1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 static RegisterPass<ScalarEvolution> 107 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeID(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); 181 new (S) SCEVConstant(ID, V); 182 UniqueSCEVs.InsertNode(S, IP); 183 return S; 184 } 185 186 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 187 return getConstant(ConstantInt::get(getContext(), Val)); 188 } 189 190 const SCEV * 191 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 192 return getConstant( 193 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 194 } 195 196 const Type *SCEVConstant::getType() const { return V->getType(); } 197 198 void SCEVConstant::print(raw_ostream &OS) const { 199 WriteAsOperand(OS, V, false); 200 } 201 202 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, 203 unsigned SCEVTy, const SCEV *op, const Type *ty) 204 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 205 206 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 207 return Op->dominates(BB, DT); 208 } 209 210 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 211 return Op->properlyDominates(BB, DT); 212 } 213 214 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, 215 const SCEV *op, const Type *ty) 216 : SCEVCastExpr(ID, scTruncate, op, ty) { 217 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 218 (Ty->isInteger() || isa<PointerType>(Ty)) && 219 "Cannot truncate non-integer value!"); 220 } 221 222 void SCEVTruncateExpr::print(raw_ostream &OS) const { 223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 224 } 225 226 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, 227 const SCEV *op, const Type *ty) 228 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 229 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 230 (Ty->isInteger() || isa<PointerType>(Ty)) && 231 "Cannot zero extend non-integer value!"); 232 } 233 234 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 236 } 237 238 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, 239 const SCEV *op, const Type *ty) 240 : SCEVCastExpr(ID, scSignExtend, op, ty) { 241 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 242 (Ty->isInteger() || isa<PointerType>(Ty)) && 243 "Cannot sign extend non-integer value!"); 244 } 245 246 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 248 } 249 250 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 252 const char *OpStr = getOperationStr(); 253 OS << "(" << *Operands[0]; 254 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 255 OS << OpStr << *Operands[i]; 256 OS << ")"; 257 } 258 259 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 261 if (!getOperand(i)->dominates(BB, DT)) 262 return false; 263 } 264 return true; 265 } 266 267 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 269 if (!getOperand(i)->properlyDominates(BB, DT)) 270 return false; 271 } 272 return true; 273 } 274 275 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 276 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 277 } 278 279 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 280 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 281 } 282 283 void SCEVUDivExpr::print(raw_ostream &OS) const { 284 OS << "(" << *LHS << " /u " << *RHS << ")"; 285 } 286 287 const Type *SCEVUDivExpr::getType() const { 288 // In most cases the types of LHS and RHS will be the same, but in some 289 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 290 // depend on the type for correctness, but handling types carefully can 291 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 292 // a pointer type than the RHS, so use the RHS' type here. 293 return RHS->getType(); 294 } 295 296 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 297 // Add recurrences are never invariant in the function-body (null loop). 298 if (!QueryLoop) 299 return false; 300 301 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 302 if (QueryLoop->contains(L)) 303 return false; 304 305 // This recurrence is variant w.r.t. QueryLoop if any of its operands 306 // are variant. 307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 308 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 309 return false; 310 311 // Otherwise it's loop-invariant. 312 return true; 313 } 314 315 void SCEVAddRecExpr::print(raw_ostream &OS) const { 316 OS << "{" << *Operands[0]; 317 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 318 OS << ",+," << *Operands[i]; 319 OS << "}<"; 320 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 321 OS << ">"; 322 } 323 324 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 325 // All non-instruction values are loop invariant. All instructions are loop 326 // invariant if they are not contained in the specified loop. 327 // Instructions are never considered invariant in the function body 328 // (null loop) because they are defined within the "loop". 329 if (Instruction *I = dyn_cast<Instruction>(V)) 330 return L && !L->contains(I); 331 return true; 332 } 333 334 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 335 if (Instruction *I = dyn_cast<Instruction>(getValue())) 336 return DT->dominates(I->getParent(), BB); 337 return true; 338 } 339 340 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 341 if (Instruction *I = dyn_cast<Instruction>(getValue())) 342 return DT->properlyDominates(I->getParent(), BB); 343 return true; 344 } 345 346 const Type *SCEVUnknown::getType() const { 347 return V->getType(); 348 } 349 350 bool SCEVUnknown::isOffsetOf(const StructType *&STy, Constant *&FieldNo) const { 351 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 352 if (VCE->getOpcode() == Instruction::PtrToInt) 353 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 354 if (CE->getOpcode() == Instruction::GetElementPtr) 355 if (CE->getOperand(0)->isNullValue()) { 356 const Type *Ty = 357 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 358 if (const StructType *StructTy = dyn_cast<StructType>(Ty)) 359 if (CE->getNumOperands() == 3 && 360 CE->getOperand(1)->isNullValue()) { 361 STy = StructTy; 362 FieldNo = CE->getOperand(2); 363 return true; 364 } 365 } 366 367 return false; 368 } 369 370 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 371 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 372 if (VCE->getOpcode() == Instruction::PtrToInt) 373 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 374 if (CE->getOpcode() == Instruction::GetElementPtr) 375 if (CE->getOperand(0)->isNullValue()) { 376 const Type *Ty = 377 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 378 if (CE->getNumOperands() == 2) 379 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 380 if (CI->isOne()) { 381 AllocTy = Ty; 382 return true; 383 } 384 } 385 386 return false; 387 } 388 389 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 391 if (VCE->getOpcode() == Instruction::PtrToInt) 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 393 if (CE->getOpcode() == Instruction::GetElementPtr) 394 if (CE->getOperand(0)->isNullValue()) { 395 const Type *Ty = 396 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 397 if (const StructType *STy = dyn_cast<StructType>(Ty)) 398 if (CE->getNumOperands() == 3 && 399 CE->getOperand(1)->isNullValue()) { 400 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 401 if (CI->isOne() && 402 STy->getNumElements() == 2 && 403 STy->getElementType(0)->isInteger(1)) { 404 AllocTy = STy->getElementType(1); 405 return true; 406 } 407 } 408 } 409 410 return false; 411 } 412 413 void SCEVUnknown::print(raw_ostream &OS) const { 414 const Type *AllocTy; 415 if (isSizeOf(AllocTy)) { 416 OS << "sizeof(" << *AllocTy << ")"; 417 return; 418 } 419 if (isAlignOf(AllocTy)) { 420 OS << "alignof(" << *AllocTy << ")"; 421 return; 422 } 423 424 const StructType *STy; 425 Constant *FieldNo; 426 if (isOffsetOf(STy, FieldNo)) { 427 OS << "offsetof(" << *STy << ", "; 428 WriteAsOperand(OS, FieldNo, false); 429 OS << ")"; 430 return; 431 } 432 433 // Otherwise just print it normally. 434 WriteAsOperand(OS, V, false); 435 } 436 437 //===----------------------------------------------------------------------===// 438 // SCEV Utilities 439 //===----------------------------------------------------------------------===// 440 441 static bool CompareTypes(const Type *A, const Type *B) { 442 if (A->getTypeID() != B->getTypeID()) 443 return A->getTypeID() < B->getTypeID(); 444 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 445 const IntegerType *BI = cast<IntegerType>(B); 446 return AI->getBitWidth() < BI->getBitWidth(); 447 } 448 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 449 const PointerType *BI = cast<PointerType>(B); 450 return CompareTypes(AI->getElementType(), BI->getElementType()); 451 } 452 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 453 const ArrayType *BI = cast<ArrayType>(B); 454 if (AI->getNumElements() != BI->getNumElements()) 455 return AI->getNumElements() < BI->getNumElements(); 456 return CompareTypes(AI->getElementType(), BI->getElementType()); 457 } 458 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 459 const VectorType *BI = cast<VectorType>(B); 460 if (AI->getNumElements() != BI->getNumElements()) 461 return AI->getNumElements() < BI->getNumElements(); 462 return CompareTypes(AI->getElementType(), BI->getElementType()); 463 } 464 if (const StructType *AI = dyn_cast<StructType>(A)) { 465 const StructType *BI = cast<StructType>(B); 466 if (AI->getNumElements() != BI->getNumElements()) 467 return AI->getNumElements() < BI->getNumElements(); 468 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 469 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 470 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 471 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 472 } 473 return false; 474 } 475 476 namespace { 477 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 478 /// than the complexity of the RHS. This comparator is used to canonicalize 479 /// expressions. 480 class SCEVComplexityCompare { 481 LoopInfo *LI; 482 public: 483 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 484 485 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 486 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 487 if (LHS == RHS) 488 return false; 489 490 // Primarily, sort the SCEVs by their getSCEVType(). 491 if (LHS->getSCEVType() != RHS->getSCEVType()) 492 return LHS->getSCEVType() < RHS->getSCEVType(); 493 494 // Aside from the getSCEVType() ordering, the particular ordering 495 // isn't very important except that it's beneficial to be consistent, 496 // so that (a + b) and (b + a) don't end up as different expressions. 497 498 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 499 // not as complete as it could be. 500 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 501 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 502 503 // Order pointer values after integer values. This helps SCEVExpander 504 // form GEPs. 505 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 506 return false; 507 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 508 return true; 509 510 // Compare getValueID values. 511 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 512 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 513 514 // Sort arguments by their position. 515 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 516 const Argument *RA = cast<Argument>(RU->getValue()); 517 return LA->getArgNo() < RA->getArgNo(); 518 } 519 520 // For instructions, compare their loop depth, and their opcode. 521 // This is pretty loose. 522 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 523 Instruction *RV = cast<Instruction>(RU->getValue()); 524 525 // Compare loop depths. 526 if (LI->getLoopDepth(LV->getParent()) != 527 LI->getLoopDepth(RV->getParent())) 528 return LI->getLoopDepth(LV->getParent()) < 529 LI->getLoopDepth(RV->getParent()); 530 531 // Compare opcodes. 532 if (LV->getOpcode() != RV->getOpcode()) 533 return LV->getOpcode() < RV->getOpcode(); 534 535 // Compare the number of operands. 536 if (LV->getNumOperands() != RV->getNumOperands()) 537 return LV->getNumOperands() < RV->getNumOperands(); 538 } 539 540 return false; 541 } 542 543 // Compare constant values. 544 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 545 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 546 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 547 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 548 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 549 } 550 551 // Compare addrec loop depths. 552 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 554 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 555 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 556 } 557 558 // Lexicographically compare n-ary expressions. 559 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 560 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 561 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 562 if (i >= RC->getNumOperands()) 563 return false; 564 if (operator()(LC->getOperand(i), RC->getOperand(i))) 565 return true; 566 if (operator()(RC->getOperand(i), LC->getOperand(i))) 567 return false; 568 } 569 return LC->getNumOperands() < RC->getNumOperands(); 570 } 571 572 // Lexicographically compare udiv expressions. 573 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 574 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 575 if (operator()(LC->getLHS(), RC->getLHS())) 576 return true; 577 if (operator()(RC->getLHS(), LC->getLHS())) 578 return false; 579 if (operator()(LC->getRHS(), RC->getRHS())) 580 return true; 581 if (operator()(RC->getRHS(), LC->getRHS())) 582 return false; 583 return false; 584 } 585 586 // Compare cast expressions by operand. 587 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 588 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 589 return operator()(LC->getOperand(), RC->getOperand()); 590 } 591 592 llvm_unreachable("Unknown SCEV kind!"); 593 return false; 594 } 595 }; 596 } 597 598 /// GroupByComplexity - Given a list of SCEV objects, order them by their 599 /// complexity, and group objects of the same complexity together by value. 600 /// When this routine is finished, we know that any duplicates in the vector are 601 /// consecutive and that complexity is monotonically increasing. 602 /// 603 /// Note that we go take special precautions to ensure that we get determinstic 604 /// results from this routine. In other words, we don't want the results of 605 /// this to depend on where the addresses of various SCEV objects happened to 606 /// land in memory. 607 /// 608 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 609 LoopInfo *LI) { 610 if (Ops.size() < 2) return; // Noop 611 if (Ops.size() == 2) { 612 // This is the common case, which also happens to be trivially simple. 613 // Special case it. 614 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 615 std::swap(Ops[0], Ops[1]); 616 return; 617 } 618 619 // Do the rough sort by complexity. 620 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 621 622 // Now that we are sorted by complexity, group elements of the same 623 // complexity. Note that this is, at worst, N^2, but the vector is likely to 624 // be extremely short in practice. Note that we take this approach because we 625 // do not want to depend on the addresses of the objects we are grouping. 626 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 627 const SCEV *S = Ops[i]; 628 unsigned Complexity = S->getSCEVType(); 629 630 // If there are any objects of the same complexity and same value as this 631 // one, group them. 632 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 633 if (Ops[j] == S) { // Found a duplicate. 634 // Move it to immediately after i'th element. 635 std::swap(Ops[i+1], Ops[j]); 636 ++i; // no need to rescan it. 637 if (i == e-2) return; // Done! 638 } 639 } 640 } 641 } 642 643 644 645 //===----------------------------------------------------------------------===// 646 // Simple SCEV method implementations 647 //===----------------------------------------------------------------------===// 648 649 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 650 /// Assume, K > 0. 651 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 652 ScalarEvolution &SE, 653 const Type* ResultTy) { 654 // Handle the simplest case efficiently. 655 if (K == 1) 656 return SE.getTruncateOrZeroExtend(It, ResultTy); 657 658 // We are using the following formula for BC(It, K): 659 // 660 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 661 // 662 // Suppose, W is the bitwidth of the return value. We must be prepared for 663 // overflow. Hence, we must assure that the result of our computation is 664 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 665 // safe in modular arithmetic. 666 // 667 // However, this code doesn't use exactly that formula; the formula it uses 668 // is something like the following, where T is the number of factors of 2 in 669 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 670 // exponentiation: 671 // 672 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 673 // 674 // This formula is trivially equivalent to the previous formula. However, 675 // this formula can be implemented much more efficiently. The trick is that 676 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 677 // arithmetic. To do exact division in modular arithmetic, all we have 678 // to do is multiply by the inverse. Therefore, this step can be done at 679 // width W. 680 // 681 // The next issue is how to safely do the division by 2^T. The way this 682 // is done is by doing the multiplication step at a width of at least W + T 683 // bits. This way, the bottom W+T bits of the product are accurate. Then, 684 // when we perform the division by 2^T (which is equivalent to a right shift 685 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 686 // truncated out after the division by 2^T. 687 // 688 // In comparison to just directly using the first formula, this technique 689 // is much more efficient; using the first formula requires W * K bits, 690 // but this formula less than W + K bits. Also, the first formula requires 691 // a division step, whereas this formula only requires multiplies and shifts. 692 // 693 // It doesn't matter whether the subtraction step is done in the calculation 694 // width or the input iteration count's width; if the subtraction overflows, 695 // the result must be zero anyway. We prefer here to do it in the width of 696 // the induction variable because it helps a lot for certain cases; CodeGen 697 // isn't smart enough to ignore the overflow, which leads to much less 698 // efficient code if the width of the subtraction is wider than the native 699 // register width. 700 // 701 // (It's possible to not widen at all by pulling out factors of 2 before 702 // the multiplication; for example, K=2 can be calculated as 703 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 704 // extra arithmetic, so it's not an obvious win, and it gets 705 // much more complicated for K > 3.) 706 707 // Protection from insane SCEVs; this bound is conservative, 708 // but it probably doesn't matter. 709 if (K > 1000) 710 return SE.getCouldNotCompute(); 711 712 unsigned W = SE.getTypeSizeInBits(ResultTy); 713 714 // Calculate K! / 2^T and T; we divide out the factors of two before 715 // multiplying for calculating K! / 2^T to avoid overflow. 716 // Other overflow doesn't matter because we only care about the bottom 717 // W bits of the result. 718 APInt OddFactorial(W, 1); 719 unsigned T = 1; 720 for (unsigned i = 3; i <= K; ++i) { 721 APInt Mult(W, i); 722 unsigned TwoFactors = Mult.countTrailingZeros(); 723 T += TwoFactors; 724 Mult = Mult.lshr(TwoFactors); 725 OddFactorial *= Mult; 726 } 727 728 // We need at least W + T bits for the multiplication step 729 unsigned CalculationBits = W + T; 730 731 // Calcuate 2^T, at width T+W. 732 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 733 734 // Calculate the multiplicative inverse of K! / 2^T; 735 // this multiplication factor will perform the exact division by 736 // K! / 2^T. 737 APInt Mod = APInt::getSignedMinValue(W+1); 738 APInt MultiplyFactor = OddFactorial.zext(W+1); 739 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 740 MultiplyFactor = MultiplyFactor.trunc(W); 741 742 // Calculate the product, at width T+W 743 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 744 CalculationBits); 745 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 746 for (unsigned i = 1; i != K; ++i) { 747 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 748 Dividend = SE.getMulExpr(Dividend, 749 SE.getTruncateOrZeroExtend(S, CalculationTy)); 750 } 751 752 // Divide by 2^T 753 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 754 755 // Truncate the result, and divide by K! / 2^T. 756 757 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 758 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 759 } 760 761 /// evaluateAtIteration - Return the value of this chain of recurrences at 762 /// the specified iteration number. We can evaluate this recurrence by 763 /// multiplying each element in the chain by the binomial coefficient 764 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 765 /// 766 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 767 /// 768 /// where BC(It, k) stands for binomial coefficient. 769 /// 770 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 771 ScalarEvolution &SE) const { 772 const SCEV *Result = getStart(); 773 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 774 // The computation is correct in the face of overflow provided that the 775 // multiplication is performed _after_ the evaluation of the binomial 776 // coefficient. 777 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 778 if (isa<SCEVCouldNotCompute>(Coeff)) 779 return Coeff; 780 781 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 782 } 783 return Result; 784 } 785 786 //===----------------------------------------------------------------------===// 787 // SCEV Expression folder implementations 788 //===----------------------------------------------------------------------===// 789 790 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 791 const Type *Ty) { 792 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 793 "This is not a truncating conversion!"); 794 assert(isSCEVable(Ty) && 795 "This is not a conversion to a SCEVable type!"); 796 Ty = getEffectiveSCEVType(Ty); 797 798 FoldingSetNodeID ID; 799 ID.AddInteger(scTruncate); 800 ID.AddPointer(Op); 801 ID.AddPointer(Ty); 802 void *IP = 0; 803 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 804 805 // Fold if the operand is constant. 806 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 807 return getConstant( 808 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 809 810 // trunc(trunc(x)) --> trunc(x) 811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 812 return getTruncateExpr(ST->getOperand(), Ty); 813 814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 816 return getTruncateOrSignExtend(SS->getOperand(), Ty); 817 818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 821 822 // If the input value is a chrec scev, truncate the chrec's operands. 823 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 824 SmallVector<const SCEV *, 4> Operands; 825 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 826 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 827 return getAddRecExpr(Operands, AddRec->getLoop()); 828 } 829 830 // The cast wasn't folded; create an explicit cast node. 831 // Recompute the insert position, as it may have been invalidated. 832 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 833 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); 834 new (S) SCEVTruncateExpr(ID, Op, Ty); 835 UniqueSCEVs.InsertNode(S, IP); 836 return S; 837 } 838 839 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 840 const Type *Ty) { 841 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 842 "This is not an extending conversion!"); 843 assert(isSCEVable(Ty) && 844 "This is not a conversion to a SCEVable type!"); 845 Ty = getEffectiveSCEVType(Ty); 846 847 // Fold if the operand is constant. 