xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision d33f36e23ba228134916276458001aa02563765c)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle.  These classes are reference counted, managed by the SCEVHandle
18 // class.  We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
20 //
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
26 //
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression.  These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
31 //
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
35 //
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
38 //
39 //===----------------------------------------------------------------------===//
40 //
41 // There are several good references for the techniques used in this analysis.
42 //
43 //  Chains of recurrences -- a method to expedite the evaluation
44 //  of closed-form functions
45 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 //
47 //  On computational properties of chains of recurrences
48 //  Eugene V. Zima
49 //
50 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 //  Robert A. van Engelen
52 //
53 //  Efficient Symbolic Analysis for Optimizing Compilers
54 //  Robert A. van Engelen
55 //
56 //  Using the chains of recurrences algebra for data dependence testing and
57 //  induction variable substitution
58 //  MS Thesis, Johnie Birch
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Assembly/Writer.h"
72 #include "llvm/Target/TargetData.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ConstantRange.h"
76 #include "llvm/Support/GetElementPtrTypeIterator.h"
77 #include "llvm/Support/InstIterator.h"
78 #include "llvm/Support/ManagedStatic.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/ADT/Statistic.h"
82 #include "llvm/ADT/STLExtras.h"
83 #include <ostream>
84 #include <algorithm>
85 using namespace llvm;
86 
87 STATISTIC(NumArrayLenItCounts,
88           "Number of trip counts computed with array length");
89 STATISTIC(NumTripCountsComputed,
90           "Number of loops with predictable loop counts");
91 STATISTIC(NumTripCountsNotComputed,
92           "Number of loops without predictable loop counts");
93 STATISTIC(NumBruteForceTripCountsComputed,
94           "Number of loops with trip counts computed by force");
95 
96 static cl::opt<unsigned>
97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                         cl::desc("Maximum number of iterations SCEV will "
99                                  "symbolically execute a constant derived loop"),
100                         cl::init(100));
101 
102 static RegisterPass<ScalarEvolution>
103 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104 char ScalarEvolution::ID = 0;
105 
106 //===----------------------------------------------------------------------===//
107 //                           SCEV class definitions
108 //===----------------------------------------------------------------------===//
109 
110 //===----------------------------------------------------------------------===//
111 // Implementation of the SCEV class.
112 //
113 SCEV::~SCEV() {}
114 void SCEV::dump() const {
115   print(errs());
116   errs() << '\n';
117 }
118 
119 void SCEV::print(std::ostream &o) const {
120   raw_os_ostream OS(o);
121   print(OS);
122 }
123 
124 bool SCEV::isZero() const {
125   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126     return SC->getValue()->isZero();
127   return false;
128 }
129 
130 bool SCEV::isOne() const {
131   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132     return SC->getValue()->isOne();
133   return false;
134 }
135 
136 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
137 SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
138 
139 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141   return false;
142 }
143 
144 const Type *SCEVCouldNotCompute::getType() const {
145   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146   return 0;
147 }
148 
149 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151   return false;
152 }
153 
154 SCEVHandle SCEVCouldNotCompute::
155 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156                                   const SCEVHandle &Conc,
157                                   ScalarEvolution &SE) const {
158   return this;
159 }
160 
161 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
162   OS << "***COULDNOTCOMPUTE***";
163 }
164 
165 bool SCEVCouldNotCompute::classof(const SCEV *S) {
166   return S->getSCEVType() == scCouldNotCompute;
167 }
168 
169 
170 // SCEVConstants - Only allow the creation of one SCEVConstant for any
171 // particular value.  Don't use a SCEVHandle here, or else the object will
172 // never be deleted!
173 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174 
175 
176 SCEVConstant::~SCEVConstant() {
177   SCEVConstants->erase(V);
178 }
179 
180 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
181   SCEVConstant *&R = (*SCEVConstants)[V];
182   if (R == 0) R = new SCEVConstant(V);
183   return R;
184 }
185 
186 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
187   return getConstant(ConstantInt::get(Val));
188 }
189 
190 const Type *SCEVConstant::getType() const { return V->getType(); }
191 
192 void SCEVConstant::print(raw_ostream &OS) const {
193   WriteAsOperand(OS, V, false);
194 }
195 
196 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197                            const SCEVHandle &op, const Type *ty)
198   : SCEV(SCEVTy), Op(op), Ty(ty) {}
199 
200 SCEVCastExpr::~SCEVCastExpr() {}
201 
202 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
203   return Op->dominates(BB, DT);
204 }
205 
206 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
207 // particular input.  Don't use a SCEVHandle here, or else the object will
208 // never be deleted!
209 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
210                      SCEVTruncateExpr*> > SCEVTruncates;
211 
212 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
213   : SCEVCastExpr(scTruncate, op, ty) {
214   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215          (Ty->isInteger() || isa<PointerType>(Ty)) &&
216          "Cannot truncate non-integer value!");
217 }
218 
219 SCEVTruncateExpr::~SCEVTruncateExpr() {
220   SCEVTruncates->erase(std::make_pair(Op, Ty));
221 }
222 
223 void SCEVTruncateExpr::print(raw_ostream &OS) const {
224   OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
225 }
226 
227 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
228 // particular input.  Don't use a SCEVHandle here, or else the object will never
229 // be deleted!
230 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
231                      SCEVZeroExtendExpr*> > SCEVZeroExtends;
232 
233 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
234   : SCEVCastExpr(scZeroExtend, op, ty) {
235   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
236          (Ty->isInteger() || isa<PointerType>(Ty)) &&
237          "Cannot zero extend non-integer value!");
238 }
239 
240 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241   SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242 }
243 
244 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
245   OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
246 }
247 
248 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
249 // particular input.  Don't use a SCEVHandle here, or else the object will never
250 // be deleted!
251 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
252                      SCEVSignExtendExpr*> > SCEVSignExtends;
253 
254 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
255   : SCEVCastExpr(scSignExtend, op, ty) {
256   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
257          (Ty->isInteger() || isa<PointerType>(Ty)) &&
258          "Cannot sign extend non-integer value!");
259 }
260 
261 SCEVSignExtendExpr::~SCEVSignExtendExpr() {
262   SCEVSignExtends->erase(std::make_pair(Op, Ty));
263 }
264 
265 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
266   OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
267 }
268 
269 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
270 // particular input.  Don't use a SCEVHandle here, or else the object will never
271 // be deleted!
272 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
273                      SCEVCommutativeExpr*> > SCEVCommExprs;
274 
275 SCEVCommutativeExpr::~SCEVCommutativeExpr() {
276   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
277   SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
278 }
279 
280 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
281   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
282   const char *OpStr = getOperationStr();
283   OS << "(" << *Operands[0];
284   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
285     OS << OpStr << *Operands[i];
286   OS << ")";
287 }
288 
289 SCEVHandle SCEVCommutativeExpr::
290 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
291                                   const SCEVHandle &Conc,
292                                   ScalarEvolution &SE) const {
293   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
294     SCEVHandle H =
295       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
296     if (H != getOperand(i)) {
297       std::vector<SCEVHandle> NewOps;
298       NewOps.reserve(getNumOperands());
299       for (unsigned j = 0; j != i; ++j)
300         NewOps.push_back(getOperand(j));
301       NewOps.push_back(H);
302       for (++i; i != e; ++i)
303         NewOps.push_back(getOperand(i)->
304                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
305 
306       if (isa<SCEVAddExpr>(this))
307         return SE.getAddExpr(NewOps);
308       else if (isa<SCEVMulExpr>(this))
309         return SE.getMulExpr(NewOps);
310       else if (isa<SCEVSMaxExpr>(this))
311         return SE.getSMaxExpr(NewOps);
312       else if (isa<SCEVUMaxExpr>(this))
313         return SE.getUMaxExpr(NewOps);
314       else
315         assert(0 && "Unknown commutative expr!");
316     }
317   }
318   return this;
319 }
320 
321 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
322   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
323     if (!getOperand(i)->dominates(BB, DT))
324       return false;
325   }
326   return true;
327 }
328 
329 
330 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
331 // input.  Don't use a SCEVHandle here, or else the object will never be
332 // deleted!
333 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
334                      SCEVUDivExpr*> > SCEVUDivs;
335 
336 SCEVUDivExpr::~SCEVUDivExpr() {
337   SCEVUDivs->erase(std::make_pair(LHS, RHS));
338 }
339 
340 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
341   return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
342 }
343 
344 void SCEVUDivExpr::print(raw_ostream &OS) const {
345   OS << "(" << *LHS << " /u " << *RHS << ")";
346 }
347 
348 const Type *SCEVUDivExpr::getType() const {
349   return LHS->getType();
350 }
351 
352 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
353 // particular input.  Don't use a SCEVHandle here, or else the object will never
354 // be deleted!
355 static ManagedStatic<std::map<std::pair<const Loop *,
356                                         std::vector<const SCEV*> >,
357                      SCEVAddRecExpr*> > SCEVAddRecExprs;
358 
359 SCEVAddRecExpr::~SCEVAddRecExpr() {
360   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
361   SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
362 }
363 
364 SCEVHandle SCEVAddRecExpr::
365 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
366                                   const SCEVHandle &Conc,
367                                   ScalarEvolution &SE) const {
368   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
369     SCEVHandle H =
370       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
371     if (H != getOperand(i)) {
372       std::vector<SCEVHandle> NewOps;
373       NewOps.reserve(getNumOperands());
374       for (unsigned j = 0; j != i; ++j)
375         NewOps.push_back(getOperand(j));
376       NewOps.push_back(H);
377       for (++i; i != e; ++i)
378         NewOps.push_back(getOperand(i)->
379                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
380 
381       return SE.getAddRecExpr(NewOps, L);
382     }
383   }
384   return this;
385 }
386 
387 
388 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
389   // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
390   // contain L and if the start is invariant.
391   return !QueryLoop->contains(L->getHeader()) &&
392          getOperand(0)->isLoopInvariant(QueryLoop);
393 }
394 
395 
396 void SCEVAddRecExpr::print(raw_ostream &OS) const {
397   OS << "{" << *Operands[0];
398   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
399     OS << ",+," << *Operands[i];
400   OS << "}<" << L->getHeader()->getName() + ">";
401 }
402 
403 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
404 // value.  Don't use a SCEVHandle here, or else the object will never be
405 // deleted!
406 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
407 
408 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
409 
410 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
411   // All non-instruction values are loop invariant.  All instructions are loop
412   // invariant if they are not contained in the specified loop.
413   if (Instruction *I = dyn_cast<Instruction>(V))
414     return !L->contains(I->getParent());
415   return true;
416 }
417 
418 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
419   if (Instruction *I = dyn_cast<Instruction>(getValue()))
420     return DT->dominates(I->getParent(), BB);
421   return true;
422 }
423 
424 const Type *SCEVUnknown::getType() const {
425   return V->getType();
426 }
427 
428 void SCEVUnknown::print(raw_ostream &OS) const {
429   WriteAsOperand(OS, V, false);
430 }
431 
432 //===----------------------------------------------------------------------===//
433 //                               SCEV Utilities
434 //===----------------------------------------------------------------------===//
435 
436 namespace {
437   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
438   /// than the complexity of the RHS.  This comparator is used to canonicalize
439   /// expressions.
440   class VISIBILITY_HIDDEN SCEVComplexityCompare {
441     LoopInfo *LI;
442   public:
443     explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
444 
445     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
446       // Primarily, sort the SCEVs by their getSCEVType().
447       if (LHS->getSCEVType() != RHS->getSCEVType())
448         return LHS->getSCEVType() < RHS->getSCEVType();
449 
450       // Aside from the getSCEVType() ordering, the particular ordering
451       // isn't very important except that it's beneficial to be consistent,
452       // so that (a + b) and (b + a) don't end up as different expressions.
453 
454       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
455       // not as complete as it could be.
456       if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
457         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
458 
459         // Compare getValueID values.
460         if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
461           return LU->getValue()->getValueID() < RU->getValue()->getValueID();
462 
463         // Sort arguments by their position.
464         if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
465           const Argument *RA = cast<Argument>(RU->getValue());
466           return LA->getArgNo() < RA->getArgNo();
467         }
468 
469         // For instructions, compare their loop depth, and their opcode.
470         // This is pretty loose.
471         if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
472           Instruction *RV = cast<Instruction>(RU->getValue());
473 
474           // Compare loop depths.
475           if (LI->getLoopDepth(LV->getParent()) !=
476               LI->getLoopDepth(RV->getParent()))
477             return LI->getLoopDepth(LV->getParent()) <
478                    LI->getLoopDepth(RV->getParent());
479 
480           // Compare opcodes.
481           if (LV->getOpcode() != RV->getOpcode())
482             return LV->getOpcode() < RV->getOpcode();
483 
484           // Compare the number of operands.
485           if (LV->getNumOperands() != RV->getNumOperands())
486             return LV->getNumOperands() < RV->getNumOperands();
487         }
488 
489         return false;
490       }
491 
492       // Constant sorting doesn't matter since they'll be folded.
493       if (isa<SCEVConstant>(LHS))
494         return false;
495 
496       // Lexicographically compare n-ary expressions.
497       if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
498         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
499         for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
500           if (i >= RC->getNumOperands())
501             return false;
502           if (operator()(LC->getOperand(i), RC->getOperand(i)))
503             return true;
504           if (operator()(RC->getOperand(i), LC->getOperand(i)))
505             return false;
506         }
507         return LC->getNumOperands() < RC->getNumOperands();
508       }
509 
510       // Lexicographically compare udiv expressions.
511       if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
512         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
513         if (operator()(LC->getLHS(), RC->getLHS()))
514           return true;
515         if (operator()(RC->getLHS(), LC->getLHS()))
516           return false;
517         if (operator()(LC->getRHS(), RC->getRHS()))
518           return true;
519         if (operator()(RC->getRHS(), LC->getRHS()))
520           return false;
521         return false;
522       }
523 
524       // Compare cast expressions by operand.
525       if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
526         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
527         return operator()(LC->getOperand(), RC->getOperand());
528       }
529 
530       assert(0 && "Unknown SCEV kind!");
531       return false;
532     }
533   };
534 }
535 
536 /// GroupByComplexity - Given a list of SCEV objects, order them by their
537 /// complexity, and group objects of the same complexity together by value.
538 /// When this routine is finished, we know that any duplicates in the vector are
539 /// consecutive and that complexity is monotonically increasing.
540 ///
541 /// Note that we go take special precautions to ensure that we get determinstic
542 /// results from this routine.  In other words, we don't want the results of
543 /// this to depend on where the addresses of various SCEV objects happened to
544 /// land in memory.
545 ///
546 static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
547                               LoopInfo *LI) {
548   if (Ops.size() < 2) return;  // Noop
549   if (Ops.size() == 2) {
550     // This is the common case, which also happens to be trivially simple.
551     // Special case it.
552     if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
553       std::swap(Ops[0], Ops[1]);
554     return;
555   }
556 
557   // Do the rough sort by complexity.
558   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
559 
560   // Now that we are sorted by complexity, group elements of the same
561   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
562   // be extremely short in practice.  Note that we take this approach because we
563   // do not want to depend on the addresses of the objects we are grouping.
