(true); 2118 if (HasNSW) S->setHasNoSignedWrap(true); 2119 return S; 2120 } 2121 2122 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2123 const SCEV *RHS) { 2124 SmallVector<const SCEV *, 2> Ops; 2125 Ops.push_back(LHS); 2126 Ops.push_back(RHS); 2127 return getSMaxExpr(Ops); 2128 } 2129 2130 const SCEV * 2131 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2132 assert(!Ops.empty() && "Cannot get empty smax!"); 2133 if (Ops.size() == 1) return Ops[0]; 2134 #ifndef NDEBUG 2135 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2136 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2137 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2138 "SCEVSMaxExpr operand types don't match!"); 2139 #endif 2140 2141 // Sort by complexity, this groups all similar expression types together. 2142 GroupByComplexity(Ops, LI); 2143 2144 // If there are any constants, fold them together. 2145 unsigned Idx = 0; 2146 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2147 ++Idx; 2148 assert(Idx < Ops.size()); 2149 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2150 // We found two constants, fold them together! 2151 ConstantInt *Fold = ConstantInt::get(getContext(), 2152 APIntOps::smax(LHSC->getValue()->getValue(), 2153 RHSC->getValue()->getValue())); 2154 Ops[0] = getConstant(Fold); 2155 Ops.erase(Ops.begin()+1); // Erase the folded element 2156 if (Ops.size() == 1) return Ops[0]; 2157 LHSC = cast<SCEVConstant>(Ops[0]); 2158 } 2159 2160 // If we are left with a constant minimum-int, strip it off. 2161 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2162 Ops.erase(Ops.begin()); 2163 --Idx; 2164 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2165 // If we have an smax with a constant maximum-int, it will always be 2166 // maximum-int. 2167 return Ops[0]; 2168 } 2169 2170 if (Ops.size() == 1) return Ops[0]; 2171 } 2172 2173 // Find the first SMax 2174 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2175 ++Idx; 2176 2177 // Check to see if one of the operands is an SMax. If so, expand its operands 2178 // onto our operand list, and recurse to simplify. 2179 if (Idx < Ops.size()) { 2180 bool DeletedSMax = false; 2181 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2182 Ops.erase(Ops.begin()+Idx); 2183 Ops.append(SMax->op_begin(), SMax->op_end()); 2184 DeletedSMax = true; 2185 } 2186 2187 if (DeletedSMax) 2188 return getSMaxExpr(Ops); 2189 } 2190 2191 // Okay, check to see if the same value occurs in the operand list twice. If 2192 // so, delete one. Since we sorted the list, these values are required to 2193 // be adjacent. 2194 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2195 // X smax Y smax Y --> X smax Y 2196 // X smax Y --> X, if X is always greater than Y 2197 if (Ops[i] == Ops[i+1] || 2198 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2199 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2200 --i; --e; 2201 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2202 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2203 --i; --e; 2204 } 2205 2206 if (Ops.size() == 1) return Ops[0]; 2207 2208 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2209 2210 // Okay, it looks like we really DO need an smax expr. Check to see if we 2211 // already have one, otherwise create a new one. 2212 FoldingSetNodeID ID; 2213 ID.AddInteger(scSMaxExpr); 2214 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2215 ID.AddPointer(Ops[i]); 2216 void *IP = 0; 2217 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2218 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2219 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2220 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2221 O, Ops.size()); 2222 UniqueSCEVs.InsertNode(S, IP); 2223 return S; 2224 } 2225 2226 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2227 const SCEV *RHS) { 2228 SmallVector<const SCEV *, 2> Ops; 2229 Ops.push_back(LHS); 2230 Ops.push_back(RHS); 2231 return getUMaxExpr(Ops); 2232 } 2233 2234 const SCEV * 2235 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2236 assert(!Ops.empty() && "Cannot get empty umax!"); 2237 if (Ops.size() == 1) return Ops[0]; 2238 #ifndef NDEBUG 2239 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2240 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2241 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2242 "SCEVUMaxExpr operand types don't match!"); 2243 #endif 2244 2245 // Sort by complexity, this groups all similar expression types together. 2246 GroupByComplexity(Ops, LI); 2247 2248 // If there are any constants, fold them together. 2249 unsigned Idx = 0; 2250 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2251 ++Idx; 2252 assert(Idx < Ops.size()); 2253 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2254 // We found two constants, fold them together! 2255 ConstantInt *Fold = ConstantInt::get(getContext(), 2256 APIntOps::umax(LHSC->getValue()->getValue(), 2257 RHSC->getValue()->getValue())); 2258 Ops[0] = getConstant(Fold); 2259 Ops.erase(Ops.begin()+1); // Erase the folded element 2260 if (Ops.size() == 1) return Ops[0]; 2261 LHSC = cast<SCEVConstant>(Ops[0]); 2262 } 2263 2264 // If we are left with a constant minimum-int, strip it off. 2265 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2266 Ops.erase(Ops.begin()); 2267 --Idx; 2268 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2269 // If we have an umax with a constant maximum-int, it will always be 2270 // maximum-int. 2271 return Ops[0]; 2272 } 2273 2274 if (Ops.size() == 1) return Ops[0]; 2275 } 2276 2277 // Find the first UMax 2278 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2279 ++Idx; 2280 2281 // Check to see if one of the operands is a UMax. If so, expand its operands 2282 // onto our operand list, and recurse to simplify. 2283 if (Idx < Ops.size()) { 2284 bool DeletedUMax = false; 2285 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2286 Ops.erase(Ops.begin()+Idx); 2287 Ops.append(UMax->op_begin(), UMax->op_end()); 2288 DeletedUMax = true; 2289 } 2290 2291 if (DeletedUMax) 2292 return getUMaxExpr(Ops); 2293 } 2294 2295 // Okay, check to see if the same value occurs in the operand list twice. If 2296 // so, delete one. Since we sorted the list, these values are required to 2297 // be adjacent. 2298 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2299 // X umax Y umax Y --> X umax Y 2300 // X umax Y --> X, if X is always greater than Y 2301 if (Ops[i] == Ops[i+1] || 2302 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2303 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2304 --i; --e; 2305 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2306 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2307 --i; --e; 2308 } 2309 2310 if (Ops.size() == 1) return Ops[0]; 2311 2312 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2313 2314 // Okay, it looks like we really DO need a umax expr. Check to see if we 2315 // already have one, otherwise create a new one. 2316 FoldingSetNodeID ID; 2317 ID.AddInteger(scUMaxExpr); 2318 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2319 ID.AddPointer(Ops[i]); 2320 void *IP = 0; 2321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2322 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2323 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2324 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2325 O, Ops.size()); 2326 UniqueSCEVs.InsertNode(S, IP); 2327 return S; 2328 } 2329 2330 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2331 const SCEV *RHS) { 2332 // ~smax(~x, ~y) == smin(x, y). 2333 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2334 } 2335 2336 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2337 const SCEV *RHS) { 2338 // ~umax(~x, ~y) == umin(x, y) 2339 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2340 } 2341 2342 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2343 // If we have TargetData, we can bypass creating a target-independent 2344 // constant expression and then folding it back into a ConstantInt. 2345 // This is just a compile-time optimization. 2346 if (TD) 2347 return getConstant(TD->getIntPtrType(getContext()), 2348 TD->getTypeAllocSize(AllocTy)); 2349 2350 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2351 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2352 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2353 C = Folded; 2354 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2355 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2356 } 2357 2358 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2359 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2361 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2362 C = Folded; 2363 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2364 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2365 } 2366 2367 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2368 unsigned FieldNo) { 2369 // If we have TargetData, we can bypass creating a target-independent 2370 // constant expression and then folding it back into a ConstantInt. 2371 // This is just a compile-time optimization. 2372 if (TD) 2373 return getConstant(TD->getIntPtrType(getContext()), 2374 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2375 2376 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2378 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2379 C = Folded; 2380 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2381 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2382 } 2383 2384 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2385 Constant *FieldNo) { 2386 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2388 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2389 C = Folded; 2390 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2391 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2392 } 2393 2394 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2395 // Don't attempt to do anything other than create a SCEVUnknown object 2396 // here. createSCEV only calls getUnknown after checking for all other 2397 // interesting possibilities, and any other code that calls getUnknown 2398 // is doing so in order to hide a value from SCEV canonicalization. 2399 2400 FoldingSetNodeID ID; 2401 ID.AddInteger(scUnknown); 2402 ID.AddPointer(V); 2403 void *IP = 0; 2404 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2405 assert(cast<SCEVUnknown>(S)->getValue() == V && 2406 "Stale SCEVUnknown in uniquing map!"); 2407 return S; 2408 } 2409 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2410 FirstUnknown); 2411 FirstUnknown = cast<SCEVUnknown>(S); 2412 UniqueSCEVs.InsertNode(S, IP); 2413 return S; 2414 } 2415 2416 //===----------------------------------------------------------------------===// 2417 // Basic SCEV Analysis and PHI Idiom Recognition Code 2418 // 2419 2420 /// isSCEVable - Test if values of the given type are analyzable within 2421 /// the SCEV framework. This primarily includes integer types, and it 2422 /// can optionally include pointer types if the ScalarEvolution class 2423 /// has access to target-specific information. 2424 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2425 // Integers and pointers are always SCEVable. 2426 return Ty->isIntegerTy() || Ty->isPointerTy(); 2427 } 2428 2429 /// getTypeSizeInBits - Return the size in bits of the specified type, 2430 /// for which isSCEVable must return true. 2431 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2432 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2433 2434 // If we have a TargetData, use it! 2435 if (TD) 2436 return TD->getTypeSizeInBits(Ty); 2437 2438 // Integer types have fixed sizes. 2439 if (Ty->isIntegerTy()) 2440 return Ty->getPrimitiveSizeInBits(); 2441 2442 // The only other support type is pointer. Without TargetData, conservatively 2443 // assume pointers are 64-bit. 2444 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2445 return 64; 2446 } 2447 2448 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2449 /// the given type and which represents how SCEV will treat the given 2450 /// type, for which isSCEVable must return true. For pointer types, 2451 /// this is the pointer-sized integer type. 2452 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2453 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2454 2455 if (Ty->isIntegerTy()) 2456 return Ty; 2457 2458 // The only other support type is pointer. 2459 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2460 if (TD) return TD->getIntPtrType(getContext()); 2461 2462 // Without TargetData, conservatively assume pointers are 64-bit. 2463 return Type::getInt64Ty(getContext()); 2464 } 2465 2466 const SCEV *ScalarEvolution::getCouldNotCompute() { 2467 return &CouldNotCompute; 2468 } 2469 2470 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2471 /// expression and create a new one. 2472 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2473 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2474 2475 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2476 if (I != ValueExprMap.end()) return I->second; 2477 const SCEV *S = createSCEV(V); 2478 2479 // The process of creating a SCEV for V may have caused other SCEVs 2480 // to have been created, so it's necessary to insert the new entry 2481 // from scratch, rather than trying to remember the insert position 2482 // above. 2483 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2484 return S; 2485 } 2486 2487 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2488 /// 2489 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2490 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2491 return getConstant( 2492 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2493 2494 const Type *Ty = V->getType(); 2495 Ty = getEffectiveSCEVType(Ty); 2496 return getMulExpr(V, 2497 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2498 } 2499 2500 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2501 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2502 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2503 return getConstant( 2504 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2505 2506 const Type *Ty = V->getType(); 2507 Ty = getEffectiveSCEVType(Ty); 2508 const SCEV *AllOnes = 2509 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2510 return getMinusSCEV(AllOnes, V); 2511 } 2512 2513 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1, 2514 /// and thus the HasNUW and HasNSW bits apply to the resultant add, not 2515 /// whether the sub would have overflowed. 2516 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2517 bool HasNUW, bool HasNSW) { 2518 // Fast path: X - X --> 0. 2519 if (LHS == RHS) 2520 return getConstant(LHS->getType(), 0); 2521 2522 // X - Y --> X + -Y 2523 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW); 2524 } 2525 2526 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2527 /// input value to the specified type. If the type must be extended, it is zero 2528 /// extended. 2529 const SCEV * 2530 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) { 2531 const Type *SrcTy = V->getType(); 2532 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2533 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2534 "Cannot truncate or zero extend with non-integer arguments!"); 2535 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2536 return V; // No conversion 2537 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2538 return getTruncateExpr(V, Ty); 2539 return getZeroExtendExpr(V, Ty); 2540 } 2541 2542 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2543 /// input value to the specified type. If the type must be extended, it is sign 2544 /// extended. 2545 const SCEV * 2546 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2547 const Type *Ty) { 2548 const Type *SrcTy = V->getType(); 2549 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2550 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2551 "Cannot truncate or zero extend with non-integer arguments!"); 2552 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2553 return V; // No conversion 2554 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2555 return getTruncateExpr(V, Ty); 2556 return getSignExtendExpr(V, Ty); 2557 } 2558 2559 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2560 /// input value to the specified type. If the type must be extended, it is zero 2561 /// extended. The conversion must not be narrowing. 2562 const SCEV * 2563 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2564 const Type *SrcTy = V->getType(); 2565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2566 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2567 "Cannot noop or zero extend with non-integer arguments!"); 2568 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2569 "getNoopOrZeroExtend cannot truncate!"); 2570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2571 return V; // No conversion 2572 return getZeroExtendExpr(V, Ty); 2573 } 2574 2575 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2576 /// input value to the specified type. If the type must be extended, it is sign 2577 /// extended. The conversion must not be narrowing. 2578 const SCEV * 2579 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2580 const Type *SrcTy = V->getType(); 2581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2582 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2583 "Cannot noop or sign extend with non-integer arguments!"); 2584 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2585 "getNoopOrSignExtend cannot truncate!"); 2586 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2587 return V; // No conversion 2588 return getSignExtendExpr(V, Ty); 2589 } 2590 2591 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2592 /// the input value to the specified type. If the type must be extended, 2593 /// it is extended with unspecified bits. The conversion must not be 2594 /// narrowing. 2595 const SCEV * 2596 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2597 const Type *SrcTy = V->getType(); 2598 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2599 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2600 "Cannot noop or any extend with non-integer arguments!"); 2601 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2602 "getNoopOrAnyExtend cannot truncate!"); 2603 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2604 return V; // No conversion 2605 return getAnyExtendExpr(V, Ty); 2606 } 2607 2608 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2609 /// input value to the specified type. The conversion must not be widening. 2610 const SCEV * 2611 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2612 const Type *SrcTy = V->getType(); 2613 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2614 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2615 "Cannot truncate or noop with non-integer arguments!"); 2616 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2617 "getTruncateOrNoop cannot extend!"); 2618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2619 return V; // No conversion 2620 return getTruncateExpr(V, Ty); 2621 } 2622 2623 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2624 /// the types using zero-extension, and then perform a umax operation 2625 /// with them. 2626 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2627 const SCEV *RHS) { 2628 const SCEV *PromotedLHS = LHS; 2629 const SCEV *PromotedRHS = RHS; 2630 2631 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2632 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2633 else 2634 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2635 2636 return getUMaxExpr(PromotedLHS, PromotedRHS); 2637 } 2638 2639 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2640 /// the types using zero-extension, and then perform a umin operation 2641 /// with them. 2642 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2643 const SCEV *RHS) { 2644 const SCEV *PromotedLHS = LHS; 2645 const SCEV *PromotedRHS = RHS; 2646 2647 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2648 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2649 else 2650 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2651 2652 return getUMinExpr(PromotedLHS, PromotedRHS); 2653 } 2654 2655 /// PushDefUseChildren - Push users of the given Instruction 2656 /// onto the given Worklist. 