1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/Analysis/ConstantFolding.h" 66 #include "llvm/Analysis/InstructionSimplify.h" 67 #include "llvm/Analysis/LoopInfo.h" 68 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/GlobalAlias.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/InstIterator.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetLibraryInfo.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 #define DEBUG_TYPE "scalar-evolution" 92 93 STATISTIC(NumArrayLenItCounts, 94 "Number of trip counts computed with array length"); 95 STATISTIC(NumTripCountsComputed, 96 "Number of loops with predictable loop counts"); 97 STATISTIC(NumTripCountsNotComputed, 98 "Number of loops without predictable loop counts"); 99 STATISTIC(NumBruteForceTripCountsComputed, 100 "Number of loops with trip counts computed by force"); 101 102 static cl::opt<unsigned> 103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 104 cl::desc("Maximum number of iterations SCEV will " 105 "symbolically execute a constant " 106 "derived loop"), 107 cl::init(100)); 108 109 // FIXME: Enable this with XDEBUG when the test suite is clean. 110 static cl::opt<bool> 111 VerifySCEV("verify-scev", 112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 113 114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 115 "Scalar Evolution Analysis", false, true) 116 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 120 "Scalar Evolution Analysis", false, true) 121 char ScalarEvolution::ID = 0; 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 #endif 137 138 void SCEV::print(raw_ostream &OS) const { 139 switch (static_cast<SCEVTypes>(getSCEVType())) { 140 case scConstant: 141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 142 return; 143 case scTruncate: { 144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 145 const SCEV *Op = Trunc->getOperand(); 146 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 147 << *Trunc->getType() << ")"; 148 return; 149 } 150 case scZeroExtend: { 151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 152 const SCEV *Op = ZExt->getOperand(); 153 OS << "(zext " << *Op->getType() << " " << *Op << " to " 154 << *ZExt->getType() << ")"; 155 return; 156 } 157 case scSignExtend: { 158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 159 const SCEV *Op = SExt->getOperand(); 160 OS << "(sext " << *Op->getType() << " " << *Op << " to " 161 << *SExt->getType() << ")"; 162 return; 163 } 164 case scAddRecExpr: { 165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 166 OS << "{" << *AR->getOperand(0); 167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 168 OS << ",+," << *AR->getOperand(i); 169 OS << "}<"; 170 if (AR->getNoWrapFlags(FlagNUW)) 171 OS << "nuw><"; 172 if (AR->getNoWrapFlags(FlagNSW)) 173 OS << "nsw><"; 174 if (AR->getNoWrapFlags(FlagNW) && 175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 176 OS << "nw><"; 177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 178 OS << ">"; 179 return; 180 } 181 case scAddExpr: 182 case scMulExpr: 183 case scUMaxExpr: 184 case scSMaxExpr: { 185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 186 const char *OpStr = nullptr; 187 switch (NAry->getSCEVType()) { 188 case scAddExpr: OpStr = " + "; break; 189 case scMulExpr: OpStr = " * "; break; 190 case scUMaxExpr: OpStr = " umax "; break; 191 case scSMaxExpr: OpStr = " smax "; break; 192 } 193 OS << "("; 194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 195 I != E; ++I) { 196 OS << **I; 197 if (std::next(I) != E) 198 OS << OpStr; 199 } 200 OS << ")"; 201 switch (NAry->getSCEVType()) { 202 case scAddExpr: 203 case scMulExpr: 204 if (NAry->getNoWrapFlags(FlagNUW)) 205 OS << "<nuw>"; 206 if (NAry->getNoWrapFlags(FlagNSW)) 207 OS << "<nsw>"; 208 } 209 return; 210 } 211 case scUDivExpr: { 212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 214 return; 215 } 216 case scUnknown: { 217 const SCEVUnknown *U = cast<SCEVUnknown>(this); 218 Type *AllocTy; 219 if (U->isSizeOf(AllocTy)) { 220 OS << "sizeof(" << *AllocTy << ")"; 221 return; 222 } 223 if (U->isAlignOf(AllocTy)) { 224 OS << "alignof(" << *AllocTy << ")"; 225 return; 226 } 227 228 Type *CTy; 229 Constant *FieldNo; 230 if (U->isOffsetOf(CTy, FieldNo)) { 231 OS << "offsetof(" << *CTy << ", "; 232 FieldNo->printAsOperand(OS, false); 233 OS << ")"; 234 return; 235 } 236 237 // Otherwise just print it normally. 238 U->getValue()->printAsOperand(OS, false); 239 return; 240 } 241 case scCouldNotCompute: 242 OS << "***COULDNOTCOMPUTE***"; 243 return; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (static_cast<SCEVTypes>(getSCEVType())) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 } 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 273 bool SCEV::isZero() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isZero(); 276 return false; 277 } 278 279 bool SCEV::isOne() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isOne(); 282 return false; 283 } 284 285 bool SCEV::isAllOnesValue() const { 286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 287 return SC->getValue()->isAllOnesValue(); 288 return false; 289 } 290 291 /// isNonConstantNegative - Return true if the specified scev is negated, but 292 /// not a constant. 293 bool SCEV::isNonConstantNegative() const { 294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 295 if (!Mul) return false; 296 297 // If there is a constant factor, it will be first. 298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 299 if (!SC) return false; 300 301 // Return true if the value is negative, this matches things like (-42 * V). 302 return SC->getValue()->getValue().isNegative(); 303 } 304 305 SCEVCouldNotCompute::SCEVCouldNotCompute() : 306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 307 308 bool SCEVCouldNotCompute::classof(const SCEV *S) { 309 return S->getSCEVType() == scCouldNotCompute; 310 } 311 312 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 313 FoldingSetNodeID ID; 314 ID.AddInteger(scConstant); 315 ID.AddPointer(V); 316 void *IP = nullptr; 317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 319 UniqueSCEVs.InsertNode(S, IP); 320 return S; 321 } 322 323 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 324 return getConstant(ConstantInt::get(getContext(), Val)); 325 } 326 327 const SCEV * 328 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 330 return getConstant(ConstantInt::get(ITy, V, isSigned)); 331 } 332 333 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 334 unsigned SCEVTy, const SCEV *op, Type *ty) 335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 336 337 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 338 const SCEV *op, Type *ty) 339 : SCEVCastExpr(ID, scTruncate, op, ty) { 340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 341 (Ty->isIntegerTy() || Ty->isPointerTy()) && 342 "Cannot truncate non-integer value!"); 343 } 344 345 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 346 const SCEV *op, Type *ty) 347 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 349 (Ty->isIntegerTy() || Ty->isPointerTy()) && 350 "Cannot zero extend non-integer value!"); 351 } 352 353 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 354 const SCEV *op, Type *ty) 355 : SCEVCastExpr(ID, scSignExtend, op, ty) { 356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 357 (Ty->isIntegerTy() || Ty->isPointerTy()) && 358 "Cannot sign extend non-integer value!"); 359 } 360 361 void SCEVUnknown::deleted() { 362 // Clear this SCEVUnknown from various maps. 363 SE->forgetMemoizedResults(this); 364 365 // Remove this SCEVUnknown from the uniquing map. 366 SE->UniqueSCEVs.RemoveNode(this); 367 368 // Release the value. 369 setValPtr(nullptr); 370 } 371 372 void SCEVUnknown::allUsesReplacedWith(Value *New) { 373 // Clear this SCEVUnknown from various maps. 374 SE->forgetMemoizedResults(this); 375 376 // Remove this SCEVUnknown from the uniquing map. 377 SE->UniqueSCEVs.RemoveNode(this); 378 379 // Update this SCEVUnknown to point to the new value. This is needed 380 // because there may still be outstanding SCEVs which still point to 381 // this SCEVUnknown. 382 setValPtr(New); 383 } 384 385 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 387 if (VCE->getOpcode() == Instruction::PtrToInt) 388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 389 if (CE->getOpcode() == Instruction::GetElementPtr && 390 CE->getOperand(0)->isNullValue() && 391 CE->getNumOperands() == 2) 392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 393 if (CI->isOne()) { 394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 395 ->getElementType(); 396 return true; 397 } 398 399 return false; 400 } 401 402 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 404 if (VCE->getOpcode() == Instruction::PtrToInt) 405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 406 if (CE->getOpcode() == Instruction::GetElementPtr && 407 CE->getOperand(0)->isNullValue()) { 408 Type *Ty = 409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 410 if (StructType *STy = dyn_cast<StructType>(Ty)) 411 if (!STy->isPacked() && 412 CE->getNumOperands() == 3 && 413 CE->getOperand(1)->isNullValue()) { 414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 415 if (CI->isOne() && 416 STy->getNumElements() == 2 && 417 STy->getElementType(0)->isIntegerTy(1)) { 418 AllocTy = STy->getElementType(1); 419 return true; 420 } 421 } 422 } 423 424 return false; 425 } 426 427 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 429 if (VCE->getOpcode() == Instruction::PtrToInt) 430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 431 if (CE->getOpcode() == Instruction::GetElementPtr && 432 CE->getNumOperands() == 3 && 433 CE->getOperand(0)->isNullValue() && 434 CE->getOperand(1)->isNullValue()) { 435 Type *Ty = 436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 437 // Ignore vector types here so that ScalarEvolutionExpander doesn't 438 // emit getelementptrs that index into vectors. 439 if (Ty->isStructTy() || Ty->isArrayTy()) { 440 CTy = Ty; 441 FieldNo = CE->getOperand(2); 442 return true; 443 } 444 } 445 446 return false; 447 } 448 449 //===----------------------------------------------------------------------===// 450 // SCEV Utilities 451 //===----------------------------------------------------------------------===// 452 453 namespace { 454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 455 /// than the complexity of the RHS. This comparator is used to canonicalize 456 /// expressions. 457 class SCEVComplexityCompare { 458 const LoopInfo *const LI; 459 public: 460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 461 462 // Return true or false if LHS is less than, or at least RHS, respectively. 463 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 464 return compare(LHS, RHS) < 0; 465 } 466 467 // Return negative, zero, or positive, if LHS is less than, equal to, or 468 // greater than RHS, respectively. A three-way result allows recursive 469 // comparisons to be more efficient. 470 int compare(const SCEV *LHS, const SCEV *RHS) const { 471 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 472 if (LHS == RHS) 473 return 0; 474 475 // Primarily, sort the SCEVs by their getSCEVType(). 476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 477 if (LType != RType) 478 return (int)LType - (int)RType; 479 480 // Aside from the getSCEVType() ordering, the particular ordering 481 // isn't very important except that it's beneficial to be consistent, 482 // so that (a + b) and (b + a) don't end up as different expressions. 483 switch (static_cast<SCEVTypes>(LType)) { 484 case scUnknown: { 485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 487 488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 489 // not as complete as it could be. 490 const Value *LV = LU->getValue(), *RV = RU->getValue(); 491 492 // Order pointer values after integer values. This helps SCEVExpander 493 // form GEPs. 494 bool LIsPointer = LV->getType()->isPointerTy(), 495 RIsPointer = RV->getType()->isPointerTy(); 496 if (LIsPointer != RIsPointer) 497 return (int)LIsPointer - (int)RIsPointer; 498 499 // Compare getValueID values. 500 unsigned LID = LV->getValueID(), 501 RID = RV->getValueID(); 502 if (LID != RID) 503 return (int)LID - (int)RID; 504 505 // Sort arguments by their position. 506 if (const Argument *LA = dyn_cast<Argument>(LV)) { 507 const Argument *RA = cast<Argument>(RV); 508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 509 return (int)LArgNo - (int)RArgNo; 510 } 511 512 // For instructions, compare their loop depth, and their operand 513 // count. This is pretty loose. 514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 515 const Instruction *RInst = cast<Instruction>(RV); 516 517 // Compare loop depths. 518 const BasicBlock *LParent = LInst->getParent(), 519 *RParent = RInst->getParent(); 520 if (LParent != RParent) { 521 unsigned LDepth = LI->getLoopDepth(LParent), 522 RDepth = LI->getLoopDepth(RParent); 523 if (LDepth != RDepth) 524 return (int)LDepth - (int)RDepth; 525 } 526 527 // Compare the number of operands. 528 unsigned LNumOps = LInst->getNumOperands(), 529 RNumOps = RInst->getNumOperands(); 530 return (int)LNumOps - (int)RNumOps; 531 } 532 533 return 0; 534 } 535 536 case scConstant: { 537 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 538 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 539 540 // Compare constant values. 541 const APInt &LA = LC->getValue()->getValue(); 542 const APInt &RA = RC->getValue()->getValue(); 543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 544 if (LBitWidth != RBitWidth) 545 return (int)LBitWidth - (int)RBitWidth; 546 return LA.ult(RA) ? -1 : 1; 547 } 548 549 case scAddRecExpr: { 550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 552 553 // Compare addrec loop depths. 554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 555 if (LLoop != RLoop) { 556 unsigned LDepth = LLoop->getLoopDepth(), 557 RDepth = RLoop->getLoopDepth(); 558 if (LDepth != RDepth) 559 return (int)LDepth - (int)RDepth; 560 } 561 562 // Addrec complexity grows with operand count. 563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 564 if (LNumOps != RNumOps) 565 return (int)LNumOps - (int)RNumOps; 566 567 // Lexicographically compare. 568 for (unsigned i = 0; i != LNumOps; ++i) { 569 long X = compare(LA->getOperand(i), RA->getOperand(i)); 570 if (X != 0) 571 return X; 572 } 573 574 return 0; 575 } 576 577 case scAddExpr: 578 case scMulExpr: 579 case scSMaxExpr: 580 case scUMaxExpr: { 581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 583 584 // Lexicographically compare n-ary expressions. 585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 586 if (LNumOps != RNumOps) 587 return (int)LNumOps - (int)RNumOps; 588 589 for (unsigned i = 0; i != LNumOps; ++i) { 590 if (i >= RNumOps) 591 return 1; 592 long X = compare(LC->getOperand(i), RC->getOperand(i)); 593 if (X != 0) 594 return X; 595 } 596 return (int)LNumOps - (int)RNumOps; 597 } 598 599 case scUDivExpr: { 600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 602 603 // Lexicographically compare udiv expressions. 604 long X = compare(LC->getLHS(), RC->getLHS()); 605 if (X != 0) 606 return X; 607 return compare(LC->getRHS(), RC->getRHS()); 608 } 609 610 case scTruncate: 611 case scZeroExtend: 612 case scSignExtend: { 613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 615 616 // Compare cast expressions by operand. 617 return compare(LC->getOperand(), RC->getOperand()); 618 } 619 620 case scCouldNotCompute: 621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 622 } 623 llvm_unreachable("Unknown SCEV kind!"); 624 } 625 }; 626 } 627 628 /// GroupByComplexity - Given a list of SCEV objects, order them by their 629 /// complexity, and group objects of the same complexity together by value. 630 /// When this routine is finished, we know that any duplicates in the vector are 631 /// consecutive and that complexity is monotonically increasing. 632 /// 633 /// Note that we go take special precautions to ensure that we get deterministic 634 /// results from this routine. In other words, we don't want the results of 635 /// this to depend on where the addresses of various SCEV objects happened to 636 /// land in memory. 637 /// 638 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 639 LoopInfo *LI) { 640 if (Ops.size() < 2) return; // Noop 641 if (Ops.size() == 2) { 642 // This is the common case, which also happens to be trivially simple. 643 // Special case it. 644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 645 if (SCEVComplexityCompare(LI)(RHS, LHS)) 646 std::swap(LHS, RHS); 647 return; 648 } 649 650 // Do the rough sort by complexity. 651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 652 653 // Now that we are sorted by complexity, group elements of the same 654 // complexity. Note that this is, at worst, N^2, but the vector is likely to 655 // be extremely short in practice. Note that we take this approach because we 656 // do not want to depend on the addresses of the objects we are grouping. 657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 658 const SCEV *S = Ops[i]; 659 unsigned Complexity = S->getSCEVType(); 660 661 // If there are any objects of the same complexity and same value as this 662 // one, group them. 663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 664 if (Ops[j] == S) { // Found a duplicate. 665 // Move it to immediately after i'th element. 666 std::swap(Ops[i+1], Ops[j]); 667 ++i; // no need to rescan it. 668 if (i == e-2) return; // Done! 669 } 670 } 671 } 672 } 673 674 675 676 //===----------------------------------------------------------------------===// 677 // Simple SCEV method implementations 678 //===----------------------------------------------------------------------===// 679 680 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 681 /// Assume, K > 0. 682 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 683 ScalarEvolution &SE, 684 Type *ResultTy) { 685 // Handle the simplest case efficiently. 686 if (K == 1) 687 return SE.getTruncateOrZeroExtend(It, ResultTy); 688 689 // We are using the following formula for BC(It, K): 690 // 691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 692 // 693 // Suppose, W is the bitwidth of the return value. We must be prepared for 694 // overflow. Hence, we must assure that the result of our computation is 695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 696 // safe in modular arithmetic. 697 // 698 // However, this code doesn't use exactly that formula; the formula it uses 699 // is something like the following, where T is the number of factors of 2 in 700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 701 // exponentiation: 702 // 703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 704 // 705 // This formula is trivially equivalent to the previous formula. However, 706 // this formula can be implemented much more efficiently. The trick is that 707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 708 // arithmetic. To do exact division in modular arithmetic, all we have 709 // to do is multiply by the inverse. Therefore, this step can be done at 710 // width W. 711 // 712 // The next issue is how to safely do the division by 2^T. The way this 713 // is done is by doing the multiplication step at a width of at least W + T 714 // bits. This way, the bottom W+T bits of the product are accurate. Then, 715 // when we perform the division by 2^T (which is equivalent to a right shift 716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 717 // truncated out after the division by 2^T. 718 // 719 // In comparison to just directly using the first formula, this technique 720 // is much more efficient; using the first formula requires W * K bits, 721 // but this formula less than W + K bits. Also, the first formula requires 722 // a division step, whereas this formula only requires multiplies and shifts. 723 // 724 // It doesn't matter whether the subtraction step is done in the calculation 725 // width or the input iteration count's width; if the subtraction overflows, 726 // the result must be zero anyway. We prefer here to do it in the width of 727 // the induction variable because it helps a lot for certain cases; CodeGen 728 // isn't smart enough to ignore the overflow, which leads to much less 729 // efficient code if the width of the subtraction is wider than the native 730 // register width. 731 // 732 // (It's possible to not widen at all by pulling out factors of 2 before 733 // the multiplication; for example, K=2 can be calculated as 734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 735 // extra arithmetic, so it's not an obvious win, and it gets 736 // much more complicated for K > 3.) 737 738 // Protection from insane SCEVs; this bound is conservative, 739 // but it probably doesn't matter. 740 if (K > 1000) 741 return SE.getCouldNotCompute(); 742 743 unsigned W = SE.getTypeSizeInBits(ResultTy); 744 745 // Calculate K! / 2^T and T; we divide out the factors of two before 746 // multiplying for calculating K! / 2^T to avoid overflow. 747 // Other overflow doesn't matter because we only care about the bottom 748 // W bits of the result. 749 APInt OddFactorial(W, 1); 750 unsigned T = 1; 751 for (unsigned i = 3; i <= K; ++i) { 752 APInt Mult(W, i); 753 unsigned TwoFactors = Mult.countTrailingZeros(); 754 T += TwoFactors; 755 Mult = Mult.lshr(TwoFactors); 756 OddFactorial *= Mult; 757 } 758 759 // We need at least W + T bits for the multiplication step 760 unsigned CalculationBits = W + T; 761 762 // Calculate 2^T, at width T+W. 763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 764 765 // Calculate the multiplicative inverse of K! / 2^T; 766 // this multiplication factor will perform the exact division by 767 // K! / 2^T. 768 APInt Mod = APInt::getSignedMinValue(W+1); 769 APInt MultiplyFactor = OddFactorial.zext(W+1); 770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 771 MultiplyFactor = MultiplyFactor.trunc(W); 772 773 // Calculate the product, at width T+W 774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 775 CalculationBits); 776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 777 for (unsigned i = 1; i != K; ++i) { 778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 779 Dividend = SE.getMulExpr(Dividend, 780 SE.getTruncateOrZeroExtend(S, CalculationTy)); 781 } 782 783 // Divide by 2^T 784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 785 786 // Truncate the result, and divide by K! / 2^T. 787 788 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 789 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 790 } 791 792 /// evaluateAtIteration - Return the value of this chain of recurrences at 793 /// the specified iteration number. We can evaluate this recurrence by 794 /// multiplying each element in the chain by the binomial coefficient 795 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 796 /// 797 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 798 /// 799 /// where BC(It, k) stands for binomial coefficient. 800 /// 801 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 802 ScalarEvolution &SE) const { 803 const SCEV *Result = getStart(); 804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 805 // The computation is correct in the face of overflow provided that the 806 // multiplication is performed _after_ the evaluation of the binomial 807 // coefficient. 808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 809 if (isa<SCEVCouldNotCompute>(Coeff)) 810 return Coeff; 811 812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 813 } 814 return Result; 815 } 816 817 //===----------------------------------------------------------------------===// 818 // SCEV Expression folder implementations 819 //===----------------------------------------------------------------------===// 820 821 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 822 Type *Ty) { 823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 824 "This is not a truncating conversion!"); 825 assert(isSCEVable(Ty) && 826 "This is not a conversion to a SCEVable type!"); 827 Ty = getEffectiveSCEVType(Ty); 828 829 FoldingSetNodeID ID; 830 ID.AddInteger(scTruncate); 831 ID.AddPointer(Op); 832 ID.AddPointer(Ty); 833 void *IP = nullptr; 834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 835 836 // Fold if the operand is constant. 837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 838 return getConstant( 839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 840 841 // trunc(trunc(x)) --> trunc(x) 842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 843 return getTruncateExpr(ST->getOperand(), Ty); 844 845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 847 return getTruncateOrSignExtend(SS->getOperand(), Ty); 848 849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 852 853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 854 // eliminate all the truncates. 855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 856 SmallVector<const SCEV *, 4> Operands; 857 bool hasTrunc = false; 858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 860 hasTrunc = isa<SCEVTruncateExpr>(S); 861 Operands.push_back(S); 862 } 863 if (!hasTrunc) 864 return getAddExpr(Operands); 865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 866 } 867 868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 869 // eliminate all the truncates. 870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 871 SmallVector<const SCEV *, 4> Operands; 872 bool hasTrunc = false; 873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 875 hasTrunc = isa<SCEVTruncateExpr>(S); 876 Operands.push_back(S); 877 } 878 if (!hasTrunc) 879 return getMulExpr(Operands); 880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 881 } 882 883 // If the input value is a chrec scev, truncate the chrec's operands. 884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 885 SmallVector<const SCEV *, 4> Operands; 886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 889 } 890 891 // The cast wasn't folded; create an explicit cast node. We can reuse 892 // the existing insert position since if we get here, we won't have 893 // made any changes which would invalidate it. 894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 895 Op, Ty); 896 UniqueSCEVs.InsertNode(S, IP); 897 return S; 898 } 899 900 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 901 Type *Ty) { 902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 903 "This is not an extending conversion!"); 904 assert(isSCEVable(Ty) && 905 "This is not a conversion to a SCEVable type!"); 906 Ty = getEffectiveSCEVType(Ty); 907 908 // Fold if the operand is constant. 909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 910 return getConstant( 911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 912 913 // zext(zext(x)) --> zext(x) 914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 915 return getZeroExtendExpr(SZ->getOperand(), Ty); 916 917 // Before doing any expensive analysis, check to see if we've already 918 // computed a SCEV for this Op and Ty. 919 FoldingSetNodeID ID; 920 ID.AddInteger(scZeroExtend); 921 ID.AddPointer(Op); 922 ID.AddPointer(Ty); 923 void *IP = nullptr; 924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 925 926 // zext(trunc(x)) --> zext(x) or x or trunc(x) 927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 928 // It's possible the bits taken off by the truncate were all zero bits. If 929 // so, we should be able to simplify this further. 930 const SCEV *X = ST->getOperand(); 931 ConstantRange CR = getUnsignedRange(X); 932 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 933 unsigned NewBits = getTypeSizeInBits(Ty); 934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 935 CR.zextOrTrunc(NewBits))) 936 return getTruncateOrZeroExtend(X, Ty); 937 } 938 939 // If the input value is a chrec scev, and we can prove that the value 940 // did not overflow the old, smaller, value, we can zero extend all of the 941 // operands (often constants). This allows analysis of something like 942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 944 if (AR->isAffine()) { 945 const SCEV *Start = AR->getStart(); 946 const SCEV *Step = AR->getStepRecurrence(*this); 947 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 948 const Loop *L = AR->getLoop(); 949 950 // If we have special knowledge that this addrec won't overflow, 951 // we don't need to do any further analysis. 952 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 953 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 954 getZeroExtendExpr(Step, Ty), 955 L, AR->getNoWrapFlags()); 956 957 // Check whether the backedge-taken count is SCEVCouldNotCompute. 958 // Note that this serves two purposes: It filters out loops that are 959 // simply not analyzable, and it covers the case where this code is 960 // being called from within backedge-taken count analysis, such that 961 // attempting to ask for the backedge-taken count would likely result 962 // in infinite recursion. In the later case, the analysis code will 963 // cope with a conservative value, and it will take care to purge 964 // that value once it has finished. 965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 967 // Manually compute the final value for AR, checking for 968 // overflow. 969 970 // Check whether the backedge-taken count can be losslessly casted to 971 // the addrec's type. The count is always unsigned. 972 const SCEV *CastedMaxBECount = 973 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 974 const SCEV *RecastedMaxBECount = 975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 976 if (MaxBECount == RecastedMaxBECount) { 977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 978 // Check whether Start+Step*MaxBECount has no unsigned overflow. 979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 982 const SCEV *WideMaxBECount = 983 getZeroExtendExpr(CastedMaxBECount, WideTy); 984 const SCEV *OperandExtendedAdd = 985 getAddExpr(WideStart, 986 getMulExpr(WideMaxBECount, 987 getZeroExtendExpr(Step, WideTy))); 988 if (ZAdd == OperandExtendedAdd) { 989 // Cache knowledge of AR NUW, which is propagated to this AddRec. 990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 991 // Return the expression with the addrec on the outside. 992 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 993 getZeroExtendExpr(Step, Ty), 994 L, AR->getNoWrapFlags()); 995 } 996 // Similar to above, only this time treat the step value as signed. 997 // This covers loops that count down. 998 OperandExtendedAdd = 999 getAddExpr(WideStart, 1000 getMulExpr(WideMaxBECount, 1001 getSignExtendExpr(Step, WideTy))); 1002 if (ZAdd == OperandExtendedAdd) { 1003 // Cache knowledge of AR NW, which is propagated to this AddRec. 1004 // Negative step causes unsigned wrap, but it still can't self-wrap. 1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1006 // Return the expression with the addrec on the outside. 1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1008 getSignExtendExpr(Step, Ty), 1009 L, AR->getNoWrapFlags()); 1010 } 1011 } 1012 1013 // If the backedge is guarded by a comparison with the pre-inc value 1014 // the addrec is safe. Also, if the entry is guarded by a comparison 1015 // with the start value and the backedge is guarded by a comparison 1016 // with the post-inc value, the addrec is safe. 1017 if (isKnownPositive(Step)) { 1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1019 getUnsignedRange(Step).getUnsignedMax()); 1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1023 AR->getPostIncExpr(*this), N))) { 1024 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1026 // Return the expression with the addrec on the outside. 1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1028 getZeroExtendExpr(Step, Ty), 1029 L, AR->getNoWrapFlags()); 1030 } 1031 } else if (isKnownNegative(Step)) { 1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1033 getSignedRange(Step).getSignedMin()); 1034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1037 AR->getPostIncExpr(*this), N))) { 1038 // Cache knowledge of AR NW, which is propagated to this AddRec. 1039 // Negative step causes unsigned wrap, but it still can't self-wrap. 1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1041 // Return the expression with the addrec on the outside. 1042 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1043 getSignExtendExpr(Step, Ty), 1044 L, AR->getNoWrapFlags()); 1045 } 1046 } 1047 } 1048 } 1049 1050 // The cast wasn't folded; create an explicit cast node. 1051 // Recompute the insert position, as it may have been invalidated. 1052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1054 Op, Ty); 1055 UniqueSCEVs.InsertNode(S, IP); 1056 return S; 1057 } 1058 1059 // Get the limit of a recurrence such that incrementing by Step cannot cause 1060 // signed overflow as long as the value of the recurrence within the loop does 1061 // not exceed this limit before incrementing. 1062 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1063 ICmpInst::Predicate *Pred, 1064 ScalarEvolution *SE) { 1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1066 if (SE->isKnownPositive(Step)) { 1067 *Pred = ICmpInst::ICMP_SLT; 1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1069 SE->getSignedRange(Step).getSignedMax()); 1070 } 1071 if (SE->isKnownNegative(Step)) { 1072 *Pred = ICmpInst::ICMP_SGT; 1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1074 SE->getSignedRange(Step).getSignedMin()); 1075 } 1076 return nullptr; 1077 } 1078 1079 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1080 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1081 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1082 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1083 // result, the expression "Step + sext(PreIncAR)" is congruent with 1084 // "sext(PostIncAR)" 1085 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1086 Type *Ty, 1087 ScalarEvolution *SE) { 1088 const Loop *L = AR->getLoop(); 1089 const SCEV *Start = AR->getStart(); 1090 const SCEV *Step = AR->getStepRecurrence(*SE); 1091 1092 // Check for a simple looking step prior to loop entry. 1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1094 if (!SA) 1095 return nullptr; 1096 1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1098 // subtraction is expensive. For this purpose, perform a quick and dirty 1099 // difference, by checking for Step in the operand list. 1100 SmallVector<const SCEV *, 4> DiffOps; 1101 for (const SCEV *Op : SA->operands()) 1102 if (Op != Step) 1103 DiffOps.push_back(Op); 1104 1105 if (DiffOps.size() == SA->getNumOperands()) 1106 return nullptr; 1107 1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1109 // same three conditions that getSignExtendedExpr checks. 1110 1111 // 1. NSW flags on the step increment. 1112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1115 1116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1117 return PreStart; 1118 1119 // 2. Direct overflow check on the step operation's expression. 1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1122 const SCEV *OperandExtendedStart = 1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1124 SE->getSignExtendExpr(Step, WideTy)); 1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1126 // Cache knowledge of PreAR NSW. 1127 if (PreAR) 1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1129 // FIXME: this optimization needs a unit test 1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1131 return PreStart; 1132 } 1133 1134 // 3. Loop precondition. 1135 ICmpInst::Predicate Pred; 1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1137 1138 if (OverflowLimit && 1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1140 return PreStart; 1141 } 1142 return nullptr; 1143 } 1144 1145 // Get the normalized sign-extended expression for this AddRec's Start. 1146 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1147 Type *Ty, 1148 ScalarEvolution *SE) { 1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1150 if (!PreStart) 1151 return SE->getSignExtendExpr(AR->getStart(), Ty); 1152 1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1154 SE->getSignExtendExpr(PreStart, Ty)); 1155 } 1156 1157 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1158 Type *Ty) { 1159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1160 "This is not an extending conversion!"); 1161 assert(isSCEVable(Ty) && 1162 "This is not a conversion to a SCEVable type!"); 1163 Ty = getEffectiveSCEVType(Ty); 1164 1165 // Fold if the operand is constant. 