564   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
565     const SCEV *S = Ops[i];
566     unsigned Complexity = S->getSCEVType();
567 
568     // If there are any objects of the same complexity and same value as this
569     // one, group them.
570     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571       if (Ops[j] == S) { // Found a duplicate.
572         // Move it to immediately after i'th element.
573         std::swap(Ops[i+1], Ops[j]);
574         ++i;   // no need to rescan it.
575         if (i == e-2) return;  // Done!
576       }
577     }
578   }
579 }
580 
581 
582 
583 //===----------------------------------------------------------------------===//
584 //                      Simple SCEV method implementations
585 //===----------------------------------------------------------------------===//
586 
587 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
588 // Assume, K > 0.
589 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
590                                       ScalarEvolution &SE,
591                                       const Type* ResultTy) {
592   // Handle the simplest case efficiently.
593   if (K == 1)
594     return SE.getTruncateOrZeroExtend(It, ResultTy);
595 
596   // We are using the following formula for BC(It, K):
597   //
598   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599   //
600   // Suppose, W is the bitwidth of the return value.  We must be prepared for
601   // overflow.  Hence, we must assure that the result of our computation is
602   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
603   // safe in modular arithmetic.
604   //
605   // However, this code doesn't use exactly that formula; the formula it uses
606   // is something like the following, where T is the number of factors of 2 in
607   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608   // exponentiation:
609   //
610   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
611   //
612   // This formula is trivially equivalent to the previous formula.  However,
613   // this formula can be implemented much more efficiently.  The trick is that
614   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615   // arithmetic.  To do exact division in modular arithmetic, all we have
616   // to do is multiply by the inverse.  Therefore, this step can be done at
617   // width W.
618   //
619   // The next issue is how to safely do the division by 2^T.  The way this
620   // is done is by doing the multiplication step at a width of at least W + T
621   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
622   // when we perform the division by 2^T (which is equivalent to a right shift
623   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
624   // truncated out after the division by 2^T.
625   //
626   // In comparison to just directly using the first formula, this technique
627   // is much more efficient; using the first formula requires W * K bits,
628   // but this formula less than W + K bits. Also, the first formula requires
629   // a division step, whereas this formula only requires multiplies and shifts.
630   //
631   // It doesn't matter whether the subtraction step is done in the calculation
632   // width or the input iteration count's width; if the subtraction overflows,
633   // the result must be zero anyway.  We prefer here to do it in the width of
634   // the induction variable because it helps a lot for certain cases; CodeGen
635   // isn't smart enough to ignore the overflow, which leads to much less
636   // efficient code if the width of the subtraction is wider than the native
637   // register width.
638   //
639   // (It's possible to not widen at all by pulling out factors of 2 before
640   // the multiplication; for example, K=2 can be calculated as
641   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642   // extra arithmetic, so it's not an obvious win, and it gets
643   // much more complicated for K > 3.)
644 
645   // Protection from insane SCEVs; this bound is conservative,
646   // but it probably doesn't matter.
647   if (K > 1000)
648     return SE.getCouldNotCompute();
649 
650   unsigned W = SE.getTypeSizeInBits(ResultTy);
651 
652   // Calculate K! / 2^T and T; we divide out the factors of two before
653   // multiplying for calculating K! / 2^T to avoid overflow.
654   // Other overflow doesn't matter because we only care about the bottom
655   // W bits of the result.
656   APInt OddFactorial(W, 1);
657   unsigned T = 1;
658   for (unsigned i = 3; i <= K; ++i) {
659     APInt Mult(W, i);
660     unsigned TwoFactors = Mult.countTrailingZeros();
661     T += TwoFactors;
662     Mult = Mult.lshr(TwoFactors);
663     OddFactorial *= Mult;
664   }
665 
666   // We need at least W + T bits for the multiplication step
667   unsigned CalculationBits = W + T;
668 
669   // Calcuate 2^T, at width T+W.
670   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671 
672   // Calculate the multiplicative inverse of K! / 2^T;
673   // this multiplication factor will perform the exact division by
674   // K! / 2^T.
675   APInt Mod = APInt::getSignedMinValue(W+1);
676   APInt MultiplyFactor = OddFactorial.zext(W+1);
677   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678   MultiplyFactor = MultiplyFactor.trunc(W);
679 
680   // Calculate the product, at width T+W
681   const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
682   SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
683   for (unsigned i = 1; i != K; ++i) {
684     SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
685     Dividend = SE.getMulExpr(Dividend,
686                              SE.getTruncateOrZeroExtend(S, CalculationTy));
687   }
688 
689   // Divide by 2^T
690   SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
691 
692   // Truncate the result, and divide by K! / 2^T.
693 
694   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
695                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
696 }
697 
698 /// evaluateAtIteration - Return the value of this chain of recurrences at
699 /// the specified iteration number.  We can evaluate this recurrence by
700 /// multiplying each element in the chain by the binomial coefficient
701 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
702 ///
703 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
704 ///
705 /// where BC(It, k) stands for binomial coefficient.
706 ///
707 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
708                                                ScalarEvolution &SE) const {
709   SCEVHandle Result = getStart();
710   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
711     // The computation is correct in the face of overflow provided that the
712     // multiplication is performed _after_ the evaluation of the binomial
713     // coefficient.
714     SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
715     if (isa<SCEVCouldNotCompute>(Coeff))
716       return Coeff;
717 
718     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
719   }
720   return Result;
721 }
722 
723 //===----------------------------------------------------------------------===//
724 //                    SCEV Expression folder implementations
725 //===----------------------------------------------------------------------===//
726 
727 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
728                                             const Type *Ty) {
729   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
730          "This is not a truncating conversion!");
731   assert(isSCEVable(Ty) &&
732          "This is not a conversion to a SCEVable type!");
733   Ty = getEffectiveSCEVType(Ty);
734 
735   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
736     return getUnknown(
737         ConstantExpr::getTrunc(SC->getValue(), Ty));
738 
739   // trunc(trunc(x)) --> trunc(x)
740   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
741     return getTruncateExpr(ST->getOperand(), Ty);
742 
743   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
744   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
745     return getTruncateOrSignExtend(SS->getOperand(), Ty);
746 
747   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
748   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
749     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
750 
751   // If the input value is a chrec scev made out of constants, truncate
752   // all of the constants.
753   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
754     std::vector<SCEVHandle> Operands;
755     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
756       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
757     return getAddRecExpr(Operands, AddRec->getLoop());
758   }
759 
760   SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762   return Result;
763 }
764 
765 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766                                               const Type *Ty) {
767   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
768          "This is not an extending conversion!");
769   assert(isSCEVable(Ty) &&
770          "This is not a conversion to a SCEVable type!");
771   Ty = getEffectiveSCEVType(Ty);
772 
773   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
774     const Type *IntTy = getEffectiveSCEVType(Ty);
775     Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777     return getUnknown(C);
778   }
779 
780   // zext(zext(x)) --> zext(x)
781   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
782     return getZeroExtendExpr(SZ->getOperand(), Ty);
783 
784   // If the input value is a chrec scev, and we can prove that the value
785   // did not overflow the old, smaller, value, we can zero extend all of the
786   // operands (often constants).  This allows analysis of something like
787   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
788   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
789     if (AR->isAffine()) {
790       // Check whether the backedge-taken count is SCEVCouldNotCompute.
791       // Note that this serves two purposes: It filters out loops that are
792       // simply not analyzable, and it covers the case where this code is
793       // being called from within backedge-taken count analysis, such that
794       // attempting to ask for the backedge-taken count would likely result
795       // in infinite recursion. In the later case, the analysis code will
796       // cope with a conservative value, and it will take care to purge
797       // that value once it has finished.
798       SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
800         // Manually compute the final value for AR, checking for
801         // overflow.
802         SCEVHandle Start = AR->getStart();
803         SCEVHandle Step = AR->getStepRecurrence(*this);
804 
805         // Check whether the backedge-taken count can be losslessly casted to
806         // the addrec's type. The count is always unsigned.
807         SCEVHandle CastedMaxBECount =
808           getTruncateOrZeroExtend(MaxBECount, Start->getType());
809         if (MaxBECount ==
810             getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
811           const Type *WideTy =
812             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
813           // Check whether Start+Step*MaxBECount has no unsigned overflow.
814           SCEVHandle ZMul =
815             getMulExpr(CastedMaxBECount,
816                        getTruncateOrZeroExtend(Step, Start->getType()));
817           SCEVHandle Add = getAddExpr(Start, ZMul);
818           if (getZeroExtendExpr(Add, WideTy) ==
819               getAddExpr(getZeroExtendExpr(Start, WideTy),
820                          getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
821                                     getZeroExtendExpr(Step, WideTy))))
822             // Return the expression with the addrec on the outside.
823             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
824                                  getZeroExtendExpr(Step, Ty),
825                                  AR->getLoop());
826 
827           // Similar to above, only this time treat the step value as signed.
828           // This covers loops that count down.
829           SCEVHandle SMul =
830             getMulExpr(CastedMaxBECount,
831                        getTruncateOrSignExtend(Step, Start->getType()));
832           Add = getAddExpr(Start, SMul);
833           if (getZeroExtendExpr(Add, WideTy) ==
834               getAddExpr(getZeroExtendExpr(Start, WideTy),
835                          getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
836                                     getSignExtendExpr(Step, WideTy))))
837             // Return the expression with the addrec on the outside.
838             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
839                                  getSignExtendExpr(Step, Ty),
840                                  AR->getLoop());
841         }
842       }
843     }
844 
845   SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
846   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
847   return Result;
848 }
849 
850 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
851                                               const Type *Ty) {
852   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
853          "This is not an extending conversion!");
854   assert(isSCEVable(Ty) &&
855          "This is not a conversion to a SCEVable type!");
856   Ty = getEffectiveSCEVType(Ty);
857 
858   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
859     const Type *IntTy = getEffectiveSCEVType(Ty);
860     Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
861     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
862     return getUnknown(C);
863   }
864 
865   // sext(sext(x)) --> sext(x)
866   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
867     return getSignExtendExpr(SS->getOperand(), Ty);
868 
869   // If the input value is a chrec scev, and we can prove that the value
870   // did not overflow the old, smaller, value, we can sign extend all of the
871   // operands (often constants).  This allows analysis of something like
872   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
873   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
874     if (AR->isAffine()) {
875       // Check whether the backedge-taken count is SCEVCouldNotCompute.
876       // Note that this serves two purposes: It filters out loops that are
877       // simply not analyzable, and it covers the case where this code is
878       // being called from within backedge-taken count analysis, such that
879       // attempting to ask for the backedge-taken count would likely result
880       // in infinite recursion. In the later case, the analysis code will
881       // cope with a conservative value, and it will take care to purge
882       // that value once it has finished.
883       SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
884       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
885         // Manually compute the final value for AR, checking for
886         // overflow.
887         SCEVHandle Start = AR->getStart();
888         SCEVHandle Step = AR->getStepRecurrence(*this);
889 
890         // Check whether the backedge-taken count can be losslessly casted to
891         // the addrec's type. The count is always unsigned.
892         SCEVHandle CastedMaxBECount =
893           getTruncateOrZeroExtend(MaxBECount, Start->getType());
894         if (MaxBECount ==
895             getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
896           const Type *WideTy =
897             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
898           // Check whether Start+Step*MaxBECount has no signed overflow.
899           SCEVHandle SMul =
900             getMulExpr(CastedMaxBECount,
901                        getTruncateOrSignExtend(Step, Start->getType()));
902           SCEVHandle Add = getAddExpr(Start, SMul);
903           if (getSignExtendExpr(Add, WideTy) ==
904               getAddExpr(getSignExtendExpr(Start, WideTy),
905                          getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
906                                     getSignExtendExpr(Step, WideTy))))
907             // Return the expression with the addrec on the outside.
908             return getAddRecExpr(getSignExtendExpr(Start, Ty),
909                                  getSignExtendExpr(Step, Ty),
910                                  AR->getLoop());
911         }
912       }
913     }
914 
915   SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
916   if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
917   return Result;
918 }
919 
920 // get - Get a canonical add expression, or something simpler if possible.
921 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
922   assert(!Ops.empty() && "Cannot get empty add!");
923   if (Ops.size() == 1) return Ops[0];
924 #ifndef NDEBUG
925   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
926     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
927            getEffectiveSCEVType(Ops[0]->getType()) &&
928            "SCEVAddExpr operand types don't match!");
929 #endif
930 
931   // Sort by complexity, this groups all similar expression types together.
932   GroupByComplexity(Ops, LI);
933 
934   // If there are any constants, fold them together.
935   unsigned Idx = 0;
936   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
937     ++Idx;
938     assert(Idx < Ops.size());
939     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
940       // We found two constants, fold them together!
941       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
942                                            RHSC->getValue()->getValue());
943       Ops[0] = getConstant(Fold);
944       Ops.erase(Ops.begin()+1);  // Erase the folded element
945       if (Ops.size() == 1) return Ops[0];
946       LHSC = cast<SCEVConstant>(Ops[0]);
947     }
948 
949     // If we are left with a constant zero being added, strip it off.
950     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
951       Ops.erase(Ops.begin());
952       --Idx;
953     }
954   }
955 
956   if (Ops.size() == 1) return Ops[0];
957 
958   // Okay, check to see if the same value occurs in the operand list twice.  If
959   // so, merge them together into an multiply expression.  Since we sorted the
960   // list, these values are required to be adjacent.
961   const Type *Ty = Ops[0]->getType();
962   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
963     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
964       // Found a match, merge the two values into a multiply, and add any
965       // remaining values to the result.
966       SCEVHandle Two = getIntegerSCEV(2, Ty);
967       SCEVHandle Mul = getMulExpr(Ops[i], Two);
968       if (Ops.size() == 2)
969         return Mul;
970       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
971       Ops.push_back(Mul);
972       return getAddExpr(Ops);
973     }
974 
975   // Check for truncates. If all the operands are truncated from the same
976   // type, see if factoring out the truncate would permit the result to be
977   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
978   // if the contents of the resulting outer trunc fold to something simple.
979   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
980     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
981     const Type *DstType = Trunc->getType();
982     const Type *SrcType = Trunc->getOperand()->getType();
983     std::vector<SCEVHandle> LargeOps;
984     bool Ok = true;
985     // Check all the operands to see if they can be represented in the
986     // source type of the truncate.
987     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
988       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
989         if (T->getOperand()->getType() != SrcType) {
990           Ok = false;
991           break;
992         }
993         LargeOps.push_back(T->getOperand());
994       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
995         // This could be either sign or zero extension, but sign extension
996         // is much more likely to be foldable here.
997         LargeOps.push_back(getSignExtendExpr(C, SrcType));
998       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
999         std::vector<SCEVHandle> LargeMulOps;
1000         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1001           if (const SCEVTruncateExpr *T =
1002                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1003             if (T->getOperand()->getType() != SrcType) {
1004               Ok = false;
1005               break;
1006             }
1007             LargeMulOps.push_back(T->getOperand());
1008           } else if (const SCEVConstant *C =
1009                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
1010             // This could be either sign or zero extension, but sign extension
1011             // is much more likely to be foldable here.