2657 static void 2658 PushDefUseChildren(Instruction *I, 2659 SmallVectorImpl<Instruction *> &Worklist) { 2660 // Push the def-use children onto the Worklist stack. 2661 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2662 UI != UE; ++UI) 2663 Worklist.push_back(cast<Instruction>(*UI)); 2664 } 2665 2666 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2667 /// instructions that depend on the given instruction and removes them from 2668 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2669 /// resolution. 2670 void 2671 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2672 SmallVector<Instruction *, 16> Worklist; 2673 PushDefUseChildren(PN, Worklist); 2674 2675 SmallPtrSet<Instruction *, 8> Visited; 2676 Visited.insert(PN); 2677 while (!Worklist.empty()) { 2678 Instruction *I = Worklist.pop_back_val(); 2679 if (!Visited.insert(I)) continue; 2680 2681 ValueExprMapType::iterator It = 2682 ValueExprMap.find(static_cast<Value *>(I)); 2683 if (It != ValueExprMap.end()) { 2684 const SCEV *Old = It->second; 2685 2686 // Short-circuit the def-use traversal if the symbolic name 2687 // ceases to appear in expressions. 2688 if (Old != SymName && !hasOperand(Old, SymName)) 2689 continue; 2690 2691 // SCEVUnknown for a PHI either means that it has an unrecognized 2692 // structure, it's a PHI that's in the progress of being computed 2693 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2694 // additional loop trip count information isn't going to change anything. 2695 // In the second case, createNodeForPHI will perform the necessary 2696 // updates on its own when it gets to that point. In the third, we do 2697 // want to forget the SCEVUnknown. 2698 if (!isa<PHINode>(I) || 2699 !isa<SCEVUnknown>(Old) || 2700 (I != PN && Old == SymName)) { 2701 forgetMemoizedResults(Old); 2702 ValueExprMap.erase(It); 2703 } 2704 } 2705 2706 PushDefUseChildren(I, Worklist); 2707 } 2708 } 2709 2710 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2711 /// a loop header, making it a potential recurrence, or it doesn't. 2712 /// 2713 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2714 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2715 if (L->getHeader() == PN->getParent()) { 2716 // The loop may have multiple entrances or multiple exits; we can analyze 2717 // this phi as an addrec if it has a unique entry value and a unique 2718 // backedge value. 2719 Value *BEValueV = 0, *StartValueV = 0; 2720 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2721 Value *V = PN->getIncomingValue(i); 2722 if (L->contains(PN->getIncomingBlock(i))) { 2723 if (!BEValueV) { 2724 BEValueV = V; 2725 } else if (BEValueV != V) { 2726 BEValueV = 0; 2727 break; 2728 } 2729 } else if (!StartValueV) { 2730 StartValueV = V; 2731 } else if (StartValueV != V) { 2732 StartValueV = 0; 2733 break; 2734 } 2735 } 2736 if (BEValueV && StartValueV) { 2737 // While we are analyzing this PHI node, handle its value symbolically. 2738 const SCEV *SymbolicName = getUnknown(PN); 2739 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2740 "PHI node already processed?"); 2741 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2742 2743 // Using this symbolic name for the PHI, analyze the value coming around 2744 // the back-edge. 2745 const SCEV *BEValue = getSCEV(BEValueV); 2746 2747 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2748 // has a special value for the first iteration of the loop. 2749 2750 // If the value coming around the backedge is an add with the symbolic 2751 // value we just inserted, then we found a simple induction variable! 2752 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2753 // If there is a single occurrence of the symbolic value, replace it 2754 // with a recurrence. 2755 unsigned FoundIndex = Add->getNumOperands(); 2756 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2757 if (Add->getOperand(i) == SymbolicName) 2758 if (FoundIndex == e) { 2759 FoundIndex = i; 2760 break; 2761 } 2762 2763 if (FoundIndex != Add->getNumOperands()) { 2764 // Create an add with everything but the specified operand. 2765 SmallVector<const SCEV *, 8> Ops; 2766 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2767 if (i != FoundIndex) 2768 Ops.push_back(Add->getOperand(i)); 2769 const SCEV *Accum = getAddExpr(Ops); 2770 2771 // This is not a valid addrec if the step amount is varying each 2772 // loop iteration, but is not itself an addrec in this loop. 2773 if (isLoopInvariant(Accum, L) || 2774 (isa<SCEVAddRecExpr>(Accum) && 2775 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2776 bool HasNUW = false; 2777 bool HasNSW = false; 2778 2779 // If the increment doesn't overflow, then neither the addrec nor 2780 // the post-increment will overflow. 2781 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2782 if (OBO->hasNoUnsignedWrap()) 2783 HasNUW = true; 2784 if (OBO->hasNoSignedWrap()) 2785 HasNSW = true; 2786 } else if (const GEPOperator *GEP = 2787 dyn_cast<GEPOperator>(BEValueV)) { 2788 // If the increment is a GEP, then we know it won't perform an 2789 // unsigned overflow, because the address space cannot be 2790 // wrapped around. 2791 HasNUW |= GEP->isInBounds(); 2792 } 2793 2794 const SCEV *StartVal = getSCEV(StartValueV); 2795 const SCEV *PHISCEV = 2796 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2797 2798 // Since the no-wrap flags are on the increment, they apply to the 2799 // post-incremented value as well. 2800 if (isLoopInvariant(Accum, L)) 2801 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2802 Accum, L, HasNUW, HasNSW); 2803 2804 // Okay, for the entire analysis of this edge we assumed the PHI 2805 // to be symbolic. We now need to go back and purge all of the 2806 // entries for the scalars that use the symbolic expression. 2807 ForgetSymbolicName(PN, SymbolicName); 2808 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2809 return PHISCEV; 2810 } 2811 } 2812 } else if (const SCEVAddRecExpr *AddRec = 2813 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2814 // Otherwise, this could be a loop like this: 2815 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2816 // In this case, j = {1,+,1} and BEValue is j. 2817 // Because the other in-value of i (0) fits the evolution of BEValue 2818 // i really is an addrec evolution. 2819 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2820 const SCEV *StartVal = getSCEV(StartValueV); 2821 2822 // If StartVal = j.start - j.stride, we can use StartVal as the 2823 // initial step of the addrec evolution. 2824 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2825 AddRec->getOperand(1))) { 2826 const SCEV *PHISCEV = 2827 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2828 2829 // Okay, for the entire analysis of this edge we assumed the PHI 2830 // to be symbolic. We now need to go back and purge all of the 2831 // entries for the scalars that use the symbolic expression. 2832 ForgetSymbolicName(PN, SymbolicName); 2833 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2834 return PHISCEV; 2835 } 2836 } 2837 } 2838 } 2839 } 2840 2841 // If the PHI has a single incoming value, follow that value, unless the 2842 // PHI's incoming blocks are in a different loop, in which case doing so 2843 // risks breaking LCSSA form. Instcombine would normally zap these, but 2844 // it doesn't have DominatorTree information, so it may miss cases. 2845 if (Value *V = SimplifyInstruction(PN, TD, DT)) 2846 if (LI->replacementPreservesLCSSAForm(PN, V)) 2847 return getSCEV(V); 2848 2849 // If it's not a loop phi, we can't handle it yet. 2850 return getUnknown(PN); 2851 } 2852 2853 /// createNodeForGEP - Expand GEP instructions into add and multiply 2854 /// operations. This allows them to be analyzed by regular SCEV code. 2855 /// 2856 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2857 2858 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2859 // Add expression, because the Instruction may be guarded by control flow 2860 // and the no-overflow bits may not be valid for the expression in any 2861 // context. 2862 2863 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2864 Value *Base = GEP->getOperand(0); 2865 // Don't attempt to analyze GEPs over unsized objects. 2866 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2867 return getUnknown(GEP); 2868 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2869 gep_type_iterator GTI = gep_type_begin(GEP); 2870 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2871 E = GEP->op_end(); 2872 I != E; ++I) { 2873 Value *Index = *I; 2874 // Compute the (potentially symbolic) offset in bytes for this index. 2875 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2876 // For a struct, add the member offset. 2877 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2878 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2879 2880 // Add the field offset to the running total offset. 2881 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2882 } else { 2883 // For an array, add the element offset, explicitly scaled. 2884 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2885 const SCEV *IndexS = getSCEV(Index); 2886 // Getelementptr indices are signed. 2887 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2888 2889 // Multiply the index by the element size to compute the element offset. 2890 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2891 2892 // Add the element offset to the running total offset. 2893 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2894 } 2895 } 2896 2897 // Get the SCEV for the GEP base. 2898 const SCEV *BaseS = getSCEV(Base); 2899 2900 // Add the total offset from all the GEP indices to the base. 2901 return getAddExpr(BaseS, TotalOffset); 2902 } 2903 2904 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2905 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2906 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2907 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2908 uint32_t 2909 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2910 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2911 return C->getValue()->getValue().countTrailingZeros(); 2912 2913 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2914 return std::min(GetMinTrailingZeros(T->getOperand()), 2915 (uint32_t)getTypeSizeInBits(T->getType())); 2916 2917 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2918 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2919 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2920 getTypeSizeInBits(E->getType()) : OpRes; 2921 } 2922 2923 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2924 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2925 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2926 getTypeSizeInBits(E->getType()) : OpRes; 2927 } 2928 2929 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2930 // The result is the min of all operands results. 2931 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2932 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2933 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2934 return MinOpRes; 2935 } 2936 2937 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2938 // The result is the sum of all operands results. 2939 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2940 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2941 for (unsigned i = 1, e = M->getNumOperands(); 2942 SumOpRes != BitWidth && i != e; ++i) 2943 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2944 BitWidth); 2945 return SumOpRes; 2946 } 2947 2948 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2949 // The result is the min of all operands results. 2950 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2951 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2952 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2953 return MinOpRes; 2954 } 2955 2956 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2957 // The result is the min of all operands results. 2958 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2959 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2960 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2961 return MinOpRes; 2962 } 2963 2964 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2965 // The result is the min of all operands results. 2966 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2967 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2968 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2969 return MinOpRes; 2970 } 2971 2972 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2973 // For a SCEVUnknown, ask ValueTracking. 2974 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2975 APInt Mask = APInt::getAllOnesValue(BitWidth); 2976 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2977 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2978 return Zeros.countTrailingOnes(); 2979 } 2980 2981 // SCEVUDivExpr 2982 return 0; 2983 } 2984 2985 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2986 /// 2987 ConstantRange 2988 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2989 // See if we've computed this range already. 2990 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 2991 if (I != UnsignedRanges.end()) 2992 return I->second; 2993 2994 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2995 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 2996 2997 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2998 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2999 3000 // If the value has known zeros, the maximum unsigned value will have those 3001 // known zeros as well. 3002 uint32_t TZ = GetMinTrailingZeros(S); 3003 if (TZ != 0) 3004 ConservativeResult = 3005 ConstantRange(APInt::getMinValue(BitWidth), 3006 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3007 3008 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3009 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3010 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3011 X = X.add(getUnsignedRange(Add->getOperand(i))); 3012 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3013 } 3014 3015 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3016 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3017 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3018 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3019 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3020 } 3021 3022 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3023 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3024 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3025 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3026 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3027 } 3028 3029 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3030 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3031 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3032 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3033 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3034 } 3035 3036 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3037 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3038 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3039 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3040 } 3041 3042 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3043 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3044 return setUnsignedRange(ZExt, 3045 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3046 } 3047 3048 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3049 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3050 return setUnsignedRange(SExt, 3051 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3052 } 3053 3054 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3055 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3056 return setUnsignedRange(Trunc, 3057 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3058 } 3059 3060 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3061 // If there's no unsigned wrap, the value will never be less than its 3062 // initial value. 3063 if (AddRec->hasNoUnsignedWrap()) 3064 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3065 if (!C->getValue()->isZero()) 3066 ConservativeResult = 3067 ConservativeResult.intersectWith( 3068 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3069 3070 // TODO: non-affine addrec 3071 if (AddRec->isAffine()) { 3072 const Type *Ty = AddRec->getType(); 3073 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3074 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3075 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3076 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3077 3078 const SCEV *Start = AddRec->getStart(); 3079 const SCEV *Step = AddRec->getStepRecurrence(*this); 3080 3081 ConstantRange StartRange = getUnsignedRange(Start); 3082 ConstantRange StepRange = getSignedRange(Step); 3083 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3084 ConstantRange EndRange = 3085 StartRange.add(MaxBECountRange.multiply(StepRange)); 3086 3087 // Check for overflow. This must be done with ConstantRange arithmetic 3088 // because we could be called from within the ScalarEvolution overflow 3089 // checking code. 3090 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3091 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3092 ConstantRange ExtMaxBECountRange = 3093 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3094 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3095 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3096 ExtEndRange) 3097 return setUnsignedRange(AddRec, ConservativeResult); 3098 3099 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3100 EndRange.getUnsignedMin()); 3101 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3102 EndRange.getUnsignedMax()); 3103 if (Min.isMinValue() && Max.isMaxValue()) 3104 return setUnsignedRange(AddRec, ConservativeResult); 3105 return setUnsignedRange(AddRec, 3106 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3107 } 3108 } 3109 3110 return setUnsignedRange(AddRec, ConservativeResult); 3111 } 3112 3113 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3114 // For a SCEVUnknown, ask ValueTracking. 3115 APInt Mask = APInt::getAllOnesValue(BitWidth); 3116 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3117 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3118 if (Ones == ~Zeros + 1) 3119 return setUnsignedRange(U, ConservativeResult); 3120 return setUnsignedRange(U, 3121 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3122 } 3123 3124 return setUnsignedRange(S, ConservativeResult); 3125 } 3126 3127 /// getSignedRange - Determine the signed range for a particular SCEV. 3128 /// 3129 ConstantRange 3130 ScalarEvolution::getSignedRange(const SCEV *S) { 3131 // See if we've computed this range already. 