1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/EquivalenceClasses.h" 67 #include "llvm/ADT/FoldingSet.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/ScopeExit.h" 72 #include "llvm/ADT/Sequence.h" 73 #include "llvm/ADT/SetVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallSet.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/Statistic.h" 78 #include "llvm/ADT/StringRef.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/ConstantFolding.h" 81 #include "llvm/Analysis/InstructionSimplify.h" 82 #include "llvm/Analysis/LoopInfo.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/CallSite.h" 91 #include "llvm/IR/Constant.h" 92 #include "llvm/IR/ConstantRange.h" 93 #include "llvm/IR/Constants.h" 94 #include "llvm/IR/DataLayout.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/GlobalAlias.h" 99 #include "llvm/IR/GlobalValue.h" 100 #include "llvm/IR/GlobalVariable.h" 101 #include "llvm/IR/InstIterator.h" 102 #include "llvm/IR/InstrTypes.h" 103 #include "llvm/IR/Instruction.h" 104 #include "llvm/IR/Instructions.h" 105 #include "llvm/IR/IntrinsicInst.h" 106 #include "llvm/IR/Intrinsics.h" 107 #include "llvm/IR/LLVMContext.h" 108 #include "llvm/IR/Metadata.h" 109 #include "llvm/IR/Operator.h" 110 #include "llvm/IR/PatternMatch.h" 111 #include "llvm/IR/Type.h" 112 #include "llvm/IR/Use.h" 113 #include "llvm/IR/User.h" 114 #include "llvm/IR/Value.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/KnownBits.h" 122 #include "llvm/Support/SaveAndRestore.h" 123 #include "llvm/Support/raw_ostream.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <climits> 127 #include <cstddef> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <map> 131 #include <memory> 132 #include <tuple> 133 #include <utility> 134 #include <vector> 135 136 using namespace llvm; 137 138 #define DEBUG_TYPE "scalar-evolution" 139 140 STATISTIC(NumArrayLenItCounts, 141 "Number of trip counts computed with array length"); 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::desc("Maximum number of iterations SCEV will " 152 "symbolically execute a constant " 153 "derived loop"), 154 cl::init(100)); 155 156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 157 static cl::opt<bool> VerifySCEV( 158 "verify-scev", cl::Hidden, 159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 160 static cl::opt<bool> 161 VerifySCEVMap("verify-scev-maps", cl::Hidden, 162 cl::desc("Verify no dangling value in ScalarEvolution's " 163 "ExprValueMap (slow)")); 164 165 static cl::opt<unsigned> MulOpsInlineThreshold( 166 "scev-mulops-inline-threshold", cl::Hidden, 167 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 168 cl::init(32)); 169 170 static cl::opt<unsigned> AddOpsInlineThreshold( 171 "scev-addops-inline-threshold", cl::Hidden, 172 cl::desc("Threshold for inlining addition operands into a SCEV"), 173 cl::init(500)); 174 175 static cl::opt<unsigned> MaxSCEVCompareDepth( 176 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 177 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 181 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 182 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 183 cl::init(2)); 184 185 static cl::opt<unsigned> MaxValueCompareDepth( 186 "scalar-evolution-max-value-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive value complexity comparisons"), 188 cl::init(2)); 189 190 static cl::opt<unsigned> 191 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive arithmetics"), 193 cl::init(32)); 194 195 static cl::opt<unsigned> MaxConstantEvolvingDepth( 196 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 198 199 static cl::opt<unsigned> 200 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive SExt/ZExt"), 202 cl::init(8)); 203 204 static cl::opt<unsigned> 205 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 206 cl::desc("Max coefficients in AddRec during evolving"), 207 cl::init(16)); 208 209 //===----------------------------------------------------------------------===// 210 // SCEV class definitions 211 //===----------------------------------------------------------------------===// 212 213 //===----------------------------------------------------------------------===// 214 // Implementation of the SCEV class. 215 // 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 LLVM_DUMP_METHOD void SCEV::dump() const { 219 print(dbgs()); 220 dbgs() << '\n'; 221 } 222 #endif 223 224 void SCEV::print(raw_ostream &OS) const { 225 switch (static_cast<SCEVTypes>(getSCEVType())) { 226 case scConstant: 227 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 228 return; 229 case scTruncate: { 230 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 231 const SCEV *Op = Trunc->getOperand(); 232 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 233 << *Trunc->getType() << ")"; 234 return; 235 } 236 case scZeroExtend: { 237 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 238 const SCEV *Op = ZExt->getOperand(); 239 OS << "(zext " << *Op->getType() << " " << *Op << " to " 240 << *ZExt->getType() << ")"; 241 return; 242 } 243 case scSignExtend: { 244 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 245 const SCEV *Op = SExt->getOperand(); 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " 247 << *SExt->getType() << ")"; 248 return; 249 } 250 case scAddRecExpr: { 251 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 252 OS << "{" << *AR->getOperand(0); 253 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 254 OS << ",+," << *AR->getOperand(i); 255 OS << "}<"; 256 if (AR->hasNoUnsignedWrap()) 257 OS << "nuw><"; 258 if (AR->hasNoSignedWrap()) 259 OS << "nsw><"; 260 if (AR->hasNoSelfWrap() && 261 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 262 OS << "nw><"; 263 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 264 OS << ">"; 265 return; 266 } 267 case scAddExpr: 268 case scMulExpr: 269 case scUMaxExpr: 270 case scSMaxExpr: { 271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 272 const char *OpStr = nullptr; 273 switch (NAry->getSCEVType()) { 274 case scAddExpr: OpStr = " + "; break; 275 case scMulExpr: OpStr = " * "; break; 276 case scUMaxExpr: OpStr = " umax "; break; 277 case scSMaxExpr: OpStr = " smax "; break; 278 } 279 OS << "("; 280 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 281 I != E; ++I) { 282 OS << **I; 283 if (std::next(I) != E) 284 OS << OpStr; 285 } 286 OS << ")"; 287 switch (NAry->getSCEVType()) { 288 case scAddExpr: 289 case scMulExpr: 290 if (NAry->hasNoUnsignedWrap()) 291 OS << "<nuw>"; 292 if (NAry->hasNoSignedWrap()) 293 OS << "<nsw>"; 294 } 295 return; 296 } 297 case scUDivExpr: { 298 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 299 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 300 return; 301 } 302 case scUnknown: { 303 const SCEVUnknown *U = cast<SCEVUnknown>(this); 304 Type *AllocTy; 305 if (U->isSizeOf(AllocTy)) { 306 OS << "sizeof(" << *AllocTy << ")"; 307 return; 308 } 309 if (U->isAlignOf(AllocTy)) { 310 OS << "alignof(" << *AllocTy << ")"; 311 return; 312 } 313 314 Type *CTy; 315 Constant *FieldNo; 316 if (U->isOffsetOf(CTy, FieldNo)) { 317 OS << "offsetof(" << *CTy << ", "; 318 FieldNo->printAsOperand(OS, false); 319 OS << ")"; 320 return; 321 } 322 323 // Otherwise just print it normally. 324 U->getValue()->printAsOperand(OS, false); 325 return; 326 } 327 case scCouldNotCompute: 328 OS << "***COULDNOTCOMPUTE***"; 329 return; 330 } 331 llvm_unreachable("Unknown SCEV kind!"); 332 } 333 334 Type *SCEV::getType() const { 335 switch (static_cast<SCEVTypes>(getSCEVType())) { 336 case scConstant: 337 return cast<SCEVConstant>(this)->getType(); 338 case scTruncate: 339 case scZeroExtend: 340 case scSignExtend: 341 return cast<SCEVCastExpr>(this)->getType(); 342 case scAddRecExpr: 343 case scMulExpr: 344 case scUMaxExpr: 345 case scSMaxExpr: 346 return cast<SCEVNAryExpr>(this)->getType(); 347 case scAddExpr: 348 return cast<SCEVAddExpr>(this)->getType(); 349 case scUDivExpr: 350 return cast<SCEVUDivExpr>(this)->getType(); 351 case scUnknown: 352 return cast<SCEVUnknown>(this)->getType(); 353 case scCouldNotCompute: 354 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 355 } 356 llvm_unreachable("Unknown SCEV kind!"); 357 } 358 359 bool SCEV::isZero() const { 360 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 361 return SC->getValue()->isZero(); 362 return false; 363 } 364 365 bool SCEV::isOne() const { 366 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 367 return SC->getValue()->isOne(); 368 return false; 369 } 370 371 bool SCEV::isAllOnesValue() const { 372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 373 return SC->getValue()->isMinusOne(); 374 return false; 375 } 376 377 bool SCEV::isNonConstantNegative() const { 378 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 379 if (!Mul) return false; 380 381 // If there is a constant factor, it will be first. 382 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 383 if (!SC) return false; 384 385 // Return true if the value is negative, this matches things like (-42 * V). 386 return SC->getAPInt().isNegative(); 387 } 388 389 SCEVCouldNotCompute::SCEVCouldNotCompute() : 390 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 391 392 bool SCEVCouldNotCompute::classof(const SCEV *S) { 393 return S->getSCEVType() == scCouldNotCompute; 394 } 395 396 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 397 FoldingSetNodeID ID; 398 ID.AddInteger(scConstant); 399 ID.AddPointer(V); 400 void *IP = nullptr; 401 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 402 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 403 UniqueSCEVs.InsertNode(S, IP); 404 return S; 405 } 406 407 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 408 return getConstant(ConstantInt::get(getContext(), Val)); 409 } 410 411 const SCEV * 412 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 413 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 414 return getConstant(ConstantInt::get(ITy, V, isSigned)); 415 } 416 417 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 418 unsigned SCEVTy, const SCEV *op, Type *ty) 419 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 420 421 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 422 const SCEV *op, Type *ty) 423 : SCEVCastExpr(ID, scTruncate, op, ty) { 424 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 425 (Ty->isIntegerTy() || Ty->isPointerTy()) && 426 "Cannot truncate non-integer value!"); 427 } 428 429 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 430 const SCEV *op, Type *ty) 431 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 432 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 433 (Ty->isIntegerTy() || Ty->isPointerTy()) && 434 "Cannot zero extend non-integer value!"); 435 } 436 437 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 438 const SCEV *op, Type *ty) 439 : SCEVCastExpr(ID, scSignExtend, op, ty) { 440 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 441 (Ty->isIntegerTy() || Ty->isPointerTy()) && 442 "Cannot sign extend non-integer value!"); 443 } 444 445 void SCEVUnknown::deleted() { 446 // Clear this SCEVUnknown from various maps. 447 SE->forgetMemoizedResults(this); 448 449 // Remove this SCEVUnknown from the uniquing map. 450 SE->UniqueSCEVs.RemoveNode(this); 451 452 // Release the value. 453 setValPtr(nullptr); 454 } 455 456 void SCEVUnknown::allUsesReplacedWith(Value *New) { 457 // Remove this SCEVUnknown from the uniquing map. 458 SE->UniqueSCEVs.RemoveNode(this); 459 460 // Update this SCEVUnknown to point to the new value. This is needed 461 // because there may still be outstanding SCEVs which still point to 462 // this SCEVUnknown. 463 setValPtr(New); 464 } 465 466 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 467 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 468 if (VCE->getOpcode() == Instruction::PtrToInt) 469 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 470 if (CE->getOpcode() == Instruction::GetElementPtr && 471 CE->getOperand(0)->isNullValue() && 472 CE->getNumOperands() == 2) 473 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 474 if (CI->isOne()) { 475 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 476 ->getElementType(); 477 return true; 478 } 479 480 return false; 481 } 482 483 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 484 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 485 if (VCE->getOpcode() == Instruction::PtrToInt) 486 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 487 if (CE->getOpcode() == Instruction::GetElementPtr && 488 CE->getOperand(0)->isNullValue()) { 489 Type *Ty = 490 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 491 if (StructType *STy = dyn_cast<StructType>(Ty)) 492 if (!STy->isPacked() && 493 CE->getNumOperands() == 3 && 494 CE->getOperand(1)->isNullValue()) { 495 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 496 if (CI->isOne() && 497 STy->getNumElements() == 2 && 498 STy->getElementType(0)->isIntegerTy(1)) { 499 AllocTy = STy->getElementType(1); 500 return true; 501 } 502 } 503 } 504 505 return false; 506 } 507 508 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 509 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 510 if (VCE->getOpcode() == Instruction::PtrToInt) 511 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 512 if (CE->getOpcode() == Instruction::GetElementPtr && 513 CE->getNumOperands() == 3 && 514 CE->getOperand(0)->isNullValue() && 515 CE->getOperand(1)->isNullValue()) { 516 Type *Ty = 517 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 518 // Ignore vector types here so that ScalarEvolutionExpander doesn't 519 // emit getelementptrs that index into vectors. 520 if (Ty->isStructTy() || Ty->isArrayTy()) { 521 CTy = Ty; 522 FieldNo = CE->getOperand(2); 523 return true; 524 } 525 } 526 527 return false; 528 } 529 530 //===----------------------------------------------------------------------===// 531 // SCEV Utilities 532 //===----------------------------------------------------------------------===// 533 534 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 535 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 536 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 537 /// have been previously deemed to be "equally complex" by this routine. It is 538 /// intended to avoid exponential time complexity in cases like: 539 /// 540 /// %a = f(%x, %y) 541 /// %b = f(%a, %a) 542 /// %c = f(%b, %b) 543 /// 544 /// %d = f(%x, %y) 545 /// %e = f(%d, %d) 546 /// %f = f(%e, %e) 547 /// 548 /// CompareValueComplexity(%f, %c) 549 /// 550 /// Since we do not continue running this routine on expression trees once we 551 /// have seen unequal values, there is no need to track them in the cache. 552 static int 553 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 554 const LoopInfo *const LI, Value *LV, Value *RV, 555 unsigned Depth) { 556 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 557 return 0; 558 559 // Order pointer values after integer values. This helps SCEVExpander form 560 // GEPs. 561 bool LIsPointer = LV->getType()->isPointerTy(), 562 RIsPointer = RV->getType()->isPointerTy(); 563 if (LIsPointer != RIsPointer) 564 return (int)LIsPointer - (int)RIsPointer; 565 566 // Compare getValueID values. 567 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 568 if (LID != RID) 569 return (int)LID - (int)RID; 570 571 // Sort arguments by their position. 572 if (const auto *LA = dyn_cast<Argument>(LV)) { 573 const auto *RA = cast<Argument>(RV); 574 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 575 return (int)LArgNo - (int)RArgNo; 576 } 577 578 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 579 const auto *RGV = cast<GlobalValue>(RV); 580 581 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 582 auto LT = GV->getLinkage(); 583 return !(GlobalValue::isPrivateLinkage(LT) || 584 GlobalValue::isInternalLinkage(LT)); 585 }; 586 587 // Use the names to distinguish the two values, but only if the 588 // names are semantically important. 589 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 590 return LGV->getName().compare(RGV->getName()); 591 } 592 593 // For instructions, compare their loop depth, and their operand count. This 594 // is pretty loose. 595 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 596 const auto *RInst = cast<Instruction>(RV); 597 598 // Compare loop depths. 599 const BasicBlock *LParent = LInst->getParent(), 600 *RParent = RInst->getParent(); 601 if (LParent != RParent) { 602 unsigned LDepth = LI->getLoopDepth(LParent), 603 RDepth = LI->getLoopDepth(RParent); 604 if (LDepth != RDepth) 605 return (int)LDepth - (int)RDepth; 606 } 607 608 // Compare the number of operands. 609 unsigned LNumOps = LInst->getNumOperands(), 610 RNumOps = RInst->getNumOperands(); 611 if (LNumOps != RNumOps) 612 return (int)LNumOps - (int)RNumOps; 613 614 for (unsigned Idx : seq(0u, LNumOps)) { 615 int Result = 616 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 617 RInst->getOperand(Idx), Depth + 1); 618 if (Result != 0) 619 return Result; 620 } 621 } 622 623 EqCacheValue.unionSets(LV, RV); 624 return 0; 625 } 626 627 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 628 // than RHS, respectively. A three-way result allows recursive comparisons to be 629 // more efficient. 630 static int CompareSCEVComplexity( 631 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 632 EquivalenceClasses<const Value *> &EqCacheValue, 633 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 634 DominatorTree &DT, unsigned Depth = 0) { 635 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 636 if (LHS == RHS) 637 return 0; 638 639 // Primarily, sort the SCEVs by their getSCEVType(). 640 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 641 if (LType != RType) 642 return (int)LType - (int)RType; 643 644 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 645 return 0; 646 // Aside from the getSCEVType() ordering, the particular ordering 647 // isn't very important except that it's beneficial to be consistent, 648 // so that (a + b) and (b + a) don't end up as different expressions. 649 switch (static_cast<SCEVTypes>(LType)) { 650 case scUnknown: { 651 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 652 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 653 654 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 655 RU->getValue(), Depth + 1); 656 if (X == 0) 657 EqCacheSCEV.unionSets(LHS, RHS); 658 return X; 659 } 660 661 case scConstant: { 662 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 663 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 664 665 // Compare constant values. 666 const APInt &LA = LC->getAPInt(); 667 const APInt &RA = RC->getAPInt(); 668 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 669 if (LBitWidth != RBitWidth) 670 return (int)LBitWidth - (int)RBitWidth; 671 return LA.ult(RA) ? -1 : 1; 672 } 673 674 case scAddRecExpr: { 675 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 676 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 677 678 // There is always a dominance between two recs that are used by one SCEV, 679 // so we can safely sort recs by loop header dominance. We require such 680 // order in getAddExpr. 681 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 682 if (LLoop != RLoop) { 683 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 684 assert(LHead != RHead && "Two loops share the same header?"); 685 if (DT.dominates(LHead, RHead)) 686 return 1; 687 else 688 assert(DT.dominates(RHead, LHead) && 689 "No dominance between recurrences used by one SCEV?"); 690 return -1; 691 } 692 693 // Addrec complexity grows with operand count. 694 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 695 if (LNumOps != RNumOps) 696 return (int)LNumOps - (int)RNumOps; 697 698 // Compare NoWrap flags. 699 if (LA->getNoWrapFlags() != RA->getNoWrapFlags()) 700 return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags(); 701 702 // Lexicographically compare. 703 for (unsigned i = 0; i != LNumOps; ++i) { 704 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 705 LA->getOperand(i), RA->getOperand(i), DT, 706 Depth + 1); 707 if (X != 0) 708 return X; 709 } 710 EqCacheSCEV.unionSets(LHS, RHS); 711 return 0; 712 } 713 714 case scAddExpr: 715 case scMulExpr: 716 case scSMaxExpr: 717 case scUMaxExpr: { 718 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 719 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 720 721 // Lexicographically compare n-ary expressions. 722 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 723 if (LNumOps != RNumOps) 724 return (int)LNumOps - (int)RNumOps; 725 726 // Compare NoWrap flags. 727 if (LC->getNoWrapFlags() != RC->getNoWrapFlags()) 728 return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags(); 729 730 for (unsigned i = 0; i != LNumOps; ++i) { 731 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 732 LC->getOperand(i), RC->getOperand(i), DT, 733 Depth + 1); 734 if (X != 0) 735 return X; 736 } 737 EqCacheSCEV.unionSets(LHS, RHS); 738 return 0; 739 } 740 741 case scUDivExpr: { 742 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 743 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 744 745 // Lexicographically compare udiv expressions. 746 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 747 RC->getLHS(), DT, Depth + 1); 748 if (X != 0) 749 return X; 750 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 751 RC->getRHS(), DT, Depth + 1); 752 if (X == 0) 753 EqCacheSCEV.unionSets(LHS, RHS); 754 return X; 755 } 756 757 case scTruncate: 758 case scZeroExtend: 759 case scSignExtend: { 760 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 761 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 762 763 // Compare cast expressions by operand. 764 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LC->getOperand(), RC->getOperand(), DT, 766 Depth + 1); 767 if (X == 0) 768 EqCacheSCEV.unionSets(LHS, RHS); 769 return X; 770 } 771 772 case scCouldNotCompute: 773 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 774 } 775 llvm_unreachable("Unknown SCEV kind!"); 776 } 777 778 /// Given a list of SCEV objects, order them by their complexity, and group 779 /// objects of the same complexity together by value. When this routine is 780 /// finished, we know that any duplicates in the vector are consecutive and that 781 /// complexity is monotonically increasing. 782 /// 783 /// Note that we go take special precautions to ensure that we get deterministic 784 /// results from this routine. In other words, we don't want the results of 785 /// this to depend on where the addresses of various SCEV objects happened to 786 /// land in memory. 787 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 788 LoopInfo *LI, DominatorTree &DT) { 789 if (Ops.size() < 2) return; // Noop 790 791 EquivalenceClasses<const SCEV *> EqCacheSCEV; 792 EquivalenceClasses<const Value *> EqCacheValue; 793 if (Ops.size() == 2) { 794 // This is the common case, which also happens to be trivially simple. 795 // Special case it. 796 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 797 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 798 std::swap(LHS, RHS); 799 return; 800 } 801 802 // Do the rough sort by complexity. 803 std::stable_sort(Ops.begin(), Ops.end(), 804 [&](const SCEV *LHS, const SCEV *RHS) { 805 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 806 LHS, RHS, DT) < 0; 807 }); 808 809 // Now that we are sorted by complexity, group elements of the same 810 // complexity. Note that this is, at worst, N^2, but the vector is likely to 811 // be extremely short in practice. Note that we take this approach because we 812 // do not want to depend on the addresses of the objects we are grouping. 813 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 814 const SCEV *S = Ops[i]; 815 unsigned Complexity = S->getSCEVType(); 816 817 // If there are any objects of the same complexity and same value as this 818 // one, group them. 819 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 820 if (Ops[j] == S) { // Found a duplicate. 821 // Move it to immediately after i'th element. 822 std::swap(Ops[i+1], Ops[j]); 823 ++i; // no need to rescan it. 824 if (i == e-2) return; // Done! 825 } 826 } 827 } 828 } 829 830 // Returns the size of the SCEV S. 831 static inline int sizeOfSCEV(const SCEV *S) { 832 struct FindSCEVSize { 833 int Size = 0; 834 835 FindSCEVSize() = default; 836 837 bool follow(const SCEV *S) { 838 ++Size; 839 // Keep looking at all operands of S. 840 return true; 841 } 842 843 bool isDone() const { 844 return false; 845 } 846 }; 847 848 FindSCEVSize F; 849 SCEVTraversal<FindSCEVSize> ST(F); 850 ST.visitAll(S); 851 return F.Size; 852 } 853 854 namespace { 855 856 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 857 public: 858 // Computes the Quotient and Remainder of the division of Numerator by 859 // Denominator. 860 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 861 const SCEV *Denominator, const SCEV **Quotient, 862 const SCEV **Remainder) { 863 assert(Numerator && Denominator && "Uninitialized SCEV"); 864 865 SCEVDivision D(SE, Numerator, Denominator); 866 867 // Check for the trivial case here to avoid having to check for it in the 868 // rest of the code. 869 if (Numerator == Denominator) { 870 *Quotient = D.One; 871 *Remainder = D.Zero; 872 return; 873 } 874 875 if (Numerator->isZero()) { 876 *Quotient = D.Zero; 877 *Remainder = D.Zero; 878 return; 879 } 880 881 // A simple case when N/1. The quotient is N. 882 if (Denominator->isOne()) { 883 *Quotient = Numerator; 884 *Remainder = D.Zero; 885 return; 886 } 887 888 // Split the Denominator when it is a product. 889 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 890 const SCEV *Q, *R; 891 *Quotient = Numerator; 892 for (const SCEV *Op : T->operands()) { 893 divide(SE, *Quotient, Op, &Q, &R); 894 *Quotient = Q; 895 896 // Bail out when the Numerator is not divisible by one of the terms of 897 // the Denominator. 898 if (!R->isZero()) { 899 *Quotient = D.Zero; 900 *Remainder = Numerator; 901 return; 902 } 903 } 904 *Remainder = D.Zero; 905 return; 906 } 907 908 D.visit(Numerator); 909 *Quotient = D.Quotient; 910 *Remainder = D.Remainder; 911 } 912 913 // Except in the trivial case described above, we do not know how to divide 914 // Expr by Denominator for the following functions with empty implementation. 915 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 916 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 917 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 918 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 919 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 920 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 921 void visitUnknown(const SCEVUnknown *Numerator) {} 922 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 923 924 void visitConstant(const SCEVConstant *Numerator) { 925 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 926 APInt NumeratorVal = Numerator->getAPInt(); 927 APInt DenominatorVal = D->getAPInt(); 928 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 929 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 930 931 if (NumeratorBW > DenominatorBW) 932 DenominatorVal = DenominatorVal.sext(NumeratorBW); 933 else if (NumeratorBW < DenominatorBW) 934 NumeratorVal = NumeratorVal.sext(DenominatorBW); 935 936 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 937 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 938 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 939 Quotient = SE.getConstant(QuotientVal); 940 Remainder = SE.getConstant(RemainderVal); 941 return; 942 } 943 } 944 945 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 946 const SCEV *StartQ, *StartR, *StepQ, *StepR; 947 if (!Numerator->isAffine()) 948 return cannotDivide(Numerator); 949 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 950 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 951 // Bail out if the types do not match. 952 Type *Ty = Denominator->getType(); 953 if (Ty != StartQ->getType() || Ty != StartR->getType() || 954 Ty != StepQ->getType() || Ty != StepR->getType()) 955 return cannotDivide(Numerator); 956 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 957 Numerator->getNoWrapFlags()); 958 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 959 Numerator->getNoWrapFlags()); 960 } 961 962 void visitAddExpr(const SCEVAddExpr *Numerator) { 963 SmallVector<const SCEV *, 2> Qs, Rs; 964 Type *Ty = Denominator->getType(); 965 966 for (const SCEV *Op : Numerator->operands()) { 967 const SCEV *Q, *R; 968 divide(SE, Op, Denominator, &Q, &R); 969 970 // Bail out if types do not match. 971 if (Ty != Q->getType() || Ty != R->getType()) 972 return cannotDivide(Numerator); 973 974 Qs.push_back(Q); 975 Rs.push_back(R); 976 } 977 978 if (Qs.size() == 1) { 979 Quotient = Qs[0]; 980 Remainder = Rs[0]; 981 return; 982 } 983 984 Quotient = SE.getAddExpr(Qs); 985 Remainder = SE.getAddExpr(Rs); 986 } 987 988 void visitMulExpr(const SCEVMulExpr *Numerator) { 989 SmallVector<const SCEV *, 2> Qs; 990 Type *Ty = Denominator->getType(); 991 992 bool FoundDenominatorTerm = false; 993 for (const SCEV *Op : Numerator->operands()) { 994 // Bail out if types do not match. 995 if (Ty != Op->getType()) 996 return cannotDivide(Numerator); 997 998 if (FoundDenominatorTerm) { 999 Qs.push_back(Op); 1000 continue; 1001 } 1002 1003 // Check whether Denominator divides one of the product operands. 1004 const SCEV *Q, *R; 1005 divide(SE, Op, Denominator, &Q, &R); 1006 if (!R->isZero()) { 1007 Qs.push_back(Op); 1008 continue; 1009 } 1010 1011 // Bail out if types do not match. 1012 if (Ty != Q->getType()) 1013 return cannotDivide(Numerator); 1014 1015 FoundDenominatorTerm = true; 1016 Qs.push_back(Q); 1017 } 1018 1019 if (FoundDenominatorTerm) { 1020 Remainder = Zero; 1021 if (Qs.size() == 1) 1022 Quotient = Qs[0]; 1023 else 1024 Quotient = SE.getMulExpr(Qs); 1025 return; 1026 } 1027 1028 if (!isa<SCEVUnknown>(Denominator)) 1029 return cannotDivide(Numerator); 1030 1031 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1032 ValueToValueMap RewriteMap; 1033 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1034 cast<SCEVConstant>(Zero)->getValue(); 1035 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1036 1037 if (Remainder->isZero()) { 1038 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1039 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1040 cast<SCEVConstant>(One)->getValue(); 1041 Quotient = 1042 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1043 return; 1044 } 1045 1046 // Quotient is (Numerator - Remainder) divided by Denominator. 1047 const SCEV *Q, *R; 1048 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1049 // This SCEV does not seem to simplify: fail the division here. 1050 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1051 return cannotDivide(Numerator); 1052 divide(SE, Diff, Denominator, &Q, &R); 1053 if (R != Zero) 1054 return cannotDivide(Numerator); 1055 Quotient = Q; 1056 } 1057 1058 private: 1059 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1060 const SCEV *Denominator) 1061 : SE(S), Denominator(Denominator) { 1062 Zero = SE.getZero(Denominator->getType()); 1063 One = SE.getOne(Denominator->getType()); 1064 1065 // We generally do not know how to divide Expr by Denominator. We 1066 // initialize the division to a "cannot divide" state to simplify the rest 1067 // of the code. 1068 cannotDivide(Numerator); 1069 } 1070 1071 // Convenience function for giving up on the division. We set the quotient to 1072 // be equal to zero and the remainder to be equal to the numerator. 1073 void cannotDivide(const SCEV *Numerator) { 1074 Quotient = Zero; 1075 Remainder = Numerator; 1076 } 1077 1078 ScalarEvolution &SE; 1079 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1080 }; 1081 1082 } // end anonymous namespace 1083 1084 //===----------------------------------------------------------------------===// 1085 // Simple SCEV method implementations 1086 //===----------------------------------------------------------------------===// 1087 1088 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1089 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1090 ScalarEvolution &SE, 1091 Type *ResultTy) { 1092 // Handle the simplest case efficiently. 1093 if (K == 1) 1094 return SE.getTruncateOrZeroExtend(It, ResultTy); 1095 1096 // We are using the following formula for BC(It, K): 1097 // 1098 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1099 // 1100 // Suppose, W is the bitwidth of the return value. We must be prepared for 1101 // overflow. Hence, we must assure that the result of our computation is 1102 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1103 // safe in modular arithmetic. 1104 // 1105 // However, this code doesn't use exactly that formula; the formula it uses 1106 // is something like the following, where T is the number of factors of 2 in 1107 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1108 // exponentiation: 1109 // 1110 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1111 // 1112 // This formula is trivially equivalent to the previous formula. However, 1113 // this formula can be implemented much more efficiently. The trick is that 1114 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1115 // arithmetic. To do exact division in modular arithmetic, all we have 1116 // to do is multiply by the inverse. Therefore, this step can be done at 1117 // width W. 1118 // 1119 // The next issue is how to safely do the division by 2^T. The way this 1120 // is done is by doing the multiplication step at a width of at least W + T 1121 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1122 // when we perform the division by 2^T (which is equivalent to a right shift 1123 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1124 // truncated out after the division by 2^T. 1125 // 1126 // In comparison to just directly using the first formula, this technique 1127 // is much more efficient; using the first formula requires W * K bits, 1128 // but this formula less than W + K bits. Also, the first formula requires 1129 // a division step, whereas this formula only requires multiplies and shifts. 1130 // 1131 // It doesn't matter whether the subtraction step is done in the calculation 1132 // width or the input iteration count's width; if the subtraction overflows, 1133 // the result must be zero anyway. We prefer here to do it in the width of 1134 // the induction variable because it helps a lot for certain cases; CodeGen 1135 // isn't smart enough to ignore the overflow, which leads to much less 1136 // efficient code if the width of the subtraction is wider than the native 1137 // register width. 1138 // 1139 // (It's possible to not widen at all by pulling out factors of 2 before 1140 // the multiplication; for example, K=2 can be calculated as 1141 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1142 // extra arithmetic, so it's not an obvious win, and it gets 1143 // much more complicated for K > 3.) 1144 1145 // Protection from insane SCEVs; this bound is conservative, 1146 // but it probably doesn't matter. 1147 if (K > 1000) 1148 return SE.getCouldNotCompute(); 1149 1150 unsigned W = SE.getTypeSizeInBits(ResultTy); 1151 1152 // Calculate K! / 2^T and T; we divide out the factors of two before 1153 // multiplying for calculating K! / 2^T to avoid overflow. 1154 // Other overflow doesn't matter because we only care about the bottom 1155 // W bits of the result. 1156 APInt OddFactorial(W, 1); 1157 unsigned T = 1; 1158 for (unsigned i = 3; i <= K; ++i) { 1159 APInt Mult(W, i); 1160 unsigned TwoFactors = Mult.countTrailingZeros(); 1161 T += TwoFactors; 1162 Mult.lshrInPlace(TwoFactors); 1163 OddFactorial *= Mult; 1164 } 1165 1166 // We need at least W + T bits for the multiplication step 1167 unsigned CalculationBits = W + T; 1168 1169 // Calculate 2^T, at width T+W. 1170 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1171 1172 // Calculate the multiplicative inverse of K! / 2^T; 1173 // this multiplication factor will perform the exact division by 1174 // K! / 2^T. 1175 APInt Mod = APInt::getSignedMinValue(W+1); 1176 APInt MultiplyFactor = OddFactorial.zext(W+1); 1177 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1178 MultiplyFactor = MultiplyFactor.trunc(W); 1179 1180 // Calculate the product, at width T+W 1181 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1182 CalculationBits); 1183 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1184 for (unsigned i = 1; i != K; ++i) { 1185 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1186 Dividend = SE.getMulExpr(Dividend, 1187 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1188 } 1189 1190 // Divide by 2^T 1191 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1192 1193 // Truncate the result, and divide by K! / 2^T. 1194 1195 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1196 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1197 } 1198 1199 /// Return the value of this chain of recurrences at the specified iteration 1200 /// number. We can evaluate this recurrence by multiplying each element in the 1201 /// chain by the binomial coefficient corresponding to it. In other words, we 1202 /// can evaluate {A,+,B,+,C,+,D} as: 1203 /// 1204 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1205 /// 1206 /// where BC(It, k) stands for binomial coefficient. 1207 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1208 ScalarEvolution &SE) const { 1209 const SCEV *Result = getStart(); 1210 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1211 // The computation is correct in the face of overflow provided that the 1212 // multiplication is performed _after_ the evaluation of the binomial 1213 // coefficient. 1214 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1215 if (isa<SCEVCouldNotCompute>(Coeff)) 1216 return Coeff; 1217 1218 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1219 } 1220 return Result; 1221 } 1222 1223 //===----------------------------------------------------------------------===// 1224 // SCEV Expression folder implementations 1225 //===----------------------------------------------------------------------===// 1226 1227 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1228 Type *Ty) { 1229 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1230 "This is not a truncating conversion!"); 1231 assert(isSCEVable(Ty) && 1232 "This is not a conversion to a SCEVable type!"); 1233 Ty = getEffectiveSCEVType(Ty); 1234 1235 FoldingSetNodeID ID; 1236 ID.AddInteger(scTruncate); 1237 ID.AddPointer(Op); 1238 ID.AddPointer(Ty); 1239 void *IP = nullptr; 1240 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1241 1242 // Fold if the operand is constant. 1243 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1244 return getConstant( 1245 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1246 1247 // trunc(trunc(x)) --> trunc(x) 1248 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1249 return getTruncateExpr(ST->getOperand(), Ty); 1250 1251 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1252 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1253 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1254 1255 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1256 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1257 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1258 1259 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1260 // eliminate all the truncates, or we replace other casts with truncates. 1261 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1262 SmallVector<const SCEV *, 4> Operands; 1263 bool hasTrunc = false; 1264 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1265 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1266 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1267 hasTrunc = isa<SCEVTruncateExpr>(S); 1268 Operands.push_back(S); 1269 } 1270 if (!hasTrunc) 1271 return getAddExpr(Operands); 1272 // In spite we checked in the beginning that ID is not in the cache, 1273 // it is possible that during recursion and different modification 1274 // ID came to cache, so if we found it, just return it. 1275 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1276 return S; 1277 } 1278 1279 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1280 // eliminate all the truncates, or we replace other casts with truncates. 1281 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1282 SmallVector<const SCEV *, 4> Operands; 1283 bool hasTrunc = false; 1284 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1285 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1286 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1287 hasTrunc = isa<SCEVTruncateExpr>(S); 1288 Operands.push_back(S); 1289 } 1290 if (!hasTrunc) 1291 return getMulExpr(Operands); 1292 // In spite we checked in the beginning that ID is not in the cache, 1293 // it is possible that during recursion and different modification 1294 // ID came to cache, so if we found it, just return it. 1295 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1296 return S; 1297 } 1298 1299 // If the input value is a chrec scev, truncate the chrec's operands. 1300 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1301 SmallVector<const SCEV *, 4> Operands; 1302 for (const SCEV *Op : AddRec->operands()) 1303 Operands.push_back(getTruncateExpr(Op, Ty)); 1304 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1305 } 1306 1307 // The cast wasn't folded; create an explicit cast node. We can reuse 1308 // the existing insert position since if we get here, we won't have 1309 // made any changes which would invalidate it. 1310 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1311 Op, Ty); 1312 UniqueSCEVs.InsertNode(S, IP); 1313 addToLoopUseLists(S); 1314 return S; 1315 } 1316 1317 // Get the limit of a recurrence such that incrementing by Step cannot cause 1318 // signed overflow as long as the value of the recurrence within the 1319 // loop does not exceed this limit before incrementing. 1320 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1321 ICmpInst::Predicate *Pred, 1322 ScalarEvolution *SE) { 1323 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1324 if (SE->isKnownPositive(Step)) { 1325 *Pred = ICmpInst::ICMP_SLT; 1326 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1327 SE->getSignedRangeMax(Step)); 1328 } 1329 if (SE->isKnownNegative(Step)) { 1330 *Pred = ICmpInst::ICMP_SGT; 1331 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1332 SE->getSignedRangeMin(Step)); 1333 } 1334 return nullptr; 1335 } 1336 1337 // Get the limit of a recurrence such that incrementing by Step cannot cause 1338 // unsigned overflow as long as the value of the recurrence within the loop does 1339 // not exceed this limit before incrementing. 1340 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1344 *Pred = ICmpInst::ICMP_ULT; 1345 1346 return SE->getConstant(APInt::getMinValue(BitWidth) - 1347 SE->getUnsignedRangeMax(Step)); 1348 } 1349 1350 namespace { 1351 1352 struct ExtendOpTraitsBase { 1353 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1354 unsigned); 1355 }; 1356 1357 // Used to make code generic over signed and unsigned overflow. 1358 template <typename ExtendOp> struct ExtendOpTraits { 1359 // Members present: 1360 // 1361 // static const SCEV::NoWrapFlags WrapType; 1362 // 1363 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1364 // 1365 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1366 // ICmpInst::Predicate *Pred, 1367 // ScalarEvolution *SE); 1368 }; 1369 1370 template <> 1371 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1372 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1373 1374 static const GetExtendExprTy GetExtendExpr; 1375 1376 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1377 ICmpInst::Predicate *Pred, 1378 ScalarEvolution *SE) { 1379 return getSignedOverflowLimitForStep(Step, Pred, SE); 1380 } 1381 }; 1382 1383 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1384 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1385 1386 template <> 1387 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1388 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1389 1390 static const GetExtendExprTy GetExtendExpr; 1391 1392 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1393 ICmpInst::Predicate *Pred, 1394 ScalarEvolution *SE) { 1395 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1396 } 1397 }; 1398 1399 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1400 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1401 1402 } // end anonymous namespace 1403 1404 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1405 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1406 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1407 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1408 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1409 // expression "Step + sext/zext(PreIncAR)" is congruent with 1410 // "sext/zext(PostIncAR)" 1411 template <typename ExtendOpTy> 1412 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1413 ScalarEvolution *SE, unsigned Depth) { 1414 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1415 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1416 1417 const Loop *L = AR->getLoop(); 1418 const SCEV *Start = AR->getStart(); 1419 const SCEV *Step = AR->getStepRecurrence(*SE); 1420 1421 // Check for a simple looking step prior to loop entry. 1422 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1423 if (!SA) 1424 return nullptr; 1425 1426 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1427 // subtraction is expensive. For this purpose, perform a quick and dirty 1428 // difference, by checking for Step in the operand list. 1429 SmallVector<const SCEV *, 4> DiffOps; 1430 for (const SCEV *Op : SA->operands()) 1431 if (Op != Step) 1432 DiffOps.push_back(Op); 1433 1434 if (DiffOps.size() == SA->getNumOperands()) 1435 return nullptr; 1436 1437 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1438 // `Step`: 1439 1440 // 1. NSW/NUW flags on the step increment. 1441 auto PreStartFlags = 1442 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1443 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1444 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1445 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1446 1447 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1448 // "S+X does not sign/unsign-overflow". 1449 // 1450 1451 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1452 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1453 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1454 return PreStart; 1455 1456 // 2. Direct overflow check on the step operation's expression. 1457 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1458 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1459 const SCEV *OperandExtendedStart = 1460 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1461 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1462 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1463 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1464 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1465 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1466 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1467 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1468 } 1469 return PreStart; 1470 } 1471 1472 // 3. Loop precondition. 1473 ICmpInst::Predicate Pred; 1474 const SCEV *OverflowLimit = 1475 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1476 1477 if (OverflowLimit && 1478 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1479 return PreStart; 1480 1481 return nullptr; 1482 } 1483 1484 // Get the normalized zero or sign extended expression for this AddRec's Start. 1485 template <typename ExtendOpTy> 1486 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1487 ScalarEvolution *SE, 1488 unsigned Depth) { 1489 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1490 1491 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1492 if (!PreStart) 1493 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1494 1495 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1496 Depth), 1497 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1498 } 1499 1500 // Try to prove away overflow by looking at "nearby" add recurrences. A 1501 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1502 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1503 // 1504 // Formally: 1505 // 1506 // {S,+,X} == {S-T,+,X} + T 1507 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1508 // 1509 // If ({S-T,+,X} + T) does not overflow ... (1) 1510 // 1511 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1512 // 1513 // If {S-T,+,X} does not overflow ... (2) 1514 // 1515 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1516 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1517 // 1518 // If (S-T)+T does not overflow ... (3) 1519 // 1520 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1521 // == {Ext(S),+,Ext(X)} == LHS 1522 // 1523 // Thus, if (1), (2) and (3) are true for some T, then 1524 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1525 // 1526 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1527 // does not overflow" restricted to the 0th iteration. Therefore we only need 1528 // to check for (1) and (2). 1529 // 1530 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1531 // is `Delta` (defined below). 1532 template <typename ExtendOpTy> 1533 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1534 const SCEV *Step, 1535 const Loop *L) { 1536 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1537 1538 // We restrict `Start` to a constant to prevent SCEV from spending too much 1539 // time here. It is correct (but more expensive) to continue with a 1540 // non-constant `Start` and do a general SCEV subtraction to compute 1541 // `PreStart` below. 1542 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1543 if (!StartC) 1544 return false; 1545 1546 APInt StartAI = StartC->getAPInt(); 1547 1548 for (unsigned Delta : {-2, -1, 1, 2}) { 1549 const SCEV *PreStart = getConstant(StartAI - Delta); 1550 1551 FoldingSetNodeID ID; 1552 ID.AddInteger(scAddRecExpr); 1553 ID.AddPointer(PreStart); 1554 ID.AddPointer(Step); 1555 ID.AddPointer(L); 1556 void *IP = nullptr; 1557 const auto *PreAR = 1558 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1559 1560 // Give up if we don't already have the add recurrence we need because 1561 // actually constructing an add recurrence is relatively expensive. 1562 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1563 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1564 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1565 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1566 DeltaS, &Pred, this); 1567 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1568 return true; 1569 } 1570 } 1571 1572 return false; 1573 } 1574 1575 const SCEV * 1576 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1577 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1578 "This is not an extending conversion!"); 1579 assert(isSCEVable(Ty) && 1580 "This is not a conversion to a SCEVable type!"); 1581 Ty = getEffectiveSCEVType(Ty); 1582 1583 // Fold if the operand is constant. 1584 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1585 return getConstant( 1586 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1587 1588 // zext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scZeroExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 if (Depth > MaxExtDepth) { 1601 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1602 Op, Ty); 1603 UniqueSCEVs.InsertNode(S, IP); 1604 addToLoopUseLists(S); 1605 return S; 1606 } 1607 1608 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1609 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1610 // It's possible the bits taken off by the truncate were all zero bits. If 1611 // so, we should be able to simplify this further. 1612 const SCEV *X = ST->getOperand(); 1613 ConstantRange CR = getUnsignedRange(X); 1614 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1615 unsigned NewBits = getTypeSizeInBits(Ty); 1616 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1617 CR.zextOrTrunc(NewBits))) 1618 return getTruncateOrZeroExtend(X, Ty); 1619 } 1620 1621 // If the input value is a chrec scev, and we can prove that the value 1622 // did not overflow the old, smaller, value, we can zero extend all of the 1623 // operands (often constants). This allows analysis of something like 1624 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1626 if (AR->isAffine()) { 1627 const SCEV *Start = AR->getStart(); 1628 const SCEV *Step = AR->getStepRecurrence(*this); 1629 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1630 const Loop *L = AR->getLoop(); 1631 1632 if (!AR->hasNoUnsignedWrap()) { 1633 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1634 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1635 } 1636 1637 // If we have special knowledge that this addrec won't overflow, 1638 // we don't need to do any further analysis. 1639 if (AR->hasNoUnsignedWrap()) 1640 return getAddRecExpr( 1641 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1642 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1643 1644 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1645 // Note that this serves two purposes: It filters out loops that are 1646 // simply not analyzable, and it covers the case where this code is 1647 // being called from within backedge-taken count analysis, such that 1648 // attempting to ask for the backedge-taken count would likely result 1649 // in infinite recursion. In the later case, the analysis code will 1650 // cope with a conservative value, and it will take care to purge 1651 // that value once it has finished. 1652 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1653 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1654 // Manually compute the final value for AR, checking for 1655 // overflow. 1656 1657 // Check whether the backedge-taken count can be losslessly casted to 1658 // the addrec's type. The count is always unsigned. 1659 const SCEV *CastedMaxBECount = 1660 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1661 const SCEV *RecastedMaxBECount = 1662 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1663 if (MaxBECount == RecastedMaxBECount) { 1664 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1665 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1666 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1667 SCEV::FlagAnyWrap, Depth + 1); 1668 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1669 SCEV::FlagAnyWrap, 1670 Depth + 1), 1671 WideTy, Depth + 1); 1672 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1673 const SCEV *WideMaxBECount = 1674 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1675 const SCEV *OperandExtendedAdd = 1676 getAddExpr(WideStart, 1677 getMulExpr(WideMaxBECount, 1678 getZeroExtendExpr(Step, WideTy, Depth + 1), 1679 SCEV::FlagAnyWrap, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1); 1681 if (ZAdd == OperandExtendedAdd) { 1682 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1683 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1684 // Return the expression with the addrec on the outside. 