1012             LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1013           } else {
1014             Ok = false;
1015             break;
1016           }
1017         }
1018         if (Ok)
1019           LargeOps.push_back(getMulExpr(LargeMulOps));
1020       } else {
1021         Ok = false;
1022         break;
1023       }
1024     }
1025     if (Ok) {
1026       // Evaluate the expression in the larger type.
1027       SCEVHandle Fold = getAddExpr(LargeOps);
1028       // If it folds to something simple, use it. Otherwise, don't.
1029       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1030         return getTruncateExpr(Fold, DstType);
1031     }
1032   }
1033 
1034   // Skip past any other cast SCEVs.
1035   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1036     ++Idx;
1037 
1038   // If there are add operands they would be next.
1039   if (Idx < Ops.size()) {
1040     bool DeletedAdd = false;
1041     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1042       // If we have an add, expand the add operands onto the end of the operands
1043       // list.
1044       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1045       Ops.erase(Ops.begin()+Idx);
1046       DeletedAdd = true;
1047     }
1048 
1049     // If we deleted at least one add, we added operands to the end of the list,
1050     // and they are not necessarily sorted.  Recurse to resort and resimplify
1051     // any operands we just aquired.
1052     if (DeletedAdd)
1053       return getAddExpr(Ops);
1054   }
1055 
1056   // Skip over the add expression until we get to a multiply.
1057   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1058     ++Idx;
1059 
1060   // If we are adding something to a multiply expression, make sure the
1061   // something is not already an operand of the multiply.  If so, merge it into
1062   // the multiply.
1063   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1064     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1065     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1066       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1067       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1068         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1069           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1070           SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1071           if (Mul->getNumOperands() != 2) {
1072             // If the multiply has more than two operands, we must get the
1073             // Y*Z term.
1074             std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1075             MulOps.erase(MulOps.begin()+MulOp);
1076             InnerMul = getMulExpr(MulOps);
1077           }
1078           SCEVHandle One = getIntegerSCEV(1, Ty);
1079           SCEVHandle AddOne = getAddExpr(InnerMul, One);
1080           SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1081           if (Ops.size() == 2) return OuterMul;
1082           if (AddOp < Idx) {
1083             Ops.erase(Ops.begin()+AddOp);
1084             Ops.erase(Ops.begin()+Idx-1);
1085           } else {
1086             Ops.erase(Ops.begin()+Idx);
1087             Ops.erase(Ops.begin()+AddOp-1);
1088           }
1089           Ops.push_back(OuterMul);
1090           return getAddExpr(Ops);
1091         }
1092 
1093       // Check this multiply against other multiplies being added together.
1094       for (unsigned OtherMulIdx = Idx+1;
1095            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1096            ++OtherMulIdx) {
1097         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1098         // If MulOp occurs in OtherMul, we can fold the two multiplies
1099         // together.
1100         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1101              OMulOp != e; ++OMulOp)
1102           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1103             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1104             SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1105             if (Mul->getNumOperands() != 2) {
1106               std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1107               MulOps.erase(MulOps.begin()+MulOp);
1108               InnerMul1 = getMulExpr(MulOps);
1109             }
1110             SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1111             if (OtherMul->getNumOperands() != 2) {
1112               std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1113                                              OtherMul->op_end());
1114               MulOps.erase(MulOps.begin()+OMulOp);
1115               InnerMul2 = getMulExpr(MulOps);
1116             }
1117             SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1118             SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1119             if (Ops.size() == 2) return OuterMul;
1120             Ops.erase(Ops.begin()+Idx);
1121             Ops.erase(Ops.begin()+OtherMulIdx-1);
1122             Ops.push_back(OuterMul);
1123             return getAddExpr(Ops);
1124           }
1125       }
1126     }
1127   }
1128 
1129   // If there are any add recurrences in the operands list, see if any other
1130   // added values are loop invariant.  If so, we can fold them into the
1131   // recurrence.
1132   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1133     ++Idx;
1134 
1135   // Scan over all recurrences, trying to fold loop invariants into them.
1136   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1137     // Scan all of the other operands to this add and add them to the vector if
1138     // they are loop invariant w.r.t. the recurrence.
1139     std::vector<SCEVHandle> LIOps;
1140     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1141     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1142       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1143         LIOps.push_back(Ops[i]);
1144         Ops.erase(Ops.begin()+i);
1145         --i; --e;
1146       }
1147 
1148     // If we found some loop invariants, fold them into the recurrence.
1149     if (!LIOps.empty()) {
1150       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1151       LIOps.push_back(AddRec->getStart());
1152 
1153       std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1154       AddRecOps[0] = getAddExpr(LIOps);
1155 
1156       SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1157       // If all of the other operands were loop invariant, we are done.
1158       if (Ops.size() == 1) return NewRec;
1159 
1160       // Otherwise, add the folded AddRec by the non-liv parts.
1161       for (unsigned i = 0;; ++i)
1162         if (Ops[i] == AddRec) {
1163           Ops[i] = NewRec;
1164           break;
1165         }
1166       return getAddExpr(Ops);
1167     }
1168 
1169     // Okay, if there weren't any loop invariants to be folded, check to see if
1170     // there are multiple AddRec's with the same loop induction variable being
1171     // added together.  If so, we can fold them.
1172     for (unsigned OtherIdx = Idx+1;
1173          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1174       if (OtherIdx != Idx) {
1175         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1176         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1177           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1178           std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1179           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1180             if (i >= NewOps.size()) {
1181               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1182                             OtherAddRec->op_end());
1183               break;
1184             }
1185             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1186           }
1187           SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1188 
1189           if (Ops.size() == 2) return NewAddRec;
1190 
1191           Ops.erase(Ops.begin()+Idx);
1192           Ops.erase(Ops.begin()+OtherIdx-1);
1193           Ops.push_back(NewAddRec);
1194           return getAddExpr(Ops);
1195         }
1196       }
1197 
1198     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1199     // next one.
1200   }
1201 
1202   // Okay, it looks like we really DO need an add expr.  Check to see if we
1203   // already have one, otherwise create a new one.
1204   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1205   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1206                                                                  SCEVOps)];
1207   if (Result == 0) Result = new SCEVAddExpr(Ops);
1208   return Result;
1209 }
1210 
1211 
1212 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1213   assert(!Ops.empty() && "Cannot get empty mul!");
1214 #ifndef NDEBUG
1215   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1216     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1217            getEffectiveSCEVType(Ops[0]->getType()) &&
1218            "SCEVMulExpr operand types don't match!");
1219 #endif
1220 
1221   // Sort by complexity, this groups all similar expression types together.
1222   GroupByComplexity(Ops, LI);
1223 
1224   // If there are any constants, fold them together.
1225   unsigned Idx = 0;
1226   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1227 
1228     // C1*(C2+V) -> C1*C2 + C1*V
1229     if (Ops.size() == 2)
1230       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1231         if (Add->getNumOperands() == 2 &&
1232             isa<SCEVConstant>(Add->getOperand(0)))
1233           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1234                             getMulExpr(LHSC, Add->getOperand(1)));
1235 
1236 
1237     ++Idx;
1238     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1239       // We found two constants, fold them together!
1240       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1241                                            RHSC->getValue()->getValue());
1242       Ops[0] = getConstant(Fold);
1243       Ops.erase(Ops.begin()+1);  // Erase the folded element
1244       if (Ops.size() == 1) return Ops[0];
1245       LHSC = cast<SCEVConstant>(Ops[0]);
1246     }
1247 
1248     // If we are left with a constant one being multiplied, strip it off.
1249     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1250       Ops.erase(Ops.begin());
1251       --Idx;
1252     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1253       // If we have a multiply of zero, it will always be zero.
1254       return Ops[0];
1255     }
1256   }
1257 
1258   // Skip over the add expression until we get to a multiply.
1259   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1260     ++Idx;
1261 
1262   if (Ops.size() == 1)
1263     return Ops[0];
1264 
1265   // If there are mul operands inline them all into this expression.
1266   if (Idx < Ops.size()) {
1267     bool DeletedMul = false;
1268     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1269       // If we have an mul, expand the mul operands onto the end of the operands
1270       // list.
1271       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1272       Ops.erase(Ops.begin()+Idx);
1273       DeletedMul = true;
1274     }
1275 
1276     // If we deleted at least one mul, we added operands to the end of the list,
1277     // and they are not necessarily sorted.  Recurse to resort and resimplify
1278     // any operands we just aquired.
1279     if (DeletedMul)
1280       return getMulExpr(Ops);
1281   }
1282 
1283   // If there are any add recurrences in the operands list, see if any other
1284   // added values are loop invariant.  If so, we can fold them into the
1285   // recurrence.
1286   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1287     ++Idx;
1288 
1289   // Scan over all recurrences, trying to fold loop invariants into them.
1290   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1291     // Scan all of the other operands to this mul and add them to the vector if
1292     // they are loop invariant w.r.t. the recurrence.
1293     std::vector<SCEVHandle> LIOps;
1294     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1295     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1296       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1297         LIOps.push_back(Ops[i]);
1298         Ops.erase(Ops.begin()+i);
1299         --i; --e;
1300       }
1301 
1302     // If we found some loop invariants, fold them into the recurrence.
1303     if (!LIOps.empty()) {
1304       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1305       std::vector<SCEVHandle> NewOps;
1306       NewOps.reserve(AddRec->getNumOperands());
1307       if (LIOps.size() == 1) {
1308         const SCEV *Scale = LIOps[0];
1309         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1310           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1311       } else {
1312         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1313           std::vector<SCEVHandle> MulOps(LIOps);
1314           MulOps.push_back(AddRec->getOperand(i));
1315           NewOps.push_back(getMulExpr(MulOps));
1316         }
1317       }
1318 
1319       SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1320 
1321       // If all of the other operands were loop invariant, we are done.
1322       if (Ops.size() == 1) return NewRec;
1323 
1324       // Otherwise, multiply the folded AddRec by the non-liv parts.
1325       for (unsigned i = 0;; ++i)
1326         if (Ops[i] == AddRec) {
1327           Ops[i] = NewRec;
1328           break;
1329         }
1330       return getMulExpr(Ops);
1331     }
1332 
1333     // Okay, if there weren't any loop invariants to be folded, check to see if
1334     // there are multiple AddRec's with the same loop induction variable being
1335     // multiplied together.  If so, we can fold them.
1336     for (unsigned OtherIdx = Idx+1;
1337          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1338       if (OtherIdx != Idx) {
1339         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1340         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1341           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1342           const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1343           SCEVHandle NewStart = getMulExpr(F->getStart(),
1344                                                  G->getStart());
1345           SCEVHandle B = F->getStepRecurrence(*this);
1346           SCEVHandle D = G->getStepRecurrence(*this);
1347           SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1348                                           getMulExpr(G, B),
1349                                           getMulExpr(B, D));
1350           SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1351                                                F->getLoop());
1352           if (Ops.size() == 2) return NewAddRec;
1353 
1354           Ops.erase(Ops.begin()+Idx);
1355           Ops.erase(Ops.begin()+OtherIdx-1);
1356           Ops.push_back(NewAddRec);
1357           return getMulExpr(Ops);
1358         }
1359       }
1360 
1361     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1362     // next one.
1363   }
1364 
1365   // Okay, it looks like we really DO need an mul expr.  Check to see if we
1366   // already have one, otherwise create a new one.
1367   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1368   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1369                                                                  SCEVOps)];
1370   if (Result == 0)
1371     Result = new SCEVMulExpr(Ops);
1372   return Result;
1373 }
1374 
1375 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1376                                         const SCEVHandle &RHS) {
1377   assert(getEffectiveSCEVType(LHS->getType()) ==
1378          getEffectiveSCEVType(RHS->getType()) &&
1379          "SCEVUDivExpr operand types don't match!");
1380 
1381   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1382     if (RHSC->getValue()->equalsInt(1))
1383       return LHS;                            // X udiv 1 --> x
1384     if (RHSC->isZero())
1385       return getIntegerSCEV(0, LHS->getType()); // value is undefined
1386 
1387     // Determine if the division can be folded into the operands of
1388     // its operands.
1389     // TODO: Generalize this to non-constants by using known-bits information.
1390     const Type *Ty = LHS->getType();
1391     unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1392     unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1393     // For non-power-of-two values, effectively round the value up to the
1394     // nearest power of two.
1395     if (!RHSC->getValue()->getValue().isPowerOf2())
1396       ++MaxShiftAmt;
1397     const IntegerType *ExtTy =
1398       IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1399     // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1400     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1401       if (const SCEVConstant *Step =
1402             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1403         if (!Step->getValue()->getValue()
1404               .urem(RHSC->getValue()->getValue()) &&
1405             getZeroExtendExpr(AR, ExtTy) ==
1406             getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1407                           getZeroExtendExpr(Step, ExtTy),
1408                           AR->getLoop())) {
1409           std::vector<SCEVHandle> Operands;
1410           for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1411             Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1412           return getAddRecExpr(Operands, AR->getLoop());
1413         }
1414     // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1415     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1416       std::vector<SCEVHandle> Operands;
1417       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1418         Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1419       if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1420         // Find an operand that's safely divisible.
1421         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1422           SCEVHandle Op = M->getOperand(i);
1423           SCEVHandle Div = getUDivExpr(Op, RHSC);
1424           if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1425             Operands = M->getOperands();
1426             Operands[i] = Div;
1427             return getMulExpr(Operands);
1428           }
1429         }
1430     }
1431     // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1432     if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1433       std::vector<SCEVHandle> Operands;
1434       for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1435         Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1436       if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1437         Operands.clear();
1438         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1439           SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1440           if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1441             break;
1442           Operands.push_back(Op);
1443         }
1444         if (Operands.size() == A->getNumOperands())
1445           return getAddExpr(Operands);
1446       }
1447     }
1448 
1449     // Fold if both operands are constant.
1450     if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1451       Constant *LHSCV = LHSC->getValue();
1452       Constant *RHSCV = RHSC->getValue();
1453       return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1454     }
1455   }
1456 
1457   SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1458   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1459   return Result;
1460 }
1461 
1462 
1463 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1464 /// specified loop.  Simplify the expression as much as possible.
1465 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1466                                const SCEVHandle &Step, const Loop *L) {
1467   std::vector<SCEVHandle> Operands;
1468   Operands.push_back(Start);
1469   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1470     if (StepChrec->getLoop() == L) {
1471       Operands.insert(Operands.end(), StepChrec->op_begin(),
1472                       StepChrec->op_end());
1473       return getAddRecExpr(Operands, L);
1474     }
1475 
1476   Operands.push_back(Step);
1477   return getAddRecExpr(Operands, L);
1478 }
1479 
1480 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1481 /// specified loop.  Simplify the expression as much as possible.