848 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 849 const Type *IntTy = getEffectiveSCEVType(Ty); 850 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 851 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 852 return getConstant(cast<ConstantInt>(C)); 853 } 854 855 // zext(zext(x)) --> zext(x) 856 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 857 return getZeroExtendExpr(SZ->getOperand(), Ty); 858 859 // Before doing any expensive analysis, check to see if we've already 860 // computed a SCEV for this Op and Ty. 861 FoldingSetNodeID ID; 862 ID.AddInteger(scZeroExtend); 863 ID.AddPointer(Op); 864 ID.AddPointer(Ty); 865 void *IP = 0; 866 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 867 868 // If the input value is a chrec scev, and we can prove that the value 869 // did not overflow the old, smaller, value, we can zero extend all of the 870 // operands (often constants). This allows analysis of something like 871 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 872 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 873 if (AR->isAffine()) { 874 const SCEV *Start = AR->getStart(); 875 const SCEV *Step = AR->getStepRecurrence(*this); 876 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 877 const Loop *L = AR->getLoop(); 878 879 // If we have special knowledge that this addrec won't overflow, 880 // we don't need to do any further analysis. 881 if (AR->hasNoUnsignedWrap()) 882 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 883 getZeroExtendExpr(Step, Ty), 884 L); 885 886 // Check whether the backedge-taken count is SCEVCouldNotCompute. 887 // Note that this serves two purposes: It filters out loops that are 888 // simply not analyzable, and it covers the case where this code is 889 // being called from within backedge-taken count analysis, such that 890 // attempting to ask for the backedge-taken count would likely result 891 // in infinite recursion. In the later case, the analysis code will 892 // cope with a conservative value, and it will take care to purge 893 // that value once it has finished. 894 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 895 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 896 // Manually compute the final value for AR, checking for 897 // overflow. 898 899 // Check whether the backedge-taken count can be losslessly casted to 900 // the addrec's type. The count is always unsigned. 901 const SCEV *CastedMaxBECount = 902 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 903 const SCEV *RecastedMaxBECount = 904 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 905 if (MaxBECount == RecastedMaxBECount) { 906 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 907 // Check whether Start+Step*MaxBECount has no unsigned overflow. 908 const SCEV *ZMul = 909 getMulExpr(CastedMaxBECount, 910 getTruncateOrZeroExtend(Step, Start->getType())); 911 const SCEV *Add = getAddExpr(Start, ZMul); 912 const SCEV *OperandExtendedAdd = 913 getAddExpr(getZeroExtendExpr(Start, WideTy), 914 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 915 getZeroExtendExpr(Step, WideTy))); 916 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 917 // Return the expression with the addrec on the outside. 918 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 919 getZeroExtendExpr(Step, Ty), 920 L); 921 922 // Similar to above, only this time treat the step value as signed. 923 // This covers loops that count down. 924 const SCEV *SMul = 925 getMulExpr(CastedMaxBECount, 926 getTruncateOrSignExtend(Step, Start->getType())); 927 Add = getAddExpr(Start, SMul); 928 OperandExtendedAdd = 929 getAddExpr(getZeroExtendExpr(Start, WideTy), 930 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 931 getSignExtendExpr(Step, WideTy))); 932 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 933 // Return the expression with the addrec on the outside. 934 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 935 getSignExtendExpr(Step, Ty), 936 L); 937 } 938 939 // If the backedge is guarded by a comparison with the pre-inc value 940 // the addrec is safe. Also, if the entry is guarded by a comparison 941 // with the start value and the backedge is guarded by a comparison 942 // with the post-inc value, the addrec is safe. 943 if (isKnownPositive(Step)) { 944 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 945 getUnsignedRange(Step).getUnsignedMax()); 946 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 947 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 948 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 949 AR->getPostIncExpr(*this), N))) 950 // Return the expression with the addrec on the outside. 951 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 952 getZeroExtendExpr(Step, Ty), 953 L); 954 } else if (isKnownNegative(Step)) { 955 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 956 getSignedRange(Step).getSignedMin()); 957 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) && 958 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) || 959 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 960 AR->getPostIncExpr(*this), N))) 961 // Return the expression with the addrec on the outside. 962 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 963 getSignExtendExpr(Step, Ty), 964 L); 965 } 966 } 967 } 968 969 // The cast wasn't folded; create an explicit cast node. 970 // Recompute the insert position, as it may have been invalidated. 971 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 972 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); 973 new (S) SCEVZeroExtendExpr(ID, Op, Ty); 974 UniqueSCEVs.InsertNode(S, IP); 975 return S; 976 } 977 978 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 979 const Type *Ty) { 980 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 981 "This is not an extending conversion!"); 982 assert(isSCEVable(Ty) && 983 "This is not a conversion to a SCEVable type!"); 984 Ty = getEffectiveSCEVType(Ty); 985 986 // Fold if the operand is constant. 987 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 988 const Type *IntTy = getEffectiveSCEVType(Ty); 989 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 990 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 991 return getConstant(cast<ConstantInt>(C)); 992 } 993 994 // sext(sext(x)) --> sext(x) 995 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 996 return getSignExtendExpr(SS->getOperand(), Ty); 997 998 // Before doing any expensive analysis, check to see if we've already 999 // computed a SCEV for this Op and Ty. 1000 FoldingSetNodeID ID; 1001 ID.AddInteger(scSignExtend); 1002 ID.AddPointer(Op); 1003 ID.AddPointer(Ty); 1004 void *IP = 0; 1005 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1006 1007 // If the input value is a chrec scev, and we can prove that the value 1008 // did not overflow the old, smaller, value, we can sign extend all of the 1009 // operands (often constants). This allows analysis of something like 1010 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1011 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1012 if (AR->isAffine()) { 1013 const SCEV *Start = AR->getStart(); 1014 const SCEV *Step = AR->getStepRecurrence(*this); 1015 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1016 const Loop *L = AR->getLoop(); 1017 1018 // If we have special knowledge that this addrec won't overflow, 1019 // we don't need to do any further analysis. 1020 if (AR->hasNoSignedWrap()) 1021 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1022 getSignExtendExpr(Step, Ty), 1023 L); 1024 1025 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1026 // Note that this serves two purposes: It filters out loops that are 1027 // simply not analyzable, and it covers the case where this code is 1028 // being called from within backedge-taken count analysis, such that 1029 // attempting to ask for the backedge-taken count would likely result 1030 // in infinite recursion. In the later case, the analysis code will 1031 // cope with a conservative value, and it will take care to purge 1032 // that value once it has finished. 1033 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1034 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1035 // Manually compute the final value for AR, checking for 1036 // overflow. 1037 1038 // Check whether the backedge-taken count can be losslessly casted to 1039 // the addrec's type. The count is always unsigned. 1040 const SCEV *CastedMaxBECount = 1041 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1042 const SCEV *RecastedMaxBECount = 1043 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1044 if (MaxBECount == RecastedMaxBECount) { 1045 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1046 // Check whether Start+Step*MaxBECount has no signed overflow. 1047 const SCEV *SMul = 1048 getMulExpr(CastedMaxBECount, 1049 getTruncateOrSignExtend(Step, Start->getType())); 1050 const SCEV *Add = getAddExpr(Start, SMul); 1051 const SCEV *OperandExtendedAdd = 1052 getAddExpr(getSignExtendExpr(Start, WideTy), 1053 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1054 getSignExtendExpr(Step, WideTy))); 1055 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1056 // Return the expression with the addrec on the outside. 1057 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1058 getSignExtendExpr(Step, Ty), 1059 L); 1060 1061 // Similar to above, only this time treat the step value as unsigned. 1062 // This covers loops that count up with an unsigned step. 1063 const SCEV *UMul = 1064 getMulExpr(CastedMaxBECount, 1065 getTruncateOrZeroExtend(Step, Start->getType())); 1066 Add = getAddExpr(Start, UMul); 1067 OperandExtendedAdd = 1068 getAddExpr(getSignExtendExpr(Start, WideTy), 1069 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1070 getZeroExtendExpr(Step, WideTy))); 1071 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1072 // Return the expression with the addrec on the outside. 1073 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1074 getZeroExtendExpr(Step, Ty), 1075 L); 1076 } 1077 1078 // If the backedge is guarded by a comparison with the pre-inc value 1079 // the addrec is safe. Also, if the entry is guarded by a comparison 1080 // with the start value and the backedge is guarded by a comparison 1081 // with the post-inc value, the addrec is safe. 1082 if (isKnownPositive(Step)) { 1083 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1084 getSignedRange(Step).getSignedMax()); 1085 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1086 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1087 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1088 AR->getPostIncExpr(*this), N))) 1089 // Return the expression with the addrec on the outside. 1090 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1091 getSignExtendExpr(Step, Ty), 1092 L); 1093 } else if (isKnownNegative(Step)) { 1094 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1095 getSignedRange(Step).getSignedMin()); 1096 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1097 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1098 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1099 AR->getPostIncExpr(*this), N))) 1100 // Return the expression with the addrec on the outside. 1101 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1102 getSignExtendExpr(Step, Ty), 1103 L); 1104 } 1105 } 1106 } 1107 1108 // The cast wasn't folded; create an explicit cast node. 1109 // Recompute the insert position, as it may have been invalidated. 1110 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1111 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); 1112 new (S) SCEVSignExtendExpr(ID, Op, Ty); 1113 UniqueSCEVs.InsertNode(S, IP); 1114 return S; 1115 } 1116 1117 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1118 /// unspecified bits out to the given type. 1119 /// 1120 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1121 const Type *Ty) { 1122 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1123 "This is not an extending conversion!"); 1124 assert(isSCEVable(Ty) && 1125 "This is not a conversion to a SCEVable type!"); 1126 Ty = getEffectiveSCEVType(Ty); 1127 1128 // Sign-extend negative constants. 1129 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1130 if (SC->getValue()->getValue().isNegative()) 1131 return getSignExtendExpr(Op, Ty); 1132 1133 // Peel off a truncate cast. 1134 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1135 const SCEV *NewOp = T->getOperand(); 1136 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1137 return getAnyExtendExpr(NewOp, Ty); 1138 return getTruncateOrNoop(NewOp, Ty); 1139 } 1140 1141 // Next try a zext cast. If the cast is folded, use it. 1142 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1143 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1144 return ZExt; 1145 1146 // Next try a sext cast. If the cast is folded, use it. 1147 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1148 if (!isa<SCEVSignExtendExpr>(SExt)) 1149 return SExt; 1150 1151 // Force the cast to be folded into the operands of an addrec. 1152 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1153 SmallVector<const SCEV *, 4> Ops; 1154 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1155 I != E; ++I) 1156 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1157 return getAddRecExpr(Ops, AR->getLoop()); 1158 } 1159 1160 // If the expression is obviously signed, use the sext cast value. 1161 if (isa<SCEVSMaxExpr>(Op)) 1162 return SExt; 1163 1164 // Absent any other information, use the zext cast value. 1165 return ZExt; 1166 } 1167 1168 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1169 /// a list of operands to be added under the given scale, update the given 1170 /// map. This is a helper function for getAddRecExpr. As an example of 1171 /// what it does, given a sequence of operands that would form an add 1172 /// expression like this: 1173 /// 1174 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1175 /// 1176 /// where A and B are constants, update the map with these values: 1177 /// 1178 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1179 /// 1180 /// and add 13 + A*B*29 to AccumulatedConstant. 1181 /// This will allow getAddRecExpr to produce this: 1182 /// 1183 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1184 /// 1185 /// This form often exposes folding opportunities that are hidden in 1186 /// the original operand list. 1187 /// 1188 /// Return true iff it appears that any interesting folding opportunities 1189 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1190 /// the common case where no interesting opportunities are present, and 1191 /// is also used as a check to avoid infinite recursion. 1192 /// 1193 static bool 1194 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1195 SmallVector<const SCEV *, 8> &NewOps, 1196 APInt &AccumulatedConstant, 1197 const SmallVectorImpl<const SCEV *> &Ops, 1198 const APInt &Scale, 1199 ScalarEvolution &SE) { 1200 bool Interesting = false; 1201 1202 // Iterate over the add operands. 1203 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1204 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1205 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1206 APInt NewScale = 1207 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1208 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1209 // A multiplication of a constant with another add; recurse. 1210 Interesting |= 1211 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1212 cast<SCEVAddExpr>(Mul->getOperand(1)) 1213 ->getOperands(), 1214 NewScale, SE); 1215 } else { 1216 // A multiplication of a constant with some other value. Update 1217 // the map. 1218 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1219 const SCEV *Key = SE.getMulExpr(MulOps); 1220 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1221 M.insert(std::make_pair(Key, NewScale)); 1222 if (Pair.second) { 1223 NewOps.push_back(Pair.first->first); 1224 } else { 1225 Pair.first->second += NewScale; 1226 // The map already had an entry for this value, which may indicate 1227 // a folding opportunity. 1228 Interesting = true; 1229 } 1230 } 1231 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1232 // Pull a buried constant out to the outside. 1233 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1234 Interesting = true; 1235 AccumulatedConstant += Scale * C->getValue()->getValue(); 1236 } else { 1237 // An ordinary operand. Update the map. 1238 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1239 M.insert(std::make_pair(Ops[i], Scale)); 1240 if (Pair.second) { 1241 NewOps.push_back(Pair.first->first); 1242 } else { 1243 Pair.first->second += Scale; 1244 // The map already had an entry for this value, which may indicate 1245 // a folding opportunity. 1246 Interesting = true; 1247 } 1248 } 1249 } 1250 1251 return Interesting; 1252 } 1253 1254 namespace { 1255 struct APIntCompare { 1256 bool operator()(const APInt &LHS, const APInt &RHS) const { 1257 return LHS.ult(RHS); 1258 } 1259 }; 1260 } 1261 1262 /// getAddExpr - Get a canonical add expression, or something simpler if 1263 /// possible. 1264 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1265 bool HasNUW, bool HasNSW) { 1266 assert(!Ops.empty() && "Cannot get empty add!"); 1267 if (Ops.size() == 1) return Ops[0]; 1268 #ifndef NDEBUG 1269 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1270 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1271 getEffectiveSCEVType(Ops[0]->getType()) && 1272 "SCEVAddExpr operand types don't match!"); 1273 #endif 1274 1275 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1276 if (!HasNUW && HasNSW) { 1277 bool All = true; 1278 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1279 if (!isKnownNonNegative(Ops[i])) { 1280 All = false; 1281 break; 1282 } 1283 if (All) HasNUW = true; 1284 } 1285 1286 // Sort by complexity, this groups all similar expression types together. 1287 GroupByComplexity(Ops, LI); 1288 1289 // If there are any constants, fold them together. 1290 unsigned Idx = 0; 1291 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1292 ++Idx; 1293 assert(Idx < Ops.size()); 1294 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1295 // We found two constants, fold them together! 1296 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1297 RHSC->getValue()->getValue()); 1298 if (Ops.size() == 2) return Ops[0]; 1299 Ops.erase(Ops.begin()+1); // Erase the folded element 1300 LHSC = cast<SCEVConstant>(Ops[0]); 1301 } 1302 1303 // If we are left with a constant zero being added, strip it off. 1304 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1305 Ops.erase(Ops.begin()); 1306 --Idx; 1307 } 1308 } 1309 1310 if (Ops.size() == 1) return Ops[0]; 1311 1312 // Okay, check to see if the same value occurs in the operand list twice. If 1313 // so, merge them together into an multiply expression. Since we sorted the 1314 // list, these values are required to be adjacent. 1315 const Type *Ty = Ops[0]->getType(); 1316 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1317 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1318 // Found a match, merge the two values into a multiply, and add any 1319 // remaining values to the result. 1320 const SCEV *Two = getIntegerSCEV(2, Ty); 1321 const SCEV *Mul = getMulExpr(Ops[i], Two); 1322 if (Ops.size() == 2) 1323 return Mul; 1324 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1325 Ops.push_back(Mul); 1326 return getAddExpr(Ops, HasNUW, HasNSW); 1327 } 1328 1329 // Check for truncates. If all the operands are truncated from the same 1330 // type, see if factoring out the truncate would permit the result to be 1331 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1332 // if the contents of the resulting outer trunc fold to something simple. 1333 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1334 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1335 const Type *DstType = Trunc->getType(); 1336 const Type *SrcType = Trunc->getOperand()->getType(); 1337 SmallVector<const SCEV *, 8> LargeOps; 1338 bool Ok = true; 1339 // Check all the operands to see if they can be represented in the 1340 // source type of the truncate. 1341 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1342 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1343 if (T->getOperand()->getType() != SrcType) { 1344 Ok = false; 1345 break; 1346 } 1347 LargeOps.push_back(T->getOperand()); 1348 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1349 // This could be either sign or zero extension, but sign extension 1350 // is much more likely to be foldable here. 1351 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1352 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1353 SmallVector<const SCEV *, 8> LargeMulOps; 1354 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1355 if (const SCEVTruncateExpr *T = 1356 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1357 if (T->getOperand()->getType() != SrcType) { 1358 Ok = false; 1359 break; 1360 } 1361 LargeMulOps.push_back(T->getOperand()); 1362 } else if (const SCEVConstant *C = 1363 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1364 // This could be either sign or zero extension, but sign extension 1365 // is much more likely to be foldable here. 1366 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1367 } else { 1368 Ok = false; 1369 break; 1370 } 1371 } 1372 if (Ok) 1373 LargeOps.push_back(getMulExpr(LargeMulOps)); 1374 } else { 1375 Ok = false; 1376 break; 1377 } 1378 } 1379 if (Ok) { 1380 // Evaluate the expression in the larger type. 1381 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1382 // If it folds to something simple, use it. Otherwise, don't. 1383 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1384 return getTruncateExpr(Fold, DstType); 1385 } 1386 } 1387 1388 // Skip past any other cast SCEVs. 1389 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1390 ++Idx; 1391 1392 // If there are add operands they would be next. 1393 if (Idx < Ops.size()) { 1394 bool DeletedAdd = false; 1395 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1396 // If we have an add, expand the add operands onto the end of the operands 1397 // list. 1398 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1399 Ops.erase(Ops.begin()+Idx); 1400 DeletedAdd = true; 1401 } 1402 1403 // If we deleted at least one add, we added operands to the end of the list, 1404 // and they are not necessarily sorted. Recurse to resort and resimplify 1405 // any operands we just aquired. 1406 if (DeletedAdd) 1407 return getAddExpr(Ops); 1408 } 1409 1410 // Skip over the add expression until we get to a multiply. 1411 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1412 ++Idx; 1413 1414 // Check to see if there are any folding opportunities present with 1415 // operands multiplied by constant values. 1416 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1417 uint64_t BitWidth = getTypeSizeInBits(Ty); 1418 DenseMap<const SCEV *, APInt> M; 1419 SmallVector<const SCEV *, 8> NewOps; 1420 APInt AccumulatedConstant(BitWidth, 0); 1421 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1422 Ops, APInt(BitWidth, 1), *this)) { 1423 // Some interesting folding opportunity is present, so its worthwhile to 1424 // re-generate the operands list. Group the operands by constant scale, 1425 // to avoid multiplying by the same constant scale multiple times. 1426 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1427 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1428 E = NewOps.end(); I != E; ++I) 1429 MulOpLists[M.find(*I)->second].push_back(*I); 1430 // Re-generate the operands list. 1431 Ops.clear(); 1432 if (AccumulatedConstant != 0) 1433 Ops.push_back(getConstant(AccumulatedConstant)); 1434 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1435 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1436 if (I->first != 0) 1437 Ops.push_back(getMulExpr(getConstant(I->first), 1438 getAddExpr(I->second))); 1439 if (Ops.empty()) 1440 return getIntegerSCEV(0, Ty); 1441 if (Ops.size() == 1) 1442 return Ops[0]; 1443 return getAddExpr(Ops); 1444 } 1445 } 1446 1447 // If we are adding something to a multiply expression, make sure the 1448 // something is not already an operand of the multiply. If so, merge it into 1449 // the multiply. 1450 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1451 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1452 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1453 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1454 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1455 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1456 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1457 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1458 if (Mul->getNumOperands() != 2) { 1459 // If the multiply has more than two operands, we must get the 1460 // Y*Z term. 1461 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1462 MulOps.erase(MulOps.begin()+MulOp); 1463 InnerMul = getMulExpr(MulOps); 1464 } 1465 const SCEV *One = getIntegerSCEV(1, Ty); 1466 const SCEV *AddOne = getAddExpr(InnerMul, One); 1467 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1468 if (Ops.size() == 2) return OuterMul; 1469 if (AddOp < Idx) { 1470 Ops.erase(Ops.begin()+AddOp); 1471 Ops.erase(Ops.begin()+Idx-1); 1472 } else { 1473 Ops.erase(Ops.begin()+Idx); 1474 Ops.erase(Ops.begin()+AddOp-1); 1475 } 1476 Ops.push_back(OuterMul); 1477 return getAddExpr(Ops); 1478 } 1479 1480 // Check this multiply against other multiplies being added together. 