1166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1167 return getConstant( 1168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1169 1170 // sext(sext(x)) --> sext(x) 1171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1172 return getSignExtendExpr(SS->getOperand(), Ty); 1173 1174 // sext(zext(x)) --> zext(x) 1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1176 return getZeroExtendExpr(SZ->getOperand(), Ty); 1177 1178 // Before doing any expensive analysis, check to see if we've already 1179 // computed a SCEV for this Op and Ty. 1180 FoldingSetNodeID ID; 1181 ID.AddInteger(scSignExtend); 1182 ID.AddPointer(Op); 1183 ID.AddPointer(Ty); 1184 void *IP = nullptr; 1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1186 1187 // If the input value is provably positive, build a zext instead. 1188 if (isKnownNonNegative(Op)) 1189 return getZeroExtendExpr(Op, Ty); 1190 1191 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1193 // It's possible the bits taken off by the truncate were all sign bits. If 1194 // so, we should be able to simplify this further. 1195 const SCEV *X = ST->getOperand(); 1196 ConstantRange CR = getSignedRange(X); 1197 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1198 unsigned NewBits = getTypeSizeInBits(Ty); 1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1200 CR.sextOrTrunc(NewBits))) 1201 return getTruncateOrSignExtend(X, Ty); 1202 } 1203 1204 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1205 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1206 if (SA->getNumOperands() == 2) { 1207 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1208 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1209 if (SMul && SC1) { 1210 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1211 APInt C1 = SC1->getValue()->getValue(); 1212 APInt C2 = SC2->getValue()->getValue(); 1213 APInt CDiff = C2 - C1; 1214 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1215 CDiff.isStrictlyPositive() && C2.isPowerOf2()) 1216 return getAddExpr(getSignExtendExpr(SC1, Ty), 1217 getSignExtendExpr(SMul, Ty)); 1218 } 1219 } 1220 } 1221 } 1222 // If the input value is a chrec scev, and we can prove that the value 1223 // did not overflow the old, smaller, value, we can sign extend all of the 1224 // operands (often constants). This allows analysis of something like 1225 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1226 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1227 if (AR->isAffine()) { 1228 const SCEV *Start = AR->getStart(); 1229 const SCEV *Step = AR->getStepRecurrence(*this); 1230 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1231 const Loop *L = AR->getLoop(); 1232 1233 // If we have special knowledge that this addrec won't overflow, 1234 // we don't need to do any further analysis. 1235 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1236 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1237 getSignExtendExpr(Step, Ty), 1238 L, SCEV::FlagNSW); 1239 1240 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1241 // Note that this serves two purposes: It filters out loops that are 1242 // simply not analyzable, and it covers the case where this code is 1243 // being called from within backedge-taken count analysis, such that 1244 // attempting to ask for the backedge-taken count would likely result 1245 // in infinite recursion. In the later case, the analysis code will 1246 // cope with a conservative value, and it will take care to purge 1247 // that value once it has finished. 1248 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1249 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1250 // Manually compute the final value for AR, checking for 1251 // overflow. 1252 1253 // Check whether the backedge-taken count can be losslessly casted to 1254 // the addrec's type. The count is always unsigned. 1255 const SCEV *CastedMaxBECount = 1256 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1257 const SCEV *RecastedMaxBECount = 1258 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1259 if (MaxBECount == RecastedMaxBECount) { 1260 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1261 // Check whether Start+Step*MaxBECount has no signed overflow. 1262 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1263 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1264 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1265 const SCEV *WideMaxBECount = 1266 getZeroExtendExpr(CastedMaxBECount, WideTy); 1267 const SCEV *OperandExtendedAdd = 1268 getAddExpr(WideStart, 1269 getMulExpr(WideMaxBECount, 1270 getSignExtendExpr(Step, WideTy))); 1271 if (SAdd == OperandExtendedAdd) { 1272 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1273 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1274 // Return the expression with the addrec on the outside. 1275 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1276 getSignExtendExpr(Step, Ty), 1277 L, AR->getNoWrapFlags()); 1278 } 1279 // Similar to above, only this time treat the step value as unsigned. 1280 // This covers loops that count up with an unsigned step. 1281 OperandExtendedAdd = 1282 getAddExpr(WideStart, 1283 getMulExpr(WideMaxBECount, 1284 getZeroExtendExpr(Step, WideTy))); 1285 if (SAdd == OperandExtendedAdd) { 1286 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1288 // Return the expression with the addrec on the outside. 1289 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1290 getZeroExtendExpr(Step, Ty), 1291 L, AR->getNoWrapFlags()); 1292 } 1293 } 1294 1295 // If the backedge is guarded by a comparison with the pre-inc value 1296 // the addrec is safe. Also, if the entry is guarded by a comparison 1297 // with the start value and the backedge is guarded by a comparison 1298 // with the post-inc value, the addrec is safe. 1299 ICmpInst::Predicate Pred; 1300 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1301 if (OverflowLimit && 1302 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1303 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1304 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1305 OverflowLimit)))) { 1306 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1307 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1308 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1309 getSignExtendExpr(Step, Ty), 1310 L, AR->getNoWrapFlags()); 1311 } 1312 } 1313 // If Start and Step are constants, check if we can apply this 1314 // transformation: 1315 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1316 auto SC1 = dyn_cast<SCEVConstant>(Start); 1317 auto SC2 = dyn_cast<SCEVConstant>(Step); 1318 if (SC1 && SC2) { 1319 APInt C1 = SC1->getValue()->getValue(); 1320 APInt C2 = SC2->getValue()->getValue(); 1321 APInt CDiff = C2 - C1; 1322 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1323 CDiff.isStrictlyPositive() && C2.isPowerOf2()) { 1324 Start = getSignExtendExpr(Start, Ty); 1325 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1326 L, AR->getNoWrapFlags()); 1327 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1328 } 1329 } 1330 } 1331 1332 // The cast wasn't folded; create an explicit cast node. 1333 // Recompute the insert position, as it may have been invalidated. 1334 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1335 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1336 Op, Ty); 1337 UniqueSCEVs.InsertNode(S, IP); 1338 return S; 1339 } 1340 1341 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1342 /// unspecified bits out to the given type. 1343 /// 1344 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1345 Type *Ty) { 1346 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1347 "This is not an extending conversion!"); 1348 assert(isSCEVable(Ty) && 1349 "This is not a conversion to a SCEVable type!"); 1350 Ty = getEffectiveSCEVType(Ty); 1351 1352 // Sign-extend negative constants. 1353 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1354 if (SC->getValue()->getValue().isNegative()) 1355 return getSignExtendExpr(Op, Ty); 1356 1357 // Peel off a truncate cast. 1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1359 const SCEV *NewOp = T->getOperand(); 1360 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1361 return getAnyExtendExpr(NewOp, Ty); 1362 return getTruncateOrNoop(NewOp, Ty); 1363 } 1364 1365 // Next try a zext cast. If the cast is folded, use it. 1366 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1367 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1368 return ZExt; 1369 1370 // Next try a sext cast. If the cast is folded, use it. 1371 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1372 if (!isa<SCEVSignExtendExpr>(SExt)) 1373 return SExt; 1374 1375 // Force the cast to be folded into the operands of an addrec. 1376 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1377 SmallVector<const SCEV *, 4> Ops; 1378 for (const SCEV *Op : AR->operands()) 1379 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1380 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1381 } 1382 1383 // If the expression is obviously signed, use the sext cast value. 1384 if (isa<SCEVSMaxExpr>(Op)) 1385 return SExt; 1386 1387 // Absent any other information, use the zext cast value. 1388 return ZExt; 1389 } 1390 1391 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1392 /// a list of operands to be added under the given scale, update the given 1393 /// map. This is a helper function for getAddRecExpr. As an example of 1394 /// what it does, given a sequence of operands that would form an add 1395 /// expression like this: 1396 /// 1397 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1398 /// 1399 /// where A and B are constants, update the map with these values: 1400 /// 1401 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1402 /// 1403 /// and add 13 + A*B*29 to AccumulatedConstant. 1404 /// This will allow getAddRecExpr to produce this: 1405 /// 1406 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1407 /// 1408 /// This form often exposes folding opportunities that are hidden in 1409 /// the original operand list. 1410 /// 1411 /// Return true iff it appears that any interesting folding opportunities 1412 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1413 /// the common case where no interesting opportunities are present, and 1414 /// is also used as a check to avoid infinite recursion. 1415 /// 1416 static bool 1417 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1418 SmallVectorImpl<const SCEV *> &NewOps, 1419 APInt &AccumulatedConstant, 1420 const SCEV *const *Ops, size_t NumOperands, 1421 const APInt &Scale, 1422 ScalarEvolution &SE) { 1423 bool Interesting = false; 1424 1425 // Iterate over the add operands. They are sorted, with constants first. 1426 unsigned i = 0; 1427 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1428 ++i; 1429 // Pull a buried constant out to the outside. 1430 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1431 Interesting = true; 1432 AccumulatedConstant += Scale * C->getValue()->getValue(); 1433 } 1434 1435 // Next comes everything else. We're especially interested in multiplies 1436 // here, but they're in the middle, so just visit the rest with one loop. 1437 for (; i != NumOperands; ++i) { 1438 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1439 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1440 APInt NewScale = 1441 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1442 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1443 // A multiplication of a constant with another add; recurse. 1444 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1445 Interesting |= 1446 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1447 Add->op_begin(), Add->getNumOperands(), 1448 NewScale, SE); 1449 } else { 1450 // A multiplication of a constant with some other value. Update 1451 // the map. 1452 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1453 const SCEV *Key = SE.getMulExpr(MulOps); 1454 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1455 M.insert(std::make_pair(Key, NewScale)); 1456 if (Pair.second) { 1457 NewOps.push_back(Pair.first->first); 1458 } else { 1459 Pair.first->second += NewScale; 1460 // The map already had an entry for this value, which may indicate 1461 // a folding opportunity. 1462 Interesting = true; 1463 } 1464 } 1465 } else { 1466 // An ordinary operand. Update the map. 1467 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1468 M.insert(std::make_pair(Ops[i], Scale)); 1469 if (Pair.second) { 1470 NewOps.push_back(Pair.first->first); 1471 } else { 1472 Pair.first->second += Scale; 1473 // The map already had an entry for this value, which may indicate 1474 // a folding opportunity. 1475 Interesting = true; 1476 } 1477 } 1478 } 1479 1480 return Interesting; 1481 } 1482 1483 namespace { 1484 struct APIntCompare { 1485 bool operator()(const APInt &LHS, const APInt &RHS) const { 1486 return LHS.ult(RHS); 1487 } 1488 }; 1489 } 1490 1491 /// getAddExpr - Get a canonical add expression, or something simpler if 1492 /// possible. 1493 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1494 SCEV::NoWrapFlags Flags) { 1495 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1496 "only nuw or nsw allowed"); 1497 assert(!Ops.empty() && "Cannot get empty add!"); 1498 if (Ops.size() == 1) return Ops[0]; 1499 #ifndef NDEBUG 1500 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1501 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1502 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1503 "SCEVAddExpr operand types don't match!"); 1504 #endif 1505 1506 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1507 // And vice-versa. 1508 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1509 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1510 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1511 bool All = true; 1512 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1513 E = Ops.end(); I != E; ++I) 1514 if (!isKnownNonNegative(*I)) { 1515 All = false; 1516 break; 1517 } 1518 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1519 } 1520 1521 // Sort by complexity, this groups all similar expression types together. 1522 GroupByComplexity(Ops, LI); 1523 1524 // If there are any constants, fold them together. 1525 unsigned Idx = 0; 1526 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1527 ++Idx; 1528 assert(Idx < Ops.size()); 1529 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1530 // We found two constants, fold them together! 1531 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1532 RHSC->getValue()->getValue()); 1533 if (Ops.size() == 2) return Ops[0]; 1534 Ops.erase(Ops.begin()+1); // Erase the folded element 1535 LHSC = cast<SCEVConstant>(Ops[0]); 1536 } 1537 1538 // If we are left with a constant zero being added, strip it off. 1539 if (LHSC->getValue()->isZero()) { 1540 Ops.erase(Ops.begin()); 1541 --Idx; 1542 } 1543 1544 if (Ops.size() == 1) return Ops[0]; 1545 } 1546 1547 // Okay, check to see if the same value occurs in the operand list more than 1548 // once. If so, merge them together into an multiply expression. Since we 1549 // sorted the list, these values are required to be adjacent. 1550 Type *Ty = Ops[0]->getType(); 1551 bool FoundMatch = false; 1552 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1553 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1554 // Scan ahead to count how many equal operands there are. 1555 unsigned Count = 2; 1556 while (i+Count != e && Ops[i+Count] == Ops[i]) 1557 ++Count; 1558 // Merge the values into a multiply. 1559 const SCEV *Scale = getConstant(Ty, Count); 1560 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1561 if (Ops.size() == Count) 1562 return Mul; 1563 Ops[i] = Mul; 1564 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1565 --i; e -= Count - 1; 1566 FoundMatch = true; 1567 } 1568 if (FoundMatch) 1569 return getAddExpr(Ops, Flags); 1570 1571 // Check for truncates. If all the operands are truncated from the same 1572 // type, see if factoring out the truncate would permit the result to be 1573 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1574 // if the contents of the resulting outer trunc fold to something simple. 1575 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1576 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1577 Type *DstType = Trunc->getType(); 1578 Type *SrcType = Trunc->getOperand()->getType(); 1579 SmallVector<const SCEV *, 8> LargeOps; 1580 bool Ok = true; 1581 // Check all the operands to see if they can be represented in the 1582 // source type of the truncate. 1583 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1584 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1585 if (T->getOperand()->getType() != SrcType) { 1586 Ok = false; 1587 break; 1588 } 1589 LargeOps.push_back(T->getOperand()); 1590 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1591 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1592 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1593 SmallVector<const SCEV *, 8> LargeMulOps; 1594 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1595 if (const SCEVTruncateExpr *T = 1596 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1597 if (T->getOperand()->getType() != SrcType) { 1598 Ok = false; 1599 break; 1600 } 1601 LargeMulOps.push_back(T->getOperand()); 1602 } else if (const SCEVConstant *C = 1603 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1604 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1605 } else { 1606 Ok = false; 1607 break; 1608 } 1609 } 1610 if (Ok) 1611 LargeOps.push_back(getMulExpr(LargeMulOps)); 1612 } else { 1613 Ok = false; 1614 break; 1615 } 1616 } 1617 if (Ok) { 1618 // Evaluate the expression in the larger type. 1619 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1620 // If it folds to something simple, use it. Otherwise, don't. 1621 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1622 return getTruncateExpr(Fold, DstType); 1623 } 1624 } 1625 1626 // Skip past any other cast SCEVs. 1627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1628 ++Idx; 1629 1630 // If there are add operands they would be next. 1631 if (Idx < Ops.size()) { 1632 bool DeletedAdd = false; 1633 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1634 // If we have an add, expand the add operands onto the end of the operands 1635 // list. 1636 Ops.erase(Ops.begin()+Idx); 1637 Ops.append(Add->op_begin(), Add->op_end()); 1638 DeletedAdd = true; 1639 } 1640 1641 // If we deleted at least one add, we added operands to the end of the list, 1642 // and they are not necessarily sorted. Recurse to resort and resimplify 1643 // any operands we just acquired. 1644 if (DeletedAdd) 1645 return getAddExpr(Ops); 1646 } 1647 1648 // Skip over the add expression until we get to a multiply. 1649 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1650 ++Idx; 1651 1652 // Check to see if there are any folding opportunities present with 1653 // operands multiplied by constant values. 1654 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1655 uint64_t BitWidth = getTypeSizeInBits(Ty); 1656 DenseMap<const SCEV *, APInt> M; 1657 SmallVector<const SCEV *, 8> NewOps; 1658 APInt AccumulatedConstant(BitWidth, 0); 1659 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1660 Ops.data(), Ops.size(), 1661 APInt(BitWidth, 1), *this)) { 1662 // Some interesting folding opportunity is present, so its worthwhile to 1663 // re-generate the operands list. Group the operands by constant scale, 1664 // to avoid multiplying by the same constant scale multiple times. 1665 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1666 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1667 E = NewOps.end(); I != E; ++I) 1668 MulOpLists[M.find(*I)->second].push_back(*I); 1669 // Re-generate the operands list. 1670 Ops.clear(); 1671 if (AccumulatedConstant != 0) 1672 Ops.push_back(getConstant(AccumulatedConstant)); 1673 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1674 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1675 if (I->first != 0) 1676 Ops.push_back(getMulExpr(getConstant(I->first), 1677 getAddExpr(I->second))); 1678 if (Ops.empty()) 1679 return getConstant(Ty, 0); 1680 if (Ops.size() == 1) 1681 return Ops[0]; 1682 return getAddExpr(Ops); 1683 } 1684 } 1685 1686 // If we are adding something to a multiply expression, make sure the 1687 // something is not already an operand of the multiply. If so, merge it into 1688 // the multiply. 1689 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1690 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1691 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1692 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1693 if (isa<SCEVConstant>(MulOpSCEV)) 1694 continue; 1695 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1696 if (MulOpSCEV == Ops[AddOp]) { 1697 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1698 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1699 if (Mul->getNumOperands() != 2) { 1700 // If the multiply has more than two operands, we must get the 1701 // Y*Z term. 1702 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1703 Mul->op_begin()+MulOp); 1704 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1705 InnerMul = getMulExpr(MulOps); 1706 } 1707 const SCEV *One = getConstant(Ty, 1); 1708 const SCEV *AddOne = getAddExpr(One, InnerMul); 1709 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1710 if (Ops.size() == 2) return OuterMul; 1711 if (AddOp < Idx) { 1712 Ops.erase(Ops.begin()+AddOp); 1713 Ops.erase(Ops.begin()+Idx-1); 1714 } else { 1715 Ops.erase(Ops.begin()+Idx); 1716 Ops.erase(Ops.begin()+AddOp-1); 1717 } 1718 Ops.push_back(OuterMul); 1719 return getAddExpr(Ops); 1720 } 1721 1722 // Check this multiply against other multiplies being added together. 1723 for (unsigned OtherMulIdx = Idx+1; 1724 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1725 ++OtherMulIdx) { 1726 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1727 // If MulOp occurs in OtherMul, we can fold the two multiplies 1728 // together. 1729 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1730 OMulOp != e; ++OMulOp) 1731 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1732 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1733 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1734 if (Mul->getNumOperands() != 2) { 1735 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1736 Mul->op_begin()+MulOp); 1737 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1738 InnerMul1 = getMulExpr(MulOps); 1739 } 1740 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1741 if (OtherMul->getNumOperands() != 2) { 1742 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1743 OtherMul->op_begin()+OMulOp); 1744 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1745 InnerMul2 = getMulExpr(MulOps); 1746 } 1747 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1748 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1749 if (Ops.size() == 2) return OuterMul; 1750 Ops.erase(Ops.begin()+Idx); 1751 Ops.erase(Ops.begin()+OtherMulIdx-1); 1752 Ops.push_back(OuterMul); 1753 return getAddExpr(Ops); 1754 } 1755 } 1756 } 1757 } 1758 1759 // If there are any add recurrences in the operands list, see if any other 1760 // added values are loop invariant. If so, we can fold them into the 1761 // recurrence. 1762 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1763 ++Idx; 1764 1765 // Scan over all recurrences, trying to fold loop invariants into them. 1766 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1767 // Scan all of the other operands to this add and add them to the vector if 1768 // they are loop invariant w.r.t. the recurrence. 1769 SmallVector<const SCEV *, 8> LIOps; 1770 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1771 const Loop *AddRecLoop = AddRec->getLoop(); 1772 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1773 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1774 LIOps.push_back(Ops[i]); 1775 Ops.erase(Ops.begin()+i); 1776 --i; --e; 1777 } 1778 1779 // If we found some loop invariants, fold them into the recurrence. 1780 if (!LIOps.empty()) { 1781 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1782 LIOps.push_back(AddRec->getStart()); 1783 1784 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1785 AddRec->op_end()); 1786 AddRecOps[0] = getAddExpr(LIOps); 1787 1788 // Build the new addrec. Propagate the NUW and NSW flags if both the 1789 // outer add and the inner addrec are guaranteed to have no overflow. 1790 // Always propagate NW. 1791 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1792 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1793 1794 // If all of the other operands were loop invariant, we are done. 1795 if (Ops.size() == 1) return NewRec; 1796 1797 // Otherwise, add the folded AddRec by the non-invariant parts. 1798 for (unsigned i = 0;; ++i) 1799 if (Ops[i] == AddRec) { 1800 Ops[i] = NewRec; 1801 break; 1802 } 1803 return getAddExpr(Ops); 1804 } 1805 1806 // Okay, if there weren't any loop invariants to be folded, check to see if 1807 // there are multiple AddRec's with the same loop induction variable being 1808 // added together. If so, we can fold them. 1809 for (unsigned OtherIdx = Idx+1; 1810 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1811 ++OtherIdx) 1812 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1813 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1814 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1815 AddRec->op_end()); 1816 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1817 ++OtherIdx) 1818 if (const SCEVAddRecExpr *OtherAddRec = 1819 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1820 if (OtherAddRec->getLoop() == AddRecLoop) { 1821 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1822 i != e; ++i) { 1823 if (i >= AddRecOps.size()) { 1824 AddRecOps.append(OtherAddRec->op_begin()+i, 1825 OtherAddRec->op_end()); 1826 break; 1827 } 1828 AddRecOps[i] = getAddExpr(AddRecOps[i], 1829 OtherAddRec->getOperand(i)); 1830 } 1831 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1832 } 1833 // Step size has changed, so we cannot guarantee no self-wraparound. 1834 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1835 return getAddExpr(Ops); 1836 } 1837 1838 // Otherwise couldn't fold anything into this recurrence. Move onto the 1839 // next one. 1840 } 1841 1842 // Okay, it looks like we really DO need an add expr. Check to see if we 1843 // already have one, otherwise create a new one. 1844 FoldingSetNodeID ID; 1845 ID.AddInteger(scAddExpr); 1846 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1847 ID.AddPointer(Ops[i]); 1848 void *IP = nullptr; 1849 SCEVAddExpr *S = 1850 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1851 if (!S) { 1852 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1853 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1854 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1855 O, Ops.size()); 1856 UniqueSCEVs.InsertNode(S, IP); 1857 } 1858 S->setNoWrapFlags(Flags); 1859 return S; 1860 } 1861 1862 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1863 uint64_t k = i*j; 1864 if (j > 1 && k / j != i) Overflow = true; 1865 return k; 1866 } 1867 1868 /// Compute the result of "n choose k", the binomial coefficient. If an 1869 /// intermediate computation overflows, Overflow will be set and the return will 1870 /// be garbage. Overflow is not cleared on absence of overflow. 1871 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1872 // We use the multiplicative formula: 1873 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1874 // At each iteration, we take the n-th term of the numeral and divide by the 1875 // (k-n)th term of the denominator. This division will always produce an 1876 // integral result, and helps reduce the chance of overflow in the 1877 // intermediate computations. However, we can still overflow even when the 1878 // final result would fit. 1879 1880 if (n == 0 || n == k) return 1; 1881 if (k > n) return 0; 1882 1883 if (k > n/2) 1884 k = n-k; 1885 1886 uint64_t r = 1; 1887 for (uint64_t i = 1; i <= k; ++i) { 1888 r = umul_ov(r, n-(i-1), Overflow); 1889 r /= i; 1890 } 1891 return r; 1892 } 1893 1894 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1895 /// possible. 1896 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1897 SCEV::NoWrapFlags Flags) { 1898 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1899 "only nuw or nsw allowed"); 1900 assert(!Ops.empty() && "Cannot get empty mul!"); 1901 if (Ops.size() == 1) return Ops[0]; 1902 #ifndef NDEBUG 1903 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1904 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1905 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1906 "SCEVMulExpr operand types don't match!"); 1907 #endif 1908 1909 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1910 // And vice-versa. 1911 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1912 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1913 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1914 bool All = true; 1915 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1916 E = Ops.end(); I != E; ++I) 1917 if (!isKnownNonNegative(*I)) { 1918 All = false; 1919 break; 1920 } 1921 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1922 } 1923 1924 // Sort by complexity, this groups all similar expression types together. 1925 GroupByComplexity(Ops, LI); 1926 1927 // If there are any constants, fold them together. 1928 unsigned Idx = 0; 1929 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1930 1931 // C1*(C2+V) -> C1*C2 + C1*V 1932 if (Ops.size() == 2) 1933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1934 if (Add->getNumOperands() == 2 && 1935 isa<SCEVConstant>(Add->getOperand(0))) 1936 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1937 getMulExpr(LHSC, Add->getOperand(1))); 1938 1939 ++Idx; 1940 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1941 // We found two constants, fold them together! 1942 ConstantInt *Fold = ConstantInt::get(getContext(), 1943 LHSC->getValue()->getValue() * 1944 RHSC->getValue()->getValue()); 1945 Ops[0] = getConstant(Fold); 1946 Ops.erase(Ops.begin()+1); // Erase the folded element 1947 if (Ops.size() == 1) return Ops[0]; 1948 LHSC = cast<SCEVConstant>(Ops[0]); 1949 } 1950 1951 // If we are left with a constant one being multiplied, strip it off. 1952 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1953 Ops.erase(Ops.begin()); 1954 --Idx; 1955 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1956 // If we have a multiply of zero, it will always be zero. 1957 return Ops[0]; 1958 } else if (Ops[0]->isAllOnesValue()) { 1959 // If we have a mul by -1 of an add, try distributing the -1 among the 1960 // add operands. 1961 if (Ops.size() == 2) { 1962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1963 SmallVector<const SCEV *, 4> NewOps; 1964 bool AnyFolded = false; 1965 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1966 E = Add->op_end(); I != E; ++I) { 1967 const SCEV *Mul = getMulExpr(Ops[0], *I); 1968 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1969 NewOps.push_back(Mul); 1970 } 1971 if (AnyFolded) 1972 return getAddExpr(NewOps); 1973 } 1974 else if (const SCEVAddRecExpr * 1975 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1976 // Negation preserves a recurrence's no self-wrap property. 1977 SmallVector<const SCEV *, 4> Operands; 1978 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1979 E = AddRec->op_end(); I != E; ++I) { 1980 Operands.push_back(getMulExpr(Ops[0], *I)); 1981 } 1982 return getAddRecExpr(Operands, AddRec->getLoop(), 1983 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1984 } 1985 } 1986 } 1987 1988 if (Ops.size() == 1) 1989 return Ops[0]; 1990 } 1991 1992 // Skip over the add expression until we get to a multiply. 1993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1994 ++Idx; 1995 1996 // If there are mul operands inline them all into this expression. 1997 if (Idx < Ops.size()) { 1998 bool DeletedMul = false; 1999 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2000 // If we have an mul, expand the mul operands onto the end of the operands 2001 // list. 2002 Ops.erase(Ops.begin()+Idx); 2003 Ops.append(Mul->op_begin(), Mul->op_end()); 2004 DeletedMul = true; 2005 } 2006 2007 // If we deleted at least one mul, we added operands to the end of the list, 2008 // and they are not necessarily sorted. Recurse to resort and resimplify 2009 // any operands we just acquired. 2010 if (DeletedMul) 2011 return getMulExpr(Ops); 2012 } 2013 2014 // If there are any add recurrences in the operands list, see if any other 2015 // added values are loop invariant. If so, we can fold them into the 2016 // recurrence. 2017 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2018 ++Idx; 2019 2020 // Scan over all recurrences, trying to fold loop invariants into them. 2021 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2022 // Scan all of the other operands to this mul and add them to the vector if 2023 // they are loop invariant w.r.t. the recurrence. 2024 SmallVector<const SCEV *, 8> LIOps; 2025 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2026 const Loop *AddRecLoop = AddRec->getLoop(); 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2028 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2029 LIOps.push_back(Ops[i]); 2030 Ops.erase(Ops.begin()+i); 2031 --i; --e; 2032 } 2033 2034 // If we found some loop invariants, fold them into the recurrence. 2035 if (!LIOps.empty()) { 2036 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2037 SmallVector<const SCEV *, 4> NewOps; 2038 NewOps.reserve(AddRec->getNumOperands()); 2039 const SCEV *Scale = getMulExpr(LIOps); 2040 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2041 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2042 2043 // Build the new addrec. Propagate the NUW and NSW flags if both the 2044 // outer mul and the inner addrec are guaranteed to have no overflow. 2045 // 2046 // No self-wrap cannot be guaranteed after changing the step size, but 2047 // will be inferred if either NUW or NSW is true. 2048 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2049 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2050 2051 // If all of the other operands were loop invariant, we are done. 2052 if (Ops.size() == 1) return NewRec; 2053 2054 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2055 for (unsigned i = 0;; ++i) 2056 if (Ops[i] == AddRec) { 2057 Ops[i] = NewRec; 2058 break; 2059 } 2060 return getMulExpr(Ops); 2061 } 2062 2063 // Okay, if there weren't any loop invariants to be folded, check to see if 2064 // there are multiple AddRec's with the same loop induction variable being 2065 // multiplied together. If so, we can fold them. 2066 for (unsigned OtherIdx = Idx+1; 2067 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2068 ++OtherIdx) { 2069 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2070 continue; 2071 2072 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2073 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2074 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2075 // ]]],+,...up to x=2n}. 2076 // Note that the arguments to choose() are always integers with values 2077 // known at compile time, never SCEV objects. 2078 // 2079 // The implementation avoids pointless extra computations when the two 2080 // addrec's are of different length (mathematically, it's equivalent to 2081 // an infinite stream of zeros on the right). 