1685 return getAddRecExpr( 1686 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1687 Depth + 1), 1688 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1689 AR->getNoWrapFlags()); 1690 } 1691 // Similar to above, only this time treat the step value as signed. 1692 // This covers loops that count down. 1693 OperandExtendedAdd = 1694 getAddExpr(WideStart, 1695 getMulExpr(WideMaxBECount, 1696 getSignExtendExpr(Step, WideTy, Depth + 1), 1697 SCEV::FlagAnyWrap, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1); 1699 if (ZAdd == OperandExtendedAdd) { 1700 // Cache knowledge of AR NW, which is propagated to this AddRec. 1701 // Negative step causes unsigned wrap, but it still can't self-wrap. 1702 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1703 // Return the expression with the addrec on the outside. 1704 return getAddRecExpr( 1705 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1), 1707 getSignExtendExpr(Step, Ty, Depth + 1), L, 1708 AR->getNoWrapFlags()); 1709 } 1710 } 1711 } 1712 1713 // Normally, in the cases we can prove no-overflow via a 1714 // backedge guarding condition, we can also compute a backedge 1715 // taken count for the loop. The exceptions are assumptions and 1716 // guards present in the loop -- SCEV is not great at exploiting 1717 // these to compute max backedge taken counts, but can still use 1718 // these to prove lack of overflow. Use this fact to avoid 1719 // doing extra work that may not pay off. 1720 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1721 !AC.assumptions().empty()) { 1722 // If the backedge is guarded by a comparison with the pre-inc 1723 // value the addrec is safe. Also, if the entry is guarded by 1724 // a comparison with the start value and the backedge is 1725 // guarded by a comparison with the post-inc value, the addrec 1726 // is safe. 1727 if (isKnownPositive(Step)) { 1728 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1729 getUnsignedRangeMax(Step)); 1730 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1731 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1732 // Cache knowledge of AR NUW, which is propagated to this 1733 // AddRec. 1734 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1735 // Return the expression with the addrec on the outside. 1736 return getAddRecExpr( 1737 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1738 Depth + 1), 1739 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1740 AR->getNoWrapFlags()); 1741 } 1742 } else if (isKnownNegative(Step)) { 1743 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1744 getSignedRangeMin(Step)); 1745 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1746 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1747 // Cache knowledge of AR NW, which is propagated to this 1748 // AddRec. Negative step causes unsigned wrap, but it 1749 // still can't self-wrap. 1750 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1751 // Return the expression with the addrec on the outside. 1752 return getAddRecExpr( 1753 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1754 Depth + 1), 1755 getSignExtendExpr(Step, Ty, Depth + 1), L, 1756 AR->getNoWrapFlags()); 1757 } 1758 } 1759 } 1760 1761 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1762 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1763 return getAddRecExpr( 1764 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1765 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1766 } 1767 } 1768 1769 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1770 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1771 if (SA->hasNoUnsignedWrap()) { 1772 // If the addition does not unsign overflow then we can, by definition, 1773 // commute the zero extension with the addition operation. 1774 SmallVector<const SCEV *, 4> Ops; 1775 for (const auto *Op : SA->operands()) 1776 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1777 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1778 } 1779 } 1780 1781 // The cast wasn't folded; create an explicit cast node. 1782 // Recompute the insert position, as it may have been invalidated. 1783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1784 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1785 Op, Ty); 1786 UniqueSCEVs.InsertNode(S, IP); 1787 addToLoopUseLists(S); 1788 return S; 1789 } 1790 1791 const SCEV * 1792 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1793 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1794 "This is not an extending conversion!"); 1795 assert(isSCEVable(Ty) && 1796 "This is not a conversion to a SCEVable type!"); 1797 Ty = getEffectiveSCEVType(Ty); 1798 1799 // Fold if the operand is constant. 1800 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1801 return getConstant( 1802 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1803 1804 // sext(sext(x)) --> sext(x) 1805 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1806 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1807 1808 // sext(zext(x)) --> zext(x) 1809 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1810 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1811 1812 // Before doing any expensive analysis, check to see if we've already 1813 // computed a SCEV for this Op and Ty. 1814 FoldingSetNodeID ID; 1815 ID.AddInteger(scSignExtend); 1816 ID.AddPointer(Op); 1817 ID.AddPointer(Ty); 1818 void *IP = nullptr; 1819 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1820 // Limit recursion depth. 1821 if (Depth > MaxExtDepth) { 1822 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1823 Op, Ty); 1824 UniqueSCEVs.InsertNode(S, IP); 1825 addToLoopUseLists(S); 1826 return S; 1827 } 1828 1829 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1830 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1831 // It's possible the bits taken off by the truncate were all sign bits. If 1832 // so, we should be able to simplify this further. 1833 const SCEV *X = ST->getOperand(); 1834 ConstantRange CR = getSignedRange(X); 1835 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1836 unsigned NewBits = getTypeSizeInBits(Ty); 1837 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1838 CR.sextOrTrunc(NewBits))) 1839 return getTruncateOrSignExtend(X, Ty); 1840 } 1841 1842 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1843 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1844 if (SA->getNumOperands() == 2) { 1845 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1846 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1847 if (SMul && SC1) { 1848 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1849 const APInt &C1 = SC1->getAPInt(); 1850 const APInt &C2 = SC2->getAPInt(); 1851 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1852 C2.ugt(C1) && C2.isPowerOf2()) 1853 return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1), 1854 getSignExtendExpr(SMul, Ty, Depth + 1), 1855 SCEV::FlagAnyWrap, Depth + 1); 1856 } 1857 } 1858 } 1859 1860 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1861 if (SA->hasNoSignedWrap()) { 1862 // If the addition does not sign overflow then we can, by definition, 1863 // commute the sign extension with the addition operation. 1864 SmallVector<const SCEV *, 4> Ops; 1865 for (const auto *Op : SA->operands()) 1866 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1867 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1868 } 1869 } 1870 // If the input value is a chrec scev, and we can prove that the value 1871 // did not overflow the old, smaller, value, we can sign extend all of the 1872 // operands (often constants). This allows analysis of something like 1873 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1874 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1875 if (AR->isAffine()) { 1876 const SCEV *Start = AR->getStart(); 1877 const SCEV *Step = AR->getStepRecurrence(*this); 1878 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1879 const Loop *L = AR->getLoop(); 1880 1881 if (!AR->hasNoSignedWrap()) { 1882 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1883 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1884 } 1885 1886 // If we have special knowledge that this addrec won't overflow, 1887 // we don't need to do any further analysis. 1888 if (AR->hasNoSignedWrap()) 1889 return getAddRecExpr( 1890 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1891 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1892 1893 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1894 // Note that this serves two purposes: It filters out loops that are 1895 // simply not analyzable, and it covers the case where this code is 1896 // being called from within backedge-taken count analysis, such that 1897 // attempting to ask for the backedge-taken count would likely result 1898 // in infinite recursion. In the later case, the analysis code will 1899 // cope with a conservative value, and it will take care to purge 1900 // that value once it has finished. 1901 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1902 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1903 // Manually compute the final value for AR, checking for 1904 // overflow. 1905 1906 // Check whether the backedge-taken count can be losslessly casted to 1907 // the addrec's type. The count is always unsigned. 1908 const SCEV *CastedMaxBECount = 1909 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1910 const SCEV *RecastedMaxBECount = 1911 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1912 if (MaxBECount == RecastedMaxBECount) { 1913 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1914 // Check whether Start+Step*MaxBECount has no signed overflow. 1915 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1916 SCEV::FlagAnyWrap, Depth + 1); 1917 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1918 SCEV::FlagAnyWrap, 1919 Depth + 1), 1920 WideTy, Depth + 1); 1921 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1922 const SCEV *WideMaxBECount = 1923 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1924 const SCEV *OperandExtendedAdd = 1925 getAddExpr(WideStart, 1926 getMulExpr(WideMaxBECount, 1927 getSignExtendExpr(Step, WideTy, Depth + 1), 1928 SCEV::FlagAnyWrap, Depth + 1), 1929 SCEV::FlagAnyWrap, Depth + 1); 1930 if (SAdd == OperandExtendedAdd) { 1931 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1932 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1933 // Return the expression with the addrec on the outside. 1934 return getAddRecExpr( 1935 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1936 Depth + 1), 1937 getSignExtendExpr(Step, Ty, Depth + 1), L, 1938 AR->getNoWrapFlags()); 1939 } 1940 // Similar to above, only this time treat the step value as unsigned. 1941 // This covers loops that count up with an unsigned step. 1942 OperandExtendedAdd = 1943 getAddExpr(WideStart, 1944 getMulExpr(WideMaxBECount, 1945 getZeroExtendExpr(Step, WideTy, Depth + 1), 1946 SCEV::FlagAnyWrap, Depth + 1), 1947 SCEV::FlagAnyWrap, Depth + 1); 1948 if (SAdd == OperandExtendedAdd) { 1949 // If AR wraps around then 1950 // 1951 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1952 // => SAdd != OperandExtendedAdd 1953 // 1954 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1955 // (SAdd == OperandExtendedAdd => AR is NW) 1956 1957 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1958 1959 // Return the expression with the addrec on the outside. 1960 return getAddRecExpr( 1961 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1962 Depth + 1), 1963 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1964 AR->getNoWrapFlags()); 1965 } 1966 } 1967 } 1968 1969 // Normally, in the cases we can prove no-overflow via a 1970 // backedge guarding condition, we can also compute a backedge 1971 // taken count for the loop. The exceptions are assumptions and 1972 // guards present in the loop -- SCEV is not great at exploiting 1973 // these to compute max backedge taken counts, but can still use 1974 // these to prove lack of overflow. Use this fact to avoid 1975 // doing extra work that may not pay off. 1976 1977 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1978 !AC.assumptions().empty()) { 1979 // If the backedge is guarded by a comparison with the pre-inc 1980 // value the addrec is safe. Also, if the entry is guarded by 1981 // a comparison with the start value and the backedge is 1982 // guarded by a comparison with the post-inc value, the addrec 1983 // is safe. 1984 ICmpInst::Predicate Pred; 1985 const SCEV *OverflowLimit = 1986 getSignedOverflowLimitForStep(Step, &Pred, this); 1987 if (OverflowLimit && 1988 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1989 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1990 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1992 return getAddRecExpr( 1993 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1994 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1995 } 1996 } 1997 1998 // If Start and Step are constants, check if we can apply this 1999 // transformation: 2000 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 2001 auto *SC1 = dyn_cast<SCEVConstant>(Start); 2002 auto *SC2 = dyn_cast<SCEVConstant>(Step); 2003 if (SC1 && SC2) { 2004 const APInt &C1 = SC1->getAPInt(); 2005 const APInt &C2 = SC2->getAPInt(); 2006 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 2007 C2.isPowerOf2()) { 2008 Start = getSignExtendExpr(Start, Ty, Depth + 1); 2009 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 2010 AR->getNoWrapFlags()); 2011 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1), 2012 SCEV::FlagAnyWrap, Depth + 1); 2013 } 2014 } 2015 2016 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2017 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2018 return getAddRecExpr( 2019 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2020 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2021 } 2022 } 2023 2024 // If the input value is provably positive and we could not simplify 2025 // away the sext build a zext instead. 2026 if (isKnownNonNegative(Op)) 2027 return getZeroExtendExpr(Op, Ty, Depth + 1); 2028 2029 // The cast wasn't folded; create an explicit cast node. 2030 // Recompute the insert position, as it may have been invalidated. 2031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2032 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2033 Op, Ty); 2034 UniqueSCEVs.InsertNode(S, IP); 2035 addToLoopUseLists(S); 2036 return S; 2037 } 2038 2039 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2040 /// unspecified bits out to the given type. 2041 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2042 Type *Ty) { 2043 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2044 "This is not an extending conversion!"); 2045 assert(isSCEVable(Ty) && 2046 "This is not a conversion to a SCEVable type!"); 2047 Ty = getEffectiveSCEVType(Ty); 2048 2049 // Sign-extend negative constants. 2050 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2051 if (SC->getAPInt().isNegative()) 2052 return getSignExtendExpr(Op, Ty); 2053 2054 // Peel off a truncate cast. 2055 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2056 const SCEV *NewOp = T->getOperand(); 2057 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2058 return getAnyExtendExpr(NewOp, Ty); 2059 return getTruncateOrNoop(NewOp, Ty); 2060 } 2061 2062 // Next try a zext cast. If the cast is folded, use it. 2063 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2064 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2065 return ZExt; 2066 2067 // Next try a sext cast. If the cast is folded, use it. 2068 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2069 if (!isa<SCEVSignExtendExpr>(SExt)) 2070 return SExt; 2071 2072 // Force the cast to be folded into the operands of an addrec. 2073 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2074 SmallVector<const SCEV *, 4> Ops; 2075 for (const SCEV *Op : AR->operands()) 2076 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2077 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2078 } 2079 2080 // If the expression is obviously signed, use the sext cast value. 2081 if (isa<SCEVSMaxExpr>(Op)) 2082 return SExt; 2083 2084 // Absent any other information, use the zext cast value. 2085 return ZExt; 2086 } 2087 2088 /// Process the given Ops list, which is a list of operands to be added under 2089 /// the given scale, update the given map. This is a helper function for 2090 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2091 /// that would form an add expression like this: 2092 /// 2093 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2094 /// 2095 /// where A and B are constants, update the map with these values: 2096 /// 2097 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2098 /// 2099 /// and add 13 + A*B*29 to AccumulatedConstant. 2100 /// This will allow getAddRecExpr to produce this: 2101 /// 2102 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2103 /// 2104 /// This form often exposes folding opportunities that are hidden in 2105 /// the original operand list. 2106 /// 2107 /// Return true iff it appears that any interesting folding opportunities 2108 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2109 /// the common case where no interesting opportunities are present, and 2110 /// is also used as a check to avoid infinite recursion. 2111 static bool 2112 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2113 SmallVectorImpl<const SCEV *> &NewOps, 2114 APInt &AccumulatedConstant, 2115 const SCEV *const *Ops, size_t NumOperands, 2116 const APInt &Scale, 2117 ScalarEvolution &SE) { 2118 bool Interesting = false; 2119 2120 // Iterate over the add operands. They are sorted, with constants first. 2121 unsigned i = 0; 2122 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2123 ++i; 2124 // Pull a buried constant out to the outside. 2125 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2126 Interesting = true; 2127 AccumulatedConstant += Scale * C->getAPInt(); 2128 } 2129 2130 // Next comes everything else. We're especially interested in multiplies 2131 // here, but they're in the middle, so just visit the rest with one loop. 2132 for (; i != NumOperands; ++i) { 2133 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2134 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2135 APInt NewScale = 2136 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2137 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2138 // A multiplication of a constant with another add; recurse. 2139 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2140 Interesting |= 2141 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2142 Add->op_begin(), Add->getNumOperands(), 2143 NewScale, SE); 2144 } else { 2145 // A multiplication of a constant with some other value. Update 2146 // the map. 2147 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2148 const SCEV *Key = SE.getMulExpr(MulOps); 2149 auto Pair = M.insert({Key, NewScale}); 2150 if (Pair.second) { 2151 NewOps.push_back(Pair.first->first); 2152 } else { 2153 Pair.first->second += NewScale; 2154 // The map already had an entry for this value, which may indicate 2155 // a folding opportunity. 2156 Interesting = true; 2157 } 2158 } 2159 } else { 2160 // An ordinary operand. Update the map. 2161 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2162 M.insert({Ops[i], Scale}); 2163 if (Pair.second) { 2164 NewOps.push_back(Pair.first->first); 2165 } else { 2166 Pair.first->second += Scale; 2167 // The map already had an entry for this value, which may indicate 2168 // a folding opportunity. 2169 Interesting = true; 2170 } 2171 } 2172 } 2173 2174 return Interesting; 2175 } 2176 2177 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2178 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2179 // can't-overflow flags for the operation if possible. 2180 static SCEV::NoWrapFlags 2181 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2182 const SmallVectorImpl<const SCEV *> &Ops, 2183 SCEV::NoWrapFlags Flags) { 2184 using namespace std::placeholders; 2185 2186 using OBO = OverflowingBinaryOperator; 2187 2188 bool CanAnalyze = 2189 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2190 (void)CanAnalyze; 2191 assert(CanAnalyze && "don't call from other places!"); 2192 2193 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2194 SCEV::NoWrapFlags SignOrUnsignWrap = 2195 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2196 2197 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2198 auto IsKnownNonNegative = [&](const SCEV *S) { 2199 return SE->isKnownNonNegative(S); 2200 }; 2201 2202 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2203 Flags = 2204 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2205 2206 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2207 2208 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2209 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2210 2211 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2212 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2213 2214 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2215 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2216 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2217 Instruction::Add, C, OBO::NoSignedWrap); 2218 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2219 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2220 } 2221 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2222 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2223 Instruction::Add, C, OBO::NoUnsignedWrap); 2224 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2225 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2226 } 2227 } 2228 2229 return Flags; 2230 } 2231 2232 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2233 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2234 } 2235 2236 /// Get a canonical add expression, or something simpler if possible. 2237 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2238 SCEV::NoWrapFlags Flags, 2239 unsigned Depth) { 2240 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2241 "only nuw or nsw allowed"); 2242 assert(!Ops.empty() && "Cannot get empty add!"); 2243 if (Ops.size() == 1) return Ops[0]; 2244 #ifndef NDEBUG 2245 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2246 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2247 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2248 "SCEVAddExpr operand types don't match!"); 2249 #endif 2250 2251 // Sort by complexity, this groups all similar expression types together. 2252 GroupByComplexity(Ops, &LI, DT); 2253 2254 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2255 2256 // If there are any constants, fold them together. 2257 unsigned Idx = 0; 2258 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2259 ++Idx; 2260 assert(Idx < Ops.size()); 2261 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2262 // We found two constants, fold them together! 2263 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2264 if (Ops.size() == 2) return Ops[0]; 2265 Ops.erase(Ops.begin()+1); // Erase the folded element 2266 LHSC = cast<SCEVConstant>(Ops[0]); 2267 } 2268 2269 // If we are left with a constant zero being added, strip it off. 2270 if (LHSC->getValue()->isZero()) { 2271 Ops.erase(Ops.begin()); 2272 --Idx; 2273 } 2274 2275 if (Ops.size() == 1) return Ops[0]; 2276 } 2277 2278 // Limit recursion calls depth. 2279 if (Depth > MaxArithDepth) 2280 return getOrCreateAddExpr(Ops, Flags); 2281 2282 // Okay, check to see if the same value occurs in the operand list more than 2283 // once. If so, merge them together into an multiply expression. Since we 2284 // sorted the list, these values are required to be adjacent. 2285 Type *Ty = Ops[0]->getType(); 2286 bool FoundMatch = false; 2287 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2288 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2289 // Scan ahead to count how many equal operands there are. 2290 unsigned Count = 2; 2291 while (i+Count != e && Ops[i+Count] == Ops[i]) 2292 ++Count; 2293 // Merge the values into a multiply. 2294 const SCEV *Scale = getConstant(Ty, Count); 2295 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2296 if (Ops.size() == Count) 2297 return Mul; 2298 Ops[i] = Mul; 2299 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2300 --i; e -= Count - 1; 2301 FoundMatch = true; 2302 } 2303 if (FoundMatch) 2304 return getAddExpr(Ops, Flags, Depth + 1); 2305 2306 // Check for truncates. If all the operands are truncated from the same 2307 // type, see if factoring out the truncate would permit the result to be 2308 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2309 // if the contents of the resulting outer trunc fold to something simple. 2310 auto FindTruncSrcType = [&]() -> Type * { 2311 // We're ultimately looking to fold an addrec of truncs and muls of only 2312 // constants and truncs, so if we find any other types of SCEV 2313 // as operands of the addrec then we bail and return nullptr here. 2314 // Otherwise, we return the type of the operand of a trunc that we find. 2315 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2316 return T->getOperand()->getType(); 2317 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2318 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2319 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2320 return T->getOperand()->getType(); 2321 } 2322 return nullptr; 2323 }; 2324 if (auto *SrcType = FindTruncSrcType()) { 2325 SmallVector<const SCEV *, 8> LargeOps; 2326 bool Ok = true; 2327 // Check all the operands to see if they can be represented in the 2328 // source type of the truncate. 2329 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2330 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2331 if (T->getOperand()->getType() != SrcType) { 2332 Ok = false; 2333 break; 2334 } 2335 LargeOps.push_back(T->getOperand()); 2336 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2337 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2338 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2339 SmallVector<const SCEV *, 8> LargeMulOps; 2340 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2341 if (const SCEVTruncateExpr *T = 2342 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2343 if (T->getOperand()->getType() != SrcType) { 2344 Ok = false; 2345 break; 2346 } 2347 LargeMulOps.push_back(T->getOperand()); 2348 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2349 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2350 } else { 2351 Ok = false; 2352 break; 2353 } 2354 } 2355 if (Ok) 2356 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2357 } else { 2358 Ok = false; 2359 break; 2360 } 2361 } 2362 if (Ok) { 2363 // Evaluate the expression in the larger type. 2364 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2365 // If it folds to something simple, use it. Otherwise, don't. 2366 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2367 return getTruncateExpr(Fold, Ty); 2368 } 2369 } 2370 2371 // Skip past any other cast SCEVs. 2372 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2373 ++Idx; 2374 2375 // If there are add operands they would be next. 2376 if (Idx < Ops.size()) { 2377 bool DeletedAdd = false; 2378 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2379 if (Ops.size() > AddOpsInlineThreshold || 2380 Add->getNumOperands() > AddOpsInlineThreshold) 2381 break; 2382 // If we have an add, expand the add operands onto the end of the operands 2383 // list. 2384 Ops.erase(Ops.begin()+Idx); 2385 Ops.append(Add->op_begin(), Add->op_end()); 2386 DeletedAdd = true; 2387 } 2388 2389 // If we deleted at least one add, we added operands to the end of the list, 2390 // and they are not necessarily sorted. Recurse to resort and resimplify 2391 // any operands we just acquired. 2392 if (DeletedAdd) 2393 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2394 } 2395 2396 // Skip over the add expression until we get to a multiply. 2397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2398 ++Idx; 2399 2400 // Check to see if there are any folding opportunities present with 2401 // operands multiplied by constant values. 2402 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2403 uint64_t BitWidth = getTypeSizeInBits(Ty); 2404 DenseMap<const SCEV *, APInt> M; 2405 SmallVector<const SCEV *, 8> NewOps; 2406 APInt AccumulatedConstant(BitWidth, 0); 2407 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2408 Ops.data(), Ops.size(), 2409 APInt(BitWidth, 1), *this)) { 2410 struct APIntCompare { 2411 bool operator()(const APInt &LHS, const APInt &RHS) const { 2412 return LHS.ult(RHS); 2413 } 2414 }; 2415 2416 // Some interesting folding opportunity is present, so its worthwhile to 2417 // re-generate the operands list. Group the operands by constant scale, 2418 // to avoid multiplying by the same constant scale multiple times. 2419 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2420 for (const SCEV *NewOp : NewOps) 2421 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2422 // Re-generate the operands list. 2423 Ops.clear(); 2424 if (AccumulatedConstant != 0) 2425 Ops.push_back(getConstant(AccumulatedConstant)); 2426 for (auto &MulOp : MulOpLists) 2427 if (MulOp.first != 0) 2428 Ops.push_back(getMulExpr( 2429 getConstant(MulOp.first), 2430 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2431 SCEV::FlagAnyWrap, Depth + 1)); 2432 if (Ops.empty()) 2433 return getZero(Ty); 2434 if (Ops.size() == 1) 2435 return Ops[0]; 2436 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2437 } 2438 } 2439 2440 // If we are adding something to a multiply expression, make sure the 2441 // something is not already an operand of the multiply. If so, merge it into 2442 // the multiply. 2443 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2444 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2445 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2446 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2447 if (isa<SCEVConstant>(MulOpSCEV)) 2448 continue; 2449 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2450 if (MulOpSCEV == Ops[AddOp]) { 2451 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2452 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2453 if (Mul->getNumOperands() != 2) { 2454 // If the multiply has more than two operands, we must get the 2455 // Y*Z term. 2456 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2457 Mul->op_begin()+MulOp); 2458 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2459 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2460 } 2461 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2462 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2463 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2464 SCEV::FlagAnyWrap, Depth + 1); 2465 if (Ops.size() == 2) return OuterMul; 2466 if (AddOp < Idx) { 2467 Ops.erase(Ops.begin()+AddOp); 2468 Ops.erase(Ops.begin()+Idx-1); 2469 } else { 2470 Ops.erase(Ops.begin()+Idx); 2471 Ops.erase(Ops.begin()+AddOp-1); 2472 } 2473 Ops.push_back(OuterMul); 2474 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2475 } 2476 2477 // Check this multiply against other multiplies being added together. 2478 for (unsigned OtherMulIdx = Idx+1; 2479 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2480 ++OtherMulIdx) { 2481 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2482 // If MulOp occurs in OtherMul, we can fold the two multiplies 2483 // together. 2484 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2485 OMulOp != e; ++OMulOp) 2486 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2487 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2488 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2489 if (Mul->getNumOperands() != 2) { 2490 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2491 Mul->op_begin()+MulOp); 2492 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2493 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2494 } 2495 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2496 if (OtherMul->getNumOperands() != 2) { 2497 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2498 OtherMul->op_begin()+OMulOp); 2499 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2500 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2501 } 2502 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2503 const SCEV *InnerMulSum = 2504 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2505 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2506 SCEV::FlagAnyWrap, Depth + 1); 2507 if (Ops.size() == 2) return OuterMul; 2508 Ops.erase(Ops.begin()+Idx); 2509 Ops.erase(Ops.begin()+OtherMulIdx-1); 2510 Ops.push_back(OuterMul); 2511 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2512 } 2513 } 2514 } 2515 } 2516 2517 // If there are any add recurrences in the operands list, see if any other 2518 // added values are loop invariant. If so, we can fold them into the 2519 // recurrence. 2520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2521 ++Idx; 2522 2523 // Scan over all recurrences, trying to fold loop invariants into them. 2524 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2525 // Scan all of the other operands to this add and add them to the vector if 2526 // they are loop invariant w.r.t. the recurrence. 2527 SmallVector<const SCEV *, 8> LIOps; 2528 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2529 const Loop *AddRecLoop = AddRec->getLoop(); 2530 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2531 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2532 LIOps.push_back(Ops[i]); 2533 Ops.erase(Ops.begin()+i); 2534 --i; --e; 2535 } 2536 2537 // If we found some loop invariants, fold them into the recurrence. 2538 if (!LIOps.empty()) { 2539 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2540 LIOps.push_back(AddRec->getStart()); 2541 2542 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2543 AddRec->op_end()); 2544 // This follows from the fact that the no-wrap flags on the outer add 2545 // expression are applicable on the 0th iteration, when the add recurrence 2546 // will be equal to its start value. 2547 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2548 2549 // Build the new addrec. Propagate the NUW and NSW flags if both the 2550 // outer add and the inner addrec are guaranteed to have no overflow. 2551 // Always propagate NW. 2552 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2553 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2554 2555 // If all of the other operands were loop invariant, we are done. 2556 if (Ops.size() == 1) return NewRec; 2557 2558 // Otherwise, add the folded AddRec by the non-invariant parts. 2559 for (unsigned i = 0;; ++i) 2560 if (Ops[i] == AddRec) { 2561 Ops[i] = NewRec; 2562 break; 2563 } 2564 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2565 } 2566 2567 // Okay, if there weren't any loop invariants to be folded, check to see if 2568 // there are multiple AddRec's with the same loop induction variable being 2569 // added together. If so, we can fold them. 2570 for (unsigned OtherIdx = Idx+1; 2571 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2572 ++OtherIdx) { 2573 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2574 // so that the 1st found AddRecExpr is dominated by all others. 2575 assert(DT.dominates( 2576 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2577 AddRec->getLoop()->getHeader()) && 2578 "AddRecExprs are not sorted in reverse dominance order?"); 2579 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2580 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2581 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2582 AddRec->op_end()); 2583 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2584 ++OtherIdx) { 2585 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2586 if (OtherAddRec->getLoop() == AddRecLoop) { 2587 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2588 i != e; ++i) { 2589 if (i >= AddRecOps.size()) { 2590 AddRecOps.append(OtherAddRec->op_begin()+i, 2591 OtherAddRec->op_end()); 2592 break; 2593 } 2594 SmallVector<const SCEV *, 2> TwoOps = { 2595 AddRecOps[i], OtherAddRec->getOperand(i)}; 2596 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2597 } 2598 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2599 } 2600 } 2601 // Step size has changed, so we cannot guarantee no self-wraparound. 2602 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2603 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2604 } 2605 } 2606 2607 // Otherwise couldn't fold anything into this recurrence. Move onto the 2608 // next one. 2609 } 2610 2611 // Okay, it looks like we really DO need an add expr. Check to see if we 2612 // already have one, otherwise create a new one. 2613 return getOrCreateAddExpr(Ops, Flags); 2614 } 2615 2616 const SCEV * 2617 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2618 SCEV::NoWrapFlags Flags) { 2619 FoldingSetNodeID ID; 2620 ID.AddInteger(scAddExpr); 2621 for (const SCEV *Op : Ops) 2622 ID.AddPointer(Op); 2623 void *IP = nullptr; 2624 SCEVAddExpr *S = 2625 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2626 if (!S) { 2627 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2628 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2629 S = new (SCEVAllocator) 2630 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2631 UniqueSCEVs.InsertNode(S, IP); 2632 addToLoopUseLists(S); 2633 } 2634 S->setNoWrapFlags(Flags); 2635 return S; 2636 } 2637 2638 const SCEV * 2639 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2640 SCEV::NoWrapFlags Flags) { 2641 FoldingSetNodeID ID; 2642 ID.AddInteger(scMulExpr); 2643 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2644 ID.AddPointer(Ops[i]); 2645 void *IP = nullptr; 2646 SCEVMulExpr *S = 2647 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2648 if (!S) { 2649 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2650 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2651 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2652 O, Ops.size()); 2653 UniqueSCEVs.InsertNode(S, IP); 2654 addToLoopUseLists(S); 2655 } 2656 S->setNoWrapFlags(Flags); 2657 return S; 2658 } 2659 2660 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2661 uint64_t k = i*j; 2662 if (j > 1 && k / j != i) Overflow = true; 2663 return k; 2664 } 2665 2666 /// Compute the result of "n choose k", the binomial coefficient. If an 2667 /// intermediate computation overflows, Overflow will be set and the return will 2668 /// be garbage. Overflow is not cleared on absence of overflow. 2669 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2670 // We use the multiplicative formula: 2671 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2672 // At each iteration, we take the n-th term of the numeral and divide by the 2673 // (k-n)th term of the denominator. This division will always produce an 2674 // integral result, and helps reduce the chance of overflow in the 2675 // intermediate computations. However, we can still overflow even when the 2676 // final result would fit. 2677 2678 if (n == 0 || n == k) return 1; 2679 if (k > n) return 0; 2680 2681 if (k > n/2) 2682 k = n-k; 2683 2684 uint64_t r = 1; 2685 for (uint64_t i = 1; i <= k; ++i) { 2686 r = umul_ov(r, n-(i-1), Overflow); 2687 r /= i; 2688 } 2689 return r; 2690 } 2691 2692 /// Determine if any of the operands in this SCEV are a constant or if 2693 /// any of the add or multiply expressions in this SCEV contain a constant. 2694 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2695 struct FindConstantInAddMulChain { 2696 bool FoundConstant = false; 2697 2698 bool follow(const SCEV *S) { 2699 FoundConstant |= isa<SCEVConstant>(S); 2700 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2701 } 2702 2703 bool isDone() const { 2704 return FoundConstant; 2705 } 2706 }; 2707 2708 FindConstantInAddMulChain F; 2709 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2710 ST.visitAll(StartExpr); 2711 return F.FoundConstant; 2712 } 2713 2714 /// Get a canonical multiply expression, or something simpler if possible. 2715 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2716 SCEV::NoWrapFlags Flags, 2717 unsigned Depth) { 2718 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2719 "only nuw or nsw allowed"); 2720 assert(!Ops.empty() && "Cannot get empty mul!"); 2721 if (Ops.size() == 1) return Ops[0]; 2722 #ifndef NDEBUG 2723 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2724 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2725 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2726 "SCEVMulExpr operand types don't match!"); 2727 #endif 2728 2729 // Sort by complexity, this groups all similar expression types together. 2730 GroupByComplexity(Ops, &LI, DT); 2731 2732 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2733 2734 // Limit recursion calls depth. 2735 if (Depth > MaxArithDepth) 2736 return getOrCreateMulExpr(Ops, Flags); 2737 2738 // If there are any constants, fold them together. 2739 unsigned Idx = 0; 2740 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2741 2742 // C1*(C2+V) -> C1*C2 + C1*V 2743 if (Ops.size() == 2) 2744 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2745 // If any of Add's ops are Adds or Muls with a constant, 2746 // apply this transformation as well. 2747 if (Add->getNumOperands() == 2) 2748 // TODO: There are some cases where this transformation is not 2749 // profitable, for example: 2750 // Add = (C0 + X) * Y + Z. 2751 // Maybe the scope of this transformation should be narrowed down. 2752 if (containsConstantInAddMulChain(Add)) 2753 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2754 SCEV::FlagAnyWrap, Depth + 1), 2755 getMulExpr(LHSC, Add->getOperand(1), 2756 SCEV::FlagAnyWrap, Depth + 1), 2757 SCEV::FlagAnyWrap, Depth + 1); 2758 2759 ++Idx; 2760 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2761 // We found two constants, fold them together! 2762 ConstantInt *Fold = 2763 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2764 Ops[0] = getConstant(Fold); 2765 Ops.erase(Ops.begin()+1); // Erase the folded element 2766 if (Ops.size() == 1) return Ops[0]; 2767 LHSC = cast<SCEVConstant>(Ops[0]); 2768 } 2769 2770 // If we are left with a constant one being multiplied, strip it off. 2771 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2772 Ops.erase(Ops.begin()); 2773 --Idx; 2774 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2775 // If we have a multiply of zero, it will always be zero. 2776 return Ops[0]; 2777 } else if (Ops[0]->isAllOnesValue()) { 2778 // If we have a mul by -1 of an add, try distributing the -1 among the 2779 // add operands. 2780 if (Ops.size() == 2) { 2781 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2782 SmallVector<const SCEV *, 4> NewOps; 2783 bool AnyFolded = false; 2784 for (const SCEV *AddOp : Add->operands()) { 2785 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2786 Depth + 1); 2787 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2788 NewOps.push_back(Mul); 2789 } 2790 if (AnyFolded) 2791 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2793 // Negation preserves a recurrence's no self-wrap property. 2794 SmallVector<const SCEV *, 4> Operands; 2795 for (const SCEV *AddRecOp : AddRec->operands()) 2796 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2797 Depth + 1)); 2798 2799 return getAddRecExpr(Operands, AddRec->getLoop(), 2800 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2801 } 2802 } 2803 } 2804 2805 if (Ops.size() == 1) 2806 return Ops[0]; 2807 } 2808 2809 // Skip over the add expression until we get to a multiply. 2810 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2811 ++Idx; 2812 2813 // If there are mul operands inline them all into this expression. 2814 if (Idx < Ops.size()) { 2815 bool DeletedMul = false; 2816 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2817 if (Ops.size() > MulOpsInlineThreshold) 2818 break; 2819 // If we have an mul, expand the mul operands onto the end of the 2820 // operands list. 2821 Ops.erase(Ops.begin()+Idx); 2822 Ops.append(Mul->op_begin(), Mul->op_end()); 2823 DeletedMul = true; 2824 } 2825 2826 // If we deleted at least one mul, we added operands to the end of the 2827 // list, and they are not necessarily sorted. Recurse to resort and 2828 // resimplify any operands we just acquired. 2829 if (DeletedMul) 2830 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2831 } 2832 2833 // If there are any add recurrences in the operands list, see if any other 2834 // added values are loop invariant. If so, we can fold them into the 2835 // recurrence. 2836 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2837 ++Idx; 2838 2839 // Scan over all recurrences, trying to fold loop invariants into them. 2840 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2841 // Scan all of the other operands to this mul and add them to the vector 2842 // if they are loop invariant w.r.t. the recurrence. 2843 SmallVector<const SCEV *, 8> LIOps; 2844 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2845 const Loop *AddRecLoop = AddRec->getLoop(); 2846 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2847 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2848 LIOps.push_back(Ops[i]); 2849 Ops.erase(Ops.begin()+i); 2850 --i; --e; 2851 } 2852 2853 // If we found some loop invariants, fold them into the recurrence. 2854 if (!LIOps.empty()) { 2855 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2856 SmallVector<const SCEV *, 4> NewOps; 2857 NewOps.reserve(AddRec->getNumOperands()); 2858 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2859 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2860 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2861 SCEV::FlagAnyWrap, Depth + 1)); 2862 2863 // Build the new addrec. Propagate the NUW and NSW flags if both the 2864 // outer mul and the inner addrec are guaranteed to have no overflow. 2865 // 2866 // No self-wrap cannot be guaranteed after changing the step size, but 2867 // will be inferred if either NUW or NSW is true. 2868 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2869 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2870 2871 // If all of the other operands were loop invariant, we are done. 2872 if (Ops.size() == 1) return NewRec; 2873 2874 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2875 for (unsigned i = 0;; ++i) 2876 if (Ops[i] == AddRec) { 2877 Ops[i] = NewRec; 2878 break; 2879 } 2880 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2881 } 2882 2883 // Okay, if there weren't any loop invariants to be folded, check to see 2884 // if there are multiple AddRec's with the same loop induction variable 2885 // being multiplied together. If so, we can fold them. 2886 2887 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2888 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2889 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2890 // ]]],+,...up to x=2n}. 2891 // Note that the arguments to choose() are always integers with values 2892 // known at compile time, never SCEV objects. 2893 // 2894 // The implementation avoids pointless extra computations when the two 2895 // addrec's are of different length (mathematically, it's equivalent to 2896 // an infinite stream of zeros on the right). 2897 bool OpsModified = false; 2898 for (unsigned OtherIdx = Idx+1; 2899 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2900 ++OtherIdx) { 2901 const SCEVAddRecExpr *OtherAddRec = 2902 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2903 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2904 continue; 2905 2906 // Limit max number of arguments to avoid creation of unreasonably big 2907 // SCEVAddRecs with very complex operands. 2908 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2909 MaxAddRecSize) 2910 continue; 2911 2912 bool Overflow = false; 2913 Type *Ty = AddRec->getType(); 2914 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2915 SmallVector<const SCEV*, 7> AddRecOps; 2916 for (int x = 0, xe = AddRec->getNumOperands() + 2917 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2918 const SCEV *Term = getZero(Ty); 2919 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2920 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2921 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2922 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2923 z < ze && !Overflow; ++z) { 2924 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2925 uint64_t Coeff; 2926 if (LargerThan64Bits) 2927 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2928 else 2929 Coeff = Coeff1*Coeff2; 2930 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2931 const SCEV *Term1 = AddRec->getOperand(y-z); 2932 const SCEV *Term2 = OtherAddRec->getOperand(z); 2933 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2, 2934 SCEV::FlagAnyWrap, Depth + 1), 2935 SCEV::FlagAnyWrap, Depth + 1); 2936 } 2937 } 2938 AddRecOps.push_back(Term); 2939 } 2940 if (!Overflow) { 2941 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2942 SCEV::FlagAnyWrap); 2943 if (Ops.size() == 2) return NewAddRec; 2944 Ops[Idx] = NewAddRec; 2945 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2946 OpsModified = true; 2947 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2948 if (!AddRec) 2949 break; 2950 } 2951 } 2952 if (OpsModified) 2953 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2954 2955 // Otherwise couldn't fold anything into this recurrence. Move onto the 2956 // next one. 2957 } 2958 2959 // Okay, it looks like we really DO need an mul expr. Check to see if we 2960 // already have one, otherwise create a new one. 2961 return getOrCreateMulExpr(Ops, Flags); 2962 } 2963 2964 /// Represents an unsigned remainder expression based on unsigned division. 2965 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2966 const SCEV *RHS) { 2967 assert(getEffectiveSCEVType(LHS->getType()) == 2968 getEffectiveSCEVType(RHS->getType()) && 2969 "SCEVURemExpr operand types don't match!"); 2970 2971 // Short-circuit easy cases 2972 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2973 // If constant is one, the result is trivial 2974 if (RHSC->getValue()->isOne()) 2975 return getZero(LHS->getType()); // X urem 1 --> 0 2976 2977 // If constant is a power of two, fold into a zext(trunc(LHS)). 2978 if (RHSC->getAPInt().isPowerOf2()) { 2979 Type *FullTy = LHS->getType(); 2980 Type *TruncTy = 2981 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2982 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2983 } 2984 } 2985 2986 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2987 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2988 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2989 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2990 } 2991 2992 /// Get a canonical unsigned division expression, or something simpler if 2993 /// possible. 2994 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2995 const SCEV *RHS) { 2996 assert(getEffectiveSCEVType(LHS->getType()) == 2997 getEffectiveSCEVType(RHS->getType()) && 2998 "SCEVUDivExpr operand types don't match!"); 2999 3000 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3001 if (RHSC->getValue()->isOne()) 3002 return LHS; // X udiv 1 --> x 3003 // If the denominator is zero, the result of the udiv is undefined. Don't 3004 // try to analyze it, because the resolution chosen here may differ from 3005 // the resolution chosen in other parts of the compiler. 3006 if (!RHSC->getValue()->isZero()) { 3007 // Determine if the division can be folded into the operands of 3008 // its operands. 3009 // TODO: Generalize this to non-constants by using known-bits information. 3010 Type *Ty = LHS->getType(); 3011 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3012 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3013 // For non-power-of-two values, effectively round the value up to the 3014 // nearest power of two. 3015 if (!RHSC->getAPInt().isPowerOf2()) 3016 ++MaxShiftAmt; 3017 IntegerType *ExtTy = 3018 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3019 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3020 if (const SCEVConstant *Step = 3021 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3022 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3023 const APInt &StepInt = Step->getAPInt(); 3024 const APInt &DivInt = RHSC->getAPInt(); 3025 if (!StepInt.urem(DivInt) && 3026 getZeroExtendExpr(AR, ExtTy) == 3027 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3028 getZeroExtendExpr(Step, ExtTy), 3029 AR->getLoop(), SCEV::FlagAnyWrap)) { 3030 SmallVector<const SCEV *, 4> Operands; 3031 for (const SCEV *Op : AR->operands()) 3032 Operands.push_back(getUDivExpr(Op, RHS)); 3033 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3034 } 3035 /// Get a canonical UDivExpr for a recurrence. 3036 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3037 // We can currently only fold X%N if X is constant. 3038 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3039 if (StartC && !DivInt.urem(StepInt) && 3040 getZeroExtendExpr(AR, ExtTy) == 3041 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3042 getZeroExtendExpr(Step, ExtTy), 3043 AR->getLoop(), SCEV::FlagAnyWrap)) { 3044 const APInt &StartInt = StartC->getAPInt(); 3045 const APInt &StartRem = StartInt.urem(StepInt); 3046 if (StartRem != 0) 3047 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3048 AR->getLoop(), SCEV::FlagNW); 3049 } 3050 } 3051 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3052 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3053 SmallVector<const SCEV *, 4> Operands; 3054 for (const SCEV *Op : M->operands()) 3055 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3056 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3057 // Find an operand that's safely divisible. 3058 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3059 const SCEV *Op = M->getOperand(i); 3060 const SCEV *Div = getUDivExpr(Op, RHSC); 3061 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3062 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3063 M->op_end()); 3064 Operands[i] = Div; 3065 return getMulExpr(Operands); 3066 } 3067 } 3068 } 3069 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3070 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3071 SmallVector<const SCEV *, 4> Operands; 3072 for (const SCEV *Op : A->operands()) 3073 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3074 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3075 Operands.clear(); 3076 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3077 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3078 if (isa<SCEVUDivExpr>(Op) || 3079 getMulExpr(Op, RHS) != A->getOperand(i)) 3080 break; 3081 Operands.push_back(Op); 3082 } 3083 if (Operands.size() == A->getNumOperands()) 3084 return getAddExpr(Operands); 3085 } 3086 } 3087 3088 // Fold if both operands are constant. 