1482 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1483                                           const Loop *L) {
1484   if (Operands.size() == 1) return Operands[0];
1485 #ifndef NDEBUG
1486   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1487     assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1488            getEffectiveSCEVType(Operands[0]->getType()) &&
1489            "SCEVAddRecExpr operand types don't match!");
1490 #endif
1491 
1492   if (Operands.back()->isZero()) {
1493     Operands.pop_back();
1494     return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1495   }
1496 
1497   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1498   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1499     const Loop* NestedLoop = NestedAR->getLoop();
1500     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1501       std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1502                                              NestedAR->op_end());
1503       SCEVHandle NestedARHandle(NestedAR);
1504       Operands[0] = NestedAR->getStart();
1505       NestedOperands[0] = getAddRecExpr(Operands, L);
1506       return getAddRecExpr(NestedOperands, NestedLoop);
1507     }
1508   }
1509 
1510   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1511   SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1512   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1513   return Result;
1514 }
1515 
1516 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1517                                         const SCEVHandle &RHS) {
1518   std::vector<SCEVHandle> Ops;
1519   Ops.push_back(LHS);
1520   Ops.push_back(RHS);
1521   return getSMaxExpr(Ops);
1522 }
1523 
1524 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1525   assert(!Ops.empty() && "Cannot get empty smax!");
1526   if (Ops.size() == 1) return Ops[0];
1527 #ifndef NDEBUG
1528   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1529     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1530            getEffectiveSCEVType(Ops[0]->getType()) &&
1531            "SCEVSMaxExpr operand types don't match!");
1532 #endif
1533 
1534   // Sort by complexity, this groups all similar expression types together.
1535   GroupByComplexity(Ops, LI);
1536 
1537   // If there are any constants, fold them together.
1538   unsigned Idx = 0;
1539   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1540     ++Idx;
1541     assert(Idx < Ops.size());
1542     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1543       // We found two constants, fold them together!
1544       ConstantInt *Fold = ConstantInt::get(
1545                               APIntOps::smax(LHSC->getValue()->getValue(),
1546                                              RHSC->getValue()->getValue()));
1547       Ops[0] = getConstant(Fold);
1548       Ops.erase(Ops.begin()+1);  // Erase the folded element
1549       if (Ops.size() == 1) return Ops[0];
1550       LHSC = cast<SCEVConstant>(Ops[0]);
1551     }
1552 
1553     // If we are left with a constant -inf, strip it off.
1554     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1555       Ops.erase(Ops.begin());
1556       --Idx;
1557     }
1558   }
1559 
1560   if (Ops.size() == 1) return Ops[0];
1561 
1562   // Find the first SMax
1563   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1564     ++Idx;
1565 
1566   // Check to see if one of the operands is an SMax. If so, expand its operands
1567   // onto our operand list, and recurse to simplify.
1568   if (Idx < Ops.size()) {
1569     bool DeletedSMax = false;
1570     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1571       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1572       Ops.erase(Ops.begin()+Idx);
1573       DeletedSMax = true;
1574     }
1575 
1576     if (DeletedSMax)
1577       return getSMaxExpr(Ops);
1578   }
1579 
1580   // Okay, check to see if the same value occurs in the operand list twice.  If
1581   // so, delete one.  Since we sorted the list, these values are required to
1582   // be adjacent.
1583   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1584     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1585       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1586       --i; --e;
1587     }
1588 
1589   if (Ops.size() == 1) return Ops[0];
1590 
1591   assert(!Ops.empty() && "Reduced smax down to nothing!");
1592 
1593   // Okay, it looks like we really DO need an smax expr.  Check to see if we
1594   // already have one, otherwise create a new one.
1595   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1596   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1597                                                                  SCEVOps)];
1598   if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1599   return Result;
1600 }
1601 
1602 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1603                                         const SCEVHandle &RHS) {
1604   std::vector<SCEVHandle> Ops;
1605   Ops.push_back(LHS);
1606   Ops.push_back(RHS);
1607   return getUMaxExpr(Ops);
1608 }
1609 
1610 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1611   assert(!Ops.empty() && "Cannot get empty umax!");
1612   if (Ops.size() == 1) return Ops[0];
1613 #ifndef NDEBUG
1614   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1615     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1616            getEffectiveSCEVType(Ops[0]->getType()) &&
1617            "SCEVUMaxExpr operand types don't match!");
1618 #endif
1619 
1620   // Sort by complexity, this groups all similar expression types together.
1621   GroupByComplexity(Ops, LI);
1622 
1623   // If there are any constants, fold them together.
1624   unsigned Idx = 0;
1625   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1626     ++Idx;
1627     assert(Idx < Ops.size());
1628     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1629       // We found two constants, fold them together!
1630       ConstantInt *Fold = ConstantInt::get(
1631                               APIntOps::umax(LHSC->getValue()->getValue(),
1632                                              RHSC->getValue()->getValue()));
1633       Ops[0] = getConstant(Fold);
1634       Ops.erase(Ops.begin()+1);  // Erase the folded element
1635       if (Ops.size() == 1) return Ops[0];
1636       LHSC = cast<SCEVConstant>(Ops[0]);
1637     }
1638 
1639     // If we are left with a constant zero, strip it off.
1640     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1641       Ops.erase(Ops.begin());
1642       --Idx;
1643     }
1644   }
1645 
1646   if (Ops.size() == 1) return Ops[0];
1647 
1648   // Find the first UMax
1649   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1650     ++Idx;
1651 
1652   // Check to see if one of the operands is a UMax. If so, expand its operands
1653   // onto our operand list, and recurse to simplify.
1654   if (Idx < Ops.size()) {
1655     bool DeletedUMax = false;
1656     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1657       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1658       Ops.erase(Ops.begin()+Idx);
1659       DeletedUMax = true;
1660     }
1661 
1662     if (DeletedUMax)
1663       return getUMaxExpr(Ops);
1664   }
1665 
1666   // Okay, check to see if the same value occurs in the operand list twice.  If
1667   // so, delete one.  Since we sorted the list, these values are required to
1668   // be adjacent.
1669   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1670     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1671       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1672       --i; --e;
1673     }
1674 
1675   if (Ops.size() == 1) return Ops[0];
1676 
1677   assert(!Ops.empty() && "Reduced umax down to nothing!");
1678 
1679   // Okay, it looks like we really DO need a umax expr.  Check to see if we
1680   // already have one, otherwise create a new one.
1681   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1682   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1683                                                                  SCEVOps)];
1684   if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1685   return Result;
1686 }
1687 
1688 SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1689   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1690     return getConstant(CI);
1691   if (isa<ConstantPointerNull>(V))
1692     return getIntegerSCEV(0, V->getType());
1693   SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1694   if (Result == 0) Result = new SCEVUnknown(V);
1695   return Result;
1696 }
1697 
1698 //===----------------------------------------------------------------------===//
1699 //            Basic SCEV Analysis and PHI Idiom Recognition Code
1700 //
1701 
1702 /// isSCEVable - Test if values of the given type are analyzable within
1703 /// the SCEV framework. This primarily includes integer types, and it
1704 /// can optionally include pointer types if the ScalarEvolution class
1705 /// has access to target-specific information.
1706 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1707   // Integers are always SCEVable.
1708   if (Ty->isInteger())
1709     return true;
1710 
1711   // Pointers are SCEVable if TargetData information is available
1712   // to provide pointer size information.
1713   if (isa<PointerType>(Ty))
1714     return TD != NULL;
1715 
1716   // Otherwise it's not SCEVable.
1717   return false;
1718 }
1719 
1720 /// getTypeSizeInBits - Return the size in bits of the specified type,
1721 /// for which isSCEVable must return true.
1722 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1723   assert(isSCEVable(Ty) && "Type is not SCEVable!");
1724 
1725   // If we have a TargetData, use it!
1726   if (TD)
1727     return TD->getTypeSizeInBits(Ty);
1728 
1729   // Otherwise, we support only integer types.
1730   assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1731   return Ty->getPrimitiveSizeInBits();
1732 }
1733 
1734 /// getEffectiveSCEVType - Return a type with the same bitwidth as
1735 /// the given type and which represents how SCEV will treat the given
1736 /// type, for which isSCEVable must return true. For pointer types,
1737 /// this is the pointer-sized integer type.
1738 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1739   assert(isSCEVable(Ty) && "Type is not SCEVable!");
1740 
1741   if (Ty->isInteger())
1742     return Ty;
1743 
1744   assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1745   return TD->getIntPtrType();
1746 }
1747 
1748 SCEVHandle ScalarEvolution::getCouldNotCompute() {
1749   return UnknownValue;
1750 }
1751 
1752 /// hasSCEV - Return true if the SCEV for this value has already been
1753 /// computed.
1754 bool ScalarEvolution::hasSCEV(Value *V) const {
1755   return Scalars.count(V);
1756 }
1757 
1758 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1759 /// expression and create a new one.
1760 SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1761   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1762 
1763   std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1764   if (I != Scalars.end()) return I->second;
1765   SCEVHandle S = createSCEV(V);
1766   Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1767   return S;
1768 }
1769 
1770 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1771 /// specified signed integer value and return a SCEV for the constant.
1772 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1773   Ty = getEffectiveSCEVType(Ty);
1774   Constant *C;
1775   if (Val == 0)
1776     C = Constant::getNullValue(Ty);
1777   else if (Ty->isFloatingPoint())
1778     C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1779                                 APFloat::IEEEdouble, Val));
1780   else
1781     C = ConstantInt::get(Ty, Val);
1782   return getUnknown(C);
1783 }
1784 
1785 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1786 ///
1787 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1788   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1789     return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1790 
1791   const Type *Ty = V->getType();
1792   Ty = getEffectiveSCEVType(Ty);
1793   return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1794 }
1795 
1796 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1797 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1798   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1799     return getUnknown(ConstantExpr::getNot(VC->getValue()));
1800 
1801   const Type *Ty = V->getType();
1802   Ty = getEffectiveSCEVType(Ty);
1803   SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1804   return getMinusSCEV(AllOnes, V);
1805 }
1806 
1807 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1808 ///
1809 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1810                                          const SCEVHandle &RHS) {
1811   // X - Y --> X + -Y
1812   return getAddExpr(LHS, getNegativeSCEV(RHS));
1813 }
1814 
1815 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1816 /// input value to the specified type.  If the type must be extended, it is zero
1817 /// extended.
1818 SCEVHandle
1819 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1820                                          const Type *Ty) {
1821   const Type *SrcTy = V->getType();
1822   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1823          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1824          "Cannot truncate or zero extend with non-integer arguments!");
1825   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1826     return V;  // No conversion
1827   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1828     return getTruncateExpr(V, Ty);
1829   return getZeroExtendExpr(V, Ty);
1830 }
1831 
1832 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1833 /// input value to the specified type.  If the type must be extended, it is sign
1834 /// extended.
1835 SCEVHandle
1836 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1837                                          const Type *Ty) {
1838   const Type *SrcTy = V->getType();
1839   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1840          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1841          "Cannot truncate or zero extend with non-integer arguments!");
1842   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1843     return V;  // No conversion
1844   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1845     return getTruncateExpr(V, Ty);
1846   return getSignExtendExpr(V, Ty);
1847 }
1848 
1849 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1850 /// input value to the specified type.  If the type must be extended, it is zero
1851 /// extended.  The conversion must not be narrowing.
1852 SCEVHandle
1853 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1854   const Type *SrcTy = V->getType();
1855   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1856          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1857          "Cannot noop or zero extend with non-integer arguments!");
1858   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1859          "getNoopOrZeroExtend cannot truncate!");
1860   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1861     return V;  // No conversion
1862   return getZeroExtendExpr(V, Ty);
1863 }
1864 
1865 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1866 /// input value to the specified type.  If the type must be extended, it is sign
1867 /// extended.  The conversion must not be narrowing.
1868 SCEVHandle
1869 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1870   const Type *SrcTy = V->getType();
1871   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1872          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1873          "Cannot noop or sign extend with non-integer arguments!");
1874   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1875          "getNoopOrSignExtend cannot truncate!");
1876   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1877     return V;  // No conversion
1878   return getSignExtendExpr(V, Ty);
1879 }
1880 
1881 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1882 /// input value to the specified type.  The conversion must not be widening.
1883 SCEVHandle
1884 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1885   const Type *SrcTy = V->getType();
1886   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1887          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1888          "Cannot truncate or noop with non-integer arguments!");
1889   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1890          "getTruncateOrNoop cannot extend!");
1891   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1892     return V;  // No conversion
1893   return getTruncateExpr(V, Ty);
1894 }
1895 
1896 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1897 /// the specified instruction and replaces any references to the symbolic value
1898 /// SymName with the specified value.  This is used during PHI resolution.
1899 void ScalarEvolution::
1900 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1901                                  const SCEVHandle &NewVal) {
1902   std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1903     Scalars.find(SCEVCallbackVH(I, this));
1904   if (SI == Scalars.end()) return;
1905 
1906   SCEVHandle NV =
1907     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1908   if (NV == SI->second) return;  // No change.
1909 
1910   SI->second = NV;       // Update the scalars map!
1911 
1912   // Any instruction values that use this instruction might also need to be
1913   // updated!
1914   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1915        UI != E; ++UI)
1916     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1917 }
1918 
1919 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1920 /// a loop header, making it a potential recurrence, or it doesn't.
1921 ///
1922 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1923   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1924     if (const Loop *L = LI->getLoopFor(PN->getParent()))
1925       if (L->getHeader() == PN->getParent()) {
1926         // If it lives in the loop header, it has two incoming values, one
1927         // from outside the loop, and one from inside.
1928         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1929         unsigned BackEdge     = IncomingEdge^1;
1930 
1931         // While we are analyzing this PHI node, handle its value symbolically.
1932         SCEVHandle SymbolicName = getUnknown(PN);
1933         assert(Scalars.find(PN) == Scalars.end() &&
1934                "PHI node already processed?");
1935         Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1936 
1937         // Using this symbolic name for the PHI, analyze the value coming around
1938         // the back-edge.
1939         SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1940 
1941         // NOTE: If BEValue is loop invariant, we know that the PHI node just
1942         // has a special value for the first iteration of the loop.
1943 
1944         // If the value coming around the backedge is an add with the symbolic
1945         // value we just inserted, then we found a simple induction variable!
1946         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1947           // If there is a single occurrence of the symbolic value, replace it
1948           // with a recurrence.
1949           unsigned FoundIndex = Add->getNumOperands();
1950           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1951             if (Add->getOperand(i) == SymbolicName)
1952               if (FoundIndex == e) {
1953                 FoundIndex = i;
1954                 break;
1955               }
1956 
1957           if (FoundIndex != Add->getNumOperands()) {
1958             // Create an add with everything but the specified operand.
1959             std::vector<SCEVHandle> Ops;
1960             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1961               if (i != FoundIndex)
1962                 Ops.push_back(Add->getOperand(i));
1963             SCEVHandle Accum = getAddExpr(Ops);
1964 
1965             // This is not a valid addrec if the step amount is varying each
1966             // loop iteration, but is not itself an addrec in this loop.
1967             if (Accum->isLoopInvariant(L) ||
1968                 (isa<SCEVAddRecExpr>(Accum) &&
1969                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1970               SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1971               SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1972 
1973               // Okay, for the entire analysis of this edge we assumed the PHI
1974               // to be symbolic.  We now need to go back and update all of the
1975               // entries for the scalars that use the PHI (except for the PHI
1976               // itself) to use the new analyzed value instead of the "symbolic"
1977               // value.
1978               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1979               return PHISCEV;
1980             }
1981           }
1982         } else if (const SCEVAddRecExpr *AddRec =
1983                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
1984           // Otherwise, this could be a loop like this:
1985           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1986           // In this case, j = {1,+,1}  and BEValue is j.