1481 for (unsigned OtherMulIdx = Idx+1; 1482 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1483 ++OtherMulIdx) { 1484 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1485 // If MulOp occurs in OtherMul, we can fold the two multiplies 1486 // together. 1487 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1488 OMulOp != e; ++OMulOp) 1489 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1490 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1491 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1492 if (Mul->getNumOperands() != 2) { 1493 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1494 Mul->op_end()); 1495 MulOps.erase(MulOps.begin()+MulOp); 1496 InnerMul1 = getMulExpr(MulOps); 1497 } 1498 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1499 if (OtherMul->getNumOperands() != 2) { 1500 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1501 OtherMul->op_end()); 1502 MulOps.erase(MulOps.begin()+OMulOp); 1503 InnerMul2 = getMulExpr(MulOps); 1504 } 1505 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1506 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1507 if (Ops.size() == 2) return OuterMul; 1508 Ops.erase(Ops.begin()+Idx); 1509 Ops.erase(Ops.begin()+OtherMulIdx-1); 1510 Ops.push_back(OuterMul); 1511 return getAddExpr(Ops); 1512 } 1513 } 1514 } 1515 } 1516 1517 // If there are any add recurrences in the operands list, see if any other 1518 // added values are loop invariant. If so, we can fold them into the 1519 // recurrence. 1520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1521 ++Idx; 1522 1523 // Scan over all recurrences, trying to fold loop invariants into them. 1524 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1525 // Scan all of the other operands to this add and add them to the vector if 1526 // they are loop invariant w.r.t. the recurrence. 1527 SmallVector<const SCEV *, 8> LIOps; 1528 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1529 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1530 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1531 LIOps.push_back(Ops[i]); 1532 Ops.erase(Ops.begin()+i); 1533 --i; --e; 1534 } 1535 1536 // If we found some loop invariants, fold them into the recurrence. 1537 if (!LIOps.empty()) { 1538 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1539 LIOps.push_back(AddRec->getStart()); 1540 1541 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1542 AddRec->op_end()); 1543 AddRecOps[0] = getAddExpr(LIOps); 1544 1545 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition 1546 // is not associative so this isn't necessarily safe. 1547 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1548 1549 // If all of the other operands were loop invariant, we are done. 1550 if (Ops.size() == 1) return NewRec; 1551 1552 // Otherwise, add the folded AddRec by the non-liv parts. 1553 for (unsigned i = 0;; ++i) 1554 if (Ops[i] == AddRec) { 1555 Ops[i] = NewRec; 1556 break; 1557 } 1558 return getAddExpr(Ops); 1559 } 1560 1561 // Okay, if there weren't any loop invariants to be folded, check to see if 1562 // there are multiple AddRec's with the same loop induction variable being 1563 // added together. If so, we can fold them. 1564 for (unsigned OtherIdx = Idx+1; 1565 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1566 if (OtherIdx != Idx) { 1567 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1568 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1569 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1570 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1571 AddRec->op_end()); 1572 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1573 if (i >= NewOps.size()) { 1574 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1575 OtherAddRec->op_end()); 1576 break; 1577 } 1578 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1579 } 1580 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1581 1582 if (Ops.size() == 2) return NewAddRec; 1583 1584 Ops.erase(Ops.begin()+Idx); 1585 Ops.erase(Ops.begin()+OtherIdx-1); 1586 Ops.push_back(NewAddRec); 1587 return getAddExpr(Ops); 1588 } 1589 } 1590 1591 // Otherwise couldn't fold anything into this recurrence. Move onto the 1592 // next one. 1593 } 1594 1595 // Okay, it looks like we really DO need an add expr. Check to see if we 1596 // already have one, otherwise create a new one. 1597 FoldingSetNodeID ID; 1598 ID.AddInteger(scAddExpr); 1599 ID.AddInteger(Ops.size()); 1600 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1601 ID.AddPointer(Ops[i]); 1602 void *IP = 0; 1603 SCEVAddExpr *S = 1604 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1605 if (!S) { 1606 S = SCEVAllocator.Allocate<SCEVAddExpr>(); 1607 new (S) SCEVAddExpr(ID, Ops); 1608 UniqueSCEVs.InsertNode(S, IP); 1609 } 1610 if (HasNUW) S->setHasNoUnsignedWrap(true); 1611 if (HasNSW) S->setHasNoSignedWrap(true); 1612 return S; 1613 } 1614 1615 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1616 /// possible. 1617 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1618 bool HasNUW, bool HasNSW) { 1619 assert(!Ops.empty() && "Cannot get empty mul!"); 1620 if (Ops.size() == 1) return Ops[0]; 1621 #ifndef NDEBUG 1622 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1623 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1624 getEffectiveSCEVType(Ops[0]->getType()) && 1625 "SCEVMulExpr operand types don't match!"); 1626 #endif 1627 1628 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1629 if (!HasNUW && HasNSW) { 1630 bool All = true; 1631 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1632 if (!isKnownNonNegative(Ops[i])) { 1633 All = false; 1634 break; 1635 } 1636 if (All) HasNUW = true; 1637 } 1638 1639 // Sort by complexity, this groups all similar expression types together. 1640 GroupByComplexity(Ops, LI); 1641 1642 // If there are any constants, fold them together. 1643 unsigned Idx = 0; 1644 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1645 1646 // C1*(C2+V) -> C1*C2 + C1*V 1647 if (Ops.size() == 2) 1648 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1649 if (Add->getNumOperands() == 2 && 1650 isa<SCEVConstant>(Add->getOperand(0))) 1651 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1652 getMulExpr(LHSC, Add->getOperand(1))); 1653 1654 ++Idx; 1655 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1656 // We found two constants, fold them together! 1657 ConstantInt *Fold = ConstantInt::get(getContext(), 1658 LHSC->getValue()->getValue() * 1659 RHSC->getValue()->getValue()); 1660 Ops[0] = getConstant(Fold); 1661 Ops.erase(Ops.begin()+1); // Erase the folded element 1662 if (Ops.size() == 1) return Ops[0]; 1663 LHSC = cast<SCEVConstant>(Ops[0]); 1664 } 1665 1666 // If we are left with a constant one being multiplied, strip it off. 1667 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1668 Ops.erase(Ops.begin()); 1669 --Idx; 1670 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1671 // If we have a multiply of zero, it will always be zero. 1672 return Ops[0]; 1673 } else if (Ops[0]->isAllOnesValue()) { 1674 // If we have a mul by -1 of an add, try distributing the -1 among the 1675 // add operands. 1676 if (Ops.size() == 2) 1677 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1678 SmallVector<const SCEV *, 4> NewOps; 1679 bool AnyFolded = false; 1680 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1681 I != E; ++I) { 1682 const SCEV *Mul = getMulExpr(Ops[0], *I); 1683 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1684 NewOps.push_back(Mul); 1685 } 1686 if (AnyFolded) 1687 return getAddExpr(NewOps); 1688 } 1689 } 1690 } 1691 1692 // Skip over the add expression until we get to a multiply. 1693 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1694 ++Idx; 1695 1696 if (Ops.size() == 1) 1697 return Ops[0]; 1698 1699 // If there are mul operands inline them all into this expression. 1700 if (Idx < Ops.size()) { 1701 bool DeletedMul = false; 1702 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1703 // If we have an mul, expand the mul operands onto the end of the operands 1704 // list. 1705 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1706 Ops.erase(Ops.begin()+Idx); 1707 DeletedMul = true; 1708 } 1709 1710 // If we deleted at least one mul, we added operands to the end of the list, 1711 // and they are not necessarily sorted. Recurse to resort and resimplify 1712 // any operands we just aquired. 1713 if (DeletedMul) 1714 return getMulExpr(Ops); 1715 } 1716 1717 // If there are any add recurrences in the operands list, see if any other 1718 // added values are loop invariant. If so, we can fold them into the 1719 // recurrence. 1720 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1721 ++Idx; 1722 1723 // Scan over all recurrences, trying to fold loop invariants into them. 1724 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1725 // Scan all of the other operands to this mul and add them to the vector if 1726 // they are loop invariant w.r.t. the recurrence. 1727 SmallVector<const SCEV *, 8> LIOps; 1728 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1729 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1730 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1731 LIOps.push_back(Ops[i]); 1732 Ops.erase(Ops.begin()+i); 1733 --i; --e; 1734 } 1735 1736 // If we found some loop invariants, fold them into the recurrence. 1737 if (!LIOps.empty()) { 1738 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1739 SmallVector<const SCEV *, 4> NewOps; 1740 NewOps.reserve(AddRec->getNumOperands()); 1741 if (LIOps.size() == 1) { 1742 const SCEV *Scale = LIOps[0]; 1743 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1744 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1745 } else { 1746 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1747 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); 1748 MulOps.push_back(AddRec->getOperand(i)); 1749 NewOps.push_back(getMulExpr(MulOps)); 1750 } 1751 } 1752 1753 // It's tempting to propagate the NSW flag here, but nsw multiplication 1754 // is not associative so this isn't necessarily safe. 1755 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1756 HasNUW && AddRec->hasNoUnsignedWrap(), 1757 /*HasNSW=*/false); 1758 1759 // If all of the other operands were loop invariant, we are done. 1760 if (Ops.size() == 1) return NewRec; 1761 1762 // Otherwise, multiply the folded AddRec by the non-liv parts. 1763 for (unsigned i = 0;; ++i) 1764 if (Ops[i] == AddRec) { 1765 Ops[i] = NewRec; 1766 break; 1767 } 1768 return getMulExpr(Ops); 1769 } 1770 1771 // Okay, if there weren't any loop invariants to be folded, check to see if 1772 // there are multiple AddRec's with the same loop induction variable being 1773 // multiplied together. If so, we can fold them. 1774 for (unsigned OtherIdx = Idx+1; 1775 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1776 if (OtherIdx != Idx) { 1777 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1778 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1779 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1780 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1781 const SCEV *NewStart = getMulExpr(F->getStart(), 1782 G->getStart()); 1783 const SCEV *B = F->getStepRecurrence(*this); 1784 const SCEV *D = G->getStepRecurrence(*this); 1785 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1786 getMulExpr(G, B), 1787 getMulExpr(B, D)); 1788 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1789 F->getLoop()); 1790 if (Ops.size() == 2) return NewAddRec; 1791 1792 Ops.erase(Ops.begin()+Idx); 1793 Ops.erase(Ops.begin()+OtherIdx-1); 1794 Ops.push_back(NewAddRec); 1795 return getMulExpr(Ops); 1796 } 1797 } 1798 1799 // Otherwise couldn't fold anything into this recurrence. Move onto the 1800 // next one. 1801 } 1802 1803 // Okay, it looks like we really DO need an mul expr. Check to see if we 1804 // already have one, otherwise create a new one. 1805 FoldingSetNodeID ID; 1806 ID.AddInteger(scMulExpr); 1807 ID.AddInteger(Ops.size()); 1808 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1809 ID.AddPointer(Ops[i]); 1810 void *IP = 0; 1811 SCEVMulExpr *S = 1812 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1813 if (!S) { 1814 S = SCEVAllocator.Allocate<SCEVMulExpr>(); 1815 new (S) SCEVMulExpr(ID, Ops); 1816 UniqueSCEVs.InsertNode(S, IP); 1817 } 1818 if (HasNUW) S->setHasNoUnsignedWrap(true); 1819 if (HasNSW) S->setHasNoSignedWrap(true); 1820 return S; 1821 } 1822 1823 /// getUDivExpr - Get a canonical unsigned division expression, or something 1824 /// simpler if possible. 1825 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1826 const SCEV *RHS) { 1827 assert(getEffectiveSCEVType(LHS->getType()) == 1828 getEffectiveSCEVType(RHS->getType()) && 1829 "SCEVUDivExpr operand types don't match!"); 1830 1831 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1832 if (RHSC->getValue()->equalsInt(1)) 1833 return LHS; // X udiv 1 --> x 1834 if (RHSC->isZero()) 1835 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1836 1837 // Determine if the division can be folded into the operands of 1838 // its operands. 1839 // TODO: Generalize this to non-constants by using known-bits information. 1840 const Type *Ty = LHS->getType(); 1841 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1842 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1843 // For non-power-of-two values, effectively round the value up to the 1844 // nearest power of two. 1845 if (!RHSC->getValue()->getValue().isPowerOf2()) 1846 ++MaxShiftAmt; 1847 const IntegerType *ExtTy = 1848 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1849 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1850 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1851 if (const SCEVConstant *Step = 1852 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1853 if (!Step->getValue()->getValue() 1854 .urem(RHSC->getValue()->getValue()) && 1855 getZeroExtendExpr(AR, ExtTy) == 1856 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1857 getZeroExtendExpr(Step, ExtTy), 1858 AR->getLoop())) { 1859 SmallVector<const SCEV *, 4> Operands; 1860 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1861 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1862 return getAddRecExpr(Operands, AR->getLoop()); 1863 } 1864 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1865 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1866 SmallVector<const SCEV *, 4> Operands; 1867 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1868 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1869 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1870 // Find an operand that's safely divisible. 1871 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1872 const SCEV *Op = M->getOperand(i); 1873 const SCEV *Div = getUDivExpr(Op, RHSC); 1874 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1875 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); 1876 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), 1877 MOperands.end()); 1878 Operands[i] = Div; 1879 return getMulExpr(Operands); 1880 } 1881 } 1882 } 1883 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1884 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1885 SmallVector<const SCEV *, 4> Operands; 1886 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1887 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1888 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1889 Operands.clear(); 1890 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1891 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1892 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1893 break; 1894 Operands.push_back(Op); 1895 } 1896 if (Operands.size() == A->getNumOperands()) 1897 return getAddExpr(Operands); 1898 } 1899 } 1900 1901 // Fold if both operands are constant. 1902 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1903 Constant *LHSCV = LHSC->getValue(); 1904 Constant *RHSCV = RHSC->getValue(); 1905 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1906 RHSCV))); 1907 } 1908 } 1909 1910 FoldingSetNodeID ID; 1911 ID.AddInteger(scUDivExpr); 1912 ID.AddPointer(LHS); 1913 ID.AddPointer(RHS); 1914 void *IP = 0; 1915 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1916 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); 1917 new (S) SCEVUDivExpr(ID, LHS, RHS); 1918 UniqueSCEVs.InsertNode(S, IP); 1919 return S; 1920 } 1921 1922 1923 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1924 /// Simplify the expression as much as possible. 1925 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1926 const SCEV *Step, const Loop *L, 1927 bool HasNUW, bool HasNSW) { 1928 SmallVector<const SCEV *, 4> Operands; 1929 Operands.push_back(Start); 1930 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1931 if (StepChrec->getLoop() == L) { 1932 Operands.insert(Operands.end(), StepChrec->op_begin(), 1933 StepChrec->op_end()); 1934 return getAddRecExpr(Operands, L); 1935 } 1936 1937 Operands.push_back(Step); 1938 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1939 } 1940 1941 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1942 /// Simplify the expression as much as possible. 1943 const SCEV * 1944 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1945 const Loop *L, 1946 bool HasNUW, bool HasNSW) { 1947 if (Operands.size() == 1) return Operands[0]; 1948 #ifndef NDEBUG 1949 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1950 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1951 getEffectiveSCEVType(Operands[0]->getType()) && 1952 "SCEVAddRecExpr operand types don't match!"); 1953 #endif 1954 1955 if (Operands.back()->isZero()) { 1956 Operands.pop_back(); 1957 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1958 } 1959 1960 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1961 if (!HasNUW && HasNSW) { 1962 bool All = true; 1963 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1964 if (!isKnownNonNegative(Operands[i])) { 1965 All = false; 1966 break; 1967 } 1968 if (All) HasNUW = true; 1969 } 1970 1971 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1972 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1973 const Loop *NestedLoop = NestedAR->getLoop(); 1974 if (L->contains(NestedLoop->getHeader()) ? 1975 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 1976 (!NestedLoop->contains(L->getHeader()) && 1977 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 1978 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1979 NestedAR->op_end()); 1980 Operands[0] = NestedAR->getStart(); 1981 // AddRecs require their operands be loop-invariant with respect to their 1982 // loops. Don't perform this transformation if it would break this 1983 // requirement. 1984 bool AllInvariant = true; 1985 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1986 if (!Operands[i]->isLoopInvariant(L)) { 1987 AllInvariant = false; 1988 break; 1989 } 1990 if (AllInvariant) { 1991 NestedOperands[0] = getAddRecExpr(Operands, L); 1992 AllInvariant = true; 1993 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 1994 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 1995 AllInvariant = false; 1996 break; 1997 } 1998 if (AllInvariant) 1999 // Ok, both add recurrences are valid after the transformation. 2000 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2001 } 2002 // Reset Operands to its original state. 2003 Operands[0] = NestedAR; 2004 } 2005 } 2006 2007 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2008 // already have one, otherwise create a new one. 2009 FoldingSetNodeID ID; 2010 ID.AddInteger(scAddRecExpr); 2011 ID.AddInteger(Operands.size()); 2012 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2013 ID.AddPointer(Operands[i]); 2014 ID.AddPointer(L); 2015 void *IP = 0; 2016 SCEVAddRecExpr *S = 2017 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2018 if (!S) { 2019 S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); 2020 new (S) SCEVAddRecExpr(ID, Operands, L); 2021 UniqueSCEVs.InsertNode(S, IP); 2022 } 2023 if (HasNUW) S->setHasNoUnsignedWrap(true); 2024 if (HasNSW) S->setHasNoSignedWrap(true); 2025 return S; 2026 } 2027 2028 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2029 const SCEV *RHS) { 2030 SmallVector<const SCEV *, 2> Ops; 2031 Ops.push_back(LHS); 2032 Ops.push_back(RHS); 2033 return getSMaxExpr(Ops); 2034 } 2035 2036 const SCEV * 2037 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2038 assert(!Ops.empty() && "Cannot get empty smax!"); 2039 if (Ops.size() == 1) return Ops[0]; 2040 #ifndef NDEBUG 2041 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2042 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2043 getEffectiveSCEVType(Ops[0]->getType()) && 2044 "SCEVSMaxExpr operand types don't match!"); 2045 #endif 2046 2047 // Sort by complexity, this groups all similar expression types together. 2048 GroupByComplexity(Ops, LI); 2049 2050 // If there are any constants, fold them together. 2051 unsigned Idx = 0; 2052 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2053 ++Idx; 2054 assert(Idx < Ops.size()); 2055 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2056 // We found two constants, fold them together! 2057 ConstantInt *Fold = ConstantInt::get(getContext(), 2058 APIntOps::smax(LHSC->getValue()->getValue(), 2059 RHSC->getValue()->getValue())); 2060 Ops[0] = getConstant(Fold); 2061 Ops.erase(Ops.begin()+1); // Erase the folded element 2062 if (Ops.size() == 1) return Ops[0]; 2063 LHSC = cast<SCEVConstant>(Ops[0]); 2064 } 2065 2066 // If we are left with a constant minimum-int, strip it off. 2067 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2068 Ops.erase(Ops.begin()); 2069 --Idx; 2070 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2071 // If we have an smax with a constant maximum-int, it will always be 2072 // maximum-int. 2073 return Ops[0]; 2074 } 2075 } 2076 2077 if (Ops.size() == 1) return Ops[0]; 2078 2079 // Find the first SMax 2080 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2081 ++Idx; 2082 2083 // Check to see if one of the operands is an SMax. If so, expand its operands 2084 // onto our operand list, and recurse to simplify. 2085 if (Idx < Ops.size()) { 2086 bool DeletedSMax = false; 2087 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2088 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 2089 Ops.erase(Ops.begin()+Idx); 2090 DeletedSMax = true; 2091 } 2092 2093 if (DeletedSMax) 2094 return getSMaxExpr(Ops); 2095 } 2096 2097 // Okay, check to see if the same value occurs in the operand list twice. If 2098 // so, delete one. Since we sorted the list, these values are required to 2099 // be adjacent. 2100 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2101 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 2102 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2103 --i; --e; 2104 } 2105 2106 if (Ops.size() == 1) return Ops[0]; 2107 2108 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2109 2110 // Okay, it looks like we really DO need an smax expr. Check to see if we 2111 // already have one, otherwise create a new one. 2112 FoldingSetNodeID ID; 2113 ID.AddInteger(scSMaxExpr); 2114 ID.AddInteger(Ops.size()); 2115 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2116 ID.AddPointer(Ops[i]); 2117 void *IP = 0; 2118 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2119 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); 2120 new (S) SCEVSMaxExpr(ID, Ops); 2121 UniqueSCEVs.InsertNode(S, IP); 2122 return S; 2123 } 2124 2125 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2126 const SCEV *RHS) { 2127 SmallVector<const SCEV *, 2> Ops; 2128 Ops.push_back(LHS); 2129 Ops.push_back(RHS); 2130 return getUMaxExpr(Ops); 2131 } 2132 2133 const SCEV * 2134 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2135 assert(!Ops.empty() && "Cannot get empty umax!"); 2136 if (Ops.size() == 1) return Ops[0]; 2137 #ifndef NDEBUG 2138 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2139 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2140 getEffectiveSCEVType(Ops[0]->getType()) && 2141 "SCEVUMaxExpr operand types don't match!"); 2142 #endif 2143 2144 // Sort by complexity, this groups all similar expression types together. 2145 GroupByComplexity(Ops, LI); 2146 2147 // If there are any constants, fold them together. 