3132 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3133 if (I != SignedRanges.end()) 3134 return I->second; 3135 3136 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3137 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3138 3139 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3140 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3141 3142 // If the value has known zeros, the maximum signed value will have those 3143 // known zeros as well. 3144 uint32_t TZ = GetMinTrailingZeros(S); 3145 if (TZ != 0) 3146 ConservativeResult = 3147 ConstantRange(APInt::getSignedMinValue(BitWidth), 3148 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3149 3150 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3151 ConstantRange X = getSignedRange(Add->getOperand(0)); 3152 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3153 X = X.add(getSignedRange(Add->getOperand(i))); 3154 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3155 } 3156 3157 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3158 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3159 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3160 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3161 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3162 } 3163 3164 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3165 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3166 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3167 X = X.smax(getSignedRange(SMax->getOperand(i))); 3168 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3169 } 3170 3171 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3172 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3173 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3174 X = X.umax(getSignedRange(UMax->getOperand(i))); 3175 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3176 } 3177 3178 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3179 ConstantRange X = getSignedRange(UDiv->getLHS()); 3180 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3181 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3182 } 3183 3184 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3185 ConstantRange X = getSignedRange(ZExt->getOperand()); 3186 return setSignedRange(ZExt, 3187 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3188 } 3189 3190 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3191 ConstantRange X = getSignedRange(SExt->getOperand()); 3192 return setSignedRange(SExt, 3193 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3194 } 3195 3196 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3197 ConstantRange X = getSignedRange(Trunc->getOperand()); 3198 return setSignedRange(Trunc, 3199 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3200 } 3201 3202 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3203 // If there's no signed wrap, and all the operands have the same sign or 3204 // zero, the value won't ever change sign. 3205 if (AddRec->hasNoSignedWrap()) { 3206 bool AllNonNeg = true; 3207 bool AllNonPos = true; 3208 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3209 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3210 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3211 } 3212 if (AllNonNeg) 3213 ConservativeResult = ConservativeResult.intersectWith( 3214 ConstantRange(APInt(BitWidth, 0), 3215 APInt::getSignedMinValue(BitWidth))); 3216 else if (AllNonPos) 3217 ConservativeResult = ConservativeResult.intersectWith( 3218 ConstantRange(APInt::getSignedMinValue(BitWidth), 3219 APInt(BitWidth, 1))); 3220 } 3221 3222 // TODO: non-affine addrec 3223 if (AddRec->isAffine()) { 3224 const Type *Ty = AddRec->getType(); 3225 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3226 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3227 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3228 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3229 3230 const SCEV *Start = AddRec->getStart(); 3231 const SCEV *Step = AddRec->getStepRecurrence(*this); 3232 3233 ConstantRange StartRange = getSignedRange(Start); 3234 ConstantRange StepRange = getSignedRange(Step); 3235 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3236 ConstantRange EndRange = 3237 StartRange.add(MaxBECountRange.multiply(StepRange)); 3238 3239 // Check for overflow. This must be done with ConstantRange arithmetic 3240 // because we could be called from within the ScalarEvolution overflow 3241 // checking code. 3242 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3243 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3244 ConstantRange ExtMaxBECountRange = 3245 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3246 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3247 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3248 ExtEndRange) 3249 return setSignedRange(AddRec, ConservativeResult); 3250 3251 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3252 EndRange.getSignedMin()); 3253 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3254 EndRange.getSignedMax()); 3255 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3256 return setSignedRange(AddRec, ConservativeResult); 3257 return setSignedRange(AddRec, 3258 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3259 } 3260 } 3261 3262 return setSignedRange(AddRec, ConservativeResult); 3263 } 3264 3265 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3266 // For a SCEVUnknown, ask ValueTracking. 3267 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3268 return setSignedRange(U, ConservativeResult); 3269 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3270 if (NS == 1) 3271 return setSignedRange(U, ConservativeResult); 3272 return setSignedRange(U, ConservativeResult.intersectWith( 3273 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3274 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3275 } 3276 3277 return setSignedRange(S, ConservativeResult); 3278 } 3279 3280 /// createSCEV - We know that there is no SCEV for the specified value. 3281 /// Analyze the expression. 3282 /// 3283 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3284 if (!isSCEVable(V->getType())) 3285 return getUnknown(V); 3286 3287 unsigned Opcode = Instruction::UserOp1; 3288 if (Instruction *I = dyn_cast<Instruction>(V)) { 3289 Opcode = I->getOpcode(); 3290 3291 // Don't attempt to analyze instructions in blocks that aren't 3292 // reachable. Such instructions don't matter, and they aren't required 3293 // to obey basic rules for definitions dominating uses which this 3294 // analysis depends on. 3295 if (!DT->isReachableFromEntry(I->getParent())) 3296 return getUnknown(V); 3297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3298 Opcode = CE->getOpcode(); 3299 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3300 return getConstant(CI); 3301 else if (isa<ConstantPointerNull>(V)) 3302 return getConstant(V->getType(), 0); 3303 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3304 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3305 else 3306 return getUnknown(V); 3307 3308 Operator *U = cast<Operator>(V); 3309 switch (Opcode) { 3310 case Instruction::Add: { 3311 // The simple thing to do would be to just call getSCEV on both operands 3312 // and call getAddExpr with the result. However if we're looking at a 3313 // bunch of things all added together, this can be quite inefficient, 3314 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3315 // Instead, gather up all the operands and make a single getAddExpr call. 3316 // LLVM IR canonical form means we need only traverse the left operands. 3317 SmallVector<const SCEV *, 4> AddOps; 3318 AddOps.push_back(getSCEV(U->getOperand(1))); 3319 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3320 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3321 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3322 break; 3323 U = cast<Operator>(Op); 3324 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3325 if (Opcode == Instruction::Sub) 3326 AddOps.push_back(getNegativeSCEV(Op1)); 3327 else 3328 AddOps.push_back(Op1); 3329 } 3330 AddOps.push_back(getSCEV(U->getOperand(0))); 3331 return getAddExpr(AddOps); 3332 } 3333 case Instruction::Mul: { 3334 // See the Add code above. 3335 SmallVector<const SCEV *, 4> MulOps; 3336 MulOps.push_back(getSCEV(U->getOperand(1))); 3337 for (Value *Op = U->getOperand(0); 3338 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3339 Op = U->getOperand(0)) { 3340 U = cast<Operator>(Op); 3341 MulOps.push_back(getSCEV(U->getOperand(1))); 3342 } 3343 MulOps.push_back(getSCEV(U->getOperand(0))); 3344 return getMulExpr(MulOps); 3345 } 3346 case Instruction::UDiv: 3347 return getUDivExpr(getSCEV(U->getOperand(0)), 3348 getSCEV(U->getOperand(1))); 3349 case Instruction::Sub: 3350 return getMinusSCEV(getSCEV(U->getOperand(0)), 3351 getSCEV(U->getOperand(1))); 3352 case Instruction::And: 3353 // For an expression like x&255 that merely masks off the high bits, 3354 // use zext(trunc(x)) as the SCEV expression. 3355 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3356 if (CI->isNullValue()) 3357 return getSCEV(U->getOperand(1)); 3358 if (CI->isAllOnesValue()) 3359 return getSCEV(U->getOperand(0)); 3360 const APInt &A = CI->getValue(); 3361 3362 // Instcombine's ShrinkDemandedConstant may strip bits out of 3363 // constants, obscuring what would otherwise be a low-bits mask. 3364 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3365 // knew about to reconstruct a low-bits mask value. 3366 unsigned LZ = A.countLeadingZeros(); 3367 unsigned BitWidth = A.getBitWidth(); 3368 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3369 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3370 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3371 3372 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3373 3374 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3375 return 3376 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3377 IntegerType::get(getContext(), BitWidth - LZ)), 3378 U->getType()); 3379 } 3380 break; 3381 3382 case Instruction::Or: 3383 // If the RHS of the Or is a constant, we may have something like: 3384 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3385 // optimizations will transparently handle this case. 3386 // 3387 // In order for this transformation to be safe, the LHS must be of the 3388 // form X*(2^n) and the Or constant must be less than 2^n. 3389 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3390 const SCEV *LHS = getSCEV(U->getOperand(0)); 3391 const APInt &CIVal = CI->getValue(); 3392 if (GetMinTrailingZeros(LHS) >= 3393 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3394 // Build a plain add SCEV. 3395 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3396 // If the LHS of the add was an addrec and it has no-wrap flags, 3397 // transfer the no-wrap flags, since an or won't introduce a wrap. 3398 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3399 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3400 if (OldAR->hasNoUnsignedWrap()) 3401 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3402 if (OldAR->hasNoSignedWrap()) 3403 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3404 } 3405 return S; 3406 } 3407 } 3408 break; 3409 case Instruction::Xor: 3410 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3411 // If the RHS of the xor is a signbit, then this is just an add. 3412 // Instcombine turns add of signbit into xor as a strength reduction step. 3413 if (CI->getValue().isSignBit()) 3414 return getAddExpr(getSCEV(U->getOperand(0)), 3415 getSCEV(U->getOperand(1))); 3416 3417 // If the RHS of xor is -1, then this is a not operation. 3418 if (CI->isAllOnesValue()) 3419 return getNotSCEV(getSCEV(U->getOperand(0))); 3420 3421 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3422 // This is a variant of the check for xor with -1, and it handles 3423 // the case where instcombine has trimmed non-demanded bits out 3424 // of an xor with -1. 3425 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3426 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3427 if (BO->getOpcode() == Instruction::And && 3428 LCI->getValue() == CI->getValue()) 3429 if (const SCEVZeroExtendExpr *Z = 3430 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3431 const Type *UTy = U->getType(); 3432 const SCEV *Z0 = Z->getOperand(); 3433 const Type *Z0Ty = Z0->getType(); 3434 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3435 3436 // If C is a low-bits mask, the zero extend is serving to 3437 // mask off the high bits. Complement the operand and 3438 // re-apply the zext. 3439 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3440 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3441 3442 // If C is a single bit, it may be in the sign-bit position 3443 // before the zero-extend. In this case, represent the xor 3444 // using an add, which is equivalent, and re-apply the zext. 3445 APInt Trunc = CI->getValue().trunc(Z0TySize); 3446 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3447 Trunc.isSignBit()) 3448 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3449 UTy); 3450 } 3451 } 3452 break; 3453 3454 case Instruction::Shl: 3455 // Turn shift left of a constant amount into a multiply. 3456 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3457 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3458 3459 // If the shift count is not less than the bitwidth, the result of 3460 // the shift is undefined. Don't try to analyze it, because the 3461 // resolution chosen here may differ from the resolution chosen in 3462 // other parts of the compiler. 3463 if (SA->getValue().uge(BitWidth)) 3464 break; 3465 3466 Constant *X = ConstantInt::get(getContext(), 3467 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3468 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3469 } 3470 break; 3471 3472 case Instruction::LShr: 3473 // Turn logical shift right of a constant into a unsigned divide. 3474 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3475 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3476 3477 // If the shift count is not less than the bitwidth, the result of 3478 // the shift is undefined. Don't try to analyze it, because the 3479 // resolution chosen here may differ from the resolution chosen in 3480 // other parts of the compiler. 3481 if (SA->getValue().uge(BitWidth)) 3482 break; 3483 3484 Constant *X = ConstantInt::get(getContext(), 3485 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3486 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3487 } 3488 break; 3489 3490 case Instruction::AShr: 3491 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3492 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3493 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3494 if (L->getOpcode() == Instruction::Shl && 3495 L->getOperand(1) == U->getOperand(1)) { 3496 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3497 3498 // If the shift count is not less than the bitwidth, the result of 3499 // the shift is undefined. Don't try to analyze it, because the 3500 // resolution chosen here may differ from the resolution chosen in 3501 // other parts of the compiler. 3502 if (CI->getValue().uge(BitWidth)) 3503 break; 3504 3505 uint64_t Amt = BitWidth - CI->getZExtValue(); 3506 if (Amt == BitWidth) 3507 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3508 return 3509 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3510 IntegerType::get(getContext(), 3511 Amt)), 3512 U->getType()); 3513 } 3514 break; 3515 3516 case Instruction::Trunc: 3517 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3518 3519 case Instruction::ZExt: 3520 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3521 3522 case Instruction::SExt: 3523 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3524 3525 case Instruction::BitCast: 3526 // BitCasts are no-op casts so we just eliminate the cast. 3527 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3528 return getSCEV(U->getOperand(0)); 3529 break; 3530 3531 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3532 // lead to pointer expressions which cannot safely be expanded to GEPs, 3533 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3534 // simplifying integer expressions. 3535 3536 case Instruction::GetElementPtr: 3537 return createNodeForGEP(cast<GEPOperator>(U)); 3538 3539 case Instruction::PHI: 3540 return createNodeForPHI(cast<PHINode>(U)); 3541 3542 case Instruction::Select: 3543 // This could be a smax or umax that was lowered earlier. 3544 // Try to recover it. 3545 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3546 Value *LHS = ICI->getOperand(0); 3547 Value *RHS = ICI->getOperand(1); 3548 switch (ICI->getPredicate()) { 3549 case ICmpInst::ICMP_SLT: 3550 case ICmpInst::ICMP_SLE: 3551 std::swap(LHS, RHS); 3552 // fall through 3553 case ICmpInst::ICMP_SGT: 3554 case ICmpInst::ICMP_SGE: 3555 // a >s b ? a+x : b+x -> smax(a, b)+x 3556 // a >s b ? b+x : a+x -> smin(a, b)+x 3557 if (LHS->getType() == U->getType()) { 3558 const SCEV *LS = getSCEV(LHS); 3559 const SCEV *RS = getSCEV(RHS); 3560 const SCEV *LA = getSCEV(U->getOperand(1)); 3561 const SCEV *RA = getSCEV(U->getOperand(2)); 3562 const SCEV *LDiff = getMinusSCEV(LA, LS); 3563 const SCEV *RDiff = getMinusSCEV(RA, RS); 3564 if (LDiff == RDiff) 3565 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3566 LDiff = getMinusSCEV(LA, RS); 3567 RDiff = getMinusSCEV(RA, LS); 3568 if (LDiff == RDiff) 3569 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3570 } 3571 break; 3572 case ICmpInst::ICMP_ULT: 3573 case ICmpInst::ICMP_ULE: 3574 std::swap(LHS, RHS); 3575 // fall through 3576 case ICmpInst::ICMP_UGT: 3577 case ICmpInst::ICMP_UGE: 3578 // a >u b ? a+x : b+x -> umax(a, b)+x 3579 // a >u b ? b+x : a+x -> umin(a, b)+x 3580 if (LHS->getType() == U->getType()) { 3581 const SCEV *LS = getSCEV(LHS); 3582 const SCEV *RS = getSCEV(RHS); 3583 const SCEV *LA = getSCEV(U->getOperand(1)); 3584 const SCEV *RA = getSCEV(U->getOperand(2)); 3585 const SCEV *LDiff = getMinusSCEV(LA, LS); 3586 const SCEV *RDiff = getMinusSCEV(RA, RS); 3587 if (LDiff == RDiff) 3588 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3589 LDiff = getMinusSCEV(LA, RS); 3590 RDiff = getMinusSCEV(RA, LS); 3591 if (LDiff == RDiff) 3592 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3593 } 3594 break; 3595 case ICmpInst::ICMP_NE: 3596 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3597 if (LHS->getType() == U->getType() && 3598 isa<ConstantInt>(RHS) && 3599 cast<ConstantInt>(RHS)->isZero()) { 3600 const SCEV *One = getConstant(LHS->getType(), 1); 3601 const SCEV *LS = getSCEV(LHS); 3602 const SCEV *LA = getSCEV(U->getOperand(1)); 3603 const SCEV *RA = getSCEV(U->getOperand(2)); 3604 const SCEV *LDiff = getMinusSCEV(LA, LS); 3605 const SCEV *RDiff = getMinusSCEV(RA, One); 3606 if (LDiff == RDiff) 3607 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3608 } 3609 break; 3610 case ICmpInst::ICMP_EQ: 3611 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3612 if (LHS->getType() == U->getType() && 3613 isa<ConstantInt>(RHS) && 3614 cast<ConstantInt>(RHS)->isZero()) { 3615 const SCEV *One = getConstant(LHS->getType(), 1); 3616 const SCEV *LS = getSCEV(LHS); 3617 const SCEV *LA = getSCEV(U->getOperand(1)); 3618 const SCEV *RA = getSCEV(U->getOperand(2)); 3619 const SCEV *LDiff = getMinusSCEV(LA, One); 3620 const SCEV *RDiff = getMinusSCEV(RA, LS); 3621 if (LDiff == RDiff) 3622 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3623 } 3624 break; 3625 default: 3626 break; 3627 } 3628 } 3629 3630 default: // We cannot analyze this expression. 3631 break; 3632 } 3633 3634 return getUnknown(V); 3635 } 3636 3637 3638 3639 //===----------------------------------------------------------------------===// 3640 // Iteration Count Computation Code 3641 // 3642 3643 /// getBackedgeTakenCount - If the specified loop has a predictable 3644 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3645 /// object. The backedge-taken count is the number of times the loop header 3646 /// will be branched to from within the loop. This is one less than the 3647 /// trip count of the loop, since it doesn't count the first iteration, 3648 /// when the header is branched to from outside the loop. 3649 /// 3650 /// Note that it is not valid to call this method on a loop without a 3651 /// loop-invariant backedge-taken count (see 3652 /// hasLoopInvariantBackedgeTakenCount). 