3089 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3090 Constant *LHSCV = LHSC->getValue(); 3091 Constant *RHSCV = RHSC->getValue(); 3092 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3093 RHSCV))); 3094 } 3095 } 3096 } 3097 3098 FoldingSetNodeID ID; 3099 ID.AddInteger(scUDivExpr); 3100 ID.AddPointer(LHS); 3101 ID.AddPointer(RHS); 3102 void *IP = nullptr; 3103 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3104 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3105 LHS, RHS); 3106 UniqueSCEVs.InsertNode(S, IP); 3107 addToLoopUseLists(S); 3108 return S; 3109 } 3110 3111 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3112 APInt A = C1->getAPInt().abs(); 3113 APInt B = C2->getAPInt().abs(); 3114 uint32_t ABW = A.getBitWidth(); 3115 uint32_t BBW = B.getBitWidth(); 3116 3117 if (ABW > BBW) 3118 B = B.zext(ABW); 3119 else if (ABW < BBW) 3120 A = A.zext(BBW); 3121 3122 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3123 } 3124 3125 /// Get a canonical unsigned division expression, or something simpler if 3126 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3127 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3128 /// it's not exact because the udiv may be clearing bits. 3129 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3130 const SCEV *RHS) { 3131 // TODO: we could try to find factors in all sorts of things, but for now we 3132 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3133 // end of this file for inspiration. 3134 3135 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3136 if (!Mul || !Mul->hasNoUnsignedWrap()) 3137 return getUDivExpr(LHS, RHS); 3138 3139 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3140 // If the mulexpr multiplies by a constant, then that constant must be the 3141 // first element of the mulexpr. 3142 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3143 if (LHSCst == RHSCst) { 3144 SmallVector<const SCEV *, 2> Operands; 3145 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3146 return getMulExpr(Operands); 3147 } 3148 3149 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3150 // that there's a factor provided by one of the other terms. We need to 3151 // check. 3152 APInt Factor = gcd(LHSCst, RHSCst); 3153 if (!Factor.isIntN(1)) { 3154 LHSCst = 3155 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3156 RHSCst = 3157 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3158 SmallVector<const SCEV *, 2> Operands; 3159 Operands.push_back(LHSCst); 3160 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3161 LHS = getMulExpr(Operands); 3162 RHS = RHSCst; 3163 Mul = dyn_cast<SCEVMulExpr>(LHS); 3164 if (!Mul) 3165 return getUDivExactExpr(LHS, RHS); 3166 } 3167 } 3168 } 3169 3170 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3171 if (Mul->getOperand(i) == RHS) { 3172 SmallVector<const SCEV *, 2> Operands; 3173 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3174 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3175 return getMulExpr(Operands); 3176 } 3177 } 3178 3179 return getUDivExpr(LHS, RHS); 3180 } 3181 3182 /// Get an add recurrence expression for the specified loop. Simplify the 3183 /// expression as much as possible. 3184 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3185 const Loop *L, 3186 SCEV::NoWrapFlags Flags) { 3187 SmallVector<const SCEV *, 4> Operands; 3188 Operands.push_back(Start); 3189 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3190 if (StepChrec->getLoop() == L) { 3191 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3192 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3193 } 3194 3195 Operands.push_back(Step); 3196 return getAddRecExpr(Operands, L, Flags); 3197 } 3198 3199 /// Get an add recurrence expression for the specified loop. Simplify the 3200 /// expression as much as possible. 3201 const SCEV * 3202 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3203 const Loop *L, SCEV::NoWrapFlags Flags) { 3204 if (Operands.size() == 1) return Operands[0]; 3205 #ifndef NDEBUG 3206 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3207 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3208 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3209 "SCEVAddRecExpr operand types don't match!"); 3210 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3211 assert(isLoopInvariant(Operands[i], L) && 3212 "SCEVAddRecExpr operand is not loop-invariant!"); 3213 #endif 3214 3215 if (Operands.back()->isZero()) { 3216 Operands.pop_back(); 3217 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3218 } 3219 3220 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3221 // use that information to infer NUW and NSW flags. However, computing a 3222 // BE count requires calling getAddRecExpr, so we may not yet have a 3223 // meaningful BE count at this point (and if we don't, we'd be stuck 3224 // with a SCEVCouldNotCompute as the cached BE count). 3225 3226 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3227 3228 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3229 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3230 const Loop *NestedLoop = NestedAR->getLoop(); 3231 if (L->contains(NestedLoop) 3232 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3233 : (!NestedLoop->contains(L) && 3234 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3235 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3236 NestedAR->op_end()); 3237 Operands[0] = NestedAR->getStart(); 3238 // AddRecs require their operands be loop-invariant with respect to their 3239 // loops. Don't perform this transformation if it would break this 3240 // requirement. 3241 bool AllInvariant = all_of( 3242 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3243 3244 if (AllInvariant) { 3245 // Create a recurrence for the outer loop with the same step size. 3246 // 3247 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3248 // inner recurrence has the same property. 3249 SCEV::NoWrapFlags OuterFlags = 3250 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3251 3252 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3253 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3254 return isLoopInvariant(Op, NestedLoop); 3255 }); 3256 3257 if (AllInvariant) { 3258 // Ok, both add recurrences are valid after the transformation. 3259 // 3260 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3261 // the outer recurrence has the same property. 3262 SCEV::NoWrapFlags InnerFlags = 3263 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3264 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3265 } 3266 } 3267 // Reset Operands to its original state. 3268 Operands[0] = NestedAR; 3269 } 3270 } 3271 3272 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3273 // already have one, otherwise create a new one. 3274 FoldingSetNodeID ID; 3275 ID.AddInteger(scAddRecExpr); 3276 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3277 ID.AddPointer(Operands[i]); 3278 ID.AddPointer(L); 3279 void *IP = nullptr; 3280 SCEVAddRecExpr *S = 3281 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3282 if (!S) { 3283 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3284 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3285 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3286 O, Operands.size(), L); 3287 UniqueSCEVs.InsertNode(S, IP); 3288 addToLoopUseLists(S); 3289 } 3290 S->setNoWrapFlags(Flags); 3291 return S; 3292 } 3293 3294 const SCEV * 3295 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3296 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3297 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3298 // getSCEV(Base)->getType() has the same address space as Base->getType() 3299 // because SCEV::getType() preserves the address space. 3300 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3301 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3302 // instruction to its SCEV, because the Instruction may be guarded by control 3303 // flow and the no-overflow bits may not be valid for the expression in any 3304 // context. This can be fixed similarly to how these flags are handled for 3305 // adds. 3306 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3307 : SCEV::FlagAnyWrap; 3308 3309 const SCEV *TotalOffset = getZero(IntPtrTy); 3310 // The array size is unimportant. The first thing we do on CurTy is getting 3311 // its element type. 3312 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3313 for (const SCEV *IndexExpr : IndexExprs) { 3314 // Compute the (potentially symbolic) offset in bytes for this index. 3315 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3316 // For a struct, add the member offset. 3317 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3318 unsigned FieldNo = Index->getZExtValue(); 3319 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3320 3321 // Add the field offset to the running total offset. 3322 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3323 3324 // Update CurTy to the type of the field at Index. 3325 CurTy = STy->getTypeAtIndex(Index); 3326 } else { 3327 // Update CurTy to its element type. 3328 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3329 // For an array, add the element offset, explicitly scaled. 3330 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3331 // Getelementptr indices are signed. 3332 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3333 3334 // Multiply the index by the element size to compute the element offset. 3335 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3336 3337 // Add the element offset to the running total offset. 3338 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3339 } 3340 } 3341 3342 // Add the total offset from all the GEP indices to the base. 3343 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3344 } 3345 3346 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3347 const SCEV *RHS) { 3348 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3349 return getSMaxExpr(Ops); 3350 } 3351 3352 const SCEV * 3353 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3354 assert(!Ops.empty() && "Cannot get empty smax!"); 3355 if (Ops.size() == 1) return Ops[0]; 3356 #ifndef NDEBUG 3357 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3358 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3359 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3360 "SCEVSMaxExpr operand types don't match!"); 3361 #endif 3362 3363 // Sort by complexity, this groups all similar expression types together. 3364 GroupByComplexity(Ops, &LI, DT); 3365 3366 // If there are any constants, fold them together. 3367 unsigned Idx = 0; 3368 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3369 ++Idx; 3370 assert(Idx < Ops.size()); 3371 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3372 // We found two constants, fold them together! 3373 ConstantInt *Fold = ConstantInt::get( 3374 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3375 Ops[0] = getConstant(Fold); 3376 Ops.erase(Ops.begin()+1); // Erase the folded element 3377 if (Ops.size() == 1) return Ops[0]; 3378 LHSC = cast<SCEVConstant>(Ops[0]); 3379 } 3380 3381 // If we are left with a constant minimum-int, strip it off. 3382 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3383 Ops.erase(Ops.begin()); 3384 --Idx; 3385 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3386 // If we have an smax with a constant maximum-int, it will always be 3387 // maximum-int. 3388 return Ops[0]; 3389 } 3390 3391 if (Ops.size() == 1) return Ops[0]; 3392 } 3393 3394 // Find the first SMax 3395 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3396 ++Idx; 3397 3398 // Check to see if one of the operands is an SMax. If so, expand its operands 3399 // onto our operand list, and recurse to simplify. 3400 if (Idx < Ops.size()) { 3401 bool DeletedSMax = false; 3402 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3403 Ops.erase(Ops.begin()+Idx); 3404 Ops.append(SMax->op_begin(), SMax->op_end()); 3405 DeletedSMax = true; 3406 } 3407 3408 if (DeletedSMax) 3409 return getSMaxExpr(Ops); 3410 } 3411 3412 // Okay, check to see if the same value occurs in the operand list twice. If 3413 // so, delete one. Since we sorted the list, these values are required to 3414 // be adjacent. 3415 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3416 // X smax Y smax Y --> X smax Y 3417 // X smax Y --> X, if X is always greater than Y 3418 if (Ops[i] == Ops[i+1] || 3419 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3420 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3421 --i; --e; 3422 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3423 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3424 --i; --e; 3425 } 3426 3427 if (Ops.size() == 1) return Ops[0]; 3428 3429 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3430 3431 // Okay, it looks like we really DO need an smax expr. Check to see if we 3432 // already have one, otherwise create a new one. 3433 FoldingSetNodeID ID; 3434 ID.AddInteger(scSMaxExpr); 3435 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3436 ID.AddPointer(Ops[i]); 3437 void *IP = nullptr; 3438 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3439 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3440 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3441 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3442 O, Ops.size()); 3443 UniqueSCEVs.InsertNode(S, IP); 3444 addToLoopUseLists(S); 3445 return S; 3446 } 3447 3448 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3449 const SCEV *RHS) { 3450 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3451 return getUMaxExpr(Ops); 3452 } 3453 3454 const SCEV * 3455 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3456 assert(!Ops.empty() && "Cannot get empty umax!"); 3457 if (Ops.size() == 1) return Ops[0]; 3458 #ifndef NDEBUG 3459 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3460 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3461 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3462 "SCEVUMaxExpr operand types don't match!"); 3463 #endif 3464 3465 // Sort by complexity, this groups all similar expression types together. 3466 GroupByComplexity(Ops, &LI, DT); 3467 3468 // If there are any constants, fold them together. 3469 unsigned Idx = 0; 3470 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3471 ++Idx; 3472 assert(Idx < Ops.size()); 3473 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3474 // We found two constants, fold them together! 3475 ConstantInt *Fold = ConstantInt::get( 3476 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3477 Ops[0] = getConstant(Fold); 3478 Ops.erase(Ops.begin()+1); // Erase the folded element 3479 if (Ops.size() == 1) return Ops[0]; 3480 LHSC = cast<SCEVConstant>(Ops[0]); 3481 } 3482 3483 // If we are left with a constant minimum-int, strip it off. 3484 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3485 Ops.erase(Ops.begin()); 3486 --Idx; 3487 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3488 // If we have an umax with a constant maximum-int, it will always be 3489 // maximum-int. 3490 return Ops[0]; 3491 } 3492 3493 if (Ops.size() == 1) return Ops[0]; 3494 } 3495 3496 // Find the first UMax 3497 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3498 ++Idx; 3499 3500 // Check to see if one of the operands is a UMax. If so, expand its operands 3501 // onto our operand list, and recurse to simplify. 3502 if (Idx < Ops.size()) { 3503 bool DeletedUMax = false; 3504 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3505 Ops.erase(Ops.begin()+Idx); 3506 Ops.append(UMax->op_begin(), UMax->op_end()); 3507 DeletedUMax = true; 3508 } 3509 3510 if (DeletedUMax) 3511 return getUMaxExpr(Ops); 3512 } 3513 3514 // Okay, check to see if the same value occurs in the operand list twice. If 3515 // so, delete one. Since we sorted the list, these values are required to 3516 // be adjacent. 3517 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3518 // X umax Y umax Y --> X umax Y 3519 // X umax Y --> X, if X is always greater than Y 3520 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning( 3521 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) { 3522 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3523 --i; --e; 3524 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i], 3525 Ops[i + 1])) { 3526 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3527 --i; --e; 3528 } 3529 3530 if (Ops.size() == 1) return Ops[0]; 3531 3532 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3533 3534 // Okay, it looks like we really DO need a umax expr. Check to see if we 3535 // already have one, otherwise create a new one. 3536 FoldingSetNodeID ID; 3537 ID.AddInteger(scUMaxExpr); 3538 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3539 ID.AddPointer(Ops[i]); 3540 void *IP = nullptr; 3541 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3542 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3543 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3544 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3545 O, Ops.size()); 3546 UniqueSCEVs.InsertNode(S, IP); 3547 addToLoopUseLists(S); 3548 return S; 3549 } 3550 3551 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3552 const SCEV *RHS) { 3553 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3554 return getSMinExpr(Ops); 3555 } 3556 3557 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3558 // ~smax(~x, ~y, ~z) == smin(x, y, z). 3559 SmallVector<const SCEV *, 2> NotOps; 3560 for (auto *S : Ops) 3561 NotOps.push_back(getNotSCEV(S)); 3562 return getNotSCEV(getSMaxExpr(NotOps)); 3563 } 3564 3565 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3566 const SCEV *RHS) { 3567 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3568 return getUMinExpr(Ops); 3569 } 3570 3571 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3572 assert(!Ops.empty() && "At least one operand must be!"); 3573 // Trivial case. 3574 if (Ops.size() == 1) 3575 return Ops[0]; 3576 3577 // ~umax(~x, ~y, ~z) == umin(x, y, z). 3578 SmallVector<const SCEV *, 2> NotOps; 3579 for (auto *S : Ops) 3580 NotOps.push_back(getNotSCEV(S)); 3581 return getNotSCEV(getUMaxExpr(NotOps)); 3582 } 3583 3584 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3585 // We can bypass creating a target-independent 3586 // constant expression and then folding it back into a ConstantInt. 3587 // This is just a compile-time optimization. 3588 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3589 } 3590 3591 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3592 StructType *STy, 3593 unsigned FieldNo) { 3594 // We can bypass creating a target-independent 3595 // constant expression and then folding it back into a ConstantInt. 3596 // This is just a compile-time optimization. 3597 return getConstant( 3598 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3599 } 3600 3601 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3602 // Don't attempt to do anything other than create a SCEVUnknown object 3603 // here. createSCEV only calls getUnknown after checking for all other 3604 // interesting possibilities, and any other code that calls getUnknown 3605 // is doing so in order to hide a value from SCEV canonicalization. 3606 3607 FoldingSetNodeID ID; 3608 ID.AddInteger(scUnknown); 3609 ID.AddPointer(V); 3610 void *IP = nullptr; 3611 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3612 assert(cast<SCEVUnknown>(S)->getValue() == V && 3613 "Stale SCEVUnknown in uniquing map!"); 3614 return S; 3615 } 3616 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3617 FirstUnknown); 3618 FirstUnknown = cast<SCEVUnknown>(S); 3619 UniqueSCEVs.InsertNode(S, IP); 3620 return S; 3621 } 3622 3623 //===----------------------------------------------------------------------===// 3624 // Basic SCEV Analysis and PHI Idiom Recognition Code 3625 // 3626 3627 /// Test if values of the given type are analyzable within the SCEV 3628 /// framework. This primarily includes integer types, and it can optionally 3629 /// include pointer types if the ScalarEvolution class has access to 3630 /// target-specific information. 3631 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3632 // Integers and pointers are always SCEVable. 3633 return Ty->isIntegerTy() || Ty->isPointerTy(); 3634 } 3635 3636 /// Return the size in bits of the specified type, for which isSCEVable must 3637 /// return true. 3638 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3639 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3640 if (Ty->isPointerTy()) 3641 return getDataLayout().getIndexTypeSizeInBits(Ty); 3642 return getDataLayout().getTypeSizeInBits(Ty); 3643 } 3644 3645 /// Return a type with the same bitwidth as the given type and which represents 3646 /// how SCEV will treat the given type, for which isSCEVable must return 3647 /// true. For pointer types, this is the pointer-sized integer type. 3648 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3649 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3650 3651 if (Ty->isIntegerTy()) 3652 return Ty; 3653 3654 // The only other support type is pointer. 3655 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3656 return getDataLayout().getIntPtrType(Ty); 3657 } 3658 3659 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3660 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3661 } 3662 3663 const SCEV *ScalarEvolution::getCouldNotCompute() { 3664 return CouldNotCompute.get(); 3665 } 3666 3667 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3668 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3669 auto *SU = dyn_cast<SCEVUnknown>(S); 3670 return SU && SU->getValue() == nullptr; 3671 }); 3672 3673 return !ContainsNulls; 3674 } 3675 3676 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3677 HasRecMapType::iterator I = HasRecMap.find(S); 3678 if (I != HasRecMap.end()) 3679 return I->second; 3680 3681 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3682 HasRecMap.insert({S, FoundAddRec}); 3683 return FoundAddRec; 3684 } 3685 3686 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3687 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3688 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3689 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3690 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3691 if (!Add) 3692 return {S, nullptr}; 3693 3694 if (Add->getNumOperands() != 2) 3695 return {S, nullptr}; 3696 3697 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3698 if (!ConstOp) 3699 return {S, nullptr}; 3700 3701 return {Add->getOperand(1), ConstOp->getValue()}; 3702 } 3703 3704 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3705 /// by the value and offset from any ValueOffsetPair in the set. 3706 SetVector<ScalarEvolution::ValueOffsetPair> * 3707 ScalarEvolution::getSCEVValues(const SCEV *S) { 3708 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3709 if (SI == ExprValueMap.end()) 3710 return nullptr; 3711 #ifndef NDEBUG 3712 if (VerifySCEVMap) { 3713 // Check there is no dangling Value in the set returned. 3714 for (const auto &VE : SI->second) 3715 assert(ValueExprMap.count(VE.first)); 3716 } 3717 #endif 3718 return &SI->second; 3719 } 3720 3721 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3722 /// cannot be used separately. eraseValueFromMap should be used to remove 3723 /// V from ValueExprMap and ExprValueMap at the same time. 3724 void ScalarEvolution::eraseValueFromMap(Value *V) { 3725 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3726 if (I != ValueExprMap.end()) { 3727 const SCEV *S = I->second; 3728 // Remove {V, 0} from the set of ExprValueMap[S] 3729 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3730 SV->remove({V, nullptr}); 3731 3732 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3733 const SCEV *Stripped; 3734 ConstantInt *Offset; 3735 std::tie(Stripped, Offset) = splitAddExpr(S); 3736 if (Offset != nullptr) { 3737 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3738 SV->remove({V, Offset}); 3739 } 3740 ValueExprMap.erase(V); 3741 } 3742 } 3743 3744 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3745 /// TODO: In reality it is better to check the poison recursevely 3746 /// but this is better than nothing. 3747 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3748 if (auto *I = dyn_cast<Instruction>(V)) { 3749 if (isa<OverflowingBinaryOperator>(I)) { 3750 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3751 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3752 return true; 3753 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3754 return true; 3755 } 3756 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3757 return true; 3758 } 3759 return false; 3760 } 3761 3762 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3763 /// create a new one. 3764 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3765 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3766 3767 const SCEV *S = getExistingSCEV(V); 3768 if (S == nullptr) { 3769 S = createSCEV(V); 3770 // During PHI resolution, it is possible to create two SCEVs for the same 3771 // V, so it is needed to double check whether V->S is inserted into 3772 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3773 std::pair<ValueExprMapType::iterator, bool> Pair = 3774 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3775 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3776 ExprValueMap[S].insert({V, nullptr}); 3777 3778 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3779 // ExprValueMap. 3780 const SCEV *Stripped = S; 3781 ConstantInt *Offset = nullptr; 3782 std::tie(Stripped, Offset) = splitAddExpr(S); 3783 // If stripped is SCEVUnknown, don't bother to save 3784 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3785 // increase the complexity of the expansion code. 3786 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3787 // because it may generate add/sub instead of GEP in SCEV expansion. 3788 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3789 !isa<GetElementPtrInst>(V)) 3790 ExprValueMap[Stripped].insert({V, Offset}); 3791 } 3792 } 3793 return S; 3794 } 3795 3796 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3797 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3798 3799 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3800 if (I != ValueExprMap.end()) { 3801 const SCEV *S = I->second; 3802 if (checkValidity(S)) 3803 return S; 3804 eraseValueFromMap(V); 3805 forgetMemoizedResults(S); 3806 } 3807 return nullptr; 3808 } 3809 3810 /// Return a SCEV corresponding to -V = -1*V 3811 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3812 SCEV::NoWrapFlags Flags) { 3813 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3814 return getConstant( 3815 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3816 3817 Type *Ty = V->getType(); 3818 Ty = getEffectiveSCEVType(Ty); 3819 return getMulExpr( 3820 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3821 } 3822 3823 /// Return a SCEV corresponding to ~V = -1-V 3824 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3825 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3826 return getConstant( 3827 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3828 3829 Type *Ty = V->getType(); 3830 Ty = getEffectiveSCEVType(Ty); 3831 const SCEV *AllOnes = 3832 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3833 return getMinusSCEV(AllOnes, V); 3834 } 3835 3836 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3837 SCEV::NoWrapFlags Flags, 3838 unsigned Depth) { 3839 // Fast path: X - X --> 0. 3840 if (LHS == RHS) 3841 return getZero(LHS->getType()); 3842 3843 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3844 // makes it so that we cannot make much use of NUW. 3845 auto AddFlags = SCEV::FlagAnyWrap; 3846 const bool RHSIsNotMinSigned = 3847 !getSignedRangeMin(RHS).isMinSignedValue(); 3848 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3849 // Let M be the minimum representable signed value. Then (-1)*RHS 3850 // signed-wraps if and only if RHS is M. That can happen even for 3851 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3852 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3853 // (-1)*RHS, we need to prove that RHS != M. 3854 // 3855 // If LHS is non-negative and we know that LHS - RHS does not 3856 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3857 // either by proving that RHS > M or that LHS >= 0. 3858 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3859 AddFlags = SCEV::FlagNSW; 3860 } 3861 } 3862 3863 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3864 // RHS is NSW and LHS >= 0. 3865 // 3866 // The difficulty here is that the NSW flag may have been proven 3867 // relative to a loop that is to be found in a recurrence in LHS and 3868 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3869 // larger scope than intended. 3870 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3871 3872 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3873 } 3874 3875 const SCEV * 3876 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3877 Type *SrcTy = V->getType(); 3878 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3879 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3880 "Cannot truncate or zero extend with non-integer arguments!"); 3881 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3882 return V; // No conversion 3883 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3884 return getTruncateExpr(V, Ty); 3885 return getZeroExtendExpr(V, Ty); 3886 } 3887 3888 const SCEV * 3889 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3890 Type *Ty) { 3891 Type *SrcTy = V->getType(); 3892 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3893 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3894 "Cannot truncate or zero extend with non-integer arguments!"); 3895 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3896 return V; // No conversion 3897 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3898 return getTruncateExpr(V, Ty); 3899 return getSignExtendExpr(V, Ty); 3900 } 3901 3902 const SCEV * 3903 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3904 Type *SrcTy = V->getType(); 3905 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3906 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3907 "Cannot noop or zero extend with non-integer arguments!"); 3908 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3909 "getNoopOrZeroExtend cannot truncate!"); 3910 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3911 return V; // No conversion 3912 return getZeroExtendExpr(V, Ty); 3913 } 3914 3915 const SCEV * 3916 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3917 Type *SrcTy = V->getType(); 3918 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3919 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3920 "Cannot noop or sign extend with non-integer arguments!"); 3921 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3922 "getNoopOrSignExtend cannot truncate!"); 3923 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3924 return V; // No conversion 3925 return getSignExtendExpr(V, Ty); 3926 } 3927 3928 const SCEV * 3929 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3930 Type *SrcTy = V->getType(); 3931 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3932 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3933 "Cannot noop or any extend with non-integer arguments!"); 3934 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3935 "getNoopOrAnyExtend cannot truncate!"); 3936 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3937 return V; // No conversion 3938 return getAnyExtendExpr(V, Ty); 3939 } 3940 3941 const SCEV * 3942 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3943 Type *SrcTy = V->getType(); 3944 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3945 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3946 "Cannot truncate or noop with non-integer arguments!"); 3947 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3948 "getTruncateOrNoop cannot extend!"); 3949 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3950 return V; // No conversion 3951 return getTruncateExpr(V, Ty); 3952 } 3953 3954 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3955 const SCEV *RHS) { 3956 const SCEV *PromotedLHS = LHS; 3957 const SCEV *PromotedRHS = RHS; 3958 3959 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3960 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3961 else 3962 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3963 3964 return getUMaxExpr(PromotedLHS, PromotedRHS); 3965 } 3966 3967 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3968 const SCEV *RHS) { 3969 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3970 return getUMinFromMismatchedTypes(Ops); 3971 } 3972 3973 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3974 SmallVectorImpl<const SCEV *> &Ops) { 3975 assert(!Ops.empty() && "At least one operand must be!"); 3976 // Trivial case. 3977 if (Ops.size() == 1) 3978 return Ops[0]; 3979 3980 // Find the max type first. 3981 Type *MaxType = nullptr; 3982 for (auto *S : Ops) 3983 if (MaxType) 3984 MaxType = getWiderType(MaxType, S->getType()); 3985 else 3986 MaxType = S->getType(); 3987 3988 // Extend all ops to max type. 3989 SmallVector<const SCEV *, 2> PromotedOps; 3990 for (auto *S : Ops) 3991 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3992 3993 // Generate umin. 3994 return getUMinExpr(PromotedOps); 3995 } 3996 3997 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3998 // A pointer operand may evaluate to a nonpointer expression, such as null. 3999 if (!V->getType()->isPointerTy()) 4000 return V; 4001 4002 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4003 return getPointerBase(Cast->getOperand()); 4004 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4005 const SCEV *PtrOp = nullptr; 4006 for (const SCEV *NAryOp : NAry->operands()) { 4007 if (NAryOp->getType()->isPointerTy()) { 4008 // Cannot find the base of an expression with multiple pointer operands. 4009 if (PtrOp) 4010 return V; 4011 PtrOp = NAryOp; 4012 } 4013 } 4014 if (!PtrOp) 4015 return V; 4016 return getPointerBase(PtrOp); 4017 } 4018 return V; 4019 } 4020 4021 /// Push users of the given Instruction onto the given Worklist. 4022 static void 4023 PushDefUseChildren(Instruction *I, 4024 SmallVectorImpl<Instruction *> &Worklist) { 4025 // Push the def-use children onto the Worklist stack. 4026 for (User *U : I->users()) 4027 Worklist.push_back(cast<Instruction>(U)); 4028 } 4029 4030 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4031 SmallVector<Instruction *, 16> Worklist; 4032 PushDefUseChildren(PN, Worklist); 4033 4034 SmallPtrSet<Instruction *, 8> Visited; 4035 Visited.insert(PN); 4036 while (!Worklist.empty()) { 4037 Instruction *I = Worklist.pop_back_val(); 4038 if (!Visited.insert(I).second) 4039 continue; 4040 4041 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4042 if (It != ValueExprMap.end()) { 4043 const SCEV *Old = It->second; 4044 4045 // Short-circuit the def-use traversal if the symbolic name 4046 // ceases to appear in expressions. 4047 if (Old != SymName && !hasOperand(Old, SymName)) 4048 continue; 4049 4050 // SCEVUnknown for a PHI either means that it has an unrecognized 4051 // structure, it's a PHI that's in the progress of being computed 4052 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4053 // additional loop trip count information isn't going to change anything. 4054 // In the second case, createNodeForPHI will perform the necessary 4055 // updates on its own when it gets to that point. In the third, we do 4056 // want to forget the SCEVUnknown. 4057 if (!isa<PHINode>(I) || 4058 !isa<SCEVUnknown>(Old) || 4059 (I != PN && Old == SymName)) { 4060 eraseValueFromMap(It->first); 4061 forgetMemoizedResults(Old); 4062 } 4063 } 4064 4065 PushDefUseChildren(I, Worklist); 4066 } 4067 } 4068 4069 namespace { 4070 4071 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4072 /// expression in case its Loop is L. If it is not L then 4073 /// if IgnoreOtherLoops is true then use AddRec itself 4074 /// otherwise rewrite cannot be done. 4075 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4076 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4077 public: 4078 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4079 bool IgnoreOtherLoops = true) { 4080 SCEVInitRewriter Rewriter(L, SE); 4081 const SCEV *Result = Rewriter.visit(S); 4082 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4083 return SE.getCouldNotCompute(); 4084 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4085 ? SE.getCouldNotCompute() 4086 : Result; 4087 } 4088 4089 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4090 if (!SE.isLoopInvariant(Expr, L)) 4091 SeenLoopVariantSCEVUnknown = true; 4092 return Expr; 4093 } 4094 4095 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4096 // Only re-write AddRecExprs for this loop. 4097 if (Expr->getLoop() == L) 4098 return Expr->getStart(); 4099 SeenOtherLoops = true; 4100 return Expr; 4101 } 4102 4103 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4104 4105 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4106 4107 private: 4108 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4109 : SCEVRewriteVisitor(SE), L(L) {} 4110 4111 const Loop *L; 4112 bool SeenLoopVariantSCEVUnknown = false; 4113 bool SeenOtherLoops = false; 4114 }; 4115 4116 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4117 /// increment expression in case its Loop is L. If it is not L then 4118 /// use AddRec itself. 4119 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4120 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4121 public: 4122 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4123 SCEVPostIncRewriter Rewriter(L, SE); 4124 const SCEV *Result = Rewriter.visit(S); 4125 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4126 ? SE.getCouldNotCompute() 4127 : Result; 4128 } 4129 4130 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4131 if (!SE.isLoopInvariant(Expr, L)) 4132 SeenLoopVariantSCEVUnknown = true; 4133 return Expr; 4134 } 4135 4136 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4137 // Only re-write AddRecExprs for this loop. 4138 if (Expr->getLoop() == L) 4139 return Expr->getPostIncExpr(SE); 4140 SeenOtherLoops = true; 4141 return Expr; 4142 } 4143 4144 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4145 4146 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4147 4148 private: 4149 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4150 : SCEVRewriteVisitor(SE), L(L) {} 4151 4152 const Loop *L; 4153 bool SeenLoopVariantSCEVUnknown = false; 4154 bool SeenOtherLoops = false; 4155 }; 4156 4157 /// This class evaluates the compare condition by matching it against the 4158 /// condition of loop latch. If there is a match we assume a true value 4159 /// for the condition while building SCEV nodes. 4160 class SCEVBackedgeConditionFolder 4161 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4162 public: 4163 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4164 ScalarEvolution &SE) { 4165 bool IsPosBECond = false; 4166 Value *BECond = nullptr; 4167 if (BasicBlock *Latch = L->getLoopLatch()) { 4168 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4169 if (BI && BI->isConditional()) { 4170 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4171 "Both outgoing branches should not target same header!"); 4172 BECond = BI->getCondition(); 4173 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4174 } else { 4175 return S; 4176 } 4177 } 4178 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4179 return Rewriter.visit(S); 4180 } 4181 4182 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4183 const SCEV *Result = Expr; 4184 bool InvariantF = SE.isLoopInvariant(Expr, L); 4185 4186 if (!InvariantF) { 4187 Instruction *I = cast<Instruction>(Expr->getValue()); 4188 switch (I->getOpcode()) { 4189 case Instruction::Select: { 4190 SelectInst *SI = cast<SelectInst>(I); 4191 Optional<const SCEV *> Res = 4192 compareWithBackedgeCondition(SI->getCondition()); 4193 if (Res.hasValue()) { 4194 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4195 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4196 } 4197 break; 4198 } 4199 default: { 4200 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4201 if (Res.hasValue()) 4202 Result = Res.getValue(); 4203 break; 4204 } 4205 } 4206 } 4207 return Result; 4208 } 4209 4210 private: 4211 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4212 bool IsPosBECond, ScalarEvolution &SE) 4213 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4214 IsPositiveBECond(IsPosBECond) {} 4215 4216 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4217 4218 const Loop *L; 4219 /// Loop back condition. 4220 Value *BackedgeCond = nullptr; 4221 /// Set to true if loop back is on positive branch condition. 4222 bool IsPositiveBECond; 4223 }; 4224 4225 Optional<const SCEV *> 4226 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4227 4228 // If value matches the backedge condition for loop latch, 4229 // then return a constant evolution node based on loopback 4230 // branch taken. 4231 if (BackedgeCond == IC) 4232 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4233 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4234 return None; 4235 } 4236 4237 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4238 public: 4239 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4240 ScalarEvolution &SE) { 4241 SCEVShiftRewriter Rewriter(L, SE); 4242 const SCEV *Result = Rewriter.visit(S); 4243 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4244 } 4245 4246 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4247 // Only allow AddRecExprs for this loop. 4248 if (!SE.isLoopInvariant(Expr, L)) 4249 Valid = false; 4250 return Expr; 4251 } 4252 4253 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4254 if (Expr->getLoop() == L && Expr->isAffine()) 4255 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4256 Valid = false; 4257 return Expr; 4258 } 4259 4260 bool isValid() { return Valid; } 4261 4262 private: 4263 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4264 : SCEVRewriteVisitor(SE), L(L) {} 4265 4266 const Loop *L; 4267 bool Valid = true; 4268 }; 4269 4270 } // end anonymous namespace 4271 4272 SCEV::NoWrapFlags 4273 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4274 if (!AR->isAffine()) 4275 return SCEV::FlagAnyWrap; 4276 4277 using OBO = OverflowingBinaryOperator; 4278 4279 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4280 4281 if (!AR->hasNoSignedWrap()) { 4282 ConstantRange AddRecRange = getSignedRange(AR); 4283 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4284 4285 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4286 Instruction::Add, IncRange, OBO::NoSignedWrap); 4287 if (NSWRegion.contains(AddRecRange)) 4288 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4289 } 4290 4291 if (!AR->hasNoUnsignedWrap()) { 4292 ConstantRange AddRecRange = getUnsignedRange(AR); 4293 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4294 4295 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4296 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4297 if (NUWRegion.contains(AddRecRange)) 4298 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4299 } 4300 4301 return Result; 4302 } 4303 4304 namespace { 4305 4306 /// Represents an abstract binary operation. This may exist as a 4307 /// normal instruction or constant expression, or may have been 4308 /// derived from an expression tree. 4309 struct BinaryOp { 4310 unsigned Opcode; 4311 Value *LHS; 4312 Value *RHS; 4313 bool IsNSW = false; 4314 bool IsNUW = false; 4315 4316 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4317 /// constant expression. 4318 Operator *Op = nullptr; 4319 4320 explicit BinaryOp(Operator *Op) 4321 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4322 Op(Op) { 4323 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4324 IsNSW = OBO->hasNoSignedWrap(); 4325 IsNUW = OBO->hasNoUnsignedWrap(); 4326 } 4327 } 4328 4329 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4330 bool IsNUW = false) 4331 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4332 }; 4333 4334 } // end anonymous namespace 4335 4336 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4337 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4338 auto *Op = dyn_cast<Operator>(V); 4339 if (!Op) 4340 return None; 4341 4342 // Implementation detail: all the cleverness here should happen without 4343 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4344 // SCEV expressions when possible, and we should not break that. 4345 4346 switch (Op->getOpcode()) { 4347 case Instruction::Add: 4348 case Instruction::Sub: 4349 case Instruction::Mul: 4350 case Instruction::UDiv: 4351 case Instruction::URem: 4352 case Instruction::And: 4353 case Instruction::Or: 4354 case Instruction::AShr: 4355 case Instruction::Shl: 4356 return BinaryOp(Op); 4357 4358 case Instruction::Xor: 4359 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4360 // If the RHS of the xor is a signmask, then this is just an add. 4361 // Instcombine turns add of signmask into xor as a strength reduction step. 4362 if (RHSC->getValue().isSignMask()) 4363 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4364 return BinaryOp(Op); 4365 4366 case Instruction::LShr: 4367 // Turn logical shift right of a constant into a unsigned divide. 4368 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4369 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4370 4371 // If the shift count is not less than the bitwidth, the result of 4372 // the shift is undefined. Don't try to analyze it, because the 4373 // resolution chosen here may differ from the resolution chosen in 4374 // other parts of the compiler. 4375 if (SA->getValue().ult(BitWidth)) { 4376 Constant *X = 4377 ConstantInt::get(SA->getContext(), 4378 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4379 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4380 } 4381 } 4382 return BinaryOp(Op); 4383 4384 case Instruction::ExtractValue: { 4385 auto *EVI = cast<ExtractValueInst>(Op); 4386 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4387 break; 4388 4389 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4390 if (!CI) 4391 break; 4392 4393 if (auto *F = CI->getCalledFunction()) 4394 switch (F->getIntrinsicID()) { 4395 case Intrinsic::sadd_with_overflow: 4396 case Intrinsic::uadd_with_overflow: 4397 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4398 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4399 CI->getArgOperand(1)); 4400 4401 // Now that we know that all uses of the arithmetic-result component of 4402 // CI are guarded by the overflow check, we can go ahead and pretend 4403 // that the arithmetic is non-overflowing. 4404 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4405 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4406 CI->getArgOperand(1), /* IsNSW = */ true, 4407 /* IsNUW = */ false); 4408 else 4409 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4410 CI->getArgOperand(1), /* IsNSW = */ false, 4411 /* IsNUW*/ true); 4412 case Intrinsic::ssub_with_overflow: 4413 case Intrinsic::usub_with_overflow: 4414 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4415 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4416 CI->getArgOperand(1)); 4417 4418 // The same reasoning as sadd/uadd above. 4419 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) 4420 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4421 CI->getArgOperand(1), /* IsNSW = */ true, 4422 /* IsNUW = */ false); 4423 else 4424 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4425 CI->getArgOperand(1), /* IsNSW = */ false, 4426 /* IsNUW = */ true); 4427 case Intrinsic::smul_with_overflow: 4428 case Intrinsic::umul_with_overflow: 4429 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4430 CI->getArgOperand(1)); 4431 default: 4432 break; 4433 } 4434 break; 4435 } 4436 4437 default: 4438 break; 4439 } 4440 4441 return None; 4442 } 4443 4444 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4445 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4446 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4447 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4448 /// follows one of the following patterns: 4449 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4450 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4451 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4452 /// we return the type of the truncation operation, and indicate whether the 4453 /// truncated type should be treated as signed/unsigned by setting 4454 /// \p Signed to true/false, respectively. 4455 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4456 bool &Signed, ScalarEvolution &SE) { 4457 // The case where Op == SymbolicPHI (that is, with no type conversions on 4458 // the way) is handled by the regular add recurrence creating logic and 4459 // would have already been triggered in createAddRecForPHI. Reaching it here 4460 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4461 // because one of the other operands of the SCEVAddExpr updating this PHI is 4462 // not invariant). 4463 // 4464 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4465 // this case predicates that allow us to prove that Op == SymbolicPHI will 4466 // be added. 4467 if (Op == SymbolicPHI) 4468 return nullptr; 4469 4470 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4471 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4472 if (SourceBits != NewBits) 4473 return nullptr; 4474 4475 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4476 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4477 if (!SExt && !ZExt) 4478 return nullptr; 4479 const SCEVTruncateExpr *Trunc = 4480 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4481 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4482 if (!Trunc) 4483 return nullptr; 4484 const SCEV *X = Trunc->getOperand(); 4485 if (X != SymbolicPHI) 4486 return nullptr; 4487 Signed = SExt != nullptr; 4488 return Trunc->getType(); 4489 } 4490 4491 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4492 if (!PN->getType()->isIntegerTy()) 4493 return nullptr; 4494 const Loop *L = LI.getLoopFor(PN->getParent()); 4495 if (!L || L->getHeader() != PN->getParent()) 4496 return nullptr; 4497 return L; 4498 } 4499 4500 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4501 // computation that updates the phi follows the following pattern: 4502 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4503 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4504 // If so, try to see if it can be rewritten as an AddRecExpr under some 4505 // Predicates. If successful, return them as a pair. Also cache the results 4506 // of the analysis. 4507 // 4508 // Example usage scenario: 4509 // Say the Rewriter is called for the following SCEV: 4510 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4511 // where: 4512 // %X = phi i64 (%Start, %BEValue) 4513 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4514 // and call this function with %SymbolicPHI = %X. 4515 // 4516 // The analysis will find that the value coming around the backedge has 4517 // the following SCEV: 4518 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4519 // Upon concluding that this matches the desired pattern, the function 4520 // will return the pair {NewAddRec, SmallPredsVec} where: 4521 // NewAddRec = {%Start,+,%Step} 4522 // SmallPredsVec = {P1, P2, P3} as follows: 4523 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4524 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4525 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4526 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4527 // under the predicates {P1,P2,P3}. 4528 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4529 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4530 // 4531 // TODO's: 4532 // 4533 // 1) Extend the Induction descriptor to also support inductions that involve 4534 // casts: When needed (namely, when we are called in the context of the 4535 // vectorizer induction analysis), a Set of cast instructions will be 4536 // populated by this method, and provided back to isInductionPHI. This is 4537 // needed to allow the vectorizer to properly record them to be ignored by 4538 // the cost model and to avoid vectorizing them (otherwise these casts, 4539 // which are redundant under the runtime overflow checks, will be 4540 // vectorized, which can be costly). 4541 // 4542 // 2) Support additional induction/PHISCEV patterns: We also want to support 4543 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4544 // after the induction update operation (the induction increment): 4545 // 4546 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4547 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4548 // 4549 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4550 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4551 // 4552 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4553 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4554 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4555 SmallVector<const SCEVPredicate *, 3> Predicates; 4556 4557 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4558 // return an AddRec expression under some predicate. 4559 4560 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4561 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4562 assert(L && "Expecting an integer loop header phi"); 4563 4564 // The loop may have multiple entrances or multiple exits; we can analyze 4565 // this phi as an addrec if it has a unique entry value and a unique 4566 // backedge value. 4567 Value *BEValueV = nullptr, *StartValueV = nullptr; 4568 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4569 Value *V = PN->getIncomingValue(i); 4570 if (L->contains(PN->getIncomingBlock(i))) { 4571 if (!BEValueV) { 4572 BEValueV = V; 4573 } else if (BEValueV != V) { 4574 BEValueV = nullptr; 4575 break; 4576 } 4577 } else if (!StartValueV) { 4578 StartValueV = V; 4579 } else if (StartValueV != V) { 4580 StartValueV = nullptr; 4581 break; 4582 } 4583 } 4584 if (!BEValueV || !StartValueV) 4585 return None; 4586 4587 const SCEV *BEValue = getSCEV(BEValueV); 4588 4589 // If the value coming around the backedge is an add with the symbolic 4590 // value we just inserted, possibly with casts that we can ignore under 4591 // an appropriate runtime guard, then we found a simple induction variable! 