2148 unsigned Idx = 0; 2149 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2150 ++Idx; 2151 assert(Idx < Ops.size()); 2152 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2153 // We found two constants, fold them together! 2154 ConstantInt *Fold = ConstantInt::get(getContext(), 2155 APIntOps::umax(LHSC->getValue()->getValue(), 2156 RHSC->getValue()->getValue())); 2157 Ops[0] = getConstant(Fold); 2158 Ops.erase(Ops.begin()+1); // Erase the folded element 2159 if (Ops.size() == 1) return Ops[0]; 2160 LHSC = cast<SCEVConstant>(Ops[0]); 2161 } 2162 2163 // If we are left with a constant minimum-int, strip it off. 2164 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2165 Ops.erase(Ops.begin()); 2166 --Idx; 2167 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2168 // If we have an umax with a constant maximum-int, it will always be 2169 // maximum-int. 2170 return Ops[0]; 2171 } 2172 } 2173 2174 if (Ops.size() == 1) return Ops[0]; 2175 2176 // Find the first UMax 2177 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2178 ++Idx; 2179 2180 // Check to see if one of the operands is a UMax. If so, expand its operands 2181 // onto our operand list, and recurse to simplify. 2182 if (Idx < Ops.size()) { 2183 bool DeletedUMax = false; 2184 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2185 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 2186 Ops.erase(Ops.begin()+Idx); 2187 DeletedUMax = true; 2188 } 2189 2190 if (DeletedUMax) 2191 return getUMaxExpr(Ops); 2192 } 2193 2194 // Okay, check to see if the same value occurs in the operand list twice. If 2195 // so, delete one. Since we sorted the list, these values are required to 2196 // be adjacent. 2197 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2198 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 2199 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2200 --i; --e; 2201 } 2202 2203 if (Ops.size() == 1) return Ops[0]; 2204 2205 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2206 2207 // Okay, it looks like we really DO need a umax expr. Check to see if we 2208 // already have one, otherwise create a new one. 2209 FoldingSetNodeID ID; 2210 ID.AddInteger(scUMaxExpr); 2211 ID.AddInteger(Ops.size()); 2212 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2213 ID.AddPointer(Ops[i]); 2214 void *IP = 0; 2215 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2216 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); 2217 new (S) SCEVUMaxExpr(ID, Ops); 2218 UniqueSCEVs.InsertNode(S, IP); 2219 return S; 2220 } 2221 2222 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2223 const SCEV *RHS) { 2224 // ~smax(~x, ~y) == smin(x, y). 2225 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2226 } 2227 2228 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2229 const SCEV *RHS) { 2230 // ~umax(~x, ~y) == umin(x, y) 2231 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2232 } 2233 2234 const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy, 2235 unsigned FieldNo) { 2236 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2237 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2238 C = ConstantFoldConstantExpression(CE, TD); 2239 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2240 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2241 } 2242 2243 const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) { 2244 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2245 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2246 C = ConstantFoldConstantExpression(CE, TD); 2247 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2248 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2249 } 2250 2251 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2252 // Don't attempt to do anything other than create a SCEVUnknown object 2253 // here. createSCEV only calls getUnknown after checking for all other 2254 // interesting possibilities, and any other code that calls getUnknown 2255 // is doing so in order to hide a value from SCEV canonicalization. 2256 2257 FoldingSetNodeID ID; 2258 ID.AddInteger(scUnknown); 2259 ID.AddPointer(V); 2260 void *IP = 0; 2261 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2262 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); 2263 new (S) SCEVUnknown(ID, V); 2264 UniqueSCEVs.InsertNode(S, IP); 2265 return S; 2266 } 2267 2268 //===----------------------------------------------------------------------===// 2269 // Basic SCEV Analysis and PHI Idiom Recognition Code 2270 // 2271 2272 /// isSCEVable - Test if values of the given type are analyzable within 2273 /// the SCEV framework. This primarily includes integer types, and it 2274 /// can optionally include pointer types if the ScalarEvolution class 2275 /// has access to target-specific information. 2276 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2277 // Integers and pointers are always SCEVable. 2278 return Ty->isInteger() || isa<PointerType>(Ty); 2279 } 2280 2281 /// getTypeSizeInBits - Return the size in bits of the specified type, 2282 /// for which isSCEVable must return true. 2283 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2284 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2285 2286 // If we have a TargetData, use it! 2287 if (TD) 2288 return TD->getTypeSizeInBits(Ty); 2289 2290 // Integer types have fixed sizes. 2291 if (Ty->isInteger()) 2292 return Ty->getPrimitiveSizeInBits(); 2293 2294 // The only other support type is pointer. Without TargetData, conservatively 2295 // assume pointers are 64-bit. 2296 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!"); 2297 return 64; 2298 } 2299 2300 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2301 /// the given type and which represents how SCEV will treat the given 2302 /// type, for which isSCEVable must return true. For pointer types, 2303 /// this is the pointer-sized integer type. 2304 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2305 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2306 2307 if (Ty->isInteger()) 2308 return Ty; 2309 2310 // The only other support type is pointer. 2311 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 2312 if (TD) return TD->getIntPtrType(getContext()); 2313 2314 // Without TargetData, conservatively assume pointers are 64-bit. 2315 return Type::getInt64Ty(getContext()); 2316 } 2317 2318 const SCEV *ScalarEvolution::getCouldNotCompute() { 2319 return &CouldNotCompute; 2320 } 2321 2322 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2323 /// expression and create a new one. 2324 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2325 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2326 2327 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2328 if (I != Scalars.end()) return I->second; 2329 const SCEV *S = createSCEV(V); 2330 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2331 return S; 2332 } 2333 2334 /// getIntegerSCEV - Given a SCEVable type, create a constant for the 2335 /// specified signed integer value and return a SCEV for the constant. 2336 const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 2337 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 2338 return getConstant(ConstantInt::get(ITy, Val)); 2339 } 2340 2341 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2342 /// 2343 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2344 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2345 return getConstant( 2346 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2347 2348 const Type *Ty = V->getType(); 2349 Ty = getEffectiveSCEVType(Ty); 2350 return getMulExpr(V, 2351 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2352 } 2353 2354 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2355 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2356 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2357 return getConstant( 2358 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2359 2360 const Type *Ty = V->getType(); 2361 Ty = getEffectiveSCEVType(Ty); 2362 const SCEV *AllOnes = 2363 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2364 return getMinusSCEV(AllOnes, V); 2365 } 2366 2367 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2368 /// 2369 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2370 const SCEV *RHS) { 2371 // X - Y --> X + -Y 2372 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2373 } 2374 2375 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2376 /// input value to the specified type. If the type must be extended, it is zero 2377 /// extended. 2378 const SCEV * 2379 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2380 const Type *Ty) { 2381 const Type *SrcTy = V->getType(); 2382 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2383 (Ty->isInteger() || isa<PointerType>(Ty)) && 2384 "Cannot truncate or zero extend with non-integer arguments!"); 2385 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2386 return V; // No conversion 2387 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2388 return getTruncateExpr(V, Ty); 2389 return getZeroExtendExpr(V, Ty); 2390 } 2391 2392 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2393 /// input value to the specified type. If the type must be extended, it is sign 2394 /// extended. 2395 const SCEV * 2396 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2397 const Type *Ty) { 2398 const Type *SrcTy = V->getType(); 2399 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2400 (Ty->isInteger() || isa<PointerType>(Ty)) && 2401 "Cannot truncate or zero extend with non-integer arguments!"); 2402 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2403 return V; // No conversion 2404 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2405 return getTruncateExpr(V, Ty); 2406 return getSignExtendExpr(V, Ty); 2407 } 2408 2409 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2410 /// input value to the specified type. If the type must be extended, it is zero 2411 /// extended. The conversion must not be narrowing. 2412 const SCEV * 2413 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2414 const Type *SrcTy = V->getType(); 2415 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2416 (Ty->isInteger() || isa<PointerType>(Ty)) && 2417 "Cannot noop or zero extend with non-integer arguments!"); 2418 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2419 "getNoopOrZeroExtend cannot truncate!"); 2420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2421 return V; // No conversion 2422 return getZeroExtendExpr(V, Ty); 2423 } 2424 2425 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2426 /// input value to the specified type. If the type must be extended, it is sign 2427 /// extended. The conversion must not be narrowing. 2428 const SCEV * 2429 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2430 const Type *SrcTy = V->getType(); 2431 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2432 (Ty->isInteger() || isa<PointerType>(Ty)) && 2433 "Cannot noop or sign extend with non-integer arguments!"); 2434 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2435 "getNoopOrSignExtend cannot truncate!"); 2436 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2437 return V; // No conversion 2438 return getSignExtendExpr(V, Ty); 2439 } 2440 2441 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2442 /// the input value to the specified type. If the type must be extended, 2443 /// it is extended with unspecified bits. The conversion must not be 2444 /// narrowing. 2445 const SCEV * 2446 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2447 const Type *SrcTy = V->getType(); 2448 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2449 (Ty->isInteger() || isa<PointerType>(Ty)) && 2450 "Cannot noop or any extend with non-integer arguments!"); 2451 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2452 "getNoopOrAnyExtend cannot truncate!"); 2453 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2454 return V; // No conversion 2455 return getAnyExtendExpr(V, Ty); 2456 } 2457 2458 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2459 /// input value to the specified type. The conversion must not be widening. 2460 const SCEV * 2461 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2462 const Type *SrcTy = V->getType(); 2463 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2464 (Ty->isInteger() || isa<PointerType>(Ty)) && 2465 "Cannot truncate or noop with non-integer arguments!"); 2466 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2467 "getTruncateOrNoop cannot extend!"); 2468 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2469 return V; // No conversion 2470 return getTruncateExpr(V, Ty); 2471 } 2472 2473 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2474 /// the types using zero-extension, and then perform a umax operation 2475 /// with them. 2476 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2477 const SCEV *RHS) { 2478 const SCEV *PromotedLHS = LHS; 2479 const SCEV *PromotedRHS = RHS; 2480 2481 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2482 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2483 else 2484 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2485 2486 return getUMaxExpr(PromotedLHS, PromotedRHS); 2487 } 2488 2489 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2490 /// the types using zero-extension, and then perform a umin operation 2491 /// with them. 2492 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2493 const SCEV *RHS) { 2494 const SCEV *PromotedLHS = LHS; 2495 const SCEV *PromotedRHS = RHS; 2496 2497 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2498 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2499 else 2500 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2501 2502 return getUMinExpr(PromotedLHS, PromotedRHS); 2503 } 2504 2505 /// PushDefUseChildren - Push users of the given Instruction 2506 /// onto the given Worklist. 2507 static void 2508 PushDefUseChildren(Instruction *I, 2509 SmallVectorImpl<Instruction *> &Worklist) { 2510 // Push the def-use children onto the Worklist stack. 2511 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2512 UI != UE; ++UI) 2513 Worklist.push_back(cast<Instruction>(UI)); 2514 } 2515 2516 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2517 /// instructions that depend on the given instruction and removes them from 2518 /// the Scalars map if they reference SymName. This is used during PHI 2519 /// resolution. 2520 void 2521 ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) { 2522 SmallVector<Instruction *, 16> Worklist; 2523 PushDefUseChildren(I, Worklist); 2524 2525 SmallPtrSet<Instruction *, 8> Visited; 2526 Visited.insert(I); 2527 while (!Worklist.empty()) { 2528 Instruction *I = Worklist.pop_back_val(); 2529 if (!Visited.insert(I)) continue; 2530 2531 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2532 Scalars.find(static_cast<Value *>(I)); 2533 if (It != Scalars.end()) { 2534 // Short-circuit the def-use traversal if the symbolic name 2535 // ceases to appear in expressions. 2536 if (!It->second->hasOperand(SymName)) 2537 continue; 2538 2539 // SCEVUnknown for a PHI either means that it has an unrecognized 2540 // structure, or it's a PHI that's in the progress of being computed 2541 // by createNodeForPHI. In the former case, additional loop trip 2542 // count information isn't going to change anything. In the later 2543 // case, createNodeForPHI will perform the necessary updates on its 2544 // own when it gets to that point. 2545 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 2546 ValuesAtScopes.erase(It->second); 2547 Scalars.erase(It); 2548 } 2549 } 2550 2551 PushDefUseChildren(I, Worklist); 2552 } 2553 } 2554 2555 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2556 /// a loop header, making it a potential recurrence, or it doesn't. 2557 /// 2558 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2559 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2560 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2561 if (L->getHeader() == PN->getParent()) { 2562 // If it lives in the loop header, it has two incoming values, one 2563 // from outside the loop, and one from inside. 2564 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2565 unsigned BackEdge = IncomingEdge^1; 2566 2567 // While we are analyzing this PHI node, handle its value symbolically. 2568 const SCEV *SymbolicName = getUnknown(PN); 2569 assert(Scalars.find(PN) == Scalars.end() && 2570 "PHI node already processed?"); 2571 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2572 2573 // Using this symbolic name for the PHI, analyze the value coming around 2574 // the back-edge. 2575 Value *BEValueV = PN->getIncomingValue(BackEdge); 2576 const SCEV *BEValue = getSCEV(BEValueV); 2577 2578 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2579 // has a special value for the first iteration of the loop. 2580 2581 // If the value coming around the backedge is an add with the symbolic 2582 // value we just inserted, then we found a simple induction variable! 2583 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2584 // If there is a single occurrence of the symbolic value, replace it 2585 // with a recurrence. 2586 unsigned FoundIndex = Add->getNumOperands(); 2587 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2588 if (Add->getOperand(i) == SymbolicName) 2589 if (FoundIndex == e) { 2590 FoundIndex = i; 2591 break; 2592 } 2593 2594 if (FoundIndex != Add->getNumOperands()) { 2595 // Create an add with everything but the specified operand. 2596 SmallVector<const SCEV *, 8> Ops; 2597 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2598 if (i != FoundIndex) 2599 Ops.push_back(Add->getOperand(i)); 2600 const SCEV *Accum = getAddExpr(Ops); 2601 2602 // This is not a valid addrec if the step amount is varying each 2603 // loop iteration, but is not itself an addrec in this loop. 2604 if (Accum->isLoopInvariant(L) || 2605 (isa<SCEVAddRecExpr>(Accum) && 2606 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2607 bool HasNUW = false; 2608 bool HasNSW = false; 2609 2610 // If the increment doesn't overflow, then neither the addrec nor 2611 // the post-increment will overflow. 2612 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2613 if (OBO->hasNoUnsignedWrap()) 2614 HasNUW = true; 2615 if (OBO->hasNoSignedWrap()) 2616 HasNSW = true; 2617 } 2618 2619 const SCEV *StartVal = 2620 getSCEV(PN->getIncomingValue(IncomingEdge)); 2621 const SCEV *PHISCEV = 2622 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2623 2624 // Since the no-wrap flags are on the increment, they apply to the 2625 // post-incremented value as well. 2626 if (Accum->isLoopInvariant(L)) 2627 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2628 Accum, L, HasNUW, HasNSW); 2629 2630 // Okay, for the entire analysis of this edge we assumed the PHI 2631 // to be symbolic. We now need to go back and purge all of the 2632 // entries for the scalars that use the symbolic expression. 2633 ForgetSymbolicName(PN, SymbolicName); 2634 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2635 return PHISCEV; 2636 } 2637 } 2638 } else if (const SCEVAddRecExpr *AddRec = 2639 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2640 // Otherwise, this could be a loop like this: 2641 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2642 // In this case, j = {1,+,1} and BEValue is j. 2643 // Because the other in-value of i (0) fits the evolution of BEValue 2644 // i really is an addrec evolution. 2645 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2646 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2647 2648 // If StartVal = j.start - j.stride, we can use StartVal as the 2649 // initial step of the addrec evolution. 2650 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2651 AddRec->getOperand(1))) { 2652 const SCEV *PHISCEV = 2653 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2654 2655 // Okay, for the entire analysis of this edge we assumed the PHI 2656 // to be symbolic. We now need to go back and purge all of the 2657 // entries for the scalars that use the symbolic expression. 2658 ForgetSymbolicName(PN, SymbolicName); 2659 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2660 return PHISCEV; 2661 } 2662 } 2663 } 2664 2665 return SymbolicName; 2666 } 2667 2668 // It's tempting to recognize PHIs with a unique incoming value, however 2669 // this leads passes like indvars to break LCSSA form. Fortunately, such 2670 // PHIs are rare, as instcombine zaps them. 2671 2672 // If it's not a loop phi, we can't handle it yet. 2673 return getUnknown(PN); 2674 } 2675 2676 /// createNodeForGEP - Expand GEP instructions into add and multiply 2677 /// operations. This allows them to be analyzed by regular SCEV code. 2678 /// 2679 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2680 2681 bool InBounds = GEP->isInBounds(); 2682 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2683 Value *Base = GEP->getOperand(0); 2684 // Don't attempt to analyze GEPs over unsized objects. 2685 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2686 return getUnknown(GEP); 2687 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); 2688 gep_type_iterator GTI = gep_type_begin(GEP); 2689 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2690 E = GEP->op_end(); 2691 I != E; ++I) { 2692 Value *Index = *I; 2693 // Compute the (potentially symbolic) offset in bytes for this index. 2694 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2695 // For a struct, add the member offset. 2696 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2697 TotalOffset = getAddExpr(TotalOffset, 2698 getFieldOffsetExpr(STy, FieldNo), 2699 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2700 } else { 2701 // For an array, add the element offset, explicitly scaled. 2702 const SCEV *LocalOffset = getSCEV(Index); 2703 if (!isa<PointerType>(LocalOffset->getType())) 2704 // Getelementptr indicies are signed. 2705 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); 2706 // Lower "inbounds" GEPs to NSW arithmetic. 2707 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI), 2708 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2709 TotalOffset = getAddExpr(TotalOffset, LocalOffset, 2710 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2711 } 2712 } 2713 return getAddExpr(getSCEV(Base), TotalOffset, 2714 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2715 } 2716 2717 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2718 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2719 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2720 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2721 uint32_t 2722 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2723 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2724 return C->getValue()->getValue().countTrailingZeros(); 2725 2726 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2727 return std::min(GetMinTrailingZeros(T->getOperand()), 2728 (uint32_t)getTypeSizeInBits(T->getType())); 2729 2730 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2731 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2732 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2733 getTypeSizeInBits(E->getType()) : OpRes; 2734 } 2735 2736 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2737 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2738 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2739 getTypeSizeInBits(E->getType()) : OpRes; 2740 } 2741 2742 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2743 // The result is the min of all operands results. 2744 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2745 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2746 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2747 return MinOpRes; 2748 } 2749 2750 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2751 // The result is the sum of all operands results. 2752 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2753 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2754 for (unsigned i = 1, e = M->getNumOperands(); 2755 SumOpRes != BitWidth && i != e; ++i) 2756 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2757 BitWidth); 2758 return SumOpRes; 2759 } 2760 2761 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2762 // The result is the min of all operands results. 2763 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2764 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2765 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2766 return MinOpRes; 2767 } 2768 2769 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2770 // The result is the min of all operands results. 