3653 /// 3654 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3655 return getBackedgeTakenInfo(L).Exact; 3656 } 3657 3658 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3659 /// return the least SCEV value that is known never to be less than the 3660 /// actual backedge taken count. 3661 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3662 return getBackedgeTakenInfo(L).Max; 3663 } 3664 3665 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3666 /// onto the given Worklist. 3667 static void 3668 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3669 BasicBlock *Header = L->getHeader(); 3670 3671 // Push all Loop-header PHIs onto the Worklist stack. 3672 for (BasicBlock::iterator I = Header->begin(); 3673 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3674 Worklist.push_back(PN); 3675 } 3676 3677 const ScalarEvolution::BackedgeTakenInfo & 3678 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3679 // Initially insert a CouldNotCompute for this loop. If the insertion 3680 // succeeds, proceed to actually compute a backedge-taken count and 3681 // update the value. The temporary CouldNotCompute value tells SCEV 3682 // code elsewhere that it shouldn't attempt to request a new 3683 // backedge-taken count, which could result in infinite recursion. 3684 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3685 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3686 if (!Pair.second) 3687 return Pair.first->second; 3688 3689 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3690 if (BECount.Exact != getCouldNotCompute()) { 3691 assert(isLoopInvariant(BECount.Exact, L) && 3692 isLoopInvariant(BECount.Max, L) && 3693 "Computed backedge-taken count isn't loop invariant for loop!"); 3694 ++NumTripCountsComputed; 3695 3696 // Update the value in the map. 3697 Pair.first->second = BECount; 3698 } else { 3699 if (BECount.Max != getCouldNotCompute()) 3700 // Update the value in the map. 3701 Pair.first->second = BECount; 3702 if (isa<PHINode>(L->getHeader()->begin())) 3703 // Only count loops that have phi nodes as not being computable. 3704 ++NumTripCountsNotComputed; 3705 } 3706 3707 // Now that we know more about the trip count for this loop, forget any 3708 // existing SCEV values for PHI nodes in this loop since they are only 3709 // conservative estimates made without the benefit of trip count 3710 // information. This is similar to the code in forgetLoop, except that 3711 // it handles SCEVUnknown PHI nodes specially. 3712 if (BECount.hasAnyInfo()) { 3713 SmallVector<Instruction *, 16> Worklist; 3714 PushLoopPHIs(L, Worklist); 3715 3716 SmallPtrSet<Instruction *, 8> Visited; 3717 while (!Worklist.empty()) { 3718 Instruction *I = Worklist.pop_back_val(); 3719 if (!Visited.insert(I)) continue; 3720 3721 ValueExprMapType::iterator It = 3722 ValueExprMap.find(static_cast<Value *>(I)); 3723 if (It != ValueExprMap.end()) { 3724 const SCEV *Old = It->second; 3725 3726 // SCEVUnknown for a PHI either means that it has an unrecognized 3727 // structure, or it's a PHI that's in the progress of being computed 3728 // by createNodeForPHI. In the former case, additional loop trip 3729 // count information isn't going to change anything. In the later 3730 // case, createNodeForPHI will perform the necessary updates on its 3731 // own when it gets to that point. 3732 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 3733 forgetMemoizedResults(Old); 3734 ValueExprMap.erase(It); 3735 } 3736 if (PHINode *PN = dyn_cast<PHINode>(I)) 3737 ConstantEvolutionLoopExitValue.erase(PN); 3738 } 3739 3740 PushDefUseChildren(I, Worklist); 3741 } 3742 } 3743 return Pair.first->second; 3744 } 3745 3746 /// forgetLoop - This method should be called by the client when it has 3747 /// changed a loop in a way that may effect ScalarEvolution's ability to 3748 /// compute a trip count, or if the loop is deleted. 3749 void ScalarEvolution::forgetLoop(const Loop *L) { 3750 // Drop any stored trip count value. 3751 BackedgeTakenCounts.erase(L); 3752 3753 // Drop information about expressions based on loop-header PHIs. 3754 SmallVector<Instruction *, 16> Worklist; 3755 PushLoopPHIs(L, Worklist); 3756 3757 SmallPtrSet<Instruction *, 8> Visited; 3758 while (!Worklist.empty()) { 3759 Instruction *I = Worklist.pop_back_val(); 3760 if (!Visited.insert(I)) continue; 3761 3762 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3763 if (It != ValueExprMap.end()) { 3764 forgetMemoizedResults(It->second); 3765 ValueExprMap.erase(It); 3766 if (PHINode *PN = dyn_cast<PHINode>(I)) 3767 ConstantEvolutionLoopExitValue.erase(PN); 3768 } 3769 3770 PushDefUseChildren(I, Worklist); 3771 } 3772 3773 // Forget all contained loops too, to avoid dangling entries in the 3774 // ValuesAtScopes map. 3775 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3776 forgetLoop(*I); 3777 } 3778 3779 /// forgetValue - This method should be called by the client when it has 3780 /// changed a value in a way that may effect its value, or which may 3781 /// disconnect it from a def-use chain linking it to a loop. 3782 void ScalarEvolution::forgetValue(Value *V) { 3783 Instruction *I = dyn_cast<Instruction>(V); 3784 if (!I) return; 3785 3786 // Drop information about expressions based on loop-header PHIs. 3787 SmallVector<Instruction *, 16> Worklist; 3788 Worklist.push_back(I); 3789 3790 SmallPtrSet<Instruction *, 8> Visited; 3791 while (!Worklist.empty()) { 3792 I = Worklist.pop_back_val(); 3793 if (!Visited.insert(I)) continue; 3794 3795 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3796 if (It != ValueExprMap.end()) { 3797 forgetMemoizedResults(It->second); 3798 ValueExprMap.erase(It); 3799 if (PHINode *PN = dyn_cast<PHINode>(I)) 3800 ConstantEvolutionLoopExitValue.erase(PN); 3801 } 3802 3803 PushDefUseChildren(I, Worklist); 3804 } 3805 } 3806 3807 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3808 /// of the specified loop will execute. 3809 ScalarEvolution::BackedgeTakenInfo 3810 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3811 SmallVector<BasicBlock *, 8> ExitingBlocks; 3812 L->getExitingBlocks(ExitingBlocks); 3813 3814 // Examine all exits and pick the most conservative values. 3815 const SCEV *BECount = getCouldNotCompute(); 3816 const SCEV *MaxBECount = getCouldNotCompute(); 3817 bool CouldNotComputeBECount = false; 3818 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3819 BackedgeTakenInfo NewBTI = 3820 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3821 3822 if (NewBTI.Exact == getCouldNotCompute()) { 3823 // We couldn't compute an exact value for this exit, so 3824 // we won't be able to compute an exact value for the loop. 3825 CouldNotComputeBECount = true; 3826 BECount = getCouldNotCompute(); 3827 } else if (!CouldNotComputeBECount) { 3828 if (BECount == getCouldNotCompute()) 3829 BECount = NewBTI.Exact; 3830 else 3831 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3832 } 3833 if (MaxBECount == getCouldNotCompute()) 3834 MaxBECount = NewBTI.Max; 3835 else if (NewBTI.Max != getCouldNotCompute()) 3836 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3837 } 3838 3839 return BackedgeTakenInfo(BECount, MaxBECount); 3840 } 3841 3842 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3843 /// of the specified loop will execute if it exits via the specified block. 3844 ScalarEvolution::BackedgeTakenInfo 3845 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3846 BasicBlock *ExitingBlock) { 3847 3848 // Okay, we've chosen an exiting block. See what condition causes us to 3849 // exit at this block. 3850 // 3851 // FIXME: we should be able to handle switch instructions (with a single exit) 3852 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3853 if (ExitBr == 0) return getCouldNotCompute(); 3854 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3855 3856 // At this point, we know we have a conditional branch that determines whether 3857 // the loop is exited. However, we don't know if the branch is executed each 3858 // time through the loop. If not, then the execution count of the branch will 3859 // not be equal to the trip count of the loop. 3860 // 3861 // Currently we check for this by checking to see if the Exit branch goes to 3862 // the loop header. If so, we know it will always execute the same number of 3863 // times as the loop. We also handle the case where the exit block *is* the 3864 // loop header. This is common for un-rotated loops. 3865 // 3866 // If both of those tests fail, walk up the unique predecessor chain to the 3867 // header, stopping if there is an edge that doesn't exit the loop. If the 3868 // header is reached, the execution count of the branch will be equal to the 3869 // trip count of the loop. 3870 // 3871 // More extensive analysis could be done to handle more cases here. 3872 // 3873 if (ExitBr->getSuccessor(0) != L->getHeader() && 3874 ExitBr->getSuccessor(1) != L->getHeader() && 3875 ExitBr->getParent() != L->getHeader()) { 3876 // The simple checks failed, try climbing the unique predecessor chain 3877 // up to the header. 3878 bool Ok = false; 3879 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3880 BasicBlock *Pred = BB->getUniquePredecessor(); 3881 if (!Pred) 3882 return getCouldNotCompute(); 3883 TerminatorInst *PredTerm = Pred->getTerminator(); 3884 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3885 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3886 if (PredSucc == BB) 3887 continue; 3888 // If the predecessor has a successor that isn't BB and isn't 3889 // outside the loop, assume the worst. 3890 if (L->contains(PredSucc)) 3891 return getCouldNotCompute(); 3892 } 3893 if (Pred == L->getHeader()) { 3894 Ok = true; 3895 break; 3896 } 3897 BB = Pred; 3898 } 3899 if (!Ok) 3900 return getCouldNotCompute(); 3901 } 3902 3903 // Proceed to the next level to examine the exit condition expression. 3904 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3905 ExitBr->getSuccessor(0), 3906 ExitBr->getSuccessor(1)); 3907 } 3908 3909 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3910 /// backedge of the specified loop will execute if its exit condition 3911 /// were a conditional branch of ExitCond, TBB, and FBB. 3912 ScalarEvolution::BackedgeTakenInfo 3913 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3914 Value *ExitCond, 3915 BasicBlock *TBB, 3916 BasicBlock *FBB) { 3917 // Check if the controlling expression for this loop is an And or Or. 3918 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3919 if (BO->getOpcode() == Instruction::And) { 3920 // Recurse on the operands of the and. 3921 BackedgeTakenInfo BTI0 = 3922 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3923 BackedgeTakenInfo BTI1 = 3924 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3925 const SCEV *BECount = getCouldNotCompute(); 3926 const SCEV *MaxBECount = getCouldNotCompute(); 3927 if (L->contains(TBB)) { 3928 // Both conditions must be true for the loop to continue executing. 3929 // Choose the less conservative count. 3930 if (BTI0.Exact == getCouldNotCompute() || 3931 BTI1.Exact == getCouldNotCompute()) 3932 BECount = getCouldNotCompute(); 3933 else 3934 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3935 if (BTI0.Max == getCouldNotCompute()) 3936 MaxBECount = BTI1.Max; 3937 else if (BTI1.Max == getCouldNotCompute()) 3938 MaxBECount = BTI0.Max; 3939 else 3940 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3941 } else { 3942 // Both conditions must be true at the same time for the loop to exit. 3943 // For now, be conservative. 3944 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3945 if (BTI0.Max == BTI1.Max) 3946 MaxBECount = BTI0.Max; 3947 if (BTI0.Exact == BTI1.Exact) 3948 BECount = BTI0.Exact; 3949 } 3950 3951 return BackedgeTakenInfo(BECount, MaxBECount); 3952 } 3953 if (BO->getOpcode() == Instruction::Or) { 3954 // Recurse on the operands of the or. 3955 BackedgeTakenInfo BTI0 = 3956 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3957 BackedgeTakenInfo BTI1 = 3958 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3959 const SCEV *BECount = getCouldNotCompute(); 3960 const SCEV *MaxBECount = getCouldNotCompute(); 3961 if (L->contains(FBB)) { 3962 // Both conditions must be false for the loop to continue executing. 3963 // Choose the less conservative count. 3964 if (BTI0.Exact == getCouldNotCompute() || 3965 BTI1.Exact == getCouldNotCompute()) 3966 BECount = getCouldNotCompute(); 3967 else 3968 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3969 if (BTI0.Max == getCouldNotCompute()) 3970 MaxBECount = BTI1.Max; 3971 else if (BTI1.Max == getCouldNotCompute()) 3972 MaxBECount = BTI0.Max; 3973 else 3974 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3975 } else { 3976 // Both conditions must be false at the same time for the loop to exit. 3977 // For now, be conservative. 3978 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3979 if (BTI0.Max == BTI1.Max) 3980 MaxBECount = BTI0.Max; 3981 if (BTI0.Exact == BTI1.Exact) 3982 BECount = BTI0.Exact; 3983 } 3984 3985 return BackedgeTakenInfo(BECount, MaxBECount); 3986 } 3987 } 3988 3989 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3990 // Proceed to the next level to examine the icmp. 3991 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3992 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3993 3994 // Check for a constant condition. These are normally stripped out by 3995 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3996 // preserve the CFG and is temporarily leaving constant conditions 3997 // in place. 3998 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3999 if (L->contains(FBB) == !CI->getZExtValue()) 4000 // The backedge is always taken. 4001 return getCouldNotCompute(); 4002 else 4003 // The backedge is never taken. 4004 return getConstant(CI->getType(), 0); 4005 } 4006 4007 // If it's not an integer or pointer comparison then compute it the hard way. 4008 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4009 } 4010 4011 static const SCEVAddRecExpr * 4012 isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) { 4013 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S); 4014 4015 // The SCEV must be an addrec of this loop. 4016 if (!SA || SA->getLoop() != L || !SA->isAffine()) 4017 return 0; 4018 4019 // The SCEV must be known to not wrap in some way to be interesting. 4020 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap()) 4021 return 0; 4022 4023 // The stride must be a constant so that we know if it is striding up or down. 4024 if (!isa<SCEVConstant>(SA->getOperand(1))) 4025 return 0; 4026 return SA; 4027 } 4028 4029 /// getMinusSCEVForExitTest - When considering an exit test for a loop with a 4030 /// "x != y" exit test, we turn this into a computation that evaluates x-y != 0, 4031 /// and this function returns the expression to use for x-y. We know and take 4032 /// advantage of the fact that this subtraction is only being used in a 4033 /// comparison by zero context. 4034 /// 4035 static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS, 4036 const Loop *L, ScalarEvolution &SE) { 4037 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not 4038 // wrap (either NSW or NUW), then we know that the value will either become 4039 // the other one (and thus the loop terminates), that the loop will terminate 4040 // through some other exit condition first, or that the loop has undefined 4041 // behavior. This information is useful when the addrec has a stride that is 4042 // != 1 or -1, because it means we can't "miss" the exit value. 4043 // 4044 // In any of these three cases, it is safe to turn the exit condition into a 4045 // "counting down" AddRec (to zero) by subtracting the two inputs as normal, 4046 // but since we know that the "end cannot be missed" we can force the 4047 // resulting AddRec to be a NUW addrec. Since it is counting down, this means 4048 // that the AddRec *cannot* pass zero. 4049 4050 // See if LHS and RHS are addrec's we can handle. 4051 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L); 4052 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L); 4053 4054 // If neither addrec is interesting, just return a minus. 4055 if (RHSA == 0 && LHSA == 0) 4056 return SE.getMinusSCEV(LHS, RHS); 4057 4058 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS. 4059 if (RHSA && LHSA == 0) { 4060 // Safe because a-b === b-a for comparisons against zero. 4061 std::swap(LHS, RHS); 4062 std::swap(LHSA, RHSA); 4063 } 4064 4065 // Handle the case when only one is advancing in a non-overflowing way. 4066 if (RHSA == 0) { 4067 // If RHS is loop varying, then we can't predict when LHS will cross it. 4068 if (!SE.isLoopInvariant(RHS, L)) 4069 return SE.getMinusSCEV(LHS, RHS); 4070 4071 // If LHS has a positive stride, then we compute RHS-LHS, because the loop 4072 // is counting up until it crosses RHS (which must be larger than LHS). If 4073 // it is negative, we compute LHS-RHS because we're counting down to RHS. 4074 const ConstantInt *Stride = 4075 cast<SCEVConstant>(LHSA->getOperand(1))->getValue(); 4076 if (Stride->getValue().isNegative()) 4077 std::swap(LHS, RHS); 4078 4079 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/); 4080 } 4081 4082 // If both LHS and RHS are interesting, we have something like: 4083 // a+i*4 != b+i*8. 4084 const ConstantInt *LHSStride = 4085 cast<SCEVConstant>(LHSA->getOperand(1))->getValue(); 4086 const ConstantInt *RHSStride = 4087 cast<SCEVConstant>(RHSA->getOperand(1))->getValue(); 4088 4089 // If the strides are equal, then this is just a (complex) loop invariant 4090 // comparison of a and b. 4091 if (LHSStride == RHSStride) 4092 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart()); 4093 4094 // If the signs of the strides differ, then the negative stride is counting 4095 // down to the positive stride. 4096 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){ 4097 if (RHSStride->getValue().isNegative()) 4098 std::swap(LHS, RHS); 4099 } else { 4100 // If LHS's stride is smaller than RHS's stride, then "b" must be less than 4101 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true 4102 // whether the strides are positive or negative. 4103 if (RHSStride->getValue().slt(LHSStride->getValue())) 4104 std::swap(LHS, RHS); 4105 } 4106 4107 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/); 4108 } 4109 4110 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 4111 /// backedge of the specified loop will execute if its exit condition 4112 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4113 ScalarEvolution::BackedgeTakenInfo 4114 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 4115 ICmpInst *ExitCond, 4116 BasicBlock *TBB, 4117 BasicBlock *FBB) { 4118 4119 // If the condition was exit on true, convert the condition to exit on false 4120 ICmpInst::Predicate Cond; 4121 if (!L->contains(FBB)) 4122 Cond = ExitCond->getPredicate(); 4123 else 4124 Cond = ExitCond->getInversePredicate(); 4125 4126 // Handle common loops like: for (X = "string"; *X; ++X) 4127 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4128 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4129 BackedgeTakenInfo ItCnt = 4130 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 4131 if (ItCnt.hasAnyInfo()) 4132 return ItCnt; 4133 } 4134 4135 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4136 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4137 4138 // Try to evaluate any dependencies out of the loop. 4139 LHS = getSCEVAtScope(LHS, L); 4140 RHS = getSCEVAtScope(RHS, L); 4141 4142 // At this point, we would like to compute how many iterations of the 4143 // loop the predicate will return true for these inputs. 