4592 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4593 if (!Add) 4594 return None; 4595 4596 // If there is a single occurrence of the symbolic value, possibly 4597 // casted, replace it with a recurrence. 4598 unsigned FoundIndex = Add->getNumOperands(); 4599 Type *TruncTy = nullptr; 4600 bool Signed; 4601 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4602 if ((TruncTy = 4603 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4604 if (FoundIndex == e) { 4605 FoundIndex = i; 4606 break; 4607 } 4608 4609 if (FoundIndex == Add->getNumOperands()) 4610 return None; 4611 4612 // Create an add with everything but the specified operand. 4613 SmallVector<const SCEV *, 8> Ops; 4614 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4615 if (i != FoundIndex) 4616 Ops.push_back(Add->getOperand(i)); 4617 const SCEV *Accum = getAddExpr(Ops); 4618 4619 // The runtime checks will not be valid if the step amount is 4620 // varying inside the loop. 4621 if (!isLoopInvariant(Accum, L)) 4622 return None; 4623 4624 // *** Part2: Create the predicates 4625 4626 // Analysis was successful: we have a phi-with-cast pattern for which we 4627 // can return an AddRec expression under the following predicates: 4628 // 4629 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4630 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4631 // P2: An Equal predicate that guarantees that 4632 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4633 // P3: An Equal predicate that guarantees that 4634 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4635 // 4636 // As we next prove, the above predicates guarantee that: 4637 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4638 // 4639 // 4640 // More formally, we want to prove that: 4641 // Expr(i+1) = Start + (i+1) * Accum 4642 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4643 // 4644 // Given that: 4645 // 1) Expr(0) = Start 4646 // 2) Expr(1) = Start + Accum 4647 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4648 // 3) Induction hypothesis (step i): 4649 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4650 // 4651 // Proof: 4652 // Expr(i+1) = 4653 // = Start + (i+1)*Accum 4654 // = (Start + i*Accum) + Accum 4655 // = Expr(i) + Accum 4656 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4657 // :: from step i 4658 // 4659 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4660 // 4661 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4662 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4663 // + Accum :: from P3 4664 // 4665 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4666 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4667 // 4668 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4669 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4670 // 4671 // By induction, the same applies to all iterations 1<=i<n: 4672 // 4673 4674 // Create a truncated addrec for which we will add a no overflow check (P1). 4675 const SCEV *StartVal = getSCEV(StartValueV); 4676 const SCEV *PHISCEV = 4677 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4678 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4679 4680 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4681 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4682 // will be constant. 4683 // 4684 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4685 // add P1. 4686 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4687 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4688 Signed ? SCEVWrapPredicate::IncrementNSSW 4689 : SCEVWrapPredicate::IncrementNUSW; 4690 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4691 Predicates.push_back(AddRecPred); 4692 } 4693 4694 // Create the Equal Predicates P2,P3: 4695 4696 // It is possible that the predicates P2 and/or P3 are computable at 4697 // compile time due to StartVal and/or Accum being constants. 4698 // If either one is, then we can check that now and escape if either P2 4699 // or P3 is false. 4700 4701 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4702 // for each of StartVal and Accum 4703 auto getExtendedExpr = [&](const SCEV *Expr, 4704 bool CreateSignExtend) -> const SCEV * { 4705 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4706 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4707 const SCEV *ExtendedExpr = 4708 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4709 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4710 return ExtendedExpr; 4711 }; 4712 4713 // Given: 4714 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4715 // = getExtendedExpr(Expr) 4716 // Determine whether the predicate P: Expr == ExtendedExpr 4717 // is known to be false at compile time 4718 auto PredIsKnownFalse = [&](const SCEV *Expr, 4719 const SCEV *ExtendedExpr) -> bool { 4720 return Expr != ExtendedExpr && 4721 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4722 }; 4723 4724 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4725 if (PredIsKnownFalse(StartVal, StartExtended)) { 4726 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4727 return None; 4728 } 4729 4730 // The Step is always Signed (because the overflow checks are either 4731 // NSSW or NUSW) 4732 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4733 if (PredIsKnownFalse(Accum, AccumExtended)) { 4734 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4735 return None; 4736 } 4737 4738 auto AppendPredicate = [&](const SCEV *Expr, 4739 const SCEV *ExtendedExpr) -> void { 4740 if (Expr != ExtendedExpr && 4741 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4742 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4743 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4744 Predicates.push_back(Pred); 4745 } 4746 }; 4747 4748 AppendPredicate(StartVal, StartExtended); 4749 AppendPredicate(Accum, AccumExtended); 4750 4751 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4752 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4753 // into NewAR if it will also add the runtime overflow checks specified in 4754 // Predicates. 4755 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4756 4757 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4758 std::make_pair(NewAR, Predicates); 4759 // Remember the result of the analysis for this SCEV at this locayyytion. 4760 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4761 return PredRewrite; 4762 } 4763 4764 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4765 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4766 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4767 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4768 if (!L) 4769 return None; 4770 4771 // Check to see if we already analyzed this PHI. 4772 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4773 if (I != PredicatedSCEVRewrites.end()) { 4774 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4775 I->second; 4776 // Analysis was done before and failed to create an AddRec: 4777 if (Rewrite.first == SymbolicPHI) 4778 return None; 4779 // Analysis was done before and succeeded to create an AddRec under 4780 // a predicate: 4781 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4782 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4783 return Rewrite; 4784 } 4785 4786 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4787 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4788 4789 // Record in the cache that the analysis failed 4790 if (!Rewrite) { 4791 SmallVector<const SCEVPredicate *, 3> Predicates; 4792 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4793 return None; 4794 } 4795 4796 return Rewrite; 4797 } 4798 4799 // FIXME: This utility is currently required because the Rewriter currently 4800 // does not rewrite this expression: 4801 // {0, +, (sext ix (trunc iy to ix) to iy)} 4802 // into {0, +, %step}, 4803 // even when the following Equal predicate exists: 4804 // "%step == (sext ix (trunc iy to ix) to iy)". 4805 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4806 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4807 if (AR1 == AR2) 4808 return true; 4809 4810 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4811 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4812 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4813 return false; 4814 return true; 4815 }; 4816 4817 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4818 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4819 return false; 4820 return true; 4821 } 4822 4823 /// A helper function for createAddRecFromPHI to handle simple cases. 4824 /// 4825 /// This function tries to find an AddRec expression for the simplest (yet most 4826 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4827 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4828 /// technique for finding the AddRec expression. 4829 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4830 Value *BEValueV, 4831 Value *StartValueV) { 4832 const Loop *L = LI.getLoopFor(PN->getParent()); 4833 assert(L && L->getHeader() == PN->getParent()); 4834 assert(BEValueV && StartValueV); 4835 4836 auto BO = MatchBinaryOp(BEValueV, DT); 4837 if (!BO) 4838 return nullptr; 4839 4840 if (BO->Opcode != Instruction::Add) 4841 return nullptr; 4842 4843 const SCEV *Accum = nullptr; 4844 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4845 Accum = getSCEV(BO->RHS); 4846 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4847 Accum = getSCEV(BO->LHS); 4848 4849 if (!Accum) 4850 return nullptr; 4851 4852 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4853 if (BO->IsNUW) 4854 Flags = setFlags(Flags, SCEV::FlagNUW); 4855 if (BO->IsNSW) 4856 Flags = setFlags(Flags, SCEV::FlagNSW); 4857 4858 const SCEV *StartVal = getSCEV(StartValueV); 4859 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4860 4861 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4862 4863 // We can add Flags to the post-inc expression only if we 4864 // know that it is *undefined behavior* for BEValueV to 4865 // overflow. 4866 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4867 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4868 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4869 4870 return PHISCEV; 4871 } 4872 4873 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4874 const Loop *L = LI.getLoopFor(PN->getParent()); 4875 if (!L || L->getHeader() != PN->getParent()) 4876 return nullptr; 4877 4878 // The loop may have multiple entrances or multiple exits; we can analyze 4879 // this phi as an addrec if it has a unique entry value and a unique 4880 // backedge value. 4881 Value *BEValueV = nullptr, *StartValueV = nullptr; 4882 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4883 Value *V = PN->getIncomingValue(i); 4884 if (L->contains(PN->getIncomingBlock(i))) { 4885 if (!BEValueV) { 4886 BEValueV = V; 4887 } else if (BEValueV != V) { 4888 BEValueV = nullptr; 4889 break; 4890 } 4891 } else if (!StartValueV) { 4892 StartValueV = V; 4893 } else if (StartValueV != V) { 4894 StartValueV = nullptr; 4895 break; 4896 } 4897 } 4898 if (!BEValueV || !StartValueV) 4899 return nullptr; 4900 4901 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4902 "PHI node already processed?"); 4903 4904 // First, try to find AddRec expression without creating a fictituos symbolic 4905 // value for PN. 4906 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4907 return S; 4908 4909 // Handle PHI node value symbolically. 4910 const SCEV *SymbolicName = getUnknown(PN); 4911 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4912 4913 // Using this symbolic name for the PHI, analyze the value coming around 4914 // the back-edge. 4915 const SCEV *BEValue = getSCEV(BEValueV); 4916 4917 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4918 // has a special value for the first iteration of the loop. 4919 4920 // If the value coming around the backedge is an add with the symbolic 4921 // value we just inserted, then we found a simple induction variable! 4922 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4923 // If there is a single occurrence of the symbolic value, replace it 4924 // with a recurrence. 4925 unsigned FoundIndex = Add->getNumOperands(); 4926 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4927 if (Add->getOperand(i) == SymbolicName) 4928 if (FoundIndex == e) { 4929 FoundIndex = i; 4930 break; 4931 } 4932 4933 if (FoundIndex != Add->getNumOperands()) { 4934 // Create an add with everything but the specified operand. 4935 SmallVector<const SCEV *, 8> Ops; 4936 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4937 if (i != FoundIndex) 4938 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4939 L, *this)); 4940 const SCEV *Accum = getAddExpr(Ops); 4941 4942 // This is not a valid addrec if the step amount is varying each 4943 // loop iteration, but is not itself an addrec in this loop. 4944 if (isLoopInvariant(Accum, L) || 4945 (isa<SCEVAddRecExpr>(Accum) && 4946 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4947 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4948 4949 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4950 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4951 if (BO->IsNUW) 4952 Flags = setFlags(Flags, SCEV::FlagNUW); 4953 if (BO->IsNSW) 4954 Flags = setFlags(Flags, SCEV::FlagNSW); 4955 } 4956 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4957 // If the increment is an inbounds GEP, then we know the address 4958 // space cannot be wrapped around. We cannot make any guarantee 4959 // about signed or unsigned overflow because pointers are 4960 // unsigned but we may have a negative index from the base 4961 // pointer. We can guarantee that no unsigned wrap occurs if the 4962 // indices form a positive value. 4963 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4964 Flags = setFlags(Flags, SCEV::FlagNW); 4965 4966 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4967 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4968 Flags = setFlags(Flags, SCEV::FlagNUW); 4969 } 4970 4971 // We cannot transfer nuw and nsw flags from subtraction 4972 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4973 // for instance. 4974 } 4975 4976 const SCEV *StartVal = getSCEV(StartValueV); 4977 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4978 4979 // Okay, for the entire analysis of this edge we assumed the PHI 4980 // to be symbolic. We now need to go back and purge all of the 4981 // entries for the scalars that use the symbolic expression. 4982 forgetSymbolicName(PN, SymbolicName); 4983 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4984 4985 // We can add Flags to the post-inc expression only if we 4986 // know that it is *undefined behavior* for BEValueV to 4987 // overflow. 4988 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4989 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4990 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4991 4992 return PHISCEV; 4993 } 4994 } 4995 } else { 4996 // Otherwise, this could be a loop like this: 4997 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4998 // In this case, j = {1,+,1} and BEValue is j. 4999 // Because the other in-value of i (0) fits the evolution of BEValue 5000 // i really is an addrec evolution. 5001 // 5002 // We can generalize this saying that i is the shifted value of BEValue 5003 // by one iteration: 5004 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5005 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5006 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5007 if (Shifted != getCouldNotCompute() && 5008 Start != getCouldNotCompute()) { 5009 const SCEV *StartVal = getSCEV(StartValueV); 5010 if (Start == StartVal) { 5011 // Okay, for the entire analysis of this edge we assumed the PHI 5012 // to be symbolic. We now need to go back and purge all of the 5013 // entries for the scalars that use the symbolic expression. 5014 forgetSymbolicName(PN, SymbolicName); 5015 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5016 return Shifted; 5017 } 5018 } 5019 } 5020 5021 // Remove the temporary PHI node SCEV that has been inserted while intending 5022 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5023 // as it will prevent later (possibly simpler) SCEV expressions to be added 5024 // to the ValueExprMap. 5025 eraseValueFromMap(PN); 5026 5027 return nullptr; 5028 } 5029 5030 // Checks if the SCEV S is available at BB. S is considered available at BB 5031 // if S can be materialized at BB without introducing a fault. 5032 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5033 BasicBlock *BB) { 5034 struct CheckAvailable { 5035 bool TraversalDone = false; 5036 bool Available = true; 5037 5038 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5039 BasicBlock *BB = nullptr; 5040 DominatorTree &DT; 5041 5042 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5043 : L(L), BB(BB), DT(DT) {} 5044 5045 bool setUnavailable() { 5046 TraversalDone = true; 5047 Available = false; 5048 return false; 5049 } 5050 5051 bool follow(const SCEV *S) { 5052 switch (S->getSCEVType()) { 5053 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5054 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5055 // These expressions are available if their operand(s) is/are. 5056 return true; 5057 5058 case scAddRecExpr: { 5059 // We allow add recurrences that are on the loop BB is in, or some 5060 // outer loop. This guarantees availability because the value of the 5061 // add recurrence at BB is simply the "current" value of the induction 5062 // variable. We can relax this in the future; for instance an add 5063 // recurrence on a sibling dominating loop is also available at BB. 5064 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5065 if (L && (ARLoop == L || ARLoop->contains(L))) 5066 return true; 5067 5068 return setUnavailable(); 5069 } 5070 5071 case scUnknown: { 5072 // For SCEVUnknown, we check for simple dominance. 5073 const auto *SU = cast<SCEVUnknown>(S); 5074 Value *V = SU->getValue(); 5075 5076 if (isa<Argument>(V)) 5077 return false; 5078 5079 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5080 return false; 5081 5082 return setUnavailable(); 5083 } 5084 5085 case scUDivExpr: 5086 case scCouldNotCompute: 5087 // We do not try to smart about these at all. 5088 return setUnavailable(); 5089 } 5090 llvm_unreachable("switch should be fully covered!"); 5091 } 5092 5093 bool isDone() { return TraversalDone; } 5094 }; 5095 5096 CheckAvailable CA(L, BB, DT); 5097 SCEVTraversal<CheckAvailable> ST(CA); 5098 5099 ST.visitAll(S); 5100 return CA.Available; 5101 } 5102 5103 // Try to match a control flow sequence that branches out at BI and merges back 5104 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5105 // match. 5106 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5107 Value *&C, Value *&LHS, Value *&RHS) { 5108 C = BI->getCondition(); 5109 5110 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5111 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5112 5113 if (!LeftEdge.isSingleEdge()) 5114 return false; 5115 5116 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5117 5118 Use &LeftUse = Merge->getOperandUse(0); 5119 Use &RightUse = Merge->getOperandUse(1); 5120 5121 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5122 LHS = LeftUse; 5123 RHS = RightUse; 5124 return true; 5125 } 5126 5127 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5128 LHS = RightUse; 5129 RHS = LeftUse; 5130 return true; 5131 } 5132 5133 return false; 5134 } 5135 5136 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5137 auto IsReachable = 5138 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5139 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5140 const Loop *L = LI.getLoopFor(PN->getParent()); 5141 5142 // We don't want to break LCSSA, even in a SCEV expression tree. 5143 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5144 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5145 return nullptr; 5146 5147 // Try to match 5148 // 5149 // br %cond, label %left, label %right 5150 // left: 5151 // br label %merge 5152 // right: 5153 // br label %merge 5154 // merge: 5155 // V = phi [ %x, %left ], [ %y, %right ] 5156 // 5157 // as "select %cond, %x, %y" 5158 5159 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5160 assert(IDom && "At least the entry block should dominate PN"); 5161 5162 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5163 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5164 5165 if (BI && BI->isConditional() && 5166 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5167 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5168 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5169 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5170 } 5171 5172 return nullptr; 5173 } 5174 5175 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5176 if (const SCEV *S = createAddRecFromPHI(PN)) 5177 return S; 5178 5179 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5180 return S; 5181 5182 // If the PHI has a single incoming value, follow that value, unless the 5183 // PHI's incoming blocks are in a different loop, in which case doing so 5184 // risks breaking LCSSA form. Instcombine would normally zap these, but 5185 // it doesn't have DominatorTree information, so it may miss cases. 5186 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5187 if (LI.replacementPreservesLCSSAForm(PN, V)) 5188 return getSCEV(V); 5189 5190 // If it's not a loop phi, we can't handle it yet. 5191 return getUnknown(PN); 5192 } 5193 5194 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5195 Value *Cond, 5196 Value *TrueVal, 5197 Value *FalseVal) { 5198 // Handle "constant" branch or select. This can occur for instance when a 5199 // loop pass transforms an inner loop and moves on to process the outer loop. 5200 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5201 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5202 5203 // Try to match some simple smax or umax patterns. 5204 auto *ICI = dyn_cast<ICmpInst>(Cond); 5205 if (!ICI) 5206 return getUnknown(I); 5207 5208 Value *LHS = ICI->getOperand(0); 5209 Value *RHS = ICI->getOperand(1); 5210 5211 switch (ICI->getPredicate()) { 5212 case ICmpInst::ICMP_SLT: 5213 case ICmpInst::ICMP_SLE: 5214 std::swap(LHS, RHS); 5215 LLVM_FALLTHROUGH; 5216 case ICmpInst::ICMP_SGT: 5217 case ICmpInst::ICMP_SGE: 5218 // a >s b ? a+x : b+x -> smax(a, b)+x 5219 // a >s b ? b+x : a+x -> smin(a, b)+x 5220 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5221 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5222 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5223 const SCEV *LA = getSCEV(TrueVal); 5224 const SCEV *RA = getSCEV(FalseVal); 5225 const SCEV *LDiff = getMinusSCEV(LA, LS); 5226 const SCEV *RDiff = getMinusSCEV(RA, RS); 5227 if (LDiff == RDiff) 5228 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5229 LDiff = getMinusSCEV(LA, RS); 5230 RDiff = getMinusSCEV(RA, LS); 5231 if (LDiff == RDiff) 5232 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5233 } 5234 break; 5235 case ICmpInst::ICMP_ULT: 5236 case ICmpInst::ICMP_ULE: 5237 std::swap(LHS, RHS); 5238 LLVM_FALLTHROUGH; 5239 case ICmpInst::ICMP_UGT: 5240 case ICmpInst::ICMP_UGE: 5241 // a >u b ? a+x : b+x -> umax(a, b)+x 5242 // a >u b ? b+x : a+x -> umin(a, b)+x 5243 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5244 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5245 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5246 const SCEV *LA = getSCEV(TrueVal); 5247 const SCEV *RA = getSCEV(FalseVal); 5248 const SCEV *LDiff = getMinusSCEV(LA, LS); 5249 const SCEV *RDiff = getMinusSCEV(RA, RS); 5250 if (LDiff == RDiff) 5251 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5252 LDiff = getMinusSCEV(LA, RS); 5253 RDiff = getMinusSCEV(RA, LS); 5254 if (LDiff == RDiff) 5255 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5256 } 5257 break; 5258 case ICmpInst::ICMP_NE: 5259 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5260 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5261 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5262 const SCEV *One = getOne(I->getType()); 5263 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5264 const SCEV *LA = getSCEV(TrueVal); 5265 const SCEV *RA = getSCEV(FalseVal); 5266 const SCEV *LDiff = getMinusSCEV(LA, LS); 5267 const SCEV *RDiff = getMinusSCEV(RA, One); 5268 if (LDiff == RDiff) 5269 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5270 } 5271 break; 5272 case ICmpInst::ICMP_EQ: 5273 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5274 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5275 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5276 const SCEV *One = getOne(I->getType()); 5277 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5278 const SCEV *LA = getSCEV(TrueVal); 5279 const SCEV *RA = getSCEV(FalseVal); 5280 const SCEV *LDiff = getMinusSCEV(LA, One); 5281 const SCEV *RDiff = getMinusSCEV(RA, LS); 5282 if (LDiff == RDiff) 5283 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5284 } 5285 break; 5286 default: 5287 break; 5288 } 5289 5290 return getUnknown(I); 5291 } 5292 5293 /// Expand GEP instructions into add and multiply operations. This allows them 5294 /// to be analyzed by regular SCEV code. 5295 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5296 // Don't attempt to analyze GEPs over unsized objects. 5297 if (!GEP->getSourceElementType()->isSized()) 5298 return getUnknown(GEP); 5299 5300 SmallVector<const SCEV *, 4> IndexExprs; 5301 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5302 IndexExprs.push_back(getSCEV(*Index)); 5303 return getGEPExpr(GEP, IndexExprs); 5304 } 5305 5306 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5307 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5308 return C->getAPInt().countTrailingZeros(); 5309 5310 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5311 return std::min(GetMinTrailingZeros(T->getOperand()), 5312 (uint32_t)getTypeSizeInBits(T->getType())); 5313 5314 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5315 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5316 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5317 ? getTypeSizeInBits(E->getType()) 5318 : OpRes; 5319 } 5320 5321 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5322 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5323 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5324 ? getTypeSizeInBits(E->getType()) 5325 : OpRes; 5326 } 5327 5328 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5329 // The result is the min of all operands results. 5330 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5331 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5332 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5333 return MinOpRes; 5334 } 5335 5336 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5337 // The result is the sum of all operands results. 5338 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5339 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5340 for (unsigned i = 1, e = M->getNumOperands(); 5341 SumOpRes != BitWidth && i != e; ++i) 5342 SumOpRes = 5343 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5344 return SumOpRes; 5345 } 5346 5347 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5348 // The result is the min of all operands results. 5349 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5350 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5351 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5352 return MinOpRes; 5353 } 5354 5355 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5356 // The result is the min of all operands results. 5357 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5358 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5359 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5360 return MinOpRes; 5361 } 5362 5363 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5364 // The result is the min of all operands results. 5365 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5366 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5367 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5368 return MinOpRes; 5369 } 5370 5371 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5372 // For a SCEVUnknown, ask ValueTracking. 5373 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5374 return Known.countMinTrailingZeros(); 5375 } 5376 5377 // SCEVUDivExpr 5378 return 0; 5379 } 5380 5381 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5382 auto I = MinTrailingZerosCache.find(S); 5383 if (I != MinTrailingZerosCache.end()) 5384 return I->second; 5385 5386 uint32_t Result = GetMinTrailingZerosImpl(S); 5387 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5388 assert(InsertPair.second && "Should insert a new key"); 5389 return InsertPair.first->second; 5390 } 5391 5392 /// Helper method to assign a range to V from metadata present in the IR. 5393 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5394 if (Instruction *I = dyn_cast<Instruction>(V)) 5395 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5396 return getConstantRangeFromMetadata(*MD); 5397 5398 return None; 5399 } 5400 5401 /// Determine the range for a particular SCEV. If SignHint is 5402 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5403 /// with a "cleaner" unsigned (resp. signed) representation. 5404 const ConstantRange & 5405 ScalarEvolution::getRangeRef(const SCEV *S, 5406 ScalarEvolution::RangeSignHint SignHint) { 5407 DenseMap<const SCEV *, ConstantRange> &Cache = 5408 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5409 : SignedRanges; 5410 5411 // See if we've computed this range already. 5412 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5413 if (I != Cache.end()) 5414 return I->second; 5415 5416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5417 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5418 5419 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5420 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5421 5422 // If the value has known zeros, the maximum value will have those known zeros 5423 // as well. 5424 uint32_t TZ = GetMinTrailingZeros(S); 5425 if (TZ != 0) { 5426 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5427 ConservativeResult = 5428 ConstantRange(APInt::getMinValue(BitWidth), 5429 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5430 else 5431 ConservativeResult = ConstantRange( 5432 APInt::getSignedMinValue(BitWidth), 5433 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5434 } 5435 5436 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5437 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5438 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5439 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5440 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5441 } 5442 5443 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5444 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5445 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5446 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5447 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5448 } 5449 5450 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5451 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5452 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5453 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5454 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5455 } 5456 5457 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5458 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5459 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5460 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5461 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5462 } 5463 5464 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5465 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5466 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5467 return setRange(UDiv, SignHint, 5468 ConservativeResult.intersectWith(X.udiv(Y))); 5469 } 5470 5471 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5472 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5473 return setRange(ZExt, SignHint, 5474 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5475 } 5476 5477 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5478 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5479 return setRange(SExt, SignHint, 5480 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5481 } 5482 5483 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5484 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5485 return setRange(Trunc, SignHint, 5486 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5487 } 5488 5489 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5490 // If there's no unsigned wrap, the value will never be less than its 5491 // initial value. 5492 if (AddRec->hasNoUnsignedWrap()) 5493 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5494 if (!C->getValue()->isZero()) 5495 ConservativeResult = ConservativeResult.intersectWith( 5496 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5497 5498 // If there's no signed wrap, and all the operands have the same sign or 5499 // zero, the value won't ever change sign. 5500 if (AddRec->hasNoSignedWrap()) { 5501 bool AllNonNeg = true; 5502 bool AllNonPos = true; 5503 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5504 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5505 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5506 } 5507 if (AllNonNeg) 5508 ConservativeResult = ConservativeResult.intersectWith( 5509 ConstantRange(APInt(BitWidth, 0), 5510 APInt::getSignedMinValue(BitWidth))); 5511 else if (AllNonPos) 5512 ConservativeResult = ConservativeResult.intersectWith( 5513 ConstantRange(APInt::getSignedMinValue(BitWidth), 5514 APInt(BitWidth, 1))); 5515 } 5516 5517 // TODO: non-affine addrec 5518 if (AddRec->isAffine()) { 5519 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5520 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5521 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5522 auto RangeFromAffine = getRangeForAffineAR( 5523 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5524 BitWidth); 5525 if (!RangeFromAffine.isFullSet()) 5526 ConservativeResult = 5527 ConservativeResult.intersectWith(RangeFromAffine); 5528 5529 auto RangeFromFactoring = getRangeViaFactoring( 5530 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5531 BitWidth); 5532 if (!RangeFromFactoring.isFullSet()) 5533 ConservativeResult = 5534 ConservativeResult.intersectWith(RangeFromFactoring); 5535 } 5536 } 5537 5538 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5539 } 5540 5541 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5542 // Check if the IR explicitly contains !range metadata. 5543 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5544 if (MDRange.hasValue()) 5545 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5546 5547 // Split here to avoid paying the compile-time cost of calling both 5548 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5549 // if needed. 5550 const DataLayout &DL = getDataLayout(); 5551 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5552 // For a SCEVUnknown, ask ValueTracking. 5553 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5554 if (Known.One != ~Known.Zero + 1) 5555 ConservativeResult = 5556 ConservativeResult.intersectWith(ConstantRange(Known.One, 5557 ~Known.Zero + 1)); 5558 } else { 5559 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5560 "generalize as needed!"); 5561 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5562 if (NS > 1) 5563 ConservativeResult = ConservativeResult.intersectWith( 5564 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5565 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5566 } 5567 5568 // A range of Phi is a subset of union of all ranges of its input. 5569 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5570 // Make sure that we do not run over cycled Phis. 5571 if (PendingPhiRanges.insert(Phi).second) { 5572 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5573 for (auto &Op : Phi->operands()) { 5574 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5575 RangeFromOps = RangeFromOps.unionWith(OpRange); 5576 // No point to continue if we already have a full set. 5577 if (RangeFromOps.isFullSet()) 5578 break; 5579 } 5580 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); 5581 bool Erased = PendingPhiRanges.erase(Phi); 5582 assert(Erased && "Failed to erase Phi properly?"); 5583 (void) Erased; 5584 } 5585 } 5586 5587 return setRange(U, SignHint, std::move(ConservativeResult)); 5588 } 5589 5590 return setRange(S, SignHint, std::move(ConservativeResult)); 5591 } 5592 5593 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5594 // values that the expression can take. Initially, the expression has a value 5595 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5596 // argument defines if we treat Step as signed or unsigned. 5597 static ConstantRange getRangeForAffineARHelper(APInt Step, 5598 const ConstantRange &StartRange, 5599 const APInt &MaxBECount, 5600 unsigned BitWidth, bool Signed) { 5601 // If either Step or MaxBECount is 0, then the expression won't change, and we 5602 // just need to return the initial range. 5603 if (Step == 0 || MaxBECount == 0) 5604 return StartRange; 5605 5606 // If we don't know anything about the initial value (i.e. StartRange is 5607 // FullRange), then we don't know anything about the final range either. 5608 // Return FullRange. 5609 if (StartRange.isFullSet()) 5610 return ConstantRange(BitWidth, /* isFullSet = */ true); 5611 5612 // If Step is signed and negative, then we use its absolute value, but we also 5613 // note that we're moving in the opposite direction. 5614 bool Descending = Signed && Step.isNegative(); 5615 5616 if (Signed) 5617 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5618 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5619 // This equations hold true due to the well-defined wrap-around behavior of 5620 // APInt. 5621 Step = Step.abs(); 5622 5623 // Check if Offset is more than full span of BitWidth. If it is, the 5624 // expression is guaranteed to overflow. 5625 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5626 return ConstantRange(BitWidth, /* isFullSet = */ true); 5627 5628 // Offset is by how much the expression can change. Checks above guarantee no 5629 // overflow here. 5630 APInt Offset = Step * MaxBECount; 5631 5632 // Minimum value of the final range will match the minimal value of StartRange 5633 // if the expression is increasing and will be decreased by Offset otherwise. 5634 // Maximum value of the final range will match the maximal value of StartRange 5635 // if the expression is decreasing and will be increased by Offset otherwise. 5636 APInt StartLower = StartRange.getLower(); 5637 APInt StartUpper = StartRange.getUpper() - 1; 5638 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5639 : (StartUpper + std::move(Offset)); 5640 5641 // It's possible that the new minimum/maximum value will fall into the initial 5642 // range (due to wrap around). This means that the expression can take any 5643 // value in this bitwidth, and we have to return full range. 5644 if (StartRange.contains(MovedBoundary)) 5645 return ConstantRange(BitWidth, /* isFullSet = */ true); 5646 5647 APInt NewLower = 5648 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5649 APInt NewUpper = 5650 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5651 NewUpper += 1; 5652 5653 // If we end up with full range, return a proper full range. 5654 if (NewLower == NewUpper) 5655 return ConstantRange(BitWidth, /* isFullSet = */ true); 5656 5657 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5658 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5659 } 5660 5661 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5662 const SCEV *Step, 5663 const SCEV *MaxBECount, 5664 unsigned BitWidth) { 5665 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5666 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5667 "Precondition!"); 5668 5669 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5670 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5671 5672 // First, consider step signed. 5673 ConstantRange StartSRange = getSignedRange(Start); 5674 ConstantRange StepSRange = getSignedRange(Step); 5675 5676 // If Step can be both positive and negative, we need to find ranges for the 5677 // maximum absolute step values in both directions and union them. 5678 ConstantRange SR = 5679 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5680 MaxBECountValue, BitWidth, /* Signed = */ true); 5681 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5682 StartSRange, MaxBECountValue, 5683 BitWidth, /* Signed = */ true)); 5684 5685 // Next, consider step unsigned. 5686 ConstantRange UR = getRangeForAffineARHelper( 5687 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5688 MaxBECountValue, BitWidth, /* Signed = */ false); 5689 5690 // Finally, intersect signed and unsigned ranges. 5691 return SR.intersectWith(UR); 5692 } 5693 5694 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5695 const SCEV *Step, 5696 const SCEV *MaxBECount, 5697 unsigned BitWidth) { 5698 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5699 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5700 5701 struct SelectPattern { 5702 Value *Condition = nullptr; 5703 APInt TrueValue; 5704 APInt FalseValue; 5705 5706 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5707 const SCEV *S) { 5708 Optional<unsigned> CastOp; 5709 APInt Offset(BitWidth, 0); 5710 5711 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5712 "Should be!"); 5713 5714 // Peel off a constant offset: 5715 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5716 // In the future we could consider being smarter here and handle 5717 // {Start+Step,+,Step} too. 5718 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5719 return; 5720 5721 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5722 S = SA->getOperand(1); 5723 } 5724 5725 // Peel off a cast operation 5726 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5727 CastOp = SCast->getSCEVType(); 5728 S = SCast->getOperand(); 5729 } 5730 5731 using namespace llvm::PatternMatch; 5732 5733 auto *SU = dyn_cast<SCEVUnknown>(S); 5734 const APInt *TrueVal, *FalseVal; 5735 if (!SU || 5736 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5737 m_APInt(FalseVal)))) { 5738 Condition = nullptr; 5739 return; 5740 } 5741 5742 TrueValue = *TrueVal; 5743 FalseValue = *FalseVal; 5744 5745 // Re-apply the cast we peeled off earlier 5746 if (CastOp.hasValue()) 5747 switch (*CastOp) { 5748 default: 5749 llvm_unreachable("Unknown SCEV cast type!"); 5750 5751 case scTruncate: 5752 TrueValue = TrueValue.trunc(BitWidth); 5753 FalseValue = FalseValue.trunc(BitWidth); 5754 break; 5755 case scZeroExtend: 5756 TrueValue = TrueValue.zext(BitWidth); 5757 FalseValue = FalseValue.zext(BitWidth); 5758 break; 5759 case scSignExtend: 5760 TrueValue = TrueValue.sext(BitWidth); 5761 FalseValue = FalseValue.sext(BitWidth); 5762 break; 5763 } 5764 5765 // Re-apply the constant offset we peeled off earlier 5766 TrueValue += Offset; 5767 FalseValue += Offset; 5768 } 5769 5770 bool isRecognized() { return Condition != nullptr; } 5771 }; 5772 5773 SelectPattern StartPattern(*this, BitWidth, Start); 5774 if (!StartPattern.isRecognized()) 5775 return ConstantRange(BitWidth, /* isFullSet = */ true); 5776 5777 SelectPattern StepPattern(*this, BitWidth, Step); 5778 if (!StepPattern.isRecognized()) 5779 return ConstantRange(BitWidth, /* isFullSet = */ true); 5780 5781 if (StartPattern.Condition != StepPattern.Condition) { 5782 // We don't handle this case today; but we could, by considering four 5783 // possibilities below instead of two. I'm not sure if there are cases where 5784 // that will help over what getRange already does, though. 5785 return ConstantRange(BitWidth, /* isFullSet = */ true); 5786 } 5787 5788 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5789 // construct arbitrary general SCEV expressions here. This function is called 5790 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5791 // say) can end up caching a suboptimal value. 5792 5793 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5794 // C2352 and C2512 (otherwise it isn't needed). 5795 5796 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5797 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5798 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5799 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5800 5801 ConstantRange TrueRange = 5802 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5803 ConstantRange FalseRange = 5804 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5805 5806 return TrueRange.unionWith(FalseRange); 5807 } 5808 5809 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5810 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5811 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5812 5813 // Return early if there are no flags to propagate to the SCEV. 5814 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5815 if (BinOp->hasNoUnsignedWrap()) 5816 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5817 if (BinOp->hasNoSignedWrap()) 5818 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5819 if (Flags == SCEV::FlagAnyWrap) 5820 return SCEV::FlagAnyWrap; 5821 5822 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5823 } 5824 5825 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5826 // Here we check that I is in the header of the innermost loop containing I, 5827 // since we only deal with instructions in the loop header. The actual loop we 5828 // need to check later will come from an add recurrence, but getting that 5829 // requires computing the SCEV of the operands, which can be expensive. This 5830 // check we can do cheaply to rule out some cases early. 5831 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5832 if (InnermostContainingLoop == nullptr || 5833 InnermostContainingLoop->getHeader() != I->getParent()) 5834 return false; 5835 5836 // Only proceed if we can prove that I does not yield poison. 5837 if (!programUndefinedIfFullPoison(I)) 5838 return false; 5839 5840 // At this point we know that if I is executed, then it does not wrap 5841 // according to at least one of NSW or NUW. If I is not executed, then we do 5842 // not know if the calculation that I represents would wrap. Multiple 5843 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5844 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5845 // derived from other instructions that map to the same SCEV. We cannot make 5846 // that guarantee for cases where I is not executed. So we need to find the 5847 // loop that I is considered in relation to and prove that I is executed for 5848 // every iteration of that loop. That implies that the value that I 5849 // calculates does not wrap anywhere in the loop, so then we can apply the 5850 // flags to the SCEV. 5851 // 5852 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5853 // from different loops, so that we know which loop to prove that I is 5854 // executed in. 5855 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5856 // I could be an extractvalue from a call to an overflow intrinsic. 5857 // TODO: We can do better here in some cases. 5858 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5859 return false; 5860 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5861 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5862 bool AllOtherOpsLoopInvariant = true; 5863 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5864 ++OtherOpIndex) { 5865 if (OtherOpIndex != OpIndex) { 5866 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5867 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5868 AllOtherOpsLoopInvariant = false; 5869 break; 5870 } 5871 } 5872 } 5873 if (AllOtherOpsLoopInvariant && 5874 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5875 return true; 5876 } 5877 } 5878 return false; 5879 } 5880 5881 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5882 // If we know that \c I can never be poison period, then that's enough. 5883 if (isSCEVExprNeverPoison(I)) 5884 return true; 5885 5886 // For an add recurrence specifically, we assume that infinite loops without 5887 // side effects are undefined behavior, and then reason as follows: 5888 // 5889 // If the add recurrence is poison in any iteration, it is poison on all 5890 // future iterations (since incrementing poison yields poison). If the result 5891 // of the add recurrence is fed into the loop latch condition and the loop 5892 // does not contain any throws or exiting blocks other than the latch, we now 5893 // have the ability to "choose" whether the backedge is taken or not (by 5894 // choosing a sufficiently evil value for the poison feeding into the branch) 5895 // for every iteration including and after the one in which \p I first became 5896 // poison. There are two possibilities (let's call the iteration in which \p 5897 // I first became poison as K): 5898 // 5899 // 1. In the set of iterations including and after K, the loop body executes 5900 // no side effects. In this case executing the backege an infinte number 5901 // of times will yield undefined behavior. 5902 // 5903 // 2. In the set of iterations including and after K, the loop body executes 5904 // at least one side effect. In this case, that specific instance of side 5905 // effect is control dependent on poison, which also yields undefined 5906 // behavior. 5907 5908 auto *ExitingBB = L->getExitingBlock(); 5909 auto *LatchBB = L->getLoopLatch(); 5910 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5911 return false; 5912 5913 SmallPtrSet<const Instruction *, 16> Pushed; 5914 SmallVector<const Instruction *, 8> PoisonStack; 5915 5916 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5917 // things that are known to be fully poison under that assumption go on the 5918 // PoisonStack. 5919 Pushed.insert(I); 5920 PoisonStack.push_back(I); 5921 5922 bool LatchControlDependentOnPoison = false; 5923 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5924 const Instruction *Poison = PoisonStack.pop_back_val(); 5925 5926 for (auto *PoisonUser : Poison->users()) { 5927 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5928 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5929 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5930 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5931 assert(BI->isConditional() && "Only possibility!"); 5932 if (BI->getParent() == LatchBB) { 5933 LatchControlDependentOnPoison = true; 5934 break; 5935 } 5936 } 5937 } 5938 } 5939 5940 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5941 } 5942 5943 ScalarEvolution::LoopProperties 5944 ScalarEvolution::getLoopProperties(const Loop *L) { 5945 using LoopProperties = ScalarEvolution::LoopProperties; 5946 5947 auto Itr = LoopPropertiesCache.find(L); 5948 if (Itr == LoopPropertiesCache.end()) { 5949 auto HasSideEffects = [](Instruction *I) { 5950 if (auto *SI = dyn_cast<StoreInst>(I)) 5951 return !SI->isSimple(); 5952 5953 return I->mayHaveSideEffects(); 5954 }; 5955 5956 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5957 /*HasNoSideEffects*/ true}; 5958 5959 for (auto *BB : L->getBlocks()) 5960 for (auto &I : *BB) { 5961 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5962 LP.HasNoAbnormalExits = false; 5963 if (HasSideEffects(&I)) 5964 LP.HasNoSideEffects = false; 5965 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5966 break; // We're already as pessimistic as we can get. 5967 } 5968 5969 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5970 assert(InsertPair.second && "We just checked!"); 5971 Itr = InsertPair.first; 5972 } 5973 5974 return Itr->second; 5975 } 5976 5977 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5978 if (!isSCEVable(V->getType())) 5979 return getUnknown(V); 5980 5981 if (Instruction *I = dyn_cast<Instruction>(V)) { 5982 // Don't attempt to analyze instructions in blocks that aren't 5983 // reachable. Such instructions don't matter, and they aren't required 5984 // to obey basic rules for definitions dominating uses which this 5985 // analysis depends on. 5986 if (!DT.isReachableFromEntry(I->getParent())) 5987 return getUnknown(V); 5988 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5989 return getConstant(CI); 5990 else if (isa<ConstantPointerNull>(V)) 5991 return getZero(V->getType()); 5992 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5993 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5994 else if (!isa<ConstantExpr>(V)) 5995 return getUnknown(V); 5996 5997 Operator *U = cast<Operator>(V); 5998 if (auto BO = MatchBinaryOp(U, DT)) { 5999 switch (BO->Opcode) { 6000 case Instruction::Add: { 6001 // The simple thing to do would be to just call getSCEV on both operands 6002 // and call getAddExpr with the result. However if we're looking at a 6003 // bunch of things all added together, this can be quite inefficient, 6004 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6005 // Instead, gather up all the operands and make a single getAddExpr call. 6006 // LLVM IR canonical form means we need only traverse the left operands. 6007 SmallVector<const SCEV *, 4> AddOps; 6008 do { 6009 if (BO->Op) { 6010 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6011 AddOps.push_back(OpSCEV); 6012 break; 6013 } 6014 6015 // If a NUW or NSW flag can be applied to the SCEV for this 6016 // addition, then compute the SCEV for this addition by itself 6017 // with a separate call to getAddExpr. We need to do that 6018 // instead of pushing the operands of the addition onto AddOps, 6019 // since the flags are only known to apply to this particular 6020 // addition - they may not apply to other additions that can be 6021 // formed with operands from AddOps. 6022 const SCEV *RHS = getSCEV(BO->RHS); 6023 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6024 if (Flags != SCEV::FlagAnyWrap) { 6025 const SCEV *LHS = getSCEV(BO->LHS); 6026 if (BO->Opcode == Instruction::Sub) 6027 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6028 else 6029 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6030 break; 6031 } 6032 } 6033 6034 if (BO->Opcode == Instruction::Sub) 6035 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6036 else 6037 AddOps.push_back(getSCEV(BO->RHS)); 6038 6039 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6040 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6041 NewBO->Opcode != Instruction::Sub)) { 6042 AddOps.push_back(getSCEV(BO->LHS)); 6043 break; 6044 } 6045 BO = NewBO; 6046 } while (true); 6047 6048 return getAddExpr(AddOps); 6049 } 6050 6051 case Instruction::Mul: { 6052 SmallVector<const SCEV *, 4> MulOps; 6053 do { 6054 if (BO->Op) { 6055 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6056 MulOps.push_back(OpSCEV); 6057 break; 6058 } 6059 6060 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6061 if (Flags != SCEV::FlagAnyWrap) { 6062 MulOps.push_back( 6063 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6064 break; 6065 } 6066 } 6067 6068 MulOps.push_back(getSCEV(BO->RHS)); 6069 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6070 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6071 MulOps.push_back(getSCEV(BO->LHS)); 6072 break; 6073 } 6074 BO = NewBO; 6075 } while (true); 6076 6077 return getMulExpr(MulOps); 6078 } 6079 case Instruction::UDiv: 6080 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6081 case Instruction::URem: 6082 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6083 case Instruction::Sub: { 6084 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6085 if (BO->Op) 6086 Flags = getNoWrapFlagsFromUB(BO->Op); 6087 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6088 } 6089 case Instruction::And: 6090 // For an expression like x&255 that merely masks off the high bits, 6091 // use zext(trunc(x)) as the SCEV expression. 