2771 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2772 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2773 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2774 return MinOpRes; 2775 } 2776 2777 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2778 // The result is the min of all operands results. 2779 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2780 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2781 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2782 return MinOpRes; 2783 } 2784 2785 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2786 // For a SCEVUnknown, ask ValueTracking. 2787 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2788 APInt Mask = APInt::getAllOnesValue(BitWidth); 2789 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2790 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2791 return Zeros.countTrailingOnes(); 2792 } 2793 2794 // SCEVUDivExpr 2795 return 0; 2796 } 2797 2798 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2799 /// 2800 ConstantRange 2801 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2802 2803 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2804 return ConstantRange(C->getValue()->getValue()); 2805 2806 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2807 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2808 2809 // If the value has known zeros, the maximum unsigned value will have those 2810 // known zeros as well. 2811 uint32_t TZ = GetMinTrailingZeros(S); 2812 if (TZ != 0) 2813 ConservativeResult = 2814 ConstantRange(APInt::getMinValue(BitWidth), 2815 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2816 2817 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2818 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2819 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2820 X = X.add(getUnsignedRange(Add->getOperand(i))); 2821 return ConservativeResult.intersectWith(X); 2822 } 2823 2824 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2825 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2826 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2827 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2828 return ConservativeResult.intersectWith(X); 2829 } 2830 2831 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2832 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2833 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2834 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2835 return ConservativeResult.intersectWith(X); 2836 } 2837 2838 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2839 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2840 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2841 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2842 return ConservativeResult.intersectWith(X); 2843 } 2844 2845 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2846 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2847 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2848 return ConservativeResult.intersectWith(X.udiv(Y)); 2849 } 2850 2851 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2852 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2853 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2854 } 2855 2856 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2857 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2858 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2859 } 2860 2861 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2862 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2863 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2864 } 2865 2866 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2867 // If there's no unsigned wrap, the value will never be less than its 2868 // initial value. 2869 if (AddRec->hasNoUnsignedWrap()) 2870 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2871 ConservativeResult = 2872 ConstantRange(C->getValue()->getValue(), 2873 APInt(getTypeSizeInBits(C->getType()), 0)); 2874 2875 // TODO: non-affine addrec 2876 if (AddRec->isAffine()) { 2877 const Type *Ty = AddRec->getType(); 2878 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2879 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 2880 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 2881 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2882 2883 const SCEV *Start = AddRec->getStart(); 2884 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2885 2886 // Check for overflow. 2887 if (!AddRec->hasNoUnsignedWrap()) 2888 return ConservativeResult; 2889 2890 ConstantRange StartRange = getUnsignedRange(Start); 2891 ConstantRange EndRange = getUnsignedRange(End); 2892 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 2893 EndRange.getUnsignedMin()); 2894 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 2895 EndRange.getUnsignedMax()); 2896 if (Min.isMinValue() && Max.isMaxValue()) 2897 return ConservativeResult; 2898 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 2899 } 2900 } 2901 2902 return ConservativeResult; 2903 } 2904 2905 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2906 // For a SCEVUnknown, ask ValueTracking. 2907 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2908 APInt Mask = APInt::getAllOnesValue(BitWidth); 2909 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2910 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2911 if (Ones == ~Zeros + 1) 2912 return ConservativeResult; 2913 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 2914 } 2915 2916 return ConservativeResult; 2917 } 2918 2919 /// getSignedRange - Determine the signed range for a particular SCEV. 2920 /// 2921 ConstantRange 2922 ScalarEvolution::getSignedRange(const SCEV *S) { 2923 2924 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2925 return ConstantRange(C->getValue()->getValue()); 2926 2927 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2928 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2929 2930 // If the value has known zeros, the maximum signed value will have those 2931 // known zeros as well. 2932 uint32_t TZ = GetMinTrailingZeros(S); 2933 if (TZ != 0) 2934 ConservativeResult = 2935 ConstantRange(APInt::getSignedMinValue(BitWidth), 2936 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 2937 2938 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2939 ConstantRange X = getSignedRange(Add->getOperand(0)); 2940 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2941 X = X.add(getSignedRange(Add->getOperand(i))); 2942 return ConservativeResult.intersectWith(X); 2943 } 2944 2945 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2946 ConstantRange X = getSignedRange(Mul->getOperand(0)); 2947 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2948 X = X.multiply(getSignedRange(Mul->getOperand(i))); 2949 return ConservativeResult.intersectWith(X); 2950 } 2951 2952 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2953 ConstantRange X = getSignedRange(SMax->getOperand(0)); 2954 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2955 X = X.smax(getSignedRange(SMax->getOperand(i))); 2956 return ConservativeResult.intersectWith(X); 2957 } 2958 2959 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2960 ConstantRange X = getSignedRange(UMax->getOperand(0)); 2961 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2962 X = X.umax(getSignedRange(UMax->getOperand(i))); 2963 return ConservativeResult.intersectWith(X); 2964 } 2965 2966 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2967 ConstantRange X = getSignedRange(UDiv->getLHS()); 2968 ConstantRange Y = getSignedRange(UDiv->getRHS()); 2969 return ConservativeResult.intersectWith(X.udiv(Y)); 2970 } 2971 2972 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2973 ConstantRange X = getSignedRange(ZExt->getOperand()); 2974 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2975 } 2976 2977 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2978 ConstantRange X = getSignedRange(SExt->getOperand()); 2979 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2980 } 2981 2982 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2983 ConstantRange X = getSignedRange(Trunc->getOperand()); 2984 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2985 } 2986 2987 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2988 // If there's no signed wrap, and all the operands have the same sign or 2989 // zero, the value won't ever change sign. 2990 if (AddRec->hasNoSignedWrap()) { 2991 bool AllNonNeg = true; 2992 bool AllNonPos = true; 2993 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 2994 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 2995 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 2996 } 2997 if (AllNonNeg) 2998 ConservativeResult = ConservativeResult.intersectWith( 2999 ConstantRange(APInt(BitWidth, 0), 3000 APInt::getSignedMinValue(BitWidth))); 3001 else if (AllNonPos) 3002 ConservativeResult = ConservativeResult.intersectWith( 3003 ConstantRange(APInt::getSignedMinValue(BitWidth), 3004 APInt(BitWidth, 1))); 3005 } 3006 3007 // TODO: non-affine addrec 3008 if (AddRec->isAffine()) { 3009 const Type *Ty = AddRec->getType(); 3010 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3011 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3012 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3013 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3014 3015 const SCEV *Start = AddRec->getStart(); 3016 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 3017 3018 // Check for overflow. 3019 if (!AddRec->hasNoSignedWrap()) 3020 return ConservativeResult; 3021 3022 ConstantRange StartRange = getSignedRange(Start); 3023 ConstantRange EndRange = getSignedRange(End); 3024 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3025 EndRange.getSignedMin()); 3026 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3027 EndRange.getSignedMax()); 3028 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3029 return ConservativeResult; 3030 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3031 } 3032 } 3033 3034 return ConservativeResult; 3035 } 3036 3037 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3038 // For a SCEVUnknown, ask ValueTracking. 3039 if (!U->getValue()->getType()->isInteger() && !TD) 3040 return ConservativeResult; 3041 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3042 if (NS == 1) 3043 return ConservativeResult; 3044 return ConservativeResult.intersectWith( 3045 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3046 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3047 } 3048 3049 return ConservativeResult; 3050 } 3051 3052 /// createSCEV - We know that there is no SCEV for the specified value. 3053 /// Analyze the expression. 3054 /// 3055 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3056 if (!isSCEVable(V->getType())) 3057 return getUnknown(V); 3058 3059 unsigned Opcode = Instruction::UserOp1; 3060 if (Instruction *I = dyn_cast<Instruction>(V)) 3061 Opcode = I->getOpcode(); 3062 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3063 Opcode = CE->getOpcode(); 3064 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3065 return getConstant(CI); 3066 else if (isa<ConstantPointerNull>(V)) 3067 return getIntegerSCEV(0, V->getType()); 3068 else if (isa<UndefValue>(V)) 3069 return getIntegerSCEV(0, V->getType()); 3070 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3071 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3072 else 3073 return getUnknown(V); 3074 3075 Operator *U = cast<Operator>(V); 3076 switch (Opcode) { 3077 case Instruction::Add: 3078 // Don't transfer the NSW and NUW bits from the Add instruction to the 3079 // Add expression, because the Instruction may be guarded by control 3080 // flow and the no-overflow bits may not be valid for the expression in 3081 // any context. 3082 return getAddExpr(getSCEV(U->getOperand(0)), 3083 getSCEV(U->getOperand(1))); 3084 case Instruction::Mul: 3085 // Don't transfer the NSW and NUW bits from the Mul instruction to the 3086 // Mul expression, as with Add. 3087 return getMulExpr(getSCEV(U->getOperand(0)), 3088 getSCEV(U->getOperand(1))); 3089 case Instruction::UDiv: 3090 return getUDivExpr(getSCEV(U->getOperand(0)), 3091 getSCEV(U->getOperand(1))); 3092 case Instruction::Sub: 3093 return getMinusSCEV(getSCEV(U->getOperand(0)), 3094 getSCEV(U->getOperand(1))); 3095 case Instruction::And: 3096 // For an expression like x&255 that merely masks off the high bits, 3097 // use zext(trunc(x)) as the SCEV expression. 3098 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3099 if (CI->isNullValue()) 3100 return getSCEV(U->getOperand(1)); 3101 if (CI->isAllOnesValue()) 3102 return getSCEV(U->getOperand(0)); 3103 const APInt &A = CI->getValue(); 3104 3105 // Instcombine's ShrinkDemandedConstant may strip bits out of 3106 // constants, obscuring what would otherwise be a low-bits mask. 3107 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3108 // knew about to reconstruct a low-bits mask value. 3109 unsigned LZ = A.countLeadingZeros(); 3110 unsigned BitWidth = A.getBitWidth(); 3111 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3112 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3113 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3114 3115 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3116 3117 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3118 return 3119 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3120 IntegerType::get(getContext(), BitWidth - LZ)), 3121 U->getType()); 3122 } 3123 break; 3124 3125 case Instruction::Or: 3126 // If the RHS of the Or is a constant, we may have something like: 3127 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3128 // optimizations will transparently handle this case. 3129 // 3130 // In order for this transformation to be safe, the LHS must be of the 3131 // form X*(2^n) and the Or constant must be less than 2^n. 3132 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3133 const SCEV *LHS = getSCEV(U->getOperand(0)); 3134 const APInt &CIVal = CI->getValue(); 3135 if (GetMinTrailingZeros(LHS) >= 3136 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3137 // Build a plain add SCEV. 3138 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3139 // If the LHS of the add was an addrec and it has no-wrap flags, 3140 // transfer the no-wrap flags, since an or won't introduce a wrap. 3141 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3142 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3143 if (OldAR->hasNoUnsignedWrap()) 3144 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3145 if (OldAR->hasNoSignedWrap()) 3146 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3147 } 3148 return S; 3149 } 3150 } 3151 break; 3152 case Instruction::Xor: 3153 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3154 // If the RHS of the xor is a signbit, then this is just an add. 3155 // Instcombine turns add of signbit into xor as a strength reduction step. 3156 if (CI->getValue().isSignBit()) 3157 return getAddExpr(getSCEV(U->getOperand(0)), 3158 getSCEV(U->getOperand(1))); 3159 3160 // If the RHS of xor is -1, then this is a not operation. 3161 if (CI->isAllOnesValue()) 3162 return getNotSCEV(getSCEV(U->getOperand(0))); 3163 3164 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3165 // This is a variant of the check for xor with -1, and it handles 3166 // the case where instcombine has trimmed non-demanded bits out 3167 // of an xor with -1. 3168 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3169 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3170 if (BO->getOpcode() == Instruction::And && 3171 LCI->getValue() == CI->getValue()) 3172 if (const SCEVZeroExtendExpr *Z = 3173 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3174 const Type *UTy = U->getType(); 3175 const SCEV *Z0 = Z->getOperand(); 3176 const Type *Z0Ty = Z0->getType(); 3177 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3178 3179 // If C is a low-bits mask, the zero extend is zerving to 3180 // mask off the high bits. Complement the operand and 3181 // re-apply the zext. 3182 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3183 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3184 3185 // If C is a single bit, it may be in the sign-bit position 3186 // before the zero-extend. In this case, represent the xor 3187 // using an add, which is equivalent, and re-apply the zext. 3188 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3189 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3190 Trunc.isSignBit()) 3191 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3192 UTy); 3193 } 3194 } 3195 break; 3196 3197 case Instruction::Shl: 3198 // Turn shift left of a constant amount into a multiply. 3199 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3200 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3201 Constant *X = ConstantInt::get(getContext(), 3202 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3203 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3204 } 3205 break; 3206 3207 case Instruction::LShr: 3208 // Turn logical shift right of a constant into a unsigned divide. 3209 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3210 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3211 Constant *X = ConstantInt::get(getContext(), 3212 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3213 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3214 } 3215 break; 3216 3217 case Instruction::AShr: 3218 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3219 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3220 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 3221 if (L->getOpcode() == Instruction::Shl && 3222 L->getOperand(1) == U->getOperand(1)) { 3223 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3224 uint64_t Amt = BitWidth - CI->getZExtValue(); 3225 if (Amt == BitWidth) 3226 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3227 if (Amt > BitWidth) 3228 return getIntegerSCEV(0, U->getType()); // value is undefined 3229 return 3230 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3231 IntegerType::get(getContext(), Amt)), 3232 U->getType()); 3233 } 3234 break; 3235 3236 case Instruction::Trunc: 3237 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3238 3239 case Instruction::ZExt: 3240 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3241 3242 case Instruction::SExt: 3243 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3244 3245 case Instruction::BitCast: 3246 // BitCasts are no-op casts so we just eliminate the cast. 3247 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3248 return getSCEV(U->getOperand(0)); 3249 break; 3250 3251 // It's tempting to handle inttoptr and ptrtoint, however this can 3252 // lead to pointer expressions which cannot be expanded to GEPs 3253 // (because they may overflow). For now, the only pointer-typed 3254 // expressions we handle are GEPs and address literals. 3255 3256 case Instruction::GetElementPtr: 3257 return createNodeForGEP(cast<GEPOperator>(U)); 3258 3259 case Instruction::PHI: 3260 return createNodeForPHI(cast<PHINode>(U)); 3261 3262 case Instruction::Select: 3263 // This could be a smax or umax that was lowered earlier. 3264 // Try to recover it. 3265 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3266 Value *LHS = ICI->getOperand(0); 3267 Value *RHS = ICI->getOperand(1); 3268 switch (ICI->getPredicate()) { 3269 case ICmpInst::ICMP_SLT: 3270 case ICmpInst::ICMP_SLE: 3271 std::swap(LHS, RHS); 3272 // fall through 3273 case ICmpInst::ICMP_SGT: 3274 case ICmpInst::ICMP_SGE: 3275 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3276 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3277 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3278 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 3279 break; 3280 case ICmpInst::ICMP_ULT: 3281 case ICmpInst::ICMP_ULE: 3282 std::swap(LHS, RHS); 3283 // fall through 3284 case ICmpInst::ICMP_UGT: 3285 case ICmpInst::ICMP_UGE: 3286 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3287 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3288 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3289 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 3290 break; 3291 case ICmpInst::ICMP_NE: 3292 // n != 0 ? n : 1 -> umax(n, 1) 3293 if (LHS == U->getOperand(1) && 3294 isa<ConstantInt>(U->getOperand(2)) && 3295 cast<ConstantInt>(U->getOperand(2))->isOne() && 3296 isa<ConstantInt>(RHS) && 3297 cast<ConstantInt>(RHS)->isZero()) 3298 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 3299 break; 3300 case ICmpInst::ICMP_EQ: 3301 // n == 0 ? 1 : n -> umax(n, 1) 3302 if (LHS == U->getOperand(2) && 3303 isa<ConstantInt>(U->getOperand(1)) && 3304 cast<ConstantInt>(U->getOperand(1))->isOne() && 3305 isa<ConstantInt>(RHS) && 3306 cast<ConstantInt>(RHS)->isZero()) 3307 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 3308 break; 3309 default: 3310 break; 3311 } 3312 } 3313 3314 default: // We cannot analyze this expression. 3315 break; 3316 } 3317 3318 return getUnknown(V); 3319 } 3320 3321 3322 3323 //===----------------------------------------------------------------------===// 3324 // Iteration Count Computation Code 3325 // 3326 3327 /// getBackedgeTakenCount - If the specified loop has a predictable 3328 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3329 /// object. The backedge-taken count is the number of times the loop header 3330 /// will be branched to from within the loop. This is one less than the 3331 /// trip count of the loop, since it doesn't count the first iteration, 3332 /// when the header is branched to from outside the loop. 3333 /// 3334 /// Note that it is not valid to call this method on a loop without a 3335 /// loop-invariant backedge-taken count (see 3336 /// hasLoopInvariantBackedgeTakenCount). 3337 /// 3338 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3339 return getBackedgeTakenInfo(L).Exact; 3340 } 3341 3342 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3343 /// return the least SCEV value that is known never to be less than the 3344 /// actual backedge taken count. 3345 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3346 return getBackedgeTakenInfo(L).Max; 3347 } 3348 3349 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3350 /// onto the given Worklist. 3351 static void 3352 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3353 BasicBlock *Header = L->getHeader(); 3354 3355 // Push all Loop-header PHIs onto the Worklist stack. 3356 for (BasicBlock::iterator I = Header->begin(); 3357 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3358 Worklist.push_back(PN); 3359 } 3360 3361 const ScalarEvolution::BackedgeTakenInfo & 3362 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3363 // Initially insert a CouldNotCompute for this loop. If the insertion 3364 // succeeds, procede to actually compute a backedge-taken count and 3365 // update the value. The temporary CouldNotCompute value tells SCEV 3366 // code elsewhere that it shouldn't attempt to request a new 3367 // backedge-taken count, which could result in infinite recursion. 3368 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3369 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3370 if (Pair.second) { 3371 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3372 if (BECount.Exact != getCouldNotCompute()) { 3373 assert(BECount.Exact->isLoopInvariant(L) && 3374 BECount.Max->isLoopInvariant(L) && 3375 "Computed backedge-taken count isn't loop invariant for loop!"); 3376 ++NumTripCountsComputed; 3377 3378 // Update the value in the map. 3379 Pair.first->second = BECount; 3380 } else { 3381 if (BECount.Max != getCouldNotCompute()) 3382 // Update the value in the map. 3383 Pair.first->second = BECount; 3384 if (isa<PHINode>(L->getHeader()->begin())) 3385 // Only count loops that have phi nodes as not being computable. 3386 ++NumTripCountsNotComputed; 3387 } 3388 3389 // Now that we know more about the trip count for this loop, forget any 3390 // existing SCEV values for PHI nodes in this loop since they are only 3391 // conservative estimates made without the benefit of trip count 3392 // information. This is similar to the code in forgetLoop, except that 3393 // it handles SCEVUnknown PHI nodes specially. 3394 if (BECount.hasAnyInfo()) { 3395 SmallVector<Instruction *, 16> Worklist; 3396 PushLoopPHIs(L, Worklist); 3397 3398 SmallPtrSet<Instruction *, 8> Visited; 3399 while (!Worklist.empty()) { 3400 Instruction *I = Worklist.pop_back_val(); 3401 if (!Visited.insert(I)) continue; 3402 3403 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3404 Scalars.find(static_cast<Value *>(I)); 3405 if (It != Scalars.end()) { 3406 // SCEVUnknown for a PHI either means that it has an unrecognized 3407 // structure, or it's a PHI that's in the progress of being computed 3408 // by createNodeForPHI. In the former case, additional loop trip 3409 // count information isn't going to change anything. In the later 3410 // case, createNodeForPHI will perform the necessary updates on its 3411 // own when it gets to that point. 