4144 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4145 // If there is a loop-invariant, force it into the RHS. 4146 std::swap(LHS, RHS); 4147 Cond = ICmpInst::getSwappedPredicate(Cond); 4148 } 4149 4150 // Simplify the operands before analyzing them. 4151 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4152 4153 // If we have a comparison of a chrec against a constant, try to use value 4154 // ranges to answer this query. 4155 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4156 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4157 if (AddRec->getLoop() == L) { 4158 // Form the constant range. 4159 ConstantRange CompRange( 4160 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4161 4162 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4163 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4164 } 4165 4166 switch (Cond) { 4167 case ICmpInst::ICMP_NE: { // while (X != Y) 4168 // Convert to: while (X-Y != 0) 4169 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L, 4170 *this), L); 4171 if (BTI.hasAnyInfo()) return BTI; 4172 break; 4173 } 4174 case ICmpInst::ICMP_EQ: { // while (X == Y) 4175 // Convert to: while (X-Y == 0) 4176 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4177 if (BTI.hasAnyInfo()) return BTI; 4178 break; 4179 } 4180 case ICmpInst::ICMP_SLT: { 4181 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4182 if (BTI.hasAnyInfo()) return BTI; 4183 break; 4184 } 4185 case ICmpInst::ICMP_SGT: { 4186 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4187 getNotSCEV(RHS), L, true); 4188 if (BTI.hasAnyInfo()) return BTI; 4189 break; 4190 } 4191 case ICmpInst::ICMP_ULT: { 4192 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4193 if (BTI.hasAnyInfo()) return BTI; 4194 break; 4195 } 4196 case ICmpInst::ICMP_UGT: { 4197 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4198 getNotSCEV(RHS), L, false); 4199 if (BTI.hasAnyInfo()) return BTI; 4200 break; 4201 } 4202 default: 4203 #if 0 4204 dbgs() << "ComputeBackedgeTakenCount "; 4205 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4206 dbgs() << "[unsigned] "; 4207 dbgs() << *LHS << " " 4208 << Instruction::getOpcodeName(Instruction::ICmp) 4209 << " " << *RHS << "\n"; 4210 #endif 4211 break; 4212 } 4213 return 4214 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4215 } 4216 4217 static ConstantInt * 4218 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4219 ScalarEvolution &SE) { 4220 const SCEV *InVal = SE.getConstant(C); 4221 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4222 assert(isa<SCEVConstant>(Val) && 4223 "Evaluation of SCEV at constant didn't fold correctly?"); 4224 return cast<SCEVConstant>(Val)->getValue(); 4225 } 4226 4227 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4228 /// and a GEP expression (missing the pointer index) indexing into it, return 4229 /// the addressed element of the initializer or null if the index expression is 4230 /// invalid. 4231 static Constant * 4232 GetAddressedElementFromGlobal(GlobalVariable *GV, 4233 const std::vector<ConstantInt*> &Indices) { 4234 Constant *Init = GV->getInitializer(); 4235 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4236 uint64_t Idx = Indices[i]->getZExtValue(); 4237 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4238 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4239 Init = cast<Constant>(CS->getOperand(Idx)); 4240 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4241 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4242 Init = cast<Constant>(CA->getOperand(Idx)); 4243 } else if (isa<ConstantAggregateZero>(Init)) { 4244 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4245 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4246 Init = Constant::getNullValue(STy->getElementType(Idx)); 4247 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4248 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4249 Init = Constant::getNullValue(ATy->getElementType()); 4250 } else { 4251 llvm_unreachable("Unknown constant aggregate type!"); 4252 } 4253 return 0; 4254 } else { 4255 return 0; // Unknown initializer type 4256 } 4257 } 4258 return Init; 4259 } 4260 4261 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4262 /// 'icmp op load X, cst', try to see if we can compute the backedge 4263 /// execution count. 4264 ScalarEvolution::BackedgeTakenInfo 4265 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4266 LoadInst *LI, 4267 Constant *RHS, 4268 const Loop *L, 4269 ICmpInst::Predicate predicate) { 4270 if (LI->isVolatile()) return getCouldNotCompute(); 4271 4272 // Check to see if the loaded pointer is a getelementptr of a global. 4273 // TODO: Use SCEV instead of manually grubbing with GEPs. 4274 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4275 if (!GEP) return getCouldNotCompute(); 4276 4277 // Make sure that it is really a constant global we are gepping, with an 4278 // initializer, and make sure the first IDX is really 0. 4279 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4280 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4281 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4282 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4283 return getCouldNotCompute(); 4284 4285 // Okay, we allow one non-constant index into the GEP instruction. 4286 Value *VarIdx = 0; 4287 std::vector<ConstantInt*> Indexes; 4288 unsigned VarIdxNum = 0; 4289 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4290 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4291 Indexes.push_back(CI); 4292 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4293 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4294 VarIdx = GEP->getOperand(i); 4295 VarIdxNum = i-2; 4296 Indexes.push_back(0); 4297 } 4298 4299 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4300 // Check to see if X is a loop variant variable value now. 4301 const SCEV *Idx = getSCEV(VarIdx); 4302 Idx = getSCEVAtScope(Idx, L); 4303 4304 // We can only recognize very limited forms of loop index expressions, in 4305 // particular, only affine AddRec's like {C1,+,C2}. 4306 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4307 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4308 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4309 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4310 return getCouldNotCompute(); 4311 4312 unsigned MaxSteps = MaxBruteForceIterations; 4313 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4314 ConstantInt *ItCst = ConstantInt::get( 4315 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4316 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4317 4318 // Form the GEP offset. 4319 Indexes[VarIdxNum] = Val; 4320 4321 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4322 if (Result == 0) break; // Cannot compute! 4323 4324 // Evaluate the condition for this iteration. 4325 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4326 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4327 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4328 #if 0 4329 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4330 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4331 << "***\n"; 4332 #endif 4333 ++NumArrayLenItCounts; 4334 return getConstant(ItCst); // Found terminating iteration! 4335 } 4336 } 4337 return getCouldNotCompute(); 4338 } 4339 4340 4341 /// CanConstantFold - Return true if we can constant fold an instruction of the 4342 /// specified type, assuming that all operands were constants. 4343 static bool CanConstantFold(const Instruction *I) { 4344 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4345 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4346 return true; 4347 4348 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4349 if (const Function *F = CI->getCalledFunction()) 4350 return canConstantFoldCallTo(F); 4351 return false; 4352 } 4353 4354 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4355 /// in the loop that V is derived from. We allow arbitrary operations along the 4356 /// way, but the operands of an operation must either be constants or a value 4357 /// derived from a constant PHI. If this expression does not fit with these 4358 /// constraints, return null. 4359 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4360 // If this is not an instruction, or if this is an instruction outside of the 4361 // loop, it can't be derived from a loop PHI. 4362 Instruction *I = dyn_cast<Instruction>(V); 4363 if (I == 0 || !L->contains(I)) return 0; 4364 4365 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4366 if (L->getHeader() == I->getParent()) 4367 return PN; 4368 else 4369 // We don't currently keep track of the control flow needed to evaluate 4370 // PHIs, so we cannot handle PHIs inside of loops. 4371 return 0; 4372 } 4373 4374 // If we won't be able to constant fold this expression even if the operands 4375 // are constants, return early. 4376 if (!CanConstantFold(I)) return 0; 4377 4378 // Otherwise, we can evaluate this instruction if all of its operands are 4379 // constant or derived from a PHI node themselves. 4380 PHINode *PHI = 0; 4381 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4382 if (!isa<Constant>(I->getOperand(Op))) { 4383 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4384 if (P == 0) return 0; // Not evolving from PHI 4385 if (PHI == 0) 4386 PHI = P; 4387 else if (PHI != P) 4388 return 0; // Evolving from multiple different PHIs. 4389 } 4390 4391 // This is a expression evolving from a constant PHI! 4392 return PHI; 4393 } 4394 4395 /// EvaluateExpression - Given an expression that passes the 4396 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4397 /// in the loop has the value PHIVal. If we can't fold this expression for some 4398 /// reason, return null. 4399 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4400 const TargetData *TD) { 4401 if (isa<PHINode>(V)) return PHIVal; 4402 if (Constant *C = dyn_cast<Constant>(V)) return C; 4403 Instruction *I = cast<Instruction>(V); 4404 4405 std::vector<Constant*> Operands(I->getNumOperands()); 4406 4407 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4408 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4409 if (Operands[i] == 0) return 0; 4410 } 4411 4412 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4413 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4414 Operands[1], TD); 4415 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4416 &Operands[0], Operands.size(), TD); 4417 } 4418 4419 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4420 /// in the header of its containing loop, we know the loop executes a 4421 /// constant number of times, and the PHI node is just a recurrence 4422 /// involving constants, fold it. 4423 Constant * 4424 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4425 const APInt &BEs, 4426 const Loop *L) { 4427 std::map<PHINode*, Constant*>::const_iterator I = 4428 ConstantEvolutionLoopExitValue.find(PN); 4429 if (I != ConstantEvolutionLoopExitValue.end()) 4430 return I->second; 4431 4432 if (BEs.ugt(MaxBruteForceIterations)) 4433 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4434 4435 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4436 4437 // Since the loop is canonicalized, the PHI node must have two entries. One 4438 // entry must be a constant (coming in from outside of the loop), and the 4439 // second must be derived from the same PHI. 4440 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4441 Constant *StartCST = 4442 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4443 if (StartCST == 0) 4444 return RetVal = 0; // Must be a constant. 4445 4446 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4447 if (getConstantEvolvingPHI(BEValue, L) != PN && 4448 !isa<Constant>(BEValue)) 4449 return RetVal = 0; // Not derived from same PHI. 4450 4451 // Execute the loop symbolically to determine the exit value. 4452 if (BEs.getActiveBits() >= 32) 4453 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4454 4455 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4456 unsigned IterationNum = 0; 4457 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4458 if (IterationNum == NumIterations) 4459 return RetVal = PHIVal; // Got exit value! 4460 4461 // Compute the value of the PHI node for the next iteration. 4462 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4463 if (NextPHI == PHIVal) 4464 return RetVal = NextPHI; // Stopped evolving! 4465 if (NextPHI == 0) 4466 return 0; // Couldn't evaluate! 4467 PHIVal = NextPHI; 4468 } 4469 } 4470 4471 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4472 /// constant number of times (the condition evolves only from constants), 4473 /// try to evaluate a few iterations of the loop until we get the exit 4474 /// condition gets a value of ExitWhen (true or false). If we cannot 4475 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4476 const SCEV * 4477 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4478 Value *Cond, 4479 bool ExitWhen) { 4480 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4481 if (PN == 0) return getCouldNotCompute(); 4482 4483 // If the loop is canonicalized, the PHI will have exactly two entries. 4484 // That's the only form we support here. 4485 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4486 4487 // One entry must be a constant (coming in from outside of the loop), and the 4488 // second must be derived from the same PHI. 4489 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4490 Constant *StartCST = 4491 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4492 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4493 4494 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4495 if (getConstantEvolvingPHI(BEValue, L) != PN && 4496 !isa<Constant>(BEValue)) 4497 return getCouldNotCompute(); // Not derived from same PHI. 4498 4499 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4500 // the loop symbolically to determine when the condition gets a value of 4501 // "ExitWhen". 4502 unsigned IterationNum = 0; 4503 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4504 for (Constant *PHIVal = StartCST; 4505 IterationNum != MaxIterations; ++IterationNum) { 4506 ConstantInt *CondVal = 4507 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4508 4509 // Couldn't symbolically evaluate. 4510 if (!CondVal) return getCouldNotCompute(); 4511 4512 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4513 ++NumBruteForceTripCountsComputed; 4514 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4515 } 4516 4517 // Compute the value of the PHI node for the next iteration. 4518 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4519 if (NextPHI == 0 || NextPHI == PHIVal) 4520 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4521 PHIVal = NextPHI; 4522 } 4523 4524 // Too many iterations were needed to evaluate. 4525 return getCouldNotCompute(); 4526 } 4527 4528 /// getSCEVAtScope - Return a SCEV expression for the specified value 4529 /// at the specified scope in the program. The L value specifies a loop 4530 /// nest to evaluate the expression at, where null is the top-level or a 4531 /// specified loop is immediately inside of the loop. 4532 /// 4533 /// This method can be used to compute the exit value for a variable defined 4534 /// in a loop by querying what the value will hold in the parent loop. 4535 /// 4536 /// In the case that a relevant loop exit value cannot be computed, the 4537 /// original value V is returned. 4538 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4539 // Check to see if we've folded this expression at this loop before. 4540 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4541 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4542 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4543 if (!Pair.second) 4544 return Pair.first->second ? Pair.first->second : V; 4545 4546 // Otherwise compute it. 4547 const SCEV *C = computeSCEVAtScope(V, L); 4548 ValuesAtScopes[V][L] = C; 4549 return C; 4550 } 4551 4552 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4553 if (isa<SCEVConstant>(V)) return V; 4554 4555 // If this instruction is evolved from a constant-evolving PHI, compute the 4556 // exit value from the loop without using SCEVs. 4557 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4558 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4559 const Loop *LI = (*this->LI)[I->getParent()]; 4560 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4561 if (PHINode *PN = dyn_cast<PHINode>(I)) 4562 if (PN->getParent() == LI->getHeader()) { 4563 // Okay, there is no closed form solution for the PHI node. Check 4564 // to see if the loop that contains it has a known backedge-taken 4565 // count. If so, we may be able to force computation of the exit 4566 // value. 4567 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4568 if (const SCEVConstant *BTCC = 4569 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4570 // Okay, we know how many times the containing loop executes. If 4571 // this is a constant evolving PHI node, get the final value at 4572 // the specified iteration number. 4573 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4574 BTCC->getValue()->getValue(), 4575 LI); 4576 if (RV) return getSCEV(RV); 4577 } 4578 } 4579 4580 // Okay, this is an expression that we cannot symbolically evaluate 4581 // into a SCEV. Check to see if it's possible to symbolically evaluate 4582 // the arguments into constants, and if so, try to constant propagate the 4583 // result. This is particularly useful for computing loop exit values. 4584 if (CanConstantFold(I)) { 4585 SmallVector<Constant *, 4> Operands; 4586 bool MadeImprovement = false; 4587 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4588 Value *Op = I->getOperand(i); 4589 if (Constant *C = dyn_cast<Constant>(Op)) { 4590 Operands.push_back(C); 4591 continue; 4592 } 4593 4594 // If any of the operands is non-constant and if they are 4595 // non-integer and non-pointer, don't even try to analyze them 4596 // with scev techniques. 4597 if (!isSCEVable(Op->getType())) 4598 return V; 4599 4600 const SCEV *OrigV = getSCEV(Op); 4601 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4602 MadeImprovement |= OrigV != OpV; 4603 4604 Constant *C = 0; 4605 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4606 C = SC->getValue(); 4607 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4608 C = dyn_cast<Constant>(SU->getValue()); 4609 if (!C) return V; 4610 if (C->getType() != Op->getType()) 4611 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4612 Op->getType(), 4613 false), 4614 C, Op->getType()); 4615 Operands.push_back(C); 4616 } 4617 4618 // Check to see if getSCEVAtScope actually made an improvement. 4619 if (MadeImprovement) { 4620 Constant *C = 0; 4621 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4622 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4623 Operands[0], Operands[1], TD); 4624 else 4625 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4626 &Operands[0], Operands.size(), TD); 4627 if (!C) return V; 4628 return getSCEV(C); 4629 } 4630 } 4631 } 4632 4633 // This is some other type of SCEVUnknown, just return it. 4634 return V; 4635 } 4636 4637 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4638 // Avoid performing the look-up in the common case where the specified 4639 // expression has no loop-variant portions. 4640 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4641 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4642 if (OpAtScope != Comm->getOperand(i)) { 4643 // Okay, at least one of these operands is loop variant but might be 4644 // foldable. Build a new instance of the folded commutative expression. 