6092 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6093 if (CI->isZero()) 6094 return getSCEV(BO->RHS); 6095 if (CI->isMinusOne()) 6096 return getSCEV(BO->LHS); 6097 const APInt &A = CI->getValue(); 6098 6099 // Instcombine's ShrinkDemandedConstant may strip bits out of 6100 // constants, obscuring what would otherwise be a low-bits mask. 6101 // Use computeKnownBits to compute what ShrinkDemandedConstant 6102 // knew about to reconstruct a low-bits mask value. 6103 unsigned LZ = A.countLeadingZeros(); 6104 unsigned TZ = A.countTrailingZeros(); 6105 unsigned BitWidth = A.getBitWidth(); 6106 KnownBits Known(BitWidth); 6107 computeKnownBits(BO->LHS, Known, getDataLayout(), 6108 0, &AC, nullptr, &DT); 6109 6110 APInt EffectiveMask = 6111 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6112 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6113 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6114 const SCEV *LHS = getSCEV(BO->LHS); 6115 const SCEV *ShiftedLHS = nullptr; 6116 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6117 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6118 // For an expression like (x * 8) & 8, simplify the multiply. 6119 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6120 unsigned GCD = std::min(MulZeros, TZ); 6121 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6122 SmallVector<const SCEV*, 4> MulOps; 6123 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6124 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6125 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6126 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6127 } 6128 } 6129 if (!ShiftedLHS) 6130 ShiftedLHS = getUDivExpr(LHS, MulCount); 6131 return getMulExpr( 6132 getZeroExtendExpr( 6133 getTruncateExpr(ShiftedLHS, 6134 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6135 BO->LHS->getType()), 6136 MulCount); 6137 } 6138 } 6139 break; 6140 6141 case Instruction::Or: 6142 // If the RHS of the Or is a constant, we may have something like: 6143 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6144 // optimizations will transparently handle this case. 6145 // 6146 // In order for this transformation to be safe, the LHS must be of the 6147 // form X*(2^n) and the Or constant must be less than 2^n. 6148 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6149 const SCEV *LHS = getSCEV(BO->LHS); 6150 const APInt &CIVal = CI->getValue(); 6151 if (GetMinTrailingZeros(LHS) >= 6152 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6153 // Build a plain add SCEV. 6154 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6155 // If the LHS of the add was an addrec and it has no-wrap flags, 6156 // transfer the no-wrap flags, since an or won't introduce a wrap. 6157 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6158 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6159 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6160 OldAR->getNoWrapFlags()); 6161 } 6162 return S; 6163 } 6164 } 6165 break; 6166 6167 case Instruction::Xor: 6168 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6169 // If the RHS of xor is -1, then this is a not operation. 6170 if (CI->isMinusOne()) 6171 return getNotSCEV(getSCEV(BO->LHS)); 6172 6173 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6174 // This is a variant of the check for xor with -1, and it handles 6175 // the case where instcombine has trimmed non-demanded bits out 6176 // of an xor with -1. 6177 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6178 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6179 if (LBO->getOpcode() == Instruction::And && 6180 LCI->getValue() == CI->getValue()) 6181 if (const SCEVZeroExtendExpr *Z = 6182 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6183 Type *UTy = BO->LHS->getType(); 6184 const SCEV *Z0 = Z->getOperand(); 6185 Type *Z0Ty = Z0->getType(); 6186 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6187 6188 // If C is a low-bits mask, the zero extend is serving to 6189 // mask off the high bits. Complement the operand and 6190 // re-apply the zext. 6191 if (CI->getValue().isMask(Z0TySize)) 6192 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6193 6194 // If C is a single bit, it may be in the sign-bit position 6195 // before the zero-extend. In this case, represent the xor 6196 // using an add, which is equivalent, and re-apply the zext. 6197 APInt Trunc = CI->getValue().trunc(Z0TySize); 6198 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6199 Trunc.isSignMask()) 6200 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6201 UTy); 6202 } 6203 } 6204 break; 6205 6206 case Instruction::Shl: 6207 // Turn shift left of a constant amount into a multiply. 6208 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6209 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6210 6211 // If the shift count is not less than the bitwidth, the result of 6212 // the shift is undefined. Don't try to analyze it, because the 6213 // resolution chosen here may differ from the resolution chosen in 6214 // other parts of the compiler. 6215 if (SA->getValue().uge(BitWidth)) 6216 break; 6217 6218 // It is currently not resolved how to interpret NSW for left 6219 // shift by BitWidth - 1, so we avoid applying flags in that 6220 // case. Remove this check (or this comment) once the situation 6221 // is resolved. See 6222 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6223 // and http://reviews.llvm.org/D8890 . 6224 auto Flags = SCEV::FlagAnyWrap; 6225 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6226 Flags = getNoWrapFlagsFromUB(BO->Op); 6227 6228 Constant *X = ConstantInt::get(getContext(), 6229 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6230 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6231 } 6232 break; 6233 6234 case Instruction::AShr: { 6235 // AShr X, C, where C is a constant. 6236 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6237 if (!CI) 6238 break; 6239 6240 Type *OuterTy = BO->LHS->getType(); 6241 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6242 // If the shift count is not less than the bitwidth, the result of 6243 // the shift is undefined. Don't try to analyze it, because the 6244 // resolution chosen here may differ from the resolution chosen in 6245 // other parts of the compiler. 6246 if (CI->getValue().uge(BitWidth)) 6247 break; 6248 6249 if (CI->isZero()) 6250 return getSCEV(BO->LHS); // shift by zero --> noop 6251 6252 uint64_t AShrAmt = CI->getZExtValue(); 6253 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6254 6255 Operator *L = dyn_cast<Operator>(BO->LHS); 6256 if (L && L->getOpcode() == Instruction::Shl) { 6257 // X = Shl A, n 6258 // Y = AShr X, m 6259 // Both n and m are constant. 6260 6261 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6262 if (L->getOperand(1) == BO->RHS) 6263 // For a two-shift sext-inreg, i.e. n = m, 6264 // use sext(trunc(x)) as the SCEV expression. 6265 return getSignExtendExpr( 6266 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6267 6268 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6269 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6270 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6271 if (ShlAmt > AShrAmt) { 6272 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6273 // expression. We already checked that ShlAmt < BitWidth, so 6274 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6275 // ShlAmt - AShrAmt < Amt. 6276 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6277 ShlAmt - AShrAmt); 6278 return getSignExtendExpr( 6279 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6280 getConstant(Mul)), OuterTy); 6281 } 6282 } 6283 } 6284 break; 6285 } 6286 } 6287 } 6288 6289 switch (U->getOpcode()) { 6290 case Instruction::Trunc: 6291 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6292 6293 case Instruction::ZExt: 6294 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6295 6296 case Instruction::SExt: 6297 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6298 // The NSW flag of a subtract does not always survive the conversion to 6299 // A + (-1)*B. By pushing sign extension onto its operands we are much 6300 // more likely to preserve NSW and allow later AddRec optimisations. 6301 // 6302 // NOTE: This is effectively duplicating this logic from getSignExtend: 6303 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6304 // but by that point the NSW information has potentially been lost. 6305 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6306 Type *Ty = U->getType(); 6307 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6308 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6309 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6310 } 6311 } 6312 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6313 6314 case Instruction::BitCast: 6315 // BitCasts are no-op casts so we just eliminate the cast. 6316 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6317 return getSCEV(U->getOperand(0)); 6318 break; 6319 6320 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6321 // lead to pointer expressions which cannot safely be expanded to GEPs, 6322 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6323 // simplifying integer expressions. 6324 6325 case Instruction::GetElementPtr: 6326 return createNodeForGEP(cast<GEPOperator>(U)); 6327 6328 case Instruction::PHI: 6329 return createNodeForPHI(cast<PHINode>(U)); 6330 6331 case Instruction::Select: 6332 // U can also be a select constant expr, which let fall through. Since 6333 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6334 // constant expressions cannot have instructions as operands, we'd have 6335 // returned getUnknown for a select constant expressions anyway. 6336 if (isa<Instruction>(U)) 6337 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6338 U->getOperand(1), U->getOperand(2)); 6339 break; 6340 6341 case Instruction::Call: 6342 case Instruction::Invoke: 6343 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6344 return getSCEV(RV); 6345 break; 6346 } 6347 6348 return getUnknown(V); 6349 } 6350 6351 //===----------------------------------------------------------------------===// 6352 // Iteration Count Computation Code 6353 // 6354 6355 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6356 if (!ExitCount) 6357 return 0; 6358 6359 ConstantInt *ExitConst = ExitCount->getValue(); 6360 6361 // Guard against huge trip counts. 6362 if (ExitConst->getValue().getActiveBits() > 32) 6363 return 0; 6364 6365 // In case of integer overflow, this returns 0, which is correct. 6366 return ((unsigned)ExitConst->getZExtValue()) + 1; 6367 } 6368 6369 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6370 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6371 return getSmallConstantTripCount(L, ExitingBB); 6372 6373 // No trip count information for multiple exits. 6374 return 0; 6375 } 6376 6377 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6378 BasicBlock *ExitingBlock) { 6379 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6380 assert(L->isLoopExiting(ExitingBlock) && 6381 "Exiting block must actually branch out of the loop!"); 6382 const SCEVConstant *ExitCount = 6383 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6384 return getConstantTripCount(ExitCount); 6385 } 6386 6387 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6388 const auto *MaxExitCount = 6389 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6390 return getConstantTripCount(MaxExitCount); 6391 } 6392 6393 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6394 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6395 return getSmallConstantTripMultiple(L, ExitingBB); 6396 6397 // No trip multiple information for multiple exits. 6398 return 0; 6399 } 6400 6401 /// Returns the largest constant divisor of the trip count of this loop as a 6402 /// normal unsigned value, if possible. This means that the actual trip count is 6403 /// always a multiple of the returned value (don't forget the trip count could 6404 /// very well be zero as well!). 6405 /// 6406 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6407 /// multiple of a constant (which is also the case if the trip count is simply 6408 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6409 /// if the trip count is very large (>= 2^32). 6410 /// 6411 /// As explained in the comments for getSmallConstantTripCount, this assumes 6412 /// that control exits the loop via ExitingBlock. 6413 unsigned 6414 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6415 BasicBlock *ExitingBlock) { 6416 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6417 assert(L->isLoopExiting(ExitingBlock) && 6418 "Exiting block must actually branch out of the loop!"); 6419 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6420 if (ExitCount == getCouldNotCompute()) 6421 return 1; 6422 6423 // Get the trip count from the BE count by adding 1. 6424 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6425 6426 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6427 if (!TC) 6428 // Attempt to factor more general cases. Returns the greatest power of 6429 // two divisor. If overflow happens, the trip count expression is still 6430 // divisible by the greatest power of 2 divisor returned. 6431 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6432 6433 ConstantInt *Result = TC->getValue(); 6434 6435 // Guard against huge trip counts (this requires checking 6436 // for zero to handle the case where the trip count == -1 and the 6437 // addition wraps). 6438 if (!Result || Result->getValue().getActiveBits() > 32 || 6439 Result->getValue().getActiveBits() == 0) 6440 return 1; 6441 6442 return (unsigned)Result->getZExtValue(); 6443 } 6444 6445 /// Get the expression for the number of loop iterations for which this loop is 6446 /// guaranteed not to exit via ExitingBlock. Otherwise return 6447 /// SCEVCouldNotCompute. 6448 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6449 BasicBlock *ExitingBlock) { 6450 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6451 } 6452 6453 const SCEV * 6454 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6455 SCEVUnionPredicate &Preds) { 6456 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6457 } 6458 6459 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6460 return getBackedgeTakenInfo(L).getExact(L, this); 6461 } 6462 6463 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6464 /// known never to be less than the actual backedge taken count. 6465 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6466 return getBackedgeTakenInfo(L).getMax(this); 6467 } 6468 6469 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6470 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6471 } 6472 6473 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6474 static void 6475 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6476 BasicBlock *Header = L->getHeader(); 6477 6478 // Push all Loop-header PHIs onto the Worklist stack. 6479 for (PHINode &PN : Header->phis()) 6480 Worklist.push_back(&PN); 6481 } 6482 6483 const ScalarEvolution::BackedgeTakenInfo & 6484 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6485 auto &BTI = getBackedgeTakenInfo(L); 6486 if (BTI.hasFullInfo()) 6487 return BTI; 6488 6489 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6490 6491 if (!Pair.second) 6492 return Pair.first->second; 6493 6494 BackedgeTakenInfo Result = 6495 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6496 6497 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6498 } 6499 6500 const ScalarEvolution::BackedgeTakenInfo & 6501 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6502 // Initially insert an invalid entry for this loop. If the insertion 6503 // succeeds, proceed to actually compute a backedge-taken count and 6504 // update the value. The temporary CouldNotCompute value tells SCEV 6505 // code elsewhere that it shouldn't attempt to request a new 6506 // backedge-taken count, which could result in infinite recursion. 6507 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6508 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6509 if (!Pair.second) 6510 return Pair.first->second; 6511 6512 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6513 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6514 // must be cleared in this scope. 6515 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6516 6517 // In product build, there are no usage of statistic. 6518 (void)NumTripCountsComputed; 6519 (void)NumTripCountsNotComputed; 6520 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6521 const SCEV *BEExact = Result.getExact(L, this); 6522 if (BEExact != getCouldNotCompute()) { 6523 assert(isLoopInvariant(BEExact, L) && 6524 isLoopInvariant(Result.getMax(this), L) && 6525 "Computed backedge-taken count isn't loop invariant for loop!"); 6526 ++NumTripCountsComputed; 6527 } 6528 else if (Result.getMax(this) == getCouldNotCompute() && 6529 isa<PHINode>(L->getHeader()->begin())) { 6530 // Only count loops that have phi nodes as not being computable. 6531 ++NumTripCountsNotComputed; 6532 } 6533 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6534 6535 // Now that we know more about the trip count for this loop, forget any 6536 // existing SCEV values for PHI nodes in this loop since they are only 6537 // conservative estimates made without the benefit of trip count 6538 // information. This is similar to the code in forgetLoop, except that 6539 // it handles SCEVUnknown PHI nodes specially. 6540 if (Result.hasAnyInfo()) { 6541 SmallVector<Instruction *, 16> Worklist; 6542 PushLoopPHIs(L, Worklist); 6543 6544 SmallPtrSet<Instruction *, 8> Discovered; 6545 while (!Worklist.empty()) { 6546 Instruction *I = Worklist.pop_back_val(); 6547 6548 ValueExprMapType::iterator It = 6549 ValueExprMap.find_as(static_cast<Value *>(I)); 6550 if (It != ValueExprMap.end()) { 6551 const SCEV *Old = It->second; 6552 6553 // SCEVUnknown for a PHI either means that it has an unrecognized 6554 // structure, or it's a PHI that's in the progress of being computed 6555 // by createNodeForPHI. In the former case, additional loop trip 6556 // count information isn't going to change anything. In the later 6557 // case, createNodeForPHI will perform the necessary updates on its 6558 // own when it gets to that point. 6559 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6560 eraseValueFromMap(It->first); 6561 forgetMemoizedResults(Old); 6562 } 6563 if (PHINode *PN = dyn_cast<PHINode>(I)) 6564 ConstantEvolutionLoopExitValue.erase(PN); 6565 } 6566 6567 // Since we don't need to invalidate anything for correctness and we're 6568 // only invalidating to make SCEV's results more precise, we get to stop 6569 // early to avoid invalidating too much. This is especially important in 6570 // cases like: 6571 // 6572 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6573 // loop0: 6574 // %pn0 = phi 6575 // ... 6576 // loop1: 6577 // %pn1 = phi 6578 // ... 6579 // 6580 // where both loop0 and loop1's backedge taken count uses the SCEV 6581 // expression for %v. If we don't have the early stop below then in cases 6582 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6583 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6584 // count for loop1, effectively nullifying SCEV's trip count cache. 6585 for (auto *U : I->users()) 6586 if (auto *I = dyn_cast<Instruction>(U)) { 6587 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6588 if (LoopForUser && L->contains(LoopForUser) && 6589 Discovered.insert(I).second) 6590 Worklist.push_back(I); 6591 } 6592 } 6593 } 6594 6595 // Re-lookup the insert position, since the call to 6596 // computeBackedgeTakenCount above could result in a 6597 // recusive call to getBackedgeTakenInfo (on a different 6598 // loop), which would invalidate the iterator computed 6599 // earlier. 6600 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6601 } 6602 6603 void ScalarEvolution::forgetLoop(const Loop *L) { 6604 // Drop any stored trip count value. 6605 auto RemoveLoopFromBackedgeMap = 6606 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6607 auto BTCPos = Map.find(L); 6608 if (BTCPos != Map.end()) { 6609 BTCPos->second.clear(); 6610 Map.erase(BTCPos); 6611 } 6612 }; 6613 6614 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6615 SmallVector<Instruction *, 32> Worklist; 6616 SmallPtrSet<Instruction *, 16> Visited; 6617 6618 // Iterate over all the loops and sub-loops to drop SCEV information. 6619 while (!LoopWorklist.empty()) { 6620 auto *CurrL = LoopWorklist.pop_back_val(); 6621 6622 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6623 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6624 6625 // Drop information about predicated SCEV rewrites for this loop. 6626 for (auto I = PredicatedSCEVRewrites.begin(); 6627 I != PredicatedSCEVRewrites.end();) { 6628 std::pair<const SCEV *, const Loop *> Entry = I->first; 6629 if (Entry.second == CurrL) 6630 PredicatedSCEVRewrites.erase(I++); 6631 else 6632 ++I; 6633 } 6634 6635 auto LoopUsersItr = LoopUsers.find(CurrL); 6636 if (LoopUsersItr != LoopUsers.end()) { 6637 for (auto *S : LoopUsersItr->second) 6638 forgetMemoizedResults(S); 6639 LoopUsers.erase(LoopUsersItr); 6640 } 6641 6642 // Drop information about expressions based on loop-header PHIs. 6643 PushLoopPHIs(CurrL, Worklist); 6644 6645 while (!Worklist.empty()) { 6646 Instruction *I = Worklist.pop_back_val(); 6647 if (!Visited.insert(I).second) 6648 continue; 6649 6650 ValueExprMapType::iterator It = 6651 ValueExprMap.find_as(static_cast<Value *>(I)); 6652 if (It != ValueExprMap.end()) { 6653 eraseValueFromMap(It->first); 6654 forgetMemoizedResults(It->second); 6655 if (PHINode *PN = dyn_cast<PHINode>(I)) 6656 ConstantEvolutionLoopExitValue.erase(PN); 6657 } 6658 6659 PushDefUseChildren(I, Worklist); 6660 } 6661 6662 LoopPropertiesCache.erase(CurrL); 6663 // Forget all contained loops too, to avoid dangling entries in the 6664 // ValuesAtScopes map. 6665 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6666 } 6667 } 6668 6669 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6670 while (Loop *Parent = L->getParentLoop()) 6671 L = Parent; 6672 forgetLoop(L); 6673 } 6674 6675 void ScalarEvolution::forgetValue(Value *V) { 6676 Instruction *I = dyn_cast<Instruction>(V); 6677 if (!I) return; 6678 6679 // Drop information about expressions based on loop-header PHIs. 6680 SmallVector<Instruction *, 16> Worklist; 6681 Worklist.push_back(I); 6682 6683 SmallPtrSet<Instruction *, 8> Visited; 6684 while (!Worklist.empty()) { 6685 I = Worklist.pop_back_val(); 6686 if (!Visited.insert(I).second) 6687 continue; 6688 6689 ValueExprMapType::iterator It = 6690 ValueExprMap.find_as(static_cast<Value *>(I)); 6691 if (It != ValueExprMap.end()) { 6692 eraseValueFromMap(It->first); 6693 forgetMemoizedResults(It->second); 6694 if (PHINode *PN = dyn_cast<PHINode>(I)) 6695 ConstantEvolutionLoopExitValue.erase(PN); 6696 } 6697 6698 PushDefUseChildren(I, Worklist); 6699 } 6700 } 6701 6702 /// Get the exact loop backedge taken count considering all loop exits. A 6703 /// computable result can only be returned for loops with all exiting blocks 6704 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6705 /// is never skipped. This is a valid assumption as long as the loop exits via 6706 /// that test. For precise results, it is the caller's responsibility to specify 6707 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6708 const SCEV * 6709 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6710 SCEVUnionPredicate *Preds) const { 6711 // If any exits were not computable, the loop is not computable. 6712 if (!isComplete() || ExitNotTaken.empty()) 6713 return SE->getCouldNotCompute(); 6714 6715 const BasicBlock *Latch = L->getLoopLatch(); 6716 // All exiting blocks we have collected must dominate the only backedge. 6717 if (!Latch) 6718 return SE->getCouldNotCompute(); 6719 6720 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6721 // count is simply a minimum out of all these calculated exit counts. 6722 SmallVector<const SCEV *, 2> Ops; 6723 for (auto &ENT : ExitNotTaken) { 6724 const SCEV *BECount = ENT.ExactNotTaken; 6725 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6726 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6727 "We should only have known counts for exiting blocks that dominate " 6728 "latch!"); 6729 6730 Ops.push_back(BECount); 6731 6732 if (Preds && !ENT.hasAlwaysTruePredicate()) 6733 Preds->add(ENT.Predicate.get()); 6734 6735 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6736 "Predicate should be always true!"); 6737 } 6738 6739 return SE->getUMinFromMismatchedTypes(Ops); 6740 } 6741 6742 /// Get the exact not taken count for this loop exit. 6743 const SCEV * 6744 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6745 ScalarEvolution *SE) const { 6746 for (auto &ENT : ExitNotTaken) 6747 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6748 return ENT.ExactNotTaken; 6749 6750 return SE->getCouldNotCompute(); 6751 } 6752 6753 /// getMax - Get the max backedge taken count for the loop. 6754 const SCEV * 6755 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6756 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6757 return !ENT.hasAlwaysTruePredicate(); 6758 }; 6759 6760 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6761 return SE->getCouldNotCompute(); 6762 6763 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6764 "No point in having a non-constant max backedge taken count!"); 6765 return getMax(); 6766 } 6767 6768 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6769 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6770 return !ENT.hasAlwaysTruePredicate(); 6771 }; 6772 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6773 } 6774 6775 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6776 ScalarEvolution *SE) const { 6777 if (getMax() && getMax() != SE->getCouldNotCompute() && 6778 SE->hasOperand(getMax(), S)) 6779 return true; 6780 6781 for (auto &ENT : ExitNotTaken) 6782 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6783 SE->hasOperand(ENT.ExactNotTaken, S)) 6784 return true; 6785 6786 return false; 6787 } 6788 6789 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6790 : ExactNotTaken(E), MaxNotTaken(E) { 6791 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6792 isa<SCEVConstant>(MaxNotTaken)) && 6793 "No point in having a non-constant max backedge taken count!"); 6794 } 6795 6796 ScalarEvolution::ExitLimit::ExitLimit( 6797 const SCEV *E, const SCEV *M, bool MaxOrZero, 6798 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6799 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6800 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6801 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6802 "Exact is not allowed to be less precise than Max"); 6803 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6804 isa<SCEVConstant>(MaxNotTaken)) && 6805 "No point in having a non-constant max backedge taken count!"); 6806 for (auto *PredSet : PredSetList) 6807 for (auto *P : *PredSet) 6808 addPredicate(P); 6809 } 6810 6811 ScalarEvolution::ExitLimit::ExitLimit( 6812 const SCEV *E, const SCEV *M, bool MaxOrZero, 6813 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6814 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6815 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6816 isa<SCEVConstant>(MaxNotTaken)) && 6817 "No point in having a non-constant max backedge taken count!"); 6818 } 6819 6820 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6821 bool MaxOrZero) 6822 : ExitLimit(E, M, MaxOrZero, None) { 6823 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6824 isa<SCEVConstant>(MaxNotTaken)) && 6825 "No point in having a non-constant max backedge taken count!"); 6826 } 6827 6828 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6829 /// computable exit into a persistent ExitNotTakenInfo array. 6830 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6831 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6832 &&ExitCounts, 6833 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6834 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6835 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6836 6837 ExitNotTaken.reserve(ExitCounts.size()); 6838 std::transform( 6839 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6840 [&](const EdgeExitInfo &EEI) { 6841 BasicBlock *ExitBB = EEI.first; 6842 const ExitLimit &EL = EEI.second; 6843 if (EL.Predicates.empty()) 6844 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6845 6846 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6847 for (auto *Pred : EL.Predicates) 6848 Predicate->add(Pred); 6849 6850 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6851 }); 6852 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6853 "No point in having a non-constant max backedge taken count!"); 6854 } 6855 6856 /// Invalidate this result and free the ExitNotTakenInfo array. 6857 void ScalarEvolution::BackedgeTakenInfo::clear() { 6858 ExitNotTaken.clear(); 6859 } 6860 6861 /// Compute the number of times the backedge of the specified loop will execute. 6862 ScalarEvolution::BackedgeTakenInfo 6863 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6864 bool AllowPredicates) { 6865 SmallVector<BasicBlock *, 8> ExitingBlocks; 6866 L->getExitingBlocks(ExitingBlocks); 6867 6868 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6869 6870 SmallVector<EdgeExitInfo, 4> ExitCounts; 6871 bool CouldComputeBECount = true; 6872 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6873 const SCEV *MustExitMaxBECount = nullptr; 6874 const SCEV *MayExitMaxBECount = nullptr; 6875 bool MustExitMaxOrZero = false; 6876 6877 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6878 // and compute maxBECount. 6879 // Do a union of all the predicates here. 6880 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6881 BasicBlock *ExitBB = ExitingBlocks[i]; 6882 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6883 6884 assert((AllowPredicates || EL.Predicates.empty()) && 6885 "Predicated exit limit when predicates are not allowed!"); 6886 6887 // 1. For each exit that can be computed, add an entry to ExitCounts. 6888 // CouldComputeBECount is true only if all exits can be computed. 6889 if (EL.ExactNotTaken == getCouldNotCompute()) 6890 // We couldn't compute an exact value for this exit, so 6891 // we won't be able to compute an exact value for the loop. 6892 CouldComputeBECount = false; 6893 else 6894 ExitCounts.emplace_back(ExitBB, EL); 6895 6896 // 2. Derive the loop's MaxBECount from each exit's max number of 6897 // non-exiting iterations. Partition the loop exits into two kinds: 6898 // LoopMustExits and LoopMayExits. 6899 // 6900 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6901 // is a LoopMayExit. If any computable LoopMustExit is found, then 6902 // MaxBECount is the minimum EL.MaxNotTaken of computable 6903 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6904 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6905 // computable EL.MaxNotTaken. 6906 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6907 DT.dominates(ExitBB, Latch)) { 6908 if (!MustExitMaxBECount) { 6909 MustExitMaxBECount = EL.MaxNotTaken; 6910 MustExitMaxOrZero = EL.MaxOrZero; 6911 } else { 6912 MustExitMaxBECount = 6913 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6914 } 6915 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6916 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6917 MayExitMaxBECount = EL.MaxNotTaken; 6918 else { 6919 MayExitMaxBECount = 6920 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6921 } 6922 } 6923 } 6924 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6925 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6926 // The loop backedge will be taken the maximum or zero times if there's 6927 // a single exit that must be taken the maximum or zero times. 6928 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6929 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6930 MaxBECount, MaxOrZero); 6931 } 6932 6933 ScalarEvolution::ExitLimit 6934 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6935 bool AllowPredicates) { 6936 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 6937 // If our exiting block does not dominate the latch, then its connection with 6938 // loop's exit limit may be far from trivial. 6939 const BasicBlock *Latch = L->getLoopLatch(); 6940 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 6941 return getCouldNotCompute(); 6942 6943 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6944 TerminatorInst *Term = ExitingBlock->getTerminator(); 6945 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6946 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6947 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6948 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 6949 "It should have one successor in loop and one exit block!"); 6950 // Proceed to the next level to examine the exit condition expression. 6951 return computeExitLimitFromCond( 6952 L, BI->getCondition(), ExitIfTrue, 6953 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6954 } 6955 6956 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 6957 // For switch, make sure that there is a single exit from the loop. 6958 BasicBlock *Exit = nullptr; 6959 for (auto *SBB : successors(ExitingBlock)) 6960 if (!L->contains(SBB)) { 6961 if (Exit) // Multiple exit successors. 6962 return getCouldNotCompute(); 6963 Exit = SBB; 6964 } 6965 assert(Exit && "Exiting block must have at least one exit"); 6966 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 6967 /*ControlsExit=*/IsOnlyExit); 6968 } 6969 6970 return getCouldNotCompute(); 6971 } 6972 6973 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 6974 const Loop *L, Value *ExitCond, bool ExitIfTrue, 6975 bool ControlsExit, bool AllowPredicates) { 6976 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 6977 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 6978 ControlsExit, AllowPredicates); 6979 } 6980 6981 Optional<ScalarEvolution::ExitLimit> 6982 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 6983 bool ExitIfTrue, bool ControlsExit, 6984 bool AllowPredicates) { 6985 (void)this->L; 6986 (void)this->ExitIfTrue; 6987 (void)this->AllowPredicates; 6988 6989 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 6990 this->AllowPredicates == AllowPredicates && 6991 "Variance in assumed invariant key components!"); 6992 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 6993 if (Itr == TripCountMap.end()) 6994 return None; 6995 return Itr->second; 6996 } 6997 6998 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 6999 bool ExitIfTrue, 7000 bool ControlsExit, 7001 bool AllowPredicates, 7002 const ExitLimit &EL) { 7003 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7004 this->AllowPredicates == AllowPredicates && 7005 "Variance in assumed invariant key components!"); 7006 7007 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7008 assert(InsertResult.second && "Expected successful insertion!"); 7009 (void)InsertResult; 7010 (void)ExitIfTrue; 7011 } 7012 7013 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7014 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7015 bool ControlsExit, bool AllowPredicates) { 7016 7017 if (auto MaybeEL = 7018 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7019 return *MaybeEL; 7020 7021 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7022 ControlsExit, AllowPredicates); 7023 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7024 return EL; 7025 } 7026 7027 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7028 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7029 bool ControlsExit, bool AllowPredicates) { 7030 // Check if the controlling expression for this loop is an And or Or. 7031 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7032 if (BO->getOpcode() == Instruction::And) { 7033 // Recurse on the operands of the and. 7034 bool EitherMayExit = !ExitIfTrue; 7035 ExitLimit EL0 = computeExitLimitFromCondCached( 7036 Cache, L, BO->getOperand(0), ExitIfTrue, 7037 ControlsExit && !EitherMayExit, AllowPredicates); 7038 ExitLimit EL1 = computeExitLimitFromCondCached( 7039 Cache, L, BO->getOperand(1), ExitIfTrue, 7040 ControlsExit && !EitherMayExit, AllowPredicates); 7041 const SCEV *BECount = getCouldNotCompute(); 7042 const SCEV *MaxBECount = getCouldNotCompute(); 7043 if (EitherMayExit) { 7044 // Both conditions must be true for the loop to continue executing. 7045 // Choose the less conservative count. 7046 if (EL0.ExactNotTaken == getCouldNotCompute() || 7047 EL1.ExactNotTaken == getCouldNotCompute()) 7048 BECount = getCouldNotCompute(); 7049 else 7050 BECount = 7051 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7052 if (EL0.MaxNotTaken == getCouldNotCompute()) 7053 MaxBECount = EL1.MaxNotTaken; 7054 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7055 MaxBECount = EL0.MaxNotTaken; 7056 else 7057 MaxBECount = 7058 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7059 } else { 7060 // Both conditions must be true at the same time for the loop to exit. 7061 // For now, be conservative. 7062 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7063 MaxBECount = EL0.MaxNotTaken; 7064 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7065 BECount = EL0.ExactNotTaken; 7066 } 7067 7068 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7069 // to be more aggressive when computing BECount than when computing 7070 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7071 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7072 // to not. 7073 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7074 !isa<SCEVCouldNotCompute>(BECount)) 7075 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7076 7077 return ExitLimit(BECount, MaxBECount, false, 7078 {&EL0.Predicates, &EL1.Predicates}); 7079 } 7080 if (BO->getOpcode() == Instruction::Or) { 7081 // Recurse on the operands of the or. 7082 bool EitherMayExit = ExitIfTrue; 7083 ExitLimit EL0 = computeExitLimitFromCondCached( 7084 Cache, L, BO->getOperand(0), ExitIfTrue, 7085 ControlsExit && !EitherMayExit, AllowPredicates); 7086 ExitLimit EL1 = computeExitLimitFromCondCached( 7087 Cache, L, BO->getOperand(1), ExitIfTrue, 7088 ControlsExit && !EitherMayExit, AllowPredicates); 7089 const SCEV *BECount = getCouldNotCompute(); 7090 const SCEV *MaxBECount = getCouldNotCompute(); 7091 if (EitherMayExit) { 7092 // Both conditions must be false for the loop to continue executing. 7093 // Choose the less conservative count. 7094 if (EL0.ExactNotTaken == getCouldNotCompute() || 7095 EL1.ExactNotTaken == getCouldNotCompute()) 7096 BECount = getCouldNotCompute(); 7097 else 7098 BECount = 7099 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7100 if (EL0.MaxNotTaken == getCouldNotCompute()) 7101 MaxBECount = EL1.MaxNotTaken; 7102 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7103 MaxBECount = EL0.MaxNotTaken; 7104 else 7105 MaxBECount = 7106 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7107 } else { 7108 // Both conditions must be false at the same time for the loop to exit. 7109 // For now, be conservative. 7110 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7111 MaxBECount = EL0.MaxNotTaken; 7112 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7113 BECount = EL0.ExactNotTaken; 7114 } 7115 7116 return ExitLimit(BECount, MaxBECount, false, 7117 {&EL0.Predicates, &EL1.Predicates}); 7118 } 7119 } 7120 7121 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7122 // Proceed to the next level to examine the icmp. 7123 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7124 ExitLimit EL = 7125 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7126 if (EL.hasFullInfo() || !AllowPredicates) 7127 return EL; 7128 7129 // Try again, but use SCEV predicates this time. 7130 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7131 /*AllowPredicates=*/true); 7132 } 7133 7134 // Check for a constant condition. These are normally stripped out by 7135 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7136 // preserve the CFG and is temporarily leaving constant conditions 7137 // in place. 7138 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7139 if (ExitIfTrue == !CI->getZExtValue()) 7140 // The backedge is always taken. 7141 return getCouldNotCompute(); 7142 else 7143 // The backedge is never taken. 7144 return getZero(CI->getType()); 7145 } 7146 7147 // If it's not an integer or pointer comparison then compute it the hard way. 7148 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7149 } 7150 7151 ScalarEvolution::ExitLimit 7152 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7153 ICmpInst *ExitCond, 7154 bool ExitIfTrue, 7155 bool ControlsExit, 7156 bool AllowPredicates) { 7157 // If the condition was exit on true, convert the condition to exit on false 7158 ICmpInst::Predicate Pred; 7159 if (!ExitIfTrue) 7160 Pred = ExitCond->getPredicate(); 7161 else 7162 Pred = ExitCond->getInversePredicate(); 7163 const ICmpInst::Predicate OriginalPred = Pred; 7164 7165 // Handle common loops like: for (X = "string"; *X; ++X) 7166 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7167 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7168 ExitLimit ItCnt = 7169 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7170 if (ItCnt.hasAnyInfo()) 7171 return ItCnt; 7172 } 7173 7174 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7175 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7176 7177 // Try to evaluate any dependencies out of the loop. 7178 LHS = getSCEVAtScope(LHS, L); 7179 RHS = getSCEVAtScope(RHS, L); 7180 7181 // At this point, we would like to compute how many iterations of the 7182 // loop the predicate will return true for these inputs. 7183 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7184 // If there is a loop-invariant, force it into the RHS. 7185 std::swap(LHS, RHS); 7186 Pred = ICmpInst::getSwappedPredicate(Pred); 7187 } 7188 7189 // Simplify the operands before analyzing them. 7190 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7191 7192 // If we have a comparison of a chrec against a constant, try to use value 7193 // ranges to answer this query. 7194 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7195 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7196 if (AddRec->getLoop() == L) { 7197 // Form the constant range. 7198 ConstantRange CompRange = 7199 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7200 7201 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7202 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7203 } 7204 7205 switch (Pred) { 7206 case ICmpInst::ICMP_NE: { // while (X != Y) 7207 // Convert to: while (X-Y != 0) 7208 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7209 AllowPredicates); 7210 if (EL.hasAnyInfo()) return EL; 7211 break; 7212 } 7213 case ICmpInst::ICMP_EQ: { // while (X == Y) 7214 // Convert to: while (X-Y == 0) 7215 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7216 if (EL.hasAnyInfo()) return EL; 7217 break; 7218 } 7219 case ICmpInst::ICMP_SLT: 7220 case ICmpInst::ICMP_ULT: { // while (X < Y) 7221 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7222 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7223 AllowPredicates); 7224 if (EL.hasAnyInfo()) return EL; 7225 break; 7226 } 7227 case ICmpInst::ICMP_SGT: 7228 case ICmpInst::ICMP_UGT: { // while (X > Y) 7229 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7230 ExitLimit EL = 7231 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7232 AllowPredicates); 7233 if (EL.hasAnyInfo()) return EL; 7234 break; 7235 } 7236 default: 7237 break; 7238 } 7239 7240 auto *ExhaustiveCount = 7241 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7242 7243 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7244 return ExhaustiveCount; 7245 7246 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7247 ExitCond->getOperand(1), L, OriginalPred); 7248 } 7249 7250 ScalarEvolution::ExitLimit 7251 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7252 SwitchInst *Switch, 7253 BasicBlock *ExitingBlock, 7254 bool ControlsExit) { 7255 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7256 7257 // Give up if the exit is the default dest of a switch. 7258 if (Switch->getDefaultDest() == ExitingBlock) 7259 return getCouldNotCompute(); 7260 7261 assert(L->contains(Switch->getDefaultDest()) && 7262 "Default case must not exit the loop!"); 7263 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7264 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7265 7266 // while (X != Y) --> while (X-Y != 0) 7267 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7268 if (EL.hasAnyInfo()) 7269 return EL; 7270 7271 return getCouldNotCompute(); 7272 } 7273 7274 static ConstantInt * 7275 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7276 ScalarEvolution &SE) { 7277 const SCEV *InVal = SE.getConstant(C); 7278 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7279 assert(isa<SCEVConstant>(Val) && 7280 "Evaluation of SCEV at constant didn't fold correctly?"); 7281 return cast<SCEVConstant>(Val)->getValue(); 7282 } 7283 7284 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7285 /// compute the backedge execution count. 7286 ScalarEvolution::ExitLimit 7287 ScalarEvolution::computeLoadConstantCompareExitLimit( 7288 LoadInst *LI, 7289 Constant *RHS, 7290 const Loop *L, 7291 ICmpInst::Predicate predicate) { 7292 if (LI->isVolatile()) return getCouldNotCompute(); 7293 7294 // Check to see if the loaded pointer is a getelementptr of a global. 7295 // TODO: Use SCEV instead of manually grubbing with GEPs. 7296 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7297 if (!GEP) return getCouldNotCompute(); 7298 7299 // Make sure that it is really a constant global we are gepping, with an 7300 // initializer, and make sure the first IDX is really 0. 7301 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7302 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7303 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7304 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7305 return getCouldNotCompute(); 7306 7307 // Okay, we allow one non-constant index into the GEP instruction. 7308 Value *VarIdx = nullptr; 7309 std::vector<Constant*> Indexes; 7310 unsigned VarIdxNum = 0; 7311 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7312 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7313 Indexes.push_back(CI); 7314 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7315 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7316 VarIdx = GEP->getOperand(i); 7317 VarIdxNum = i-2; 7318 Indexes.push_back(nullptr); 7319 } 7320 7321 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7322 if (!VarIdx) 7323 return getCouldNotCompute(); 7324 7325 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7326 // Check to see if X is a loop variant variable value now. 7327 const SCEV *Idx = getSCEV(VarIdx); 7328 Idx = getSCEVAtScope(Idx, L); 7329 7330 // We can only recognize very limited forms of loop index expressions, in 7331 // particular, only affine AddRec's like {C1,+,C2}. 7332 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7333 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7334 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7335 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7336 return getCouldNotCompute(); 7337 7338 unsigned MaxSteps = MaxBruteForceIterations; 7339 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7340 ConstantInt *ItCst = ConstantInt::get( 7341 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7342 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7343 7344 // Form the GEP offset. 7345 Indexes[VarIdxNum] = Val; 7346 7347 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7348 Indexes); 7349 if (!Result) break; // Cannot compute! 7350 7351 // Evaluate the condition for this iteration. 7352 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7353 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7354 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7355 ++NumArrayLenItCounts; 7356 return getConstant(ItCst); // Found terminating iteration! 7357 } 7358 } 7359 return getCouldNotCompute(); 7360 } 7361 7362 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7363 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7364 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7365 if (!RHS) 7366 return getCouldNotCompute(); 7367 7368 const BasicBlock *Latch = L->getLoopLatch(); 7369 if (!Latch) 7370 return getCouldNotCompute(); 7371 7372 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7373 if (!Predecessor) 7374 return getCouldNotCompute(); 7375 7376 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7377 // Return LHS in OutLHS and shift_opt in OutOpCode. 7378 auto MatchPositiveShift = 7379 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7380 7381 using namespace PatternMatch; 7382 7383 ConstantInt *ShiftAmt; 7384 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7385 OutOpCode = Instruction::LShr; 7386 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7387 OutOpCode = Instruction::AShr; 7388 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7389 OutOpCode = Instruction::Shl; 7390 else 7391 return false; 7392 7393 return ShiftAmt->getValue().isStrictlyPositive(); 7394 }; 7395 7396 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7397 // 7398 // loop: 7399 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7400 // %iv.shifted = lshr i32 %iv, <positive constant> 7401 // 7402 // Return true on a successful match. Return the corresponding PHI node (%iv 7403 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7404 auto MatchShiftRecurrence = 7405 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7406 Optional<Instruction::BinaryOps> PostShiftOpCode; 7407 7408 { 7409 Instruction::BinaryOps OpC; 7410 Value *V; 7411 7412 // If we encounter a shift instruction, "peel off" the shift operation, 7413 // and remember that we did so. Later when we inspect %iv's backedge 7414 // value, we will make sure that the backedge value uses the same 7415 // operation. 7416 // 7417 // Note: the peeled shift operation does not have to be the same 7418 // instruction as the one feeding into the PHI's backedge value. We only 7419 // really care about it being the same *kind* of shift instruction -- 7420 // that's all that is required for our later inferences to hold. 7421 if (MatchPositiveShift(LHS, V, OpC)) { 7422 PostShiftOpCode = OpC; 7423 LHS = V; 7424 } 7425 } 7426 7427 PNOut = dyn_cast<PHINode>(LHS); 7428 if (!PNOut || PNOut->getParent() != L->getHeader()) 7429 return false; 7430 7431 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7432 Value *OpLHS; 7433 7434 return 7435 // The backedge value for the PHI node must be a shift by a positive 7436 // amount 7437 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7438 7439 // of the PHI node itself 7440 OpLHS == PNOut && 7441 7442 // and the kind of shift should be match the kind of shift we peeled 7443 // off, if any. 7444 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7445 }; 7446 7447 PHINode *PN; 7448 Instruction::BinaryOps OpCode; 7449 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7450 return getCouldNotCompute(); 7451 7452 const DataLayout &DL = getDataLayout(); 7453 7454 // The key rationale for this optimization is that for some kinds of shift 7455 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7456 // within a finite number of iterations. If the condition guarding the 7457 // backedge (in the sense that the backedge is taken if the condition is true) 7458 // is false for the value the shift recurrence stabilizes to, then we know 7459 // that the backedge is taken only a finite number of times. 7460 7461 ConstantInt *StableValue = nullptr; 7462 switch (OpCode) { 7463 default: 7464 llvm_unreachable("Impossible case!"); 7465 7466 case Instruction::AShr: { 7467 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7468 // bitwidth(K) iterations. 7469 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7470 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7471 Predecessor->getTerminator(), &DT); 7472 auto *Ty = cast<IntegerType>(RHS->getType()); 7473 if (Known.isNonNegative()) 7474 StableValue = ConstantInt::get(Ty, 0); 7475 else if (Known.isNegative()) 7476 StableValue = ConstantInt::get(Ty, -1, true); 7477 else 7478 return getCouldNotCompute(); 7479 7480 break; 7481 } 7482 case Instruction::LShr: 7483 case Instruction::Shl: 7484 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7485 // stabilize to 0 in at most bitwidth(K) iterations. 7486 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7487 break; 7488 } 7489 7490 auto *Result = 7491 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7492 assert(Result->getType()->isIntegerTy(1) && 7493 "Otherwise cannot be an operand to a branch instruction"); 7494 7495 if (Result->isZeroValue()) { 7496 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7497 const SCEV *UpperBound = 7498 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7499 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7500 } 7501 7502 return getCouldNotCompute(); 7503 } 7504 7505 /// Return true if we can constant fold an instruction of the specified type, 7506 /// assuming that all operands were constants. 7507 static bool CanConstantFold(const Instruction *I) { 7508 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7509 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7510 isa<LoadInst>(I)) 7511 return true; 7512 7513 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7514 if (const Function *F = CI->getCalledFunction()) 7515 return canConstantFoldCallTo(CI, F); 7516 return false; 7517 } 7518 7519 /// Determine whether this instruction can constant evolve within this loop 7520 /// assuming its operands can all constant evolve. 