2082 bool OpsModified = false; 2083 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2084 ++OtherIdx) { 2085 const SCEVAddRecExpr *OtherAddRec = 2086 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2087 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2088 continue; 2089 2090 bool Overflow = false; 2091 Type *Ty = AddRec->getType(); 2092 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2093 SmallVector<const SCEV*, 7> AddRecOps; 2094 for (int x = 0, xe = AddRec->getNumOperands() + 2095 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2096 const SCEV *Term = getConstant(Ty, 0); 2097 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2098 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2099 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2100 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2101 z < ze && !Overflow; ++z) { 2102 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2103 uint64_t Coeff; 2104 if (LargerThan64Bits) 2105 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2106 else 2107 Coeff = Coeff1*Coeff2; 2108 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2109 const SCEV *Term1 = AddRec->getOperand(y-z); 2110 const SCEV *Term2 = OtherAddRec->getOperand(z); 2111 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2112 } 2113 } 2114 AddRecOps.push_back(Term); 2115 } 2116 if (!Overflow) { 2117 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2118 SCEV::FlagAnyWrap); 2119 if (Ops.size() == 2) return NewAddRec; 2120 Ops[Idx] = NewAddRec; 2121 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2122 OpsModified = true; 2123 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2124 if (!AddRec) 2125 break; 2126 } 2127 } 2128 if (OpsModified) 2129 return getMulExpr(Ops); 2130 } 2131 2132 // Otherwise couldn't fold anything into this recurrence. Move onto the 2133 // next one. 2134 } 2135 2136 // Okay, it looks like we really DO need an mul expr. Check to see if we 2137 // already have one, otherwise create a new one. 2138 FoldingSetNodeID ID; 2139 ID.AddInteger(scMulExpr); 2140 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2141 ID.AddPointer(Ops[i]); 2142 void *IP = nullptr; 2143 SCEVMulExpr *S = 2144 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2145 if (!S) { 2146 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2147 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2148 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2149 O, Ops.size()); 2150 UniqueSCEVs.InsertNode(S, IP); 2151 } 2152 S->setNoWrapFlags(Flags); 2153 return S; 2154 } 2155 2156 /// getUDivExpr - Get a canonical unsigned division expression, or something 2157 /// simpler if possible. 2158 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2159 const SCEV *RHS) { 2160 assert(getEffectiveSCEVType(LHS->getType()) == 2161 getEffectiveSCEVType(RHS->getType()) && 2162 "SCEVUDivExpr operand types don't match!"); 2163 2164 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2165 if (RHSC->getValue()->equalsInt(1)) 2166 return LHS; // X udiv 1 --> x 2167 // If the denominator is zero, the result of the udiv is undefined. Don't 2168 // try to analyze it, because the resolution chosen here may differ from 2169 // the resolution chosen in other parts of the compiler. 2170 if (!RHSC->getValue()->isZero()) { 2171 // Determine if the division can be folded into the operands of 2172 // its operands. 2173 // TODO: Generalize this to non-constants by using known-bits information. 2174 Type *Ty = LHS->getType(); 2175 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2176 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2177 // For non-power-of-two values, effectively round the value up to the 2178 // nearest power of two. 2179 if (!RHSC->getValue()->getValue().isPowerOf2()) 2180 ++MaxShiftAmt; 2181 IntegerType *ExtTy = 2182 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2184 if (const SCEVConstant *Step = 2185 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2186 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2187 const APInt &StepInt = Step->getValue()->getValue(); 2188 const APInt &DivInt = RHSC->getValue()->getValue(); 2189 if (!StepInt.urem(DivInt) && 2190 getZeroExtendExpr(AR, ExtTy) == 2191 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2192 getZeroExtendExpr(Step, ExtTy), 2193 AR->getLoop(), SCEV::FlagAnyWrap)) { 2194 SmallVector<const SCEV *, 4> Operands; 2195 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2196 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2197 return getAddRecExpr(Operands, AR->getLoop(), 2198 SCEV::FlagNW); 2199 } 2200 /// Get a canonical UDivExpr for a recurrence. 2201 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2202 // We can currently only fold X%N if X is constant. 2203 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2204 if (StartC && !DivInt.urem(StepInt) && 2205 getZeroExtendExpr(AR, ExtTy) == 2206 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2207 getZeroExtendExpr(Step, ExtTy), 2208 AR->getLoop(), SCEV::FlagAnyWrap)) { 2209 const APInt &StartInt = StartC->getValue()->getValue(); 2210 const APInt &StartRem = StartInt.urem(StepInt); 2211 if (StartRem != 0) 2212 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2213 AR->getLoop(), SCEV::FlagNW); 2214 } 2215 } 2216 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2217 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2218 SmallVector<const SCEV *, 4> Operands; 2219 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2220 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2221 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2222 // Find an operand that's safely divisible. 2223 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2224 const SCEV *Op = M->getOperand(i); 2225 const SCEV *Div = getUDivExpr(Op, RHSC); 2226 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2227 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2228 M->op_end()); 2229 Operands[i] = Div; 2230 return getMulExpr(Operands); 2231 } 2232 } 2233 } 2234 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2235 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2236 SmallVector<const SCEV *, 4> Operands; 2237 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2238 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2239 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2240 Operands.clear(); 2241 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2242 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2243 if (isa<SCEVUDivExpr>(Op) || 2244 getMulExpr(Op, RHS) != A->getOperand(i)) 2245 break; 2246 Operands.push_back(Op); 2247 } 2248 if (Operands.size() == A->getNumOperands()) 2249 return getAddExpr(Operands); 2250 } 2251 } 2252 2253 // Fold if both operands are constant. 2254 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2255 Constant *LHSCV = LHSC->getValue(); 2256 Constant *RHSCV = RHSC->getValue(); 2257 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2258 RHSCV))); 2259 } 2260 } 2261 } 2262 2263 FoldingSetNodeID ID; 2264 ID.AddInteger(scUDivExpr); 2265 ID.AddPointer(LHS); 2266 ID.AddPointer(RHS); 2267 void *IP = nullptr; 2268 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2269 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2270 LHS, RHS); 2271 UniqueSCEVs.InsertNode(S, IP); 2272 return S; 2273 } 2274 2275 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2276 APInt A = C1->getValue()->getValue().abs(); 2277 APInt B = C2->getValue()->getValue().abs(); 2278 uint32_t ABW = A.getBitWidth(); 2279 uint32_t BBW = B.getBitWidth(); 2280 2281 if (ABW > BBW) 2282 B = B.zext(ABW); 2283 else if (ABW < BBW) 2284 A = A.zext(BBW); 2285 2286 return APIntOps::GreatestCommonDivisor(A, B); 2287 } 2288 2289 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2290 /// something simpler if possible. There is no representation for an exact udiv 2291 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2292 /// We can't do this when it's not exact because the udiv may be clearing bits. 2293 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2294 const SCEV *RHS) { 2295 // TODO: we could try to find factors in all sorts of things, but for now we 2296 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2297 // end of this file for inspiration. 2298 2299 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2300 if (!Mul) 2301 return getUDivExpr(LHS, RHS); 2302 2303 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2304 // If the mulexpr multiplies by a constant, then that constant must be the 2305 // first element of the mulexpr. 2306 if (const SCEVConstant *LHSCst = 2307 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2308 if (LHSCst == RHSCst) { 2309 SmallVector<const SCEV *, 2> Operands; 2310 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2311 return getMulExpr(Operands); 2312 } 2313 2314 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2315 // that there's a factor provided by one of the other terms. We need to 2316 // check. 2317 APInt Factor = gcd(LHSCst, RHSCst); 2318 if (!Factor.isIntN(1)) { 2319 LHSCst = cast<SCEVConstant>( 2320 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2321 RHSCst = cast<SCEVConstant>( 2322 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2323 SmallVector<const SCEV *, 2> Operands; 2324 Operands.push_back(LHSCst); 2325 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2326 LHS = getMulExpr(Operands); 2327 RHS = RHSCst; 2328 Mul = dyn_cast<SCEVMulExpr>(LHS); 2329 if (!Mul) 2330 return getUDivExactExpr(LHS, RHS); 2331 } 2332 } 2333 } 2334 2335 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2336 if (Mul->getOperand(i) == RHS) { 2337 SmallVector<const SCEV *, 2> Operands; 2338 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2339 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2340 return getMulExpr(Operands); 2341 } 2342 } 2343 2344 return getUDivExpr(LHS, RHS); 2345 } 2346 2347 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2348 /// Simplify the expression as much as possible. 2349 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2350 const Loop *L, 2351 SCEV::NoWrapFlags Flags) { 2352 SmallVector<const SCEV *, 4> Operands; 2353 Operands.push_back(Start); 2354 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2355 if (StepChrec->getLoop() == L) { 2356 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2357 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2358 } 2359 2360 Operands.push_back(Step); 2361 return getAddRecExpr(Operands, L, Flags); 2362 } 2363 2364 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2365 /// Simplify the expression as much as possible. 2366 const SCEV * 2367 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2368 const Loop *L, SCEV::NoWrapFlags Flags) { 2369 if (Operands.size() == 1) return Operands[0]; 2370 #ifndef NDEBUG 2371 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2372 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2373 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2374 "SCEVAddRecExpr operand types don't match!"); 2375 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2376 assert(isLoopInvariant(Operands[i], L) && 2377 "SCEVAddRecExpr operand is not loop-invariant!"); 2378 #endif 2379 2380 if (Operands.back()->isZero()) { 2381 Operands.pop_back(); 2382 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2383 } 2384 2385 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2386 // use that information to infer NUW and NSW flags. However, computing a 2387 // BE count requires calling getAddRecExpr, so we may not yet have a 2388 // meaningful BE count at this point (and if we don't, we'd be stuck 2389 // with a SCEVCouldNotCompute as the cached BE count). 2390 2391 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2392 // And vice-versa. 2393 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2394 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2395 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2396 bool All = true; 2397 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2398 E = Operands.end(); I != E; ++I) 2399 if (!isKnownNonNegative(*I)) { 2400 All = false; 2401 break; 2402 } 2403 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2404 } 2405 2406 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2407 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2408 const Loop *NestedLoop = NestedAR->getLoop(); 2409 if (L->contains(NestedLoop) ? 2410 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2411 (!NestedLoop->contains(L) && 2412 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2413 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2414 NestedAR->op_end()); 2415 Operands[0] = NestedAR->getStart(); 2416 // AddRecs require their operands be loop-invariant with respect to their 2417 // loops. Don't perform this transformation if it would break this 2418 // requirement. 2419 bool AllInvariant = true; 2420 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2421 if (!isLoopInvariant(Operands[i], L)) { 2422 AllInvariant = false; 2423 break; 2424 } 2425 if (AllInvariant) { 2426 // Create a recurrence for the outer loop with the same step size. 2427 // 2428 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2429 // inner recurrence has the same property. 2430 SCEV::NoWrapFlags OuterFlags = 2431 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2432 2433 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2434 AllInvariant = true; 2435 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2436 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2437 AllInvariant = false; 2438 break; 2439 } 2440 if (AllInvariant) { 2441 // Ok, both add recurrences are valid after the transformation. 2442 // 2443 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2444 // the outer recurrence has the same property. 2445 SCEV::NoWrapFlags InnerFlags = 2446 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2447 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2448 } 2449 } 2450 // Reset Operands to its original state. 2451 Operands[0] = NestedAR; 2452 } 2453 } 2454 2455 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2456 // already have one, otherwise create a new one. 2457 FoldingSetNodeID ID; 2458 ID.AddInteger(scAddRecExpr); 2459 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2460 ID.AddPointer(Operands[i]); 2461 ID.AddPointer(L); 2462 void *IP = nullptr; 2463 SCEVAddRecExpr *S = 2464 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2465 if (!S) { 2466 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2467 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2468 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2469 O, Operands.size(), L); 2470 UniqueSCEVs.InsertNode(S, IP); 2471 } 2472 S->setNoWrapFlags(Flags); 2473 return S; 2474 } 2475 2476 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2477 const SCEV *RHS) { 2478 SmallVector<const SCEV *, 2> Ops; 2479 Ops.push_back(LHS); 2480 Ops.push_back(RHS); 2481 return getSMaxExpr(Ops); 2482 } 2483 2484 const SCEV * 2485 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2486 assert(!Ops.empty() && "Cannot get empty smax!"); 2487 if (Ops.size() == 1) return Ops[0]; 2488 #ifndef NDEBUG 2489 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2490 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2491 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2492 "SCEVSMaxExpr operand types don't match!"); 2493 #endif 2494 2495 // Sort by complexity, this groups all similar expression types together. 2496 GroupByComplexity(Ops, LI); 2497 2498 // If there are any constants, fold them together. 2499 unsigned Idx = 0; 2500 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2501 ++Idx; 2502 assert(Idx < Ops.size()); 2503 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2504 // We found two constants, fold them together! 2505 ConstantInt *Fold = ConstantInt::get(getContext(), 2506 APIntOps::smax(LHSC->getValue()->getValue(), 2507 RHSC->getValue()->getValue())); 2508 Ops[0] = getConstant(Fold); 2509 Ops.erase(Ops.begin()+1); // Erase the folded element 2510 if (Ops.size() == 1) return Ops[0]; 2511 LHSC = cast<SCEVConstant>(Ops[0]); 2512 } 2513 2514 // If we are left with a constant minimum-int, strip it off. 2515 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2516 Ops.erase(Ops.begin()); 2517 --Idx; 2518 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2519 // If we have an smax with a constant maximum-int, it will always be 2520 // maximum-int. 2521 return Ops[0]; 2522 } 2523 2524 if (Ops.size() == 1) return Ops[0]; 2525 } 2526 2527 // Find the first SMax 2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2529 ++Idx; 2530 2531 // Check to see if one of the operands is an SMax. If so, expand its operands 2532 // onto our operand list, and recurse to simplify. 2533 if (Idx < Ops.size()) { 2534 bool DeletedSMax = false; 2535 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2536 Ops.erase(Ops.begin()+Idx); 2537 Ops.append(SMax->op_begin(), SMax->op_end()); 2538 DeletedSMax = true; 2539 } 2540 2541 if (DeletedSMax) 2542 return getSMaxExpr(Ops); 2543 } 2544 2545 // Okay, check to see if the same value occurs in the operand list twice. If 2546 // so, delete one. Since we sorted the list, these values are required to 2547 // be adjacent. 2548 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2549 // X smax Y smax Y --> X smax Y 2550 // X smax Y --> X, if X is always greater than Y 2551 if (Ops[i] == Ops[i+1] || 2552 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2553 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2554 --i; --e; 2555 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2556 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2557 --i; --e; 2558 } 2559 2560 if (Ops.size() == 1) return Ops[0]; 2561 2562 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2563 2564 // Okay, it looks like we really DO need an smax expr. Check to see if we 2565 // already have one, otherwise create a new one. 2566 FoldingSetNodeID ID; 2567 ID.AddInteger(scSMaxExpr); 2568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2569 ID.AddPointer(Ops[i]); 2570 void *IP = nullptr; 2571 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2574 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2575 O, Ops.size()); 2576 UniqueSCEVs.InsertNode(S, IP); 2577 return S; 2578 } 2579 2580 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2581 const SCEV *RHS) { 2582 SmallVector<const SCEV *, 2> Ops; 2583 Ops.push_back(LHS); 2584 Ops.push_back(RHS); 2585 return getUMaxExpr(Ops); 2586 } 2587 2588 const SCEV * 2589 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2590 assert(!Ops.empty() && "Cannot get empty umax!"); 2591 if (Ops.size() == 1) return Ops[0]; 2592 #ifndef NDEBUG 2593 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2594 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2595 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2596 "SCEVUMaxExpr operand types don't match!"); 2597 #endif 2598 2599 // Sort by complexity, this groups all similar expression types together. 2600 GroupByComplexity(Ops, LI); 2601 2602 // If there are any constants, fold them together. 2603 unsigned Idx = 0; 2604 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2605 ++Idx; 2606 assert(Idx < Ops.size()); 2607 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2608 // We found two constants, fold them together! 2609 ConstantInt *Fold = ConstantInt::get(getContext(), 2610 APIntOps::umax(LHSC->getValue()->getValue(), 2611 RHSC->getValue()->getValue())); 2612 Ops[0] = getConstant(Fold); 2613 Ops.erase(Ops.begin()+1); // Erase the folded element 2614 if (Ops.size() == 1) return Ops[0]; 2615 LHSC = cast<SCEVConstant>(Ops[0]); 2616 } 2617 2618 // If we are left with a constant minimum-int, strip it off. 2619 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2620 Ops.erase(Ops.begin()); 2621 --Idx; 2622 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2623 // If we have an umax with a constant maximum-int, it will always be 2624 // maximum-int. 2625 return Ops[0]; 2626 } 2627 2628 if (Ops.size() == 1) return Ops[0]; 2629 } 2630 2631 // Find the first UMax 2632 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2633 ++Idx; 2634 2635 // Check to see if one of the operands is a UMax. If so, expand its operands 2636 // onto our operand list, and recurse to simplify. 2637 if (Idx < Ops.size()) { 2638 bool DeletedUMax = false; 2639 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2640 Ops.erase(Ops.begin()+Idx); 2641 Ops.append(UMax->op_begin(), UMax->op_end()); 2642 DeletedUMax = true; 2643 } 2644 2645 if (DeletedUMax) 2646 return getUMaxExpr(Ops); 2647 } 2648 2649 // Okay, check to see if the same value occurs in the operand list twice. If 2650 // so, delete one. Since we sorted the list, these values are required to 2651 // be adjacent. 2652 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2653 // X umax Y umax Y --> X umax Y 2654 // X umax Y --> X, if X is always greater than Y 2655 if (Ops[i] == Ops[i+1] || 2656 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2657 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2658 --i; --e; 2659 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2660 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2661 --i; --e; 2662 } 2663 2664 if (Ops.size() == 1) return Ops[0]; 2665 2666 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2667 2668 // Okay, it looks like we really DO need a umax expr. Check to see if we 2669 // already have one, otherwise create a new one. 2670 FoldingSetNodeID ID; 2671 ID.AddInteger(scUMaxExpr); 2672 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2673 ID.AddPointer(Ops[i]); 2674 void *IP = nullptr; 2675 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2676 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2677 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2678 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2679 O, Ops.size()); 2680 UniqueSCEVs.InsertNode(S, IP); 2681 return S; 2682 } 2683 2684 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2685 const SCEV *RHS) { 2686 // ~smax(~x, ~y) == smin(x, y). 2687 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2688 } 2689 2690 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2691 const SCEV *RHS) { 2692 // ~umax(~x, ~y) == umin(x, y) 2693 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2694 } 2695 2696 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2697 // If we have DataLayout, we can bypass creating a target-independent 2698 // constant expression and then folding it back into a ConstantInt. 2699 // This is just a compile-time optimization. 2700 if (DL) 2701 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 2702 2703 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2704 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2705 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2706 C = Folded; 2707 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2708 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2709 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2710 } 2711 2712 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2713 StructType *STy, 2714 unsigned FieldNo) { 2715 // If we have DataLayout, we can bypass creating a target-independent 2716 // constant expression and then folding it back into a ConstantInt. 2717 // This is just a compile-time optimization. 2718 if (DL) { 2719 return getConstant(IntTy, 2720 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 2721 } 2722 2723 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2724 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2725 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2726 C = Folded; 2727 2728 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2729 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2730 } 2731 2732 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2733 // Don't attempt to do anything other than create a SCEVUnknown object 2734 // here. createSCEV only calls getUnknown after checking for all other 2735 // interesting possibilities, and any other code that calls getUnknown 2736 // is doing so in order to hide a value from SCEV canonicalization. 2737 2738 FoldingSetNodeID ID; 2739 ID.AddInteger(scUnknown); 2740 ID.AddPointer(V); 2741 void *IP = nullptr; 2742 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2743 assert(cast<SCEVUnknown>(S)->getValue() == V && 2744 "Stale SCEVUnknown in uniquing map!"); 2745 return S; 2746 } 2747 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2748 FirstUnknown); 2749 FirstUnknown = cast<SCEVUnknown>(S); 2750 UniqueSCEVs.InsertNode(S, IP); 2751 return S; 2752 } 2753 2754 //===----------------------------------------------------------------------===// 2755 // Basic SCEV Analysis and PHI Idiom Recognition Code 2756 // 2757 2758 /// isSCEVable - Test if values of the given type are analyzable within 2759 /// the SCEV framework. This primarily includes integer types, and it 2760 /// can optionally include pointer types if the ScalarEvolution class 2761 /// has access to target-specific information. 2762 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2763 // Integers and pointers are always SCEVable. 2764 return Ty->isIntegerTy() || Ty->isPointerTy(); 2765 } 2766 2767 /// getTypeSizeInBits - Return the size in bits of the specified type, 2768 /// for which isSCEVable must return true. 2769 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2770 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2771 2772 // If we have a DataLayout, use it! 2773 if (DL) 2774 return DL->getTypeSizeInBits(Ty); 2775 2776 // Integer types have fixed sizes. 2777 if (Ty->isIntegerTy()) 2778 return Ty->getPrimitiveSizeInBits(); 2779 2780 // The only other support type is pointer. Without DataLayout, conservatively 2781 // assume pointers are 64-bit. 2782 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2783 return 64; 2784 } 2785 2786 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2787 /// the given type and which represents how SCEV will treat the given 2788 /// type, for which isSCEVable must return true. For pointer types, 2789 /// this is the pointer-sized integer type. 2790 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2791 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2792 2793 if (Ty->isIntegerTy()) { 2794 return Ty; 2795 } 2796 2797 // The only other support type is pointer. 2798 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2799 2800 if (DL) 2801 return DL->getIntPtrType(Ty); 2802 2803 // Without DataLayout, conservatively assume pointers are 64-bit. 2804 return Type::getInt64Ty(getContext()); 2805 } 2806 2807 const SCEV *ScalarEvolution::getCouldNotCompute() { 2808 return &CouldNotCompute; 2809 } 2810 2811 namespace { 2812 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2813 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2814 // is set iff if find such SCEVUnknown. 2815 // 2816 struct FindInvalidSCEVUnknown { 2817 bool FindOne; 2818 FindInvalidSCEVUnknown() { FindOne = false; } 2819 bool follow(const SCEV *S) { 2820 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2821 case scConstant: 2822 return false; 2823 case scUnknown: 2824 if (!cast<SCEVUnknown>(S)->getValue()) 2825 FindOne = true; 2826 return false; 2827 default: 2828 return true; 2829 } 2830 } 2831 bool isDone() const { return FindOne; } 2832 }; 2833 } 2834 2835 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2836 FindInvalidSCEVUnknown F; 2837 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2838 ST.visitAll(S); 2839 2840 return !F.FindOne; 2841 } 2842 2843 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2844 /// expression and create a new one. 2845 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2846 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2847 2848 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2849 if (I != ValueExprMap.end()) { 2850 const SCEV *S = I->second; 2851 if (checkValidity(S)) 2852 return S; 2853 else 2854 ValueExprMap.erase(I); 2855 } 2856 const SCEV *S = createSCEV(V); 2857 2858 // The process of creating a SCEV for V may have caused other SCEVs 2859 // to have been created, so it's necessary to insert the new entry 2860 // from scratch, rather than trying to remember the insert position 2861 // above. 2862 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2863 return S; 2864 } 2865 2866 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2867 /// 2868 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2869 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2870 return getConstant( 2871 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2872 2873 Type *Ty = V->getType(); 2874 Ty = getEffectiveSCEVType(Ty); 2875 return getMulExpr(V, 2876 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2877 } 2878 2879 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2880 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2881 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2882 return getConstant( 2883 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2884 2885 Type *Ty = V->getType(); 2886 Ty = getEffectiveSCEVType(Ty); 2887 const SCEV *AllOnes = 2888 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2889 return getMinusSCEV(AllOnes, V); 2890 } 2891 2892 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2893 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2894 SCEV::NoWrapFlags Flags) { 2895 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2896 2897 // Fast path: X - X --> 0. 2898 if (LHS == RHS) 2899 return getConstant(LHS->getType(), 0); 2900 2901 // X - Y --> X + -Y 2902 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2903 } 2904 2905 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2906 /// input value to the specified type. If the type must be extended, it is zero 2907 /// extended. 2908 const SCEV * 2909 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2910 Type *SrcTy = V->getType(); 2911 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2912 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2913 "Cannot truncate or zero extend with non-integer arguments!"); 2914 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2915 return V; // No conversion 2916 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2917 return getTruncateExpr(V, Ty); 2918 return getZeroExtendExpr(V, Ty); 2919 } 2920 2921 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2922 /// input value to the specified type. If the type must be extended, it is sign 2923 /// extended. 2924 const SCEV * 2925 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2926 Type *Ty) { 2927 Type *SrcTy = V->getType(); 2928 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2929 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2930 "Cannot truncate or zero extend with non-integer arguments!"); 2931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2932 return V; // No conversion 2933 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2934 return getTruncateExpr(V, Ty); 2935 return getSignExtendExpr(V, Ty); 2936 } 2937 2938 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2939 /// input value to the specified type. If the type must be extended, it is zero 2940 /// extended. The conversion must not be narrowing. 2941 const SCEV * 2942 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2943 Type *SrcTy = V->getType(); 2944 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2945 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2946 "Cannot noop or zero extend with non-integer arguments!"); 2947 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2948 "getNoopOrZeroExtend cannot truncate!"); 2949 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2950 return V; // No conversion 2951 return getZeroExtendExpr(V, Ty); 2952 } 2953 2954 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2955 /// input value to the specified type. If the type must be extended, it is sign 2956 /// extended. The conversion must not be narrowing. 2957 const SCEV * 2958 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2959 Type *SrcTy = V->getType(); 2960 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2961 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2962 "Cannot noop or sign extend with non-integer arguments!"); 2963 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2964 "getNoopOrSignExtend cannot truncate!"); 2965 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2966 return V; // No conversion 2967 return getSignExtendExpr(V, Ty); 2968 } 2969 2970 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2971 /// the input value to the specified type. If the type must be extended, 2972 /// it is extended with unspecified bits. The conversion must not be 2973 /// narrowing. 2974 const SCEV * 2975 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2976 Type *SrcTy = V->getType(); 2977 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2978 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2979 "Cannot noop or any extend with non-integer arguments!"); 2980 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2981 "getNoopOrAnyExtend cannot truncate!"); 2982 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2983 return V; // No conversion 2984 return getAnyExtendExpr(V, Ty); 2985 } 2986 2987 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2988 /// input value to the specified type. The conversion must not be widening. 2989 const SCEV * 2990 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2991 Type *SrcTy = V->getType(); 2992 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2993 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2994 "Cannot truncate or noop with non-integer arguments!"); 2995 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2996 "getTruncateOrNoop cannot extend!"); 2997 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2998 return V; // No conversion 2999 return getTruncateExpr(V, Ty); 3000 } 3001 3002 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3003 /// the types using zero-extension, and then perform a umax operation 3004 /// with them. 3005 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3006 const SCEV *RHS) { 3007 const SCEV *PromotedLHS = LHS; 3008 const SCEV *PromotedRHS = RHS; 3009 3010 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3011 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3012 else 3013 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3014 3015 return getUMaxExpr(PromotedLHS, PromotedRHS); 3016 } 3017 3018 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3019 /// the types using zero-extension, and then perform a umin operation 3020 /// with them. 3021 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3022 const SCEV *RHS) { 3023 const SCEV *PromotedLHS = LHS; 3024 const SCEV *PromotedRHS = RHS; 3025 3026 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3027 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3028 else 3029 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3030 3031 return getUMinExpr(PromotedLHS, PromotedRHS); 3032 } 3033 3034 /// getPointerBase - Transitively follow the chain of pointer-type operands 3035 /// until reaching a SCEV that does not have a single pointer operand. This 3036 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3037 /// but corner cases do exist. 3038 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3039 // A pointer operand may evaluate to a nonpointer expression, such as null. 3040 if (!V->getType()->isPointerTy()) 3041 return V; 3042 3043 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3044 return getPointerBase(Cast->getOperand()); 3045 } 3046 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3047 const SCEV *PtrOp = nullptr; 3048 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3049 I != E; ++I) { 3050 if ((*I)->getType()->isPointerTy()) { 3051 // Cannot find the base of an expression with multiple pointer operands. 3052 if (PtrOp) 3053 return V; 3054 PtrOp = *I; 3055 } 3056 } 3057 if (!PtrOp) 3058 return V; 3059 return getPointerBase(PtrOp); 3060 } 3061 return V; 3062 } 3063 3064 /// PushDefUseChildren - Push users of the given Instruction 3065 /// onto the given Worklist. 3066 static void 3067 PushDefUseChildren(Instruction *I, 3068 SmallVectorImpl<Instruction *> &Worklist) { 3069 // Push the def-use children onto the Worklist stack. 3070 for (User *U : I->users()) 3071 Worklist.push_back(cast<Instruction>(U)); 3072 } 3073 3074 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3075 /// instructions that depend on the given instruction and removes them from 3076 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3077 /// resolution. 3078 void 3079 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3080 SmallVector<Instruction *, 16> Worklist; 3081 PushDefUseChildren(PN, Worklist); 3082 3083 SmallPtrSet<Instruction *, 8> Visited; 3084 Visited.insert(PN); 3085 while (!Worklist.empty()) { 3086 Instruction *I = Worklist.pop_back_val(); 3087 if (!Visited.insert(I)) continue; 3088 3089 ValueExprMapType::iterator It = 3090 ValueExprMap.find_as(static_cast<Value *>(I)); 3091 if (It != ValueExprMap.end()) { 3092 const SCEV *Old = It->second; 3093 3094 // Short-circuit the def-use traversal if the symbolic name 3095 // ceases to appear in expressions. 