3412 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3413 ValuesAtScopes.erase(It->second); 3414 Scalars.erase(It); 3415 } 3416 if (PHINode *PN = dyn_cast<PHINode>(I)) 3417 ConstantEvolutionLoopExitValue.erase(PN); 3418 } 3419 3420 PushDefUseChildren(I, Worklist); 3421 } 3422 } 3423 } 3424 return Pair.first->second; 3425 } 3426 3427 /// forgetLoop - This method should be called by the client when it has 3428 /// changed a loop in a way that may effect ScalarEvolution's ability to 3429 /// compute a trip count, or if the loop is deleted. 3430 void ScalarEvolution::forgetLoop(const Loop *L) { 3431 // Drop any stored trip count value. 3432 BackedgeTakenCounts.erase(L); 3433 3434 // Drop information about expressions based on loop-header PHIs. 3435 SmallVector<Instruction *, 16> Worklist; 3436 PushLoopPHIs(L, Worklist); 3437 3438 SmallPtrSet<Instruction *, 8> Visited; 3439 while (!Worklist.empty()) { 3440 Instruction *I = Worklist.pop_back_val(); 3441 if (!Visited.insert(I)) continue; 3442 3443 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3444 Scalars.find(static_cast<Value *>(I)); 3445 if (It != Scalars.end()) { 3446 ValuesAtScopes.erase(It->second); 3447 Scalars.erase(It); 3448 if (PHINode *PN = dyn_cast<PHINode>(I)) 3449 ConstantEvolutionLoopExitValue.erase(PN); 3450 } 3451 3452 PushDefUseChildren(I, Worklist); 3453 } 3454 } 3455 3456 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3457 /// of the specified loop will execute. 3458 ScalarEvolution::BackedgeTakenInfo 3459 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3460 SmallVector<BasicBlock *, 8> ExitingBlocks; 3461 L->getExitingBlocks(ExitingBlocks); 3462 3463 // Examine all exits and pick the most conservative values. 3464 const SCEV *BECount = getCouldNotCompute(); 3465 const SCEV *MaxBECount = getCouldNotCompute(); 3466 bool CouldNotComputeBECount = false; 3467 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3468 BackedgeTakenInfo NewBTI = 3469 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3470 3471 if (NewBTI.Exact == getCouldNotCompute()) { 3472 // We couldn't compute an exact value for this exit, so 3473 // we won't be able to compute an exact value for the loop. 3474 CouldNotComputeBECount = true; 3475 BECount = getCouldNotCompute(); 3476 } else if (!CouldNotComputeBECount) { 3477 if (BECount == getCouldNotCompute()) 3478 BECount = NewBTI.Exact; 3479 else 3480 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3481 } 3482 if (MaxBECount == getCouldNotCompute()) 3483 MaxBECount = NewBTI.Max; 3484 else if (NewBTI.Max != getCouldNotCompute()) 3485 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3486 } 3487 3488 return BackedgeTakenInfo(BECount, MaxBECount); 3489 } 3490 3491 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3492 /// of the specified loop will execute if it exits via the specified block. 3493 ScalarEvolution::BackedgeTakenInfo 3494 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3495 BasicBlock *ExitingBlock) { 3496 3497 // Okay, we've chosen an exiting block. See what condition causes us to 3498 // exit at this block. 3499 // 3500 // FIXME: we should be able to handle switch instructions (with a single exit) 3501 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3502 if (ExitBr == 0) return getCouldNotCompute(); 3503 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3504 3505 // At this point, we know we have a conditional branch that determines whether 3506 // the loop is exited. However, we don't know if the branch is executed each 3507 // time through the loop. If not, then the execution count of the branch will 3508 // not be equal to the trip count of the loop. 3509 // 3510 // Currently we check for this by checking to see if the Exit branch goes to 3511 // the loop header. If so, we know it will always execute the same number of 3512 // times as the loop. We also handle the case where the exit block *is* the 3513 // loop header. This is common for un-rotated loops. 3514 // 3515 // If both of those tests fail, walk up the unique predecessor chain to the 3516 // header, stopping if there is an edge that doesn't exit the loop. If the 3517 // header is reached, the execution count of the branch will be equal to the 3518 // trip count of the loop. 3519 // 3520 // More extensive analysis could be done to handle more cases here. 3521 // 3522 if (ExitBr->getSuccessor(0) != L->getHeader() && 3523 ExitBr->getSuccessor(1) != L->getHeader() && 3524 ExitBr->getParent() != L->getHeader()) { 3525 // The simple checks failed, try climbing the unique predecessor chain 3526 // up to the header. 3527 bool Ok = false; 3528 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3529 BasicBlock *Pred = BB->getUniquePredecessor(); 3530 if (!Pred) 3531 return getCouldNotCompute(); 3532 TerminatorInst *PredTerm = Pred->getTerminator(); 3533 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3534 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3535 if (PredSucc == BB) 3536 continue; 3537 // If the predecessor has a successor that isn't BB and isn't 3538 // outside the loop, assume the worst. 3539 if (L->contains(PredSucc)) 3540 return getCouldNotCompute(); 3541 } 3542 if (Pred == L->getHeader()) { 3543 Ok = true; 3544 break; 3545 } 3546 BB = Pred; 3547 } 3548 if (!Ok) 3549 return getCouldNotCompute(); 3550 } 3551 3552 // Procede to the next level to examine the exit condition expression. 3553 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3554 ExitBr->getSuccessor(0), 3555 ExitBr->getSuccessor(1)); 3556 } 3557 3558 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3559 /// backedge of the specified loop will execute if its exit condition 3560 /// were a conditional branch of ExitCond, TBB, and FBB. 3561 ScalarEvolution::BackedgeTakenInfo 3562 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3563 Value *ExitCond, 3564 BasicBlock *TBB, 3565 BasicBlock *FBB) { 3566 // Check if the controlling expression for this loop is an And or Or. 3567 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3568 if (BO->getOpcode() == Instruction::And) { 3569 // Recurse on the operands of the and. 3570 BackedgeTakenInfo BTI0 = 3571 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3572 BackedgeTakenInfo BTI1 = 3573 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3574 const SCEV *BECount = getCouldNotCompute(); 3575 const SCEV *MaxBECount = getCouldNotCompute(); 3576 if (L->contains(TBB)) { 3577 // Both conditions must be true for the loop to continue executing. 3578 // Choose the less conservative count. 3579 if (BTI0.Exact == getCouldNotCompute() || 3580 BTI1.Exact == getCouldNotCompute()) 3581 BECount = getCouldNotCompute(); 3582 else 3583 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3584 if (BTI0.Max == getCouldNotCompute()) 3585 MaxBECount = BTI1.Max; 3586 else if (BTI1.Max == getCouldNotCompute()) 3587 MaxBECount = BTI0.Max; 3588 else 3589 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3590 } else { 3591 // Both conditions must be true for the loop to exit. 3592 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3593 if (BTI0.Exact != getCouldNotCompute() && 3594 BTI1.Exact != getCouldNotCompute()) 3595 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3596 if (BTI0.Max != getCouldNotCompute() && 3597 BTI1.Max != getCouldNotCompute()) 3598 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3599 } 3600 3601 return BackedgeTakenInfo(BECount, MaxBECount); 3602 } 3603 if (BO->getOpcode() == Instruction::Or) { 3604 // Recurse on the operands of the or. 3605 BackedgeTakenInfo BTI0 = 3606 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3607 BackedgeTakenInfo BTI1 = 3608 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3609 const SCEV *BECount = getCouldNotCompute(); 3610 const SCEV *MaxBECount = getCouldNotCompute(); 3611 if (L->contains(FBB)) { 3612 // Both conditions must be false for the loop to continue executing. 3613 // Choose the less conservative count. 3614 if (BTI0.Exact == getCouldNotCompute() || 3615 BTI1.Exact == getCouldNotCompute()) 3616 BECount = getCouldNotCompute(); 3617 else 3618 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3619 if (BTI0.Max == getCouldNotCompute()) 3620 MaxBECount = BTI1.Max; 3621 else if (BTI1.Max == getCouldNotCompute()) 3622 MaxBECount = BTI0.Max; 3623 else 3624 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3625 } else { 3626 // Both conditions must be false for the loop to exit. 3627 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3628 if (BTI0.Exact != getCouldNotCompute() && 3629 BTI1.Exact != getCouldNotCompute()) 3630 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3631 if (BTI0.Max != getCouldNotCompute() && 3632 BTI1.Max != getCouldNotCompute()) 3633 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3634 } 3635 3636 return BackedgeTakenInfo(BECount, MaxBECount); 3637 } 3638 } 3639 3640 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3641 // Procede to the next level to examine the icmp. 3642 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3643 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3644 3645 // If it's not an integer or pointer comparison then compute it the hard way. 3646 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3647 } 3648 3649 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3650 /// backedge of the specified loop will execute if its exit condition 3651 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3652 ScalarEvolution::BackedgeTakenInfo 3653 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3654 ICmpInst *ExitCond, 3655 BasicBlock *TBB, 3656 BasicBlock *FBB) { 3657 3658 // If the condition was exit on true, convert the condition to exit on false 3659 ICmpInst::Predicate Cond; 3660 if (!L->contains(FBB)) 3661 Cond = ExitCond->getPredicate(); 3662 else 3663 Cond = ExitCond->getInversePredicate(); 3664 3665 // Handle common loops like: for (X = "string"; *X; ++X) 3666 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3667 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3668 const SCEV *ItCnt = 3669 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3670 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3671 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3672 return BackedgeTakenInfo(ItCnt, 3673 isa<SCEVConstant>(ItCnt) ? ItCnt : 3674 getConstant(APInt::getMaxValue(BitWidth)-1)); 3675 } 3676 } 3677 3678 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3679 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3680 3681 // Try to evaluate any dependencies out of the loop. 3682 LHS = getSCEVAtScope(LHS, L); 3683 RHS = getSCEVAtScope(RHS, L); 3684 3685 // At this point, we would like to compute how many iterations of the 3686 // loop the predicate will return true for these inputs. 3687 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3688 // If there is a loop-invariant, force it into the RHS. 3689 std::swap(LHS, RHS); 3690 Cond = ICmpInst::getSwappedPredicate(Cond); 3691 } 3692 3693 // If we have a comparison of a chrec against a constant, try to use value 3694 // ranges to answer this query. 3695 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3696 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3697 if (AddRec->getLoop() == L) { 3698 // Form the constant range. 3699 ConstantRange CompRange( 3700 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3701 3702 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3703 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3704 } 3705 3706 switch (Cond) { 3707 case ICmpInst::ICMP_NE: { // while (X != Y) 3708 // Convert to: while (X-Y != 0) 3709 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3710 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3711 break; 3712 } 3713 case ICmpInst::ICMP_EQ: { // while (X == Y) 3714 // Convert to: while (X-Y == 0) 3715 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3716 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3717 break; 3718 } 3719 case ICmpInst::ICMP_SLT: { 3720 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3721 if (BTI.hasAnyInfo()) return BTI; 3722 break; 3723 } 3724 case ICmpInst::ICMP_SGT: { 3725 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3726 getNotSCEV(RHS), L, true); 3727 if (BTI.hasAnyInfo()) return BTI; 3728 break; 3729 } 3730 case ICmpInst::ICMP_ULT: { 3731 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3732 if (BTI.hasAnyInfo()) return BTI; 3733 break; 3734 } 3735 case ICmpInst::ICMP_UGT: { 3736 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3737 getNotSCEV(RHS), L, false); 3738 if (BTI.hasAnyInfo()) return BTI; 3739 break; 3740 } 3741 default: 3742 #if 0 3743 dbgs() << "ComputeBackedgeTakenCount "; 3744 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3745 dbgs() << "[unsigned] "; 3746 dbgs() << *LHS << " " 3747 << Instruction::getOpcodeName(Instruction::ICmp) 3748 << " " << *RHS << "\n"; 3749 #endif 3750 break; 3751 } 3752 return 3753 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3754 } 3755 3756 static ConstantInt * 3757 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3758 ScalarEvolution &SE) { 3759 const SCEV *InVal = SE.getConstant(C); 3760 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3761 assert(isa<SCEVConstant>(Val) && 3762 "Evaluation of SCEV at constant didn't fold correctly?"); 3763 return cast<SCEVConstant>(Val)->getValue(); 3764 } 3765 3766 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3767 /// and a GEP expression (missing the pointer index) indexing into it, return 3768 /// the addressed element of the initializer or null if the index expression is 3769 /// invalid. 3770 static Constant * 3771 GetAddressedElementFromGlobal(GlobalVariable *GV, 3772 const std::vector<ConstantInt*> &Indices) { 3773 Constant *Init = GV->getInitializer(); 3774 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3775 uint64_t Idx = Indices[i]->getZExtValue(); 3776 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3777 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3778 Init = cast<Constant>(CS->getOperand(Idx)); 3779 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3780 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3781 Init = cast<Constant>(CA->getOperand(Idx)); 3782 } else if (isa<ConstantAggregateZero>(Init)) { 3783 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3784 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3785 Init = Constant::getNullValue(STy->getElementType(Idx)); 3786 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3787 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3788 Init = Constant::getNullValue(ATy->getElementType()); 3789 } else { 3790 llvm_unreachable("Unknown constant aggregate type!"); 3791 } 3792 return 0; 3793 } else { 3794 return 0; // Unknown initializer type 3795 } 3796 } 3797 return Init; 3798 } 3799 3800 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3801 /// 'icmp op load X, cst', try to see if we can compute the backedge 3802 /// execution count. 3803 const SCEV * 3804 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 3805 LoadInst *LI, 3806 Constant *RHS, 3807 const Loop *L, 3808 ICmpInst::Predicate predicate) { 3809 if (LI->isVolatile()) return getCouldNotCompute(); 3810 3811 // Check to see if the loaded pointer is a getelementptr of a global. 3812 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3813 if (!GEP) return getCouldNotCompute(); 3814 3815 // Make sure that it is really a constant global we are gepping, with an 3816 // initializer, and make sure the first IDX is really 0. 3817 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3818 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 3819 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3820 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3821 return getCouldNotCompute(); 3822 3823 // Okay, we allow one non-constant index into the GEP instruction. 3824 Value *VarIdx = 0; 3825 std::vector<ConstantInt*> Indexes; 3826 unsigned VarIdxNum = 0; 3827 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3828 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3829 Indexes.push_back(CI); 3830 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3831 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 3832 VarIdx = GEP->getOperand(i); 3833 VarIdxNum = i-2; 3834 Indexes.push_back(0); 3835 } 3836 3837 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3838 // Check to see if X is a loop variant variable value now. 3839 const SCEV *Idx = getSCEV(VarIdx); 3840 Idx = getSCEVAtScope(Idx, L); 3841 3842 // We can only recognize very limited forms of loop index expressions, in 3843 // particular, only affine AddRec's like {C1,+,C2}. 3844 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3845 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3846 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3847 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3848 return getCouldNotCompute(); 3849 3850 unsigned MaxSteps = MaxBruteForceIterations; 3851 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3852 ConstantInt *ItCst = ConstantInt::get( 3853 cast<IntegerType>(IdxExpr->getType()), IterationNum); 3854 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3855 3856 // Form the GEP offset. 3857 Indexes[VarIdxNum] = Val; 3858 3859 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 3860 if (Result == 0) break; // Cannot compute! 3861 3862 // Evaluate the condition for this iteration. 3863 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3864 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3865 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3866 #if 0 3867 dbgs() << "\n***\n*** Computed loop count " << *ItCst 3868 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3869 << "***\n"; 3870 #endif 3871 ++NumArrayLenItCounts; 3872 return getConstant(ItCst); // Found terminating iteration! 3873 } 3874 } 3875 return getCouldNotCompute(); 3876 } 3877 3878 3879 /// CanConstantFold - Return true if we can constant fold an instruction of the 3880 /// specified type, assuming that all operands were constants. 3881 static bool CanConstantFold(const Instruction *I) { 3882 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3883 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3884 return true; 3885 3886 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3887 if (const Function *F = CI->getCalledFunction()) 3888 return canConstantFoldCallTo(F); 3889 return false; 3890 } 3891 3892 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3893 /// in the loop that V is derived from. We allow arbitrary operations along the 3894 /// way, but the operands of an operation must either be constants or a value 3895 /// derived from a constant PHI. If this expression does not fit with these 3896 /// constraints, return null. 3897 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3898 // If this is not an instruction, or if this is an instruction outside of the 3899 // loop, it can't be derived from a loop PHI. 3900 Instruction *I = dyn_cast<Instruction>(V); 3901 if (I == 0 || !L->contains(I)) return 0; 3902 3903 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3904 if (L->getHeader() == I->getParent()) 3905 return PN; 3906 else 3907 // We don't currently keep track of the control flow needed to evaluate 3908 // PHIs, so we cannot handle PHIs inside of loops. 3909 return 0; 3910 } 3911 3912 // If we won't be able to constant fold this expression even if the operands 3913 // are constants, return early. 3914 if (!CanConstantFold(I)) return 0; 3915 3916 // Otherwise, we can evaluate this instruction if all of its operands are 3917 // constant or derived from a PHI node themselves. 3918 PHINode *PHI = 0; 3919 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3920 if (!(isa<Constant>(I->getOperand(Op)) || 3921 isa<GlobalValue>(I->getOperand(Op)))) { 3922 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3923 if (P == 0) return 0; // Not evolving from PHI 3924 if (PHI == 0) 3925 PHI = P; 3926 else if (PHI != P) 3927 return 0; // Evolving from multiple different PHIs. 3928 } 3929 3930 // This is a expression evolving from a constant PHI! 3931 return PHI; 3932 } 3933 3934 /// EvaluateExpression - Given an expression that passes the 3935 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3936 /// in the loop has the value PHIVal. If we can't fold this expression for some 3937 /// reason, return null. 3938 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 3939 const TargetData *TD) { 3940 if (isa<PHINode>(V)) return PHIVal; 3941 if (Constant *C = dyn_cast<Constant>(V)) return C; 3942 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3943 Instruction *I = cast<Instruction>(V); 3944 3945 std::vector<Constant*> Operands; 3946 Operands.resize(I->getNumOperands()); 3947 3948 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3949 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 3950 if (Operands[i] == 0) return 0; 3951 } 3952 3953 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3954 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 3955 Operands[1], TD); 3956 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3957 &Operands[0], Operands.size(), TD); 3958 } 3959 3960 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3961 /// in the header of its containing loop, we know the loop executes a 3962 /// constant number of times, and the PHI node is just a recurrence 3963 /// involving constants, fold it. 3964 Constant * 3965 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 3966 const APInt &BEs, 3967 const Loop *L) { 3968 std::map<PHINode*, Constant*>::iterator I = 3969 ConstantEvolutionLoopExitValue.find(PN); 3970 if (I != ConstantEvolutionLoopExitValue.end()) 3971 return I->second; 3972 3973 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3974 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3975 3976 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3977 3978 // Since the loop is canonicalized, the PHI node must have two entries. One 3979 // entry must be a constant (coming in from outside of the loop), and the 3980 // second must be derived from the same PHI. 3981 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3982 Constant *StartCST = 3983 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3984 if (StartCST == 0) 3985 return RetVal = 0; // Must be a constant. 3986 3987 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3988 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3989 if (PN2 != PN) 3990 return RetVal = 0; // Not derived from same PHI. 3991 3992 // Execute the loop symbolically to determine the exit value. 3993 if (BEs.getActiveBits() >= 32) 3994 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3995 3996 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3997 unsigned IterationNum = 0; 3998 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3999 if (IterationNum == NumIterations) 4000 return RetVal = PHIVal; // Got exit value! 4001 4002 // Compute the value of the PHI node for the next iteration. 4003 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4004 if (NextPHI == PHIVal) 4005 return RetVal = NextPHI; // Stopped evolving! 4006 if (NextPHI == 0) 4007 return 0; // Couldn't evaluate! 4008 PHIVal = NextPHI; 4009 } 4010 } 4011 4012 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4013 /// constant number of times (the condition evolves only from constants), 4014 /// try to evaluate a few iterations of the loop until we get the exit 4015 /// condition gets a value of ExitWhen (true or false). If we cannot 4016 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4017 const SCEV * 4018 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4019 Value *Cond, 4020 bool ExitWhen) { 4021 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4022 if (PN == 0) return getCouldNotCompute(); 4023 4024 // Since the loop is canonicalized, the PHI node must have two entries. One 4025 // entry must be a constant (coming in from outside of the loop), and the 4026 // second must be derived from the same PHI. 4027 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4028 Constant *StartCST = 4029 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4030 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4031 4032 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4033 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 4034 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. 