7521 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7522 // An instruction outside of the loop can't be derived from a loop PHI. 7523 if (!L->contains(I)) return false; 7524 7525 if (isa<PHINode>(I)) { 7526 // We don't currently keep track of the control flow needed to evaluate 7527 // PHIs, so we cannot handle PHIs inside of loops. 7528 return L->getHeader() == I->getParent(); 7529 } 7530 7531 // If we won't be able to constant fold this expression even if the operands 7532 // are constants, bail early. 7533 return CanConstantFold(I); 7534 } 7535 7536 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7537 /// recursing through each instruction operand until reaching a loop header phi. 7538 static PHINode * 7539 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7540 DenseMap<Instruction *, PHINode *> &PHIMap, 7541 unsigned Depth) { 7542 if (Depth > MaxConstantEvolvingDepth) 7543 return nullptr; 7544 7545 // Otherwise, we can evaluate this instruction if all of its operands are 7546 // constant or derived from a PHI node themselves. 7547 PHINode *PHI = nullptr; 7548 for (Value *Op : UseInst->operands()) { 7549 if (isa<Constant>(Op)) continue; 7550 7551 Instruction *OpInst = dyn_cast<Instruction>(Op); 7552 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7553 7554 PHINode *P = dyn_cast<PHINode>(OpInst); 7555 if (!P) 7556 // If this operand is already visited, reuse the prior result. 7557 // We may have P != PHI if this is the deepest point at which the 7558 // inconsistent paths meet. 7559 P = PHIMap.lookup(OpInst); 7560 if (!P) { 7561 // Recurse and memoize the results, whether a phi is found or not. 7562 // This recursive call invalidates pointers into PHIMap. 7563 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7564 PHIMap[OpInst] = P; 7565 } 7566 if (!P) 7567 return nullptr; // Not evolving from PHI 7568 if (PHI && PHI != P) 7569 return nullptr; // Evolving from multiple different PHIs. 7570 PHI = P; 7571 } 7572 // This is a expression evolving from a constant PHI! 7573 return PHI; 7574 } 7575 7576 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7577 /// in the loop that V is derived from. We allow arbitrary operations along the 7578 /// way, but the operands of an operation must either be constants or a value 7579 /// derived from a constant PHI. If this expression does not fit with these 7580 /// constraints, return null. 7581 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7582 Instruction *I = dyn_cast<Instruction>(V); 7583 if (!I || !canConstantEvolve(I, L)) return nullptr; 7584 7585 if (PHINode *PN = dyn_cast<PHINode>(I)) 7586 return PN; 7587 7588 // Record non-constant instructions contained by the loop. 7589 DenseMap<Instruction *, PHINode *> PHIMap; 7590 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7591 } 7592 7593 /// EvaluateExpression - Given an expression that passes the 7594 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7595 /// in the loop has the value PHIVal. If we can't fold this expression for some 7596 /// reason, return null. 7597 static Constant *EvaluateExpression(Value *V, const Loop *L, 7598 DenseMap<Instruction *, Constant *> &Vals, 7599 const DataLayout &DL, 7600 const TargetLibraryInfo *TLI) { 7601 // Convenient constant check, but redundant for recursive calls. 7602 if (Constant *C = dyn_cast<Constant>(V)) return C; 7603 Instruction *I = dyn_cast<Instruction>(V); 7604 if (!I) return nullptr; 7605 7606 if (Constant *C = Vals.lookup(I)) return C; 7607 7608 // An instruction inside the loop depends on a value outside the loop that we 7609 // weren't given a mapping for, or a value such as a call inside the loop. 7610 if (!canConstantEvolve(I, L)) return nullptr; 7611 7612 // An unmapped PHI can be due to a branch or another loop inside this loop, 7613 // or due to this not being the initial iteration through a loop where we 7614 // couldn't compute the evolution of this particular PHI last time. 7615 if (isa<PHINode>(I)) return nullptr; 7616 7617 std::vector<Constant*> Operands(I->getNumOperands()); 7618 7619 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7620 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7621 if (!Operand) { 7622 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7623 if (!Operands[i]) return nullptr; 7624 continue; 7625 } 7626 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7627 Vals[Operand] = C; 7628 if (!C) return nullptr; 7629 Operands[i] = C; 7630 } 7631 7632 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7633 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7634 Operands[1], DL, TLI); 7635 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7636 if (!LI->isVolatile()) 7637 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7638 } 7639 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7640 } 7641 7642 7643 // If every incoming value to PN except the one for BB is a specific Constant, 7644 // return that, else return nullptr. 7645 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7646 Constant *IncomingVal = nullptr; 7647 7648 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7649 if (PN->getIncomingBlock(i) == BB) 7650 continue; 7651 7652 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7653 if (!CurrentVal) 7654 return nullptr; 7655 7656 if (IncomingVal != CurrentVal) { 7657 if (IncomingVal) 7658 return nullptr; 7659 IncomingVal = CurrentVal; 7660 } 7661 } 7662 7663 return IncomingVal; 7664 } 7665 7666 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7667 /// in the header of its containing loop, we know the loop executes a 7668 /// constant number of times, and the PHI node is just a recurrence 7669 /// involving constants, fold it. 7670 Constant * 7671 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7672 const APInt &BEs, 7673 const Loop *L) { 7674 auto I = ConstantEvolutionLoopExitValue.find(PN); 7675 if (I != ConstantEvolutionLoopExitValue.end()) 7676 return I->second; 7677 7678 if (BEs.ugt(MaxBruteForceIterations)) 7679 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7680 7681 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7682 7683 DenseMap<Instruction *, Constant *> CurrentIterVals; 7684 BasicBlock *Header = L->getHeader(); 7685 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7686 7687 BasicBlock *Latch = L->getLoopLatch(); 7688 if (!Latch) 7689 return nullptr; 7690 7691 for (PHINode &PHI : Header->phis()) { 7692 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7693 CurrentIterVals[&PHI] = StartCST; 7694 } 7695 if (!CurrentIterVals.count(PN)) 7696 return RetVal = nullptr; 7697 7698 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7699 7700 // Execute the loop symbolically to determine the exit value. 7701 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7702 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7703 7704 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7705 unsigned IterationNum = 0; 7706 const DataLayout &DL = getDataLayout(); 7707 for (; ; ++IterationNum) { 7708 if (IterationNum == NumIterations) 7709 return RetVal = CurrentIterVals[PN]; // Got exit value! 7710 7711 // Compute the value of the PHIs for the next iteration. 7712 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7713 DenseMap<Instruction *, Constant *> NextIterVals; 7714 Constant *NextPHI = 7715 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7716 if (!NextPHI) 7717 return nullptr; // Couldn't evaluate! 7718 NextIterVals[PN] = NextPHI; 7719 7720 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7721 7722 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7723 // cease to be able to evaluate one of them or if they stop evolving, 7724 // because that doesn't necessarily prevent us from computing PN. 7725 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7726 for (const auto &I : CurrentIterVals) { 7727 PHINode *PHI = dyn_cast<PHINode>(I.first); 7728 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7729 PHIsToCompute.emplace_back(PHI, I.second); 7730 } 7731 // We use two distinct loops because EvaluateExpression may invalidate any 7732 // iterators into CurrentIterVals. 7733 for (const auto &I : PHIsToCompute) { 7734 PHINode *PHI = I.first; 7735 Constant *&NextPHI = NextIterVals[PHI]; 7736 if (!NextPHI) { // Not already computed. 7737 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7738 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7739 } 7740 if (NextPHI != I.second) 7741 StoppedEvolving = false; 7742 } 7743 7744 // If all entries in CurrentIterVals == NextIterVals then we can stop 7745 // iterating, the loop can't continue to change. 7746 if (StoppedEvolving) 7747 return RetVal = CurrentIterVals[PN]; 7748 7749 CurrentIterVals.swap(NextIterVals); 7750 } 7751 } 7752 7753 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7754 Value *Cond, 7755 bool ExitWhen) { 7756 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7757 if (!PN) return getCouldNotCompute(); 7758 7759 // If the loop is canonicalized, the PHI will have exactly two entries. 7760 // That's the only form we support here. 7761 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7762 7763 DenseMap<Instruction *, Constant *> CurrentIterVals; 7764 BasicBlock *Header = L->getHeader(); 7765 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7766 7767 BasicBlock *Latch = L->getLoopLatch(); 7768 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7769 7770 for (PHINode &PHI : Header->phis()) { 7771 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7772 CurrentIterVals[&PHI] = StartCST; 7773 } 7774 if (!CurrentIterVals.count(PN)) 7775 return getCouldNotCompute(); 7776 7777 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7778 // the loop symbolically to determine when the condition gets a value of 7779 // "ExitWhen". 7780 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7781 const DataLayout &DL = getDataLayout(); 7782 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7783 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7784 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7785 7786 // Couldn't symbolically evaluate. 7787 if (!CondVal) return getCouldNotCompute(); 7788 7789 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7790 ++NumBruteForceTripCountsComputed; 7791 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7792 } 7793 7794 // Update all the PHI nodes for the next iteration. 7795 DenseMap<Instruction *, Constant *> NextIterVals; 7796 7797 // Create a list of which PHIs we need to compute. We want to do this before 7798 // calling EvaluateExpression on them because that may invalidate iterators 7799 // into CurrentIterVals. 7800 SmallVector<PHINode *, 8> PHIsToCompute; 7801 for (const auto &I : CurrentIterVals) { 7802 PHINode *PHI = dyn_cast<PHINode>(I.first); 7803 if (!PHI || PHI->getParent() != Header) continue; 7804 PHIsToCompute.push_back(PHI); 7805 } 7806 for (PHINode *PHI : PHIsToCompute) { 7807 Constant *&NextPHI = NextIterVals[PHI]; 7808 if (NextPHI) continue; // Already computed! 7809 7810 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7811 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7812 } 7813 CurrentIterVals.swap(NextIterVals); 7814 } 7815 7816 // Too many iterations were needed to evaluate. 7817 return getCouldNotCompute(); 7818 } 7819 7820 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7821 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7822 ValuesAtScopes[V]; 7823 // Check to see if we've folded this expression at this loop before. 7824 for (auto &LS : Values) 7825 if (LS.first == L) 7826 return LS.second ? LS.second : V; 7827 7828 Values.emplace_back(L, nullptr); 7829 7830 // Otherwise compute it. 7831 const SCEV *C = computeSCEVAtScope(V, L); 7832 for (auto &LS : reverse(ValuesAtScopes[V])) 7833 if (LS.first == L) { 7834 LS.second = C; 7835 break; 7836 } 7837 return C; 7838 } 7839 7840 /// This builds up a Constant using the ConstantExpr interface. That way, we 7841 /// will return Constants for objects which aren't represented by a 7842 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7843 /// Returns NULL if the SCEV isn't representable as a Constant. 7844 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7845 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7846 case scCouldNotCompute: 7847 case scAddRecExpr: 7848 break; 7849 case scConstant: 7850 return cast<SCEVConstant>(V)->getValue(); 7851 case scUnknown: 7852 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7853 case scSignExtend: { 7854 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7855 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7856 return ConstantExpr::getSExt(CastOp, SS->getType()); 7857 break; 7858 } 7859 case scZeroExtend: { 7860 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7861 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7862 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7863 break; 7864 } 7865 case scTruncate: { 7866 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7867 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7868 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7869 break; 7870 } 7871 case scAddExpr: { 7872 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7873 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7874 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7875 unsigned AS = PTy->getAddressSpace(); 7876 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7877 C = ConstantExpr::getBitCast(C, DestPtrTy); 7878 } 7879 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7880 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7881 if (!C2) return nullptr; 7882 7883 // First pointer! 7884 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7885 unsigned AS = C2->getType()->getPointerAddressSpace(); 7886 std::swap(C, C2); 7887 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7888 // The offsets have been converted to bytes. We can add bytes to an 7889 // i8* by GEP with the byte count in the first index. 7890 C = ConstantExpr::getBitCast(C, DestPtrTy); 7891 } 7892 7893 // Don't bother trying to sum two pointers. We probably can't 7894 // statically compute a load that results from it anyway. 7895 if (C2->getType()->isPointerTy()) 7896 return nullptr; 7897 7898 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7899 if (PTy->getElementType()->isStructTy()) 7900 C2 = ConstantExpr::getIntegerCast( 7901 C2, Type::getInt32Ty(C->getContext()), true); 7902 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7903 } else 7904 C = ConstantExpr::getAdd(C, C2); 7905 } 7906 return C; 7907 } 7908 break; 7909 } 7910 case scMulExpr: { 7911 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7912 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7913 // Don't bother with pointers at all. 7914 if (C->getType()->isPointerTy()) return nullptr; 7915 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7916 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7917 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7918 C = ConstantExpr::getMul(C, C2); 7919 } 7920 return C; 7921 } 7922 break; 7923 } 7924 case scUDivExpr: { 7925 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7926 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7927 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7928 if (LHS->getType() == RHS->getType()) 7929 return ConstantExpr::getUDiv(LHS, RHS); 7930 break; 7931 } 7932 case scSMaxExpr: 7933 case scUMaxExpr: 7934 break; // TODO: smax, umax. 7935 } 7936 return nullptr; 7937 } 7938 7939 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7940 if (isa<SCEVConstant>(V)) return V; 7941 7942 // If this instruction is evolved from a constant-evolving PHI, compute the 7943 // exit value from the loop without using SCEVs. 7944 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7945 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7946 const Loop *LI = this->LI[I->getParent()]; 7947 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7948 if (PHINode *PN = dyn_cast<PHINode>(I)) 7949 if (PN->getParent() == LI->getHeader()) { 7950 // Okay, there is no closed form solution for the PHI node. Check 7951 // to see if the loop that contains it has a known backedge-taken 7952 // count. If so, we may be able to force computation of the exit 7953 // value. 7954 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7955 if (const SCEVConstant *BTCC = 7956 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7957 7958 // This trivial case can show up in some degenerate cases where 7959 // the incoming IR has not yet been fully simplified. 7960 if (BTCC->getValue()->isZero()) { 7961 Value *InitValue = nullptr; 7962 bool MultipleInitValues = false; 7963 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 7964 if (!LI->contains(PN->getIncomingBlock(i))) { 7965 if (!InitValue) 7966 InitValue = PN->getIncomingValue(i); 7967 else if (InitValue != PN->getIncomingValue(i)) { 7968 MultipleInitValues = true; 7969 break; 7970 } 7971 } 7972 if (!MultipleInitValues && InitValue) 7973 return getSCEV(InitValue); 7974 } 7975 } 7976 // Okay, we know how many times the containing loop executes. If 7977 // this is a constant evolving PHI node, get the final value at 7978 // the specified iteration number. 7979 Constant *RV = 7980 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 7981 if (RV) return getSCEV(RV); 7982 } 7983 } 7984 7985 // Okay, this is an expression that we cannot symbolically evaluate 7986 // into a SCEV. Check to see if it's possible to symbolically evaluate 7987 // the arguments into constants, and if so, try to constant propagate the 7988 // result. This is particularly useful for computing loop exit values. 7989 if (CanConstantFold(I)) { 7990 SmallVector<Constant *, 4> Operands; 7991 bool MadeImprovement = false; 7992 for (Value *Op : I->operands()) { 7993 if (Constant *C = dyn_cast<Constant>(Op)) { 7994 Operands.push_back(C); 7995 continue; 7996 } 7997 7998 // If any of the operands is non-constant and if they are 7999 // non-integer and non-pointer, don't even try to analyze them 8000 // with scev techniques. 8001 if (!isSCEVable(Op->getType())) 8002 return V; 8003 8004 const SCEV *OrigV = getSCEV(Op); 8005 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8006 MadeImprovement |= OrigV != OpV; 8007 8008 Constant *C = BuildConstantFromSCEV(OpV); 8009 if (!C) return V; 8010 if (C->getType() != Op->getType()) 8011 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8012 Op->getType(), 8013 false), 8014 C, Op->getType()); 8015 Operands.push_back(C); 8016 } 8017 8018 // Check to see if getSCEVAtScope actually made an improvement. 8019 if (MadeImprovement) { 8020 Constant *C = nullptr; 8021 const DataLayout &DL = getDataLayout(); 8022 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8023 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8024 Operands[1], DL, &TLI); 8025 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8026 if (!LI->isVolatile()) 8027 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8028 } else 8029 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8030 if (!C) return V; 8031 return getSCEV(C); 8032 } 8033 } 8034 } 8035 8036 // This is some other type of SCEVUnknown, just return it. 8037 return V; 8038 } 8039 8040 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8041 // Avoid performing the look-up in the common case where the specified 8042 // expression has no loop-variant portions. 8043 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8044 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8045 if (OpAtScope != Comm->getOperand(i)) { 8046 // Okay, at least one of these operands is loop variant but might be 8047 // foldable. Build a new instance of the folded commutative expression. 8048 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8049 Comm->op_begin()+i); 8050 NewOps.push_back(OpAtScope); 8051 8052 for (++i; i != e; ++i) { 8053 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8054 NewOps.push_back(OpAtScope); 8055 } 8056 if (isa<SCEVAddExpr>(Comm)) 8057 return getAddExpr(NewOps); 8058 if (isa<SCEVMulExpr>(Comm)) 8059 return getMulExpr(NewOps); 8060 if (isa<SCEVSMaxExpr>(Comm)) 8061 return getSMaxExpr(NewOps); 8062 if (isa<SCEVUMaxExpr>(Comm)) 8063 return getUMaxExpr(NewOps); 8064 llvm_unreachable("Unknown commutative SCEV type!"); 8065 } 8066 } 8067 // If we got here, all operands are loop invariant. 8068 return Comm; 8069 } 8070 8071 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8072 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8073 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8074 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8075 return Div; // must be loop invariant 8076 return getUDivExpr(LHS, RHS); 8077 } 8078 8079 // If this is a loop recurrence for a loop that does not contain L, then we 8080 // are dealing with the final value computed by the loop. 8081 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8082 // First, attempt to evaluate each operand. 8083 // Avoid performing the look-up in the common case where the specified 8084 // expression has no loop-variant portions. 8085 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8086 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8087 if (OpAtScope == AddRec->getOperand(i)) 8088 continue; 8089 8090 // Okay, at least one of these operands is loop variant but might be 8091 // foldable. Build a new instance of the folded commutative expression. 8092 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8093 AddRec->op_begin()+i); 8094 NewOps.push_back(OpAtScope); 8095 for (++i; i != e; ++i) 8096 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8097 8098 const SCEV *FoldedRec = 8099 getAddRecExpr(NewOps, AddRec->getLoop(), 8100 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8101 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8102 // The addrec may be folded to a nonrecurrence, for example, if the 8103 // induction variable is multiplied by zero after constant folding. Go 8104 // ahead and return the folded value. 8105 if (!AddRec) 8106 return FoldedRec; 8107 break; 8108 } 8109 8110 // If the scope is outside the addrec's loop, evaluate it by using the 8111 // loop exit value of the addrec. 8112 if (!AddRec->getLoop()->contains(L)) { 8113 // To evaluate this recurrence, we need to know how many times the AddRec 8114 // loop iterates. Compute this now. 8115 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8116 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8117 8118 // Then, evaluate the AddRec. 8119 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8120 } 8121 8122 return AddRec; 8123 } 8124 8125 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8126 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8127 if (Op == Cast->getOperand()) 8128 return Cast; // must be loop invariant 8129 return getZeroExtendExpr(Op, Cast->getType()); 8130 } 8131 8132 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8133 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8134 if (Op == Cast->getOperand()) 8135 return Cast; // must be loop invariant 8136 return getSignExtendExpr(Op, Cast->getType()); 8137 } 8138 8139 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8140 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8141 if (Op == Cast->getOperand()) 8142 return Cast; // must be loop invariant 8143 return getTruncateExpr(Op, Cast->getType()); 8144 } 8145 8146 llvm_unreachable("Unknown SCEV type!"); 8147 } 8148 8149 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8150 return getSCEVAtScope(getSCEV(V), L); 8151 } 8152 8153 /// Finds the minimum unsigned root of the following equation: 8154 /// 8155 /// A * X = B (mod N) 8156 /// 8157 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8158 /// A and B isn't important. 8159 /// 8160 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8161 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8162 ScalarEvolution &SE) { 8163 uint32_t BW = A.getBitWidth(); 8164 assert(BW == SE.getTypeSizeInBits(B->getType())); 8165 assert(A != 0 && "A must be non-zero."); 8166 8167 // 1. D = gcd(A, N) 8168 // 8169 // The gcd of A and N may have only one prime factor: 2. The number of 8170 // trailing zeros in A is its multiplicity 8171 uint32_t Mult2 = A.countTrailingZeros(); 8172 // D = 2^Mult2 8173 8174 // 2. Check if B is divisible by D. 8175 // 8176 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8177 // is not less than multiplicity of this prime factor for D. 8178 if (SE.GetMinTrailingZeros(B) < Mult2) 8179 return SE.getCouldNotCompute(); 8180 8181 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8182 // modulo (N / D). 8183 // 8184 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8185 // (N / D) in general. The inverse itself always fits into BW bits, though, 8186 // so we immediately truncate it. 8187 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8188 APInt Mod(BW + 1, 0); 8189 Mod.setBit(BW - Mult2); // Mod = N / D 8190 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8191 8192 // 4. Compute the minimum unsigned root of the equation: 8193 // I * (B / D) mod (N / D) 8194 // To simplify the computation, we factor out the divide by D: 8195 // (I * B mod N) / D 8196 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8197 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8198 } 8199 8200 /// Find the roots of the quadratic equation for the given quadratic chrec 8201 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 8202 /// two SCEVCouldNotCompute objects. 8203 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 8204 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8205 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8206 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8207 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8208 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8209 8210 // We currently can only solve this if the coefficients are constants. 8211 if (!LC || !MC || !NC) 8212 return None; 8213 8214 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 8215 const APInt &L = LC->getAPInt(); 8216 const APInt &M = MC->getAPInt(); 8217 const APInt &N = NC->getAPInt(); 8218 APInt Two(BitWidth, 2); 8219 8220 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 8221 8222 // The A coefficient is N/2 8223 APInt A = N.sdiv(Two); 8224 8225 // The B coefficient is M-N/2 8226 APInt B = M; 8227 B -= A; // A is the same as N/2. 8228 8229 // The C coefficient is L. 8230 const APInt& C = L; 8231 8232 // Compute the B^2-4ac term. 8233 APInt SqrtTerm = B; 8234 SqrtTerm *= B; 8235 SqrtTerm -= 4 * (A * C); 8236 8237 if (SqrtTerm.isNegative()) { 8238 // The loop is provably infinite. 8239 return None; 8240 } 8241 8242 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 8243 // integer value or else APInt::sqrt() will assert. 8244 APInt SqrtVal = SqrtTerm.sqrt(); 8245 8246 // Compute the two solutions for the quadratic formula. 8247 // The divisions must be performed as signed divisions. 8248 APInt NegB = -std::move(B); 8249 APInt TwoA = std::move(A); 8250 TwoA <<= 1; 8251 if (TwoA.isNullValue()) 8252 return None; 8253 8254 LLVMContext &Context = SE.getContext(); 8255 8256 ConstantInt *Solution1 = 8257 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 8258 ConstantInt *Solution2 = 8259 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 8260 8261 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 8262 cast<SCEVConstant>(SE.getConstant(Solution2))); 8263 } 8264 8265 ScalarEvolution::ExitLimit 8266 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8267 bool AllowPredicates) { 8268 8269 // This is only used for loops with a "x != y" exit test. The exit condition 8270 // is now expressed as a single expression, V = x-y. So the exit test is 8271 // effectively V != 0. We know and take advantage of the fact that this 8272 // expression only being used in a comparison by zero context. 8273 8274 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8275 // If the value is a constant 8276 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8277 // If the value is already zero, the branch will execute zero times. 8278 if (C->getValue()->isZero()) return C; 8279 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8280 } 8281 8282 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 8283 if (!AddRec && AllowPredicates) 8284 // Try to make this an AddRec using runtime tests, in the first X 8285 // iterations of this loop, where X is the SCEV expression found by the 8286 // algorithm below. 8287 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8288 8289 if (!AddRec || AddRec->getLoop() != L) 8290 return getCouldNotCompute(); 8291 8292 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8293 // the quadratic equation to solve it. 8294 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8295 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 8296 const SCEVConstant *R1 = Roots->first; 8297 const SCEVConstant *R2 = Roots->second; 8298 // Pick the smallest positive root value. 8299 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8300 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8301 if (!CB->getZExtValue()) 8302 std::swap(R1, R2); // R1 is the minimum root now. 8303 8304 // We can only use this value if the chrec ends up with an exact zero 8305 // value at this index. When solving for "X*X != 5", for example, we 8306 // should not accept a root of 2. 8307 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 8308 if (Val->isZero()) 8309 // We found a quadratic root! 8310 return ExitLimit(R1, R1, false, Predicates); 8311 } 8312 } 8313 return getCouldNotCompute(); 8314 } 8315 8316 // Otherwise we can only handle this if it is affine. 8317 if (!AddRec->isAffine()) 8318 return getCouldNotCompute(); 8319 8320 // If this is an affine expression, the execution count of this branch is 8321 // the minimum unsigned root of the following equation: 8322 // 8323 // Start + Step*N = 0 (mod 2^BW) 8324 // 8325 // equivalent to: 8326 // 8327 // Step*N = -Start (mod 2^BW) 8328 // 8329 // where BW is the common bit width of Start and Step. 8330 8331 // Get the initial value for the loop. 8332 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8333 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8334 8335 // For now we handle only constant steps. 8336 // 8337 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8338 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8339 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8340 // We have not yet seen any such cases. 8341 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8342 if (!StepC || StepC->getValue()->isZero()) 8343 return getCouldNotCompute(); 8344 8345 // For positive steps (counting up until unsigned overflow): 8346 // N = -Start/Step (as unsigned) 8347 // For negative steps (counting down to zero): 8348 // N = Start/-Step 8349 // First compute the unsigned distance from zero in the direction of Step. 8350 bool CountDown = StepC->getAPInt().isNegative(); 8351 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8352 8353 // Handle unitary steps, which cannot wraparound. 8354 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8355 // N = Distance (as unsigned) 8356 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8357 APInt MaxBECount = getUnsignedRangeMax(Distance); 8358 8359 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8360 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8361 // case, and see if we can improve the bound. 8362 // 8363 // Explicitly handling this here is necessary because getUnsignedRange 8364 // isn't context-sensitive; it doesn't know that we only care about the 8365 // range inside the loop. 8366 const SCEV *Zero = getZero(Distance->getType()); 8367 const SCEV *One = getOne(Distance->getType()); 8368 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8369 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8370 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8371 // as "unsigned_max(Distance + 1) - 1". 8372 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8373 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8374 } 8375 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8376 } 8377 8378 // If the condition controls loop exit (the loop exits only if the expression 8379 // is true) and the addition is no-wrap we can use unsigned divide to 8380 // compute the backedge count. In this case, the step may not divide the 8381 // distance, but we don't care because if the condition is "missed" the loop 8382 // will have undefined behavior due to wrapping. 8383 if (ControlsExit && AddRec->hasNoSelfWrap() && 8384 loopHasNoAbnormalExits(AddRec->getLoop())) { 8385 const SCEV *Exact = 8386 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8387 const SCEV *Max = 8388 Exact == getCouldNotCompute() 8389 ? Exact 8390 : getConstant(getUnsignedRangeMax(Exact)); 8391 return ExitLimit(Exact, Max, false, Predicates); 8392 } 8393 8394 // Solve the general equation. 8395 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8396 getNegativeSCEV(Start), *this); 8397 const SCEV *M = E == getCouldNotCompute() 8398 ? E 8399 : getConstant(getUnsignedRangeMax(E)); 8400 return ExitLimit(E, M, false, Predicates); 8401 } 8402 8403 ScalarEvolution::ExitLimit 8404 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8405 // Loops that look like: while (X == 0) are very strange indeed. We don't 8406 // handle them yet except for the trivial case. This could be expanded in the 8407 // future as needed. 8408 8409 // If the value is a constant, check to see if it is known to be non-zero 8410 // already. If so, the backedge will execute zero times. 8411 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8412 if (!C->getValue()->isZero()) 8413 return getZero(C->getType()); 8414 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8415 } 8416 8417 // We could implement others, but I really doubt anyone writes loops like 8418 // this, and if they did, they would already be constant folded. 8419 return getCouldNotCompute(); 8420 } 8421 8422 std::pair<BasicBlock *, BasicBlock *> 8423 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8424 // If the block has a unique predecessor, then there is no path from the 8425 // predecessor to the block that does not go through the direct edge 8426 // from the predecessor to the block. 8427 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8428 return {Pred, BB}; 8429 8430 // A loop's header is defined to be a block that dominates the loop. 8431 // If the header has a unique predecessor outside the loop, it must be 8432 // a block that has exactly one successor that can reach the loop. 8433 if (Loop *L = LI.getLoopFor(BB)) 8434 return {L->getLoopPredecessor(), L->getHeader()}; 8435 8436 return {nullptr, nullptr}; 8437 } 8438 8439 /// SCEV structural equivalence is usually sufficient for testing whether two 8440 /// expressions are equal, however for the purposes of looking for a condition 8441 /// guarding a loop, it can be useful to be a little more general, since a 8442 /// front-end may have replicated the controlling expression. 8443 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8444 // Quick check to see if they are the same SCEV. 8445 if (A == B) return true; 8446 8447 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8448 // Not all instructions that are "identical" compute the same value. For 8449 // instance, two distinct alloca instructions allocating the same type are 8450 // identical and do not read memory; but compute distinct values. 8451 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8452 }; 8453 8454 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8455 // two different instructions with the same value. Check for this case. 8456 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8457 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8458 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8459 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8460 if (ComputesEqualValues(AI, BI)) 8461 return true; 8462 8463 // Otherwise assume they may have a different value. 8464 return false; 8465 } 8466 8467 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8468 const SCEV *&LHS, const SCEV *&RHS, 8469 unsigned Depth) { 8470 bool Changed = false; 8471 8472 // If we hit the max recursion limit bail out. 8473 if (Depth >= 3) 8474 return false; 8475 8476 // Canonicalize a constant to the right side. 8477 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8478 // Check for both operands constant. 8479 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8480 if (ConstantExpr::getICmp(Pred, 8481 LHSC->getValue(), 8482 RHSC->getValue())->isNullValue()) 8483 goto trivially_false; 8484 else 8485 goto trivially_true; 8486 } 8487 // Otherwise swap the operands to put the constant on the right. 8488 std::swap(LHS, RHS); 8489 Pred = ICmpInst::getSwappedPredicate(Pred); 8490 Changed = true; 8491 } 8492 8493 // If we're comparing an addrec with a value which is loop-invariant in the 8494 // addrec's loop, put the addrec on the left. Also make a dominance check, 8495 // as both operands could be addrecs loop-invariant in each other's loop. 8496 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8497 const Loop *L = AR->getLoop(); 8498 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8499 std::swap(LHS, RHS); 8500 Pred = ICmpInst::getSwappedPredicate(Pred); 8501 Changed = true; 8502 } 8503 } 8504 8505 // If there's a constant operand, canonicalize comparisons with boundary 8506 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8507 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8508 const APInt &RA = RC->getAPInt(); 8509 8510 bool SimplifiedByConstantRange = false; 8511 8512 if (!ICmpInst::isEquality(Pred)) { 8513 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8514 if (ExactCR.isFullSet()) 8515 goto trivially_true; 8516 else if (ExactCR.isEmptySet()) 8517 goto trivially_false; 8518 8519 APInt NewRHS; 8520 CmpInst::Predicate NewPred; 8521 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8522 ICmpInst::isEquality(NewPred)) { 8523 // We were able to convert an inequality to an equality. 8524 Pred = NewPred; 8525 RHS = getConstant(NewRHS); 8526 Changed = SimplifiedByConstantRange = true; 8527 } 8528 } 8529 8530 if (!SimplifiedByConstantRange) { 8531 switch (Pred) { 8532 default: 8533 break; 8534 case ICmpInst::ICMP_EQ: 8535 case ICmpInst::ICMP_NE: 8536 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8537 if (!RA) 8538 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8539 if (const SCEVMulExpr *ME = 8540 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8541 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8542 ME->getOperand(0)->isAllOnesValue()) { 8543 RHS = AE->getOperand(1); 8544 LHS = ME->getOperand(1); 8545 Changed = true; 8546 } 8547 break; 8548 8549 8550 // The "Should have been caught earlier!" messages refer to the fact 8551 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8552 // should have fired on the corresponding cases, and canonicalized the 8553 // check to trivially_true or trivially_false. 8554 8555 case ICmpInst::ICMP_UGE: 8556 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8557 Pred = ICmpInst::ICMP_UGT; 8558 RHS = getConstant(RA - 1); 8559 Changed = true; 8560 break; 8561 case ICmpInst::ICMP_ULE: 8562 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8563 Pred = ICmpInst::ICMP_ULT; 8564 RHS = getConstant(RA + 1); 8565 Changed = true; 8566 break; 8567 case ICmpInst::ICMP_SGE: 8568 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8569 Pred = ICmpInst::ICMP_SGT; 8570 RHS = getConstant(RA - 1); 8571 Changed = true; 8572 break; 8573 case ICmpInst::ICMP_SLE: 8574 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8575 Pred = ICmpInst::ICMP_SLT; 8576 RHS = getConstant(RA + 1); 8577 Changed = true; 8578 break; 8579 } 8580 } 8581 } 8582 8583 // Check for obvious equality. 8584 if (HasSameValue(LHS, RHS)) { 8585 if (ICmpInst::isTrueWhenEqual(Pred)) 8586 goto trivially_true; 8587 if (ICmpInst::isFalseWhenEqual(Pred)) 8588 goto trivially_false; 8589 } 8590 8591 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8592 // adding or subtracting 1 from one of the operands. 8593 switch (Pred) { 8594 case ICmpInst::ICMP_SLE: 8595 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8596 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8597 SCEV::FlagNSW); 8598 Pred = ICmpInst::ICMP_SLT; 8599 Changed = true; 8600 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8601 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8602 SCEV::FlagNSW); 8603 Pred = ICmpInst::ICMP_SLT; 8604 Changed = true; 8605 } 8606 break; 8607 case ICmpInst::ICMP_SGE: 8608 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8609 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8610 SCEV::FlagNSW); 8611 Pred = ICmpInst::ICMP_SGT; 8612 Changed = true; 8613 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8614 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8615 SCEV::FlagNSW); 8616 Pred = ICmpInst::ICMP_SGT; 8617 Changed = true; 8618 } 8619 break; 8620 case ICmpInst::ICMP_ULE: 8621 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8622 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8623 SCEV::FlagNUW); 8624 Pred = ICmpInst::ICMP_ULT; 8625 Changed = true; 8626 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8627 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8628 Pred = ICmpInst::ICMP_ULT; 8629 Changed = true; 8630 } 8631 break; 8632 case ICmpInst::ICMP_UGE: 8633 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8634 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8635 Pred = ICmpInst::ICMP_UGT; 8636 Changed = true; 8637 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8638 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8639 SCEV::FlagNUW); 8640 Pred = ICmpInst::ICMP_UGT; 8641 Changed = true; 8642 } 8643 break; 8644 default: 8645 break; 8646 } 8647 8648 // TODO: More simplifications are possible here. 8649 8650 // Recursively simplify until we either hit a recursion limit or nothing 8651 // changes. 8652 if (Changed) 8653 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8654 8655 return Changed; 8656 8657 trivially_true: 8658 // Return 0 == 0. 8659 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8660 Pred = ICmpInst::ICMP_EQ; 8661 return true; 8662 8663 trivially_false: 8664 // Return 0 != 0. 8665 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8666 Pred = ICmpInst::ICMP_NE; 8667 return true; 8668 } 8669 8670 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8671 return getSignedRangeMax(S).isNegative(); 8672 } 8673 8674 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8675 return getSignedRangeMin(S).isStrictlyPositive(); 8676 } 8677 8678 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8679 return !getSignedRangeMin(S).isNegative(); 8680 } 8681 8682 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8683 return !getSignedRangeMax(S).isStrictlyPositive(); 8684 } 8685 8686 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8687 return isKnownNegative(S) || isKnownPositive(S); 8688 } 8689 8690 std::pair<const SCEV *, const SCEV *> 8691 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 8692 // Compute SCEV on entry of loop L. 8693 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 8694 if (Start == getCouldNotCompute()) 8695 return { Start, Start }; 8696 // Compute post increment SCEV for loop L. 8697 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 8698 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 8699 return { Start, PostInc }; 8700 } 8701 8702 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 8703 const SCEV *LHS, const SCEV *RHS) { 8704 // First collect all loops. 8705 SmallPtrSet<const Loop *, 8> LoopsUsed; 8706 getUsedLoops(LHS, LoopsUsed); 8707 getUsedLoops(RHS, LoopsUsed); 8708 8709 if (LoopsUsed.empty()) 8710 return false; 8711 8712 // Domination relationship must be a linear order on collected loops. 8713 #ifndef NDEBUG 8714 for (auto *L1 : LoopsUsed) 8715 for (auto *L2 : LoopsUsed) 8716 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 8717 DT.dominates(L2->getHeader(), L1->getHeader())) && 8718 "Domination relationship is not a linear order"); 8719 #endif 8720 8721 const Loop *MDL = 8722 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 8723 [&](const Loop *L1, const Loop *L2) { 8724 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 8725 }); 8726 8727 // Get init and post increment value for LHS. 8728 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 8729 // if LHS contains unknown non-invariant SCEV then bail out. 8730 if (SplitLHS.first == getCouldNotCompute()) 8731 return false; 8732 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 8733 // Get init and post increment value for RHS. 8734 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 8735 // if RHS contains unknown non-invariant SCEV then bail out. 8736 if (SplitRHS.first == getCouldNotCompute()) 8737 return false; 8738 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 8739 // It is possible that init SCEV contains an invariant load but it does 8740 // not dominate MDL and is not available at MDL loop entry, so we should 8741 // check it here. 8742 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 8743 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 8744 return false; 8745 8746 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && 8747 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 8748 SplitRHS.second); 8749 } 8750 8751 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 8752 const SCEV *LHS, const SCEV *RHS) { 8753 // Canonicalize the inputs first. 8754 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8755 8756 if (isKnownViaInduction(Pred, LHS, RHS)) 8757 return true; 8758 8759 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 8760 return true; 8761 8762 // Otherwise see what can be done with some simple reasoning. 8763 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 8764 } 8765 8766 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 8767 const SCEVAddRecExpr *LHS, 8768 const SCEV *RHS) { 8769 const Loop *L = LHS->getLoop(); 8770 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 8771 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 8772 } 8773 8774 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 8775 ICmpInst::Predicate Pred, 8776 bool &Increasing) { 8777 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 8778 8779 #ifndef NDEBUG 8780 // Verify an invariant: inverting the predicate should turn a monotonically 8781 // increasing change to a monotonically decreasing one, and vice versa. 8782 bool IncreasingSwapped; 8783 bool ResultSwapped = isMonotonicPredicateImpl( 8784 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 8785 8786 assert(Result == ResultSwapped && "should be able to analyze both!"); 8787 if (ResultSwapped) 8788 assert(Increasing == !IncreasingSwapped && 8789 "monotonicity should flip as we flip the predicate"); 8790 #endif 8791 8792 return Result; 8793 } 8794 8795 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 8796 ICmpInst::Predicate Pred, 8797 bool &Increasing) { 8798 8799 // A zero step value for LHS means the induction variable is essentially a 8800 // loop invariant value. We don't really depend on the predicate actually 8801 // flipping from false to true (for increasing predicates, and the other way 8802 // around for decreasing predicates), all we care about is that *if* the 8803 // predicate changes then it only changes from false to true. 8804 // 8805 // A zero step value in itself is not very useful, but there may be places 8806 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 8807 // as general as possible. 8808 8809 switch (Pred) { 8810 default: 8811 return false; // Conservative answer 8812 8813 case ICmpInst::ICMP_UGT: 8814 case ICmpInst::ICMP_UGE: 8815 case ICmpInst::ICMP_ULT: 8816 case ICmpInst::ICMP_ULE: 8817 if (!LHS->hasNoUnsignedWrap()) 8818 return false; 8819 8820 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 8821 return true; 8822 8823 case ICmpInst::ICMP_SGT: 8824 case ICmpInst::ICMP_SGE: 8825 case ICmpInst::ICMP_SLT: 8826 case ICmpInst::ICMP_SLE: { 8827 if (!LHS->hasNoSignedWrap()) 8828 return false; 8829 8830 const SCEV *Step = LHS->getStepRecurrence(*this); 8831 8832 if (isKnownNonNegative(Step)) { 8833 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8834 return true; 8835 } 8836 8837 if (isKnownNonPositive(Step)) { 8838 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8839 return true; 8840 } 8841 8842 return false; 8843 } 8844 8845 } 8846 8847 llvm_unreachable("switch has default clause!"); 8848 } 8849 8850 bool ScalarEvolution::isLoopInvariantPredicate( 8851 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8852 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8853 const SCEV *&InvariantRHS) { 8854 8855 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8856 if (!isLoopInvariant(RHS, L)) { 8857 if (!isLoopInvariant(LHS, L)) 8858 return false; 8859 8860 std::swap(LHS, RHS); 8861 Pred = ICmpInst::getSwappedPredicate(Pred); 8862 } 8863 8864 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8865 if (!ArLHS || ArLHS->getLoop() != L) 8866 return false; 8867 8868 bool Increasing; 8869 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8870 return false; 8871 8872 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8873 // true as the loop iterates, and the backedge is control dependent on 8874 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8875 // 8876 // * if the predicate was false in the first iteration then the predicate 8877 // is never evaluated again, since the loop exits without taking the 8878 // backedge. 8879 // * if the predicate was true in the first iteration then it will 8880 // continue to be true for all future iterations since it is 8881 // monotonically increasing. 8882 // 8883 // For both the above possibilities, we can replace the loop varying 8884 // predicate with its value on the first iteration of the loop (which is 8885 // loop invariant). 8886 // 8887 // A similar reasoning applies for a monotonically decreasing predicate, by 8888 // replacing true with false and false with true in the above two bullets. 8889 8890 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8891 8892 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8893 return false; 8894 8895 InvariantPred = Pred; 8896 InvariantLHS = ArLHS->getStart(); 8897 InvariantRHS = RHS; 8898 return true; 8899 } 8900 8901 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8902 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8903 if (HasSameValue(LHS, RHS)) 8904 return ICmpInst::isTrueWhenEqual(Pred); 8905 8906 // This code is split out from isKnownPredicate because it is called from 8907 // within isLoopEntryGuardedByCond. 8908 8909 auto CheckRanges = 8910 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8911 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8912 .contains(RangeLHS); 8913 }; 8914 8915 // The check at the top of the function catches the case where the values are 8916 // known to be equal. 8917 if (Pred == CmpInst::ICMP_EQ) 8918 return false; 8919 8920 if (Pred == CmpInst::ICMP_NE) 8921 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8922 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8923 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8924 8925 if (CmpInst::isSigned(Pred)) 8926 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8927 8928 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8929 } 8930 8931 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8932 const SCEV *LHS, 8933 const SCEV *RHS) { 8934 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8935 // Return Y via OutY. 8936 auto MatchBinaryAddToConst = 8937 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 8938 SCEV::NoWrapFlags ExpectedFlags) { 8939 const SCEV *NonConstOp, *ConstOp; 8940 SCEV::NoWrapFlags FlagsPresent; 8941 8942 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 8943 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 8944 return false; 8945 8946 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 8947 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 8948 }; 8949 8950 APInt C; 8951 8952 switch (Pred) { 8953 default: 8954 break; 8955 8956 case ICmpInst::ICMP_SGE: 8957 std::swap(LHS, RHS); 8958 LLVM_FALLTHROUGH; 8959 case ICmpInst::ICMP_SLE: 8960 // X s<= (X + C)<nsw> if C >= 0 8961 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 8962 return true; 8963 8964 // (X + C)<nsw> s<= X if C <= 0 8965 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 8966 !C.isStrictlyPositive()) 8967 return true; 8968 break; 8969 8970 case ICmpInst::ICMP_SGT: 8971 std::swap(LHS, RHS); 8972 LLVM_FALLTHROUGH; 8973 case ICmpInst::ICMP_SLT: 8974 // X s< (X + C)<nsw> if C > 0 8975 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 8976 C.isStrictlyPositive()) 8977 return true; 8978 8979 // (X + C)<nsw> s< X if C < 0 8980 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 8981 return true; 8982 break; 8983 } 8984 8985 return false; 8986 } 8987 8988 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 8989 const SCEV *LHS, 8990 const SCEV *RHS) { 8991 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 8992 return false; 8993 8994 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 8995 // the stack can result in exponential time complexity. 8996 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 8997 8998 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 8999 // 9000 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9001 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9002 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9003 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9004 // use isKnownPredicate later if needed. 9005 return isKnownNonNegative(RHS) && 9006 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9007 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9008 } 9009 9010 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9011 ICmpInst::Predicate Pred, 9012 const SCEV *LHS, const SCEV *RHS) { 9013 // No need to even try if we know the module has no guards. 9014 if (!HasGuards) 9015 return false; 9016 9017 return any_of(*BB, [&](Instruction &I) { 9018 using namespace llvm::PatternMatch; 9019 9020 Value *Condition; 9021 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9022 m_Value(Condition))) && 9023 isImpliedCond(Pred, LHS, RHS, Condition, false); 9024 }); 9025 } 9026 9027 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9028 /// protected by a conditional between LHS and RHS. This is used to 9029 /// to eliminate casts. 9030 bool 9031 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9032 ICmpInst::Predicate Pred, 9033 const SCEV *LHS, const SCEV *RHS) { 9034 // Interpret a null as meaning no loop, where there is obviously no guard 9035 // (interprocedural conditions notwithstanding). 