3096 if (Old != SymName && !hasOperand(Old, SymName)) 3097 continue; 3098 3099 // SCEVUnknown for a PHI either means that it has an unrecognized 3100 // structure, it's a PHI that's in the progress of being computed 3101 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3102 // additional loop trip count information isn't going to change anything. 3103 // In the second case, createNodeForPHI will perform the necessary 3104 // updates on its own when it gets to that point. In the third, we do 3105 // want to forget the SCEVUnknown. 3106 if (!isa<PHINode>(I) || 3107 !isa<SCEVUnknown>(Old) || 3108 (I != PN && Old == SymName)) { 3109 forgetMemoizedResults(Old); 3110 ValueExprMap.erase(It); 3111 } 3112 } 3113 3114 PushDefUseChildren(I, Worklist); 3115 } 3116 } 3117 3118 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3119 /// a loop header, making it a potential recurrence, or it doesn't. 3120 /// 3121 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3122 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3123 if (L->getHeader() == PN->getParent()) { 3124 // The loop may have multiple entrances or multiple exits; we can analyze 3125 // this phi as an addrec if it has a unique entry value and a unique 3126 // backedge value. 3127 Value *BEValueV = nullptr, *StartValueV = nullptr; 3128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3129 Value *V = PN->getIncomingValue(i); 3130 if (L->contains(PN->getIncomingBlock(i))) { 3131 if (!BEValueV) { 3132 BEValueV = V; 3133 } else if (BEValueV != V) { 3134 BEValueV = nullptr; 3135 break; 3136 } 3137 } else if (!StartValueV) { 3138 StartValueV = V; 3139 } else if (StartValueV != V) { 3140 StartValueV = nullptr; 3141 break; 3142 } 3143 } 3144 if (BEValueV && StartValueV) { 3145 // While we are analyzing this PHI node, handle its value symbolically. 3146 const SCEV *SymbolicName = getUnknown(PN); 3147 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3148 "PHI node already processed?"); 3149 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3150 3151 // Using this symbolic name for the PHI, analyze the value coming around 3152 // the back-edge. 3153 const SCEV *BEValue = getSCEV(BEValueV); 3154 3155 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3156 // has a special value for the first iteration of the loop. 3157 3158 // If the value coming around the backedge is an add with the symbolic 3159 // value we just inserted, then we found a simple induction variable! 3160 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3161 // If there is a single occurrence of the symbolic value, replace it 3162 // with a recurrence. 3163 unsigned FoundIndex = Add->getNumOperands(); 3164 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3165 if (Add->getOperand(i) == SymbolicName) 3166 if (FoundIndex == e) { 3167 FoundIndex = i; 3168 break; 3169 } 3170 3171 if (FoundIndex != Add->getNumOperands()) { 3172 // Create an add with everything but the specified operand. 3173 SmallVector<const SCEV *, 8> Ops; 3174 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3175 if (i != FoundIndex) 3176 Ops.push_back(Add->getOperand(i)); 3177 const SCEV *Accum = getAddExpr(Ops); 3178 3179 // This is not a valid addrec if the step amount is varying each 3180 // loop iteration, but is not itself an addrec in this loop. 3181 if (isLoopInvariant(Accum, L) || 3182 (isa<SCEVAddRecExpr>(Accum) && 3183 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3184 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3185 3186 // If the increment doesn't overflow, then neither the addrec nor 3187 // the post-increment will overflow. 3188 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3189 if (OBO->hasNoUnsignedWrap()) 3190 Flags = setFlags(Flags, SCEV::FlagNUW); 3191 if (OBO->hasNoSignedWrap()) 3192 Flags = setFlags(Flags, SCEV::FlagNSW); 3193 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3194 // If the increment is an inbounds GEP, then we know the address 3195 // space cannot be wrapped around. We cannot make any guarantee 3196 // about signed or unsigned overflow because pointers are 3197 // unsigned but we may have a negative index from the base 3198 // pointer. We can guarantee that no unsigned wrap occurs if the 3199 // indices form a positive value. 3200 if (GEP->isInBounds()) { 3201 Flags = setFlags(Flags, SCEV::FlagNW); 3202 3203 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3204 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3205 Flags = setFlags(Flags, SCEV::FlagNUW); 3206 } 3207 } else if (const SubOperator *OBO = 3208 dyn_cast<SubOperator>(BEValueV)) { 3209 if (OBO->hasNoUnsignedWrap()) 3210 Flags = setFlags(Flags, SCEV::FlagNUW); 3211 if (OBO->hasNoSignedWrap()) 3212 Flags = setFlags(Flags, SCEV::FlagNSW); 3213 } 3214 3215 const SCEV *StartVal = getSCEV(StartValueV); 3216 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3217 3218 // Since the no-wrap flags are on the increment, they apply to the 3219 // post-incremented value as well. 3220 if (isLoopInvariant(Accum, L)) 3221 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3222 Accum, L, Flags); 3223 3224 // Okay, for the entire analysis of this edge we assumed the PHI 3225 // to be symbolic. We now need to go back and purge all of the 3226 // entries for the scalars that use the symbolic expression. 3227 ForgetSymbolicName(PN, SymbolicName); 3228 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3229 return PHISCEV; 3230 } 3231 } 3232 } else if (const SCEVAddRecExpr *AddRec = 3233 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3234 // Otherwise, this could be a loop like this: 3235 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3236 // In this case, j = {1,+,1} and BEValue is j. 3237 // Because the other in-value of i (0) fits the evolution of BEValue 3238 // i really is an addrec evolution. 3239 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3240 const SCEV *StartVal = getSCEV(StartValueV); 3241 3242 // If StartVal = j.start - j.stride, we can use StartVal as the 3243 // initial step of the addrec evolution. 3244 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3245 AddRec->getOperand(1))) { 3246 // FIXME: For constant StartVal, we should be able to infer 3247 // no-wrap flags. 3248 const SCEV *PHISCEV = 3249 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3250 SCEV::FlagAnyWrap); 3251 3252 // Okay, for the entire analysis of this edge we assumed the PHI 3253 // to be symbolic. We now need to go back and purge all of the 3254 // entries for the scalars that use the symbolic expression. 3255 ForgetSymbolicName(PN, SymbolicName); 3256 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3257 return PHISCEV; 3258 } 3259 } 3260 } 3261 } 3262 } 3263 3264 // If the PHI has a single incoming value, follow that value, unless the 3265 // PHI's incoming blocks are in a different loop, in which case doing so 3266 // risks breaking LCSSA form. Instcombine would normally zap these, but 3267 // it doesn't have DominatorTree information, so it may miss cases. 3268 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT)) 3269 if (LI->replacementPreservesLCSSAForm(PN, V)) 3270 return getSCEV(V); 3271 3272 // If it's not a loop phi, we can't handle it yet. 3273 return getUnknown(PN); 3274 } 3275 3276 /// createNodeForGEP - Expand GEP instructions into add and multiply 3277 /// operations. This allows them to be analyzed by regular SCEV code. 3278 /// 3279 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3280 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3281 Value *Base = GEP->getOperand(0); 3282 // Don't attempt to analyze GEPs over unsized objects. 3283 if (!Base->getType()->getPointerElementType()->isSized()) 3284 return getUnknown(GEP); 3285 3286 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3287 // Add expression, because the Instruction may be guarded by control flow 3288 // and the no-overflow bits may not be valid for the expression in any 3289 // context. 3290 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3291 3292 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3293 gep_type_iterator GTI = gep_type_begin(GEP); 3294 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3295 E = GEP->op_end(); 3296 I != E; ++I) { 3297 Value *Index = *I; 3298 // Compute the (potentially symbolic) offset in bytes for this index. 3299 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3300 // For a struct, add the member offset. 3301 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3302 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3303 3304 // Add the field offset to the running total offset. 3305 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3306 } else { 3307 // For an array, add the element offset, explicitly scaled. 3308 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3309 const SCEV *IndexS = getSCEV(Index); 3310 // Getelementptr indices are signed. 3311 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3312 3313 // Multiply the index by the element size to compute the element offset. 3314 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3315 3316 // Add the element offset to the running total offset. 3317 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3318 } 3319 } 3320 3321 // Get the SCEV for the GEP base. 3322 const SCEV *BaseS = getSCEV(Base); 3323 3324 // Add the total offset from all the GEP indices to the base. 3325 return getAddExpr(BaseS, TotalOffset, Wrap); 3326 } 3327 3328 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3329 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3330 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3331 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3332 uint32_t 3333 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3334 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3335 return C->getValue()->getValue().countTrailingZeros(); 3336 3337 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3338 return std::min(GetMinTrailingZeros(T->getOperand()), 3339 (uint32_t)getTypeSizeInBits(T->getType())); 3340 3341 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3342 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3343 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3344 getTypeSizeInBits(E->getType()) : OpRes; 3345 } 3346 3347 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3348 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3349 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3350 getTypeSizeInBits(E->getType()) : OpRes; 3351 } 3352 3353 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3354 // The result is the min of all operands results. 3355 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3356 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3357 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3358 return MinOpRes; 3359 } 3360 3361 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3362 // The result is the sum of all operands results. 3363 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3364 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3365 for (unsigned i = 1, e = M->getNumOperands(); 3366 SumOpRes != BitWidth && i != e; ++i) 3367 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3368 BitWidth); 3369 return SumOpRes; 3370 } 3371 3372 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3373 // The result is the min of all operands results. 3374 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3375 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3376 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3377 return MinOpRes; 3378 } 3379 3380 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3381 // The result is the min of all operands results. 3382 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3383 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3384 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3385 return MinOpRes; 3386 } 3387 3388 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3389 // The result is the min of all operands results. 3390 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3391 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3392 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3393 return MinOpRes; 3394 } 3395 3396 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3397 // For a SCEVUnknown, ask ValueTracking. 3398 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3399 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3400 computeKnownBits(U->getValue(), Zeros, Ones); 3401 return Zeros.countTrailingOnes(); 3402 } 3403 3404 // SCEVUDivExpr 3405 return 0; 3406 } 3407 3408 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3409 /// 3410 ConstantRange 3411 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3412 // See if we've computed this range already. 3413 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3414 if (I != UnsignedRanges.end()) 3415 return I->second; 3416 3417 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3418 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3419 3420 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3421 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3422 3423 // If the value has known zeros, the maximum unsigned value will have those 3424 // known zeros as well. 3425 uint32_t TZ = GetMinTrailingZeros(S); 3426 if (TZ != 0) 3427 ConservativeResult = 3428 ConstantRange(APInt::getMinValue(BitWidth), 3429 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3430 3431 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3432 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3433 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3434 X = X.add(getUnsignedRange(Add->getOperand(i))); 3435 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3436 } 3437 3438 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3439 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3440 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3441 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3442 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3443 } 3444 3445 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3446 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3447 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3448 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3449 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3450 } 3451 3452 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3453 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3454 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3455 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3456 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3457 } 3458 3459 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3460 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3461 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3462 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3463 } 3464 3465 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3466 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3467 return setUnsignedRange(ZExt, 3468 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3469 } 3470 3471 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3472 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3473 return setUnsignedRange(SExt, 3474 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3475 } 3476 3477 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3478 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3479 return setUnsignedRange(Trunc, 3480 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3481 } 3482 3483 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3484 // If there's no unsigned wrap, the value will never be less than its 3485 // initial value. 3486 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3487 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3488 if (!C->getValue()->isZero()) 3489 ConservativeResult = 3490 ConservativeResult.intersectWith( 3491 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3492 3493 // TODO: non-affine addrec 3494 if (AddRec->isAffine()) { 3495 Type *Ty = AddRec->getType(); 3496 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3497 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3498 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3499 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3500 3501 const SCEV *Start = AddRec->getStart(); 3502 const SCEV *Step = AddRec->getStepRecurrence(*this); 3503 3504 ConstantRange StartRange = getUnsignedRange(Start); 3505 ConstantRange StepRange = getSignedRange(Step); 3506 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3507 ConstantRange EndRange = 3508 StartRange.add(MaxBECountRange.multiply(StepRange)); 3509 3510 // Check for overflow. This must be done with ConstantRange arithmetic 3511 // because we could be called from within the ScalarEvolution overflow 3512 // checking code. 3513 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3514 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3515 ConstantRange ExtMaxBECountRange = 3516 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3517 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3518 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3519 ExtEndRange) 3520 return setUnsignedRange(AddRec, ConservativeResult); 3521 3522 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3523 EndRange.getUnsignedMin()); 3524 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3525 EndRange.getUnsignedMax()); 3526 if (Min.isMinValue() && Max.isMaxValue()) 3527 return setUnsignedRange(AddRec, ConservativeResult); 3528 return setUnsignedRange(AddRec, 3529 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3530 } 3531 } 3532 3533 return setUnsignedRange(AddRec, ConservativeResult); 3534 } 3535 3536 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3537 // For a SCEVUnknown, ask ValueTracking. 3538 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3539 computeKnownBits(U->getValue(), Zeros, Ones, DL); 3540 if (Ones == ~Zeros + 1) 3541 return setUnsignedRange(U, ConservativeResult); 3542 return setUnsignedRange(U, 3543 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3544 } 3545 3546 return setUnsignedRange(S, ConservativeResult); 3547 } 3548 3549 /// getSignedRange - Determine the signed range for a particular SCEV. 3550 /// 3551 ConstantRange 3552 ScalarEvolution::getSignedRange(const SCEV *S) { 3553 // See if we've computed this range already. 3554 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3555 if (I != SignedRanges.end()) 3556 return I->second; 3557 3558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3559 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3560 3561 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3562 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3563 3564 // If the value has known zeros, the maximum signed value will have those 3565 // known zeros as well. 3566 uint32_t TZ = GetMinTrailingZeros(S); 3567 if (TZ != 0) 3568 ConservativeResult = 3569 ConstantRange(APInt::getSignedMinValue(BitWidth), 3570 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3571 3572 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3573 ConstantRange X = getSignedRange(Add->getOperand(0)); 3574 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3575 X = X.add(getSignedRange(Add->getOperand(i))); 3576 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3577 } 3578 3579 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3580 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3581 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3582 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3583 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3584 } 3585 3586 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3587 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3588 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3589 X = X.smax(getSignedRange(SMax->getOperand(i))); 3590 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3591 } 3592 3593 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3594 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3595 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3596 X = X.umax(getSignedRange(UMax->getOperand(i))); 3597 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3598 } 3599 3600 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3601 ConstantRange X = getSignedRange(UDiv->getLHS()); 3602 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3603 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3604 } 3605 3606 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3607 ConstantRange X = getSignedRange(ZExt->getOperand()); 3608 return setSignedRange(ZExt, 3609 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3610 } 3611 3612 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3613 ConstantRange X = getSignedRange(SExt->getOperand()); 3614 return setSignedRange(SExt, 3615 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3616 } 3617 3618 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3619 ConstantRange X = getSignedRange(Trunc->getOperand()); 3620 return setSignedRange(Trunc, 3621 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3622 } 3623 3624 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3625 // If there's no signed wrap, and all the operands have the same sign or 3626 // zero, the value won't ever change sign. 3627 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3628 bool AllNonNeg = true; 3629 bool AllNonPos = true; 3630 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3631 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3632 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3633 } 3634 if (AllNonNeg) 3635 ConservativeResult = ConservativeResult.intersectWith( 3636 ConstantRange(APInt(BitWidth, 0), 3637 APInt::getSignedMinValue(BitWidth))); 3638 else if (AllNonPos) 3639 ConservativeResult = ConservativeResult.intersectWith( 3640 ConstantRange(APInt::getSignedMinValue(BitWidth), 3641 APInt(BitWidth, 1))); 3642 } 3643 3644 // TODO: non-affine addrec 3645 if (AddRec->isAffine()) { 3646 Type *Ty = AddRec->getType(); 3647 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3648 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3649 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3650 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3651 3652 const SCEV *Start = AddRec->getStart(); 3653 const SCEV *Step = AddRec->getStepRecurrence(*this); 3654 3655 ConstantRange StartRange = getSignedRange(Start); 3656 ConstantRange StepRange = getSignedRange(Step); 3657 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3658 ConstantRange EndRange = 3659 StartRange.add(MaxBECountRange.multiply(StepRange)); 3660 3661 // Check for overflow. This must be done with ConstantRange arithmetic 3662 // because we could be called from within the ScalarEvolution overflow 3663 // checking code. 3664 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3665 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3666 ConstantRange ExtMaxBECountRange = 3667 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3668 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3669 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3670 ExtEndRange) 3671 return setSignedRange(AddRec, ConservativeResult); 3672 3673 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3674 EndRange.getSignedMin()); 3675 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3676 EndRange.getSignedMax()); 3677 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3678 return setSignedRange(AddRec, ConservativeResult); 3679 return setSignedRange(AddRec, 3680 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3681 } 3682 } 3683 3684 return setSignedRange(AddRec, ConservativeResult); 3685 } 3686 3687 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3688 // For a SCEVUnknown, ask ValueTracking. 3689 if (!U->getValue()->getType()->isIntegerTy() && !DL) 3690 return setSignedRange(U, ConservativeResult); 3691 unsigned NS = ComputeNumSignBits(U->getValue(), DL); 3692 if (NS <= 1) 3693 return setSignedRange(U, ConservativeResult); 3694 return setSignedRange(U, ConservativeResult.intersectWith( 3695 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3696 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3697 } 3698 3699 return setSignedRange(S, ConservativeResult); 3700 } 3701 3702 /// createSCEV - We know that there is no SCEV for the specified value. 3703 /// Analyze the expression. 3704 /// 3705 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3706 if (!isSCEVable(V->getType())) 3707 return getUnknown(V); 3708 3709 unsigned Opcode = Instruction::UserOp1; 3710 if (Instruction *I = dyn_cast<Instruction>(V)) { 3711 Opcode = I->getOpcode(); 3712 3713 // Don't attempt to analyze instructions in blocks that aren't 3714 // reachable. Such instructions don't matter, and they aren't required 3715 // to obey basic rules for definitions dominating uses which this 3716 // analysis depends on. 3717 if (!DT->isReachableFromEntry(I->getParent())) 3718 return getUnknown(V); 3719 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3720 Opcode = CE->getOpcode(); 3721 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3722 return getConstant(CI); 3723 else if (isa<ConstantPointerNull>(V)) 3724 return getConstant(V->getType(), 0); 3725 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3726 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3727 else 3728 return getUnknown(V); 3729 3730 Operator *U = cast<Operator>(V); 3731 switch (Opcode) { 3732 case Instruction::Add: { 3733 // The simple thing to do would be to just call getSCEV on both operands 3734 // and call getAddExpr with the result. However if we're looking at a 3735 // bunch of things all added together, this can be quite inefficient, 3736 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3737 // Instead, gather up all the operands and make a single getAddExpr call. 3738 // LLVM IR canonical form means we need only traverse the left operands. 3739 // 3740 // Don't apply this instruction's NSW or NUW flags to the new 3741 // expression. The instruction may be guarded by control flow that the 3742 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3743 // mapped to the same SCEV expression, and it would be incorrect to transfer 3744 // NSW/NUW semantics to those operations. 3745 SmallVector<const SCEV *, 4> AddOps; 3746 AddOps.push_back(getSCEV(U->getOperand(1))); 3747 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3748 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3749 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3750 break; 3751 U = cast<Operator>(Op); 3752 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3753 if (Opcode == Instruction::Sub) 3754 AddOps.push_back(getNegativeSCEV(Op1)); 3755 else 3756 AddOps.push_back(Op1); 3757 } 3758 AddOps.push_back(getSCEV(U->getOperand(0))); 3759 return getAddExpr(AddOps); 3760 } 3761 case Instruction::Mul: { 3762 // Don't transfer NSW/NUW for the same reason as AddExpr. 3763 SmallVector<const SCEV *, 4> MulOps; 3764 MulOps.push_back(getSCEV(U->getOperand(1))); 3765 for (Value *Op = U->getOperand(0); 3766 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3767 Op = U->getOperand(0)) { 3768 U = cast<Operator>(Op); 3769 MulOps.push_back(getSCEV(U->getOperand(1))); 3770 } 3771 MulOps.push_back(getSCEV(U->getOperand(0))); 3772 return getMulExpr(MulOps); 3773 } 3774 case Instruction::UDiv: 3775 return getUDivExpr(getSCEV(U->getOperand(0)), 3776 getSCEV(U->getOperand(1))); 3777 case Instruction::Sub: 3778 return getMinusSCEV(getSCEV(U->getOperand(0)), 3779 getSCEV(U->getOperand(1))); 3780 case Instruction::And: 3781 // For an expression like x&255 that merely masks off the high bits, 3782 // use zext(trunc(x)) as the SCEV expression. 3783 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3784 if (CI->isNullValue()) 3785 return getSCEV(U->getOperand(1)); 3786 if (CI->isAllOnesValue()) 3787 return getSCEV(U->getOperand(0)); 3788 const APInt &A = CI->getValue(); 3789 3790 // Instcombine's ShrinkDemandedConstant may strip bits out of 3791 // constants, obscuring what would otherwise be a low-bits mask. 3792 // Use computeKnownBits to compute what ShrinkDemandedConstant 3793 // knew about to reconstruct a low-bits mask value. 3794 unsigned LZ = A.countLeadingZeros(); 3795 unsigned TZ = A.countTrailingZeros(); 3796 unsigned BitWidth = A.getBitWidth(); 3797 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3798 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL); 3799 3800 APInt EffectiveMask = 3801 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 3802 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 3803 const SCEV *MulCount = getConstant( 3804 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 3805 return getMulExpr( 3806 getZeroExtendExpr( 3807 getTruncateExpr( 3808 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 3809 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 3810 U->getType()), 3811 MulCount); 3812 } 3813 } 3814 break; 3815 3816 case Instruction::Or: 3817 // If the RHS of the Or is a constant, we may have something like: 3818 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3819 // optimizations will transparently handle this case. 3820 // 3821 // In order for this transformation to be safe, the LHS must be of the 3822 // form X*(2^n) and the Or constant must be less than 2^n. 3823 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3824 const SCEV *LHS = getSCEV(U->getOperand(0)); 3825 const APInt &CIVal = CI->getValue(); 3826 if (GetMinTrailingZeros(LHS) >= 3827 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3828 // Build a plain add SCEV. 3829 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3830 // If the LHS of the add was an addrec and it has no-wrap flags, 3831 // transfer the no-wrap flags, since an or won't introduce a wrap. 3832 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3833 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3834 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3835 OldAR->getNoWrapFlags()); 3836 } 3837 return S; 3838 } 3839 } 3840 break; 3841 case Instruction::Xor: 3842 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3843 // If the RHS of the xor is a signbit, then this is just an add. 3844 // Instcombine turns add of signbit into xor as a strength reduction step. 3845 if (CI->getValue().isSignBit()) 3846 return getAddExpr(getSCEV(U->getOperand(0)), 3847 getSCEV(U->getOperand(1))); 3848 3849 // If the RHS of xor is -1, then this is a not operation. 3850 if (CI->isAllOnesValue()) 3851 return getNotSCEV(getSCEV(U->getOperand(0))); 3852 3853 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3854 // This is a variant of the check for xor with -1, and it handles 3855 // the case where instcombine has trimmed non-demanded bits out 3856 // of an xor with -1. 3857 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3858 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3859 if (BO->getOpcode() == Instruction::And && 3860 LCI->getValue() == CI->getValue()) 3861 if (const SCEVZeroExtendExpr *Z = 3862 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3863 Type *UTy = U->getType(); 3864 const SCEV *Z0 = Z->getOperand(); 3865 Type *Z0Ty = Z0->getType(); 3866 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3867 3868 // If C is a low-bits mask, the zero extend is serving to 3869 // mask off the high bits. Complement the operand and 3870 // re-apply the zext. 3871 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3872 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3873 3874 // If C is a single bit, it may be in the sign-bit position 3875 // before the zero-extend. In this case, represent the xor 3876 // using an add, which is equivalent, and re-apply the zext. 3877 APInt Trunc = CI->getValue().trunc(Z0TySize); 3878 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3879 Trunc.isSignBit()) 3880 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3881 UTy); 3882 } 3883 } 3884 break; 3885 3886 case Instruction::Shl: 3887 // Turn shift left of a constant amount into a multiply. 3888 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3889 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3890 3891 // If the shift count is not less than the bitwidth, the result of 3892 // the shift is undefined. Don't try to analyze it, because the 3893 // resolution chosen here may differ from the resolution chosen in 3894 // other parts of the compiler. 3895 if (SA->getValue().uge(BitWidth)) 3896 break; 3897 3898 Constant *X = ConstantInt::get(getContext(), 3899 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3900 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3901 } 3902 break; 3903 3904 case Instruction::LShr: 3905 // Turn logical shift right of a constant into a unsigned divide. 3906 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3907 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3908 3909 // If the shift count is not less than the bitwidth, the result of 3910 // the shift is undefined. Don't try to analyze it, because the 3911 // resolution chosen here may differ from the resolution chosen in 3912 // other parts of the compiler. 3913 if (SA->getValue().uge(BitWidth)) 3914 break; 3915 3916 Constant *X = ConstantInt::get(getContext(), 3917 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3918 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3919 } 3920 break; 3921 3922 case Instruction::AShr: 3923 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3924 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3925 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3926 if (L->getOpcode() == Instruction::Shl && 3927 L->getOperand(1) == U->getOperand(1)) { 3928 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3929 3930 // If the shift count is not less than the bitwidth, the result of 3931 // the shift is undefined. Don't try to analyze it, because the 3932 // resolution chosen here may differ from the resolution chosen in 3933 // other parts of the compiler. 3934 if (CI->getValue().uge(BitWidth)) 3935 break; 3936 3937 uint64_t Amt = BitWidth - CI->getZExtValue(); 3938 if (Amt == BitWidth) 3939 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3940 return 3941 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3942 IntegerType::get(getContext(), 3943 Amt)), 3944 U->getType()); 3945 } 3946 break; 3947 3948 case Instruction::Trunc: 3949 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3950 3951 case Instruction::ZExt: 3952 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3953 3954 case Instruction::SExt: 3955 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3956 3957 case Instruction::BitCast: 3958 // BitCasts are no-op casts so we just eliminate the cast. 3959 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3960 return getSCEV(U->getOperand(0)); 3961 break; 3962 3963 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3964 // lead to pointer expressions which cannot safely be expanded to GEPs, 3965 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3966 // simplifying integer expressions. 3967 3968 case Instruction::GetElementPtr: 3969 return createNodeForGEP(cast<GEPOperator>(U)); 3970 3971 case Instruction::PHI: 3972 return createNodeForPHI(cast<PHINode>(U)); 3973 3974 case Instruction::Select: 3975 // This could be a smax or umax that was lowered earlier. 