4645 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4646 Comm->op_begin()+i); 4647 NewOps.push_back(OpAtScope); 4648 4649 for (++i; i != e; ++i) { 4650 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4651 NewOps.push_back(OpAtScope); 4652 } 4653 if (isa<SCEVAddExpr>(Comm)) 4654 return getAddExpr(NewOps); 4655 if (isa<SCEVMulExpr>(Comm)) 4656 return getMulExpr(NewOps); 4657 if (isa<SCEVSMaxExpr>(Comm)) 4658 return getSMaxExpr(NewOps); 4659 if (isa<SCEVUMaxExpr>(Comm)) 4660 return getUMaxExpr(NewOps); 4661 llvm_unreachable("Unknown commutative SCEV type!"); 4662 } 4663 } 4664 // If we got here, all operands are loop invariant. 4665 return Comm; 4666 } 4667 4668 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4669 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4670 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4671 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4672 return Div; // must be loop invariant 4673 return getUDivExpr(LHS, RHS); 4674 } 4675 4676 // If this is a loop recurrence for a loop that does not contain L, then we 4677 // are dealing with the final value computed by the loop. 4678 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4679 // First, attempt to evaluate each operand. 4680 // Avoid performing the look-up in the common case where the specified 4681 // expression has no loop-variant portions. 4682 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4683 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4684 if (OpAtScope == AddRec->getOperand(i)) 4685 continue; 4686 4687 // Okay, at least one of these operands is loop variant but might be 4688 // foldable. Build a new instance of the folded commutative expression. 4689 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4690 AddRec->op_begin()+i); 4691 NewOps.push_back(OpAtScope); 4692 for (++i; i != e; ++i) 4693 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4694 4695 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4696 break; 4697 } 4698 4699 // If the scope is outside the addrec's loop, evaluate it by using the 4700 // loop exit value of the addrec. 4701 if (!AddRec->getLoop()->contains(L)) { 4702 // To evaluate this recurrence, we need to know how many times the AddRec 4703 // loop iterates. Compute this now. 4704 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4705 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4706 4707 // Then, evaluate the AddRec. 4708 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4709 } 4710 4711 return AddRec; 4712 } 4713 4714 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4715 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4716 if (Op == Cast->getOperand()) 4717 return Cast; // must be loop invariant 4718 return getZeroExtendExpr(Op, Cast->getType()); 4719 } 4720 4721 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4722 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4723 if (Op == Cast->getOperand()) 4724 return Cast; // must be loop invariant 4725 return getSignExtendExpr(Op, Cast->getType()); 4726 } 4727 4728 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4729 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4730 if (Op == Cast->getOperand()) 4731 return Cast; // must be loop invariant 4732 return getTruncateExpr(Op, Cast->getType()); 4733 } 4734 4735 llvm_unreachable("Unknown SCEV type!"); 4736 return 0; 4737 } 4738 4739 /// getSCEVAtScope - This is a convenience function which does 4740 /// getSCEVAtScope(getSCEV(V), L). 4741 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4742 return getSCEVAtScope(getSCEV(V), L); 4743 } 4744 4745 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4746 /// following equation: 4747 /// 4748 /// A * X = B (mod N) 4749 /// 4750 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4751 /// A and B isn't important. 4752 /// 4753 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4754 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4755 ScalarEvolution &SE) { 4756 uint32_t BW = A.getBitWidth(); 4757 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4758 assert(A != 0 && "A must be non-zero."); 4759 4760 // 1. D = gcd(A, N) 4761 // 4762 // The gcd of A and N may have only one prime factor: 2. The number of 4763 // trailing zeros in A is its multiplicity 4764 uint32_t Mult2 = A.countTrailingZeros(); 4765 // D = 2^Mult2 4766 4767 // 2. Check if B is divisible by D. 4768 // 4769 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4770 // is not less than multiplicity of this prime factor for D. 4771 if (B.countTrailingZeros() < Mult2) 4772 return SE.getCouldNotCompute(); 4773 4774 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4775 // modulo (N / D). 4776 // 4777 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4778 // bit width during computations. 4779 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4780 APInt Mod(BW + 1, 0); 4781 Mod.setBit(BW - Mult2); // Mod = N / D 4782 APInt I = AD.multiplicativeInverse(Mod); 4783 4784 // 4. Compute the minimum unsigned root of the equation: 4785 // I * (B / D) mod (N / D) 4786 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4787 4788 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4789 // bits. 4790 return SE.getConstant(Result.trunc(BW)); 4791 } 4792 4793 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4794 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4795 /// might be the same) or two SCEVCouldNotCompute objects. 4796 /// 4797 static std::pair<const SCEV *,const SCEV *> 4798 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4799 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4800 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4801 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4802 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4803 4804 // We currently can only solve this if the coefficients are constants. 4805 if (!LC || !MC || !NC) { 4806 const SCEV *CNC = SE.getCouldNotCompute(); 4807 return std::make_pair(CNC, CNC); 4808 } 4809 4810 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4811 const APInt &L = LC->getValue()->getValue(); 4812 const APInt &M = MC->getValue()->getValue(); 4813 const APInt &N = NC->getValue()->getValue(); 4814 APInt Two(BitWidth, 2); 4815 APInt Four(BitWidth, 4); 4816 4817 { 4818 using namespace APIntOps; 4819 const APInt& C = L; 4820 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4821 // The B coefficient is M-N/2 4822 APInt B(M); 4823 B -= sdiv(N,Two); 4824 4825 // The A coefficient is N/2 4826 APInt A(N.sdiv(Two)); 4827 4828 // Compute the B^2-4ac term. 4829 APInt SqrtTerm(B); 4830 SqrtTerm *= B; 4831 SqrtTerm -= Four * (A * C); 4832 4833 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4834 // integer value or else APInt::sqrt() will assert. 4835 APInt SqrtVal(SqrtTerm.sqrt()); 4836 4837 // Compute the two solutions for the quadratic formula. 4838 // The divisions must be performed as signed divisions. 4839 APInt NegB(-B); 4840 APInt TwoA( A << 1 ); 4841 if (TwoA.isMinValue()) { 4842 const SCEV *CNC = SE.getCouldNotCompute(); 4843 return std::make_pair(CNC, CNC); 4844 } 4845 4846 LLVMContext &Context = SE.getContext(); 4847 4848 ConstantInt *Solution1 = 4849 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4850 ConstantInt *Solution2 = 4851 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4852 4853 return std::make_pair(SE.getConstant(Solution1), 4854 SE.getConstant(Solution2)); 4855 } // end APIntOps namespace 4856 } 4857 4858 /// HowFarToZero - Return the number of times a backedge comparing the specified 4859 /// value to zero will execute. If not computable, return CouldNotCompute. 4860 ScalarEvolution::BackedgeTakenInfo 4861 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4862 // If the value is a constant 4863 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4864 // If the value is already zero, the branch will execute zero times. 4865 if (C->getValue()->isZero()) return C; 4866 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4867 } 4868 4869 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4870 if (!AddRec || AddRec->getLoop() != L) 4871 return getCouldNotCompute(); 4872 4873 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4874 // the quadratic equation to solve it. 4875 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4876 std::pair<const SCEV *,const SCEV *> Roots = 4877 SolveQuadraticEquation(AddRec, *this); 4878 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4879 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4880 if (R1 && R2) { 4881 #if 0 4882 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4883 << " sol#2: " << *R2 << "\n"; 4884 #endif 4885 // Pick the smallest positive root value. 4886 if (ConstantInt *CB = 4887 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 4888 R1->getValue(), 4889 R2->getValue()))) { 4890 if (CB->getZExtValue() == false) 4891 std::swap(R1, R2); // R1 is the minimum root now. 4892 4893 // We can only use this value if the chrec ends up with an exact zero 4894 // value at this index. When solving for "X*X != 5", for example, we 4895 // should not accept a root of 2. 4896 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4897 if (Val->isZero()) 4898 return R1; // We found a quadratic root! 4899 } 4900 } 4901 return getCouldNotCompute(); 4902 } 4903 4904 // Otherwise we can only handle this if it is affine. 4905 if (!AddRec->isAffine()) 4906 return getCouldNotCompute(); 4907 4908 // If this is an affine expression, the execution count of this branch is 4909 // the minimum unsigned root of the following equation: 4910 // 4911 // Start + Step*N = 0 (mod 2^BW) 4912 // 4913 // equivalent to: 4914 // 4915 // Step*N = -Start (mod 2^BW) 4916 // 4917 // where BW is the common bit width of Start and Step. 4918 4919 // Get the initial value for the loop. 4920 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 4921 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 4922 4923 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up 4924 // to wrap to 0, it must be counting down to equal 0. Also, while counting 4925 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what 4926 // the stride is. As such, NUW addrec's will always become zero in 4927 // "start / -stride" steps, and we know that the division is exact. 4928 if (AddRec->hasNoUnsignedWrap()) 4929 // FIXME: We really want an "isexact" bit for udiv. 4930 return getUDivExpr(Start, getNegativeSCEV(Step)); 4931 4932 // For now we handle only constant steps. 4933 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 4934 if (StepC == 0) 4935 return getCouldNotCompute(); 4936 4937 // First, handle unitary steps. 4938 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4939 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4940 4941 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4942 return Start; // N = Start (as unsigned) 4943 4944 // Then, try to solve the above equation provided that Start is constant. 4945 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4946 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4947 -StartC->getValue()->getValue(), 4948 *this); 4949 return getCouldNotCompute(); 4950 } 4951 4952 /// HowFarToNonZero - Return the number of times a backedge checking the 4953 /// specified value for nonzero will execute. If not computable, return 4954 /// CouldNotCompute 4955 ScalarEvolution::BackedgeTakenInfo 4956 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4957 // Loops that look like: while (X == 0) are very strange indeed. We don't 4958 // handle them yet except for the trivial case. This could be expanded in the 4959 // future as needed. 4960 4961 // If the value is a constant, check to see if it is known to be non-zero 4962 // already. If so, the backedge will execute zero times. 4963 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4964 if (!C->getValue()->isNullValue()) 4965 return getConstant(C->getType(), 0); 4966 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4967 } 4968 4969 // We could implement others, but I really doubt anyone writes loops like 4970 // this, and if they did, they would already be constant folded. 4971 return getCouldNotCompute(); 4972 } 4973 4974 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4975 /// (which may not be an immediate predecessor) which has exactly one 4976 /// successor from which BB is reachable, or null if no such block is 4977 /// found. 4978 /// 4979 std::pair<BasicBlock *, BasicBlock *> 4980 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4981 // If the block has a unique predecessor, then there is no path from the 4982 // predecessor to the block that does not go through the direct edge 4983 // from the predecessor to the block. 4984 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4985 return std::make_pair(Pred, BB); 4986 4987 // A loop's header is defined to be a block that dominates the loop. 4988 // If the header has a unique predecessor outside the loop, it must be 4989 // a block that has exactly one successor that can reach the loop. 4990 if (Loop *L = LI->getLoopFor(BB)) 4991 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4992 4993 return std::pair<BasicBlock *, BasicBlock *>(); 4994 } 4995 4996 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4997 /// testing whether two expressions are equal, however for the purposes of 4998 /// looking for a condition guarding a loop, it can be useful to be a little 4999 /// more general, since a front-end may have replicated the controlling 5000 /// expression. 5001 /// 5002 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5003 // Quick check to see if they are the same SCEV. 5004 if (A == B) return true; 5005 5006 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5007 // two different instructions with the same value. Check for this case. 5008 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5009 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5010 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5011 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5012 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5013 return true; 5014 5015 // Otherwise assume they may have a different value. 5016 return false; 5017 } 5018 5019 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5020 /// predicate Pred. Return true iff any changes were made. 5021 /// 5022 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5023 const SCEV *&LHS, const SCEV *&RHS) { 5024 bool Changed = false; 5025 5026 // Canonicalize a constant to the right side. 5027 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5028 // Check for both operands constant. 5029 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5030 if (ConstantExpr::getICmp(Pred, 5031 LHSC->getValue(), 5032 RHSC->getValue())->isNullValue()) 5033 goto trivially_false; 5034 else 5035 goto trivially_true; 5036 } 5037 // Otherwise swap the operands to put the constant on the right. 5038 std::swap(LHS, RHS); 5039 Pred = ICmpInst::getSwappedPredicate(Pred); 5040 Changed = true; 5041 } 5042 5043 // If we're comparing an addrec with a value which is loop-invariant in the 5044 // addrec's loop, put the addrec on the left. Also make a dominance check, 5045 // as both operands could be addrecs loop-invariant in each other's loop. 5046 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5047 const Loop *L = AR->getLoop(); 5048 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5049 std::swap(LHS, RHS); 5050 Pred = ICmpInst::getSwappedPredicate(Pred); 5051 Changed = true; 5052 } 5053 } 5054 5055 // If there's a constant operand, canonicalize comparisons with boundary 5056 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5057 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5058 const APInt &RA = RC->getValue()->getValue(); 5059 switch (Pred) { 5060 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5061 case ICmpInst::ICMP_EQ: 5062 case ICmpInst::ICMP_NE: 5063 break; 5064 case ICmpInst::ICMP_UGE: 5065 if ((RA - 1).isMinValue()) { 5066 Pred = ICmpInst::ICMP_NE; 5067 RHS = getConstant(RA - 1); 5068 Changed = true; 5069 break; 5070 } 5071 if (RA.isMaxValue()) { 5072 Pred = ICmpInst::ICMP_EQ; 5073 Changed = true; 5074 break; 5075 } 5076 if (RA.isMinValue()) goto trivially_true; 5077 5078 Pred = ICmpInst::ICMP_UGT; 5079 RHS = getConstant(RA - 1); 5080 Changed = true; 5081 break; 5082 case ICmpInst::ICMP_ULE: 5083 if ((RA + 1).isMaxValue()) { 5084 Pred = ICmpInst::ICMP_NE; 5085 RHS = getConstant(RA + 1); 5086 Changed = true; 5087 break; 5088 } 5089 if (RA.isMinValue()) { 5090 Pred = ICmpInst::ICMP_EQ; 5091 Changed = true; 5092 break; 5093 } 5094 if (RA.isMaxValue()) goto trivially_true; 5095 5096 Pred = ICmpInst::ICMP_ULT; 5097 RHS = getConstant(RA + 1); 5098 Changed = true; 5099 break; 5100 case ICmpInst::ICMP_SGE: 5101 if ((RA - 1).isMinSignedValue()) { 5102 Pred = ICmpInst::ICMP_NE; 5103 RHS = getConstant(RA - 1); 5104 Changed = true; 5105 break; 5106 } 5107 if (RA.isMaxSignedValue()) { 5108 Pred = ICmpInst::ICMP_EQ; 5109 Changed = true; 5110 break; 5111 } 5112 if (RA.isMinSignedValue()) goto trivially_true; 5113 5114 Pred = ICmpInst::ICMP_SGT; 5115 RHS = getConstant(RA - 1); 5116 Changed = true; 5117 break; 5118 case ICmpInst::ICMP_SLE: 5119 if ((RA + 1).isMaxSignedValue()) { 5120 Pred = ICmpInst::ICMP_NE; 5121 RHS = getConstant(RA + 1); 5122 Changed = true; 5123 break; 5124 } 5125 if (RA.isMinSignedValue()) { 5126 Pred = ICmpInst::ICMP_EQ; 5127 Changed = true; 5128 break; 5129 } 5130 if (RA.isMaxSignedValue()) goto trivially_true; 5131 5132 Pred = ICmpInst::ICMP_SLT; 5133 RHS = getConstant(RA + 1); 5134 Changed = true; 5135 break; 5136 case ICmpInst::ICMP_UGT: 5137 if (RA.isMinValue()) { 5138 Pred = ICmpInst::ICMP_NE; 5139 Changed = true; 5140 break; 5141 } 5142 if ((RA + 1).isMaxValue()) { 5143 Pred = ICmpInst::ICMP_EQ; 5144 RHS = getConstant(RA + 1); 5145 Changed = true; 5146 break; 5147 } 5148 if (RA.isMaxValue()) goto trivially_false; 5149 break; 5150 case ICmpInst::ICMP_ULT: 5151 if (RA.isMaxValue()) { 5152 Pred = ICmpInst::ICMP_NE; 5153 Changed = true; 5154 break; 5155 } 5156 if ((RA - 1).isMinValue()) { 5157 Pred = ICmpInst::ICMP_EQ; 5158 RHS = getConstant(RA - 1); 5159 Changed = true; 5160 break; 5161 } 5162 if (RA.isMinValue()) goto trivially_false; 5163 break; 5164 case ICmpInst::ICMP_SGT: 5165 if (RA.isMinSignedValue()) { 5166 Pred = ICmpInst::ICMP_NE; 5167 Changed = true; 5168 break; 5169 } 5170 if ((RA + 1).isMaxSignedValue()) { 5171 Pred = ICmpInst::ICMP_EQ; 5172 RHS = getConstant(RA + 1); 5173 Changed = true; 5174 break; 5175 } 5176 if (RA.isMaxSignedValue()) goto trivially_false; 5177 break; 5178 case ICmpInst::ICMP_SLT: 5179 if (RA.isMaxSignedValue()) { 5180 Pred = ICmpInst::ICMP_NE; 5181 Changed = true; 5182 break; 5183 } 5184 if ((RA - 1).isMinSignedValue()) { 5185 Pred = ICmpInst::ICMP_EQ; 5186 RHS = getConstant(RA - 1); 5187 Changed = true; 5188 break; 5189 } 5190 if (RA.isMinSignedValue()) goto trivially_false; 5191 break; 5192 } 5193 } 5194 5195 // Check for obvious equality. 5196 if (HasSameValue(LHS, RHS)) { 5197 if (ICmpInst::isTrueWhenEqual(Pred)) 5198 goto trivially_true; 5199 if (ICmpInst::isFalseWhenEqual(Pred)) 5200 goto trivially_false; 5201 } 5202 5203 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5204 // adding or subtracting 1 from one of the operands. 