9036 if (!L) return true; 9037 9038 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9039 return true; 9040 9041 BasicBlock *Latch = L->getLoopLatch(); 9042 if (!Latch) 9043 return false; 9044 9045 BranchInst *LoopContinuePredicate = 9046 dyn_cast<BranchInst>(Latch->getTerminator()); 9047 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9048 isImpliedCond(Pred, LHS, RHS, 9049 LoopContinuePredicate->getCondition(), 9050 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9051 return true; 9052 9053 // We don't want more than one activation of the following loops on the stack 9054 // -- that can lead to O(n!) time complexity. 9055 if (WalkingBEDominatingConds) 9056 return false; 9057 9058 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9059 9060 // See if we can exploit a trip count to prove the predicate. 9061 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9062 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9063 if (LatchBECount != getCouldNotCompute()) { 9064 // We know that Latch branches back to the loop header exactly 9065 // LatchBECount times. This means the backdege condition at Latch is 9066 // equivalent to "{0,+,1} u< LatchBECount". 9067 Type *Ty = LatchBECount->getType(); 9068 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9069 const SCEV *LoopCounter = 9070 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9071 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9072 LatchBECount)) 9073 return true; 9074 } 9075 9076 // Check conditions due to any @llvm.assume intrinsics. 9077 for (auto &AssumeVH : AC.assumptions()) { 9078 if (!AssumeVH) 9079 continue; 9080 auto *CI = cast<CallInst>(AssumeVH); 9081 if (!DT.dominates(CI, Latch->getTerminator())) 9082 continue; 9083 9084 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9085 return true; 9086 } 9087 9088 // If the loop is not reachable from the entry block, we risk running into an 9089 // infinite loop as we walk up into the dom tree. These loops do not matter 9090 // anyway, so we just return a conservative answer when we see them. 9091 if (!DT.isReachableFromEntry(L->getHeader())) 9092 return false; 9093 9094 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9095 return true; 9096 9097 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9098 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9099 assert(DTN && "should reach the loop header before reaching the root!"); 9100 9101 BasicBlock *BB = DTN->getBlock(); 9102 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9103 return true; 9104 9105 BasicBlock *PBB = BB->getSinglePredecessor(); 9106 if (!PBB) 9107 continue; 9108 9109 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9110 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9111 continue; 9112 9113 Value *Condition = ContinuePredicate->getCondition(); 9114 9115 // If we have an edge `E` within the loop body that dominates the only 9116 // latch, the condition guarding `E` also guards the backedge. This 9117 // reasoning works only for loops with a single latch. 9118 9119 BasicBlockEdge DominatingEdge(PBB, BB); 9120 if (DominatingEdge.isSingleEdge()) { 9121 // We're constructively (and conservatively) enumerating edges within the 9122 // loop body that dominate the latch. The dominator tree better agree 9123 // with us on this: 9124 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9125 9126 if (isImpliedCond(Pred, LHS, RHS, Condition, 9127 BB != ContinuePredicate->getSuccessor(0))) 9128 return true; 9129 } 9130 } 9131 9132 return false; 9133 } 9134 9135 bool 9136 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9137 ICmpInst::Predicate Pred, 9138 const SCEV *LHS, const SCEV *RHS) { 9139 // Interpret a null as meaning no loop, where there is obviously no guard 9140 // (interprocedural conditions notwithstanding). 9141 if (!L) return false; 9142 9143 // Both LHS and RHS must be available at loop entry. 9144 assert(isAvailableAtLoopEntry(LHS, L) && 9145 "LHS is not available at Loop Entry"); 9146 assert(isAvailableAtLoopEntry(RHS, L) && 9147 "RHS is not available at Loop Entry"); 9148 9149 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9150 return true; 9151 9152 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9153 // the facts (a >= b && a != b) separately. A typical situation is when the 9154 // non-strict comparison is known from ranges and non-equality is known from 9155 // dominating predicates. If we are proving strict comparison, we always try 9156 // to prove non-equality and non-strict comparison separately. 9157 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9158 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9159 bool ProvedNonStrictComparison = false; 9160 bool ProvedNonEquality = false; 9161 9162 if (ProvingStrictComparison) { 9163 ProvedNonStrictComparison = 9164 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9165 ProvedNonEquality = 9166 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9167 if (ProvedNonStrictComparison && ProvedNonEquality) 9168 return true; 9169 } 9170 9171 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9172 auto ProveViaGuard = [&](BasicBlock *Block) { 9173 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9174 return true; 9175 if (ProvingStrictComparison) { 9176 if (!ProvedNonStrictComparison) 9177 ProvedNonStrictComparison = 9178 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9179 if (!ProvedNonEquality) 9180 ProvedNonEquality = 9181 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9182 if (ProvedNonStrictComparison && ProvedNonEquality) 9183 return true; 9184 } 9185 return false; 9186 }; 9187 9188 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9189 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9190 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9191 return true; 9192 if (ProvingStrictComparison) { 9193 if (!ProvedNonStrictComparison) 9194 ProvedNonStrictComparison = 9195 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9196 if (!ProvedNonEquality) 9197 ProvedNonEquality = 9198 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9199 if (ProvedNonStrictComparison && ProvedNonEquality) 9200 return true; 9201 } 9202 return false; 9203 }; 9204 9205 // Starting at the loop predecessor, climb up the predecessor chain, as long 9206 // as there are predecessors that can be found that have unique successors 9207 // leading to the original header. 9208 for (std::pair<BasicBlock *, BasicBlock *> 9209 Pair(L->getLoopPredecessor(), L->getHeader()); 9210 Pair.first; 9211 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9212 9213 if (ProveViaGuard(Pair.first)) 9214 return true; 9215 9216 BranchInst *LoopEntryPredicate = 9217 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9218 if (!LoopEntryPredicate || 9219 LoopEntryPredicate->isUnconditional()) 9220 continue; 9221 9222 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9223 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9224 return true; 9225 } 9226 9227 // Check conditions due to any @llvm.assume intrinsics. 9228 for (auto &AssumeVH : AC.assumptions()) { 9229 if (!AssumeVH) 9230 continue; 9231 auto *CI = cast<CallInst>(AssumeVH); 9232 if (!DT.dominates(CI, L->getHeader())) 9233 continue; 9234 9235 if (ProveViaCond(CI->getArgOperand(0), false)) 9236 return true; 9237 } 9238 9239 return false; 9240 } 9241 9242 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9243 const SCEV *LHS, const SCEV *RHS, 9244 Value *FoundCondValue, 9245 bool Inverse) { 9246 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9247 return false; 9248 9249 auto ClearOnExit = 9250 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9251 9252 // Recursively handle And and Or conditions. 9253 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9254 if (BO->getOpcode() == Instruction::And) { 9255 if (!Inverse) 9256 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9257 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9258 } else if (BO->getOpcode() == Instruction::Or) { 9259 if (Inverse) 9260 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9261 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9262 } 9263 } 9264 9265 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9266 if (!ICI) return false; 9267 9268 // Now that we found a conditional branch that dominates the loop or controls 9269 // the loop latch. Check to see if it is the comparison we are looking for. 9270 ICmpInst::Predicate FoundPred; 9271 if (Inverse) 9272 FoundPred = ICI->getInversePredicate(); 9273 else 9274 FoundPred = ICI->getPredicate(); 9275 9276 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9277 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9278 9279 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9280 } 9281 9282 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9283 const SCEV *RHS, 9284 ICmpInst::Predicate FoundPred, 9285 const SCEV *FoundLHS, 9286 const SCEV *FoundRHS) { 9287 // Balance the types. 9288 if (getTypeSizeInBits(LHS->getType()) < 9289 getTypeSizeInBits(FoundLHS->getType())) { 9290 if (CmpInst::isSigned(Pred)) { 9291 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9292 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9293 } else { 9294 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9295 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9296 } 9297 } else if (getTypeSizeInBits(LHS->getType()) > 9298 getTypeSizeInBits(FoundLHS->getType())) { 9299 if (CmpInst::isSigned(FoundPred)) { 9300 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9301 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9302 } else { 9303 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9304 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9305 } 9306 } 9307 9308 // Canonicalize the query to match the way instcombine will have 9309 // canonicalized the comparison. 9310 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9311 if (LHS == RHS) 9312 return CmpInst::isTrueWhenEqual(Pred); 9313 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9314 if (FoundLHS == FoundRHS) 9315 return CmpInst::isFalseWhenEqual(FoundPred); 9316 9317 // Check to see if we can make the LHS or RHS match. 9318 if (LHS == FoundRHS || RHS == FoundLHS) { 9319 if (isa<SCEVConstant>(RHS)) { 9320 std::swap(FoundLHS, FoundRHS); 9321 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9322 } else { 9323 std::swap(LHS, RHS); 9324 Pred = ICmpInst::getSwappedPredicate(Pred); 9325 } 9326 } 9327 9328 // Check whether the found predicate is the same as the desired predicate. 9329 if (FoundPred == Pred) 9330 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9331 9332 // Check whether swapping the found predicate makes it the same as the 9333 // desired predicate. 9334 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9335 if (isa<SCEVConstant>(RHS)) 9336 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9337 else 9338 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9339 RHS, LHS, FoundLHS, FoundRHS); 9340 } 9341 9342 // Unsigned comparison is the same as signed comparison when both the operands 9343 // are non-negative. 9344 if (CmpInst::isUnsigned(FoundPred) && 9345 CmpInst::getSignedPredicate(FoundPred) == Pred && 9346 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9347 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9348 9349 // Check if we can make progress by sharpening ranges. 9350 if (FoundPred == ICmpInst::ICMP_NE && 9351 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9352 9353 const SCEVConstant *C = nullptr; 9354 const SCEV *V = nullptr; 9355 9356 if (isa<SCEVConstant>(FoundLHS)) { 9357 C = cast<SCEVConstant>(FoundLHS); 9358 V = FoundRHS; 9359 } else { 9360 C = cast<SCEVConstant>(FoundRHS); 9361 V = FoundLHS; 9362 } 9363 9364 // The guarding predicate tells us that C != V. If the known range 9365 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9366 // range we consider has to correspond to same signedness as the 9367 // predicate we're interested in folding. 9368 9369 APInt Min = ICmpInst::isSigned(Pred) ? 9370 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9371 9372 if (Min == C->getAPInt()) { 9373 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9374 // This is true even if (Min + 1) wraps around -- in case of 9375 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9376 9377 APInt SharperMin = Min + 1; 9378 9379 switch (Pred) { 9380 case ICmpInst::ICMP_SGE: 9381 case ICmpInst::ICMP_UGE: 9382 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9383 // RHS, we're done. 9384 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9385 getConstant(SharperMin))) 9386 return true; 9387 LLVM_FALLTHROUGH; 9388 9389 case ICmpInst::ICMP_SGT: 9390 case ICmpInst::ICMP_UGT: 9391 // We know from the range information that (V `Pred` Min || 9392 // V == Min). We know from the guarding condition that !(V 9393 // == Min). This gives us 9394 // 9395 // V `Pred` Min || V == Min && !(V == Min) 9396 // => V `Pred` Min 9397 // 9398 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9399 9400 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9401 return true; 9402 LLVM_FALLTHROUGH; 9403 9404 default: 9405 // No change 9406 break; 9407 } 9408 } 9409 } 9410 9411 // Check whether the actual condition is beyond sufficient. 9412 if (FoundPred == ICmpInst::ICMP_EQ) 9413 if (ICmpInst::isTrueWhenEqual(Pred)) 9414 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9415 return true; 9416 if (Pred == ICmpInst::ICMP_NE) 9417 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9418 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9419 return true; 9420 9421 // Otherwise assume the worst. 9422 return false; 9423 } 9424 9425 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9426 const SCEV *&L, const SCEV *&R, 9427 SCEV::NoWrapFlags &Flags) { 9428 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9429 if (!AE || AE->getNumOperands() != 2) 9430 return false; 9431 9432 L = AE->getOperand(0); 9433 R = AE->getOperand(1); 9434 Flags = AE->getNoWrapFlags(); 9435 return true; 9436 } 9437 9438 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9439 const SCEV *Less) { 9440 // We avoid subtracting expressions here because this function is usually 9441 // fairly deep in the call stack (i.e. is called many times). 9442 9443 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9444 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9445 const auto *MAR = cast<SCEVAddRecExpr>(More); 9446 9447 if (LAR->getLoop() != MAR->getLoop()) 9448 return None; 9449 9450 // We look at affine expressions only; not for correctness but to keep 9451 // getStepRecurrence cheap. 9452 if (!LAR->isAffine() || !MAR->isAffine()) 9453 return None; 9454 9455 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9456 return None; 9457 9458 Less = LAR->getStart(); 9459 More = MAR->getStart(); 9460 9461 // fall through 9462 } 9463 9464 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9465 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9466 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9467 return M - L; 9468 } 9469 9470 SCEV::NoWrapFlags Flags; 9471 const SCEV *LLess = nullptr, *RLess = nullptr; 9472 const SCEV *LMore = nullptr, *RMore = nullptr; 9473 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9474 // Compare (X + C1) vs X. 9475 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9476 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9477 if (RLess == More) 9478 return -(C1->getAPInt()); 9479 9480 // Compare X vs (X + C2). 9481 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9482 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9483 if (RMore == Less) 9484 return C2->getAPInt(); 9485 9486 // Compare (X + C1) vs (X + C2). 9487 if (C1 && C2 && RLess == RMore) 9488 return C2->getAPInt() - C1->getAPInt(); 9489 9490 return None; 9491 } 9492 9493 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9494 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9495 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9496 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9497 return false; 9498 9499 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9500 if (!AddRecLHS) 9501 return false; 9502 9503 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9504 if (!AddRecFoundLHS) 9505 return false; 9506 9507 // We'd like to let SCEV reason about control dependencies, so we constrain 9508 // both the inequalities to be about add recurrences on the same loop. This 9509 // way we can use isLoopEntryGuardedByCond later. 9510 9511 const Loop *L = AddRecFoundLHS->getLoop(); 9512 if (L != AddRecLHS->getLoop()) 9513 return false; 9514 9515 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9516 // 9517 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9518 // ... (2) 9519 // 9520 // Informal proof for (2), assuming (1) [*]: 9521 // 9522 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9523 // 9524 // Then 9525 // 9526 // FoundLHS s< FoundRHS s< INT_MIN - C 9527 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9528 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9529 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9530 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9531 // <=> FoundLHS + C s< FoundRHS + C 9532 // 9533 // [*]: (1) can be proved by ruling out overflow. 9534 // 9535 // [**]: This can be proved by analyzing all the four possibilities: 9536 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9537 // (A s>= 0, B s>= 0). 9538 // 9539 // Note: 9540 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9541 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9542 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9543 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9544 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9545 // C)". 9546 9547 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9548 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9549 if (!LDiff || !RDiff || *LDiff != *RDiff) 9550 return false; 9551 9552 if (LDiff->isMinValue()) 9553 return true; 9554 9555 APInt FoundRHSLimit; 9556 9557 if (Pred == CmpInst::ICMP_ULT) { 9558 FoundRHSLimit = -(*RDiff); 9559 } else { 9560 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9561 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9562 } 9563 9564 // Try to prove (1) or (2), as needed. 9565 return isAvailableAtLoopEntry(FoundRHS, L) && 9566 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9567 getConstant(FoundRHSLimit)); 9568 } 9569 9570 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9571 const SCEV *LHS, const SCEV *RHS, 9572 const SCEV *FoundLHS, 9573 const SCEV *FoundRHS, unsigned Depth) { 9574 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9575 9576 auto ClearOnExit = make_scope_exit([&]() { 9577 if (LPhi) { 9578 bool Erased = PendingMerges.erase(LPhi); 9579 assert(Erased && "Failed to erase LPhi!"); 9580 (void)Erased; 9581 } 9582 if (RPhi) { 9583 bool Erased = PendingMerges.erase(RPhi); 9584 assert(Erased && "Failed to erase RPhi!"); 9585 (void)Erased; 9586 } 9587 }); 9588 9589 // Find respective Phis and check that they are not being pending. 9590 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9591 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9592 if (!PendingMerges.insert(Phi).second) 9593 return false; 9594 LPhi = Phi; 9595 } 9596 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9597 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9598 // If we detect a loop of Phi nodes being processed by this method, for 9599 // example: 9600 // 9601 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9602 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9603 // 9604 // we don't want to deal with a case that complex, so return conservative 9605 // answer false. 9606 if (!PendingMerges.insert(Phi).second) 9607 return false; 9608 RPhi = Phi; 9609 } 9610 9611 // If none of LHS, RHS is a Phi, nothing to do here. 9612 if (!LPhi && !RPhi) 9613 return false; 9614 9615 // If there is a SCEVUnknown Phi we are interested in, make it left. 9616 if (!LPhi) { 9617 std::swap(LHS, RHS); 9618 std::swap(FoundLHS, FoundRHS); 9619 std::swap(LPhi, RPhi); 9620 Pred = ICmpInst::getSwappedPredicate(Pred); 9621 } 9622 9623 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9624 const BasicBlock *LBB = LPhi->getParent(); 9625 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9626 9627 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9628 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9629 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9630 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9631 }; 9632 9633 if (RPhi && RPhi->getParent() == LBB) { 9634 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9635 // If we compare two Phis from the same block, and for each entry block 9636 // the predicate is true for incoming values from this block, then the 9637 // predicate is also true for the Phis. 9638 for (const BasicBlock *IncBB : predecessors(LBB)) { 9639 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9640 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9641 if (!ProvedEasily(L, R)) 9642 return false; 9643 } 9644 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9645 // Case two: RHS is also a Phi from the same basic block, and it is an 9646 // AddRec. It means that there is a loop which has both AddRec and Unknown 9647 // PHIs, for it we can compare incoming values of AddRec from above the loop 9648 // and latch with their respective incoming values of LPhi. 9649 assert(LPhi->getNumIncomingValues() == 2 && 9650 "Phi node standing in loop header does not have exactly 2 inputs?"); 9651 auto *RLoop = RAR->getLoop(); 9652 auto *Predecessor = RLoop->getLoopPredecessor(); 9653 assert(Predecessor && "Loop with AddRec with no predecessor?"); 9654 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 9655 if (!ProvedEasily(L1, RAR->getStart())) 9656 return false; 9657 auto *Latch = RLoop->getLoopLatch(); 9658 assert(Latch && "Loop with AddRec with no latch?"); 9659 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 9660 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 9661 return false; 9662 } else { 9663 // In all other cases go over inputs of LHS and compare each of them to RHS, 9664 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 9665 // At this point RHS is either a non-Phi, or it is a Phi from some block 9666 // different from LBB. 9667 for (const BasicBlock *IncBB : predecessors(LBB)) { 9668 // Check that RHS is available in this block. 9669 if (!dominates(RHS, IncBB)) 9670 return false; 9671 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9672 if (!ProvedEasily(L, RHS)) 9673 return false; 9674 } 9675 } 9676 return true; 9677 } 9678 9679 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9680 const SCEV *LHS, const SCEV *RHS, 9681 const SCEV *FoundLHS, 9682 const SCEV *FoundRHS) { 9683 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9684 return true; 9685 9686 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9687 return true; 9688 9689 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9690 FoundLHS, FoundRHS) || 9691 // ~x < ~y --> x > y 9692 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9693 getNotSCEV(FoundRHS), 9694 getNotSCEV(FoundLHS)); 9695 } 9696 9697 /// If Expr computes ~A, return A else return nullptr 9698 static const SCEV *MatchNotExpr(const SCEV *Expr) { 9699 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 9700 if (!Add || Add->getNumOperands() != 2 || 9701 !Add->getOperand(0)->isAllOnesValue()) 9702 return nullptr; 9703 9704 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 9705 if (!AddRHS || AddRHS->getNumOperands() != 2 || 9706 !AddRHS->getOperand(0)->isAllOnesValue()) 9707 return nullptr; 9708 9709 return AddRHS->getOperand(1); 9710 } 9711 9712 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 9713 template<typename MaxExprType> 9714 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 9715 const SCEV *Candidate) { 9716 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 9717 if (!MaxExpr) return false; 9718 9719 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 9720 } 9721 9722 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 9723 template<typename MaxExprType> 9724 static bool IsMinConsistingOf(ScalarEvolution &SE, 9725 const SCEV *MaybeMinExpr, 9726 const SCEV *Candidate) { 9727 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 9728 if (!MaybeMaxExpr) 9729 return false; 9730 9731 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 9732 } 9733 9734 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 9735 ICmpInst::Predicate Pred, 9736 const SCEV *LHS, const SCEV *RHS) { 9737 // If both sides are affine addrecs for the same loop, with equal 9738 // steps, and we know the recurrences don't wrap, then we only 9739 // need to check the predicate on the starting values. 9740 9741 if (!ICmpInst::isRelational(Pred)) 9742 return false; 9743 9744 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 9745 if (!LAR) 9746 return false; 9747 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9748 if (!RAR) 9749 return false; 9750 if (LAR->getLoop() != RAR->getLoop()) 9751 return false; 9752 if (!LAR->isAffine() || !RAR->isAffine()) 9753 return false; 9754 9755 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 9756 return false; 9757 9758 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 9759 SCEV::FlagNSW : SCEV::FlagNUW; 9760 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 9761 return false; 9762 9763 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 9764 } 9765 9766 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 9767 /// expression? 9768 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 9769 ICmpInst::Predicate Pred, 9770 const SCEV *LHS, const SCEV *RHS) { 9771 switch (Pred) { 9772 default: 9773 return false; 9774 9775 case ICmpInst::ICMP_SGE: 9776 std::swap(LHS, RHS); 9777 LLVM_FALLTHROUGH; 9778 case ICmpInst::ICMP_SLE: 9779 return 9780 // min(A, ...) <= A 9781 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 9782 // A <= max(A, ...) 9783 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 9784 9785 case ICmpInst::ICMP_UGE: 9786 std::swap(LHS, RHS); 9787 LLVM_FALLTHROUGH; 9788 case ICmpInst::ICMP_ULE: 9789 return 9790 // min(A, ...) <= A 9791 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 9792 // A <= max(A, ...) 9793 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 9794 } 9795 9796 llvm_unreachable("covered switch fell through?!"); 9797 } 9798 9799 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 9800 const SCEV *LHS, const SCEV *RHS, 9801 const SCEV *FoundLHS, 9802 const SCEV *FoundRHS, 9803 unsigned Depth) { 9804 assert(getTypeSizeInBits(LHS->getType()) == 9805 getTypeSizeInBits(RHS->getType()) && 9806 "LHS and RHS have different sizes?"); 9807 assert(getTypeSizeInBits(FoundLHS->getType()) == 9808 getTypeSizeInBits(FoundRHS->getType()) && 9809 "FoundLHS and FoundRHS have different sizes?"); 9810 // We want to avoid hurting the compile time with analysis of too big trees. 9811 if (Depth > MaxSCEVOperationsImplicationDepth) 9812 return false; 9813 // We only want to work with ICMP_SGT comparison so far. 9814 // TODO: Extend to ICMP_UGT? 9815 if (Pred == ICmpInst::ICMP_SLT) { 9816 Pred = ICmpInst::ICMP_SGT; 9817 std::swap(LHS, RHS); 9818 std::swap(FoundLHS, FoundRHS); 9819 } 9820 if (Pred != ICmpInst::ICMP_SGT) 9821 return false; 9822 9823 auto GetOpFromSExt = [&](const SCEV *S) { 9824 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 9825 return Ext->getOperand(); 9826 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 9827 // the constant in some cases. 9828 return S; 9829 }; 9830 9831 // Acquire values from extensions. 9832 auto *OrigLHS = LHS; 9833 auto *OrigFoundLHS = FoundLHS; 9834 LHS = GetOpFromSExt(LHS); 9835 FoundLHS = GetOpFromSExt(FoundLHS); 9836 9837 // Is the SGT predicate can be proved trivially or using the found context. 9838 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 9839 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 9840 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 9841 FoundRHS, Depth + 1); 9842 }; 9843 9844 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 9845 // We want to avoid creation of any new non-constant SCEV. Since we are 9846 // going to compare the operands to RHS, we should be certain that we don't 9847 // need any size extensions for this. So let's decline all cases when the 9848 // sizes of types of LHS and RHS do not match. 9849 // TODO: Maybe try to get RHS from sext to catch more cases? 9850 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 9851 return false; 9852 9853 // Should not overflow. 9854 if (!LHSAddExpr->hasNoSignedWrap()) 9855 return false; 9856 9857 auto *LL = LHSAddExpr->getOperand(0); 9858 auto *LR = LHSAddExpr->getOperand(1); 9859 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 9860 9861 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 9862 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 9863 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 9864 }; 9865 // Try to prove the following rule: 9866 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 9867 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 9868 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 9869 return true; 9870 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 9871 Value *LL, *LR; 9872 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 9873 9874 using namespace llvm::PatternMatch; 9875 9876 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 9877 // Rules for division. 9878 // We are going to perform some comparisons with Denominator and its 9879 // derivative expressions. In general case, creating a SCEV for it may 9880 // lead to a complex analysis of the entire graph, and in particular it 9881 // can request trip count recalculation for the same loop. This would 9882 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 9883 // this, we only want to create SCEVs that are constants in this section. 9884 // So we bail if Denominator is not a constant. 9885 if (!isa<ConstantInt>(LR)) 9886 return false; 9887 9888 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 9889 9890 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 9891 // then a SCEV for the numerator already exists and matches with FoundLHS. 9892 auto *Numerator = getExistingSCEV(LL); 9893 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 9894 return false; 9895 9896 // Make sure that the numerator matches with FoundLHS and the denominator 9897 // is positive. 9898 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 9899 return false; 9900 9901 auto *DTy = Denominator->getType(); 9902 auto *FRHSTy = FoundRHS->getType(); 9903 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 9904 // One of types is a pointer and another one is not. We cannot extend 9905 // them properly to a wider type, so let us just reject this case. 9906 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 9907 // to avoid this check. 9908 return false; 9909 9910 // Given that: 9911 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 9912 auto *WTy = getWiderType(DTy, FRHSTy); 9913 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 9914 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 9915 9916 // Try to prove the following rule: 9917 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 9918 // For example, given that FoundLHS > 2. It means that FoundLHS is at 9919 // least 3. If we divide it by Denominator < 4, we will have at least 1. 9920 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 9921 if (isKnownNonPositive(RHS) && 9922 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 9923 return true; 9924 9925 // Try to prove the following rule: 9926 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 9927 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 9928 // If we divide it by Denominator > 2, then: 9929 // 1. If FoundLHS is negative, then the result is 0. 9930 // 2. If FoundLHS is non-negative, then the result is non-negative. 9931 // Anyways, the result is non-negative. 9932 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 9933 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 9934 if (isKnownNegative(RHS) && 9935 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 9936 return true; 9937 } 9938 } 9939 9940 // If our expression contained SCEVUnknown Phis, and we split it down and now 9941 // need to prove something for them, try to prove the predicate for every 9942 // possible incoming values of those Phis. 9943 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 9944 return true; 9945 9946 return false; 9947 } 9948 9949 bool 9950 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 9951 const SCEV *LHS, const SCEV *RHS) { 9952 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 9953 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 9954 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 9955 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 9956 } 9957 9958 bool 9959 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 9960 const SCEV *LHS, const SCEV *RHS, 9961 const SCEV *FoundLHS, 9962 const SCEV *FoundRHS) { 9963 switch (Pred) { 9964 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 9965 case ICmpInst::ICMP_EQ: 9966 case ICmpInst::ICMP_NE: 9967 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 9968 return true; 9969 break; 9970 case ICmpInst::ICMP_SLT: 9971 case ICmpInst::ICMP_SLE: 9972 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 9973 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 9974 return true; 9975 break; 9976 case ICmpInst::ICMP_SGT: 9977 case ICmpInst::ICMP_SGE: 9978 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 9979 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 9980 return true; 9981 break; 9982 case ICmpInst::ICMP_ULT: 9983 case ICmpInst::ICMP_ULE: 9984 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 9985 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 9986 return true; 9987 break; 9988 case ICmpInst::ICMP_UGT: 9989 case ICmpInst::ICMP_UGE: 9990 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 9991 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 9992 return true; 9993 break; 9994 } 9995 9996 // Maybe it can be proved via operations? 9997 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9998 return true; 9999 10000 return false; 10001 } 10002 10003 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10004 const SCEV *LHS, 10005 const SCEV *RHS, 10006 const SCEV *FoundLHS, 10007 const SCEV *FoundRHS) { 10008 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10009 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10010 // reduce the compile time impact of this optimization. 10011 return false; 10012 10013 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10014 if (!Addend) 10015 return false; 10016 10017 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10018 10019 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10020 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10021 ConstantRange FoundLHSRange = 10022 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10023 10024 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10025 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10026 10027 // We can also compute the range of values for `LHS` that satisfy the 10028 // consequent, "`LHS` `Pred` `RHS`": 10029 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10030 ConstantRange SatisfyingLHSRange = 10031 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10032 10033 // The antecedent implies the consequent if every value of `LHS` that 10034 // satisfies the antecedent also satisfies the consequent. 10035 return SatisfyingLHSRange.contains(LHSRange); 10036 } 10037 10038 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10039 bool IsSigned, bool NoWrap) { 10040 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10041 10042 if (NoWrap) return false; 10043 10044 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10045 const SCEV *One = getOne(Stride->getType()); 10046 10047 if (IsSigned) { 10048 APInt MaxRHS = getSignedRangeMax(RHS); 10049 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10050 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10051 10052 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10053 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10054 } 10055 10056 APInt MaxRHS = getUnsignedRangeMax(RHS); 10057 APInt MaxValue = APInt::getMaxValue(BitWidth); 10058 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10059 10060 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10061 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10062 } 10063 10064 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10065 bool IsSigned, bool NoWrap) { 10066 if (NoWrap) return false; 10067 10068 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10069 const SCEV *One = getOne(Stride->getType()); 10070 10071 if (IsSigned) { 10072 APInt MinRHS = getSignedRangeMin(RHS); 10073 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10074 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10075 10076 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10077 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10078 } 10079 10080 APInt MinRHS = getUnsignedRangeMin(RHS); 10081 APInt MinValue = APInt::getMinValue(BitWidth); 10082 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10083 10084 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10085 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10086 } 10087 10088 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10089 bool Equality) { 10090 const SCEV *One = getOne(Step->getType()); 10091 Delta = Equality ? getAddExpr(Delta, Step) 10092 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10093 return getUDivExpr(Delta, Step); 10094 } 10095 10096 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10097 const SCEV *Stride, 10098 const SCEV *End, 10099 unsigned BitWidth, 10100 bool IsSigned) { 10101 10102 assert(!isKnownNonPositive(Stride) && 10103 "Stride is expected strictly positive!"); 10104 // Calculate the maximum backedge count based on the range of values 10105 // permitted by Start, End, and Stride. 10106 const SCEV *MaxBECount; 10107 APInt MinStart = 10108 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10109 10110 APInt StrideForMaxBECount = 10111 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10112 10113 // We already know that the stride is positive, so we paper over conservatism 10114 // in our range computation by forcing StrideForMaxBECount to be at least one. 10115 // In theory this is unnecessary, but we expect MaxBECount to be a 10116 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10117 // is nothing to constant fold it to). 10118 APInt One(BitWidth, 1, IsSigned); 10119 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10120 10121 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10122 : APInt::getMaxValue(BitWidth); 10123 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10124 10125 // Although End can be a MAX expression we estimate MaxEnd considering only 10126 // the case End = RHS of the loop termination condition. This is safe because 10127 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10128 // taken count. 10129 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10130 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10131 10132 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10133 getConstant(StrideForMaxBECount) /* Step */, 10134 false /* Equality */); 10135 10136 return MaxBECount; 10137 } 10138 10139 ScalarEvolution::ExitLimit 10140 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10141 const Loop *L, bool IsSigned, 10142 bool ControlsExit, bool AllowPredicates) { 10143 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10144 10145 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10146 bool PredicatedIV = false; 10147 10148 if (!IV && AllowPredicates) { 10149 // Try to make this an AddRec using runtime tests, in the first X 10150 // iterations of this loop, where X is the SCEV expression found by the 10151 // algorithm below. 10152 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10153 PredicatedIV = true; 10154 } 10155 10156 // Avoid weird loops 10157 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10158 return getCouldNotCompute(); 10159 10160 bool NoWrap = ControlsExit && 10161 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10162 10163 const SCEV *Stride = IV->getStepRecurrence(*this); 10164 10165 bool PositiveStride = isKnownPositive(Stride); 10166 10167 // Avoid negative or zero stride values. 10168 if (!PositiveStride) { 10169 // We can compute the correct backedge taken count for loops with unknown 10170 // strides if we can prove that the loop is not an infinite loop with side 10171 // effects. Here's the loop structure we are trying to handle - 10172 // 10173 // i = start 10174 // do { 10175 // A[i] = i; 10176 // i += s; 10177 // } while (i < end); 10178 // 10179 // The backedge taken count for such loops is evaluated as - 10180 // (max(end, start + stride) - start - 1) /u stride 10181 // 10182 // The additional preconditions that we need to check to prove correctness 10183 // of the above formula is as follows - 10184 // 10185 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10186 // NoWrap flag). 10187 // b) loop is single exit with no side effects. 10188 // 10189 // 10190 // Precondition a) implies that if the stride is negative, this is a single 10191 // trip loop. The backedge taken count formula reduces to zero in this case. 10192 // 10193 // Precondition b) implies that the unknown stride cannot be zero otherwise 10194 // we have UB. 10195 // 10196 // The positive stride case is the same as isKnownPositive(Stride) returning 10197 // true (original behavior of the function). 10198 // 10199 // We want to make sure that the stride is truly unknown as there are edge 10200 // cases where ScalarEvolution propagates no wrap flags to the 10201 // post-increment/decrement IV even though the increment/decrement operation 10202 // itself is wrapping. The computed backedge taken count may be wrong in 10203 // such cases. This is prevented by checking that the stride is not known to 10204 // be either positive or non-positive. For example, no wrap flags are 10205 // propagated to the post-increment IV of this loop with a trip count of 2 - 10206 // 10207 // unsigned char i; 10208 // for(i=127; i<128; i+=129) 10209 // A[i] = i; 10210 // 10211 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10212 !loopHasNoSideEffects(L)) 10213 return getCouldNotCompute(); 10214 } else if (!Stride->isOne() && 10215 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10216 // Avoid proven overflow cases: this will ensure that the backedge taken 10217 // count will not generate any unsigned overflow. Relaxed no-overflow 10218 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10219 // undefined behaviors like the case of C language. 10220 return getCouldNotCompute(); 10221 10222 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10223 : ICmpInst::ICMP_ULT; 10224 const SCEV *Start = IV->getStart(); 10225 const SCEV *End = RHS; 10226 // When the RHS is not invariant, we do not know the end bound of the loop and 10227 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10228 // calculate the MaxBECount, given the start, stride and max value for the end 10229 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10230 // checked above). 10231 if (!isLoopInvariant(RHS, L)) { 10232 const SCEV *MaxBECount = computeMaxBECountForLT( 10233 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10234 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10235 false /*MaxOrZero*/, Predicates); 10236 } 10237 // If the backedge is taken at least once, then it will be taken 10238 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10239 // is the LHS value of the less-than comparison the first time it is evaluated 10240 // and End is the RHS. 10241 const SCEV *BECountIfBackedgeTaken = 10242 computeBECount(getMinusSCEV(End, Start), Stride, false); 10243 // If the loop entry is guarded by the result of the backedge test of the 10244 // first loop iteration, then we know the backedge will be taken at least 10245 // once and so the backedge taken count is as above. If not then we use the 10246 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10247 // as if the backedge is taken at least once max(End,Start) is End and so the 10248 // result is as above, and if not max(End,Start) is Start so we get a backedge 10249 // count of zero. 10250 const SCEV *BECount; 10251 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10252 BECount = BECountIfBackedgeTaken; 10253 else { 10254 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10255 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10256 } 10257 10258 const SCEV *MaxBECount; 10259 bool MaxOrZero = false; 10260 if (isa<SCEVConstant>(BECount)) 10261 MaxBECount = BECount; 10262 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10263 // If we know exactly how many times the backedge will be taken if it's 10264 // taken at least once, then the backedge count will either be that or 10265 // zero. 10266 MaxBECount = BECountIfBackedgeTaken; 10267 MaxOrZero = true; 10268 } else { 10269 MaxBECount = computeMaxBECountForLT( 10270 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10271 } 10272 10273 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10274 !isa<SCEVCouldNotCompute>(BECount)) 10275 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10276 10277 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10278 } 10279 10280 ScalarEvolution::ExitLimit 10281 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10282 const Loop *L, bool IsSigned, 10283 bool ControlsExit, bool AllowPredicates) { 10284 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10285 // We handle only IV > Invariant 10286 if (!isLoopInvariant(RHS, L)) 10287 return getCouldNotCompute(); 10288 10289 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10290 if (!IV && AllowPredicates) 10291 // Try to make this an AddRec using runtime tests, in the first X 10292 // iterations of this loop, where X is the SCEV expression found by the 10293 // algorithm below. 10294 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10295 10296 // Avoid weird loops 10297 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10298 return getCouldNotCompute(); 10299 10300 bool NoWrap = ControlsExit && 10301 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10302 10303 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10304 10305 // Avoid negative or zero stride values 10306 if (!isKnownPositive(Stride)) 10307 return getCouldNotCompute(); 10308 10309 // Avoid proven overflow cases: this will ensure that the backedge taken count 10310 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10311 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10312 // behaviors like the case of C language. 10313 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10314 return getCouldNotCompute(); 10315 10316 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10317 : ICmpInst::ICMP_UGT; 10318 10319 const SCEV *Start = IV->getStart(); 10320 const SCEV *End = RHS; 10321 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10322 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10323 10324 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10325 10326 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10327 : getUnsignedRangeMax(Start); 10328 10329 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10330 : getUnsignedRangeMin(Stride); 10331 10332 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10333 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10334 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10335 10336 // Although End can be a MIN expression we estimate MinEnd considering only 10337 // the case End = RHS. This is safe because in the other case (Start - End) 10338 // is zero, leading to a zero maximum backedge taken count. 10339 APInt MinEnd = 10340 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10341 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10342 10343 10344 const SCEV *MaxBECount = getCouldNotCompute(); 10345 if (isa<SCEVConstant>(BECount)) 10346 MaxBECount = BECount; 10347 else 10348 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 10349 getConstant(MinStride), false); 10350 10351 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10352 MaxBECount = BECount; 10353 10354 return ExitLimit(BECount, MaxBECount, false, Predicates); 10355 } 10356 10357 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10358 ScalarEvolution &SE) const { 10359 if (Range.isFullSet()) // Infinite loop. 10360 return SE.getCouldNotCompute(); 10361 10362 // If the start is a non-zero constant, shift the range to simplify things. 10363 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10364 if (!SC->getValue()->isZero()) { 10365 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10366 Operands[0] = SE.getZero(SC->getType()); 10367 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10368 getNoWrapFlags(FlagNW)); 10369 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10370 return ShiftedAddRec->getNumIterationsInRange( 10371 Range.subtract(SC->getAPInt()), SE); 10372 // This is strange and shouldn't happen. 10373 return SE.getCouldNotCompute(); 10374 } 10375 10376 // The only time we can solve this is when we have all constant indices. 10377 // Otherwise, we cannot determine the overflow conditions. 10378 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10379 return SE.getCouldNotCompute(); 10380 10381 // Okay at this point we know that all elements of the chrec are constants and 10382 // that the start element is zero. 10383 10384 // First check to see if the range contains zero. If not, the first 10385 // iteration exits. 10386 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10387 if (!Range.contains(APInt(BitWidth, 0))) 10388 return SE.getZero(getType()); 10389 10390 if (isAffine()) { 10391 // If this is an affine expression then we have this situation: 10392 // Solve {0,+,A} in Range === Ax in Range 10393 10394 // We know that zero is in the range. If A is positive then we know that 10395 // the upper value of the range must be the first possible exit value. 10396 // If A is negative then the lower of the range is the last possible loop 10397 // value. Also note that we already checked for a full range. 10398 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10399 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10400 10401 // The exit value should be (End+A)/A. 10402 APInt ExitVal = (End + A).udiv(A); 10403 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10404 10405 // Evaluate at the exit value. If we really did fall out of the valid 10406 // range, then we computed our trip count, otherwise wrap around or other 10407 // things must have happened. 10408 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10409 if (Range.contains(Val->getValue())) 10410 return SE.getCouldNotCompute(); // Something strange happened 10411 10412 // Ensure that the previous value is in the range. This is a sanity check. 10413 assert(Range.contains( 10414 EvaluateConstantChrecAtConstant(this, 10415 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10416 "Linear scev computation is off in a bad way!"); 10417 return SE.getConstant(ExitValue); 10418 } else if (isQuadratic()) { 10419 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 10420 // quadratic equation to solve it. To do this, we must frame our problem in 10421 // terms of figuring out when zero is crossed, instead of when 10422 // Range.getUpper() is crossed. 10423 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 10424 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 10425 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 10426 10427 // Next, solve the constructed addrec 10428 if (auto Roots = 10429 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 10430 const SCEVConstant *R1 = Roots->first; 10431 const SCEVConstant *R2 = Roots->second; 10432 // Pick the smallest positive root value. 10433 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 10434 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 10435 if (!CB->getZExtValue()) 10436 std::swap(R1, R2); // R1 is the minimum root now. 10437 10438 // Make sure the root is not off by one. The returned iteration should 10439 // not be in the range, but the previous one should be. When solving 10440 // for "X*X < 5", for example, we should not return a root of 2. 10441 ConstantInt *R1Val = 10442 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 10443 if (Range.contains(R1Val->getValue())) { 10444 // The next iteration must be out of the range... 10445 ConstantInt *NextVal = 10446 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 10447 10448 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10449 if (!Range.contains(R1Val->getValue())) 10450 return SE.getConstant(NextVal); 10451 return SE.getCouldNotCompute(); // Something strange happened 10452 } 10453 10454 // If R1 was not in the range, then it is a good return value. Make 10455 // sure that R1-1 WAS in the range though, just in case. 10456 ConstantInt *NextVal = 10457 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 10458 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10459 if (Range.contains(R1Val->getValue())) 10460 return R1; 10461 return SE.getCouldNotCompute(); // Something strange happened 10462 } 10463 } 10464 } 10465 10466 return SE.getCouldNotCompute(); 10467 } 10468 10469 const SCEVAddRecExpr * 10470 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10471 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10472 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10473 // but in this case we cannot guarantee that the value returned will be an 10474 // AddRec because SCEV does not have a fixed point where it stops 10475 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10476 // may happen if we reach arithmetic depth limit while simplifying. So we 10477 // construct the returned value explicitly. 10478 SmallVector<const SCEV *, 3> Ops; 10479 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10480 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10481 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10482 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10483 // We know that the last operand is not a constant zero (otherwise it would 10484 // have been popped out earlier). This guarantees us that if the result has 10485 // the same last operand, then it will also not be popped out, meaning that 10486 // the returned value will be an AddRec. 