3976 // Try to recover it. 3977 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3978 Value *LHS = ICI->getOperand(0); 3979 Value *RHS = ICI->getOperand(1); 3980 switch (ICI->getPredicate()) { 3981 case ICmpInst::ICMP_SLT: 3982 case ICmpInst::ICMP_SLE: 3983 std::swap(LHS, RHS); 3984 // fall through 3985 case ICmpInst::ICMP_SGT: 3986 case ICmpInst::ICMP_SGE: 3987 // a >s b ? a+x : b+x -> smax(a, b)+x 3988 // a >s b ? b+x : a+x -> smin(a, b)+x 3989 if (LHS->getType() == U->getType()) { 3990 const SCEV *LS = getSCEV(LHS); 3991 const SCEV *RS = getSCEV(RHS); 3992 const SCEV *LA = getSCEV(U->getOperand(1)); 3993 const SCEV *RA = getSCEV(U->getOperand(2)); 3994 const SCEV *LDiff = getMinusSCEV(LA, LS); 3995 const SCEV *RDiff = getMinusSCEV(RA, RS); 3996 if (LDiff == RDiff) 3997 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3998 LDiff = getMinusSCEV(LA, RS); 3999 RDiff = getMinusSCEV(RA, LS); 4000 if (LDiff == RDiff) 4001 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4002 } 4003 break; 4004 case ICmpInst::ICMP_ULT: 4005 case ICmpInst::ICMP_ULE: 4006 std::swap(LHS, RHS); 4007 // fall through 4008 case ICmpInst::ICMP_UGT: 4009 case ICmpInst::ICMP_UGE: 4010 // a >u b ? a+x : b+x -> umax(a, b)+x 4011 // a >u b ? b+x : a+x -> umin(a, b)+x 4012 if (LHS->getType() == U->getType()) { 4013 const SCEV *LS = getSCEV(LHS); 4014 const SCEV *RS = getSCEV(RHS); 4015 const SCEV *LA = getSCEV(U->getOperand(1)); 4016 const SCEV *RA = getSCEV(U->getOperand(2)); 4017 const SCEV *LDiff = getMinusSCEV(LA, LS); 4018 const SCEV *RDiff = getMinusSCEV(RA, RS); 4019 if (LDiff == RDiff) 4020 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4021 LDiff = getMinusSCEV(LA, RS); 4022 RDiff = getMinusSCEV(RA, LS); 4023 if (LDiff == RDiff) 4024 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4025 } 4026 break; 4027 case ICmpInst::ICMP_NE: 4028 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4029 if (LHS->getType() == U->getType() && 4030 isa<ConstantInt>(RHS) && 4031 cast<ConstantInt>(RHS)->isZero()) { 4032 const SCEV *One = getConstant(LHS->getType(), 1); 4033 const SCEV *LS = getSCEV(LHS); 4034 const SCEV *LA = getSCEV(U->getOperand(1)); 4035 const SCEV *RA = getSCEV(U->getOperand(2)); 4036 const SCEV *LDiff = getMinusSCEV(LA, LS); 4037 const SCEV *RDiff = getMinusSCEV(RA, One); 4038 if (LDiff == RDiff) 4039 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4040 } 4041 break; 4042 case ICmpInst::ICMP_EQ: 4043 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4044 if (LHS->getType() == U->getType() && 4045 isa<ConstantInt>(RHS) && 4046 cast<ConstantInt>(RHS)->isZero()) { 4047 const SCEV *One = getConstant(LHS->getType(), 1); 4048 const SCEV *LS = getSCEV(LHS); 4049 const SCEV *LA = getSCEV(U->getOperand(1)); 4050 const SCEV *RA = getSCEV(U->getOperand(2)); 4051 const SCEV *LDiff = getMinusSCEV(LA, One); 4052 const SCEV *RDiff = getMinusSCEV(RA, LS); 4053 if (LDiff == RDiff) 4054 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4055 } 4056 break; 4057 default: 4058 break; 4059 } 4060 } 4061 4062 default: // We cannot analyze this expression. 4063 break; 4064 } 4065 4066 return getUnknown(V); 4067 } 4068 4069 4070 4071 //===----------------------------------------------------------------------===// 4072 // Iteration Count Computation Code 4073 // 4074 4075 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4076 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4077 /// constant. Will also return 0 if the maximum trip count is very large (>= 4078 /// 2^32). 4079 /// 4080 /// This "trip count" assumes that control exits via ExitingBlock. More 4081 /// precisely, it is the number of times that control may reach ExitingBlock 4082 /// before taking the branch. For loops with multiple exits, it may not be the 4083 /// number times that the loop header executes because the loop may exit 4084 /// prematurely via another branch. 4085 /// 4086 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 4087 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 4088 /// loop exits. getExitCount() may return an exact count for this branch 4089 /// assuming no-signed-wrap. The number of well-defined iterations may actually 4090 /// be higher than this trip count if this exit test is skipped and the loop 4091 /// exits via a different branch. Ideally, getExitCount() would know whether it 4092 /// depends on a NSW assumption, and we would only fall back to a conservative 4093 /// trip count in that case. 4094 unsigned ScalarEvolution:: 4095 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 4096 const SCEVConstant *ExitCount = 4097 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 4098 if (!ExitCount) 4099 return 0; 4100 4101 ConstantInt *ExitConst = ExitCount->getValue(); 4102 4103 // Guard against huge trip counts. 4104 if (ExitConst->getValue().getActiveBits() > 32) 4105 return 0; 4106 4107 // In case of integer overflow, this returns 0, which is correct. 4108 return ((unsigned)ExitConst->getZExtValue()) + 1; 4109 } 4110 4111 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4112 /// trip count of this loop as a normal unsigned value, if possible. This 4113 /// means that the actual trip count is always a multiple of the returned 4114 /// value (don't forget the trip count could very well be zero as well!). 4115 /// 4116 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4117 /// multiple of a constant (which is also the case if the trip count is simply 4118 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4119 /// if the trip count is very large (>= 2^32). 4120 /// 4121 /// As explained in the comments for getSmallConstantTripCount, this assumes 4122 /// that control exits the loop via ExitingBlock. 4123 unsigned ScalarEvolution:: 4124 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4125 const SCEV *ExitCount = getBackedgeTakenCount(L); 4126 if (ExitCount == getCouldNotCompute()) 4127 return 1; 4128 4129 // Get the trip count from the BE count by adding 1. 4130 const SCEV *TCMul = getAddExpr(ExitCount, 4131 getConstant(ExitCount->getType(), 1)); 4132 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4133 // to factor simple cases. 4134 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4135 TCMul = Mul->getOperand(0); 4136 4137 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4138 if (!MulC) 4139 return 1; 4140 4141 ConstantInt *Result = MulC->getValue(); 4142 4143 // Guard against huge trip counts (this requires checking 4144 // for zero to handle the case where the trip count == -1 and the 4145 // addition wraps). 4146 if (!Result || Result->getValue().getActiveBits() > 32 || 4147 Result->getValue().getActiveBits() == 0) 4148 return 1; 4149 4150 return (unsigned)Result->getZExtValue(); 4151 } 4152 4153 // getExitCount - Get the expression for the number of loop iterations for which 4154 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4155 // SCEVCouldNotCompute. 4156 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4157 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4158 } 4159 4160 /// getBackedgeTakenCount - If the specified loop has a predictable 4161 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4162 /// object. The backedge-taken count is the number of times the loop header 4163 /// will be branched to from within the loop. This is one less than the 4164 /// trip count of the loop, since it doesn't count the first iteration, 4165 /// when the header is branched to from outside the loop. 4166 /// 4167 /// Note that it is not valid to call this method on a loop without a 4168 /// loop-invariant backedge-taken count (see 4169 /// hasLoopInvariantBackedgeTakenCount). 4170 /// 4171 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4172 return getBackedgeTakenInfo(L).getExact(this); 4173 } 4174 4175 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4176 /// return the least SCEV value that is known never to be less than the 4177 /// actual backedge taken count. 4178 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4179 return getBackedgeTakenInfo(L).getMax(this); 4180 } 4181 4182 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4183 /// onto the given Worklist. 4184 static void 4185 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4186 BasicBlock *Header = L->getHeader(); 4187 4188 // Push all Loop-header PHIs onto the Worklist stack. 4189 for (BasicBlock::iterator I = Header->begin(); 4190 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4191 Worklist.push_back(PN); 4192 } 4193 4194 const ScalarEvolution::BackedgeTakenInfo & 4195 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4196 // Initially insert an invalid entry for this loop. If the insertion 4197 // succeeds, proceed to actually compute a backedge-taken count and 4198 // update the value. The temporary CouldNotCompute value tells SCEV 4199 // code elsewhere that it shouldn't attempt to request a new 4200 // backedge-taken count, which could result in infinite recursion. 4201 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4202 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4203 if (!Pair.second) 4204 return Pair.first->second; 4205 4206 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4207 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4208 // must be cleared in this scope. 4209 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4210 4211 if (Result.getExact(this) != getCouldNotCompute()) { 4212 assert(isLoopInvariant(Result.getExact(this), L) && 4213 isLoopInvariant(Result.getMax(this), L) && 4214 "Computed backedge-taken count isn't loop invariant for loop!"); 4215 ++NumTripCountsComputed; 4216 } 4217 else if (Result.getMax(this) == getCouldNotCompute() && 4218 isa<PHINode>(L->getHeader()->begin())) { 4219 // Only count loops that have phi nodes as not being computable. 4220 ++NumTripCountsNotComputed; 4221 } 4222 4223 // Now that we know more about the trip count for this loop, forget any 4224 // existing SCEV values for PHI nodes in this loop since they are only 4225 // conservative estimates made without the benefit of trip count 4226 // information. This is similar to the code in forgetLoop, except that 4227 // it handles SCEVUnknown PHI nodes specially. 4228 if (Result.hasAnyInfo()) { 4229 SmallVector<Instruction *, 16> Worklist; 4230 PushLoopPHIs(L, Worklist); 4231 4232 SmallPtrSet<Instruction *, 8> Visited; 4233 while (!Worklist.empty()) { 4234 Instruction *I = Worklist.pop_back_val(); 4235 if (!Visited.insert(I)) continue; 4236 4237 ValueExprMapType::iterator It = 4238 ValueExprMap.find_as(static_cast<Value *>(I)); 4239 if (It != ValueExprMap.end()) { 4240 const SCEV *Old = It->second; 4241 4242 // SCEVUnknown for a PHI either means that it has an unrecognized 4243 // structure, or it's a PHI that's in the progress of being computed 4244 // by createNodeForPHI. In the former case, additional loop trip 4245 // count information isn't going to change anything. In the later 4246 // case, createNodeForPHI will perform the necessary updates on its 4247 // own when it gets to that point. 4248 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4249 forgetMemoizedResults(Old); 4250 ValueExprMap.erase(It); 4251 } 4252 if (PHINode *PN = dyn_cast<PHINode>(I)) 4253 ConstantEvolutionLoopExitValue.erase(PN); 4254 } 4255 4256 PushDefUseChildren(I, Worklist); 4257 } 4258 } 4259 4260 // Re-lookup the insert position, since the call to 4261 // ComputeBackedgeTakenCount above could result in a 4262 // recusive call to getBackedgeTakenInfo (on a different 4263 // loop), which would invalidate the iterator computed 4264 // earlier. 4265 return BackedgeTakenCounts.find(L)->second = Result; 4266 } 4267 4268 /// forgetLoop - This method should be called by the client when it has 4269 /// changed a loop in a way that may effect ScalarEvolution's ability to 4270 /// compute a trip count, or if the loop is deleted. 4271 void ScalarEvolution::forgetLoop(const Loop *L) { 4272 // Drop any stored trip count value. 4273 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4274 BackedgeTakenCounts.find(L); 4275 if (BTCPos != BackedgeTakenCounts.end()) { 4276 BTCPos->second.clear(); 4277 BackedgeTakenCounts.erase(BTCPos); 4278 } 4279 4280 // Drop information about expressions based on loop-header PHIs. 4281 SmallVector<Instruction *, 16> Worklist; 4282 PushLoopPHIs(L, Worklist); 4283 4284 SmallPtrSet<Instruction *, 8> Visited; 4285 while (!Worklist.empty()) { 4286 Instruction *I = Worklist.pop_back_val(); 4287 if (!Visited.insert(I)) continue; 4288 4289 ValueExprMapType::iterator It = 4290 ValueExprMap.find_as(static_cast<Value *>(I)); 4291 if (It != ValueExprMap.end()) { 4292 forgetMemoizedResults(It->second); 4293 ValueExprMap.erase(It); 4294 if (PHINode *PN = dyn_cast<PHINode>(I)) 4295 ConstantEvolutionLoopExitValue.erase(PN); 4296 } 4297 4298 PushDefUseChildren(I, Worklist); 4299 } 4300 4301 // Forget all contained loops too, to avoid dangling entries in the 4302 // ValuesAtScopes map. 4303 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4304 forgetLoop(*I); 4305 } 4306 4307 /// forgetValue - This method should be called by the client when it has 4308 /// changed a value in a way that may effect its value, or which may 4309 /// disconnect it from a def-use chain linking it to a loop. 4310 void ScalarEvolution::forgetValue(Value *V) { 4311 Instruction *I = dyn_cast<Instruction>(V); 4312 if (!I) return; 4313 4314 // Drop information about expressions based on loop-header PHIs. 4315 SmallVector<Instruction *, 16> Worklist; 4316 Worklist.push_back(I); 4317 4318 SmallPtrSet<Instruction *, 8> Visited; 4319 while (!Worklist.empty()) { 4320 I = Worklist.pop_back_val(); 4321 if (!Visited.insert(I)) continue; 4322 4323 ValueExprMapType::iterator It = 4324 ValueExprMap.find_as(static_cast<Value *>(I)); 4325 if (It != ValueExprMap.end()) { 4326 forgetMemoizedResults(It->second); 4327 ValueExprMap.erase(It); 4328 if (PHINode *PN = dyn_cast<PHINode>(I)) 4329 ConstantEvolutionLoopExitValue.erase(PN); 4330 } 4331 4332 PushDefUseChildren(I, Worklist); 4333 } 4334 } 4335 4336 /// getExact - Get the exact loop backedge taken count considering all loop 4337 /// exits. A computable result can only be return for loops with a single exit. 4338 /// Returning the minimum taken count among all exits is incorrect because one 4339 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4340 /// the limit of each loop test is never skipped. This is a valid assumption as 4341 /// long as the loop exits via that test. For precise results, it is the 4342 /// caller's responsibility to specify the relevant loop exit using 4343 /// getExact(ExitingBlock, SE). 4344 const SCEV * 4345 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4346 // If any exits were not computable, the loop is not computable. 4347 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4348 4349 // We need exactly one computable exit. 4350 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4351 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4352 4353 const SCEV *BECount = nullptr; 4354 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4355 ENT != nullptr; ENT = ENT->getNextExit()) { 4356 4357 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4358 4359 if (!BECount) 4360 BECount = ENT->ExactNotTaken; 4361 else if (BECount != ENT->ExactNotTaken) 4362 return SE->getCouldNotCompute(); 4363 } 4364 assert(BECount && "Invalid not taken count for loop exit"); 4365 return BECount; 4366 } 4367 4368 /// getExact - Get the exact not taken count for this loop exit. 4369 const SCEV * 4370 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4371 ScalarEvolution *SE) const { 4372 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4373 ENT != nullptr; ENT = ENT->getNextExit()) { 4374 4375 if (ENT->ExitingBlock == ExitingBlock) 4376 return ENT->ExactNotTaken; 4377 } 4378 return SE->getCouldNotCompute(); 4379 } 4380 4381 /// getMax - Get the max backedge taken count for the loop. 4382 const SCEV * 4383 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4384 return Max ? Max : SE->getCouldNotCompute(); 4385 } 4386 4387 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4388 ScalarEvolution *SE) const { 4389 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4390 return true; 4391 4392 if (!ExitNotTaken.ExitingBlock) 4393 return false; 4394 4395 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4396 ENT != nullptr; ENT = ENT->getNextExit()) { 4397 4398 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4399 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4400 return true; 4401 } 4402 } 4403 return false; 4404 } 4405 4406 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4407 /// computable exit into a persistent ExitNotTakenInfo array. 4408 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4409 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4410 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4411 4412 if (!Complete) 4413 ExitNotTaken.setIncomplete(); 4414 4415 unsigned NumExits = ExitCounts.size(); 4416 if (NumExits == 0) return; 4417 4418 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4419 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4420 if (NumExits == 1) return; 4421 4422 // Handle the rare case of multiple computable exits. 4423 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4424 4425 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4426 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4427 PrevENT->setNextExit(ENT); 4428 ENT->ExitingBlock = ExitCounts[i].first; 4429 ENT->ExactNotTaken = ExitCounts[i].second; 4430 } 4431 } 4432 4433 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4434 void ScalarEvolution::BackedgeTakenInfo::clear() { 4435 ExitNotTaken.ExitingBlock = nullptr; 4436 ExitNotTaken.ExactNotTaken = nullptr; 4437 delete[] ExitNotTaken.getNextExit(); 4438 } 4439 4440 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4441 /// of the specified loop will execute. 4442 ScalarEvolution::BackedgeTakenInfo 4443 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4444 SmallVector<BasicBlock *, 8> ExitingBlocks; 4445 L->getExitingBlocks(ExitingBlocks); 4446 4447 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4448 bool CouldComputeBECount = true; 4449 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4450 const SCEV *MustExitMaxBECount = nullptr; 4451 const SCEV *MayExitMaxBECount = nullptr; 4452 4453 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4454 // and compute maxBECount. 4455 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4456 BasicBlock *ExitBB = ExitingBlocks[i]; 4457 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4458 4459 // 1. For each exit that can be computed, add an entry to ExitCounts. 4460 // CouldComputeBECount is true only if all exits can be computed. 4461 if (EL.Exact == getCouldNotCompute()) 4462 // We couldn't compute an exact value for this exit, so 4463 // we won't be able to compute an exact value for the loop. 4464 CouldComputeBECount = false; 4465 else 4466 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4467 4468 // 2. Derive the loop's MaxBECount from each exit's max number of 4469 // non-exiting iterations. Partition the loop exits into two kinds: 4470 // LoopMustExits and LoopMayExits. 4471 // 4472 // A LoopMustExit meets two requirements: 4473 // 4474 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit 4475 // test condition cannot be skipped (the tested variable has unit stride or 4476 // the test is less-than or greater-than, rather than a strict inequality). 4477 // 4478 // (b) It must dominate the loop latch, hence must be tested on every loop 4479 // iteration. 4480 // 4481 // If any computable LoopMustExit is found, then MaxBECount is the minimum 4482 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is 4483 // conservatively the maximum EL.Max, where CouldNotCompute is considered 4484 // greater than any computable EL.Max. 4485 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch && 4486 DT->dominates(ExitBB, Latch)) { 4487 if (!MustExitMaxBECount) 4488 MustExitMaxBECount = EL.Max; 4489 else { 4490 MustExitMaxBECount = 4491 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4492 } 4493 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4494 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4495 MayExitMaxBECount = EL.Max; 4496 else { 4497 MayExitMaxBECount = 4498 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4499 } 4500 } 4501 } 4502 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4503 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4504 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4505 } 4506 4507 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4508 /// loop will execute if it exits via the specified block. 4509 ScalarEvolution::ExitLimit 4510 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4511 4512 // Okay, we've chosen an exiting block. See what condition causes us to 4513 // exit at this block and remember the exit block and whether all other targets 4514 // lead to the loop header. 4515 bool MustExecuteLoopHeader = true; 4516 BasicBlock *Exit = nullptr; 4517 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4518 SI != SE; ++SI) 4519 if (!L->contains(*SI)) { 4520 if (Exit) // Multiple exit successors. 4521 return getCouldNotCompute(); 4522 Exit = *SI; 4523 } else if (*SI != L->getHeader()) { 4524 MustExecuteLoopHeader = false; 4525 } 4526 4527 // At this point, we know we have a conditional branch that determines whether 4528 // the loop is exited. However, we don't know if the branch is executed each 4529 // time through the loop. If not, then the execution count of the branch will 4530 // not be equal to the trip count of the loop. 4531 // 4532 // Currently we check for this by checking to see if the Exit branch goes to 4533 // the loop header. If so, we know it will always execute the same number of 4534 // times as the loop. We also handle the case where the exit block *is* the 4535 // loop header. This is common for un-rotated loops. 4536 // 4537 // If both of those tests fail, walk up the unique predecessor chain to the 4538 // header, stopping if there is an edge that doesn't exit the loop. If the 4539 // header is reached, the execution count of the branch will be equal to the 4540 // trip count of the loop. 4541 // 4542 // More extensive analysis could be done to handle more cases here. 4543 // 4544 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4545 // The simple checks failed, try climbing the unique predecessor chain 4546 // up to the header. 4547 bool Ok = false; 4548 for (BasicBlock *BB = ExitingBlock; BB; ) { 4549 BasicBlock *Pred = BB->getUniquePredecessor(); 4550 if (!Pred) 4551 return getCouldNotCompute(); 4552 TerminatorInst *PredTerm = Pred->getTerminator(); 4553 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4554 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4555 if (PredSucc == BB) 4556 continue; 4557 // If the predecessor has a successor that isn't BB and isn't 4558 // outside the loop, assume the worst. 4559 if (L->contains(PredSucc)) 4560 return getCouldNotCompute(); 4561 } 4562 if (Pred == L->getHeader()) { 4563 Ok = true; 4564 break; 4565 } 4566 BB = Pred; 4567 } 4568 if (!Ok) 4569 return getCouldNotCompute(); 4570 } 4571 4572 TerminatorInst *Term = ExitingBlock->getTerminator(); 4573 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4574 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4575 // Proceed to the next level to examine the exit condition expression. 4576 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4577 BI->getSuccessor(1), 4578 /*IsSubExpr=*/false); 4579 } 4580 4581 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4582 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4583 /*IsSubExpr=*/false); 4584 4585 return getCouldNotCompute(); 4586 } 4587 4588 /// ComputeExitLimitFromCond - Compute the number of times the 4589 /// backedge of the specified loop will execute if its exit condition 4590 /// were a conditional branch of ExitCond, TBB, and FBB. 4591 /// 4592 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4593 /// branch. In this case, we cannot assume that the loop only exits when the 4594 /// condition is true and cannot infer that failing to meet the condition prior 4595 /// to integer wraparound results in undefined behavior. 4596 ScalarEvolution::ExitLimit 4597 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4598 Value *ExitCond, 4599 BasicBlock *TBB, 4600 BasicBlock *FBB, 4601 bool IsSubExpr) { 4602 // Check if the controlling expression for this loop is an And or Or. 4603 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4604 if (BO->getOpcode() == Instruction::And) { 4605 // Recurse on the operands of the and. 4606 bool EitherMayExit = L->contains(TBB); 4607 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4608 IsSubExpr || EitherMayExit); 4609 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4610 IsSubExpr || EitherMayExit); 4611 const SCEV *BECount = getCouldNotCompute(); 4612 const SCEV *MaxBECount = getCouldNotCompute(); 4613 bool MustExit = false; 4614 if (EitherMayExit) { 4615 // Both conditions must be true for the loop to continue executing. 4616 // Choose the less conservative count. 4617 if (EL0.Exact == getCouldNotCompute() || 4618 EL1.Exact == getCouldNotCompute()) 4619 BECount = getCouldNotCompute(); 4620 else 4621 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4622 if (EL0.Max == getCouldNotCompute()) 4623 MaxBECount = EL1.Max; 4624 else if (EL1.Max == getCouldNotCompute()) 4625 MaxBECount = EL0.Max; 4626 else 4627 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4628 MustExit = EL0.MustExit || EL1.MustExit; 4629 } else { 4630 // Both conditions must be true at the same time for the loop to exit. 4631 // For now, be conservative. 4632 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4633 if (EL0.Max == EL1.Max) 4634 MaxBECount = EL0.Max; 4635 if (EL0.Exact == EL1.Exact) 4636 BECount = EL0.Exact; 4637 MustExit = EL0.MustExit && EL1.MustExit; 4638 } 4639 4640 return ExitLimit(BECount, MaxBECount, MustExit); 4641 } 4642 if (BO->getOpcode() == Instruction::Or) { 4643 // Recurse on the operands of the or. 4644 bool EitherMayExit = L->contains(FBB); 4645 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4646 IsSubExpr || EitherMayExit); 4647 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4648 IsSubExpr || EitherMayExit); 4649 const SCEV *BECount = getCouldNotCompute(); 4650 const SCEV *MaxBECount = getCouldNotCompute(); 4651 bool MustExit = false; 4652 if (EitherMayExit) { 4653 // Both conditions must be false for the loop to continue executing. 4654 // Choose the less conservative count. 4655 if (EL0.Exact == getCouldNotCompute() || 4656 EL1.Exact == getCouldNotCompute()) 4657 BECount = getCouldNotCompute(); 4658 else 4659 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4660 if (EL0.Max == getCouldNotCompute()) 4661 MaxBECount = EL1.Max; 4662 else if (EL1.Max == getCouldNotCompute()) 4663 MaxBECount = EL0.Max; 4664 else 4665 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4666 MustExit = EL0.MustExit || EL1.MustExit; 4667 } else { 4668 // Both conditions must be false at the same time for the loop to exit. 4669 // For now, be conservative. 4670 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4671 if (EL0.Max == EL1.Max) 4672 MaxBECount = EL0.Max; 4673 if (EL0.Exact == EL1.Exact) 4674 BECount = EL0.Exact; 4675 MustExit = EL0.MustExit && EL1.MustExit; 4676 } 4677 4678 return ExitLimit(BECount, MaxBECount, MustExit); 4679 } 4680 } 4681 4682 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4683 // Proceed to the next level to examine the icmp. 4684 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4685 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4686 4687 // Check for a constant condition. These are normally stripped out by 4688 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4689 // preserve the CFG and is temporarily leaving constant conditions 4690 // in place. 4691 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4692 if (L->contains(FBB) == !CI->getZExtValue()) 4693 // The backedge is always taken. 4694 return getCouldNotCompute(); 4695 else 4696 // The backedge is never taken. 4697 return getConstant(CI->getType(), 0); 4698 } 4699 4700 // If it's not an integer or pointer comparison then compute it the hard way. 4701 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4702 } 4703 4704 /// ComputeExitLimitFromICmp - Compute the number of times the 4705 /// backedge of the specified loop will execute if its exit condition 4706 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4707 ScalarEvolution::ExitLimit 4708 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4709 ICmpInst *ExitCond, 4710 BasicBlock *TBB, 4711 BasicBlock *FBB, 4712 bool IsSubExpr) { 4713 4714 // If the condition was exit on true, convert the condition to exit on false 4715 ICmpInst::Predicate Cond; 4716 if (!L->contains(FBB)) 4717 Cond = ExitCond->getPredicate(); 4718 else 4719 Cond = ExitCond->getInversePredicate(); 4720 4721 // Handle common loops like: for (X = "string"; *X; ++X) 4722 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4723 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4724 ExitLimit ItCnt = 4725 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4726 if (ItCnt.hasAnyInfo()) 4727 return ItCnt; 4728 } 4729 4730 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4731 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4732 4733 // Try to evaluate any dependencies out of the loop. 4734 LHS = getSCEVAtScope(LHS, L); 4735 RHS = getSCEVAtScope(RHS, L); 4736 4737 // At this point, we would like to compute how many iterations of the 4738 // loop the predicate will return true for these inputs. 4739 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4740 // If there is a loop-invariant, force it into the RHS. 4741 std::swap(LHS, RHS); 4742 Cond = ICmpInst::getSwappedPredicate(Cond); 4743 } 4744 4745 // Simplify the operands before analyzing them. 4746 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4747 4748 // If we have a comparison of a chrec against a constant, try to use value 4749 // ranges to answer this query. 4750 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4751 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4752 if (AddRec->getLoop() == L) { 4753 // Form the constant range. 4754 ConstantRange CompRange( 4755 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4756 4757 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4758 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4759 } 4760 4761 switch (Cond) { 4762 case ICmpInst::ICMP_NE: { // while (X != Y) 4763 // Convert to: while (X-Y != 0) 4764 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4765 if (EL.hasAnyInfo()) return EL; 4766 break; 4767 } 4768 case ICmpInst::ICMP_EQ: { // while (X == Y) 4769 // Convert to: while (X-Y == 0) 4770 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4771 if (EL.hasAnyInfo()) return EL; 4772 break; 4773 } 4774 case ICmpInst::ICMP_SLT: 4775 case ICmpInst::ICMP_ULT: { // while (X < Y) 4776 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 4777 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 4778 if (EL.hasAnyInfo()) return EL; 4779 break; 4780 } 4781 case ICmpInst::ICMP_SGT: 4782 case ICmpInst::ICMP_UGT: { // while (X > Y) 4783 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 4784 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 4785 if (EL.hasAnyInfo()) return EL; 4786 break; 4787 } 4788 default: 4789 #if 0 4790 dbgs() << "ComputeBackedgeTakenCount "; 4791 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4792 dbgs() << "[unsigned] "; 4793 dbgs() << *LHS << " " 4794 << Instruction::getOpcodeName(Instruction::ICmp) 4795 << " " << *RHS << "\n"; 4796 #endif 4797 break; 4798 } 4799 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4800 } 4801 4802 ScalarEvolution::ExitLimit 4803 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 4804 SwitchInst *Switch, 4805 BasicBlock *ExitingBlock, 4806 bool IsSubExpr) { 4807 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 4808 4809 // Give up if the exit is the default dest of a switch. 4810 if (Switch->getDefaultDest() == ExitingBlock) 4811 return getCouldNotCompute(); 4812 4813 assert(L->contains(Switch->getDefaultDest()) && 4814 "Default case must not exit the loop!"); 4815 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 4816 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 4817 4818 // while (X != Y) --> while (X-Y != 0) 4819 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4820 if (EL.hasAnyInfo()) 4821 return EL; 4822 4823 return getCouldNotCompute(); 4824 } 4825 4826 static ConstantInt * 4827 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4828 ScalarEvolution &SE) { 4829 const SCEV *InVal = SE.getConstant(C); 4830 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4831 assert(isa<SCEVConstant>(Val) && 4832 "Evaluation of SCEV at constant didn't fold correctly?"); 4833 return cast<SCEVConstant>(Val)->getValue(); 4834 } 4835 4836 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4837 /// 'icmp op load X, cst', try to see if we can compute the backedge 4838 /// execution count. 4839 ScalarEvolution::ExitLimit 4840 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4841 LoadInst *LI, 4842 Constant *RHS, 4843 const Loop *L, 4844 ICmpInst::Predicate predicate) { 4845 4846 if (LI->isVolatile()) return getCouldNotCompute(); 4847 4848 // Check to see if the loaded pointer is a getelementptr of a global. 4849 // TODO: Use SCEV instead of manually grubbing with GEPs. 4850 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4851 if (!GEP) return getCouldNotCompute(); 4852 4853 // Make sure that it is really a constant global we are gepping, with an 4854 // initializer, and make sure the first IDX is really 0. 4855 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4856 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4857 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4858 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4859 return getCouldNotCompute(); 4860 4861 // Okay, we allow one non-constant index into the GEP instruction. 4862 Value *VarIdx = nullptr; 4863 std::vector<Constant*> Indexes; 4864 unsigned VarIdxNum = 0; 4865 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4866 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4867 Indexes.push_back(CI); 4868 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4869 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4870 VarIdx = GEP->getOperand(i); 4871 VarIdxNum = i-2; 4872 Indexes.push_back(nullptr); 4873 } 4874 4875 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4876 if (!VarIdx) 4877 return getCouldNotCompute(); 4878 4879 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4880 // Check to see if X is a loop variant variable value now. 4881 const SCEV *Idx = getSCEV(VarIdx); 4882 Idx = getSCEVAtScope(Idx, L); 4883 4884 // We can only recognize very limited forms of loop index expressions, in 4885 // particular, only affine AddRec's like {C1,+,C2}. 4886 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4887 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4888 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4889 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4890 return getCouldNotCompute(); 4891 4892 unsigned MaxSteps = MaxBruteForceIterations; 4893 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4894 ConstantInt *ItCst = ConstantInt::get( 4895 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4896 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4897 4898 // Form the GEP offset. 4899 Indexes[VarIdxNum] = Val; 4900 4901 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4902 Indexes); 4903 if (!Result) break; // Cannot compute! 4904 4905 // Evaluate the condition for this iteration. 4906 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4907 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4908 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4909 #if 0 4910 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4911 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4912 << "***\n"; 4913 #endif 4914 ++NumArrayLenItCounts; 4915 return getConstant(ItCst); // Found terminating iteration! 4916 } 4917 } 4918 return getCouldNotCompute(); 4919 } 4920 4921 4922 /// CanConstantFold - Return true if we can constant fold an instruction of the 4923 /// specified type, assuming that all operands were constants. 4924 static bool CanConstantFold(const Instruction *I) { 4925 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4926 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4927 isa<LoadInst>(I)) 4928 return true; 4929 4930 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4931 if (const Function *F = CI->getCalledFunction()) 4932 return canConstantFoldCallTo(F); 4933 return false; 4934 } 4935 4936 /// Determine whether this instruction can constant evolve within this loop 4937 /// assuming its operands can all constant evolve. 4938 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4939 // An instruction outside of the loop can't be derived from a loop PHI. 4940 if (!L->contains(I)) return false; 4941 4942 if (isa<PHINode>(I)) { 4943 if (L->getHeader() == I->getParent()) 4944 return true; 4945 else 4946 // We don't currently keep track of the control flow needed to evaluate 4947 // PHIs, so we cannot handle PHIs inside of loops. 