5205 switch (Pred) { 5206 case ICmpInst::ICMP_SLE: 5207 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5208 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5209 /*HasNUW=*/false, /*HasNSW=*/true); 5210 Pred = ICmpInst::ICMP_SLT; 5211 Changed = true; 5212 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5213 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5214 /*HasNUW=*/false, /*HasNSW=*/true); 5215 Pred = ICmpInst::ICMP_SLT; 5216 Changed = true; 5217 } 5218 break; 5219 case ICmpInst::ICMP_SGE: 5220 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5221 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5222 /*HasNUW=*/false, /*HasNSW=*/true); 5223 Pred = ICmpInst::ICMP_SGT; 5224 Changed = true; 5225 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5226 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5227 /*HasNUW=*/false, /*HasNSW=*/true); 5228 Pred = ICmpInst::ICMP_SGT; 5229 Changed = true; 5230 } 5231 break; 5232 case ICmpInst::ICMP_ULE: 5233 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5234 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5235 /*HasNUW=*/true, /*HasNSW=*/false); 5236 Pred = ICmpInst::ICMP_ULT; 5237 Changed = true; 5238 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5239 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5240 /*HasNUW=*/true, /*HasNSW=*/false); 5241 Pred = ICmpInst::ICMP_ULT; 5242 Changed = true; 5243 } 5244 break; 5245 case ICmpInst::ICMP_UGE: 5246 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5247 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5248 /*HasNUW=*/true, /*HasNSW=*/false); 5249 Pred = ICmpInst::ICMP_UGT; 5250 Changed = true; 5251 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5252 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5253 /*HasNUW=*/true, /*HasNSW=*/false); 5254 Pred = ICmpInst::ICMP_UGT; 5255 Changed = true; 5256 } 5257 break; 5258 default: 5259 break; 5260 } 5261 5262 // TODO: More simplifications are possible here. 5263 5264 return Changed; 5265 5266 trivially_true: 5267 // Return 0 == 0. 5268 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5269 Pred = ICmpInst::ICMP_EQ; 5270 return true; 5271 5272 trivially_false: 5273 // Return 0 != 0. 5274 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5275 Pred = ICmpInst::ICMP_NE; 5276 return true; 5277 } 5278 5279 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5280 return getSignedRange(S).getSignedMax().isNegative(); 5281 } 5282 5283 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5284 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5285 } 5286 5287 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5288 return !getSignedRange(S).getSignedMin().isNegative(); 5289 } 5290 5291 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5292 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5293 } 5294 5295 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5296 return isKnownNegative(S) || isKnownPositive(S); 5297 } 5298 5299 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5300 const SCEV *LHS, const SCEV *RHS) { 5301 // Canonicalize the inputs first. 5302 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5303 5304 // If LHS or RHS is an addrec, check to see if the condition is true in 5305 // every iteration of the loop. 5306 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5307 if (isLoopEntryGuardedByCond( 5308 AR->getLoop(), Pred, AR->getStart(), RHS) && 5309 isLoopBackedgeGuardedByCond( 5310 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5311 return true; 5312 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5313 if (isLoopEntryGuardedByCond( 5314 AR->getLoop(), Pred, LHS, AR->getStart()) && 5315 isLoopBackedgeGuardedByCond( 5316 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5317 return true; 5318 5319 // Otherwise see what can be done with known constant ranges. 5320 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5321 } 5322 5323 bool 5324 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5325 const SCEV *LHS, const SCEV *RHS) { 5326 if (HasSameValue(LHS, RHS)) 5327 return ICmpInst::isTrueWhenEqual(Pred); 5328 5329 // This code is split out from isKnownPredicate because it is called from 5330 // within isLoopEntryGuardedByCond. 5331 switch (Pred) { 5332 default: 5333 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5334 break; 5335 case ICmpInst::ICMP_SGT: 5336 Pred = ICmpInst::ICMP_SLT; 5337 std::swap(LHS, RHS); 5338 case ICmpInst::ICMP_SLT: { 5339 ConstantRange LHSRange = getSignedRange(LHS); 5340 ConstantRange RHSRange = getSignedRange(RHS); 5341 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5342 return true; 5343 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5344 return false; 5345 break; 5346 } 5347 case ICmpInst::ICMP_SGE: 5348 Pred = ICmpInst::ICMP_SLE; 5349 std::swap(LHS, RHS); 5350 case ICmpInst::ICMP_SLE: { 5351 ConstantRange LHSRange = getSignedRange(LHS); 5352 ConstantRange RHSRange = getSignedRange(RHS); 5353 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5354 return true; 5355 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5356 return false; 5357 break; 5358 } 5359 case ICmpInst::ICMP_UGT: 5360 Pred = ICmpInst::ICMP_ULT; 5361 std::swap(LHS, RHS); 5362 case ICmpInst::ICMP_ULT: { 5363 ConstantRange LHSRange = getUnsignedRange(LHS); 5364 ConstantRange RHSRange = getUnsignedRange(RHS); 5365 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5366 return true; 5367 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5368 return false; 5369 break; 5370 } 5371 case ICmpInst::ICMP_UGE: 5372 Pred = ICmpInst::ICMP_ULE; 5373 std::swap(LHS, RHS); 5374 case ICmpInst::ICMP_ULE: { 5375 ConstantRange LHSRange = getUnsignedRange(LHS); 5376 ConstantRange RHSRange = getUnsignedRange(RHS); 5377 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5378 return true; 5379 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5380 return false; 5381 break; 5382 } 5383 case ICmpInst::ICMP_NE: { 5384 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5385 return true; 5386 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5387 return true; 5388 5389 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5390 if (isKnownNonZero(Diff)) 5391 return true; 5392 break; 5393 } 5394 case ICmpInst::ICMP_EQ: 5395 // The check at the top of the function catches the case where 5396 // the values are known to be equal. 5397 break; 5398 } 5399 return false; 5400 } 5401 5402 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5403 /// protected by a conditional between LHS and RHS. This is used to 5404 /// to eliminate casts. 5405 bool 5406 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5407 ICmpInst::Predicate Pred, 5408 const SCEV *LHS, const SCEV *RHS) { 5409 // Interpret a null as meaning no loop, where there is obviously no guard 5410 // (interprocedural conditions notwithstanding). 5411 if (!L) return true; 5412 5413 BasicBlock *Latch = L->getLoopLatch(); 5414 if (!Latch) 5415 return false; 5416 5417 BranchInst *LoopContinuePredicate = 5418 dyn_cast<BranchInst>(Latch->getTerminator()); 5419 if (!LoopContinuePredicate || 5420 LoopContinuePredicate->isUnconditional()) 5421 return false; 5422 5423 return isImpliedCond(Pred, LHS, RHS, 5424 LoopContinuePredicate->getCondition(), 5425 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5426 } 5427 5428 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5429 /// by a conditional between LHS and RHS. This is used to help avoid max 5430 /// expressions in loop trip counts, and to eliminate casts. 5431 bool 5432 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5433 ICmpInst::Predicate Pred, 5434 const SCEV *LHS, const SCEV *RHS) { 5435 // Interpret a null as meaning no loop, where there is obviously no guard 5436 // (interprocedural conditions notwithstanding). 5437 if (!L) return false; 5438 5439 // Starting at the loop predecessor, climb up the predecessor chain, as long 5440 // as there are predecessors that can be found that have unique successors 5441 // leading to the original header. 5442 for (std::pair<BasicBlock *, BasicBlock *> 5443 Pair(L->getLoopPredecessor(), L->getHeader()); 5444 Pair.first; 5445 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5446 5447 BranchInst *LoopEntryPredicate = 5448 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5449 if (!LoopEntryPredicate || 5450 LoopEntryPredicate->isUnconditional()) 5451 continue; 5452 5453 if (isImpliedCond(Pred, LHS, RHS, 5454 LoopEntryPredicate->getCondition(), 5455 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5456 return true; 5457 } 5458 5459 return false; 5460 } 5461 5462 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5463 /// and RHS is true whenever the given Cond value evaluates to true. 5464 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5465 const SCEV *LHS, const SCEV *RHS, 5466 Value *FoundCondValue, 5467 bool Inverse) { 5468 // Recursively handle And and Or conditions. 5469 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5470 if (BO->getOpcode() == Instruction::And) { 5471 if (!Inverse) 5472 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5473 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5474 } else if (BO->getOpcode() == Instruction::Or) { 5475 if (Inverse) 5476 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5477 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5478 } 5479 } 5480 5481 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5482 if (!ICI) return false; 5483 5484 // Bail if the ICmp's operands' types are wider than the needed type 5485 // before attempting to call getSCEV on them. This avoids infinite 5486 // recursion, since the analysis of widening casts can require loop 5487 // exit condition information for overflow checking, which would 5488 // lead back here. 5489 if (getTypeSizeInBits(LHS->getType()) < 5490 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5491 return false; 5492 5493 // Now that we found a conditional branch that dominates the loop, check to 5494 // see if it is the comparison we are looking for. 5495 ICmpInst::Predicate FoundPred; 5496 if (Inverse) 5497 FoundPred = ICI->getInversePredicate(); 5498 else 5499 FoundPred = ICI->getPredicate(); 5500 5501 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5502 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5503 5504 // Balance the types. The case where FoundLHS' type is wider than 5505 // LHS' type is checked for above. 5506 if (getTypeSizeInBits(LHS->getType()) > 5507 getTypeSizeInBits(FoundLHS->getType())) { 5508 if (CmpInst::isSigned(Pred)) { 5509 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5510 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5511 } else { 5512 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5513 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5514 } 5515 } 5516 5517 // Canonicalize the query to match the way instcombine will have 5518 // canonicalized the comparison. 5519 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5520 if (LHS == RHS) 5521 return CmpInst::isTrueWhenEqual(Pred); 5522 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5523 if (FoundLHS == FoundRHS) 5524 return CmpInst::isFalseWhenEqual(Pred); 5525 5526 // Check to see if we can make the LHS or RHS match. 5527 if (LHS == FoundRHS || RHS == FoundLHS) { 5528 if (isa<SCEVConstant>(RHS)) { 5529 std::swap(FoundLHS, FoundRHS); 5530 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5531 } else { 5532 std::swap(LHS, RHS); 5533 Pred = ICmpInst::getSwappedPredicate(Pred); 5534 } 5535 } 5536 5537 // Check whether the found predicate is the same as the desired predicate. 5538 if (FoundPred == Pred) 5539 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5540 5541 // Check whether swapping the found predicate makes it the same as the 5542 // desired predicate. 5543 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5544 if (isa<SCEVConstant>(RHS)) 5545 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5546 else 5547 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5548 RHS, LHS, FoundLHS, FoundRHS); 5549 } 5550 5551 // Check whether the actual condition is beyond sufficient. 5552 if (FoundPred == ICmpInst::ICMP_EQ) 5553 if (ICmpInst::isTrueWhenEqual(Pred)) 5554 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5555 return true; 5556 if (Pred == ICmpInst::ICMP_NE) 5557 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5558 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5559 return true; 5560 5561 // Otherwise assume the worst. 5562 return false; 5563 } 5564 5565 /// isImpliedCondOperands - Test whether the condition described by Pred, 5566 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5567 /// and FoundRHS is true. 5568 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5569 const SCEV *LHS, const SCEV *RHS, 5570 const SCEV *FoundLHS, 5571 const SCEV *FoundRHS) { 5572 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5573 FoundLHS, FoundRHS) || 5574 // ~x < ~y --> x > y 5575 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5576 getNotSCEV(FoundRHS), 5577 getNotSCEV(FoundLHS)); 5578 } 5579 5580 /// isImpliedCondOperandsHelper - Test whether the condition described by 5581 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5582 /// FoundLHS, and FoundRHS is true. 5583 bool 5584 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5585 const SCEV *LHS, const SCEV *RHS, 5586 const SCEV *FoundLHS, 5587 const SCEV *FoundRHS) { 5588 switch (Pred) { 5589 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5590 case ICmpInst::ICMP_EQ: 5591 case ICmpInst::ICMP_NE: 5592 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5593 return true; 5594 break; 5595 case ICmpInst::ICMP_SLT: 5596 case ICmpInst::ICMP_SLE: 5597 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5598 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5599 return true; 5600 break; 5601 case ICmpInst::ICMP_SGT: 5602 case ICmpInst::ICMP_SGE: 5603 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5604 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5605 return true; 5606 break; 5607 case ICmpInst::ICMP_ULT: 5608 case ICmpInst::ICMP_ULE: 5609 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5610 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5611 return true; 5612 break; 5613 case ICmpInst::ICMP_UGT: 5614 case ICmpInst::ICMP_UGE: 5615 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5616 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5617 return true; 5618 break; 5619 } 5620 5621 return false; 5622 } 5623 5624 /// getBECount - Subtract the end and start values and divide by the step, 5625 /// rounding up, to get the number of times the backedge is executed. Return 5626 /// CouldNotCompute if an intermediate computation overflows. 5627 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5628 const SCEV *End, 5629 const SCEV *Step, 5630 bool NoWrap) { 5631 assert(!isKnownNegative(Step) && 5632 "This code doesn't handle negative strides yet!"); 5633 5634 const Type *Ty = Start->getType(); 5635 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5636 const SCEV *Diff = getMinusSCEV(End, Start); 5637 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5638 5639 // Add an adjustment to the difference between End and Start so that 5640 // the division will effectively round up. 5641 const SCEV *Add = getAddExpr(Diff, RoundUp); 5642 5643 if (!NoWrap) { 5644 // Check Add for unsigned overflow. 5645 // TODO: More sophisticated things could be done here. 5646 const Type *WideTy = IntegerType::get(getContext(), 5647 getTypeSizeInBits(Ty) + 1); 5648 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5649 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5650 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5651 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5652 return getCouldNotCompute(); 5653 } 5654 5655 return getUDivExpr(Add, Step); 5656 } 5657 5658 /// HowManyLessThans - Return the number of times a backedge containing the 5659 /// specified less-than comparison will execute. If not computable, return 5660 /// CouldNotCompute. 5661 ScalarEvolution::BackedgeTakenInfo 5662 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5663 const Loop *L, bool isSigned) { 5664 // Only handle: "ADDREC < LoopInvariant". 5665 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5666 5667 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5668 if (!AddRec || AddRec->getLoop() != L) 5669 return getCouldNotCompute(); 5670 5671 // Check to see if we have a flag which makes analysis easy. 5672 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5673 AddRec->hasNoUnsignedWrap(); 5674 5675 if (AddRec->isAffine()) { 5676 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5677 const SCEV *Step = AddRec->getStepRecurrence(*this); 5678 5679 if (Step->isZero()) 5680 return getCouldNotCompute(); 5681 if (Step->isOne()) { 5682 // With unit stride, the iteration never steps past the limit value. 5683 } else if (isKnownPositive(Step)) { 5684 // Test whether a positive iteration can step past the limit 5685 // value and past the maximum value for its type in a single step. 5686 // Note that it's not sufficient to check NoWrap here, because even 5687 // though the value after a wrap is undefined, it's not undefined 5688 // behavior, so if wrap does occur, the loop could either terminate or 5689 // loop infinitely, but in either case, the loop is guaranteed to 5690 // iterate at least until the iteration where the wrapping occurs. 5691 const SCEV *One = getConstant(Step->getType(), 1); 5692 if (isSigned) { 5693 APInt Max = APInt::getSignedMaxValue(BitWidth); 5694 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5695 .slt(getSignedRange(RHS).getSignedMax())) 5696 return getCouldNotCompute(); 5697 } else { 5698 APInt Max = APInt::getMaxValue(BitWidth); 5699 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5700 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5701 return getCouldNotCompute(); 5702 } 5703 } else 5704 // TODO: Handle negative strides here and below. 5705 return getCouldNotCompute(); 5706 5707 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5708 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5709 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5710 // treat m-n as signed nor unsigned due to overflow possibility. 5711 5712 // First, we get the value of the LHS in the first iteration: n 5713 const SCEV *Start = AddRec->getOperand(0); 5714 5715 // Determine the minimum constant start value. 5716 const SCEV *MinStart = getConstant(isSigned ? 5717 getSignedRange(Start).getSignedMin() : 5718 getUnsignedRange(Start).getUnsignedMin()); 5719 5720 // If we know that the condition is true in order to enter the loop, 5721 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5722 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5723 // the division must round up. 5724 const SCEV *End = RHS; 5725 if (!isLoopEntryGuardedByCond(L, 5726 isSigned ? ICmpInst::ICMP_SLT : 5727 ICmpInst::ICMP_ULT, 5728 getMinusSCEV(Start, Step), RHS)) 5729 End = isSigned ? getSMaxExpr(RHS, Start) 5730 : getUMaxExpr(RHS, Start); 5731 5732 // Determine the maximum constant end value. 5733 const SCEV *MaxEnd = getConstant(isSigned ? 5734 getSignedRange(End).getSignedMax() : 5735 getUnsignedRange(End).getUnsignedMax()); 5736 5737 // If MaxEnd is within a step of the maximum integer value in its type, 5738 // adjust it down to the minimum value which would produce the same effect. 5739 // This allows the subsequent ceiling division of (N+(step-1))/step to 5740 // compute the correct value. 5741 const SCEV *StepMinusOne = getMinusSCEV(Step, 5742 getConstant(Step->getType(), 1)); 5743 MaxEnd = isSigned ? 5744 getSMinExpr(MaxEnd, 5745 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5746 StepMinusOne)) : 5747 getUMinExpr(MaxEnd, 5748 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5749 StepMinusOne)); 5750 5751 // Finally, we subtract these two values and divide, rounding up, to get 5752 // the number of times the backedge is executed. 