1987           // Because the other in-value of i (0) fits the evolution of BEValue
1988           // i really is an addrec evolution.
1989           if (AddRec->getLoop() == L && AddRec->isAffine()) {
1990             SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1991 
1992             // If StartVal = j.start - j.stride, we can use StartVal as the
1993             // initial step of the addrec evolution.
1994             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1995                                             AddRec->getOperand(1))) {
1996               SCEVHandle PHISCEV =
1997                  getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1998 
1999               // Okay, for the entire analysis of this edge we assumed the PHI
2000               // to be symbolic.  We now need to go back and update all of the
2001               // entries for the scalars that use the PHI (except for the PHI
2002               // itself) to use the new analyzed value instead of the "symbolic"
2003               // value.
2004               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2005               return PHISCEV;
2006             }
2007           }
2008         }
2009 
2010         return SymbolicName;
2011       }
2012 
2013   // If it's not a loop phi, we can't handle it yet.
2014   return getUnknown(PN);
2015 }
2016 
2017 /// createNodeForGEP - Expand GEP instructions into add and multiply
2018 /// operations. This allows them to be analyzed by regular SCEV code.
2019 ///
2020 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
2021 
2022   const Type *IntPtrTy = TD->getIntPtrType();
2023   Value *Base = GEP->getOperand(0);
2024   // Don't attempt to analyze GEPs over unsized objects.
2025   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2026     return getUnknown(GEP);
2027   SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
2028   gep_type_iterator GTI = gep_type_begin(GEP);
2029   for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2030                                       E = GEP->op_end();
2031        I != E; ++I) {
2032     Value *Index = *I;
2033     // Compute the (potentially symbolic) offset in bytes for this index.
2034     if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2035       // For a struct, add the member offset.
2036       const StructLayout &SL = *TD->getStructLayout(STy);
2037       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2038       uint64_t Offset = SL.getElementOffset(FieldNo);
2039       TotalOffset = getAddExpr(TotalOffset,
2040                                   getIntegerSCEV(Offset, IntPtrTy));
2041     } else {
2042       // For an array, add the element offset, explicitly scaled.
2043       SCEVHandle LocalOffset = getSCEV(Index);
2044       if (!isa<PointerType>(LocalOffset->getType()))
2045         // Getelementptr indicies are signed.
2046         LocalOffset = getTruncateOrSignExtend(LocalOffset,
2047                                               IntPtrTy);
2048       LocalOffset =
2049         getMulExpr(LocalOffset,
2050                    getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2051                                   IntPtrTy));
2052       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2053     }
2054   }
2055   return getAddExpr(getSCEV(Base), TotalOffset);
2056 }
2057 
2058 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2059 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
2060 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2061 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2062 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
2063   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2064     return C->getValue()->getValue().countTrailingZeros();
2065 
2066   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2067     return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2068                     (uint32_t)SE.getTypeSizeInBits(T->getType()));
2069 
2070   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2071     uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2072     return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2073              SE.getTypeSizeInBits(E->getType()) : OpRes;
2074   }
2075 
2076   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2077     uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2078     return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
2079              SE.getTypeSizeInBits(E->getType()) : OpRes;
2080   }
2081 
2082   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2083     // The result is the min of all operands results.
2084     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2085     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2086       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2087     return MinOpRes;
2088   }
2089 
2090   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2091     // The result is the sum of all operands results.
2092     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2093     uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
2094     for (unsigned i = 1, e = M->getNumOperands();
2095          SumOpRes != BitWidth && i != e; ++i)
2096       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
2097                           BitWidth);
2098     return SumOpRes;
2099   }
2100 
2101   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2102     // The result is the min of all operands results.
2103     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2104     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2105       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2106     return MinOpRes;
2107   }
2108 
2109   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2110     // The result is the min of all operands results.
2111     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2112     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2113       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2114     return MinOpRes;
2115   }
2116 
2117   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2118     // The result is the min of all operands results.
2119     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2120     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2121       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2122     return MinOpRes;
2123   }
2124 
2125   // SCEVUDivExpr, SCEVUnknown
2126   return 0;
2127 }
2128 
2129 /// createSCEV - We know that there is no SCEV for the specified value.
2130 /// Analyze the expression.
2131 ///
2132 SCEVHandle ScalarEvolution::createSCEV(Value *V) {
2133   if (!isSCEVable(V->getType()))
2134     return getUnknown(V);
2135 
2136   unsigned Opcode = Instruction::UserOp1;
2137   if (Instruction *I = dyn_cast<Instruction>(V))
2138     Opcode = I->getOpcode();
2139   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2140     Opcode = CE->getOpcode();
2141   else
2142     return getUnknown(V);
2143 
2144   User *U = cast<User>(V);
2145   switch (Opcode) {
2146   case Instruction::Add:
2147     return getAddExpr(getSCEV(U->getOperand(0)),
2148                       getSCEV(U->getOperand(1)));
2149   case Instruction::Mul:
2150     return getMulExpr(getSCEV(U->getOperand(0)),
2151                       getSCEV(U->getOperand(1)));
2152   case Instruction::UDiv:
2153     return getUDivExpr(getSCEV(U->getOperand(0)),
2154                        getSCEV(U->getOperand(1)));
2155   case Instruction::Sub:
2156     return getMinusSCEV(getSCEV(U->getOperand(0)),
2157                         getSCEV(U->getOperand(1)));
2158   case Instruction::And:
2159     // For an expression like x&255 that merely masks off the high bits,
2160     // use zext(trunc(x)) as the SCEV expression.
2161     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2162       if (CI->isNullValue())
2163         return getSCEV(U->getOperand(1));
2164       if (CI->isAllOnesValue())
2165         return getSCEV(U->getOperand(0));
2166       const APInt &A = CI->getValue();
2167       unsigned Ones = A.countTrailingOnes();
2168       if (APIntOps::isMask(Ones, A))
2169         return
2170           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2171                                             IntegerType::get(Ones)),
2172                             U->getType());
2173     }
2174     break;
2175   case Instruction::Or:
2176     // If the RHS of the Or is a constant, we may have something like:
2177     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2178     // optimizations will transparently handle this case.
2179     //
2180     // In order for this transformation to be safe, the LHS must be of the
2181     // form X*(2^n) and the Or constant must be less than 2^n.
2182     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2183       SCEVHandle LHS = getSCEV(U->getOperand(0));
2184       const APInt &CIVal = CI->getValue();
2185       if (GetMinTrailingZeros(LHS, *this) >=
2186           (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2187         return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2188     }
2189     break;
2190   case Instruction::Xor:
2191     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2192       // If the RHS of the xor is a signbit, then this is just an add.
2193       // Instcombine turns add of signbit into xor as a strength reduction step.
2194       if (CI->getValue().isSignBit())
2195         return getAddExpr(getSCEV(U->getOperand(0)),
2196                           getSCEV(U->getOperand(1)));
2197 
2198       // If the RHS of xor is -1, then this is a not operation.
2199       else if (CI->isAllOnesValue())
2200         return getNotSCEV(getSCEV(U->getOperand(0)));
2201     }
2202     break;
2203 
2204   case Instruction::Shl:
2205     // Turn shift left of a constant amount into a multiply.
2206     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2207       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2208       Constant *X = ConstantInt::get(
2209         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2210       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2211     }
2212     break;
2213 
2214   case Instruction::LShr:
2215     // Turn logical shift right of a constant into a unsigned divide.
2216     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2217       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2218       Constant *X = ConstantInt::get(
2219         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2220       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2221     }
2222     break;
2223 
2224   case Instruction::AShr:
2225     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2226     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2227       if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2228         if (L->getOpcode() == Instruction::Shl &&
2229             L->getOperand(1) == U->getOperand(1)) {
2230           unsigned BitWidth = getTypeSizeInBits(U->getType());
2231           uint64_t Amt = BitWidth - CI->getZExtValue();
2232           if (Amt == BitWidth)
2233             return getSCEV(L->getOperand(0));       // shift by zero --> noop
2234           if (Amt > BitWidth)
2235             return getIntegerSCEV(0, U->getType()); // value is undefined
2236           return
2237             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2238                                                       IntegerType::get(Amt)),
2239                                  U->getType());
2240         }
2241     break;
2242 
2243   case Instruction::Trunc:
2244     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2245 
2246   case Instruction::ZExt:
2247     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2248 
2249   case Instruction::SExt:
2250     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2251 
2252   case Instruction::BitCast:
2253     // BitCasts are no-op casts so we just eliminate the cast.
2254     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2255       return getSCEV(U->getOperand(0));
2256     break;
2257 
2258   case Instruction::IntToPtr:
2259     if (!TD) break; // Without TD we can't analyze pointers.
2260     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2261                                    TD->getIntPtrType());
2262 
2263   case Instruction::PtrToInt:
2264     if (!TD) break; // Without TD we can't analyze pointers.
2265     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2266                                    U->getType());
2267 
2268   case Instruction::GetElementPtr:
2269     if (!TD) break; // Without TD we can't analyze pointers.
2270     return createNodeForGEP(U);
2271 
2272   case Instruction::PHI:
2273     return createNodeForPHI(cast<PHINode>(U));
2274 
2275   case Instruction::Select:
2276     // This could be a smax or umax that was lowered earlier.
2277     // Try to recover it.
2278     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2279       Value *LHS = ICI->getOperand(0);
2280       Value *RHS = ICI->getOperand(1);
2281       switch (ICI->getPredicate()) {
2282       case ICmpInst::ICMP_SLT:
2283       case ICmpInst::ICMP_SLE:
2284         std::swap(LHS, RHS);
2285         // fall through
2286       case ICmpInst::ICMP_SGT:
2287       case ICmpInst::ICMP_SGE:
2288         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2289           return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2290         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2291           // ~smax(~x, ~y) == smin(x, y).
2292           return getNotSCEV(getSMaxExpr(
2293                                    getNotSCEV(getSCEV(LHS)),
2294                                    getNotSCEV(getSCEV(RHS))));
2295         break;
2296       case ICmpInst::ICMP_ULT:
2297       case ICmpInst::ICMP_ULE:
2298         std::swap(LHS, RHS);
2299         // fall through
2300       case ICmpInst::ICMP_UGT:
2301       case ICmpInst::ICMP_UGE:
2302         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2303           return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2304         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2305           // ~umax(~x, ~y) == umin(x, y)
2306           return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2307                                         getNotSCEV(getSCEV(RHS))));
2308         break;
2309       default:
2310         break;
2311       }
2312     }
2313 
2314   default: // We cannot analyze this expression.
2315     break;
2316   }
2317 
2318   return getUnknown(V);
2319 }
2320 
2321 
2322 
2323 //===----------------------------------------------------------------------===//
2324 //                   Iteration Count Computation Code
2325 //
2326 
2327 /// getBackedgeTakenCount - If the specified loop has a predictable
2328 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2329 /// object. The backedge-taken count is the number of times the loop header
2330 /// will be branched to from within the loop. This is one less than the
2331 /// trip count of the loop, since it doesn't count the first iteration,
2332 /// when the header is branched to from outside the loop.
2333 ///
2334 /// Note that it is not valid to call this method on a loop without a
2335 /// loop-invariant backedge-taken count (see
2336 /// hasLoopInvariantBackedgeTakenCount).
2337 ///
2338 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2339   return getBackedgeTakenInfo(L).Exact;
2340 }
2341 
2342 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2343 /// return the least SCEV value that is known never to be less than the
2344 /// actual backedge taken count.
2345 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2346   return getBackedgeTakenInfo(L).Max;
2347 }
2348 
2349 const ScalarEvolution::BackedgeTakenInfo &
2350 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2351   // Initially insert a CouldNotCompute for this loop. If the insertion
2352   // succeeds, procede to actually compute a backedge-taken count and
2353   // update the value. The temporary CouldNotCompute value tells SCEV
2354   // code elsewhere that it shouldn't attempt to request a new
2355   // backedge-taken count, which could result in infinite recursion.
2356   std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2357     BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2358   if (Pair.second) {
2359     BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2360     if (ItCount.Exact != UnknownValue) {
2361       assert(ItCount.Exact->isLoopInvariant(L) &&
2362              ItCount.Max->isLoopInvariant(L) &&
2363              "Computed trip count isn't loop invariant for loop!");
2364       ++NumTripCountsComputed;
2365 
2366       // Update the value in the map.
2367       Pair.first->second = ItCount;
2368     } else if (isa<PHINode>(L->getHeader()->begin())) {
2369       // Only count loops that have phi nodes as not being computable.
2370       ++NumTripCountsNotComputed;
2371     }
2372 
2373     // Now that we know more about the trip count for this loop, forget any
2374     // existing SCEV values for PHI nodes in this loop since they are only
2375     // conservative estimates made without the benefit
2376     // of trip count information.
2377     if (ItCount.hasAnyInfo())
2378       forgetLoopPHIs(L);
2379   }
2380   return Pair.first->second;
2381 }
2382 
2383 /// forgetLoopBackedgeTakenCount - This method should be called by the
2384 /// client when it has changed a loop in a way that may effect
2385 /// ScalarEvolution's ability to compute a trip count, or if the loop
2386 /// is deleted.
2387 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2388   BackedgeTakenCounts.erase(L);
2389   forgetLoopPHIs(L);
2390 }
2391 
2392 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2393 /// PHI nodes in the given loop. This is used when the trip count of
2394 /// the loop may have changed.
2395 void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2396   BasicBlock *Header = L->getHeader();
2397 
2398   // Push all Loop-header PHIs onto the Worklist stack, except those
2399   // that are presently represented via a SCEVUnknown. SCEVUnknown for
2400   // a PHI either means that it has an unrecognized structure, or it's
2401   // a PHI that's in the progress of being computed by createNodeForPHI.
2402   // In the former case, additional loop trip count information isn't
2403   // going to change anything. In the later case, createNodeForPHI will
2404   // perform the necessary updates on its own when it gets to that point.
2405   SmallVector<Instruction *, 16> Worklist;
2406   for (BasicBlock::iterator I = Header->begin();
2407        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2408     std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2409     if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2410       Worklist.push_back(PN);
2411   }
2412 
2413   while (!Worklist.empty()) {
2414     Instruction *I = Worklist.pop_back_val();
2415     if (Scalars.erase(I))
2416       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2417            UI != UE; ++UI)
2418         Worklist.push_back(cast<Instruction>(UI));
2419   }
2420 }
2421 
2422 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2423 /// of the specified loop will execute.
2424 ScalarEvolution::BackedgeTakenInfo
2425 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2426   // If the loop has a non-one exit block count, we can't analyze it.
2427   SmallVector<BasicBlock*, 8> ExitBlocks;
2428   L->getExitBlocks(ExitBlocks);
2429   if (ExitBlocks.size() != 1) return UnknownValue;
2430 
2431   // Okay, there is one exit block.  Try to find the condition that causes the
2432   // loop to be exited.
2433   BasicBlock *ExitBlock = ExitBlocks[0];
2434 
2435   BasicBlock *ExitingBlock = 0;
2436   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2437        PI != E; ++PI)
2438     if (L->contains(*PI)) {
2439       if (ExitingBlock == 0)
2440         ExitingBlock = *PI;
2441       else
2442         return UnknownValue;   // More than one block exiting!