4035 4036 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4037 // the loop symbolically to determine when the condition gets a value of 4038 // "ExitWhen". 4039 unsigned IterationNum = 0; 4040 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4041 for (Constant *PHIVal = StartCST; 4042 IterationNum != MaxIterations; ++IterationNum) { 4043 ConstantInt *CondVal = 4044 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4045 4046 // Couldn't symbolically evaluate. 4047 if (!CondVal) return getCouldNotCompute(); 4048 4049 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4050 ++NumBruteForceTripCountsComputed; 4051 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4052 } 4053 4054 // Compute the value of the PHI node for the next iteration. 4055 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4056 if (NextPHI == 0 || NextPHI == PHIVal) 4057 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4058 PHIVal = NextPHI; 4059 } 4060 4061 // Too many iterations were needed to evaluate. 4062 return getCouldNotCompute(); 4063 } 4064 4065 /// getSCEVAtScope - Return a SCEV expression for the specified value 4066 /// at the specified scope in the program. The L value specifies a loop 4067 /// nest to evaluate the expression at, where null is the top-level or a 4068 /// specified loop is immediately inside of the loop. 4069 /// 4070 /// This method can be used to compute the exit value for a variable defined 4071 /// in a loop by querying what the value will hold in the parent loop. 4072 /// 4073 /// In the case that a relevant loop exit value cannot be computed, the 4074 /// original value V is returned. 4075 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4076 // Check to see if we've folded this expression at this loop before. 4077 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4078 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4079 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4080 if (!Pair.second) 4081 return Pair.first->second ? Pair.first->second : V; 4082 4083 // Otherwise compute it. 4084 const SCEV *C = computeSCEVAtScope(V, L); 4085 ValuesAtScopes[V][L] = C; 4086 return C; 4087 } 4088 4089 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4090 if (isa<SCEVConstant>(V)) return V; 4091 4092 // If this instruction is evolved from a constant-evolving PHI, compute the 4093 // exit value from the loop without using SCEVs. 4094 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4095 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4096 const Loop *LI = (*this->LI)[I->getParent()]; 4097 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4098 if (PHINode *PN = dyn_cast<PHINode>(I)) 4099 if (PN->getParent() == LI->getHeader()) { 4100 // Okay, there is no closed form solution for the PHI node. Check 4101 // to see if the loop that contains it has a known backedge-taken 4102 // count. If so, we may be able to force computation of the exit 4103 // value. 4104 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4105 if (const SCEVConstant *BTCC = 4106 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4107 // Okay, we know how many times the containing loop executes. If 4108 // this is a constant evolving PHI node, get the final value at 4109 // the specified iteration number. 4110 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4111 BTCC->getValue()->getValue(), 4112 LI); 4113 if (RV) return getSCEV(RV); 4114 } 4115 } 4116 4117 // Okay, this is an expression that we cannot symbolically evaluate 4118 // into a SCEV. Check to see if it's possible to symbolically evaluate 4119 // the arguments into constants, and if so, try to constant propagate the 4120 // result. This is particularly useful for computing loop exit values. 4121 if (CanConstantFold(I)) { 4122 std::vector<Constant*> Operands; 4123 Operands.reserve(I->getNumOperands()); 4124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4125 Value *Op = I->getOperand(i); 4126 if (Constant *C = dyn_cast<Constant>(Op)) { 4127 Operands.push_back(C); 4128 } else { 4129 // If any of the operands is non-constant and if they are 4130 // non-integer and non-pointer, don't even try to analyze them 4131 // with scev techniques. 4132 if (!isSCEVable(Op->getType())) 4133 return V; 4134 4135 const SCEV *OpV = getSCEVAtScope(Op, L); 4136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 4137 Constant *C = SC->getValue(); 4138 if (C->getType() != Op->getType()) 4139 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4140 Op->getType(), 4141 false), 4142 C, Op->getType()); 4143 Operands.push_back(C); 4144 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 4145 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 4146 if (C->getType() != Op->getType()) 4147 C = 4148 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4149 Op->getType(), 4150 false), 4151 C, Op->getType()); 4152 Operands.push_back(C); 4153 } else 4154 return V; 4155 } else { 4156 return V; 4157 } 4158 } 4159 } 4160 4161 Constant *C; 4162 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4163 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4164 Operands[0], Operands[1], TD); 4165 else 4166 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4167 &Operands[0], Operands.size(), TD); 4168 return getSCEV(C); 4169 } 4170 } 4171 4172 // This is some other type of SCEVUnknown, just return it. 4173 return V; 4174 } 4175 4176 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4177 // Avoid performing the look-up in the common case where the specified 4178 // expression has no loop-variant portions. 4179 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4180 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4181 if (OpAtScope != Comm->getOperand(i)) { 4182 // Okay, at least one of these operands is loop variant but might be 4183 // foldable. Build a new instance of the folded commutative expression. 4184 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4185 Comm->op_begin()+i); 4186 NewOps.push_back(OpAtScope); 4187 4188 for (++i; i != e; ++i) { 4189 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4190 NewOps.push_back(OpAtScope); 4191 } 4192 if (isa<SCEVAddExpr>(Comm)) 4193 return getAddExpr(NewOps); 4194 if (isa<SCEVMulExpr>(Comm)) 4195 return getMulExpr(NewOps); 4196 if (isa<SCEVSMaxExpr>(Comm)) 4197 return getSMaxExpr(NewOps); 4198 if (isa<SCEVUMaxExpr>(Comm)) 4199 return getUMaxExpr(NewOps); 4200 llvm_unreachable("Unknown commutative SCEV type!"); 4201 } 4202 } 4203 // If we got here, all operands are loop invariant. 4204 return Comm; 4205 } 4206 4207 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4208 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4209 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4210 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4211 return Div; // must be loop invariant 4212 return getUDivExpr(LHS, RHS); 4213 } 4214 4215 // If this is a loop recurrence for a loop that does not contain L, then we 4216 // are dealing with the final value computed by the loop. 4217 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4218 if (!L || !AddRec->getLoop()->contains(L)) { 4219 // To evaluate this recurrence, we need to know how many times the AddRec 4220 // loop iterates. Compute this now. 4221 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4222 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4223 4224 // Then, evaluate the AddRec. 4225 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4226 } 4227 return AddRec; 4228 } 4229 4230 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4231 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4232 if (Op == Cast->getOperand()) 4233 return Cast; // must be loop invariant 4234 return getZeroExtendExpr(Op, Cast->getType()); 4235 } 4236 4237 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4238 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4239 if (Op == Cast->getOperand()) 4240 return Cast; // must be loop invariant 4241 return getSignExtendExpr(Op, Cast->getType()); 4242 } 4243 4244 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4245 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4246 if (Op == Cast->getOperand()) 4247 return Cast; // must be loop invariant 4248 return getTruncateExpr(Op, Cast->getType()); 4249 } 4250 4251 llvm_unreachable("Unknown SCEV type!"); 4252 return 0; 4253 } 4254 4255 /// getSCEVAtScope - This is a convenience function which does 4256 /// getSCEVAtScope(getSCEV(V), L). 4257 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4258 return getSCEVAtScope(getSCEV(V), L); 4259 } 4260 4261 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4262 /// following equation: 4263 /// 4264 /// A * X = B (mod N) 4265 /// 4266 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4267 /// A and B isn't important. 4268 /// 4269 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4270 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4271 ScalarEvolution &SE) { 4272 uint32_t BW = A.getBitWidth(); 4273 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4274 assert(A != 0 && "A must be non-zero."); 4275 4276 // 1. D = gcd(A, N) 4277 // 4278 // The gcd of A and N may have only one prime factor: 2. The number of 4279 // trailing zeros in A is its multiplicity 4280 uint32_t Mult2 = A.countTrailingZeros(); 4281 // D = 2^Mult2 4282 4283 // 2. Check if B is divisible by D. 4284 // 4285 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4286 // is not less than multiplicity of this prime factor for D. 4287 if (B.countTrailingZeros() < Mult2) 4288 return SE.getCouldNotCompute(); 4289 4290 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4291 // modulo (N / D). 4292 // 4293 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4294 // bit width during computations. 4295 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4296 APInt Mod(BW + 1, 0); 4297 Mod.set(BW - Mult2); // Mod = N / D 4298 APInt I = AD.multiplicativeInverse(Mod); 4299 4300 // 4. Compute the minimum unsigned root of the equation: 4301 // I * (B / D) mod (N / D) 4302 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4303 4304 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4305 // bits. 4306 return SE.getConstant(Result.trunc(BW)); 4307 } 4308 4309 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4310 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4311 /// might be the same) or two SCEVCouldNotCompute objects. 4312 /// 4313 static std::pair<const SCEV *,const SCEV *> 4314 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4315 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4316 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4317 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4318 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4319 4320 // We currently can only solve this if the coefficients are constants. 4321 if (!LC || !MC || !NC) { 4322 const SCEV *CNC = SE.getCouldNotCompute(); 4323 return std::make_pair(CNC, CNC); 4324 } 4325 4326 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4327 const APInt &L = LC->getValue()->getValue(); 4328 const APInt &M = MC->getValue()->getValue(); 4329 const APInt &N = NC->getValue()->getValue(); 4330 APInt Two(BitWidth, 2); 4331 APInt Four(BitWidth, 4); 4332 4333 { 4334 using namespace APIntOps; 4335 const APInt& C = L; 4336 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4337 // The B coefficient is M-N/2 4338 APInt B(M); 4339 B -= sdiv(N,Two); 4340 4341 // The A coefficient is N/2 4342 APInt A(N.sdiv(Two)); 4343 4344 // Compute the B^2-4ac term. 4345 APInt SqrtTerm(B); 4346 SqrtTerm *= B; 4347 SqrtTerm -= Four * (A * C); 4348 4349 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4350 // integer value or else APInt::sqrt() will assert. 4351 APInt SqrtVal(SqrtTerm.sqrt()); 4352 4353 // Compute the two solutions for the quadratic formula. 4354 // The divisions must be performed as signed divisions. 4355 APInt NegB(-B); 4356 APInt TwoA( A << 1 ); 4357 if (TwoA.isMinValue()) { 4358 const SCEV *CNC = SE.getCouldNotCompute(); 4359 return std::make_pair(CNC, CNC); 4360 } 4361 4362 LLVMContext &Context = SE.getContext(); 4363 4364 ConstantInt *Solution1 = 4365 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4366 ConstantInt *Solution2 = 4367 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4368 4369 return std::make_pair(SE.getConstant(Solution1), 4370 SE.getConstant(Solution2)); 4371 } // end APIntOps namespace 4372 } 4373 4374 /// HowFarToZero - Return the number of times a backedge comparing the specified 4375 /// value to zero will execute. If not computable, return CouldNotCompute. 4376 const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4377 // If the value is a constant 4378 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4379 // If the value is already zero, the branch will execute zero times. 4380 if (C->getValue()->isZero()) return C; 4381 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4382 } 4383 4384 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4385 if (!AddRec || AddRec->getLoop() != L) 4386 return getCouldNotCompute(); 4387 4388 if (AddRec->isAffine()) { 4389 // If this is an affine expression, the execution count of this branch is 4390 // the minimum unsigned root of the following equation: 4391 // 4392 // Start + Step*N = 0 (mod 2^BW) 4393 // 4394 // equivalent to: 4395 // 4396 // Step*N = -Start (mod 2^BW) 4397 // 4398 // where BW is the common bit width of Start and Step. 4399 4400 // Get the initial value for the loop. 4401 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4402 L->getParentLoop()); 4403 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4404 L->getParentLoop()); 4405 4406 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4407 // For now we handle only constant steps. 4408 4409 // First, handle unitary steps. 4410 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4411 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4412 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4413 return Start; // N = Start (as unsigned) 4414 4415 // Then, try to solve the above equation provided that Start is constant. 4416 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4417 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4418 -StartC->getValue()->getValue(), 4419 *this); 4420 } 4421 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 4422 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4423 // the quadratic equation to solve it. 4424 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4425 *this); 4426 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4427 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4428 if (R1) { 4429 #if 0 4430 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4431 << " sol#2: " << *R2 << "\n"; 4432 #endif 4433 // Pick the smallest positive root value. 4434 if (ConstantInt *CB = 4435 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4436 R1->getValue(), R2->getValue()))) { 4437 if (CB->getZExtValue() == false) 4438 std::swap(R1, R2); // R1 is the minimum root now. 4439 4440 // We can only use this value if the chrec ends up with an exact zero 4441 // value at this index. When solving for "X*X != 5", for example, we 4442 // should not accept a root of 2. 4443 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4444 if (Val->isZero()) 4445 return R1; // We found a quadratic root! 4446 } 4447 } 4448 } 4449 4450 return getCouldNotCompute(); 4451 } 4452 4453 /// HowFarToNonZero - Return the number of times a backedge checking the 4454 /// specified value for nonzero will execute. If not computable, return 4455 /// CouldNotCompute 4456 const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4457 // Loops that look like: while (X == 0) are very strange indeed. We don't 4458 // handle them yet except for the trivial case. This could be expanded in the 4459 // future as needed. 4460 4461 // If the value is a constant, check to see if it is known to be non-zero 4462 // already. If so, the backedge will execute zero times. 4463 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4464 if (!C->getValue()->isNullValue()) 4465 return getIntegerSCEV(0, C->getType()); 4466 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4467 } 4468 4469 // We could implement others, but I really doubt anyone writes loops like 4470 // this, and if they did, they would already be constant folded. 4471 return getCouldNotCompute(); 4472 } 4473 4474 /// getLoopPredecessor - If the given loop's header has exactly one unique 4475 /// predecessor outside the loop, return it. Otherwise return null. 4476 /// 4477 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 4478 BasicBlock *Header = L->getHeader(); 4479 BasicBlock *Pred = 0; 4480 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 4481 PI != E; ++PI) 4482 if (!L->contains(*PI)) { 4483 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 4484 Pred = *PI; 4485 } 4486 return Pred; 4487 } 4488 4489 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4490 /// (which may not be an immediate predecessor) which has exactly one 4491 /// successor from which BB is reachable, or null if no such block is 4492 /// found. 4493 /// 4494 BasicBlock * 4495 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4496 // If the block has a unique predecessor, then there is no path from the 4497 // predecessor to the block that does not go through the direct edge 4498 // from the predecessor to the block. 4499 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4500 return Pred; 4501 4502 // A loop's header is defined to be a block that dominates the loop. 4503 // If the header has a unique predecessor outside the loop, it must be 4504 // a block that has exactly one successor that can reach the loop. 4505 if (Loop *L = LI->getLoopFor(BB)) 4506 return getLoopPredecessor(L); 4507 4508 return 0; 4509 } 4510 4511 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4512 /// testing whether two expressions are equal, however for the purposes of 4513 /// looking for a condition guarding a loop, it can be useful to be a little 4514 /// more general, since a front-end may have replicated the controlling 4515 /// expression. 4516 /// 4517 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4518 // Quick check to see if they are the same SCEV. 4519 if (A == B) return true; 4520 4521 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4522 // two different instructions with the same value. Check for this case. 4523 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4524 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4525 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4526 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4527 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4528 return true; 4529 4530 // Otherwise assume they may have a different value. 4531 return false; 4532 } 4533 4534 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 4535 return getSignedRange(S).getSignedMax().isNegative(); 4536 } 4537 4538 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 4539 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 4540 } 4541 4542 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 4543 return !getSignedRange(S).getSignedMin().isNegative(); 4544 } 4545 4546 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 4547 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 4548 } 4549 4550 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 4551 return isKnownNegative(S) || isKnownPositive(S); 4552 } 4553 4554 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 4555 const SCEV *LHS, const SCEV *RHS) { 4556 4557 if (HasSameValue(LHS, RHS)) 4558 return ICmpInst::isTrueWhenEqual(Pred); 4559 4560 switch (Pred) { 4561 default: 4562 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4563 break; 4564 case ICmpInst::ICMP_SGT: 4565 Pred = ICmpInst::ICMP_SLT; 4566 std::swap(LHS, RHS); 4567 case ICmpInst::ICMP_SLT: { 4568 ConstantRange LHSRange = getSignedRange(LHS); 4569 ConstantRange RHSRange = getSignedRange(RHS); 4570 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 4571 return true; 4572 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 4573 return false; 4574 break; 4575 } 4576 case ICmpInst::ICMP_SGE: 4577 Pred = ICmpInst::ICMP_SLE; 4578 std::swap(LHS, RHS); 4579 case ICmpInst::ICMP_SLE: { 4580 ConstantRange LHSRange = getSignedRange(LHS); 4581 ConstantRange RHSRange = getSignedRange(RHS); 4582 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 4583 return true; 4584 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 4585 return false; 4586 break; 4587 } 4588 case ICmpInst::ICMP_UGT: 4589 Pred = ICmpInst::ICMP_ULT; 4590 std::swap(LHS, RHS); 4591 case ICmpInst::ICMP_ULT: { 4592 ConstantRange LHSRange = getUnsignedRange(LHS); 4593 ConstantRange RHSRange = getUnsignedRange(RHS); 4594 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 4595 return true; 4596 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 4597 return false; 4598 break; 4599 } 4600 case ICmpInst::ICMP_UGE: 4601 Pred = ICmpInst::ICMP_ULE; 4602 std::swap(LHS, RHS); 4603 case ICmpInst::ICMP_ULE: { 4604 ConstantRange LHSRange = getUnsignedRange(LHS); 4605 ConstantRange RHSRange = getUnsignedRange(RHS); 4606 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 4607 return true; 4608 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 4609 return false; 4610 break; 4611 } 4612 case ICmpInst::ICMP_NE: { 4613 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 4614 return true; 4615 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 4616 return true; 4617 4618 const SCEV *Diff = getMinusSCEV(LHS, RHS); 4619 if (isKnownNonZero(Diff)) 4620 return true; 4621 break; 4622 } 4623 case ICmpInst::ICMP_EQ: 4624 // The check at the top of the function catches the case where 4625 // the values are known to be equal. 4626 break; 4627 } 4628 return false; 4629 } 4630 4631 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 4632 /// protected by a conditional between LHS and RHS. This is used to 4633 /// to eliminate casts. 4634 bool 4635 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 4636 ICmpInst::Predicate Pred, 4637 const SCEV *LHS, const SCEV *RHS) { 4638 // Interpret a null as meaning no loop, where there is obviously no guard 4639 // (interprocedural conditions notwithstanding). 4640 if (!L) return true; 4641 4642 BasicBlock *Latch = L->getLoopLatch(); 4643 if (!Latch) 4644 return false; 4645 4646 BranchInst *LoopContinuePredicate = 4647 dyn_cast<BranchInst>(Latch->getTerminator()); 4648 if (!LoopContinuePredicate || 4649 LoopContinuePredicate->isUnconditional()) 4650 return false; 4651 4652 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 4653 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 4654 } 4655 4656 /// isLoopGuardedByCond - Test whether entry to the loop is protected 4657 /// by a conditional between LHS and RHS. This is used to help avoid max 4658 /// expressions in loop trip counts, and to eliminate casts. 4659 bool 4660 ScalarEvolution::isLoopGuardedByCond(const Loop *L, 4661 ICmpInst::Predicate Pred, 4662 const SCEV *LHS, const SCEV *RHS) { 4663 // Interpret a null as meaning no loop, where there is obviously no guard 4664 // (interprocedural conditions notwithstanding). 4665 if (!L) return false; 4666 4667 BasicBlock *Predecessor = getLoopPredecessor(L); 4668 BasicBlock *PredecessorDest = L->getHeader(); 4669 4670 // Starting at the loop predecessor, climb up the predecessor chain, as long 4671 // as there are predecessors that can be found that have unique successors 4672 // leading to the original header. 4673 for (; Predecessor; 4674 PredecessorDest = Predecessor, 4675 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 4676 4677 BranchInst *LoopEntryPredicate = 4678 dyn_cast<BranchInst>(Predecessor->getTerminator()); 4679 if (!LoopEntryPredicate || 4680 LoopEntryPredicate->isUnconditional()) 4681 continue; 4682 4683 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 4684 LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) 4685 return true; 4686 } 4687 4688 return false; 4689 } 4690 4691 /// isImpliedCond - Test whether the condition described by Pred, LHS, 4692 /// and RHS is true whenever the given Cond value evaluates to true. 4693 bool ScalarEvolution::isImpliedCond(Value *CondValue, 4694 ICmpInst::Predicate Pred, 4695 const SCEV *LHS, const SCEV *RHS, 4696 bool Inverse) { 4697 // Recursivly handle And and Or conditions. 