4948 return false; 4949 } 4950 4951 // If we won't be able to constant fold this expression even if the operands 4952 // are constants, bail early. 4953 return CanConstantFold(I); 4954 } 4955 4956 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4957 /// recursing through each instruction operand until reaching a loop header phi. 4958 static PHINode * 4959 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4960 DenseMap<Instruction *, PHINode *> &PHIMap) { 4961 4962 // Otherwise, we can evaluate this instruction if all of its operands are 4963 // constant or derived from a PHI node themselves. 4964 PHINode *PHI = nullptr; 4965 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4966 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4967 4968 if (isa<Constant>(*OpI)) continue; 4969 4970 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4971 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 4972 4973 PHINode *P = dyn_cast<PHINode>(OpInst); 4974 if (!P) 4975 // If this operand is already visited, reuse the prior result. 4976 // We may have P != PHI if this is the deepest point at which the 4977 // inconsistent paths meet. 4978 P = PHIMap.lookup(OpInst); 4979 if (!P) { 4980 // Recurse and memoize the results, whether a phi is found or not. 4981 // This recursive call invalidates pointers into PHIMap. 4982 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4983 PHIMap[OpInst] = P; 4984 } 4985 if (!P) 4986 return nullptr; // Not evolving from PHI 4987 if (PHI && PHI != P) 4988 return nullptr; // Evolving from multiple different PHIs. 4989 PHI = P; 4990 } 4991 // This is a expression evolving from a constant PHI! 4992 return PHI; 4993 } 4994 4995 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4996 /// in the loop that V is derived from. We allow arbitrary operations along the 4997 /// way, but the operands of an operation must either be constants or a value 4998 /// derived from a constant PHI. If this expression does not fit with these 4999 /// constraints, return null. 5000 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5001 Instruction *I = dyn_cast<Instruction>(V); 5002 if (!I || !canConstantEvolve(I, L)) return nullptr; 5003 5004 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5005 return PN; 5006 } 5007 5008 // Record non-constant instructions contained by the loop. 5009 DenseMap<Instruction *, PHINode *> PHIMap; 5010 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5011 } 5012 5013 /// EvaluateExpression - Given an expression that passes the 5014 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5015 /// in the loop has the value PHIVal. If we can't fold this expression for some 5016 /// reason, return null. 5017 static Constant *EvaluateExpression(Value *V, const Loop *L, 5018 DenseMap<Instruction *, Constant *> &Vals, 5019 const DataLayout *DL, 5020 const TargetLibraryInfo *TLI) { 5021 // Convenient constant check, but redundant for recursive calls. 5022 if (Constant *C = dyn_cast<Constant>(V)) return C; 5023 Instruction *I = dyn_cast<Instruction>(V); 5024 if (!I) return nullptr; 5025 5026 if (Constant *C = Vals.lookup(I)) return C; 5027 5028 // An instruction inside the loop depends on a value outside the loop that we 5029 // weren't given a mapping for, or a value such as a call inside the loop. 5030 if (!canConstantEvolve(I, L)) return nullptr; 5031 5032 // An unmapped PHI can be due to a branch or another loop inside this loop, 5033 // or due to this not being the initial iteration through a loop where we 5034 // couldn't compute the evolution of this particular PHI last time. 5035 if (isa<PHINode>(I)) return nullptr; 5036 5037 std::vector<Constant*> Operands(I->getNumOperands()); 5038 5039 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5040 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5041 if (!Operand) { 5042 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5043 if (!Operands[i]) return nullptr; 5044 continue; 5045 } 5046 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5047 Vals[Operand] = C; 5048 if (!C) return nullptr; 5049 Operands[i] = C; 5050 } 5051 5052 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5053 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5054 Operands[1], DL, TLI); 5055 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5056 if (!LI->isVolatile()) 5057 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5058 } 5059 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5060 TLI); 5061 } 5062 5063 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5064 /// in the header of its containing loop, we know the loop executes a 5065 /// constant number of times, and the PHI node is just a recurrence 5066 /// involving constants, fold it. 5067 Constant * 5068 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5069 const APInt &BEs, 5070 const Loop *L) { 5071 DenseMap<PHINode*, Constant*>::const_iterator I = 5072 ConstantEvolutionLoopExitValue.find(PN); 5073 if (I != ConstantEvolutionLoopExitValue.end()) 5074 return I->second; 5075 5076 if (BEs.ugt(MaxBruteForceIterations)) 5077 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5078 5079 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5080 5081 DenseMap<Instruction *, Constant *> CurrentIterVals; 5082 BasicBlock *Header = L->getHeader(); 5083 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5084 5085 // Since the loop is canonicalized, the PHI node must have two entries. One 5086 // entry must be a constant (coming in from outside of the loop), and the 5087 // second must be derived from the same PHI. 5088 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5089 PHINode *PHI = nullptr; 5090 for (BasicBlock::iterator I = Header->begin(); 5091 (PHI = dyn_cast<PHINode>(I)); ++I) { 5092 Constant *StartCST = 5093 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5094 if (!StartCST) continue; 5095 CurrentIterVals[PHI] = StartCST; 5096 } 5097 if (!CurrentIterVals.count(PN)) 5098 return RetVal = nullptr; 5099 5100 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5101 5102 // Execute the loop symbolically to determine the exit value. 5103 if (BEs.getActiveBits() >= 32) 5104 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5105 5106 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5107 unsigned IterationNum = 0; 5108 for (; ; ++IterationNum) { 5109 if (IterationNum == NumIterations) 5110 return RetVal = CurrentIterVals[PN]; // Got exit value! 5111 5112 // Compute the value of the PHIs for the next iteration. 5113 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5114 DenseMap<Instruction *, Constant *> NextIterVals; 5115 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5116 TLI); 5117 if (!NextPHI) 5118 return nullptr; // Couldn't evaluate! 5119 NextIterVals[PN] = NextPHI; 5120 5121 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5122 5123 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5124 // cease to be able to evaluate one of them or if they stop evolving, 5125 // because that doesn't necessarily prevent us from computing PN. 5126 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5127 for (DenseMap<Instruction *, Constant *>::const_iterator 5128 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5129 PHINode *PHI = dyn_cast<PHINode>(I->first); 5130 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5131 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5132 } 5133 // We use two distinct loops because EvaluateExpression may invalidate any 5134 // iterators into CurrentIterVals. 5135 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5136 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5137 PHINode *PHI = I->first; 5138 Constant *&NextPHI = NextIterVals[PHI]; 5139 if (!NextPHI) { // Not already computed. 5140 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5141 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5142 } 5143 if (NextPHI != I->second) 5144 StoppedEvolving = false; 5145 } 5146 5147 // If all entries in CurrentIterVals == NextIterVals then we can stop 5148 // iterating, the loop can't continue to change. 5149 if (StoppedEvolving) 5150 return RetVal = CurrentIterVals[PN]; 5151 5152 CurrentIterVals.swap(NextIterVals); 5153 } 5154 } 5155 5156 /// ComputeExitCountExhaustively - If the loop is known to execute a 5157 /// constant number of times (the condition evolves only from constants), 5158 /// try to evaluate a few iterations of the loop until we get the exit 5159 /// condition gets a value of ExitWhen (true or false). If we cannot 5160 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5161 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5162 Value *Cond, 5163 bool ExitWhen) { 5164 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5165 if (!PN) return getCouldNotCompute(); 5166 5167 // If the loop is canonicalized, the PHI will have exactly two entries. 5168 // That's the only form we support here. 5169 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5170 5171 DenseMap<Instruction *, Constant *> CurrentIterVals; 5172 BasicBlock *Header = L->getHeader(); 5173 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5174 5175 // One entry must be a constant (coming in from outside of the loop), and the 5176 // second must be derived from the same PHI. 5177 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5178 PHINode *PHI = nullptr; 5179 for (BasicBlock::iterator I = Header->begin(); 5180 (PHI = dyn_cast<PHINode>(I)); ++I) { 5181 Constant *StartCST = 5182 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5183 if (!StartCST) continue; 5184 CurrentIterVals[PHI] = StartCST; 5185 } 5186 if (!CurrentIterVals.count(PN)) 5187 return getCouldNotCompute(); 5188 5189 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5190 // the loop symbolically to determine when the condition gets a value of 5191 // "ExitWhen". 5192 5193 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5194 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5195 ConstantInt *CondVal = 5196 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5197 DL, TLI)); 5198 5199 // Couldn't symbolically evaluate. 5200 if (!CondVal) return getCouldNotCompute(); 5201 5202 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5203 ++NumBruteForceTripCountsComputed; 5204 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5205 } 5206 5207 // Update all the PHI nodes for the next iteration. 5208 DenseMap<Instruction *, Constant *> NextIterVals; 5209 5210 // Create a list of which PHIs we need to compute. We want to do this before 5211 // calling EvaluateExpression on them because that may invalidate iterators 5212 // into CurrentIterVals. 5213 SmallVector<PHINode *, 8> PHIsToCompute; 5214 for (DenseMap<Instruction *, Constant *>::const_iterator 5215 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5216 PHINode *PHI = dyn_cast<PHINode>(I->first); 5217 if (!PHI || PHI->getParent() != Header) continue; 5218 PHIsToCompute.push_back(PHI); 5219 } 5220 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5221 E = PHIsToCompute.end(); I != E; ++I) { 5222 PHINode *PHI = *I; 5223 Constant *&NextPHI = NextIterVals[PHI]; 5224 if (NextPHI) continue; // Already computed! 5225 5226 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5227 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5228 } 5229 CurrentIterVals.swap(NextIterVals); 5230 } 5231 5232 // Too many iterations were needed to evaluate. 5233 return getCouldNotCompute(); 5234 } 5235 5236 /// getSCEVAtScope - Return a SCEV expression for the specified value 5237 /// at the specified scope in the program. The L value specifies a loop 5238 /// nest to evaluate the expression at, where null is the top-level or a 5239 /// specified loop is immediately inside of the loop. 5240 /// 5241 /// This method can be used to compute the exit value for a variable defined 5242 /// in a loop by querying what the value will hold in the parent loop. 5243 /// 5244 /// In the case that a relevant loop exit value cannot be computed, the 5245 /// original value V is returned. 5246 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5247 // Check to see if we've folded this expression at this loop before. 5248 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5249 for (unsigned u = 0; u < Values.size(); u++) { 5250 if (Values[u].first == L) 5251 return Values[u].second ? Values[u].second : V; 5252 } 5253 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5254 // Otherwise compute it. 5255 const SCEV *C = computeSCEVAtScope(V, L); 5256 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5257 for (unsigned u = Values2.size(); u > 0; u--) { 5258 if (Values2[u - 1].first == L) { 5259 Values2[u - 1].second = C; 5260 break; 5261 } 5262 } 5263 return C; 5264 } 5265 5266 /// This builds up a Constant using the ConstantExpr interface. That way, we 5267 /// will return Constants for objects which aren't represented by a 5268 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5269 /// Returns NULL if the SCEV isn't representable as a Constant. 5270 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5271 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5272 case scCouldNotCompute: 5273 case scAddRecExpr: 5274 break; 5275 case scConstant: 5276 return cast<SCEVConstant>(V)->getValue(); 5277 case scUnknown: 5278 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5279 case scSignExtend: { 5280 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5281 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5282 return ConstantExpr::getSExt(CastOp, SS->getType()); 5283 break; 5284 } 5285 case scZeroExtend: { 5286 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5287 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5288 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5289 break; 5290 } 5291 case scTruncate: { 5292 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5293 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5294 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5295 break; 5296 } 5297 case scAddExpr: { 5298 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5299 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5300 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5301 unsigned AS = PTy->getAddressSpace(); 5302 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5303 C = ConstantExpr::getBitCast(C, DestPtrTy); 5304 } 5305 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5306 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5307 if (!C2) return nullptr; 5308 5309 // First pointer! 5310 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5311 unsigned AS = C2->getType()->getPointerAddressSpace(); 5312 std::swap(C, C2); 5313 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5314 // The offsets have been converted to bytes. We can add bytes to an 5315 // i8* by GEP with the byte count in the first index. 5316 C = ConstantExpr::getBitCast(C, DestPtrTy); 5317 } 5318 5319 // Don't bother trying to sum two pointers. We probably can't 5320 // statically compute a load that results from it anyway. 5321 if (C2->getType()->isPointerTy()) 5322 return nullptr; 5323 5324 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5325 if (PTy->getElementType()->isStructTy()) 5326 C2 = ConstantExpr::getIntegerCast( 5327 C2, Type::getInt32Ty(C->getContext()), true); 5328 C = ConstantExpr::getGetElementPtr(C, C2); 5329 } else 5330 C = ConstantExpr::getAdd(C, C2); 5331 } 5332 return C; 5333 } 5334 break; 5335 } 5336 case scMulExpr: { 5337 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5338 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5339 // Don't bother with pointers at all. 5340 if (C->getType()->isPointerTy()) return nullptr; 5341 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5342 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5343 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5344 C = ConstantExpr::getMul(C, C2); 5345 } 5346 return C; 5347 } 5348 break; 5349 } 5350 case scUDivExpr: { 5351 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5352 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5353 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5354 if (LHS->getType() == RHS->getType()) 5355 return ConstantExpr::getUDiv(LHS, RHS); 5356 break; 5357 } 5358 case scSMaxExpr: 5359 case scUMaxExpr: 5360 break; // TODO: smax, umax. 5361 } 5362 return nullptr; 5363 } 5364 5365 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5366 if (isa<SCEVConstant>(V)) return V; 5367 5368 // If this instruction is evolved from a constant-evolving PHI, compute the 5369 // exit value from the loop without using SCEVs. 5370 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5371 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5372 const Loop *LI = (*this->LI)[I->getParent()]; 5373 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5374 if (PHINode *PN = dyn_cast<PHINode>(I)) 5375 if (PN->getParent() == LI->getHeader()) { 5376 // Okay, there is no closed form solution for the PHI node. Check 5377 // to see if the loop that contains it has a known backedge-taken 5378 // count. If so, we may be able to force computation of the exit 5379 // value. 5380 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5381 if (const SCEVConstant *BTCC = 5382 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5383 // Okay, we know how many times the containing loop executes. If 5384 // this is a constant evolving PHI node, get the final value at 5385 // the specified iteration number. 5386 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5387 BTCC->getValue()->getValue(), 5388 LI); 5389 if (RV) return getSCEV(RV); 5390 } 5391 } 5392 5393 // Okay, this is an expression that we cannot symbolically evaluate 5394 // into a SCEV. Check to see if it's possible to symbolically evaluate 5395 // the arguments into constants, and if so, try to constant propagate the 5396 // result. This is particularly useful for computing loop exit values. 5397 if (CanConstantFold(I)) { 5398 SmallVector<Constant *, 4> Operands; 5399 bool MadeImprovement = false; 5400 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5401 Value *Op = I->getOperand(i); 5402 if (Constant *C = dyn_cast<Constant>(Op)) { 5403 Operands.push_back(C); 5404 continue; 5405 } 5406 5407 // If any of the operands is non-constant and if they are 5408 // non-integer and non-pointer, don't even try to analyze them 5409 // with scev techniques. 5410 if (!isSCEVable(Op->getType())) 5411 return V; 5412 5413 const SCEV *OrigV = getSCEV(Op); 5414 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5415 MadeImprovement |= OrigV != OpV; 5416 5417 Constant *C = BuildConstantFromSCEV(OpV); 5418 if (!C) return V; 5419 if (C->getType() != Op->getType()) 5420 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5421 Op->getType(), 5422 false), 5423 C, Op->getType()); 5424 Operands.push_back(C); 5425 } 5426 5427 // Check to see if getSCEVAtScope actually made an improvement. 5428 if (MadeImprovement) { 5429 Constant *C = nullptr; 5430 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5431 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5432 Operands[0], Operands[1], DL, 5433 TLI); 5434 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5435 if (!LI->isVolatile()) 5436 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5437 } else 5438 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5439 Operands, DL, TLI); 5440 if (!C) return V; 5441 return getSCEV(C); 5442 } 5443 } 5444 } 5445 5446 // This is some other type of SCEVUnknown, just return it. 5447 return V; 5448 } 5449 5450 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5451 // Avoid performing the look-up in the common case where the specified 5452 // expression has no loop-variant portions. 5453 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5454 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5455 if (OpAtScope != Comm->getOperand(i)) { 5456 // Okay, at least one of these operands is loop variant but might be 5457 // foldable. Build a new instance of the folded commutative expression. 5458 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5459 Comm->op_begin()+i); 5460 NewOps.push_back(OpAtScope); 5461 5462 for (++i; i != e; ++i) { 5463 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5464 NewOps.push_back(OpAtScope); 5465 } 5466 if (isa<SCEVAddExpr>(Comm)) 5467 return getAddExpr(NewOps); 5468 if (isa<SCEVMulExpr>(Comm)) 5469 return getMulExpr(NewOps); 5470 if (isa<SCEVSMaxExpr>(Comm)) 5471 return getSMaxExpr(NewOps); 5472 if (isa<SCEVUMaxExpr>(Comm)) 5473 return getUMaxExpr(NewOps); 5474 llvm_unreachable("Unknown commutative SCEV type!"); 5475 } 5476 } 5477 // If we got here, all operands are loop invariant. 5478 return Comm; 5479 } 5480 5481 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5482 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5483 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5484 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5485 return Div; // must be loop invariant 5486 return getUDivExpr(LHS, RHS); 5487 } 5488 5489 // If this is a loop recurrence for a loop that does not contain L, then we 5490 // are dealing with the final value computed by the loop. 5491 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5492 // First, attempt to evaluate each operand. 5493 // Avoid performing the look-up in the common case where the specified 5494 // expression has no loop-variant portions. 5495 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5496 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5497 if (OpAtScope == AddRec->getOperand(i)) 5498 continue; 5499 5500 // Okay, at least one of these operands is loop variant but might be 5501 // foldable. Build a new instance of the folded commutative expression. 5502 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5503 AddRec->op_begin()+i); 5504 NewOps.push_back(OpAtScope); 5505 for (++i; i != e; ++i) 5506 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5507 5508 const SCEV *FoldedRec = 5509 getAddRecExpr(NewOps, AddRec->getLoop(), 5510 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5511 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5512 // The addrec may be folded to a nonrecurrence, for example, if the 5513 // induction variable is multiplied by zero after constant folding. Go 5514 // ahead and return the folded value. 5515 if (!AddRec) 5516 return FoldedRec; 5517 break; 5518 } 5519 5520 // If the scope is outside the addrec's loop, evaluate it by using the 5521 // loop exit value of the addrec. 5522 if (!AddRec->getLoop()->contains(L)) { 5523 // To evaluate this recurrence, we need to know how many times the AddRec 5524 // loop iterates. Compute this now. 5525 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5526 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5527 5528 // Then, evaluate the AddRec. 5529 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5530 } 5531 5532 return AddRec; 5533 } 5534 5535 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5536 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5537 if (Op == Cast->getOperand()) 5538 return Cast; // must be loop invariant 5539 return getZeroExtendExpr(Op, Cast->getType()); 5540 } 5541 5542 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5543 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5544 if (Op == Cast->getOperand()) 5545 return Cast; // must be loop invariant 5546 return getSignExtendExpr(Op, Cast->getType()); 5547 } 5548 5549 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5550 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5551 if (Op == Cast->getOperand()) 5552 return Cast; // must be loop invariant 5553 return getTruncateExpr(Op, Cast->getType()); 5554 } 5555 5556 llvm_unreachable("Unknown SCEV type!"); 5557 } 5558 5559 /// getSCEVAtScope - This is a convenience function which does 5560 /// getSCEVAtScope(getSCEV(V), L). 5561 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5562 return getSCEVAtScope(getSCEV(V), L); 5563 } 5564 5565 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5566 /// following equation: 5567 /// 5568 /// A * X = B (mod N) 5569 /// 5570 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5571 /// A and B isn't important. 5572 /// 5573 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5574 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5575 ScalarEvolution &SE) { 5576 uint32_t BW = A.getBitWidth(); 5577 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5578 assert(A != 0 && "A must be non-zero."); 5579 5580 // 1. D = gcd(A, N) 5581 // 5582 // The gcd of A and N may have only one prime factor: 2. The number of 5583 // trailing zeros in A is its multiplicity 5584 uint32_t Mult2 = A.countTrailingZeros(); 5585 // D = 2^Mult2 5586 5587 // 2. Check if B is divisible by D. 5588 // 5589 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5590 // is not less than multiplicity of this prime factor for D. 5591 if (B.countTrailingZeros() < Mult2) 5592 return SE.getCouldNotCompute(); 5593 5594 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5595 // modulo (N / D). 5596 // 5597 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5598 // bit width during computations. 5599 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5600 APInt Mod(BW + 1, 0); 5601 Mod.setBit(BW - Mult2); // Mod = N / D 5602 APInt I = AD.multiplicativeInverse(Mod); 5603 5604 // 4. Compute the minimum unsigned root of the equation: 5605 // I * (B / D) mod (N / D) 5606 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5607 5608 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5609 // bits. 5610 return SE.getConstant(Result.trunc(BW)); 5611 } 5612 5613 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5614 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5615 /// might be the same) or two SCEVCouldNotCompute objects. 5616 /// 5617 static std::pair<const SCEV *,const SCEV *> 5618 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5619 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5620 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5621 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5622 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5623 5624 // We currently can only solve this if the coefficients are constants. 5625 if (!LC || !MC || !NC) { 5626 const SCEV *CNC = SE.getCouldNotCompute(); 5627 return std::make_pair(CNC, CNC); 5628 } 5629 5630 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5631 const APInt &L = LC->getValue()->getValue(); 5632 const APInt &M = MC->getValue()->getValue(); 5633 const APInt &N = NC->getValue()->getValue(); 5634 APInt Two(BitWidth, 2); 5635 APInt Four(BitWidth, 4); 5636 5637 { 5638 using namespace APIntOps; 5639 const APInt& C = L; 5640 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5641 // The B coefficient is M-N/2 5642 APInt B(M); 5643 B -= sdiv(N,Two); 5644 5645 // The A coefficient is N/2 5646 APInt A(N.sdiv(Two)); 5647 5648 // Compute the B^2-4ac term. 5649 APInt SqrtTerm(B); 5650 SqrtTerm *= B; 5651 SqrtTerm -= Four * (A * C); 5652 5653 if (SqrtTerm.isNegative()) { 5654 // The loop is provably infinite. 5655 const SCEV *CNC = SE.getCouldNotCompute(); 5656 return std::make_pair(CNC, CNC); 5657 } 5658 5659 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5660 // integer value or else APInt::sqrt() will assert. 5661 APInt SqrtVal(SqrtTerm.sqrt()); 5662 5663 // Compute the two solutions for the quadratic formula. 5664 // The divisions must be performed as signed divisions. 5665 APInt NegB(-B); 5666 APInt TwoA(A << 1); 5667 if (TwoA.isMinValue()) { 5668 const SCEV *CNC = SE.getCouldNotCompute(); 5669 return std::make_pair(CNC, CNC); 5670 } 5671 5672 LLVMContext &Context = SE.getContext(); 5673 5674 ConstantInt *Solution1 = 5675 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5676 ConstantInt *Solution2 = 5677 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5678 5679 return std::make_pair(SE.getConstant(Solution1), 5680 SE.getConstant(Solution2)); 5681 } // end APIntOps namespace 5682 } 5683 5684 /// HowFarToZero - Return the number of times a backedge comparing the specified 5685 /// value to zero will execute. If not computable, return CouldNotCompute. 5686 /// 5687 /// This is only used for loops with a "x != y" exit test. The exit condition is 5688 /// now expressed as a single expression, V = x-y. So the exit test is 5689 /// effectively V != 0. We know and take advantage of the fact that this 5690 /// expression only being used in a comparison by zero context. 5691 ScalarEvolution::ExitLimit 5692 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5693 // If the value is a constant 5694 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5695 // If the value is already zero, the branch will execute zero times. 5696 if (C->getValue()->isZero()) return C; 5697 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5698 } 5699 5700 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5701 if (!AddRec || AddRec->getLoop() != L) 5702 return getCouldNotCompute(); 5703 5704 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5705 // the quadratic equation to solve it. 5706 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5707 std::pair<const SCEV *,const SCEV *> Roots = 5708 SolveQuadraticEquation(AddRec, *this); 5709 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5710 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5711 if (R1 && R2) { 5712 #if 0 5713 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5714 << " sol#2: " << *R2 << "\n"; 5715 #endif 5716 // Pick the smallest positive root value. 5717 if (ConstantInt *CB = 5718 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5719 R1->getValue(), 5720 R2->getValue()))) { 5721 if (CB->getZExtValue() == false) 5722 std::swap(R1, R2); // R1 is the minimum root now. 5723 5724 // We can only use this value if the chrec ends up with an exact zero 5725 // value at this index. When solving for "X*X != 5", for example, we 5726 // should not accept a root of 2. 5727 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5728 if (Val->isZero()) 5729 return R1; // We found a quadratic root! 5730 } 5731 } 5732 return getCouldNotCompute(); 5733 } 5734 5735 // Otherwise we can only handle this if it is affine. 5736 if (!AddRec->isAffine()) 5737 return getCouldNotCompute(); 5738 5739 // If this is an affine expression, the execution count of this branch is 5740 // the minimum unsigned root of the following equation: 5741 // 5742 // Start + Step*N = 0 (mod 2^BW) 5743 // 5744 // equivalent to: 5745 // 5746 // Step*N = -Start (mod 2^BW) 5747 // 5748 // where BW is the common bit width of Start and Step. 5749 5750 // Get the initial value for the loop. 5751 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5752 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5753 5754 // For now we handle only constant steps. 5755 // 5756 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5757 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5758 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5759 // We have not yet seen any such cases. 5760 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5761 if (!StepC || StepC->getValue()->equalsInt(0)) 5762 return getCouldNotCompute(); 5763 5764 // For positive steps (counting up until unsigned overflow): 5765 // N = -Start/Step (as unsigned) 5766 // For negative steps (counting down to zero): 5767 // N = Start/-Step 5768 // First compute the unsigned distance from zero in the direction of Step. 5769 bool CountDown = StepC->getValue()->getValue().isNegative(); 5770 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5771 5772 // Handle unitary steps, which cannot wraparound. 5773 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5774 // N = Distance (as unsigned) 5775 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5776 ConstantRange CR = getUnsignedRange(Start); 5777 const SCEV *MaxBECount; 5778 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5779 // When counting up, the worst starting value is 1, not 0. 5780 MaxBECount = CR.getUnsignedMax().isMinValue() 5781 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5782 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5783 else 5784 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5785 : -CR.getUnsignedMin()); 5786 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); 5787 } 5788 5789 // If the recurrence is known not to wraparound, unsigned divide computes the 5790 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5791 // that the value will either become zero (and thus the loop terminates), that 5792 // the loop will terminate through some other exit condition first, or that 5793 // the loop has undefined behavior. This means we can't "miss" the exit 5794 // value, even with nonunit stride, and exit later via the same branch. Note 5795 // that we can skip this exit if loop later exits via a different 5796 // branch. Hence MustExit=false. 5797 // 5798 // This is only valid for expressions that directly compute the loop exit. It 5799 // is invalid for subexpressions in which the loop may exit through this 5800 // branch even if this subexpression is false. In that case, the trip count 5801 // computed by this udiv could be smaller than the number of well-defined 5802 // iterations. 5803 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5804 const SCEV *Exact = 5805 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5806 return ExitLimit(Exact, Exact, /*MustExit=*/false); 5807 } 5808 5809 // If Step is a power of two that evenly divides Start we know that the loop 5810 // will always terminate. Start may not be a constant so we just have the 5811 // number of trailing zeros available. This is safe even in presence of 5812 // overflow as the recurrence will overflow to exactly 0. 5813 const APInt &StepV = StepC->getValue()->getValue(); 5814 if (StepV.isPowerOf2() && 5815 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros()) 5816 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5817 5818 // Then, try to solve the above equation provided that Start is constant. 5819 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5820 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5821 -StartC->getValue()->getValue(), 5822 *this); 5823 return getCouldNotCompute(); 5824 } 5825 5826 /// HowFarToNonZero - Return the number of times a backedge checking the 5827 /// specified value for nonzero will execute. If not computable, return 5828 /// CouldNotCompute 5829 ScalarEvolution::ExitLimit 5830 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5831 // Loops that look like: while (X == 0) are very strange indeed. We don't 5832 // handle them yet except for the trivial case. This could be expanded in the 5833 // future as needed. 5834 5835 // If the value is a constant, check to see if it is known to be non-zero 5836 // already. If so, the backedge will execute zero times. 5837 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5838 if (!C->getValue()->isNullValue()) 5839 return getConstant(C->getType(), 0); 5840 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5841 } 5842 5843 // We could implement others, but I really doubt anyone writes loops like 5844 // this, and if they did, they would already be constant folded. 5845 return getCouldNotCompute(); 5846 } 5847 5848 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5849 /// (which may not be an immediate predecessor) which has exactly one 5850 /// successor from which BB is reachable, or null if no such block is 5851 /// found. 5852 /// 5853 std::pair<BasicBlock *, BasicBlock *> 5854 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5855 // If the block has a unique predecessor, then there is no path from the 5856 // predecessor to the block that does not go through the direct edge 5857 // from the predecessor to the block. 5858 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5859 return std::make_pair(Pred, BB); 5860 5861 // A loop's header is defined to be a block that dominates the loop. 5862 // If the header has a unique predecessor outside the loop, it must be 5863 // a block that has exactly one successor that can reach the loop. 5864 if (Loop *L = LI->getLoopFor(BB)) 5865 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5866 5867 return std::pair<BasicBlock *, BasicBlock *>(); 5868 } 5869 5870 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5871 /// testing whether two expressions are equal, however for the purposes of 5872 /// looking for a condition guarding a loop, it can be useful to be a little 5873 /// more general, since a front-end may have replicated the controlling 5874 /// expression. 