2443     }
2444   assert(ExitingBlock && "No exits from loop, something is broken!");
2445 
2446   // Okay, we've computed the exiting block.  See what condition causes us to
2447   // exit.
2448   //
2449   // FIXME: we should be able to handle switch instructions (with a single exit)
2450   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2451   if (ExitBr == 0) return UnknownValue;
2452   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2453 
2454   // At this point, we know we have a conditional branch that determines whether
2455   // the loop is exited.  However, we don't know if the branch is executed each
2456   // time through the loop.  If not, then the execution count of the branch will
2457   // not be equal to the trip count of the loop.
2458   //
2459   // Currently we check for this by checking to see if the Exit branch goes to
2460   // the loop header.  If so, we know it will always execute the same number of
2461   // times as the loop.  We also handle the case where the exit block *is* the
2462   // loop header.  This is common for un-rotated loops.  More extensive analysis
2463   // could be done to handle more cases here.
2464   if (ExitBr->getSuccessor(0) != L->getHeader() &&
2465       ExitBr->getSuccessor(1) != L->getHeader() &&
2466       ExitBr->getParent() != L->getHeader())
2467     return UnknownValue;
2468 
2469   ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2470 
2471   // If it's not an integer or pointer comparison then compute it the hard way.
2472   if (ExitCond == 0)
2473     return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2474                                           ExitBr->getSuccessor(0) == ExitBlock);
2475 
2476   // If the condition was exit on true, convert the condition to exit on false
2477   ICmpInst::Predicate Cond;
2478   if (ExitBr->getSuccessor(1) == ExitBlock)
2479     Cond = ExitCond->getPredicate();
2480   else
2481     Cond = ExitCond->getInversePredicate();
2482 
2483   // Handle common loops like: for (X = "string"; *X; ++X)
2484   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2485     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2486       SCEVHandle ItCnt =
2487         ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2488       if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2489     }
2490 
2491   SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2492   SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2493 
2494   // Try to evaluate any dependencies out of the loop.
2495   SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2496   if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2497   Tmp = getSCEVAtScope(RHS, L);
2498   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2499 
2500   // At this point, we would like to compute how many iterations of the
2501   // loop the predicate will return true for these inputs.
2502   if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2503     // If there is a loop-invariant, force it into the RHS.
2504     std::swap(LHS, RHS);
2505     Cond = ICmpInst::getSwappedPredicate(Cond);
2506   }
2507 
2508   // If we have a comparison of a chrec against a constant, try to use value
2509   // ranges to answer this query.
2510   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2511     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2512       if (AddRec->getLoop() == L) {
2513         // Form the constant range.
2514         ConstantRange CompRange(
2515             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
2516 
2517         SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2518         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2519       }
2520 
2521   switch (Cond) {
2522   case ICmpInst::ICMP_NE: {                     // while (X != Y)
2523     // Convert to: while (X-Y != 0)
2524     SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2525     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2526     break;
2527   }
2528   case ICmpInst::ICMP_EQ: {
2529     // Convert to: while (X-Y == 0)           // while (X == Y)
2530     SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2531     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2532     break;
2533   }
2534   case ICmpInst::ICMP_SLT: {
2535     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2536     if (BTI.hasAnyInfo()) return BTI;
2537     break;
2538   }
2539   case ICmpInst::ICMP_SGT: {
2540     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2541                                              getNotSCEV(RHS), L, true);
2542     if (BTI.hasAnyInfo()) return BTI;
2543     break;
2544   }
2545   case ICmpInst::ICMP_ULT: {
2546     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2547     if (BTI.hasAnyInfo()) return BTI;
2548     break;
2549   }
2550   case ICmpInst::ICMP_UGT: {
2551     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2552                                              getNotSCEV(RHS), L, false);
2553     if (BTI.hasAnyInfo()) return BTI;
2554     break;
2555   }
2556   default:
2557 #if 0
2558     errs() << "ComputeBackedgeTakenCount ";
2559     if (ExitCond->getOperand(0)->getType()->isUnsigned())
2560       errs() << "[unsigned] ";
2561     errs() << *LHS << "   "
2562          << Instruction::getOpcodeName(Instruction::ICmp)
2563          << "   " << *RHS << "\n";
2564 #endif
2565     break;
2566   }
2567   return
2568     ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2569                                           ExitBr->getSuccessor(0) == ExitBlock);
2570 }
2571 
2572 static ConstantInt *
2573 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2574                                 ScalarEvolution &SE) {
2575   SCEVHandle InVal = SE.getConstant(C);
2576   SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2577   assert(isa<SCEVConstant>(Val) &&
2578          "Evaluation of SCEV at constant didn't fold correctly?");
2579   return cast<SCEVConstant>(Val)->getValue();
2580 }
2581 
2582 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
2583 /// and a GEP expression (missing the pointer index) indexing into it, return
2584 /// the addressed element of the initializer or null if the index expression is
2585 /// invalid.
2586 static Constant *
2587 GetAddressedElementFromGlobal(GlobalVariable *GV,
2588                               const std::vector<ConstantInt*> &Indices) {
2589   Constant *Init = GV->getInitializer();
2590   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2591     uint64_t Idx = Indices[i]->getZExtValue();
2592     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2593       assert(Idx < CS->getNumOperands() && "Bad struct index!");
2594       Init = cast<Constant>(CS->getOperand(Idx));
2595     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2596       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2597       Init = cast<Constant>(CA->getOperand(Idx));
2598     } else if (isa<ConstantAggregateZero>(Init)) {
2599       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2600         assert(Idx < STy->getNumElements() && "Bad struct index!");
2601         Init = Constant::getNullValue(STy->getElementType(Idx));
2602       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2603         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2604         Init = Constant::getNullValue(ATy->getElementType());
2605       } else {
2606         assert(0 && "Unknown constant aggregate type!");
2607       }
2608       return 0;
2609     } else {
2610       return 0; // Unknown initializer type
2611     }
2612   }
2613   return Init;
2614 }
2615 
2616 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2617 /// 'icmp op load X, cst', try to see if we can compute the backedge
2618 /// execution count.
2619 SCEVHandle ScalarEvolution::
2620 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2621                                              const Loop *L,
2622                                              ICmpInst::Predicate predicate) {
2623   if (LI->isVolatile()) return UnknownValue;
2624 
2625   // Check to see if the loaded pointer is a getelementptr of a global.
2626   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2627   if (!GEP) return UnknownValue;
2628 
2629   // Make sure that it is really a constant global we are gepping, with an
2630   // initializer, and make sure the first IDX is really 0.
2631   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2632   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2633       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2634       !cast<Constant>(GEP->getOperand(1))->isNullValue())
2635     return UnknownValue;
2636 
2637   // Okay, we allow one non-constant index into the GEP instruction.
2638   Value *VarIdx = 0;
2639   std::vector<ConstantInt*> Indexes;
2640   unsigned VarIdxNum = 0;
2641   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2642     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2643       Indexes.push_back(CI);
2644     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2645       if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2646       VarIdx = GEP->getOperand(i);
2647       VarIdxNum = i-2;
2648       Indexes.push_back(0);
2649     }
2650 
2651   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2652   // Check to see if X is a loop variant variable value now.
2653   SCEVHandle Idx = getSCEV(VarIdx);
2654   SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2655   if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2656 
2657   // We can only recognize very limited forms of loop index expressions, in
2658   // particular, only affine AddRec's like {C1,+,C2}.
2659   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2660   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2661       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2662       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2663     return UnknownValue;
2664 
2665   unsigned MaxSteps = MaxBruteForceIterations;
2666   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2667     ConstantInt *ItCst =
2668       ConstantInt::get(IdxExpr->getType(), IterationNum);
2669     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2670 
2671     // Form the GEP offset.
2672     Indexes[VarIdxNum] = Val;
2673 
2674     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2675     if (Result == 0) break;  // Cannot compute!
2676 
2677     // Evaluate the condition for this iteration.
2678     Result = ConstantExpr::getICmp(predicate, Result, RHS);
2679     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2680     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2681 #if 0
2682       errs() << "\n***\n*** Computed loop count " << *ItCst
2683              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2684              << "***\n";
2685 #endif
2686       ++NumArrayLenItCounts;
2687       return getConstant(ItCst);   // Found terminating iteration!
2688     }
2689   }
2690   return UnknownValue;
2691 }
2692 
2693 
2694 /// CanConstantFold - Return true if we can constant fold an instruction of the
2695 /// specified type, assuming that all operands were constants.
2696 static bool CanConstantFold(const Instruction *I) {
2697   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2698       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2699     return true;
2700 
2701   if (const CallInst *CI = dyn_cast<CallInst>(I))
2702     if (const Function *F = CI->getCalledFunction())
2703       return canConstantFoldCallTo(F);
2704   return false;
2705 }
2706 
2707 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2708 /// in the loop that V is derived from.  We allow arbitrary operations along the
2709 /// way, but the operands of an operation must either be constants or a value
2710 /// derived from a constant PHI.  If this expression does not fit with these
2711 /// constraints, return null.
2712 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2713   // If this is not an instruction, or if this is an instruction outside of the
2714   // loop, it can't be derived from a loop PHI.
2715   Instruction *I = dyn_cast<Instruction>(V);
2716   if (I == 0 || !L->contains(I->getParent())) return 0;
2717 
2718   if (PHINode *PN = dyn_cast<PHINode>(I)) {
2719     if (L->getHeader() == I->getParent())
2720       return PN;
2721     else
2722       // We don't currently keep track of the control flow needed to evaluate
2723       // PHIs, so we cannot handle PHIs inside of loops.
2724       return 0;
2725   }
2726 
2727   // If we won't be able to constant fold this expression even if the operands
2728   // are constants, return early.
2729   if (!CanConstantFold(I)) return 0;
2730 
2731   // Otherwise, we can evaluate this instruction if all of its operands are
2732   // constant or derived from a PHI node themselves.
2733   PHINode *PHI = 0;
2734   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2735     if (!(isa<Constant>(I->getOperand(Op)) ||
2736           isa<GlobalValue>(I->getOperand(Op)))) {
2737       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2738       if (P == 0) return 0;  // Not evolving from PHI
2739       if (PHI == 0)
2740         PHI = P;
2741       else if (PHI != P)
2742         return 0;  // Evolving from multiple different PHIs.
2743     }
2744 
2745   // This is a expression evolving from a constant PHI!
2746   return PHI;
2747 }
2748 
2749 /// EvaluateExpression - Given an expression that passes the
2750 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2751 /// in the loop has the value PHIVal.  If we can't fold this expression for some
2752 /// reason, return null.
2753 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2754   if (isa<PHINode>(V)) return PHIVal;
2755   if (Constant *C = dyn_cast<Constant>(V)) return C;
2756   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2757   Instruction *I = cast<Instruction>(V);
2758 
2759   std::vector<Constant*> Operands;
2760   Operands.resize(I->getNumOperands());
2761 
2762   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2763     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2764     if (Operands[i] == 0) return 0;
2765   }
2766 
2767   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2768     return ConstantFoldCompareInstOperands(CI->getPredicate(),
2769                                            &Operands[0], Operands.size());
2770   else
2771     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2772                                     &Operands[0], Operands.size());
2773 }
2774 
2775 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2776 /// in the header of its containing loop, we know the loop executes a
2777 /// constant number of times, and the PHI node is just a recurrence
2778 /// involving constants, fold it.
2779 Constant *ScalarEvolution::
2780 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2781   std::map<PHINode*, Constant*>::iterator I =
2782     ConstantEvolutionLoopExitValue.find(PN);
2783   if (I != ConstantEvolutionLoopExitValue.end())
2784     return I->second;
2785 
2786   if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2787     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2788 
2789   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2790 
2791   // Since the loop is canonicalized, the PHI node must have two entries.  One
2792   // entry must be a constant (coming in from outside of the loop), and the
2793   // second must be derived from the same PHI.
2794   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2795   Constant *StartCST =
2796     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2797   if (StartCST == 0)
2798     return RetVal = 0;  // Must be a constant.
2799 
2800   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2801   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2802   if (PN2 != PN)
2803     return RetVal = 0;  // Not derived from same PHI.
2804 
2805   // Execute the loop symbolically to determine the exit value.
2806   if (BEs.getActiveBits() >= 32)
2807     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2808 
2809   unsigned NumIterations = BEs.getZExtValue(); // must be in range
2810   unsigned IterationNum = 0;
2811   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2812     if (IterationNum == NumIterations)
2813       return RetVal = PHIVal;  // Got exit value!
2814 
2815     // Compute the value of the PHI node for the next iteration.
2816     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2817     if (NextPHI == PHIVal)
2818       return RetVal = NextPHI;  // Stopped evolving!
2819     if (NextPHI == 0)
2820       return 0;        // Couldn't evaluate!
2821     PHIVal = NextPHI;
2822   }
2823 }
2824 
2825 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2826 /// constant number of times (the condition evolves only from constants),
2827 /// try to evaluate a few iterations of the loop until we get the exit
2828 /// condition gets a value of ExitWhen (true or false).  If we cannot
2829 /// evaluate the trip count of the loop, return UnknownValue.
2830 SCEVHandle ScalarEvolution::
2831 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2832   PHINode *PN = getConstantEvolvingPHI(Cond, L);
2833   if (PN == 0) return UnknownValue;
2834 
2835   // Since the loop is canonicalized, the PHI node must have two entries.  One
2836   // entry must be a constant (coming in from outside of the loop), and the
2837   // second must be derived from the same PHI.
2838   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2839   Constant *StartCST =
2840     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2841   if (StartCST == 0) return UnknownValue;  // Must be a constant.
2842 
2843   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2844   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2845   if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2846 
2847   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2848   // the loop symbolically to determine when the condition gets a value of
2849   // "ExitWhen".
2850   unsigned IterationNum = 0;
2851   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2852   for (Constant *PHIVal = StartCST;
2853        IterationNum != MaxIterations; ++IterationNum) {
2854     ConstantInt *CondVal =
2855       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2856 
2857     // Couldn't symbolically evaluate.
2858     if (!CondVal) return UnknownValue;
2859 
2860     if (CondVal->getValue() == uint64_t(ExitWhen)) {
2861       ConstantEvolutionLoopExitValue[PN] = PHIVal;
2862       ++NumBruteForceTripCountsComputed;
2863       return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2864     }
2865 
2866     // Compute the value of the PHI node for the next iteration.
2867     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2868     if (NextPHI == 0 || NextPHI == PHIVal)
2869       return UnknownValue;  // Couldn't evaluate or not making progress...
2870     PHIVal = NextPHI;
2871   }
2872 
2873   // Too many iterations were needed to evaluate.
2874   return UnknownValue;
2875 }
2876 
2877 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
2878 /// at the specified scope in the program.  The L value specifies a loop
2879 /// nest to evaluate the expression at, where null is the top-level or a
2880 /// specified loop is immediately inside of the loop.
2881 ///
2882 /// This method can be used to compute the exit value for a variable defined
2883 /// in a loop by querying what the value will hold in the parent loop.
2884 ///
2885 /// If this value is not computable at this scope, a SCEVCouldNotCompute
2886 /// object is returned.
2887 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2888   // FIXME: this should be turned into a virtual method on SCEV!