4698 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 4699 if (BO->getOpcode() == Instruction::And) { 4700 if (!Inverse) 4701 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4702 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4703 } else if (BO->getOpcode() == Instruction::Or) { 4704 if (Inverse) 4705 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4706 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4707 } 4708 } 4709 4710 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 4711 if (!ICI) return false; 4712 4713 // Bail if the ICmp's operands' types are wider than the needed type 4714 // before attempting to call getSCEV on them. This avoids infinite 4715 // recursion, since the analysis of widening casts can require loop 4716 // exit condition information for overflow checking, which would 4717 // lead back here. 4718 if (getTypeSizeInBits(LHS->getType()) < 4719 getTypeSizeInBits(ICI->getOperand(0)->getType())) 4720 return false; 4721 4722 // Now that we found a conditional branch that dominates the loop, check to 4723 // see if it is the comparison we are looking for. 4724 ICmpInst::Predicate FoundPred; 4725 if (Inverse) 4726 FoundPred = ICI->getInversePredicate(); 4727 else 4728 FoundPred = ICI->getPredicate(); 4729 4730 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 4731 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 4732 4733 // Balance the types. The case where FoundLHS' type is wider than 4734 // LHS' type is checked for above. 4735 if (getTypeSizeInBits(LHS->getType()) > 4736 getTypeSizeInBits(FoundLHS->getType())) { 4737 if (CmpInst::isSigned(Pred)) { 4738 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 4739 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 4740 } else { 4741 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 4742 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 4743 } 4744 } 4745 4746 // Canonicalize the query to match the way instcombine will have 4747 // canonicalized the comparison. 4748 // First, put a constant operand on the right. 4749 if (isa<SCEVConstant>(LHS)) { 4750 std::swap(LHS, RHS); 4751 Pred = ICmpInst::getSwappedPredicate(Pred); 4752 } 4753 // Then, canonicalize comparisons with boundary cases. 4754 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4755 const APInt &RA = RC->getValue()->getValue(); 4756 switch (Pred) { 4757 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4758 case ICmpInst::ICMP_EQ: 4759 case ICmpInst::ICMP_NE: 4760 break; 4761 case ICmpInst::ICMP_UGE: 4762 if ((RA - 1).isMinValue()) { 4763 Pred = ICmpInst::ICMP_NE; 4764 RHS = getConstant(RA - 1); 4765 break; 4766 } 4767 if (RA.isMaxValue()) { 4768 Pred = ICmpInst::ICMP_EQ; 4769 break; 4770 } 4771 if (RA.isMinValue()) return true; 4772 break; 4773 case ICmpInst::ICMP_ULE: 4774 if ((RA + 1).isMaxValue()) { 4775 Pred = ICmpInst::ICMP_NE; 4776 RHS = getConstant(RA + 1); 4777 break; 4778 } 4779 if (RA.isMinValue()) { 4780 Pred = ICmpInst::ICMP_EQ; 4781 break; 4782 } 4783 if (RA.isMaxValue()) return true; 4784 break; 4785 case ICmpInst::ICMP_SGE: 4786 if ((RA - 1).isMinSignedValue()) { 4787 Pred = ICmpInst::ICMP_NE; 4788 RHS = getConstant(RA - 1); 4789 break; 4790 } 4791 if (RA.isMaxSignedValue()) { 4792 Pred = ICmpInst::ICMP_EQ; 4793 break; 4794 } 4795 if (RA.isMinSignedValue()) return true; 4796 break; 4797 case ICmpInst::ICMP_SLE: 4798 if ((RA + 1).isMaxSignedValue()) { 4799 Pred = ICmpInst::ICMP_NE; 4800 RHS = getConstant(RA + 1); 4801 break; 4802 } 4803 if (RA.isMinSignedValue()) { 4804 Pred = ICmpInst::ICMP_EQ; 4805 break; 4806 } 4807 if (RA.isMaxSignedValue()) return true; 4808 break; 4809 case ICmpInst::ICMP_UGT: 4810 if (RA.isMinValue()) { 4811 Pred = ICmpInst::ICMP_NE; 4812 break; 4813 } 4814 if ((RA + 1).isMaxValue()) { 4815 Pred = ICmpInst::ICMP_EQ; 4816 RHS = getConstant(RA + 1); 4817 break; 4818 } 4819 if (RA.isMaxValue()) return false; 4820 break; 4821 case ICmpInst::ICMP_ULT: 4822 if (RA.isMaxValue()) { 4823 Pred = ICmpInst::ICMP_NE; 4824 break; 4825 } 4826 if ((RA - 1).isMinValue()) { 4827 Pred = ICmpInst::ICMP_EQ; 4828 RHS = getConstant(RA - 1); 4829 break; 4830 } 4831 if (RA.isMinValue()) return false; 4832 break; 4833 case ICmpInst::ICMP_SGT: 4834 if (RA.isMinSignedValue()) { 4835 Pred = ICmpInst::ICMP_NE; 4836 break; 4837 } 4838 if ((RA + 1).isMaxSignedValue()) { 4839 Pred = ICmpInst::ICMP_EQ; 4840 RHS = getConstant(RA + 1); 4841 break; 4842 } 4843 if (RA.isMaxSignedValue()) return false; 4844 break; 4845 case ICmpInst::ICMP_SLT: 4846 if (RA.isMaxSignedValue()) { 4847 Pred = ICmpInst::ICMP_NE; 4848 break; 4849 } 4850 if ((RA - 1).isMinSignedValue()) { 4851 Pred = ICmpInst::ICMP_EQ; 4852 RHS = getConstant(RA - 1); 4853 break; 4854 } 4855 if (RA.isMinSignedValue()) return false; 4856 break; 4857 } 4858 } 4859 4860 // Check to see if we can make the LHS or RHS match. 4861 if (LHS == FoundRHS || RHS == FoundLHS) { 4862 if (isa<SCEVConstant>(RHS)) { 4863 std::swap(FoundLHS, FoundRHS); 4864 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 4865 } else { 4866 std::swap(LHS, RHS); 4867 Pred = ICmpInst::getSwappedPredicate(Pred); 4868 } 4869 } 4870 4871 // Check whether the found predicate is the same as the desired predicate. 4872 if (FoundPred == Pred) 4873 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 4874 4875 // Check whether swapping the found predicate makes it the same as the 4876 // desired predicate. 4877 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 4878 if (isa<SCEVConstant>(RHS)) 4879 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 4880 else 4881 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 4882 RHS, LHS, FoundLHS, FoundRHS); 4883 } 4884 4885 // Check whether the actual condition is beyond sufficient. 4886 if (FoundPred == ICmpInst::ICMP_EQ) 4887 if (ICmpInst::isTrueWhenEqual(Pred)) 4888 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 4889 return true; 4890 if (Pred == ICmpInst::ICMP_NE) 4891 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 4892 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 4893 return true; 4894 4895 // Otherwise assume the worst. 4896 return false; 4897 } 4898 4899 /// isImpliedCondOperands - Test whether the condition described by Pred, 4900 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS, 4901 /// and FoundRHS is true. 4902 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 4903 const SCEV *LHS, const SCEV *RHS, 4904 const SCEV *FoundLHS, 4905 const SCEV *FoundRHS) { 4906 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 4907 FoundLHS, FoundRHS) || 4908 // ~x < ~y --> x > y 4909 isImpliedCondOperandsHelper(Pred, LHS, RHS, 4910 getNotSCEV(FoundRHS), 4911 getNotSCEV(FoundLHS)); 4912 } 4913 4914 /// isImpliedCondOperandsHelper - Test whether the condition described by 4915 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred, 4916 /// FoundLHS, and FoundRHS is true. 4917 bool 4918 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 4919 const SCEV *LHS, const SCEV *RHS, 4920 const SCEV *FoundLHS, 4921 const SCEV *FoundRHS) { 4922 switch (Pred) { 4923 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4924 case ICmpInst::ICMP_EQ: 4925 case ICmpInst::ICMP_NE: 4926 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 4927 return true; 4928 break; 4929 case ICmpInst::ICMP_SLT: 4930 case ICmpInst::ICMP_SLE: 4931 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 4932 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 4933 return true; 4934 break; 4935 case ICmpInst::ICMP_SGT: 4936 case ICmpInst::ICMP_SGE: 4937 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 4938 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 4939 return true; 4940 break; 4941 case ICmpInst::ICMP_ULT: 4942 case ICmpInst::ICMP_ULE: 4943 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 4944 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 4945 return true; 4946 break; 4947 case ICmpInst::ICMP_UGT: 4948 case ICmpInst::ICMP_UGE: 4949 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 4950 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 4951 return true; 4952 break; 4953 } 4954 4955 return false; 4956 } 4957 4958 /// getBECount - Subtract the end and start values and divide by the step, 4959 /// rounding up, to get the number of times the backedge is executed. Return 4960 /// CouldNotCompute if an intermediate computation overflows. 4961 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 4962 const SCEV *End, 4963 const SCEV *Step, 4964 bool NoWrap) { 4965 assert(!isKnownNegative(Step) && 4966 "This code doesn't handle negative strides yet!"); 4967 4968 const Type *Ty = Start->getType(); 4969 const SCEV *NegOne = getIntegerSCEV(-1, Ty); 4970 const SCEV *Diff = getMinusSCEV(End, Start); 4971 const SCEV *RoundUp = getAddExpr(Step, NegOne); 4972 4973 // Add an adjustment to the difference between End and Start so that 4974 // the division will effectively round up. 4975 const SCEV *Add = getAddExpr(Diff, RoundUp); 4976 4977 if (!NoWrap) { 4978 // Check Add for unsigned overflow. 4979 // TODO: More sophisticated things could be done here. 4980 const Type *WideTy = IntegerType::get(getContext(), 4981 getTypeSizeInBits(Ty) + 1); 4982 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 4983 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 4984 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 4985 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 4986 return getCouldNotCompute(); 4987 } 4988 4989 return getUDivExpr(Add, Step); 4990 } 4991 4992 /// HowManyLessThans - Return the number of times a backedge containing the 4993 /// specified less-than comparison will execute. If not computable, return 4994 /// CouldNotCompute. 4995 ScalarEvolution::BackedgeTakenInfo 4996 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 4997 const Loop *L, bool isSigned) { 4998 // Only handle: "ADDREC < LoopInvariant". 4999 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5000 5001 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5002 if (!AddRec || AddRec->getLoop() != L) 5003 return getCouldNotCompute(); 5004 5005 // Check to see if we have a flag which makes analysis easy. 5006 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5007 AddRec->hasNoUnsignedWrap(); 5008 5009 if (AddRec->isAffine()) { 5010 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5011 const SCEV *Step = AddRec->getStepRecurrence(*this); 5012 5013 if (Step->isZero()) 5014 return getCouldNotCompute(); 5015 if (Step->isOne()) { 5016 // With unit stride, the iteration never steps past the limit value. 5017 } else if (isKnownPositive(Step)) { 5018 // Test whether a positive iteration iteration can step past the limit 5019 // value and past the maximum value for its type in a single step. 5020 // Note that it's not sufficient to check NoWrap here, because even 5021 // though the value after a wrap is undefined, it's not undefined 5022 // behavior, so if wrap does occur, the loop could either terminate or 5023 // loop infinitely, but in either case, the loop is guaranteed to 5024 // iterate at least until the iteration where the wrapping occurs. 5025 const SCEV *One = getIntegerSCEV(1, Step->getType()); 5026 if (isSigned) { 5027 APInt Max = APInt::getSignedMaxValue(BitWidth); 5028 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5029 .slt(getSignedRange(RHS).getSignedMax())) 5030 return getCouldNotCompute(); 5031 } else { 5032 APInt Max = APInt::getMaxValue(BitWidth); 5033 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5034 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5035 return getCouldNotCompute(); 5036 } 5037 } else 5038 // TODO: Handle negative strides here and below. 5039 return getCouldNotCompute(); 5040 5041 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5042 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5043 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5044 // treat m-n as signed nor unsigned due to overflow possibility. 5045 5046 // First, we get the value of the LHS in the first iteration: n 5047 const SCEV *Start = AddRec->getOperand(0); 5048 5049 // Determine the minimum constant start value. 5050 const SCEV *MinStart = getConstant(isSigned ? 5051 getSignedRange(Start).getSignedMin() : 5052 getUnsignedRange(Start).getUnsignedMin()); 5053 5054 // If we know that the condition is true in order to enter the loop, 5055 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5056 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5057 // the division must round up. 5058 const SCEV *End = RHS; 5059 if (!isLoopGuardedByCond(L, 5060 isSigned ? ICmpInst::ICMP_SLT : 5061 ICmpInst::ICMP_ULT, 5062 getMinusSCEV(Start, Step), RHS)) 5063 End = isSigned ? getSMaxExpr(RHS, Start) 5064 : getUMaxExpr(RHS, Start); 5065 5066 // Determine the maximum constant end value. 5067 const SCEV *MaxEnd = getConstant(isSigned ? 5068 getSignedRange(End).getSignedMax() : 5069 getUnsignedRange(End).getUnsignedMax()); 5070 5071 // If MaxEnd is within a step of the maximum integer value in its type, 5072 // adjust it down to the minimum value which would produce the same effect. 5073 // This allows the subsequent ceiling divison of (N+(step-1))/step to 5074 // compute the correct value. 5075 const SCEV *StepMinusOne = getMinusSCEV(Step, 5076 getIntegerSCEV(1, Step->getType())); 5077 MaxEnd = isSigned ? 5078 getSMinExpr(MaxEnd, 5079 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5080 StepMinusOne)) : 5081 getUMinExpr(MaxEnd, 5082 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5083 StepMinusOne)); 5084 5085 // Finally, we subtract these two values and divide, rounding up, to get 5086 // the number of times the backedge is executed. 5087 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5088 5089 // The maximum backedge count is similar, except using the minimum start 5090 // value and the maximum end value. 5091 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5092 5093 return BackedgeTakenInfo(BECount, MaxBECount); 5094 } 5095 5096 return getCouldNotCompute(); 5097 } 5098 5099 /// getNumIterationsInRange - Return the number of iterations of this loop that 5100 /// produce values in the specified constant range. Another way of looking at 5101 /// this is that it returns the first iteration number where the value is not in 5102 /// the condition, thus computing the exit count. If the iteration count can't 5103 /// be computed, an instance of SCEVCouldNotCompute is returned. 5104 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5105 ScalarEvolution &SE) const { 5106 if (Range.isFullSet()) // Infinite loop. 5107 return SE.getCouldNotCompute(); 5108 5109 // If the start is a non-zero constant, shift the range to simplify things. 5110 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5111 if (!SC->getValue()->isZero()) { 5112 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5113 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 5114 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5115 if (const SCEVAddRecExpr *ShiftedAddRec = 5116 dyn_cast<SCEVAddRecExpr>(Shifted)) 5117 return ShiftedAddRec->getNumIterationsInRange( 5118 Range.subtract(SC->getValue()->getValue()), SE); 5119 // This is strange and shouldn't happen. 5120 return SE.getCouldNotCompute(); 5121 } 5122 5123 // The only time we can solve this is when we have all constant indices. 5124 // Otherwise, we cannot determine the overflow conditions. 5125 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5126 if (!isa<SCEVConstant>(getOperand(i))) 5127 return SE.getCouldNotCompute(); 5128 5129 5130 // Okay at this point we know that all elements of the chrec are constants and 5131 // that the start element is zero. 5132 5133 // First check to see if the range contains zero. If not, the first 5134 // iteration exits. 5135 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5136 if (!Range.contains(APInt(BitWidth, 0))) 5137 return SE.getIntegerSCEV(0, getType()); 5138 5139 if (isAffine()) { 5140 // If this is an affine expression then we have this situation: 5141 // Solve {0,+,A} in Range === Ax in Range 5142 5143 // We know that zero is in the range. If A is positive then we know that 5144 // the upper value of the range must be the first possible exit value. 5145 // If A is negative then the lower of the range is the last possible loop 5146 // value. Also note that we already checked for a full range. 5147 APInt One(BitWidth,1); 5148 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5149 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5150 5151 // The exit value should be (End+A)/A. 5152 APInt ExitVal = (End + A).udiv(A); 5153 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5154 5155 // Evaluate at the exit value. If we really did fall out of the valid 5156 // range, then we computed our trip count, otherwise wrap around or other 5157 // things must have happened. 5158 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5159 if (Range.contains(Val->getValue())) 5160 return SE.getCouldNotCompute(); // Something strange happened 5161 5162 // Ensure that the previous value is in the range. This is a sanity check. 5163 assert(Range.contains( 5164 EvaluateConstantChrecAtConstant(this, 5165 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5166 "Linear scev computation is off in a bad way!"); 5167 return SE.getConstant(ExitValue); 5168 } else if (isQuadratic()) { 5169 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5170 // quadratic equation to solve it. To do this, we must frame our problem in 5171 // terms of figuring out when zero is crossed, instead of when 5172 // Range.getUpper() is crossed. 5173 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5174 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5175 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5176 5177 // Next, solve the constructed addrec 5178 std::pair<const SCEV *,const SCEV *> Roots = 5179 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5180 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5181 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5182 if (R1) { 5183 // Pick the smallest positive root value. 5184 if (ConstantInt *CB = 5185 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5186 R1->getValue(), R2->getValue()))) { 5187 if (CB->getZExtValue() == false) 5188 std::swap(R1, R2); // R1 is the minimum root now. 5189 5190 // Make sure the root is not off by one. The returned iteration should 5191 // not be in the range, but the previous one should be. When solving 5192 // for "X*X < 5", for example, we should not return a root of 2. 5193 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5194 R1->getValue(), 5195 SE); 5196 if (Range.contains(R1Val->getValue())) { 5197 // The next iteration must be out of the range... 5198 ConstantInt *NextVal = 5199 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5200 5201 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5202 if (!Range.contains(R1Val->getValue())) 5203 return SE.getConstant(NextVal); 5204 return SE.getCouldNotCompute(); // Something strange happened 5205 } 5206 5207 // If R1 was not in the range, then it is a good return value. Make 5208 // sure that R1-1 WAS in the range though, just in case. 5209 ConstantInt *NextVal = 5210 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5211 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5212 if (Range.contains(R1Val->getValue())) 5213 return R1; 5214 return SE.getCouldNotCompute(); // Something strange happened 5215 } 5216 } 5217 } 5218 5219 return SE.getCouldNotCompute(); 5220 } 5221 5222 5223 5224 //===----------------------------------------------------------------------===// 5225 // SCEVCallbackVH Class Implementation 5226 //===----------------------------------------------------------------------===// 5227 5228 void ScalarEvolution::SCEVCallbackVH::deleted() { 5229 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5230 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5231 SE->ConstantEvolutionLoopExitValue.erase(PN); 5232 SE->Scalars.erase(getValPtr()); 5233 // this now dangles! 5234 } 5235 5236 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5237 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5238 5239 // Forget all the expressions associated with users of the old value, 5240 // so that future queries will recompute the expressions using the new 5241 // value. 5242 SmallVector<User *, 16> Worklist; 5243 SmallPtrSet<User *, 8> Visited; 5244 Value *Old = getValPtr(); 5245 bool DeleteOld = false; 5246 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5247 UI != UE; ++UI) 5248 Worklist.push_back(*UI); 5249 while (!Worklist.empty()) { 5250 User *U = Worklist.pop_back_val(); 5251 // Deleting the Old value will cause this to dangle. Postpone 5252 // that until everything else is done. 5253 if (U == Old) { 5254 DeleteOld = true; 5255 continue; 5256 } 5257 if (!Visited.insert(U)) 5258 continue; 5259 if (PHINode *PN = dyn_cast<PHINode>(U)) 5260 SE->ConstantEvolutionLoopExitValue.erase(PN); 5261 SE->Scalars.erase(U); 5262 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5263 UI != UE; ++UI) 5264 Worklist.push_back(*UI); 5265 } 5266 // Delete the Old value if it (indirectly) references itself. 5267 if (DeleteOld) { 5268 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5269 SE->ConstantEvolutionLoopExitValue.erase(PN); 5270 SE->Scalars.erase(Old); 5271 // this now dangles! 5272 } 5273 // this may dangle! 5274 } 5275 5276 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5277 : CallbackVH(V), SE(se) {} 5278 5279 //===----------------------------------------------------------------------===// 5280 // ScalarEvolution Class Implementation 5281 //===----------------------------------------------------------------------===// 5282 5283 ScalarEvolution::ScalarEvolution() 5284 : FunctionPass(&ID) { 5285 } 5286 5287 bool ScalarEvolution::runOnFunction(Function &F) { 5288 this->F = &F; 5289 LI = &getAnalysis<LoopInfo>(); 5290 DT = &getAnalysis<DominatorTree>(); 5291 TD = getAnalysisIfAvailable<TargetData>(); 5292 return false; 5293 } 5294 5295 void ScalarEvolution::releaseMemory() { 5296 Scalars.clear(); 5297 BackedgeTakenCounts.clear(); 5298 ConstantEvolutionLoopExitValue.clear(); 5299 ValuesAtScopes.clear(); 5300 UniqueSCEVs.clear(); 5301 SCEVAllocator.Reset(); 5302 } 5303 5304 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5305 AU.setPreservesAll(); 5306 AU.addRequiredTransitive<LoopInfo>(); 5307 AU.addRequiredTransitive<DominatorTree>(); 5308 } 5309 5310 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5311 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5312 } 5313 5314 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5315 const Loop *L) { 5316 // Print all inner loops first 5317 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5318 PrintLoopInfo(OS, SE, *I); 5319 5320 OS << "Loop "; 5321 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5322 OS << ": "; 5323 5324 SmallVector<BasicBlock *, 8> ExitBlocks; 5325 L->getExitBlocks(ExitBlocks); 5326 if (ExitBlocks.size() != 1) 5327 OS << "<multiple exits> "; 5328 5329 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5330 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5331 } else { 5332 OS << "Unpredictable backedge-taken count. "; 5333 } 5334 5335 OS << "\n" 5336 "Loop "; 5337 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5338 OS << ": "; 5339 5340 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5341 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5342 } else { 5343 OS << "Unpredictable max backedge-taken count. "; 5344 } 5345 5346 OS << "\n"; 5347 } 5348 5349 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5350 // ScalarEvolution's implementaiton of the print method is to print 5351 // out SCEV values of all instructions that are interesting. Doing 5352 // this potentially causes it to create new SCEV objects though, 5353 // which technically conflicts with the const qualifier. This isn't 5354 // observable from outside the class though, so casting away the 5355 // const isn't dangerous. 5356 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5357 5358 OS << "Classifying expressions for: "; 5359 WriteAsOperand(OS, F, /*PrintType=*/false); 5360 OS << "\n"; 5361 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5362 if (isSCEVable(I->getType())) { 5363 OS << *I << '\n'; 5364 OS << " --> "; 5365 const SCEV *SV = SE.getSCEV(&*I); 5366 SV->print(OS); 5367 5368 const Loop *L = LI->getLoopFor((*I).getParent()); 5369 5370 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5371 if (AtUse != SV) { 5372 OS << " --> "; 5373 AtUse->print(OS); 5374 } 5375 5376 if (L) { 5377 OS << "\t\t" "Exits: "; 5378 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5379 if (!ExitValue->isLoopInvariant(L)) { 5380 OS << "<<Unknown>>"; 5381 } else { 5382 OS << *ExitValue; 5383 } 5384 } 5385 5386 OS << "\n"; 5387 } 5388 5389 OS << "Determining loop execution counts for: "; 5390 WriteAsOperand(OS, F, /*PrintType=*/false); 5391 OS << "\n"; 5392 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5393 PrintLoopInfo(OS, &SE, *I); 5394 } 5395 5396