5875 /// 5876 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5877 // Quick check to see if they are the same SCEV. 5878 if (A == B) return true; 5879 5880 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5881 // two different instructions with the same value. Check for this case. 5882 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5883 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5884 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5885 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5886 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5887 return true; 5888 5889 // Otherwise assume they may have a different value. 5890 return false; 5891 } 5892 5893 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5894 /// predicate Pred. Return true iff any changes were made. 5895 /// 5896 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5897 const SCEV *&LHS, const SCEV *&RHS, 5898 unsigned Depth) { 5899 bool Changed = false; 5900 5901 // If we hit the max recursion limit bail out. 5902 if (Depth >= 3) 5903 return false; 5904 5905 // Canonicalize a constant to the right side. 5906 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5907 // Check for both operands constant. 5908 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5909 if (ConstantExpr::getICmp(Pred, 5910 LHSC->getValue(), 5911 RHSC->getValue())->isNullValue()) 5912 goto trivially_false; 5913 else 5914 goto trivially_true; 5915 } 5916 // Otherwise swap the operands to put the constant on the right. 5917 std::swap(LHS, RHS); 5918 Pred = ICmpInst::getSwappedPredicate(Pred); 5919 Changed = true; 5920 } 5921 5922 // If we're comparing an addrec with a value which is loop-invariant in the 5923 // addrec's loop, put the addrec on the left. Also make a dominance check, 5924 // as both operands could be addrecs loop-invariant in each other's loop. 5925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5926 const Loop *L = AR->getLoop(); 5927 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5928 std::swap(LHS, RHS); 5929 Pred = ICmpInst::getSwappedPredicate(Pred); 5930 Changed = true; 5931 } 5932 } 5933 5934 // If there's a constant operand, canonicalize comparisons with boundary 5935 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5936 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5937 const APInt &RA = RC->getValue()->getValue(); 5938 switch (Pred) { 5939 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5940 case ICmpInst::ICMP_EQ: 5941 case ICmpInst::ICMP_NE: 5942 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5943 if (!RA) 5944 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5945 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5946 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5947 ME->getOperand(0)->isAllOnesValue()) { 5948 RHS = AE->getOperand(1); 5949 LHS = ME->getOperand(1); 5950 Changed = true; 5951 } 5952 break; 5953 case ICmpInst::ICMP_UGE: 5954 if ((RA - 1).isMinValue()) { 5955 Pred = ICmpInst::ICMP_NE; 5956 RHS = getConstant(RA - 1); 5957 Changed = true; 5958 break; 5959 } 5960 if (RA.isMaxValue()) { 5961 Pred = ICmpInst::ICMP_EQ; 5962 Changed = true; 5963 break; 5964 } 5965 if (RA.isMinValue()) goto trivially_true; 5966 5967 Pred = ICmpInst::ICMP_UGT; 5968 RHS = getConstant(RA - 1); 5969 Changed = true; 5970 break; 5971 case ICmpInst::ICMP_ULE: 5972 if ((RA + 1).isMaxValue()) { 5973 Pred = ICmpInst::ICMP_NE; 5974 RHS = getConstant(RA + 1); 5975 Changed = true; 5976 break; 5977 } 5978 if (RA.isMinValue()) { 5979 Pred = ICmpInst::ICMP_EQ; 5980 Changed = true; 5981 break; 5982 } 5983 if (RA.isMaxValue()) goto trivially_true; 5984 5985 Pred = ICmpInst::ICMP_ULT; 5986 RHS = getConstant(RA + 1); 5987 Changed = true; 5988 break; 5989 case ICmpInst::ICMP_SGE: 5990 if ((RA - 1).isMinSignedValue()) { 5991 Pred = ICmpInst::ICMP_NE; 5992 RHS = getConstant(RA - 1); 5993 Changed = true; 5994 break; 5995 } 5996 if (RA.isMaxSignedValue()) { 5997 Pred = ICmpInst::ICMP_EQ; 5998 Changed = true; 5999 break; 6000 } 6001 if (RA.isMinSignedValue()) goto trivially_true; 6002 6003 Pred = ICmpInst::ICMP_SGT; 6004 RHS = getConstant(RA - 1); 6005 Changed = true; 6006 break; 6007 case ICmpInst::ICMP_SLE: 6008 if ((RA + 1).isMaxSignedValue()) { 6009 Pred = ICmpInst::ICMP_NE; 6010 RHS = getConstant(RA + 1); 6011 Changed = true; 6012 break; 6013 } 6014 if (RA.isMinSignedValue()) { 6015 Pred = ICmpInst::ICMP_EQ; 6016 Changed = true; 6017 break; 6018 } 6019 if (RA.isMaxSignedValue()) goto trivially_true; 6020 6021 Pred = ICmpInst::ICMP_SLT; 6022 RHS = getConstant(RA + 1); 6023 Changed = true; 6024 break; 6025 case ICmpInst::ICMP_UGT: 6026 if (RA.isMinValue()) { 6027 Pred = ICmpInst::ICMP_NE; 6028 Changed = true; 6029 break; 6030 } 6031 if ((RA + 1).isMaxValue()) { 6032 Pred = ICmpInst::ICMP_EQ; 6033 RHS = getConstant(RA + 1); 6034 Changed = true; 6035 break; 6036 } 6037 if (RA.isMaxValue()) goto trivially_false; 6038 break; 6039 case ICmpInst::ICMP_ULT: 6040 if (RA.isMaxValue()) { 6041 Pred = ICmpInst::ICMP_NE; 6042 Changed = true; 6043 break; 6044 } 6045 if ((RA - 1).isMinValue()) { 6046 Pred = ICmpInst::ICMP_EQ; 6047 RHS = getConstant(RA - 1); 6048 Changed = true; 6049 break; 6050 } 6051 if (RA.isMinValue()) goto trivially_false; 6052 break; 6053 case ICmpInst::ICMP_SGT: 6054 if (RA.isMinSignedValue()) { 6055 Pred = ICmpInst::ICMP_NE; 6056 Changed = true; 6057 break; 6058 } 6059 if ((RA + 1).isMaxSignedValue()) { 6060 Pred = ICmpInst::ICMP_EQ; 6061 RHS = getConstant(RA + 1); 6062 Changed = true; 6063 break; 6064 } 6065 if (RA.isMaxSignedValue()) goto trivially_false; 6066 break; 6067 case ICmpInst::ICMP_SLT: 6068 if (RA.isMaxSignedValue()) { 6069 Pred = ICmpInst::ICMP_NE; 6070 Changed = true; 6071 break; 6072 } 6073 if ((RA - 1).isMinSignedValue()) { 6074 Pred = ICmpInst::ICMP_EQ; 6075 RHS = getConstant(RA - 1); 6076 Changed = true; 6077 break; 6078 } 6079 if (RA.isMinSignedValue()) goto trivially_false; 6080 break; 6081 } 6082 } 6083 6084 // Check for obvious equality. 6085 if (HasSameValue(LHS, RHS)) { 6086 if (ICmpInst::isTrueWhenEqual(Pred)) 6087 goto trivially_true; 6088 if (ICmpInst::isFalseWhenEqual(Pred)) 6089 goto trivially_false; 6090 } 6091 6092 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6093 // adding or subtracting 1 from one of the operands. 6094 switch (Pred) { 6095 case ICmpInst::ICMP_SLE: 6096 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6097 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6098 SCEV::FlagNSW); 6099 Pred = ICmpInst::ICMP_SLT; 6100 Changed = true; 6101 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6102 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6103 SCEV::FlagNSW); 6104 Pred = ICmpInst::ICMP_SLT; 6105 Changed = true; 6106 } 6107 break; 6108 case ICmpInst::ICMP_SGE: 6109 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6110 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6111 SCEV::FlagNSW); 6112 Pred = ICmpInst::ICMP_SGT; 6113 Changed = true; 6114 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6115 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6116 SCEV::FlagNSW); 6117 Pred = ICmpInst::ICMP_SGT; 6118 Changed = true; 6119 } 6120 break; 6121 case ICmpInst::ICMP_ULE: 6122 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6123 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6124 SCEV::FlagNUW); 6125 Pred = ICmpInst::ICMP_ULT; 6126 Changed = true; 6127 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6128 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6129 SCEV::FlagNUW); 6130 Pred = ICmpInst::ICMP_ULT; 6131 Changed = true; 6132 } 6133 break; 6134 case ICmpInst::ICMP_UGE: 6135 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6136 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6137 SCEV::FlagNUW); 6138 Pred = ICmpInst::ICMP_UGT; 6139 Changed = true; 6140 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6141 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6142 SCEV::FlagNUW); 6143 Pred = ICmpInst::ICMP_UGT; 6144 Changed = true; 6145 } 6146 break; 6147 default: 6148 break; 6149 } 6150 6151 // TODO: More simplifications are possible here. 6152 6153 // Recursively simplify until we either hit a recursion limit or nothing 6154 // changes. 6155 if (Changed) 6156 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6157 6158 return Changed; 6159 6160 trivially_true: 6161 // Return 0 == 0. 6162 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6163 Pred = ICmpInst::ICMP_EQ; 6164 return true; 6165 6166 trivially_false: 6167 // Return 0 != 0. 6168 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6169 Pred = ICmpInst::ICMP_NE; 6170 return true; 6171 } 6172 6173 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6174 return getSignedRange(S).getSignedMax().isNegative(); 6175 } 6176 6177 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6178 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6179 } 6180 6181 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6182 return !getSignedRange(S).getSignedMin().isNegative(); 6183 } 6184 6185 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6186 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6187 } 6188 6189 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6190 return isKnownNegative(S) || isKnownPositive(S); 6191 } 6192 6193 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6194 const SCEV *LHS, const SCEV *RHS) { 6195 // Canonicalize the inputs first. 6196 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6197 6198 // If LHS or RHS is an addrec, check to see if the condition is true in 6199 // every iteration of the loop. 6200 // If LHS and RHS are both addrec, both conditions must be true in 6201 // every iteration of the loop. 6202 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6203 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6204 bool LeftGuarded = false; 6205 bool RightGuarded = false; 6206 if (LAR) { 6207 const Loop *L = LAR->getLoop(); 6208 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6209 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6210 if (!RAR) return true; 6211 LeftGuarded = true; 6212 } 6213 } 6214 if (RAR) { 6215 const Loop *L = RAR->getLoop(); 6216 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6217 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6218 if (!LAR) return true; 6219 RightGuarded = true; 6220 } 6221 } 6222 if (LeftGuarded && RightGuarded) 6223 return true; 6224 6225 // Otherwise see what can be done with known constant ranges. 6226 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6227 } 6228 6229 bool 6230 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6231 const SCEV *LHS, const SCEV *RHS) { 6232 if (HasSameValue(LHS, RHS)) 6233 return ICmpInst::isTrueWhenEqual(Pred); 6234 6235 // This code is split out from isKnownPredicate because it is called from 6236 // within isLoopEntryGuardedByCond. 6237 switch (Pred) { 6238 default: 6239 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6240 case ICmpInst::ICMP_SGT: 6241 std::swap(LHS, RHS); 6242 case ICmpInst::ICMP_SLT: { 6243 ConstantRange LHSRange = getSignedRange(LHS); 6244 ConstantRange RHSRange = getSignedRange(RHS); 6245 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6246 return true; 6247 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6248 return false; 6249 break; 6250 } 6251 case ICmpInst::ICMP_SGE: 6252 std::swap(LHS, RHS); 6253 case ICmpInst::ICMP_SLE: { 6254 ConstantRange LHSRange = getSignedRange(LHS); 6255 ConstantRange RHSRange = getSignedRange(RHS); 6256 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6257 return true; 6258 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6259 return false; 6260 break; 6261 } 6262 case ICmpInst::ICMP_UGT: 6263 std::swap(LHS, RHS); 6264 case ICmpInst::ICMP_ULT: { 6265 ConstantRange LHSRange = getUnsignedRange(LHS); 6266 ConstantRange RHSRange = getUnsignedRange(RHS); 6267 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6268 return true; 6269 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6270 return false; 6271 break; 6272 } 6273 case ICmpInst::ICMP_UGE: 6274 std::swap(LHS, RHS); 6275 case ICmpInst::ICMP_ULE: { 6276 ConstantRange LHSRange = getUnsignedRange(LHS); 6277 ConstantRange RHSRange = getUnsignedRange(RHS); 6278 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6279 return true; 6280 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6281 return false; 6282 break; 6283 } 6284 case ICmpInst::ICMP_NE: { 6285 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6286 return true; 6287 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6288 return true; 6289 6290 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6291 if (isKnownNonZero(Diff)) 6292 return true; 6293 break; 6294 } 6295 case ICmpInst::ICMP_EQ: 6296 // The check at the top of the function catches the case where 6297 // the values are known to be equal. 6298 break; 6299 } 6300 return false; 6301 } 6302 6303 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6304 /// protected by a conditional between LHS and RHS. This is used to 6305 /// to eliminate casts. 6306 bool 6307 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6308 ICmpInst::Predicate Pred, 6309 const SCEV *LHS, const SCEV *RHS) { 6310 // Interpret a null as meaning no loop, where there is obviously no guard 6311 // (interprocedural conditions notwithstanding). 6312 if (!L) return true; 6313 6314 BasicBlock *Latch = L->getLoopLatch(); 6315 if (!Latch) 6316 return false; 6317 6318 BranchInst *LoopContinuePredicate = 6319 dyn_cast<BranchInst>(Latch->getTerminator()); 6320 if (!LoopContinuePredicate || 6321 LoopContinuePredicate->isUnconditional()) 6322 return false; 6323 6324 return isImpliedCond(Pred, LHS, RHS, 6325 LoopContinuePredicate->getCondition(), 6326 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6327 } 6328 6329 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6330 /// by a conditional between LHS and RHS. This is used to help avoid max 6331 /// expressions in loop trip counts, and to eliminate casts. 6332 bool 6333 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6334 ICmpInst::Predicate Pred, 6335 const SCEV *LHS, const SCEV *RHS) { 6336 // Interpret a null as meaning no loop, where there is obviously no guard 6337 // (interprocedural conditions notwithstanding). 6338 if (!L) return false; 6339 6340 // Starting at the loop predecessor, climb up the predecessor chain, as long 6341 // as there are predecessors that can be found that have unique successors 6342 // leading to the original header. 6343 for (std::pair<BasicBlock *, BasicBlock *> 6344 Pair(L->getLoopPredecessor(), L->getHeader()); 6345 Pair.first; 6346 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6347 6348 BranchInst *LoopEntryPredicate = 6349 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6350 if (!LoopEntryPredicate || 6351 LoopEntryPredicate->isUnconditional()) 6352 continue; 6353 6354 if (isImpliedCond(Pred, LHS, RHS, 6355 LoopEntryPredicate->getCondition(), 6356 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6357 return true; 6358 } 6359 6360 return false; 6361 } 6362 6363 /// RAII wrapper to prevent recursive application of isImpliedCond. 6364 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6365 /// currently evaluating isImpliedCond. 6366 struct MarkPendingLoopPredicate { 6367 Value *Cond; 6368 DenseSet<Value*> &LoopPreds; 6369 bool Pending; 6370 6371 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6372 : Cond(C), LoopPreds(LP) { 6373 Pending = !LoopPreds.insert(Cond).second; 6374 } 6375 ~MarkPendingLoopPredicate() { 6376 if (!Pending) 6377 LoopPreds.erase(Cond); 6378 } 6379 }; 6380 6381 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6382 /// and RHS is true whenever the given Cond value evaluates to true. 6383 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6384 const SCEV *LHS, const SCEV *RHS, 6385 Value *FoundCondValue, 6386 bool Inverse) { 6387 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6388 if (Mark.Pending) 6389 return false; 6390 6391 // Recursively handle And and Or conditions. 6392 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6393 if (BO->getOpcode() == Instruction::And) { 6394 if (!Inverse) 6395 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6396 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6397 } else if (BO->getOpcode() == Instruction::Or) { 6398 if (Inverse) 6399 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6400 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6401 } 6402 } 6403 6404 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6405 if (!ICI) return false; 6406 6407 // Bail if the ICmp's operands' types are wider than the needed type 6408 // before attempting to call getSCEV on them. This avoids infinite 6409 // recursion, since the analysis of widening casts can require loop 6410 // exit condition information for overflow checking, which would 6411 // lead back here. 6412 if (getTypeSizeInBits(LHS->getType()) < 6413 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6414 return false; 6415 6416 // Now that we found a conditional branch that dominates the loop or controls 6417 // the loop latch. Check to see if it is the comparison we are looking for. 6418 ICmpInst::Predicate FoundPred; 6419 if (Inverse) 6420 FoundPred = ICI->getInversePredicate(); 6421 else 6422 FoundPred = ICI->getPredicate(); 6423 6424 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6425 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6426 6427 // Balance the types. The case where FoundLHS' type is wider than 6428 // LHS' type is checked for above. 6429 if (getTypeSizeInBits(LHS->getType()) > 6430 getTypeSizeInBits(FoundLHS->getType())) { 6431 if (CmpInst::isSigned(FoundPred)) { 6432 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6433 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6434 } else { 6435 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6436 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6437 } 6438 } 6439 6440 // Canonicalize the query to match the way instcombine will have 6441 // canonicalized the comparison. 6442 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6443 if (LHS == RHS) 6444 return CmpInst::isTrueWhenEqual(Pred); 6445 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6446 if (FoundLHS == FoundRHS) 6447 return CmpInst::isFalseWhenEqual(FoundPred); 6448 6449 // Check to see if we can make the LHS or RHS match. 6450 if (LHS == FoundRHS || RHS == FoundLHS) { 6451 if (isa<SCEVConstant>(RHS)) { 6452 std::swap(FoundLHS, FoundRHS); 6453 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6454 } else { 6455 std::swap(LHS, RHS); 6456 Pred = ICmpInst::getSwappedPredicate(Pred); 6457 } 6458 } 6459 6460 // Check whether the found predicate is the same as the desired predicate. 6461 if (FoundPred == Pred) 6462 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6463 6464 // Check whether swapping the found predicate makes it the same as the 6465 // desired predicate. 6466 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6467 if (isa<SCEVConstant>(RHS)) 6468 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6469 else 6470 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6471 RHS, LHS, FoundLHS, FoundRHS); 6472 } 6473 6474 // Check whether the actual condition is beyond sufficient. 6475 if (FoundPred == ICmpInst::ICMP_EQ) 6476 if (ICmpInst::isTrueWhenEqual(Pred)) 6477 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6478 return true; 6479 if (Pred == ICmpInst::ICMP_NE) 6480 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6481 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6482 return true; 6483 6484 // Otherwise assume the worst. 6485 return false; 6486 } 6487 6488 /// isImpliedCondOperands - Test whether the condition described by Pred, 6489 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6490 /// and FoundRHS is true. 6491 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6492 const SCEV *LHS, const SCEV *RHS, 6493 const SCEV *FoundLHS, 6494 const SCEV *FoundRHS) { 6495 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6496 FoundLHS, FoundRHS) || 6497 // ~x < ~y --> x > y 6498 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6499 getNotSCEV(FoundRHS), 6500 getNotSCEV(FoundLHS)); 6501 } 6502 6503 /// isImpliedCondOperandsHelper - Test whether the condition described by 6504 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6505 /// FoundLHS, and FoundRHS is true. 6506 bool 6507 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6508 const SCEV *LHS, const SCEV *RHS, 6509 const SCEV *FoundLHS, 6510 const SCEV *FoundRHS) { 6511 switch (Pred) { 6512 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6513 case ICmpInst::ICMP_EQ: 6514 case ICmpInst::ICMP_NE: 6515 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6516 return true; 6517 break; 6518 case ICmpInst::ICMP_SLT: 6519 case ICmpInst::ICMP_SLE: 6520 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6521 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6522 return true; 6523 break; 6524 case ICmpInst::ICMP_SGT: 6525 case ICmpInst::ICMP_SGE: 6526 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6527 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6528 return true; 6529 break; 6530 case ICmpInst::ICMP_ULT: 6531 case ICmpInst::ICMP_ULE: 6532 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6533 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6534 return true; 6535 break; 6536 case ICmpInst::ICMP_UGT: 6537 case ICmpInst::ICMP_UGE: 6538 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6539 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6540 return true; 6541 break; 6542 } 6543 6544 return false; 6545 } 6546 6547 // Verify if an linear IV with positive stride can overflow when in a 6548 // less-than comparison, knowing the invariant term of the comparison, the 6549 // stride and the knowledge of NSW/NUW flags on the recurrence. 6550 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 6551 bool IsSigned, bool NoWrap) { 6552 if (NoWrap) return false; 6553 6554 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6555 const SCEV *One = getConstant(Stride->getType(), 1); 6556 6557 if (IsSigned) { 6558 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 6559 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 6560 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6561 .getSignedMax(); 6562 6563 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 6564 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 6565 } 6566 6567 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 6568 APInt MaxValue = APInt::getMaxValue(BitWidth); 6569 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6570 .getUnsignedMax(); 6571 6572 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 6573 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 6574 } 6575 6576 // Verify if an linear IV with negative stride can overflow when in a 6577 // greater-than comparison, knowing the invariant term of the comparison, 6578 // the stride and the knowledge of NSW/NUW flags on the recurrence. 6579 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 6580 bool IsSigned, bool NoWrap) { 6581 if (NoWrap) return false; 6582 6583 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6584 const SCEV *One = getConstant(Stride->getType(), 1); 6585 6586 if (IsSigned) { 6587 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 6588 APInt MinValue = APInt::getSignedMinValue(BitWidth); 6589 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6590 .getSignedMax(); 6591 6592 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 6593 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 6594 } 6595 6596 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 6597 APInt MinValue = APInt::getMinValue(BitWidth); 6598 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6599 .getUnsignedMax(); 6600 6601 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 6602 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 6603 } 6604 6605 // Compute the backedge taken count knowing the interval difference, the 6606 // stride and presence of the equality in the comparison. 6607 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 6608 bool Equality) { 6609 const SCEV *One = getConstant(Step->getType(), 1); 6610 Delta = Equality ? getAddExpr(Delta, Step) 6611 : getAddExpr(Delta, getMinusSCEV(Step, One)); 6612 return getUDivExpr(Delta, Step); 6613 } 6614 6615 /// HowManyLessThans - Return the number of times a backedge containing the 6616 /// specified less-than comparison will execute. If not computable, return 6617 /// CouldNotCompute. 6618 /// 6619 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6620 /// control the branch. In this case, we can only compute an iteration count for 6621 /// a subexpression that cannot overflow before evaluating true. 6622 ScalarEvolution::ExitLimit 6623 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6624 const Loop *L, bool IsSigned, 6625 bool IsSubExpr) { 6626 // We handle only IV < Invariant 6627 if (!isLoopInvariant(RHS, L)) 6628 return getCouldNotCompute(); 6629 6630 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6631 6632 // Avoid weird loops 6633 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6634 return getCouldNotCompute(); 6635 6636 bool NoWrap = !IsSubExpr && 6637 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6638 6639 const SCEV *Stride = IV->getStepRecurrence(*this); 6640 6641 // Avoid negative or zero stride values 6642 if (!isKnownPositive(Stride)) 6643 return getCouldNotCompute(); 6644 6645 // Avoid proven overflow cases: this will ensure that the backedge taken count 6646 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6647 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6648 // behaviors like the case of C language. 6649 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 6650 return getCouldNotCompute(); 6651 6652 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 6653 : ICmpInst::ICMP_ULT; 6654 const SCEV *Start = IV->getStart(); 6655 const SCEV *End = RHS; 6656 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 6657 End = IsSigned ? getSMaxExpr(RHS, Start) 6658 : getUMaxExpr(RHS, Start); 6659 6660 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 6661 6662 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 6663 : getUnsignedRange(Start).getUnsignedMin(); 6664 6665 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6666 : getUnsignedRange(Stride).getUnsignedMin(); 6667 6668 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6669 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 6670 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 6671 6672 // Although End can be a MAX expression we estimate MaxEnd considering only 6673 // the case End = RHS. This is safe because in the other case (End - Start) 6674 // is zero, leading to a zero maximum backedge taken count. 6675 APInt MaxEnd = 6676 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 6677 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 6678 6679 const SCEV *MaxBECount; 6680 if (isa<SCEVConstant>(BECount)) 6681 MaxBECount = BECount; 6682 else 6683 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 6684 getConstant(MinStride), false); 6685 6686 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6687 MaxBECount = BECount; 6688 6689 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6690 } 6691 6692 ScalarEvolution::ExitLimit 6693 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 6694 const Loop *L, bool IsSigned, 6695 bool IsSubExpr) { 6696 // We handle only IV > Invariant 6697 if (!isLoopInvariant(RHS, L)) 6698 return getCouldNotCompute(); 6699 6700 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6701 6702 // Avoid weird loops 6703 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6704 return getCouldNotCompute(); 6705 6706 bool NoWrap = !IsSubExpr && 6707 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6708 6709 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 6710 6711 // Avoid negative or zero stride values 6712 if (!isKnownPositive(Stride)) 6713 return getCouldNotCompute(); 6714 6715 // Avoid proven overflow cases: this will ensure that the backedge taken count 6716 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6717 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6718 // behaviors like the case of C language. 6719 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 6720 return getCouldNotCompute(); 6721 6722 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 6723 : ICmpInst::ICMP_UGT; 6724 6725 const SCEV *Start = IV->getStart(); 6726 const SCEV *End = RHS; 6727 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 6728 End = IsSigned ? getSMinExpr(RHS, Start) 6729 : getUMinExpr(RHS, Start); 6730 6731 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 6732 6733 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 6734 : getUnsignedRange(Start).getUnsignedMax(); 6735 6736 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6737 : getUnsignedRange(Stride).getUnsignedMin(); 6738 6739 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6740 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 6741 : APInt::getMinValue(BitWidth) + (MinStride - 1); 6742 6743 // Although End can be a MIN expression we estimate MinEnd considering only 6744 // the case End = RHS. This is safe because in the other case (Start - End) 6745 // is zero, leading to a zero maximum backedge taken count. 6746 APInt MinEnd = 6747 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 6748 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 6749 6750 6751 const SCEV *MaxBECount = getCouldNotCompute(); 6752 if (isa<SCEVConstant>(BECount)) 6753 MaxBECount = BECount; 6754 else 6755 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 6756 getConstant(MinStride), false); 6757 6758 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6759 MaxBECount = BECount; 6760 6761 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6762 } 6763 6764 /// getNumIterationsInRange - Return the number of iterations of this loop that 6765 /// produce values in the specified constant range. Another way of looking at 6766 /// this is that it returns the first iteration number where the value is not in 6767 /// the condition, thus computing the exit count. If the iteration count can't 6768 /// be computed, an instance of SCEVCouldNotCompute is returned. 6769 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6770 ScalarEvolution &SE) const { 6771 if (Range.isFullSet()) // Infinite loop. 6772 return SE.getCouldNotCompute(); 6773 6774 // If the start is a non-zero constant, shift the range to simplify things. 6775 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6776 if (!SC->getValue()->isZero()) { 6777 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6778 Operands[0] = SE.getConstant(SC->getType(), 0); 6779 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6780 getNoWrapFlags(FlagNW)); 6781 if (const SCEVAddRecExpr *ShiftedAddRec = 6782 dyn_cast<SCEVAddRecExpr>(Shifted)) 6783 return ShiftedAddRec->getNumIterationsInRange( 6784 Range.subtract(SC->getValue()->getValue()), SE); 6785 // This is strange and shouldn't happen. 6786 return SE.getCouldNotCompute(); 6787 } 6788 6789 // The only time we can solve this is when we have all constant indices. 6790 // Otherwise, we cannot determine the overflow conditions. 6791 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6792 if (!isa<SCEVConstant>(getOperand(i))) 6793 return SE.getCouldNotCompute(); 6794 6795 6796 // Okay at this point we know that all elements of the chrec are constants and 6797 // that the start element is zero. 6798 6799 // First check to see if the range contains zero. If not, the first 6800 // iteration exits. 6801 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6802 if (!Range.contains(APInt(BitWidth, 0))) 6803 return SE.getConstant(getType(), 0); 6804 6805 if (isAffine()) { 6806 // If this is an affine expression then we have this situation: 6807 // Solve {0,+,A} in Range === Ax in Range 6808 6809 // We know that zero is in the range. If A is positive then we know that 6810 // the upper value of the range must be the first possible exit value. 6811 // If A is negative then the lower of the range is the last possible loop 6812 // value. Also note that we already checked for a full range. 6813 APInt One(BitWidth,1); 6814 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6815 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6816 6817 // The exit value should be (End+A)/A. 6818 APInt ExitVal = (End + A).udiv(A); 6819 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6820 6821 // Evaluate at the exit value. If we really did fall out of the valid 6822 // range, then we computed our trip count, otherwise wrap around or other 6823 // things must have happened. 6824 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6825 if (Range.contains(Val->getValue())) 6826 return SE.getCouldNotCompute(); // Something strange happened 6827 6828 // Ensure that the previous value is in the range. This is a sanity check. 6829 assert(Range.contains( 6830 EvaluateConstantChrecAtConstant(this, 6831 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6832 "Linear scev computation is off in a bad way!"); 6833 return SE.getConstant(ExitValue); 6834 } else if (isQuadratic()) { 6835 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6836 // quadratic equation to solve it. To do this, we must frame our problem in 6837 // terms of figuring out when zero is crossed, instead of when 6838 // Range.getUpper() is crossed. 6839 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6840 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6841 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6842 // getNoWrapFlags(FlagNW) 6843 FlagAnyWrap); 6844 6845 // Next, solve the constructed addrec 6846 std::pair<const SCEV *,const SCEV *> Roots = 6847 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6848 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6849 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6850 if (R1) { 6851 // Pick the smallest positive root value. 6852 if (ConstantInt *CB = 6853 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6854 R1->getValue(), R2->getValue()))) { 6855 if (CB->getZExtValue() == false) 6856 std::swap(R1, R2); // R1 is the minimum root now. 6857 6858 // Make sure the root is not off by one. The returned iteration should 6859 // not be in the range, but the previous one should be. When solving 6860 // for "X*X < 5", for example, we should not return a root of 2. 6861 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6862 R1->getValue(), 6863 SE); 6864 if (Range.contains(R1Val->getValue())) { 6865 // The next iteration must be out of the range... 6866 ConstantInt *NextVal = 6867 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6868 6869 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6870 if (!Range.contains(R1Val->getValue())) 6871 return SE.getConstant(NextVal); 6872 return SE.getCouldNotCompute(); // Something strange happened 6873 } 6874 6875 // If R1 was not in the range, then it is a good return value. Make 6876 // sure that R1-1 WAS in the range though, just in case. 6877 ConstantInt *NextVal = 6878 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6879 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6880 if (Range.contains(R1Val->getValue())) 6881 return R1; 6882 return SE.getCouldNotCompute(); // Something strange happened 6883 } 6884 } 6885 } 6886 6887 return SE.getCouldNotCompute(); 6888 } 6889 6890 namespace { 6891 struct FindUndefs { 6892 bool Found; 6893 FindUndefs() : Found(false) {} 6894 6895 bool follow(const SCEV *S) { 6896 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 6897 if (isa<UndefValue>(C->getValue())) 6898 Found = true; 6899 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6900 if (isa<UndefValue>(C->getValue())) 6901 Found = true; 6902 } 6903 6904 // Keep looking if we haven't found it yet. 6905 return !Found; 6906 } 6907 bool isDone() const { 6908 // Stop recursion if we have found an undef. 6909 return Found; 6910 } 6911 }; 6912 } 6913 6914 // Return true when S contains at least an undef value. 