2889 
2890   if (isa<SCEVConstant>(V)) return V;
2891 
2892   // If this instruction is evolved from a constant-evolving PHI, compute the
2893   // exit value from the loop without using SCEVs.
2894   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2895     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2896       const Loop *LI = (*this->LI)[I->getParent()];
2897       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2898         if (PHINode *PN = dyn_cast<PHINode>(I))
2899           if (PN->getParent() == LI->getHeader()) {
2900             // Okay, there is no closed form solution for the PHI node.  Check
2901             // to see if the loop that contains it has a known backedge-taken
2902             // count.  If so, we may be able to force computation of the exit
2903             // value.
2904             SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2905             if (const SCEVConstant *BTCC =
2906                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2907               // Okay, we know how many times the containing loop executes.  If
2908               // this is a constant evolving PHI node, get the final value at
2909               // the specified iteration number.
2910               Constant *RV = getConstantEvolutionLoopExitValue(PN,
2911                                                    BTCC->getValue()->getValue(),
2912                                                                LI);
2913               if (RV) return getUnknown(RV);
2914             }
2915           }
2916 
2917       // Okay, this is an expression that we cannot symbolically evaluate
2918       // into a SCEV.  Check to see if it's possible to symbolically evaluate
2919       // the arguments into constants, and if so, try to constant propagate the
2920       // result.  This is particularly useful for computing loop exit values.
2921       if (CanConstantFold(I)) {
2922         // Check to see if we've folded this instruction at this loop before.
2923         std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2924         std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2925           Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2926         if (!Pair.second)
2927           return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2928 
2929         std::vector<Constant*> Operands;
2930         Operands.reserve(I->getNumOperands());
2931         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2932           Value *Op = I->getOperand(i);
2933           if (Constant *C = dyn_cast<Constant>(Op)) {
2934             Operands.push_back(C);
2935           } else {
2936             // If any of the operands is non-constant and if they are
2937             // non-integer and non-pointer, don't even try to analyze them
2938             // with scev techniques.
2939             if (!isSCEVable(Op->getType()))
2940               return V;
2941 
2942             SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2943             if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2944               Constant *C = SC->getValue();
2945               if (C->getType() != Op->getType())
2946                 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2947                                                                   Op->getType(),
2948                                                                   false),
2949                                           C, Op->getType());
2950               Operands.push_back(C);
2951             } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2952               if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2953                 if (C->getType() != Op->getType())
2954                   C =
2955                     ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2956                                                                   Op->getType(),
2957                                                                   false),
2958                                           C, Op->getType());
2959                 Operands.push_back(C);
2960               } else
2961                 return V;
2962             } else {
2963               return V;
2964             }
2965           }
2966         }
2967 
2968         Constant *C;
2969         if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2970           C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2971                                               &Operands[0], Operands.size());
2972         else
2973           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2974                                        &Operands[0], Operands.size());
2975         Pair.first->second = C;
2976         return getUnknown(C);
2977       }
2978     }
2979 
2980     // This is some other type of SCEVUnknown, just return it.
2981     return V;
2982   }
2983 
2984   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2985     // Avoid performing the look-up in the common case where the specified
2986     // expression has no loop-variant portions.
2987     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2988       SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2989       if (OpAtScope != Comm->getOperand(i)) {
2990         if (OpAtScope == UnknownValue) return UnknownValue;
2991         // Okay, at least one of these operands is loop variant but might be
2992         // foldable.  Build a new instance of the folded commutative expression.
2993         std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2994         NewOps.push_back(OpAtScope);
2995 
2996         for (++i; i != e; ++i) {
2997           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2998           if (OpAtScope == UnknownValue) return UnknownValue;
2999           NewOps.push_back(OpAtScope);
3000         }
3001         if (isa<SCEVAddExpr>(Comm))
3002           return getAddExpr(NewOps);
3003         if (isa<SCEVMulExpr>(Comm))
3004           return getMulExpr(NewOps);
3005         if (isa<SCEVSMaxExpr>(Comm))
3006           return getSMaxExpr(NewOps);
3007         if (isa<SCEVUMaxExpr>(Comm))
3008           return getUMaxExpr(NewOps);
3009         assert(0 && "Unknown commutative SCEV type!");
3010       }
3011     }
3012     // If we got here, all operands are loop invariant.
3013     return Comm;
3014   }
3015 
3016   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3017     SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
3018     if (LHS == UnknownValue) return LHS;
3019     SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
3020     if (RHS == UnknownValue) return RHS;
3021     if (LHS == Div->getLHS() && RHS == Div->getRHS())
3022       return Div;   // must be loop invariant
3023     return getUDivExpr(LHS, RHS);
3024   }
3025 
3026   // If this is a loop recurrence for a loop that does not contain L, then we
3027   // are dealing with the final value computed by the loop.
3028   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3029     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3030       // To evaluate this recurrence, we need to know how many times the AddRec
3031       // loop iterates.  Compute this now.
3032       SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3033       if (BackedgeTakenCount == UnknownValue) return UnknownValue;
3034 
3035       // Then, evaluate the AddRec.
3036       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3037     }
3038     return UnknownValue;
3039   }
3040 
3041   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3042     SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3043     if (Op == UnknownValue) return Op;
3044     if (Op == Cast->getOperand())
3045       return Cast;  // must be loop invariant
3046     return getZeroExtendExpr(Op, Cast->getType());
3047   }
3048 
3049   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3050     SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3051     if (Op == UnknownValue) return Op;
3052     if (Op == Cast->getOperand())
3053       return Cast;  // must be loop invariant
3054     return getSignExtendExpr(Op, Cast->getType());
3055   }
3056 
3057   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3058     SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
3059     if (Op == UnknownValue) return Op;
3060     if (Op == Cast->getOperand())
3061       return Cast;  // must be loop invariant
3062     return getTruncateExpr(Op, Cast->getType());
3063   }
3064 
3065   assert(0 && "Unknown SCEV type!");
3066 }
3067 
3068 /// getSCEVAtScope - This is a convenience function which does
3069 /// getSCEVAtScope(getSCEV(V), L).
3070 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3071   return getSCEVAtScope(getSCEV(V), L);
3072 }
3073 
3074 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3075 /// following equation:
3076 ///
3077 ///     A * X = B (mod N)
3078 ///
3079 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3080 /// A and B isn't important.
3081 ///
3082 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3083 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3084                                                ScalarEvolution &SE) {
3085   uint32_t BW = A.getBitWidth();
3086   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3087   assert(A != 0 && "A must be non-zero.");
3088 
3089   // 1. D = gcd(A, N)
3090   //
3091   // The gcd of A and N may have only one prime factor: 2. The number of
3092   // trailing zeros in A is its multiplicity
3093   uint32_t Mult2 = A.countTrailingZeros();
3094   // D = 2^Mult2
3095 
3096   // 2. Check if B is divisible by D.
3097   //
3098   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3099   // is not less than multiplicity of this prime factor for D.
3100   if (B.countTrailingZeros() < Mult2)
3101     return SE.getCouldNotCompute();
3102 
3103   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3104   // modulo (N / D).
3105   //
3106   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3107   // bit width during computations.
3108   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3109   APInt Mod(BW + 1, 0);
3110   Mod.set(BW - Mult2);  // Mod = N / D
3111   APInt I = AD.multiplicativeInverse(Mod);
3112 
3113   // 4. Compute the minimum unsigned root of the equation:
3114   // I * (B / D) mod (N / D)
3115   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3116 
3117   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3118   // bits.
3119   return SE.getConstant(Result.trunc(BW));
3120 }
3121 
3122 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3123 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3124 /// might be the same) or two SCEVCouldNotCompute objects.
3125 ///
3126 static std::pair<SCEVHandle,SCEVHandle>
3127 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3128   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3129   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3130   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3131   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3132 
3133   // We currently can only solve this if the coefficients are constants.
3134   if (!LC || !MC || !NC) {
3135     const SCEV *CNC = SE.getCouldNotCompute();
3136     return std::make_pair(CNC, CNC);
3137   }
3138 
3139   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3140   const APInt &L = LC->getValue()->getValue();
3141   const APInt &M = MC->getValue()->getValue();
3142   const APInt &N = NC->getValue()->getValue();
3143   APInt Two(BitWidth, 2);
3144   APInt Four(BitWidth, 4);
3145 
3146   {
3147     using namespace APIntOps;
3148     const APInt& C = L;
3149     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3150     // The B coefficient is M-N/2
3151     APInt B(M);
3152     B -= sdiv(N,Two);
3153 
3154     // The A coefficient is N/2
3155     APInt A(N.sdiv(Two));
3156 
3157     // Compute the B^2-4ac term.
3158     APInt SqrtTerm(B);
3159     SqrtTerm *= B;
3160     SqrtTerm -= Four * (A * C);
3161 
3162     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3163     // integer value or else APInt::sqrt() will assert.
3164     APInt SqrtVal(SqrtTerm.sqrt());
3165 
3166     // Compute the two solutions for the quadratic formula.
3167     // The divisions must be performed as signed divisions.
3168     APInt NegB(-B);
3169     APInt TwoA( A << 1 );
3170     if (TwoA.isMinValue()) {
3171       const SCEV *CNC = SE.getCouldNotCompute();
3172       return std::make_pair(CNC, CNC);
3173     }
3174 
3175     ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3176     ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3177 
3178     return std::make_pair(SE.getConstant(Solution1),
3179                           SE.getConstant(Solution2));
3180     } // end APIntOps namespace
3181 }
3182 
3183 /// HowFarToZero - Return the number of times a backedge comparing the specified
3184 /// value to zero will execute.  If not computable, return UnknownValue
3185 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3186   // If the value is a constant
3187   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3188     // If the value is already zero, the branch will execute zero times.
3189     if (C->getValue()->isZero()) return C;
3190     return UnknownValue;  // Otherwise it will loop infinitely.
3191   }
3192 
3193   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3194   if (!AddRec || AddRec->getLoop() != L)
3195     return UnknownValue;
3196 
3197   if (AddRec->isAffine()) {
3198     // If this is an affine expression, the execution count of this branch is
3199     // the minimum unsigned root of the following equation:
3200     //
3201     //     Start + Step*N = 0 (mod 2^BW)
3202     //
3203     // equivalent to:
3204     //
3205     //             Step*N = -Start (mod 2^BW)
3206     //
3207     // where BW is the common bit width of Start and Step.
3208 
3209     // Get the initial value for the loop.
3210     SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3211     if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3212 
3213     SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3214 
3215     if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3216       // For now we handle only constant steps.
3217 
3218       // First, handle unitary steps.
3219       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3220         return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3221       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3222         return Start;                           //    N = Start (as unsigned)
3223 
3224       // Then, try to solve the above equation provided that Start is constant.
3225       if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3226         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3227                                             -StartC->getValue()->getValue(),
3228                                             *this);
3229     }
3230   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3231     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3232     // the quadratic equation to solve it.
3233     std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3234                                                                     *this);
3235     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3236     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3237     if (R1) {
3238 #if 0
3239       errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3240              << "  sol#2: " << *R2 << "\n";
3241 #endif
3242       // Pick the smallest positive root value.
3243       if (ConstantInt *CB =
3244           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3245                                    R1->getValue(), R2->getValue()))) {
3246         if (CB->getZExtValue() == false)
3247           std::swap(R1, R2);   // R1 is the minimum root now.
3248 
3249         // We can only use this value if the chrec ends up with an exact zero
3250         // value at this index.  When solving for "X*X != 5", for example, we
3251         // should not accept a root of 2.
3252         SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3253         if (Val->isZero())
3254           return R1;  // We found a quadratic root!
3255       }
3256     }
3257   }
3258 
3259   return UnknownValue;
3260 }
3261 
3262 /// HowFarToNonZero - Return the number of times a backedge checking the
3263 /// specified value for nonzero will execute.  If not computable, return
3264 /// UnknownValue
3265 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3266   // Loops that look like: while (X == 0) are very strange indeed.  We don't
3267   // handle them yet except for the trivial case.  This could be expanded in the
3268   // future as needed.
3269 
3270   // If the value is a constant, check to see if it is known to be non-zero
3271   // already.  If so, the backedge will execute zero times.
3272   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3273     if (!C->getValue()->isNullValue())
3274       return getIntegerSCEV(0, C->getType());
3275     return UnknownValue;  // Otherwise it will loop infinitely.
3276   }
3277 
3278   // We could implement others, but I really doubt anyone writes loops like
3279   // this, and if they did, they would already be constant folded.
3280   return UnknownValue;
3281 }
3282 
3283 /// getLoopPredecessor - If the given loop's header has exactly one unique
3284 /// predecessor outside the loop, return it. Otherwise return null.
3285 ///
3286 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3287   BasicBlock *Header = L->getHeader();
3288   BasicBlock *Pred = 0;
3289   for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3290        PI != E; ++PI)
3291     if (!L->contains(*PI)) {
3292       if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3293       Pred = *PI;
3294     }
3295   return Pred;
3296 }
3297 
3298 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3299 /// (which may not be an immediate predecessor) which has exactly one
3300 /// successor from which BB is reachable, or null if no such block is
3301 /// found.
3302 ///
3303 BasicBlock *
3304 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3305   // If the block has a unique predecessor, then there is no path from the
3306   // predecessor to the block that does not go through the direct edge
3307   // from the predecessor to the block.
3308   if (BasicBlock *Pred = BB->getSinglePredecessor())
3309     return Pred;
3310 
3311   // A loop's header is defined to be a block that dominates the loop.
3312   // If the header has a unique predecessor outside the loop, it must be
3313   // a block that has exactly one successor that can reach the loop.
3314   if (Loop *L = LI->getLoopFor(BB))
3315     return getLoopPredecessor(L);
3316 
3317   return 0;
3318 }
3319 
3320 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
3321 /// a conditional between LHS and RHS.  This is used to help avoid max
3322 /// expressions in loop trip counts.
3323 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3324                                           ICmpInst::Predicate Pred,
3325                                           const SCEV *LHS, const SCEV *RHS) {
3326   BasicBlock *Predecessor = getLoopPredecessor(L);
3327   BasicBlock *PredecessorDest = L->getHeader();
3328 
3329   // Starting at the loop predecessor, climb up the predecessor chain, as long
3330   // as there are predecessors that can be found that have unique successors
3331   // leading to the original header.
3332   for (; Predecessor;
3333        PredecessorDest = Predecessor,
3334        Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
3335 
3336     BranchInst *LoopEntryPredicate =
3337       dyn_cast<BranchInst>(Predecessor->getTerminator());
3338     if (!LoopEntryPredicate ||
3339         LoopEntryPredicate->isUnconditional())
3340       continue;
3341 
3342     ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3343     if (!ICI) continue;
3344 
3345     // Now that we found a conditional branch that dominates the loop, check to
3346     // see if it is the comparison we are looking for.
3347     Value *PreCondLHS = ICI->getOperand(0);
3348     Value *PreCondRHS = ICI->getOperand(1);
3349     ICmpInst::Predicate Cond;
3350     if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
3351       Cond = ICI->getPredicate();
3352     else
3353       Cond = ICI->getInversePredicate();
3354 
3355     if (Cond == Pred)
3356       ; // An exact match.