10487 const SCEV *Last = getOperand(getNumOperands() - 1); 10488 assert(!Last->isZero() && "Recurrency with zero step?"); 10489 Ops.push_back(Last); 10490 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10491 SCEV::FlagAnyWrap)); 10492 } 10493 10494 // Return true when S contains at least an undef value. 10495 static inline bool containsUndefs(const SCEV *S) { 10496 return SCEVExprContains(S, [](const SCEV *S) { 10497 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10498 return isa<UndefValue>(SU->getValue()); 10499 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 10500 return isa<UndefValue>(SC->getValue()); 10501 return false; 10502 }); 10503 } 10504 10505 namespace { 10506 10507 // Collect all steps of SCEV expressions. 10508 struct SCEVCollectStrides { 10509 ScalarEvolution &SE; 10510 SmallVectorImpl<const SCEV *> &Strides; 10511 10512 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10513 : SE(SE), Strides(S) {} 10514 10515 bool follow(const SCEV *S) { 10516 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10517 Strides.push_back(AR->getStepRecurrence(SE)); 10518 return true; 10519 } 10520 10521 bool isDone() const { return false; } 10522 }; 10523 10524 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10525 struct SCEVCollectTerms { 10526 SmallVectorImpl<const SCEV *> &Terms; 10527 10528 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10529 10530 bool follow(const SCEV *S) { 10531 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10532 isa<SCEVSignExtendExpr>(S)) { 10533 if (!containsUndefs(S)) 10534 Terms.push_back(S); 10535 10536 // Stop recursion: once we collected a term, do not walk its operands. 10537 return false; 10538 } 10539 10540 // Keep looking. 10541 return true; 10542 } 10543 10544 bool isDone() const { return false; } 10545 }; 10546 10547 // Check if a SCEV contains an AddRecExpr. 10548 struct SCEVHasAddRec { 10549 bool &ContainsAddRec; 10550 10551 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10552 ContainsAddRec = false; 10553 } 10554 10555 bool follow(const SCEV *S) { 10556 if (isa<SCEVAddRecExpr>(S)) { 10557 ContainsAddRec = true; 10558 10559 // Stop recursion: once we collected a term, do not walk its operands. 10560 return false; 10561 } 10562 10563 // Keep looking. 10564 return true; 10565 } 10566 10567 bool isDone() const { return false; } 10568 }; 10569 10570 // Find factors that are multiplied with an expression that (possibly as a 10571 // subexpression) contains an AddRecExpr. In the expression: 10572 // 10573 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10574 // 10575 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10576 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10577 // parameters as they form a product with an induction variable. 10578 // 10579 // This collector expects all array size parameters to be in the same MulExpr. 10580 // It might be necessary to later add support for collecting parameters that are 10581 // spread over different nested MulExpr. 10582 struct SCEVCollectAddRecMultiplies { 10583 SmallVectorImpl<const SCEV *> &Terms; 10584 ScalarEvolution &SE; 10585 10586 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10587 : Terms(T), SE(SE) {} 10588 10589 bool follow(const SCEV *S) { 10590 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10591 bool HasAddRec = false; 10592 SmallVector<const SCEV *, 0> Operands; 10593 for (auto Op : Mul->operands()) { 10594 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10595 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10596 Operands.push_back(Op); 10597 } else if (Unknown) { 10598 HasAddRec = true; 10599 } else { 10600 bool ContainsAddRec; 10601 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10602 visitAll(Op, ContiansAddRec); 10603 HasAddRec |= ContainsAddRec; 10604 } 10605 } 10606 if (Operands.size() == 0) 10607 return true; 10608 10609 if (!HasAddRec) 10610 return false; 10611 10612 Terms.push_back(SE.getMulExpr(Operands)); 10613 // Stop recursion: once we collected a term, do not walk its operands. 10614 return false; 10615 } 10616 10617 // Keep looking. 10618 return true; 10619 } 10620 10621 bool isDone() const { return false; } 10622 }; 10623 10624 } // end anonymous namespace 10625 10626 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10627 /// two places: 10628 /// 1) The strides of AddRec expressions. 10629 /// 2) Unknowns that are multiplied with AddRec expressions. 10630 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10631 SmallVectorImpl<const SCEV *> &Terms) { 10632 SmallVector<const SCEV *, 4> Strides; 10633 SCEVCollectStrides StrideCollector(*this, Strides); 10634 visitAll(Expr, StrideCollector); 10635 10636 LLVM_DEBUG({ 10637 dbgs() << "Strides:\n"; 10638 for (const SCEV *S : Strides) 10639 dbgs() << *S << "\n"; 10640 }); 10641 10642 for (const SCEV *S : Strides) { 10643 SCEVCollectTerms TermCollector(Terms); 10644 visitAll(S, TermCollector); 10645 } 10646 10647 LLVM_DEBUG({ 10648 dbgs() << "Terms:\n"; 10649 for (const SCEV *T : Terms) 10650 dbgs() << *T << "\n"; 10651 }); 10652 10653 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10654 visitAll(Expr, MulCollector); 10655 } 10656 10657 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10658 SmallVectorImpl<const SCEV *> &Terms, 10659 SmallVectorImpl<const SCEV *> &Sizes) { 10660 int Last = Terms.size() - 1; 10661 const SCEV *Step = Terms[Last]; 10662 10663 // End of recursion. 10664 if (Last == 0) { 10665 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10666 SmallVector<const SCEV *, 2> Qs; 10667 for (const SCEV *Op : M->operands()) 10668 if (!isa<SCEVConstant>(Op)) 10669 Qs.push_back(Op); 10670 10671 Step = SE.getMulExpr(Qs); 10672 } 10673 10674 Sizes.push_back(Step); 10675 return true; 10676 } 10677 10678 for (const SCEV *&Term : Terms) { 10679 // Normalize the terms before the next call to findArrayDimensionsRec. 10680 const SCEV *Q, *R; 10681 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10682 10683 // Bail out when GCD does not evenly divide one of the terms. 10684 if (!R->isZero()) 10685 return false; 10686 10687 Term = Q; 10688 } 10689 10690 // Remove all SCEVConstants. 10691 Terms.erase( 10692 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10693 Terms.end()); 10694 10695 if (Terms.size() > 0) 10696 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10697 return false; 10698 10699 Sizes.push_back(Step); 10700 return true; 10701 } 10702 10703 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10704 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10705 for (const SCEV *T : Terms) 10706 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 10707 return true; 10708 return false; 10709 } 10710 10711 // Return the number of product terms in S. 10712 static inline int numberOfTerms(const SCEV *S) { 10713 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10714 return Expr->getNumOperands(); 10715 return 1; 10716 } 10717 10718 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10719 if (isa<SCEVConstant>(T)) 10720 return nullptr; 10721 10722 if (isa<SCEVUnknown>(T)) 10723 return T; 10724 10725 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10726 SmallVector<const SCEV *, 2> Factors; 10727 for (const SCEV *Op : M->operands()) 10728 if (!isa<SCEVConstant>(Op)) 10729 Factors.push_back(Op); 10730 10731 return SE.getMulExpr(Factors); 10732 } 10733 10734 return T; 10735 } 10736 10737 /// Return the size of an element read or written by Inst. 10738 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 10739 Type *Ty; 10740 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 10741 Ty = Store->getValueOperand()->getType(); 10742 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 10743 Ty = Load->getType(); 10744 else 10745 return nullptr; 10746 10747 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 10748 return getSizeOfExpr(ETy, Ty); 10749 } 10750 10751 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 10752 SmallVectorImpl<const SCEV *> &Sizes, 10753 const SCEV *ElementSize) { 10754 if (Terms.size() < 1 || !ElementSize) 10755 return; 10756 10757 // Early return when Terms do not contain parameters: we do not delinearize 10758 // non parametric SCEVs. 10759 if (!containsParameters(Terms)) 10760 return; 10761 10762 LLVM_DEBUG({ 10763 dbgs() << "Terms:\n"; 10764 for (const SCEV *T : Terms) 10765 dbgs() << *T << "\n"; 10766 }); 10767 10768 // Remove duplicates. 10769 array_pod_sort(Terms.begin(), Terms.end()); 10770 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 10771 10772 // Put larger terms first. 10773 llvm::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 10774 return numberOfTerms(LHS) > numberOfTerms(RHS); 10775 }); 10776 10777 // Try to divide all terms by the element size. If term is not divisible by 10778 // element size, proceed with the original term. 10779 for (const SCEV *&Term : Terms) { 10780 const SCEV *Q, *R; 10781 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 10782 if (!Q->isZero()) 10783 Term = Q; 10784 } 10785 10786 SmallVector<const SCEV *, 4> NewTerms; 10787 10788 // Remove constant factors. 10789 for (const SCEV *T : Terms) 10790 if (const SCEV *NewT = removeConstantFactors(*this, T)) 10791 NewTerms.push_back(NewT); 10792 10793 LLVM_DEBUG({ 10794 dbgs() << "Terms after sorting:\n"; 10795 for (const SCEV *T : NewTerms) 10796 dbgs() << *T << "\n"; 10797 }); 10798 10799 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 10800 Sizes.clear(); 10801 return; 10802 } 10803 10804 // The last element to be pushed into Sizes is the size of an element. 10805 Sizes.push_back(ElementSize); 10806 10807 LLVM_DEBUG({ 10808 dbgs() << "Sizes:\n"; 10809 for (const SCEV *S : Sizes) 10810 dbgs() << *S << "\n"; 10811 }); 10812 } 10813 10814 void ScalarEvolution::computeAccessFunctions( 10815 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 10816 SmallVectorImpl<const SCEV *> &Sizes) { 10817 // Early exit in case this SCEV is not an affine multivariate function. 10818 if (Sizes.empty()) 10819 return; 10820 10821 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 10822 if (!AR->isAffine()) 10823 return; 10824 10825 const SCEV *Res = Expr; 10826 int Last = Sizes.size() - 1; 10827 for (int i = Last; i >= 0; i--) { 10828 const SCEV *Q, *R; 10829 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 10830 10831 LLVM_DEBUG({ 10832 dbgs() << "Res: " << *Res << "\n"; 10833 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 10834 dbgs() << "Res divided by Sizes[i]:\n"; 10835 dbgs() << "Quotient: " << *Q << "\n"; 10836 dbgs() << "Remainder: " << *R << "\n"; 10837 }); 10838 10839 Res = Q; 10840 10841 // Do not record the last subscript corresponding to the size of elements in 10842 // the array. 10843 if (i == Last) { 10844 10845 // Bail out if the remainder is too complex. 10846 if (isa<SCEVAddRecExpr>(R)) { 10847 Subscripts.clear(); 10848 Sizes.clear(); 10849 return; 10850 } 10851 10852 continue; 10853 } 10854 10855 // Record the access function for the current subscript. 10856 Subscripts.push_back(R); 10857 } 10858 10859 // Also push in last position the remainder of the last division: it will be 10860 // the access function of the innermost dimension. 10861 Subscripts.push_back(Res); 10862 10863 std::reverse(Subscripts.begin(), Subscripts.end()); 10864 10865 LLVM_DEBUG({ 10866 dbgs() << "Subscripts:\n"; 10867 for (const SCEV *S : Subscripts) 10868 dbgs() << *S << "\n"; 10869 }); 10870 } 10871 10872 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 10873 /// sizes of an array access. Returns the remainder of the delinearization that 10874 /// is the offset start of the array. The SCEV->delinearize algorithm computes 10875 /// the multiples of SCEV coefficients: that is a pattern matching of sub 10876 /// expressions in the stride and base of a SCEV corresponding to the 10877 /// computation of a GCD (greatest common divisor) of base and stride. When 10878 /// SCEV->delinearize fails, it returns the SCEV unchanged. 10879 /// 10880 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 10881 /// 10882 /// void foo(long n, long m, long o, double A[n][m][o]) { 10883 /// 10884 /// for (long i = 0; i < n; i++) 10885 /// for (long j = 0; j < m; j++) 10886 /// for (long k = 0; k < o; k++) 10887 /// A[i][j][k] = 1.0; 10888 /// } 10889 /// 10890 /// the delinearization input is the following AddRec SCEV: 10891 /// 10892 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 10893 /// 10894 /// From this SCEV, we are able to say that the base offset of the access is %A 10895 /// because it appears as an offset that does not divide any of the strides in 10896 /// the loops: 10897 /// 10898 /// CHECK: Base offset: %A 10899 /// 10900 /// and then SCEV->delinearize determines the size of some of the dimensions of 10901 /// the array as these are the multiples by which the strides are happening: 10902 /// 10903 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 10904 /// 10905 /// Note that the outermost dimension remains of UnknownSize because there are 10906 /// no strides that would help identifying the size of the last dimension: when 10907 /// the array has been statically allocated, one could compute the size of that 10908 /// dimension by dividing the overall size of the array by the size of the known 10909 /// dimensions: %m * %o * 8. 10910 /// 10911 /// Finally delinearize provides the access functions for the array reference 10912 /// that does correspond to A[i][j][k] of the above C testcase: 10913 /// 10914 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 10915 /// 10916 /// The testcases are checking the output of a function pass: 10917 /// DelinearizationPass that walks through all loads and stores of a function 10918 /// asking for the SCEV of the memory access with respect to all enclosing 10919 /// loops, calling SCEV->delinearize on that and printing the results. 10920 void ScalarEvolution::delinearize(const SCEV *Expr, 10921 SmallVectorImpl<const SCEV *> &Subscripts, 10922 SmallVectorImpl<const SCEV *> &Sizes, 10923 const SCEV *ElementSize) { 10924 // First step: collect parametric terms. 10925 SmallVector<const SCEV *, 4> Terms; 10926 collectParametricTerms(Expr, Terms); 10927 10928 if (Terms.empty()) 10929 return; 10930 10931 // Second step: find subscript sizes. 10932 findArrayDimensions(Terms, Sizes, ElementSize); 10933 10934 if (Sizes.empty()) 10935 return; 10936 10937 // Third step: compute the access functions for each subscript. 10938 computeAccessFunctions(Expr, Subscripts, Sizes); 10939 10940 if (Subscripts.empty()) 10941 return; 10942 10943 LLVM_DEBUG({ 10944 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 10945 dbgs() << "ArrayDecl[UnknownSize]"; 10946 for (const SCEV *S : Sizes) 10947 dbgs() << "[" << *S << "]"; 10948 10949 dbgs() << "\nArrayRef"; 10950 for (const SCEV *S : Subscripts) 10951 dbgs() << "[" << *S << "]"; 10952 dbgs() << "\n"; 10953 }); 10954 } 10955 10956 //===----------------------------------------------------------------------===// 10957 // SCEVCallbackVH Class Implementation 10958 //===----------------------------------------------------------------------===// 10959 10960 void ScalarEvolution::SCEVCallbackVH::deleted() { 10961 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10962 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 10963 SE->ConstantEvolutionLoopExitValue.erase(PN); 10964 SE->eraseValueFromMap(getValPtr()); 10965 // this now dangles! 10966 } 10967 10968 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 10969 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10970 10971 // Forget all the expressions associated with users of the old value, 10972 // so that future queries will recompute the expressions using the new 10973 // value. 10974 Value *Old = getValPtr(); 10975 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 10976 SmallPtrSet<User *, 8> Visited; 10977 while (!Worklist.empty()) { 10978 User *U = Worklist.pop_back_val(); 10979 // Deleting the Old value will cause this to dangle. Postpone 10980 // that until everything else is done. 10981 if (U == Old) 10982 continue; 10983 if (!Visited.insert(U).second) 10984 continue; 10985 if (PHINode *PN = dyn_cast<PHINode>(U)) 10986 SE->ConstantEvolutionLoopExitValue.erase(PN); 10987 SE->eraseValueFromMap(U); 10988 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 10989 } 10990 // Delete the Old value. 10991 if (PHINode *PN = dyn_cast<PHINode>(Old)) 10992 SE->ConstantEvolutionLoopExitValue.erase(PN); 10993 SE->eraseValueFromMap(Old); 10994 // this now dangles! 10995 } 10996 10997 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 10998 : CallbackVH(V), SE(se) {} 10999 11000 //===----------------------------------------------------------------------===// 11001 // ScalarEvolution Class Implementation 11002 //===----------------------------------------------------------------------===// 11003 11004 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11005 AssumptionCache &AC, DominatorTree &DT, 11006 LoopInfo &LI) 11007 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11008 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11009 LoopDispositions(64), BlockDispositions(64) { 11010 // To use guards for proving predicates, we need to scan every instruction in 11011 // relevant basic blocks, and not just terminators. Doing this is a waste of 11012 // time if the IR does not actually contain any calls to 11013 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11014 // 11015 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11016 // to _add_ guards to the module when there weren't any before, and wants 11017 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11018 // efficient in lieu of being smart in that rather obscure case. 11019 11020 auto *GuardDecl = F.getParent()->getFunction( 11021 Intrinsic::getName(Intrinsic::experimental_guard)); 11022 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11023 } 11024 11025 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11026 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11027 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11028 ValueExprMap(std::move(Arg.ValueExprMap)), 11029 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11030 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11031 PendingMerges(std::move(Arg.PendingMerges)), 11032 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11033 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11034 PredicatedBackedgeTakenCounts( 11035 std::move(Arg.PredicatedBackedgeTakenCounts)), 11036 ConstantEvolutionLoopExitValue( 11037 std::move(Arg.ConstantEvolutionLoopExitValue)), 11038 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11039 LoopDispositions(std::move(Arg.LoopDispositions)), 11040 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11041 BlockDispositions(std::move(Arg.BlockDispositions)), 11042 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11043 SignedRanges(std::move(Arg.SignedRanges)), 11044 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11045 UniquePreds(std::move(Arg.UniquePreds)), 11046 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11047 LoopUsers(std::move(Arg.LoopUsers)), 11048 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11049 FirstUnknown(Arg.FirstUnknown) { 11050 Arg.FirstUnknown = nullptr; 11051 } 11052 11053 ScalarEvolution::~ScalarEvolution() { 11054 // Iterate through all the SCEVUnknown instances and call their 11055 // destructors, so that they release their references to their values. 11056 for (SCEVUnknown *U = FirstUnknown; U;) { 11057 SCEVUnknown *Tmp = U; 11058 U = U->Next; 11059 Tmp->~SCEVUnknown(); 11060 } 11061 FirstUnknown = nullptr; 11062 11063 ExprValueMap.clear(); 11064 ValueExprMap.clear(); 11065 HasRecMap.clear(); 11066 11067 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11068 // that a loop had multiple computable exits. 11069 for (auto &BTCI : BackedgeTakenCounts) 11070 BTCI.second.clear(); 11071 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11072 BTCI.second.clear(); 11073 11074 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11075 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11076 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11077 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11078 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11079 } 11080 11081 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11082 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11083 } 11084 11085 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11086 const Loop *L) { 11087 // Print all inner loops first 11088 for (Loop *I : *L) 11089 PrintLoopInfo(OS, SE, I); 11090 11091 OS << "Loop "; 11092 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11093 OS << ": "; 11094 11095 SmallVector<BasicBlock *, 8> ExitBlocks; 11096 L->getExitBlocks(ExitBlocks); 11097 if (ExitBlocks.size() != 1) 11098 OS << "<multiple exits> "; 11099 11100 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11101 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 11102 } else { 11103 OS << "Unpredictable backedge-taken count. "; 11104 } 11105 11106 OS << "\n" 11107 "Loop "; 11108 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11109 OS << ": "; 11110 11111 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 11112 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 11113 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11114 OS << ", actual taken count either this or zero."; 11115 } else { 11116 OS << "Unpredictable max backedge-taken count. "; 11117 } 11118 11119 OS << "\n" 11120 "Loop "; 11121 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11122 OS << ": "; 11123 11124 SCEVUnionPredicate Pred; 11125 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11126 if (!isa<SCEVCouldNotCompute>(PBT)) { 11127 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11128 OS << " Predicates:\n"; 11129 Pred.print(OS, 4); 11130 } else { 11131 OS << "Unpredictable predicated backedge-taken count. "; 11132 } 11133 OS << "\n"; 11134 11135 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11136 OS << "Loop "; 11137 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11138 OS << ": "; 11139 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11140 } 11141 } 11142 11143 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11144 switch (LD) { 11145 case ScalarEvolution::LoopVariant: 11146 return "Variant"; 11147 case ScalarEvolution::LoopInvariant: 11148 return "Invariant"; 11149 case ScalarEvolution::LoopComputable: 11150 return "Computable"; 11151 } 11152 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11153 } 11154 11155 void ScalarEvolution::print(raw_ostream &OS) const { 11156 // ScalarEvolution's implementation of the print method is to print 11157 // out SCEV values of all instructions that are interesting. Doing 11158 // this potentially causes it to create new SCEV objects though, 11159 // which technically conflicts with the const qualifier. This isn't 11160 // observable from outside the class though, so casting away the 11161 // const isn't dangerous. 11162 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11163 11164 OS << "Classifying expressions for: "; 11165 F.printAsOperand(OS, /*PrintType=*/false); 11166 OS << "\n"; 11167 for (Instruction &I : instructions(F)) 11168 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11169 OS << I << '\n'; 11170 OS << " --> "; 11171 const SCEV *SV = SE.getSCEV(&I); 11172 SV->print(OS); 11173 if (!isa<SCEVCouldNotCompute>(SV)) { 11174 OS << " U: "; 11175 SE.getUnsignedRange(SV).print(OS); 11176 OS << " S: "; 11177 SE.getSignedRange(SV).print(OS); 11178 } 11179 11180 const Loop *L = LI.getLoopFor(I.getParent()); 11181 11182 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11183 if (AtUse != SV) { 11184 OS << " --> "; 11185 AtUse->print(OS); 11186 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11187 OS << " U: "; 11188 SE.getUnsignedRange(AtUse).print(OS); 11189 OS << " S: "; 11190 SE.getSignedRange(AtUse).print(OS); 11191 } 11192 } 11193 11194 if (L) { 11195 OS << "\t\t" "Exits: "; 11196 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11197 if (!SE.isLoopInvariant(ExitValue, L)) { 11198 OS << "<<Unknown>>"; 11199 } else { 11200 OS << *ExitValue; 11201 } 11202 11203 bool First = true; 11204 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11205 if (First) { 11206 OS << "\t\t" "LoopDispositions: { "; 11207 First = false; 11208 } else { 11209 OS << ", "; 11210 } 11211 11212 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11213 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11214 } 11215 11216 for (auto *InnerL : depth_first(L)) { 11217 if (InnerL == L) 11218 continue; 11219 if (First) { 11220 OS << "\t\t" "LoopDispositions: { "; 11221 First = false; 11222 } else { 11223 OS << ", "; 11224 } 11225 11226 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11227 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11228 } 11229 11230 OS << " }"; 11231 } 11232 11233 OS << "\n"; 11234 } 11235 11236 OS << "Determining loop execution counts for: "; 11237 F.printAsOperand(OS, /*PrintType=*/false); 11238 OS << "\n"; 11239 for (Loop *I : LI) 11240 PrintLoopInfo(OS, &SE, I); 11241 } 11242 11243 ScalarEvolution::LoopDisposition 11244 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11245 auto &Values = LoopDispositions[S]; 11246 for (auto &V : Values) { 11247 if (V.getPointer() == L) 11248 return V.getInt(); 11249 } 11250 Values.emplace_back(L, LoopVariant); 11251 LoopDisposition D = computeLoopDisposition(S, L); 11252 auto &Values2 = LoopDispositions[S]; 11253 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11254 if (V.getPointer() == L) { 11255 V.setInt(D); 11256 break; 11257 } 11258 } 11259 return D; 11260 } 11261 11262 ScalarEvolution::LoopDisposition 11263 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11264 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11265 case scConstant: 11266 return LoopInvariant; 11267 case scTruncate: 11268 case scZeroExtend: 11269 case scSignExtend: 11270 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11271 case scAddRecExpr: { 11272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11273 11274 // If L is the addrec's loop, it's computable. 11275 if (AR->getLoop() == L) 11276 return LoopComputable; 11277 11278 // Add recurrences are never invariant in the function-body (null loop). 11279 if (!L) 11280 return LoopVariant; 11281 11282 // Everything that is not defined at loop entry is variant. 11283 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11284 return LoopVariant; 11285 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11286 " dominate the contained loop's header?"); 11287 11288 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11289 if (AR->getLoop()->contains(L)) 11290 return LoopInvariant; 11291 11292 // This recurrence is variant w.r.t. L if any of its operands 11293 // are variant. 11294 for (auto *Op : AR->operands()) 11295 if (!isLoopInvariant(Op, L)) 11296 return LoopVariant; 11297 11298 // Otherwise it's loop-invariant. 11299 return LoopInvariant; 11300 } 11301 case scAddExpr: 11302 case scMulExpr: 11303 case scUMaxExpr: 11304 case scSMaxExpr: { 11305 bool HasVarying = false; 11306 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11307 LoopDisposition D = getLoopDisposition(Op, L); 11308 if (D == LoopVariant) 11309 return LoopVariant; 11310 if (D == LoopComputable) 11311 HasVarying = true; 11312 } 11313 return HasVarying ? LoopComputable : LoopInvariant; 11314 } 11315 case scUDivExpr: { 11316 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11317 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11318 if (LD == LoopVariant) 11319 return LoopVariant; 11320 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11321 if (RD == LoopVariant) 11322 return LoopVariant; 11323 return (LD == LoopInvariant && RD == LoopInvariant) ? 11324 LoopInvariant : LoopComputable; 11325 } 11326 case scUnknown: 11327 // All non-instruction values are loop invariant. All instructions are loop 11328 // invariant if they are not contained in the specified loop. 11329 // Instructions are never considered invariant in the function body 11330 // (null loop) because they are defined within the "loop". 11331 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11332 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11333 return LoopInvariant; 11334 case scCouldNotCompute: 11335 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11336 } 11337 llvm_unreachable("Unknown SCEV kind!"); 11338 } 11339 11340 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11341 return getLoopDisposition(S, L) == LoopInvariant; 11342 } 11343 11344 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11345 return getLoopDisposition(S, L) == LoopComputable; 11346 } 11347 11348 ScalarEvolution::BlockDisposition 11349 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11350 auto &Values = BlockDispositions[S]; 11351 for (auto &V : Values) { 11352 if (V.getPointer() == BB) 11353 return V.getInt(); 11354 } 11355 Values.emplace_back(BB, DoesNotDominateBlock); 11356 BlockDisposition D = computeBlockDisposition(S, BB); 11357 auto &Values2 = BlockDispositions[S]; 11358 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11359 if (V.getPointer() == BB) { 11360 V.setInt(D); 11361 break; 11362 } 11363 } 11364 return D; 11365 } 11366 11367 ScalarEvolution::BlockDisposition 11368 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11369 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11370 case scConstant: 11371 return ProperlyDominatesBlock; 11372 case scTruncate: 11373 case scZeroExtend: 11374 case scSignExtend: 11375 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11376 case scAddRecExpr: { 11377 // This uses a "dominates" query instead of "properly dominates" query 11378 // to test for proper dominance too, because the instruction which 11379 // produces the addrec's value is a PHI, and a PHI effectively properly 11380 // dominates its entire containing block. 11381 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11382 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11383 return DoesNotDominateBlock; 11384 11385 // Fall through into SCEVNAryExpr handling. 11386 LLVM_FALLTHROUGH; 11387 } 11388 case scAddExpr: 11389 case scMulExpr: 11390 case scUMaxExpr: 11391 case scSMaxExpr: { 11392 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11393 bool Proper = true; 11394 for (const SCEV *NAryOp : NAry->operands()) { 11395 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11396 if (D == DoesNotDominateBlock) 11397 return DoesNotDominateBlock; 11398 if (D == DominatesBlock) 11399 Proper = false; 11400 } 11401 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11402 } 11403 case scUDivExpr: { 11404 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11405 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11406 BlockDisposition LD = getBlockDisposition(LHS, BB); 11407 if (LD == DoesNotDominateBlock) 11408 return DoesNotDominateBlock; 11409 BlockDisposition RD = getBlockDisposition(RHS, BB); 11410 if (RD == DoesNotDominateBlock) 11411 return DoesNotDominateBlock; 11412 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11413 ProperlyDominatesBlock : DominatesBlock; 11414 } 11415 case scUnknown: 11416 if (Instruction *I = 11417 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11418 if (I->getParent() == BB) 11419 return DominatesBlock; 11420 if (DT.properlyDominates(I->getParent(), BB)) 11421 return ProperlyDominatesBlock; 11422 return DoesNotDominateBlock; 11423 } 11424 return ProperlyDominatesBlock; 11425 case scCouldNotCompute: 11426 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11427 } 11428 llvm_unreachable("Unknown SCEV kind!"); 11429 } 11430 11431 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11432 return getBlockDisposition(S, BB) >= DominatesBlock; 11433 } 11434 11435 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11436 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11437 } 11438 11439 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11440 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11441 } 11442 11443 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11444 auto IsS = [&](const SCEV *X) { return S == X; }; 11445 auto ContainsS = [&](const SCEV *X) { 11446 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11447 }; 11448 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11449 } 11450 11451 void 11452 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11453 ValuesAtScopes.erase(S); 11454 LoopDispositions.erase(S); 11455 BlockDispositions.erase(S); 11456 UnsignedRanges.erase(S); 11457 SignedRanges.erase(S); 11458 ExprValueMap.erase(S); 11459 HasRecMap.erase(S); 11460 MinTrailingZerosCache.erase(S); 11461 11462 for (auto I = PredicatedSCEVRewrites.begin(); 11463 I != PredicatedSCEVRewrites.end();) { 11464 std::pair<const SCEV *, const Loop *> Entry = I->first; 11465 if (Entry.first == S) 11466 PredicatedSCEVRewrites.erase(I++); 11467 else 11468 ++I; 11469 } 11470 11471 auto RemoveSCEVFromBackedgeMap = 11472 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11473 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11474 BackedgeTakenInfo &BEInfo = I->second; 11475 if (BEInfo.hasOperand(S, this)) { 11476 BEInfo.clear(); 11477 Map.erase(I++); 11478 } else 11479 ++I; 11480 } 11481 }; 11482 11483 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11484 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11485 } 11486 11487 void 11488 ScalarEvolution::getUsedLoops(const SCEV *S, 11489 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11490 struct FindUsedLoops { 11491 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11492 : LoopsUsed(LoopsUsed) {} 11493 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11494 bool follow(const SCEV *S) { 11495 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11496 LoopsUsed.insert(AR->getLoop()); 11497 return true; 11498 } 11499 11500 bool isDone() const { return false; } 11501 }; 11502 11503 FindUsedLoops F(LoopsUsed); 11504 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11505 } 11506 11507 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11508 SmallPtrSet<const Loop *, 8> LoopsUsed; 11509 getUsedLoops(S, LoopsUsed); 11510 for (auto *L : LoopsUsed) 11511 LoopUsers[L].push_back(S); 11512 } 11513 11514 void ScalarEvolution::verify() const { 11515 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11516 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11517 11518 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11519 11520 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11521 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11522 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11523 11524 const SCEV *visitConstant(const SCEVConstant *Constant) { 11525 return SE.getConstant(Constant->getAPInt()); 11526 } 11527 11528 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11529 return SE.getUnknown(Expr->getValue()); 11530 } 11531 11532 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11533 return SE.getCouldNotCompute(); 11534 } 11535 }; 11536 11537 SCEVMapper SCM(SE2); 11538 11539 while (!LoopStack.empty()) { 11540 auto *L = LoopStack.pop_back_val(); 11541 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11542 11543 auto *CurBECount = SCM.visit( 11544 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11545 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11546 11547 if (CurBECount == SE2.getCouldNotCompute() || 11548 NewBECount == SE2.getCouldNotCompute()) { 11549 // NB! This situation is legal, but is very suspicious -- whatever pass 11550 // change the loop to make a trip count go from could not compute to 11551 // computable or vice-versa *should have* invalidated SCEV. However, we 11552 // choose not to assert here (for now) since we don't want false 11553 // positives. 11554 continue; 11555 } 11556 11557 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11558 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11559 // not propagate undef aggressively). This means we can (and do) fail 11560 // verification in cases where a transform makes the trip count of a loop 11561 // go from "undef" to "undef+1" (say). The transform is fine, since in 11562 // both cases the loop iterates "undef" times, but SCEV thinks we 11563 // increased the trip count of the loop by 1 incorrectly. 11564 continue; 11565 } 11566 11567 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11568 SE.getTypeSizeInBits(NewBECount->getType())) 11569 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11570 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11571 SE.getTypeSizeInBits(NewBECount->getType())) 11572 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11573 11574 auto *ConstantDelta = 11575 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 11576 11577 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 11578 dbgs() << "Trip Count Changed!\n"; 11579 dbgs() << "Old: " << *CurBECount << "\n"; 11580 dbgs() << "New: " << *NewBECount << "\n"; 11581 dbgs() << "Delta: " << *ConstantDelta << "\n"; 11582 std::abort(); 11583 } 11584 } 11585 } 11586 11587 bool ScalarEvolution::invalidate( 11588 Function &F, const PreservedAnalyses &PA, 11589 FunctionAnalysisManager::Invalidator &Inv) { 11590 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11591 // of its dependencies is invalidated. 11592 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11593 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11594 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11595 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11596 Inv.invalidate<LoopAnalysis>(F, PA); 11597 } 11598 11599 AnalysisKey ScalarEvolutionAnalysis::Key; 11600 11601 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11602 FunctionAnalysisManager &AM) { 11603 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11604 AM.getResult<AssumptionAnalysis>(F), 11605 AM.getResult<DominatorTreeAnalysis>(F), 11606 AM.getResult<LoopAnalysis>(F)); 11607 } 11608 11609 PreservedAnalyses 11610 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11611 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11612 return PreservedAnalyses::all(); 11613 } 11614 11615 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11616 "Scalar Evolution Analysis", false, true) 11617 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11618 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11619 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11620 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11621 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11622 "Scalar Evolution Analysis", false, true) 11623 11624 char ScalarEvolutionWrapperPass::ID = 0; 11625 11626 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11627 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11628 } 11629 11630 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11631 SE.reset(new ScalarEvolution( 11632 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 11633 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11634 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11635 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11636 return false; 11637 } 11638 11639 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11640 11641 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11642 SE->print(OS); 11643 } 11644 11645 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11646 if (!VerifySCEV) 11647 return; 11648 11649 SE->verify(); 11650 } 11651 11652 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11653 AU.setPreservesAll(); 11654 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11655 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11656 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11657 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11658 } 11659 11660 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11661 const SCEV *RHS) { 11662 FoldingSetNodeID ID; 11663 assert(LHS->getType() == RHS->getType() && 11664 "Type mismatch between LHS and RHS"); 11665 // Unique this node based on the arguments 11666 ID.AddInteger(SCEVPredicate::P_Equal); 11667 ID.AddPointer(LHS); 11668 ID.AddPointer(RHS); 11669 void *IP = nullptr; 11670 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11671 return S; 11672 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11673 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11674 UniquePreds.InsertNode(Eq, IP); 11675 return Eq; 11676 } 11677 11678 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11679 const SCEVAddRecExpr *AR, 11680 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11681 FoldingSetNodeID ID; 11682 // Unique this node based on the arguments 11683 ID.AddInteger(SCEVPredicate::P_Wrap); 11684 ID.AddPointer(AR); 11685 ID.AddInteger(AddedFlags); 11686 void *IP = nullptr; 11687 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11688 return S; 11689 auto *OF = new (SCEVAllocator) 11690 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 11691 UniquePreds.InsertNode(OF, IP); 11692 return OF; 11693 } 11694 11695 namespace { 11696 11697 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 11698 public: 11699 11700 /// Rewrites \p S in the context of a loop L and the SCEV predication 11701 /// infrastructure. 11702 /// 11703 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 11704 /// equivalences present in \p Pred. 11705 /// 11706 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 11707 /// \p NewPreds such that the result will be an AddRecExpr. 11708 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 11709 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11710 SCEVUnionPredicate *Pred) { 11711 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 11712 return Rewriter.visit(S); 11713 } 11714 11715 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11716 if (Pred) { 11717 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 11718 for (auto *Pred : ExprPreds) 11719 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 11720 if (IPred->getLHS() == Expr) 11721 return IPred->getRHS(); 11722 } 11723 return convertToAddRecWithPreds(Expr); 11724 } 11725 11726 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 11727 const SCEV *Operand = visit(Expr->getOperand()); 11728 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11729 if (AR && AR->getLoop() == L && AR->isAffine()) { 11730 // This couldn't be folded because the operand didn't have the nuw 11731 // flag. Add the nusw flag as an assumption that we could make. 11732 const SCEV *Step = AR->getStepRecurrence(SE); 11733 Type *Ty = Expr->getType(); 11734 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 11735 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 11736 SE.getSignExtendExpr(Step, Ty), L, 11737 AR->getNoWrapFlags()); 11738 } 11739 return SE.getZeroExtendExpr(Operand, Expr->getType()); 11740 } 11741 11742 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 11743 const SCEV *Operand = visit(Expr->getOperand()); 11744 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11745 if (AR && AR->getLoop() == L && AR->isAffine()) { 11746 // This couldn't be folded because the operand didn't have the nsw 11747 // flag. Add the nssw flag as an assumption that we could make. 11748 const SCEV *Step = AR->getStepRecurrence(SE); 11749 Type *Ty = Expr->getType(); 11750 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 11751 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 11752 SE.getSignExtendExpr(Step, Ty), L, 11753 AR->getNoWrapFlags()); 11754 } 11755 return SE.getSignExtendExpr(Operand, Expr->getType()); 11756 } 11757 11758 private: 11759 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 11760 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11761 SCEVUnionPredicate *Pred) 11762 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 11763 11764 bool addOverflowAssumption(const SCEVPredicate *P) { 11765 if (!NewPreds) { 11766 // Check if we've already made this assumption. 11767 return Pred && Pred->implies(P); 11768 } 11769 NewPreds->insert(P); 11770 return true; 11771 } 11772 11773 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 11774 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11775 auto *A = SE.getWrapPredicate(AR, AddedFlags); 11776 return addOverflowAssumption(A); 11777 } 11778 11779 // If \p Expr represents a PHINode, we try to see if it can be represented 11780 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 11781 // to add this predicate as a runtime overflow check, we return the AddRec. 11782 // If \p Expr does not meet these conditions (is not a PHI node, or we 11783 // couldn't create an AddRec for it, or couldn't add the predicate), we just 11784 // return \p Expr. 11785 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 11786 if (!isa<PHINode>(Expr->getValue())) 11787 return Expr; 11788 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 11789 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 11790 if (!PredicatedRewrite) 11791 return Expr; 11792 for (auto *P : PredicatedRewrite->second){ 11793 // Wrap predicates from outer loops are not supported. 11794 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 11795 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 11796 if (L != AR->getLoop()) 11797 return Expr; 11798 } 11799 if (!addOverflowAssumption(P)) 11800 return Expr; 11801 } 11802 return PredicatedRewrite->first; 11803 } 11804 11805 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 11806 SCEVUnionPredicate *Pred; 11807 const Loop *L; 11808 }; 11809 11810 } // end anonymous namespace 11811 11812 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 11813 SCEVUnionPredicate &Preds) { 11814 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 11815 } 11816 11817 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 11818 const SCEV *S, const Loop *L, 11819 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 11820 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 11821 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 11822 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 11823 11824 if (!AddRec) 11825 return nullptr; 11826 11827 // Since the transformation was successful, we can now transfer the SCEV 11828 // predicates. 11829 for (auto *P : TransformPreds) 11830 Preds.insert(P); 11831 11832 return AddRec; 11833 } 11834 11835 /// SCEV predicates 11836 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 11837 SCEVPredicateKind Kind) 11838 : FastID(ID), Kind(Kind) {} 11839 11840 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 11841 const SCEV *LHS, const SCEV *RHS) 11842 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 11843 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 11844 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 11845 } 11846 11847 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 11848 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 11849 11850 if (!Op) 11851 return false; 11852 11853 return Op->LHS == LHS && Op->RHS == RHS; 11854 } 11855 11856 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 11857 11858 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 11859 11860 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 11861 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 11862 } 11863 11864 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 11865 const SCEVAddRecExpr *AR, 11866 IncrementWrapFlags Flags) 11867 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 11868 11869 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 11870 11871 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 11872 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 11873 11874 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 11875 } 11876 11877 bool SCEVWrapPredicate::isAlwaysTrue() const { 11878 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 11879 IncrementWrapFlags IFlags = Flags; 11880 11881 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 11882 IFlags = clearFlags(IFlags, IncrementNSSW); 11883 11884 return IFlags == IncrementAnyWrap; 11885 } 11886 11887 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 11888 OS.indent(Depth) << *getExpr() << " Added Flags: "; 11889 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 11890 OS << "<nusw>"; 11891 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 11892 OS << "<nssw>"; 11893 OS << "\n"; 11894 } 11895 11896 SCEVWrapPredicate::IncrementWrapFlags 11897 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 11898 ScalarEvolution &SE) { 11899 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 11900 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 11901 11902 // We can safely transfer the NSW flag as NSSW. 11903 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 11904 ImpliedFlags = IncrementNSSW; 11905 11906 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 11907 // If the increment is positive, the SCEV NUW flag will also imply the 11908 // WrapPredicate NUSW flag. 11909 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 11910 if (Step->getValue()->getValue().isNonNegative()) 11911 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 11912 } 11913 11914 return ImpliedFlags; 11915 } 11916 11917 /// Union predicates don't get cached so create a dummy set ID for it. 11918 SCEVUnionPredicate::SCEVUnionPredicate() 11919 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 11920 11921 bool SCEVUnionPredicate::isAlwaysTrue() const { 11922 return all_of(Preds, 11923 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 11924 } 11925 11926 ArrayRef<const SCEVPredicate *> 11927 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 11928 auto I = SCEVToPreds.find(Expr); 11929 if (I == SCEVToPreds.end()) 11930 return ArrayRef<const SCEVPredicate *>(); 11931 return I->second; 11932 } 11933 11934 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 11935 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 11936 return all_of(Set->Preds, 11937 [this](const SCEVPredicate *I) { return this->implies(I); }); 11938 11939 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 11940 if (ScevPredsIt == SCEVToPreds.end()) 11941 return false; 11942 auto &SCEVPreds = ScevPredsIt->second; 11943 11944 return any_of(SCEVPreds, 11945 [N](const SCEVPredicate *I) { return I->implies(N); }); 11946 } 11947 11948 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 11949 11950 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 11951 for (auto Pred : Preds) 11952 Pred->print(OS, Depth); 11953 } 11954 11955 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 11956 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 11957 for (auto Pred : Set->Preds) 11958 add(Pred); 11959 return; 11960 } 11961 11962 if (implies(N)) 11963 return; 11964 11965 const SCEV *Key = N->getExpr(); 11966 assert(Key && "Only SCEVUnionPredicate doesn't have an " 11967 " associated expression!"); 11968 11969 SCEVToPreds[Key].push_back(N); 11970 Preds.push_back(N); 11971 } 11972 11973 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 11974 Loop &L) 11975 : SE(SE), L(L) {} 11976 11977 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 11978 const SCEV *Expr = SE.getSCEV(V); 11979 RewriteEntry &Entry = RewriteMap[Expr]; 11980 11981 // If we already have an entry and the version matches, return it. 11982 if (Entry.second && Generation == Entry.first) 11983 return Entry.second; 11984 11985 // We found an entry but it's stale. Rewrite the stale entry 11986 // according to the current predicate. 11987 if (Entry.second) 11988 Expr = Entry.second; 11989 11990 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 11991 Entry = {Generation, NewSCEV}; 11992 11993 return NewSCEV; 11994 } 11995 11996 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 11997 if (!BackedgeCount) { 11998 SCEVUnionPredicate BackedgePred; 11999 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12000 addPredicate(BackedgePred); 12001 } 12002 return BackedgeCount; 12003 } 12004 12005 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12006 if (Preds.implies(&Pred)) 12007 return; 12008 Preds.add(&Pred); 12009 updateGeneration(); 12010 } 12011 12012 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12013 return Preds; 12014 } 12015 12016 void PredicatedScalarEvolution::updateGeneration() { 12017 // If the generation number wrapped recompute everything. 12018 if (++Generation == 0) { 12019 for (auto &II : RewriteMap) { 12020 const SCEV *Rewritten = II.second.second; 12021 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12022 } 12023 } 12024 } 12025 12026 void PredicatedScalarEvolution::setNoOverflow( 12027 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12028 const SCEV *Expr = getSCEV(V); 12029 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12030 12031 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12032 12033 // Clear the statically implied flags. 12034 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12035 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12036 12037 auto II = FlagsMap.insert({V, Flags}); 12038 if (!II.second) 12039 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12040 } 12041 12042 bool PredicatedScalarEvolution::hasNoOverflow( 12043 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12044 const SCEV *Expr = getSCEV(V); 12045 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12046 12047 Flags = SCEVWrapPredicate::clearFlags( 12048 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12049 12050 auto II = FlagsMap.find(V); 12051 12052 if (II != FlagsMap.end()) 12053 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12054 12055 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12056 } 12057 12058 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12059 const SCEV *Expr = this->getSCEV(V); 12060 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12061 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12062 12063 if (!New) 12064 return nullptr; 12065 12066 for (auto *P : NewPreds) 12067 Preds.add(P); 12068 12069 updateGeneration(); 12070 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12071 return New; 12072 } 12073 12074 PredicatedScalarEvolution::PredicatedScalarEvolution( 12075 const PredicatedScalarEvolution &Init) 12076 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12077 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12078 for (const auto &I : Init.FlagsMap) 12079 FlagsMap.insert(I); 12080 } 12081 12082 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12083 // For each block. 12084 for (auto *BB : L.getBlocks()) 12085 for (auto &I : *BB) { 12086 if (!SE.isSCEVable(I.getType())) 12087 continue; 12088 12089 auto *Expr = SE.getSCEV(&I); 12090 auto II = RewriteMap.find(Expr); 12091 12092 if (II == RewriteMap.end()) 12093 continue; 12094 12095 // Don't print things that are not interesting. 12096 if (II->second.second == Expr) 12097 continue; 12098 12099 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12100 OS.indent(Depth + 2) << *Expr << "\n"; 12101 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12102 } 12103 } 12104