6915 static inline bool 6916 containsUndefs(const SCEV *S) { 6917 FindUndefs F; 6918 SCEVTraversal<FindUndefs> ST(F); 6919 ST.visitAll(S); 6920 6921 return F.Found; 6922 } 6923 6924 namespace { 6925 // Collect all steps of SCEV expressions. 6926 struct SCEVCollectStrides { 6927 ScalarEvolution &SE; 6928 SmallVectorImpl<const SCEV *> &Strides; 6929 6930 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 6931 : SE(SE), Strides(S) {} 6932 6933 bool follow(const SCEV *S) { 6934 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 6935 Strides.push_back(AR->getStepRecurrence(SE)); 6936 return true; 6937 } 6938 bool isDone() const { return false; } 6939 }; 6940 6941 // Collect all SCEVUnknown and SCEVMulExpr expressions. 6942 struct SCEVCollectTerms { 6943 SmallVectorImpl<const SCEV *> &Terms; 6944 6945 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 6946 : Terms(T) {} 6947 6948 bool follow(const SCEV *S) { 6949 if (isa<SCEVUnknown>(S) || isa<SCEVConstant>(S) || isa<SCEVMulExpr>(S)) { 6950 if (!containsUndefs(S)) 6951 Terms.push_back(S); 6952 6953 // Stop recursion: once we collected a term, do not walk its operands. 6954 return false; 6955 } 6956 6957 // Keep looking. 6958 return true; 6959 } 6960 bool isDone() const { return false; } 6961 }; 6962 } 6963 6964 /// Find parametric terms in this SCEVAddRecExpr. 6965 void SCEVAddRecExpr::collectParametricTerms( 6966 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 6967 SmallVector<const SCEV *, 4> Strides; 6968 SCEVCollectStrides StrideCollector(SE, Strides); 6969 visitAll(this, StrideCollector); 6970 6971 DEBUG({ 6972 dbgs() << "Strides:\n"; 6973 for (const SCEV *S : Strides) 6974 dbgs() << *S << "\n"; 6975 }); 6976 6977 for (const SCEV *S : Strides) { 6978 SCEVCollectTerms TermCollector(Terms); 6979 visitAll(S, TermCollector); 6980 } 6981 6982 DEBUG({ 6983 dbgs() << "Terms:\n"; 6984 for (const SCEV *T : Terms) 6985 dbgs() << *T << "\n"; 6986 }); 6987 } 6988 6989 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 6990 APInt A = C1->getValue()->getValue(); 6991 APInt B = C2->getValue()->getValue(); 6992 uint32_t ABW = A.getBitWidth(); 6993 uint32_t BBW = B.getBitWidth(); 6994 6995 if (ABW > BBW) 6996 B = B.sext(ABW); 6997 else if (ABW < BBW) 6998 A = A.sext(BBW); 6999 7000 return APIntOps::srem(A, B); 7001 } 7002 7003 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 7004 APInt A = C1->getValue()->getValue(); 7005 APInt B = C2->getValue()->getValue(); 7006 uint32_t ABW = A.getBitWidth(); 7007 uint32_t BBW = B.getBitWidth(); 7008 7009 if (ABW > BBW) 7010 B = B.sext(ABW); 7011 else if (ABW < BBW) 7012 A = A.sext(BBW); 7013 7014 return APIntOps::sdiv(A, B); 7015 } 7016 7017 namespace { 7018 struct FindSCEVSize { 7019 int Size; 7020 FindSCEVSize() : Size(0) {} 7021 7022 bool follow(const SCEV *S) { 7023 ++Size; 7024 // Keep looking at all operands of S. 7025 return true; 7026 } 7027 bool isDone() const { 7028 return false; 7029 } 7030 }; 7031 } 7032 7033 // Returns the size of the SCEV S. 7034 static inline int sizeOfSCEV(const SCEV *S) { 7035 FindSCEVSize F; 7036 SCEVTraversal<FindSCEVSize> ST(F); 7037 ST.visitAll(S); 7038 return F.Size; 7039 } 7040 7041 namespace { 7042 7043 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 7044 public: 7045 // Computes the Quotient and Remainder of the division of Numerator by 7046 // Denominator. 7047 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 7048 const SCEV *Denominator, const SCEV **Quotient, 7049 const SCEV **Remainder) { 7050 assert(Numerator && Denominator && "Uninitialized SCEV"); 7051 7052 SCEVDivision D(SE, Numerator, Denominator); 7053 7054 // Check for the trivial case here to avoid having to check for it in the 7055 // rest of the code. 7056 if (Numerator == Denominator) { 7057 *Quotient = D.One; 7058 *Remainder = D.Zero; 7059 return; 7060 } 7061 7062 if (Numerator->isZero()) { 7063 *Quotient = D.Zero; 7064 *Remainder = D.Zero; 7065 return; 7066 } 7067 7068 // Split the Denominator when it is a product. 7069 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 7070 const SCEV *Q, *R; 7071 *Quotient = Numerator; 7072 for (const SCEV *Op : T->operands()) { 7073 divide(SE, *Quotient, Op, &Q, &R); 7074 *Quotient = Q; 7075 7076 // Bail out when the Numerator is not divisible by one of the terms of 7077 // the Denominator. 7078 if (!R->isZero()) { 7079 *Quotient = D.Zero; 7080 *Remainder = Numerator; 7081 return; 7082 } 7083 } 7084 *Remainder = D.Zero; 7085 return; 7086 } 7087 7088 D.visit(Numerator); 7089 *Quotient = D.Quotient; 7090 *Remainder = D.Remainder; 7091 } 7092 7093 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator) 7094 : SE(S), Denominator(Denominator) { 7095 Zero = SE.getConstant(Denominator->getType(), 0); 7096 One = SE.getConstant(Denominator->getType(), 1); 7097 7098 // By default, we don't know how to divide Expr by Denominator. 7099 // Providing the default here simplifies the rest of the code. 7100 Quotient = Zero; 7101 Remainder = Numerator; 7102 } 7103 7104 // Except in the trivial case described above, we do not know how to divide 7105 // Expr by Denominator for the following functions with empty implementation. 7106 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 7107 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 7108 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 7109 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 7110 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 7111 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 7112 void visitUnknown(const SCEVUnknown *Numerator) {} 7113 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 7114 7115 void visitConstant(const SCEVConstant *Numerator) { 7116 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 7117 Quotient = SE.getConstant(sdiv(Numerator, D)); 7118 Remainder = SE.getConstant(srem(Numerator, D)); 7119 return; 7120 } 7121 } 7122 7123 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 7124 const SCEV *StartQ, *StartR, *StepQ, *StepR; 7125 assert(Numerator->isAffine() && "Numerator should be affine"); 7126 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 7127 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 7128 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 7129 Numerator->getNoWrapFlags()); 7130 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 7131 Numerator->getNoWrapFlags()); 7132 } 7133 7134 void visitAddExpr(const SCEVAddExpr *Numerator) { 7135 SmallVector<const SCEV *, 2> Qs, Rs; 7136 for (const SCEV *Op : Numerator->operands()) { 7137 const SCEV *Q, *R; 7138 divide(SE, Op, Denominator, &Q, &R); 7139 Qs.push_back(Q); 7140 Rs.push_back(R); 7141 } 7142 7143 if (Qs.size() == 1) { 7144 Quotient = Qs[0]; 7145 Remainder = Rs[0]; 7146 return; 7147 } 7148 7149 Quotient = SE.getAddExpr(Qs); 7150 Remainder = SE.getAddExpr(Rs); 7151 } 7152 7153 void visitMulExpr(const SCEVMulExpr *Numerator) { 7154 SmallVector<const SCEV *, 2> Qs; 7155 7156 bool FoundDenominatorTerm = false; 7157 for (const SCEV *Op : Numerator->operands()) { 7158 if (FoundDenominatorTerm) { 7159 Qs.push_back(Op); 7160 continue; 7161 } 7162 7163 // Check whether Denominator divides one of the product operands. 7164 const SCEV *Q, *R; 7165 divide(SE, Op, Denominator, &Q, &R); 7166 if (!R->isZero()) { 7167 Qs.push_back(Op); 7168 continue; 7169 } 7170 FoundDenominatorTerm = true; 7171 Qs.push_back(Q); 7172 } 7173 7174 if (FoundDenominatorTerm) { 7175 Remainder = Zero; 7176 if (Qs.size() == 1) 7177 Quotient = Qs[0]; 7178 else 7179 Quotient = SE.getMulExpr(Qs); 7180 return; 7181 } 7182 7183 if (!isa<SCEVUnknown>(Denominator)) { 7184 Quotient = Zero; 7185 Remainder = Numerator; 7186 return; 7187 } 7188 7189 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 7190 ValueToValueMap RewriteMap; 7191 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 7192 cast<SCEVConstant>(Zero)->getValue(); 7193 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 7194 7195 // Quotient is (Numerator - Remainder) divided by Denominator. 7196 const SCEV *Q, *R; 7197 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 7198 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 7199 // This SCEV does not seem to simplify: fail the division here. 7200 Quotient = Zero; 7201 Remainder = Numerator; 7202 return; 7203 } 7204 divide(SE, Diff, Denominator, &Q, &R); 7205 assert(R == Zero && 7206 "(Numerator - Remainder) should evenly divide Denominator"); 7207 Quotient = Q; 7208 } 7209 7210 private: 7211 ScalarEvolution &SE; 7212 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 7213 }; 7214 } 7215 7216 // Find the Greatest Common Divisor of A and B. 7217 static const SCEV * 7218 findGCD(ScalarEvolution &SE, const SCEV *A, const SCEV *B) { 7219 7220 if (const SCEVConstant *CA = dyn_cast<SCEVConstant>(A)) 7221 if (const SCEVConstant *CB = dyn_cast<SCEVConstant>(B)) 7222 return SE.getConstant(gcd(CA, CB)); 7223 7224 const SCEV *One = SE.getConstant(A->getType(), 1); 7225 if (isa<SCEVConstant>(A) && isa<SCEVUnknown>(B)) 7226 return One; 7227 if (isa<SCEVUnknown>(A) && isa<SCEVConstant>(B)) 7228 return One; 7229 7230 const SCEV *Q, *R; 7231 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(A)) { 7232 SmallVector<const SCEV *, 2> Qs; 7233 for (const SCEV *Op : M->operands()) 7234 Qs.push_back(findGCD(SE, Op, B)); 7235 return SE.getMulExpr(Qs); 7236 } 7237 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(B)) { 7238 SmallVector<const SCEV *, 2> Qs; 7239 for (const SCEV *Op : M->operands()) 7240 Qs.push_back(findGCD(SE, A, Op)); 7241 return SE.getMulExpr(Qs); 7242 } 7243 7244 SCEVDivision::divide(SE, A, B, &Q, &R); 7245 if (R->isZero()) 7246 return B; 7247 7248 SCEVDivision::divide(SE, B, A, &Q, &R); 7249 if (R->isZero()) 7250 return A; 7251 7252 return One; 7253 } 7254 7255 // Find the Greatest Common Divisor of all the SCEVs in Terms. 7256 static const SCEV * 7257 findGCD(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) { 7258 assert(Terms.size() > 0 && "Terms vector is empty"); 7259 7260 const SCEV *GCD = Terms[0]; 7261 for (const SCEV *T : Terms) 7262 GCD = findGCD(SE, GCD, T); 7263 7264 return GCD; 7265 } 7266 7267 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7268 SmallVectorImpl<const SCEV *> &Terms, 7269 SmallVectorImpl<const SCEV *> &Sizes) { 7270 // The GCD of all Terms is the dimension of the innermost dimension. 7271 const SCEV *GCD = findGCD(SE, Terms); 7272 7273 // End of recursion. 7274 if (Terms.size() == 1) { 7275 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(GCD)) { 7276 SmallVector<const SCEV *, 2> Qs; 7277 for (const SCEV *Op : M->operands()) 7278 if (!isa<SCEVConstant>(Op)) 7279 Qs.push_back(Op); 7280 7281 GCD = SE.getMulExpr(Qs); 7282 } 7283 7284 Sizes.push_back(GCD); 7285 return true; 7286 } 7287 7288 for (const SCEV *&Term : Terms) { 7289 // Normalize the terms before the next call to findArrayDimensionsRec. 7290 const SCEV *Q, *R; 7291 SCEVDivision::divide(SE, Term, GCD, &Q, &R); 7292 7293 // Bail out when GCD does not evenly divide one of the terms. 7294 if (!R->isZero()) 7295 return false; 7296 7297 Term = Q; 7298 } 7299 7300 // Remove all SCEVConstants. 7301 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7302 return isa<SCEVConstant>(E); 7303 }), 7304 Terms.end()); 7305 7306 if (Terms.size() > 0) 7307 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7308 return false; 7309 7310 Sizes.push_back(GCD); 7311 return true; 7312 } 7313 7314 namespace { 7315 struct FindParameter { 7316 bool FoundParameter; 7317 FindParameter() : FoundParameter(false) {} 7318 7319 bool follow(const SCEV *S) { 7320 if (isa<SCEVUnknown>(S)) { 7321 FoundParameter = true; 7322 // Stop recursion: we found a parameter. 7323 return false; 7324 } 7325 // Keep looking. 7326 return true; 7327 } 7328 bool isDone() const { 7329 // Stop recursion if we have found a parameter. 7330 return FoundParameter; 7331 } 7332 }; 7333 } 7334 7335 // Returns true when S contains at least a SCEVUnknown parameter. 7336 static inline bool 7337 containsParameters(const SCEV *S) { 7338 FindParameter F; 7339 SCEVTraversal<FindParameter> ST(F); 7340 ST.visitAll(S); 7341 7342 return F.FoundParameter; 7343 } 7344 7345 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7346 static inline bool 7347 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7348 for (const SCEV *T : Terms) 7349 if (containsParameters(T)) 7350 return true; 7351 return false; 7352 } 7353 7354 // Return the number of product terms in S. 7355 static inline int numberOfTerms(const SCEV *S) { 7356 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7357 return Expr->getNumOperands(); 7358 return 1; 7359 } 7360 7361 /// Second step of delinearization: compute the array dimensions Sizes from the 7362 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7363 void ScalarEvolution::findArrayDimensions( 7364 SmallVectorImpl<const SCEV *> &Terms, 7365 SmallVectorImpl<const SCEV *> &Sizes) const { 7366 7367 if (Terms.size() < 2) 7368 return; 7369 7370 // Early return when Terms do not contain parameters: we do not delinearize 7371 // non parametric SCEVs. 7372 if (!containsParameters(Terms)) 7373 return; 7374 7375 DEBUG({ 7376 dbgs() << "Terms:\n"; 7377 for (const SCEV *T : Terms) 7378 dbgs() << *T << "\n"; 7379 }); 7380 7381 // Remove duplicates. 7382 std::sort(Terms.begin(), Terms.end()); 7383 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7384 7385 // Put larger terms first. 7386 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7387 return numberOfTerms(LHS) > numberOfTerms(RHS); 7388 }); 7389 7390 DEBUG({ 7391 dbgs() << "Terms after sorting:\n"; 7392 for (const SCEV *T : Terms) 7393 dbgs() << *T << "\n"; 7394 }); 7395 7396 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7397 bool Res = findArrayDimensionsRec(SE, Terms, Sizes); 7398 7399 if (!Res) { 7400 Sizes.clear(); 7401 return; 7402 } 7403 7404 DEBUG({ 7405 dbgs() << "Sizes:\n"; 7406 for (const SCEV *S : Sizes) 7407 dbgs() << *S << "\n"; 7408 }); 7409 } 7410 7411 /// Third step of delinearization: compute the access functions for the 7412 /// Subscripts based on the dimensions in Sizes. 7413 const SCEV *SCEVAddRecExpr::computeAccessFunctions( 7414 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7415 SmallVectorImpl<const SCEV *> &Sizes) const { 7416 7417 // Early exit in case this SCEV is not an affine multivariate function. 7418 if (Sizes.empty() || !this->isAffine()) 7419 return nullptr; 7420 7421 const SCEV *Zero = SE.getConstant(this->getType(), 0); 7422 const SCEV *Res = this, *Remainder = Zero; 7423 int Last = Sizes.size() - 1; 7424 for (int i = Last; i >= 0; i--) { 7425 const SCEV *Q, *R; 7426 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7427 7428 DEBUG({ 7429 dbgs() << "Res: " << *Res << "\n"; 7430 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7431 dbgs() << "Res divided by Sizes[i]:\n"; 7432 dbgs() << "Quotient: " << *Q << "\n"; 7433 dbgs() << "Remainder: " << *R << "\n"; 7434 }); 7435 7436 Res = Q; 7437 7438 if (i == Last) { 7439 // Do not record the last subscript corresponding to the size of elements 7440 // in the array. 7441 Remainder = R; 7442 continue; 7443 } 7444 7445 // Record the access function for the current subscript. 7446 Subscripts.push_back(R); 7447 } 7448 7449 // Also push in last position the remainder of the last division: it will be 7450 // the access function of the innermost dimension. 7451 Subscripts.push_back(Res); 7452 7453 std::reverse(Subscripts.begin(), Subscripts.end()); 7454 7455 DEBUG({ 7456 dbgs() << "Subscripts:\n"; 7457 for (const SCEV *S : Subscripts) 7458 dbgs() << *S << "\n"; 7459 }); 7460 return Remainder; 7461 } 7462 7463 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7464 /// sizes of an array access. Returns the remainder of the delinearization that 7465 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7466 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7467 /// expressions in the stride and base of a SCEV corresponding to the 7468 /// computation of a GCD (greatest common divisor) of base and stride. When 7469 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7470 /// 7471 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7472 /// 7473 /// void foo(long n, long m, long o, double A[n][m][o]) { 7474 /// 7475 /// for (long i = 0; i < n; i++) 7476 /// for (long j = 0; j < m; j++) 7477 /// for (long k = 0; k < o; k++) 7478 /// A[i][j][k] = 1.0; 7479 /// } 7480 /// 7481 /// the delinearization input is the following AddRec SCEV: 7482 /// 7483 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7484 /// 7485 /// From this SCEV, we are able to say that the base offset of the access is %A 7486 /// because it appears as an offset that does not divide any of the strides in 7487 /// the loops: 7488 /// 7489 /// CHECK: Base offset: %A 7490 /// 7491 /// and then SCEV->delinearize determines the size of some of the dimensions of 7492 /// the array as these are the multiples by which the strides are happening: 7493 /// 7494 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7495 /// 7496 /// Note that the outermost dimension remains of UnknownSize because there are 7497 /// no strides that would help identifying the size of the last dimension: when 7498 /// the array has been statically allocated, one could compute the size of that 7499 /// dimension by dividing the overall size of the array by the size of the known 7500 /// dimensions: %m * %o * 8. 7501 /// 7502 /// Finally delinearize provides the access functions for the array reference 7503 /// that does correspond to A[i][j][k] of the above C testcase: 7504 /// 7505 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7506 /// 7507 /// The testcases are checking the output of a function pass: 7508 /// DelinearizationPass that walks through all loads and stores of a function 7509 /// asking for the SCEV of the memory access with respect to all enclosing 7510 /// loops, calling SCEV->delinearize on that and printing the results. 7511 7512 const SCEV * 7513 SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7514 SmallVectorImpl<const SCEV *> &Subscripts, 7515 SmallVectorImpl<const SCEV *> &Sizes) const { 7516 // First step: collect parametric terms. 7517 SmallVector<const SCEV *, 4> Terms; 7518 collectParametricTerms(SE, Terms); 7519 7520 if (Terms.empty()) 7521 return nullptr; 7522 7523 // Second step: find subscript sizes. 7524 SE.findArrayDimensions(Terms, Sizes); 7525 7526 if (Sizes.empty()) 7527 return nullptr; 7528 7529 // Third step: compute the access functions for each subscript. 7530 const SCEV *Remainder = computeAccessFunctions(SE, Subscripts, Sizes); 7531 7532 if (!Remainder || Subscripts.empty()) 7533 return nullptr; 7534 7535 DEBUG({ 7536 dbgs() << "succeeded to delinearize " << *this << "\n"; 7537 dbgs() << "ArrayDecl[UnknownSize]"; 7538 for (const SCEV *S : Sizes) 7539 dbgs() << "[" << *S << "]"; 7540 7541 dbgs() << "\nArrayRef"; 7542 for (const SCEV *S : Subscripts) 7543 dbgs() << "[" << *S << "]"; 7544 dbgs() << "\n"; 7545 }); 7546 7547 return Remainder; 7548 } 7549 7550 //===----------------------------------------------------------------------===// 7551 // SCEVCallbackVH Class Implementation 7552 //===----------------------------------------------------------------------===// 7553 7554 void ScalarEvolution::SCEVCallbackVH::deleted() { 7555 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7556 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7557 SE->ConstantEvolutionLoopExitValue.erase(PN); 7558 SE->ValueExprMap.erase(getValPtr()); 7559 // this now dangles! 7560 } 7561 7562 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7563 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7564 7565 // Forget all the expressions associated with users of the old value, 7566 // so that future queries will recompute the expressions using the new 7567 // value. 7568 Value *Old = getValPtr(); 7569 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 7570 SmallPtrSet<User *, 8> Visited; 7571 while (!Worklist.empty()) { 7572 User *U = Worklist.pop_back_val(); 7573 // Deleting the Old value will cause this to dangle. Postpone 7574 // that until everything else is done. 7575 if (U == Old) 7576 continue; 7577 if (!Visited.insert(U)) 7578 continue; 7579 if (PHINode *PN = dyn_cast<PHINode>(U)) 7580 SE->ConstantEvolutionLoopExitValue.erase(PN); 7581 SE->ValueExprMap.erase(U); 7582 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 7583 } 7584 // Delete the Old value. 7585 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7586 SE->ConstantEvolutionLoopExitValue.erase(PN); 7587 SE->ValueExprMap.erase(Old); 7588 // this now dangles! 7589 } 7590 7591 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7592 : CallbackVH(V), SE(se) {} 7593 7594 //===----------------------------------------------------------------------===// 7595 // ScalarEvolution Class Implementation 7596 //===----------------------------------------------------------------------===// 7597 7598 ScalarEvolution::ScalarEvolution() 7599 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), 7600 BlockDispositions(64), FirstUnknown(nullptr) { 7601 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7602 } 7603 7604 bool ScalarEvolution::runOnFunction(Function &F) { 7605 this->F = &F; 7606 LI = &getAnalysis<LoopInfo>(); 7607 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 7608 DL = DLP ? &DLP->getDataLayout() : nullptr; 7609 TLI = &getAnalysis<TargetLibraryInfo>(); 7610 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7611 return false; 7612 } 7613 7614 void ScalarEvolution::releaseMemory() { 7615 // Iterate through all the SCEVUnknown instances and call their 7616 // destructors, so that they release their references to their values. 7617 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7618 U->~SCEVUnknown(); 7619 FirstUnknown = nullptr; 7620 7621 ValueExprMap.clear(); 7622 7623 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7624 // that a loop had multiple computable exits. 7625 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7626 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7627 I != E; ++I) { 7628 I->second.clear(); 7629 } 7630 7631 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7632 7633 BackedgeTakenCounts.clear(); 7634 ConstantEvolutionLoopExitValue.clear(); 7635 ValuesAtScopes.clear(); 7636 LoopDispositions.clear(); 7637 BlockDispositions.clear(); 7638 UnsignedRanges.clear(); 7639 SignedRanges.clear(); 7640 UniqueSCEVs.clear(); 7641 SCEVAllocator.Reset(); 7642 } 7643 7644 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 7645 AU.setPreservesAll(); 7646 AU.addRequiredTransitive<LoopInfo>(); 7647 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 7648 AU.addRequired<TargetLibraryInfo>(); 7649 } 7650 7651 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 7652 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 7653 } 7654 7655 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 7656 const Loop *L) { 7657 // Print all inner loops first 7658 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 7659 PrintLoopInfo(OS, SE, *I); 7660 7661 OS << "Loop "; 7662 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7663 OS << ": "; 7664 7665 SmallVector<BasicBlock *, 8> ExitBlocks; 7666 L->getExitBlocks(ExitBlocks); 7667 if (ExitBlocks.size() != 1) 7668 OS << "<multiple exits> "; 7669 7670 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 7671 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 7672 } else { 7673 OS << "Unpredictable backedge-taken count. "; 7674 } 7675 7676 OS << "\n" 7677 "Loop "; 7678 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7679 OS << ": "; 7680 7681 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 7682 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 7683 } else { 7684 OS << "Unpredictable max backedge-taken count. "; 7685 } 7686 7687 OS << "\n"; 7688 } 7689 7690 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 7691 // ScalarEvolution's implementation of the print method is to print 7692 // out SCEV values of all instructions that are interesting. Doing 7693 // this potentially causes it to create new SCEV objects though, 7694 // which technically conflicts with the const qualifier. This isn't 7695 // observable from outside the class though, so casting away the 7696 // const isn't dangerous. 7697 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7698 7699 OS << "Classifying expressions for: "; 7700 F->printAsOperand(OS, /*PrintType=*/false); 7701 OS << "\n"; 7702 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 7703 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 7704 OS << *I << '\n'; 7705 OS << " --> "; 7706 const SCEV *SV = SE.getSCEV(&*I); 7707 SV->print(OS); 7708 7709 const Loop *L = LI->getLoopFor((*I).getParent()); 7710 7711 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 7712 if (AtUse != SV) { 7713 OS << " --> "; 7714 AtUse->print(OS); 7715 } 7716 7717 if (L) { 7718 OS << "\t\t" "Exits: "; 7719 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 7720 if (!SE.isLoopInvariant(ExitValue, L)) { 7721 OS << "<<Unknown>>"; 7722 } else { 7723 OS << *ExitValue; 7724 } 7725 } 7726 7727 OS << "\n"; 7728 } 7729 7730 OS << "Determining loop execution counts for: "; 7731 F->printAsOperand(OS, /*PrintType=*/false); 7732 OS << "\n"; 7733 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 7734 PrintLoopInfo(OS, &SE, *I); 7735 } 7736 7737 ScalarEvolution::LoopDisposition 7738 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 7739 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 7740 for (unsigned u = 0; u < Values.size(); u++) { 7741 if (Values[u].first == L) 7742 return Values[u].second; 7743 } 7744 Values.push_back(std::make_pair(L, LoopVariant)); 7745 LoopDisposition D = computeLoopDisposition(S, L); 7746 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 7747 for (unsigned u = Values2.size(); u > 0; u--) { 7748 if (Values2[u - 1].first == L) { 7749 Values2[u - 1].second = D; 7750 break; 7751 } 7752 } 7753 return D; 7754 } 7755 7756 ScalarEvolution::LoopDisposition 7757 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 7758 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7759 case scConstant: 7760 return LoopInvariant; 7761 case scTruncate: 7762 case scZeroExtend: 7763 case scSignExtend: 7764 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 7765 case scAddRecExpr: { 7766 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7767 7768 // If L is the addrec's loop, it's computable. 7769 if (AR->getLoop() == L) 7770 return LoopComputable; 7771 7772 // Add recurrences are never invariant in the function-body (null loop). 7773 if (!L) 7774 return LoopVariant; 7775 7776 // This recurrence is variant w.r.t. L if L contains AR's loop. 7777 if (L->contains(AR->getLoop())) 7778 return LoopVariant; 7779 7780 // This recurrence is invariant w.r.t. L if AR's loop contains L. 7781 if (AR->getLoop()->contains(L)) 7782 return LoopInvariant; 7783 7784 // This recurrence is variant w.r.t. L if any of its operands 7785 // are variant. 7786 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 7787 I != E; ++I) 7788 if (!isLoopInvariant(*I, L)) 7789 return LoopVariant; 7790 7791 // Otherwise it's loop-invariant. 7792 return LoopInvariant; 7793 } 7794 case scAddExpr: 7795 case scMulExpr: 7796 case scUMaxExpr: 7797 case scSMaxExpr: { 7798 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7799 bool HasVarying = false; 7800 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7801 I != E; ++I) { 7802 LoopDisposition D = getLoopDisposition(*I, L); 7803 if (D == LoopVariant) 7804 return LoopVariant; 7805 if (D == LoopComputable) 7806 HasVarying = true; 7807 } 7808 return HasVarying ? LoopComputable : LoopInvariant; 7809 } 7810 case scUDivExpr: { 7811 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7812 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 7813 if (LD == LoopVariant) 7814 return LoopVariant; 7815 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 7816 if (RD == LoopVariant) 7817 return LoopVariant; 7818 return (LD == LoopInvariant && RD == LoopInvariant) ? 7819 LoopInvariant : LoopComputable; 7820 } 7821 case scUnknown: 7822 // All non-instruction values are loop invariant. All instructions are loop 7823 // invariant if they are not contained in the specified loop. 7824 // Instructions are never considered invariant in the function body 7825 // (null loop) because they are defined within the "loop". 7826 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 7827 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 7828 return LoopInvariant; 7829 case scCouldNotCompute: 7830 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7831 } 7832 llvm_unreachable("Unknown SCEV kind!"); 7833 } 7834 7835 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 7836 return getLoopDisposition(S, L) == LoopInvariant; 7837 } 7838 7839 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 7840 return getLoopDisposition(S, L) == LoopComputable; 7841 } 7842 7843 ScalarEvolution::BlockDisposition 7844 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7845 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 7846 for (unsigned u = 0; u < Values.size(); u++) { 7847 if (Values[u].first == BB) 7848 return Values[u].second; 7849 } 7850 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 7851 BlockDisposition D = computeBlockDisposition(S, BB); 7852 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 7853 for (unsigned u = Values2.size(); u > 0; u--) { 7854 if (Values2[u - 1].first == BB) { 7855 Values2[u - 1].second = D; 7856 break; 7857 } 7858 } 7859 return D; 7860 } 7861 7862 ScalarEvolution::BlockDisposition 7863 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7864 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7865 case scConstant: 7866 return ProperlyDominatesBlock; 7867 case scTruncate: 7868 case scZeroExtend: 7869 case scSignExtend: 7870 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 7871 case scAddRecExpr: { 7872 // This uses a "dominates" query instead of "properly dominates" query 7873 // to test for proper dominance too, because the instruction which 7874 // produces the addrec's value is a PHI, and a PHI effectively properly 7875 // dominates its entire containing block. 7876 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7877 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 7878 return DoesNotDominateBlock; 7879 } 7880 // FALL THROUGH into SCEVNAryExpr handling. 7881 case scAddExpr: 7882 case scMulExpr: 7883 case scUMaxExpr: 7884 case scSMaxExpr: { 7885 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7886 bool Proper = true; 7887 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7888 I != E; ++I) { 7889 BlockDisposition D = getBlockDisposition(*I, BB); 7890 if (D == DoesNotDominateBlock) 7891 return DoesNotDominateBlock; 7892 if (D == DominatesBlock) 7893 Proper = false; 7894 } 7895 return Proper ? ProperlyDominatesBlock : DominatesBlock; 7896 } 7897 case scUDivExpr: { 7898 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7899 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 7900 BlockDisposition LD = getBlockDisposition(LHS, BB); 7901 if (LD == DoesNotDominateBlock) 7902 return DoesNotDominateBlock; 7903 BlockDisposition RD = getBlockDisposition(RHS, BB); 7904 if (RD == DoesNotDominateBlock) 7905 return DoesNotDominateBlock; 7906 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 7907 ProperlyDominatesBlock : DominatesBlock; 7908 } 7909 case scUnknown: 7910 if (Instruction *I = 7911 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 7912 if (I->getParent() == BB) 7913 return DominatesBlock; 7914 if (DT->properlyDominates(I->getParent(), BB)) 7915 return ProperlyDominatesBlock; 7916 return DoesNotDominateBlock; 7917 } 7918 return ProperlyDominatesBlock; 7919 case scCouldNotCompute: 7920 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7921 } 7922 llvm_unreachable("Unknown SCEV kind!"); 7923 } 7924 7925 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7926 return getBlockDisposition(S, BB) >= DominatesBlock; 7927 } 7928 7929 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7930 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7931 } 7932 7933 namespace { 7934 // Search for a SCEV expression node within an expression tree. 7935 // Implements SCEVTraversal::Visitor. 7936 struct SCEVSearch { 7937 const SCEV *Node; 7938 bool IsFound; 7939 7940 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7941 7942 bool follow(const SCEV *S) { 7943 IsFound |= (S == Node); 7944 return !IsFound; 7945 } 7946 bool isDone() const { return IsFound; } 7947 }; 7948 } 7949 7950 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7951 SCEVSearch Search(Op); 7952 visitAll(S, Search); 7953 return Search.IsFound; 7954 } 7955 7956 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7957 ValuesAtScopes.erase(S); 7958 LoopDispositions.erase(S); 7959 BlockDispositions.erase(S); 7960 UnsignedRanges.erase(S); 7961 SignedRanges.erase(S); 7962 7963 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7964 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7965 BackedgeTakenInfo &BEInfo = I->second; 7966 if (BEInfo.hasOperand(S, this)) { 7967 BEInfo.clear(); 7968 BackedgeTakenCounts.erase(I++); 7969 } 7970 else 7971 ++I; 7972 } 7973 } 7974 7975 typedef DenseMap<const Loop *, std::string> VerifyMap; 7976 7977 /// replaceSubString - Replaces all occurrences of From in Str with To. 7978 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7979 size_t Pos = 0; 7980 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7981 Str.replace(Pos, From.size(), To.data(), To.size()); 7982 Pos += To.size(); 7983 } 7984 } 7985 7986 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7987 static void 7988 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7989 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7990 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7991 7992 std::string &S = Map[L]; 7993 if (S.empty()) { 7994 raw_string_ostream OS(S); 7995 SE.getBackedgeTakenCount(L)->print(OS); 7996 7997 // false and 0 are semantically equivalent. This can happen in dead loops. 7998 replaceSubString(OS.str(), "false", "0"); 7999 // Remove wrap flags, their use in SCEV is highly fragile. 8000 // FIXME: Remove this when SCEV gets smarter about them. 8001 replaceSubString(OS.str(), "<nw>", ""); 8002 replaceSubString(OS.str(), "<nsw>", ""); 8003 replaceSubString(OS.str(), "<nuw>", ""); 8004 } 8005 } 8006 } 8007 8008 void ScalarEvolution::verifyAnalysis() const { 8009 if (!VerifySCEV) 8010 return; 8011 8012 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8013 8014 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8015 // FIXME: It would be much better to store actual values instead of strings, 8016 // but SCEV pointers will change if we drop the caches. 8017 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8018 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8019 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8020 8021 // Gather stringified backedge taken counts for all loops without using 8022 // SCEV's caches. 8023 SE.releaseMemory(); 8024 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8025 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8026 8027 // Now compare whether they're the same with and without caches. This allows 8028 // verifying that no pass changed the cache. 8029 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8030 "New loops suddenly appeared!"); 8031 8032 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8033 OldE = BackedgeDumpsOld.end(), 8034 NewI = BackedgeDumpsNew.begin(); 8035 OldI != OldE; ++OldI, ++NewI) { 8036 assert(OldI->first == NewI->first && "Loop order changed!"); 8037 8038 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8039 // changes. 8040 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8041 // means that a pass is buggy or SCEV has to learn a new pattern but is 8042 // usually not harmful. 8043 if (OldI->second != NewI->second && 8044 OldI->second.find("undef") == std::string::npos && 8045 NewI->second.find("undef") == std::string::npos && 8046 OldI->second != "***COULDNOTCOMPUTE***" && 8047 NewI->second != "***COULDNOTCOMPUTE***") { 8048 dbgs() << "SCEVValidator: SCEV for loop '" 8049 << OldI->first->getHeader()->getName() 8050 << "' changed from '" << OldI->second 8051 << "' to '" << NewI->second << "'!\n"; 8052 std::abort(); 8053 } 8054 } 8055 8056 // TODO: Verify more things. 8057 } 8058