3357     else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3358       ; // The actual condition is beyond sufficient.
3359     else
3360       // Check a few special cases.
3361       switch (Cond) {
3362       case ICmpInst::ICMP_UGT:
3363         if (Pred == ICmpInst::ICMP_ULT) {
3364           std::swap(PreCondLHS, PreCondRHS);
3365           Cond = ICmpInst::ICMP_ULT;
3366           break;
3367         }
3368         continue;
3369       case ICmpInst::ICMP_SGT:
3370         if (Pred == ICmpInst::ICMP_SLT) {
3371           std::swap(PreCondLHS, PreCondRHS);
3372           Cond = ICmpInst::ICMP_SLT;
3373           break;
3374         }
3375         continue;
3376       case ICmpInst::ICMP_NE:
3377         // Expressions like (x >u 0) are often canonicalized to (x != 0),
3378         // so check for this case by checking if the NE is comparing against
3379         // a minimum or maximum constant.
3380         if (!ICmpInst::isTrueWhenEqual(Pred))
3381           if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3382             const APInt &A = CI->getValue();
3383             switch (Pred) {
3384             case ICmpInst::ICMP_SLT:
3385               if (A.isMaxSignedValue()) break;
3386               continue;
3387             case ICmpInst::ICMP_SGT:
3388               if (A.isMinSignedValue()) break;
3389               continue;
3390             case ICmpInst::ICMP_ULT:
3391               if (A.isMaxValue()) break;
3392               continue;
3393             case ICmpInst::ICMP_UGT:
3394               if (A.isMinValue()) break;
3395               continue;
3396             default:
3397               continue;
3398             }
3399             Cond = ICmpInst::ICMP_NE;
3400             // NE is symmetric but the original comparison may not be. Swap
3401             // the operands if necessary so that they match below.
3402             if (isa<SCEVConstant>(LHS))
3403               std::swap(PreCondLHS, PreCondRHS);
3404             break;
3405           }
3406         continue;
3407       default:
3408         // We weren't able to reconcile the condition.
3409         continue;
3410       }
3411 
3412     if (!PreCondLHS->getType()->isInteger()) continue;
3413 
3414     SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3415     SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3416     if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3417         (LHS == getNotSCEV(PreCondRHSSCEV) &&
3418          RHS == getNotSCEV(PreCondLHSSCEV)))
3419       return true;
3420   }
3421 
3422   return false;
3423 }
3424 
3425 /// HowManyLessThans - Return the number of times a backedge containing the
3426 /// specified less-than comparison will execute.  If not computable, return
3427 /// UnknownValue.
3428 ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3429 HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3430                  const Loop *L, bool isSigned) {
3431   // Only handle:  "ADDREC < LoopInvariant".
3432   if (!RHS->isLoopInvariant(L)) return UnknownValue;
3433 
3434   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3435   if (!AddRec || AddRec->getLoop() != L)
3436     return UnknownValue;
3437 
3438   if (AddRec->isAffine()) {
3439     // FORNOW: We only support unit strides.
3440     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3441     SCEVHandle Step = AddRec->getStepRecurrence(*this);
3442     SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3443 
3444     // TODO: handle non-constant strides.
3445     const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3446     if (!CStep || CStep->isZero())
3447       return UnknownValue;
3448     if (CStep->isOne()) {
3449       // With unit stride, the iteration never steps past the limit value.
3450     } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3451       if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3452         // Test whether a positive iteration iteration can step past the limit
3453         // value and past the maximum value for its type in a single step.
3454         if (isSigned) {
3455           APInt Max = APInt::getSignedMaxValue(BitWidth);
3456           if ((Max - CStep->getValue()->getValue())
3457                 .slt(CLimit->getValue()->getValue()))
3458             return UnknownValue;
3459         } else {
3460           APInt Max = APInt::getMaxValue(BitWidth);
3461           if ((Max - CStep->getValue()->getValue())
3462                 .ult(CLimit->getValue()->getValue()))
3463             return UnknownValue;
3464         }
3465       } else
3466         // TODO: handle non-constant limit values below.
3467         return UnknownValue;
3468     } else
3469       // TODO: handle negative strides below.
3470       return UnknownValue;
3471 
3472     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3473     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3474     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3475     // treat m-n as signed nor unsigned due to overflow possibility.
3476 
3477     // First, we get the value of the LHS in the first iteration: n
3478     SCEVHandle Start = AddRec->getOperand(0);
3479 
3480     // Determine the minimum constant start value.
3481     SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3482       getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3483                              APInt::getMinValue(BitWidth));
3484 
3485     // If we know that the condition is true in order to enter the loop,
3486     // then we know that it will run exactly (m-n)/s times. Otherwise, we
3487     // only know if will execute (max(m,n)-n)/s times. In both cases, the
3488     // division must round up.
3489     SCEVHandle End = RHS;
3490     if (!isLoopGuardedByCond(L,
3491                              isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3492                              getMinusSCEV(Start, Step), RHS))
3493       End = isSigned ? getSMaxExpr(RHS, Start)
3494                      : getUMaxExpr(RHS, Start);
3495 
3496     // Determine the maximum constant end value.
3497     SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3498       getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3499                              APInt::getMaxValue(BitWidth));
3500 
3501     // Finally, we subtract these two values and divide, rounding up, to get
3502     // the number of times the backedge is executed.
3503     SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3504                                                 getAddExpr(Step, NegOne)),
3505                                      Step);
3506 
3507     // The maximum backedge count is similar, except using the minimum start
3508     // value and the maximum end value.
3509     SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3510                                                                 MinStart),
3511                                                    getAddExpr(Step, NegOne)),
3512                                         Step);
3513 
3514     return BackedgeTakenInfo(BECount, MaxBECount);
3515   }
3516 
3517   return UnknownValue;
3518 }
3519 
3520 /// getNumIterationsInRange - Return the number of iterations of this loop that
3521 /// produce values in the specified constant range.  Another way of looking at
3522 /// this is that it returns the first iteration number where the value is not in
3523 /// the condition, thus computing the exit count. If the iteration count can't
3524 /// be computed, an instance of SCEVCouldNotCompute is returned.
3525 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3526                                                    ScalarEvolution &SE) const {
3527   if (Range.isFullSet())  // Infinite loop.
3528     return SE.getCouldNotCompute();
3529 
3530   // If the start is a non-zero constant, shift the range to simplify things.
3531   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3532     if (!SC->getValue()->isZero()) {
3533       std::vector<SCEVHandle> Operands(op_begin(), op_end());
3534       Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3535       SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3536       if (const SCEVAddRecExpr *ShiftedAddRec =
3537             dyn_cast<SCEVAddRecExpr>(Shifted))
3538         return ShiftedAddRec->getNumIterationsInRange(
3539                            Range.subtract(SC->getValue()->getValue()), SE);
3540       // This is strange and shouldn't happen.
3541       return SE.getCouldNotCompute();
3542     }
3543 
3544   // The only time we can solve this is when we have all constant indices.
3545   // Otherwise, we cannot determine the overflow conditions.
3546   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3547     if (!isa<SCEVConstant>(getOperand(i)))
3548       return SE.getCouldNotCompute();
3549 
3550 
3551   // Okay at this point we know that all elements of the chrec are constants and
3552   // that the start element is zero.
3553 
3554   // First check to see if the range contains zero.  If not, the first
3555   // iteration exits.
3556   unsigned BitWidth = SE.getTypeSizeInBits(getType());
3557   if (!Range.contains(APInt(BitWidth, 0)))
3558     return SE.getConstant(ConstantInt::get(getType(),0));
3559 
3560   if (isAffine()) {
3561     // If this is an affine expression then we have this situation:
3562     //   Solve {0,+,A} in Range  ===  Ax in Range
3563 
3564     // We know that zero is in the range.  If A is positive then we know that
3565     // the upper value of the range must be the first possible exit value.
3566     // If A is negative then the lower of the range is the last possible loop
3567     // value.  Also note that we already checked for a full range.
3568     APInt One(BitWidth,1);
3569     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3570     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3571 
3572     // The exit value should be (End+A)/A.
3573     APInt ExitVal = (End + A).udiv(A);
3574     ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3575 
3576     // Evaluate at the exit value.  If we really did fall out of the valid
3577     // range, then we computed our trip count, otherwise wrap around or other
3578     // things must have happened.
3579     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3580     if (Range.contains(Val->getValue()))
3581       return SE.getCouldNotCompute();  // Something strange happened
3582 
3583     // Ensure that the previous value is in the range.  This is a sanity check.
3584     assert(Range.contains(
3585            EvaluateConstantChrecAtConstant(this,
3586            ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3587            "Linear scev computation is off in a bad way!");
3588     return SE.getConstant(ExitValue);
3589   } else if (isQuadratic()) {
3590     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3591     // quadratic equation to solve it.  To do this, we must frame our problem in
3592     // terms of figuring out when zero is crossed, instead of when
3593     // Range.getUpper() is crossed.
3594     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3595     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3596     SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3597 
3598     // Next, solve the constructed addrec
3599     std::pair<SCEVHandle,SCEVHandle> Roots =
3600       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3601     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3602     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3603     if (R1) {
3604       // Pick the smallest positive root value.
3605       if (ConstantInt *CB =
3606           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3607                                    R1->getValue(), R2->getValue()))) {
3608         if (CB->getZExtValue() == false)
3609           std::swap(R1, R2);   // R1 is the minimum root now.
3610 
3611         // Make sure the root is not off by one.  The returned iteration should
3612         // not be in the range, but the previous one should be.  When solving
3613         // for "X*X < 5", for example, we should not return a root of 2.
3614         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3615                                                              R1->getValue(),
3616                                                              SE);
3617         if (Range.contains(R1Val->getValue())) {
3618           // The next iteration must be out of the range...
3619           ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3620 
3621           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3622           if (!Range.contains(R1Val->getValue()))
3623             return SE.getConstant(NextVal);
3624           return SE.getCouldNotCompute();  // Something strange happened
3625         }
3626 
3627         // If R1 was not in the range, then it is a good return value.  Make
3628         // sure that R1-1 WAS in the range though, just in case.
3629         ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3630         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3631         if (Range.contains(R1Val->getValue()))
3632           return R1;
3633         return SE.getCouldNotCompute();  // Something strange happened
3634       }
3635     }
3636   }
3637 
3638   return SE.getCouldNotCompute();
3639 }
3640 
3641 
3642 
3643 //===----------------------------------------------------------------------===//
3644 //                   SCEVCallbackVH Class Implementation
3645 //===----------------------------------------------------------------------===//
3646 
3647 void SCEVCallbackVH::deleted() {
3648   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3649   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3650     SE->ConstantEvolutionLoopExitValue.erase(PN);
3651   if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3652     SE->ValuesAtScopes.erase(I);
3653   SE->Scalars.erase(getValPtr());
3654   // this now dangles!
3655 }
3656 
3657 void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3658   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3659 
3660   // Forget all the expressions associated with users of the old value,
3661   // so that future queries will recompute the expressions using the new
3662   // value.
3663   SmallVector<User *, 16> Worklist;
3664   Value *Old = getValPtr();
3665   bool DeleteOld = false;
3666   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3667        UI != UE; ++UI)
3668     Worklist.push_back(*UI);
3669   while (!Worklist.empty()) {
3670     User *U = Worklist.pop_back_val();
3671     // Deleting the Old value will cause this to dangle. Postpone
3672     // that until everything else is done.
3673     if (U == Old) {
3674       DeleteOld = true;
3675       continue;
3676     }
3677     if (PHINode *PN = dyn_cast<PHINode>(U))
3678       SE->ConstantEvolutionLoopExitValue.erase(PN);
3679     if (Instruction *I = dyn_cast<Instruction>(U))
3680       SE->ValuesAtScopes.erase(I);
3681     if (SE->Scalars.erase(U))
3682       for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3683            UI != UE; ++UI)
3684         Worklist.push_back(*UI);
3685   }
3686   if (DeleteOld) {
3687     if (PHINode *PN = dyn_cast<PHINode>(Old))
3688       SE->ConstantEvolutionLoopExitValue.erase(PN);
3689     if (Instruction *I = dyn_cast<Instruction>(Old))
3690       SE->ValuesAtScopes.erase(I);
3691     SE->Scalars.erase(Old);
3692     // this now dangles!
3693   }
3694   // this may dangle!
3695 }
3696 
3697 SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3698   : CallbackVH(V), SE(se) {}
3699 
3700 //===----------------------------------------------------------------------===//
3701 //                   ScalarEvolution Class Implementation
3702 //===----------------------------------------------------------------------===//
3703 
3704 ScalarEvolution::ScalarEvolution()
3705   : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3706 }
3707 
3708 bool ScalarEvolution::runOnFunction(Function &F) {
3709   this->F = &F;
3710   LI = &getAnalysis<LoopInfo>();
3711   TD = getAnalysisIfAvailable<TargetData>();
3712   return false;
3713 }
3714 
3715 void ScalarEvolution::releaseMemory() {
3716   Scalars.clear();
3717   BackedgeTakenCounts.clear();
3718   ConstantEvolutionLoopExitValue.clear();
3719   ValuesAtScopes.clear();
3720 }
3721 
3722 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3723   AU.setPreservesAll();
3724   AU.addRequiredTransitive<LoopInfo>();
3725 }
3726 
3727 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3728   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3729 }
3730 
3731 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3732                           const Loop *L) {
3733   // Print all inner loops first
3734   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3735     PrintLoopInfo(OS, SE, *I);
3736 
3737   OS << "Loop " << L->getHeader()->getName() << ": ";
3738 
3739   SmallVector<BasicBlock*, 8> ExitBlocks;
3740   L->getExitBlocks(ExitBlocks);
3741   if (ExitBlocks.size() != 1)
3742     OS << "<multiple exits> ";
3743 
3744   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3745     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3746   } else {
3747     OS << "Unpredictable backedge-taken count. ";
3748   }
3749 
3750   OS << "\n";
3751 }
3752 
3753 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3754   // ScalarEvolution's implementaiton of the print method is to print
3755   // out SCEV values of all instructions that are interesting. Doing
3756   // this potentially causes it to create new SCEV objects though,
3757   // which technically conflicts with the const qualifier. This isn't
3758   // observable from outside the class though (the hasSCEV function
3759   // notwithstanding), so casting away the const isn't dangerous.
3760   ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3761 
3762   OS << "Classifying expressions for: " << F->getName() << "\n";
3763   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3764     if (isSCEVable(I->getType())) {
3765       OS << *I;
3766       OS << "  -->  ";
3767       SCEVHandle SV = SE.getSCEV(&*I);
3768       SV->print(OS);
3769       OS << "\t\t";
3770 
3771       if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3772         OS << "Exits: ";
3773         SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3774         if (isa<SCEVCouldNotCompute>(ExitValue)) {
3775           OS << "<<Unknown>>";
3776         } else {
3777           OS << *ExitValue;
3778         }
3779       }
3780 
3781 
3782       OS << "\n";
3783     }
3784 
3785   OS << "Determining loop execution counts for: " << F->getName() << "\n";
3786   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3787     PrintLoopInfo(OS, &SE, *I);
3788 }
3789 
3790 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3791   raw_os_ostream OS(o);
3792   print(OS, M);
3793 }
3794