5753 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5754 5755 // The maximum backedge count is similar, except using the minimum start 5756 // value and the maximum end value. 5757 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5758 5759 return BackedgeTakenInfo(BECount, MaxBECount); 5760 } 5761 5762 return getCouldNotCompute(); 5763 } 5764 5765 /// getNumIterationsInRange - Return the number of iterations of this loop that 5766 /// produce values in the specified constant range. Another way of looking at 5767 /// this is that it returns the first iteration number where the value is not in 5768 /// the condition, thus computing the exit count. If the iteration count can't 5769 /// be computed, an instance of SCEVCouldNotCompute is returned. 5770 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5771 ScalarEvolution &SE) const { 5772 if (Range.isFullSet()) // Infinite loop. 5773 return SE.getCouldNotCompute(); 5774 5775 // If the start is a non-zero constant, shift the range to simplify things. 5776 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5777 if (!SC->getValue()->isZero()) { 5778 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5779 Operands[0] = SE.getConstant(SC->getType(), 0); 5780 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5781 if (const SCEVAddRecExpr *ShiftedAddRec = 5782 dyn_cast<SCEVAddRecExpr>(Shifted)) 5783 return ShiftedAddRec->getNumIterationsInRange( 5784 Range.subtract(SC->getValue()->getValue()), SE); 5785 // This is strange and shouldn't happen. 5786 return SE.getCouldNotCompute(); 5787 } 5788 5789 // The only time we can solve this is when we have all constant indices. 5790 // Otherwise, we cannot determine the overflow conditions. 5791 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5792 if (!isa<SCEVConstant>(getOperand(i))) 5793 return SE.getCouldNotCompute(); 5794 5795 5796 // Okay at this point we know that all elements of the chrec are constants and 5797 // that the start element is zero. 5798 5799 // First check to see if the range contains zero. If not, the first 5800 // iteration exits. 5801 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5802 if (!Range.contains(APInt(BitWidth, 0))) 5803 return SE.getConstant(getType(), 0); 5804 5805 if (isAffine()) { 5806 // If this is an affine expression then we have this situation: 5807 // Solve {0,+,A} in Range === Ax in Range 5808 5809 // We know that zero is in the range. If A is positive then we know that 5810 // the upper value of the range must be the first possible exit value. 5811 // If A is negative then the lower of the range is the last possible loop 5812 // value. Also note that we already checked for a full range. 5813 APInt One(BitWidth,1); 5814 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5815 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5816 5817 // The exit value should be (End+A)/A. 5818 APInt ExitVal = (End + A).udiv(A); 5819 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5820 5821 // Evaluate at the exit value. If we really did fall out of the valid 5822 // range, then we computed our trip count, otherwise wrap around or other 5823 // things must have happened. 5824 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5825 if (Range.contains(Val->getValue())) 5826 return SE.getCouldNotCompute(); // Something strange happened 5827 5828 // Ensure that the previous value is in the range. This is a sanity check. 5829 assert(Range.contains( 5830 EvaluateConstantChrecAtConstant(this, 5831 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5832 "Linear scev computation is off in a bad way!"); 5833 return SE.getConstant(ExitValue); 5834 } else if (isQuadratic()) { 5835 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5836 // quadratic equation to solve it. To do this, we must frame our problem in 5837 // terms of figuring out when zero is crossed, instead of when 5838 // Range.getUpper() is crossed. 5839 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5840 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5841 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5842 5843 // Next, solve the constructed addrec 5844 std::pair<const SCEV *,const SCEV *> Roots = 5845 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5846 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5847 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5848 if (R1) { 5849 // Pick the smallest positive root value. 5850 if (ConstantInt *CB = 5851 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5852 R1->getValue(), R2->getValue()))) { 5853 if (CB->getZExtValue() == false) 5854 std::swap(R1, R2); // R1 is the minimum root now. 5855 5856 // Make sure the root is not off by one. The returned iteration should 5857 // not be in the range, but the previous one should be. When solving 5858 // for "X*X < 5", for example, we should not return a root of 2. 5859 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5860 R1->getValue(), 5861 SE); 5862 if (Range.contains(R1Val->getValue())) { 5863 // The next iteration must be out of the range... 5864 ConstantInt *NextVal = 5865 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5866 5867 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5868 if (!Range.contains(R1Val->getValue())) 5869 return SE.getConstant(NextVal); 5870 return SE.getCouldNotCompute(); // Something strange happened 5871 } 5872 5873 // If R1 was not in the range, then it is a good return value. Make 5874 // sure that R1-1 WAS in the range though, just in case. 5875 ConstantInt *NextVal = 5876 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5877 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5878 if (Range.contains(R1Val->getValue())) 5879 return R1; 5880 return SE.getCouldNotCompute(); // Something strange happened 5881 } 5882 } 5883 } 5884 5885 return SE.getCouldNotCompute(); 5886 } 5887 5888 5889 5890 //===----------------------------------------------------------------------===// 5891 // SCEVCallbackVH Class Implementation 5892 //===----------------------------------------------------------------------===// 5893 5894 void ScalarEvolution::SCEVCallbackVH::deleted() { 5895 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5896 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5897 SE->ConstantEvolutionLoopExitValue.erase(PN); 5898 SE->ValueExprMap.erase(getValPtr()); 5899 // this now dangles! 5900 } 5901 5902 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5903 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5904 5905 // Forget all the expressions associated with users of the old value, 5906 // so that future queries will recompute the expressions using the new 5907 // value. 5908 Value *Old = getValPtr(); 5909 SmallVector<User *, 16> Worklist; 5910 SmallPtrSet<User *, 8> Visited; 5911 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5912 UI != UE; ++UI) 5913 Worklist.push_back(*UI); 5914 while (!Worklist.empty()) { 5915 User *U = Worklist.pop_back_val(); 5916 // Deleting the Old value will cause this to dangle. Postpone 5917 // that until everything else is done. 5918 if (U == Old) 5919 continue; 5920 if (!Visited.insert(U)) 5921 continue; 5922 if (PHINode *PN = dyn_cast<PHINode>(U)) 5923 SE->ConstantEvolutionLoopExitValue.erase(PN); 5924 SE->ValueExprMap.erase(U); 5925 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5926 UI != UE; ++UI) 5927 Worklist.push_back(*UI); 5928 } 5929 // Delete the Old value. 5930 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5931 SE->ConstantEvolutionLoopExitValue.erase(PN); 5932 SE->ValueExprMap.erase(Old); 5933 // this now dangles! 5934 } 5935 5936 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5937 : CallbackVH(V), SE(se) {} 5938 5939 //===----------------------------------------------------------------------===// 5940 // ScalarEvolution Class Implementation 5941 //===----------------------------------------------------------------------===// 5942 5943 ScalarEvolution::ScalarEvolution() 5944 : FunctionPass(ID), FirstUnknown(0) { 5945 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 5946 } 5947 5948 bool ScalarEvolution::runOnFunction(Function &F) { 5949 this->F = &F; 5950 LI = &getAnalysis<LoopInfo>(); 5951 TD = getAnalysisIfAvailable<TargetData>(); 5952 DT = &getAnalysis<DominatorTree>(); 5953 return false; 5954 } 5955 5956 void ScalarEvolution::releaseMemory() { 5957 // Iterate through all the SCEVUnknown instances and call their 5958 // destructors, so that they release their references to their values. 5959 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5960 U->~SCEVUnknown(); 5961 FirstUnknown = 0; 5962 5963 ValueExprMap.clear(); 5964 BackedgeTakenCounts.clear(); 5965 ConstantEvolutionLoopExitValue.clear(); 5966 ValuesAtScopes.clear(); 5967 LoopDispositions.clear(); 5968 BlockDispositions.clear(); 5969 UnsignedRanges.clear(); 5970 SignedRanges.clear(); 5971 UniqueSCEVs.clear(); 5972 SCEVAllocator.Reset(); 5973 } 5974 5975 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5976 AU.setPreservesAll(); 5977 AU.addRequiredTransitive<LoopInfo>(); 5978 AU.addRequiredTransitive<DominatorTree>(); 5979 } 5980 5981 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5982 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5983 } 5984 5985 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5986 const Loop *L) { 5987 // Print all inner loops first 5988 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5989 PrintLoopInfo(OS, SE, *I); 5990 5991 OS << "Loop "; 5992 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5993 OS << ": "; 5994 5995 SmallVector<BasicBlock *, 8> ExitBlocks; 5996 L->getExitBlocks(ExitBlocks); 5997 if (ExitBlocks.size() != 1) 5998 OS << "<multiple exits> "; 5999 6000 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6001 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6002 } else { 6003 OS << "Unpredictable backedge-taken count. "; 6004 } 6005 6006 OS << "\n" 6007 "Loop "; 6008 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6009 OS << ": "; 6010 6011 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6012 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6013 } else { 6014 OS << "Unpredictable max backedge-taken count. "; 6015 } 6016 6017 OS << "\n"; 6018 } 6019 6020 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6021 // ScalarEvolution's implementation of the print method is to print 6022 // out SCEV values of all instructions that are interesting. Doing 6023 // this potentially causes it to create new SCEV objects though, 6024 // which technically conflicts with the const qualifier. This isn't 6025 // observable from outside the class though, so casting away the 6026 // const isn't dangerous. 6027 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6028 6029 OS << "Classifying expressions for: "; 6030 WriteAsOperand(OS, F, /*PrintType=*/false); 6031 OS << "\n"; 6032 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6033 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6034 OS << *I << '\n'; 6035 OS << " --> "; 6036 const SCEV *SV = SE.getSCEV(&*I); 6037 SV->print(OS); 6038 6039 const Loop *L = LI->getLoopFor((*I).getParent()); 6040 6041 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6042 if (AtUse != SV) { 6043 OS << " --> "; 6044 AtUse->print(OS); 6045 } 6046 6047 if (L) { 6048 OS << "\t\t" "Exits: "; 6049 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6050 if (!SE.isLoopInvariant(ExitValue, L)) { 6051 OS << "<<Unknown>>"; 6052 } else { 6053 OS << *ExitValue; 6054 } 6055 } 6056 6057 OS << "\n"; 6058 } 6059 6060 OS << "Determining loop execution counts for: "; 6061 WriteAsOperand(OS, F, /*PrintType=*/false); 6062 OS << "\n"; 6063 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6064 PrintLoopInfo(OS, &SE, *I); 6065 } 6066 6067 ScalarEvolution::LoopDisposition 6068 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6069 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6070 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6071 Values.insert(std::make_pair(L, LoopVariant)); 6072 if (!Pair.second) 6073 return Pair.first->second; 6074 6075 LoopDisposition D = computeLoopDisposition(S, L); 6076 return LoopDispositions[S][L] = D; 6077 } 6078 6079 ScalarEvolution::LoopDisposition 6080 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6081 switch (S->getSCEVType()) { 6082 case scConstant: 6083 return LoopInvariant; 6084 case scTruncate: 6085 case scZeroExtend: 6086 case scSignExtend: 6087 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6088 case scAddRecExpr: { 6089 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6090 6091 // If L is the addrec's loop, it's computable. 6092 if (AR->getLoop() == L) 6093 return LoopComputable; 6094 6095 // Add recurrences are never invariant in the function-body (null loop). 6096 if (!L) 6097 return LoopVariant; 6098 6099 // This recurrence is variant w.r.t. L if L contains AR's loop. 6100 if (L->contains(AR->getLoop())) 6101 return LoopVariant; 6102 6103 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6104 if (AR->getLoop()->contains(L)) 6105 return LoopInvariant; 6106 6107 // This recurrence is variant w.r.t. L if any of its operands 6108 // are variant. 6109 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6110 I != E; ++I) 6111 if (!isLoopInvariant(*I, L)) 6112 return LoopVariant; 6113 6114 // Otherwise it's loop-invariant. 6115 return LoopInvariant; 6116 } 6117 case scAddExpr: 6118 case scMulExpr: 6119 case scUMaxExpr: 6120 case scSMaxExpr: { 6121 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6122 bool HasVarying = false; 6123 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6124 I != E; ++I) { 6125 LoopDisposition D = getLoopDisposition(*I, L); 6126 if (D == LoopVariant) 6127 return LoopVariant; 6128 if (D == LoopComputable) 6129 HasVarying = true; 6130 } 6131 return HasVarying ? LoopComputable : LoopInvariant; 6132 } 6133 case scUDivExpr: { 6134 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6135 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6136 if (LD == LoopVariant) 6137 return LoopVariant; 6138 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6139 if (RD == LoopVariant) 6140 return LoopVariant; 6141 return (LD == LoopInvariant && RD == LoopInvariant) ? 6142 LoopInvariant : LoopComputable; 6143 } 6144 case scUnknown: 6145 // All non-instruction values are loop invariant. All instructions are loop 6146 // invariant if they are not contained in the specified loop. 6147 // Instructions are never considered invariant in the function body 6148 // (null loop) because they are defined within the "loop". 6149 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6150 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6151 return LoopInvariant; 6152 case scCouldNotCompute: 6153 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6154 return LoopVariant; 6155 default: break; 6156 } 6157 llvm_unreachable("Unknown SCEV kind!"); 6158 return LoopVariant; 6159 } 6160 6161 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6162 return getLoopDisposition(S, L) == LoopInvariant; 6163 } 6164 6165 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6166 return getLoopDisposition(S, L) == LoopComputable; 6167 } 6168 6169 ScalarEvolution::BlockDisposition 6170 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6171 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6172 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6173 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6174 if (!Pair.second) 6175 return Pair.first->second; 6176 6177 BlockDisposition D = computeBlockDisposition(S, BB); 6178 return BlockDispositions[S][BB] = D; 6179 } 6180 6181 ScalarEvolution::BlockDisposition 6182 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6183 switch (S->getSCEVType()) { 6184 case scConstant: 6185 return ProperlyDominatesBlock; 6186 case scTruncate: 6187 case scZeroExtend: 6188 case scSignExtend: 6189 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6190 case scAddRecExpr: { 6191 // This uses a "dominates" query instead of "properly dominates" query 6192 // to test for proper dominance too, because the instruction which 6193 // produces the addrec's value is a PHI, and a PHI effectively properly 6194 // dominates its entire containing block. 6195 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6196 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6197 return DoesNotDominateBlock; 6198 } 6199 // FALL THROUGH into SCEVNAryExpr handling. 6200 case scAddExpr: 6201 case scMulExpr: 6202 case scUMaxExpr: 6203 case scSMaxExpr: { 6204 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6205 bool Proper = true; 6206 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6207 I != E; ++I) { 6208 BlockDisposition D = getBlockDisposition(*I, BB); 6209 if (D == DoesNotDominateBlock) 6210 return DoesNotDominateBlock; 6211 if (D == DominatesBlock) 6212 Proper = false; 6213 } 6214 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6215 } 6216 case scUDivExpr: { 6217 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6218 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6219 BlockDisposition LD = getBlockDisposition(LHS, BB); 6220 if (LD == DoesNotDominateBlock) 6221 return DoesNotDominateBlock; 6222 BlockDisposition RD = getBlockDisposition(RHS, BB); 6223 if (RD == DoesNotDominateBlock) 6224 return DoesNotDominateBlock; 6225 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6226 ProperlyDominatesBlock : DominatesBlock; 6227 } 6228 case scUnknown: 6229 if (Instruction *I = 6230 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6231 if (I->getParent() == BB) 6232 return DominatesBlock; 6233 if (DT->properlyDominates(I->getParent(), BB)) 6234 return ProperlyDominatesBlock; 6235 return DoesNotDominateBlock; 6236 } 6237 return ProperlyDominatesBlock; 6238 case scCouldNotCompute: 6239 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6240 return DoesNotDominateBlock; 6241 default: break; 6242 } 6243 llvm_unreachable("Unknown SCEV kind!"); 6244 return DoesNotDominateBlock; 6245 } 6246 6247 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6248 return getBlockDisposition(S, BB) >= DominatesBlock; 6249 } 6250 6251 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6252 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6253 } 6254 6255 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6256 switch (S->getSCEVType()) { 6257 case scConstant: 6258 return false; 6259 case scTruncate: 6260 case scZeroExtend: 6261 case scSignExtend: { 6262 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6263 const SCEV *CastOp = Cast->getOperand(); 6264 return Op == CastOp || hasOperand(CastOp, Op); 6265 } 6266 case scAddRecExpr: 6267 case scAddExpr: 6268 case scMulExpr: 6269 case scUMaxExpr: 6270 case scSMaxExpr: { 6271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6272 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6273 I != E; ++I) { 6274 const SCEV *NAryOp = *I; 6275 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6276 return true; 6277 } 6278 return false; 6279 } 6280 case scUDivExpr: { 6281 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6282 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6283 return LHS == Op || hasOperand(LHS, Op) || 6284 RHS == Op || hasOperand(RHS, Op); 6285 } 6286 case scUnknown: 6287 return false; 6288 case scCouldNotCompute: 6289 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6290 return false; 6291 default: break; 6292 } 6293 llvm_unreachable("Unknown SCEV kind!"); 6294 return false; 6295 } 6296 6297 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6298 ValuesAtScopes.erase(S); 6299 LoopDispositions.erase(S); 6300 BlockDispositions.erase(S); 6301 UnsignedRanges.erase(S); 6302 SignedRanges.erase(S); 6303 } 6304