1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/ConstantFolding.h" 67 #include "llvm/Analysis/InstructionSimplify.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 70 #include "llvm/Analysis/ValueTracking.h" 71 #include "llvm/IR/ConstantRange.h" 72 #include "llvm/IR/Constants.h" 73 #include "llvm/IR/DataLayout.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/GetElementPtrTypeIterator.h" 77 #include "llvm/IR/GlobalAlias.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/InstIterator.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetLibraryInfo.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 // FIXME: Enable this with XDEBUG when the test suite is clean. 109 static cl::opt<bool> 110 VerifySCEV("verify-scev", 111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 112 113 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 118 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 119 "Scalar Evolution Analysis", false, true) 120 char ScalarEvolution::ID = 0; 121 122 //===----------------------------------------------------------------------===// 123 // SCEV class definitions 124 //===----------------------------------------------------------------------===// 125 126 //===----------------------------------------------------------------------===// 127 // Implementation of the SCEV class. 128 // 129 130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 131 void SCEV::dump() const { 132 print(dbgs()); 133 dbgs() << '\n'; 134 } 135 #endif 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->getNoWrapFlags(FlagNUW)) 170 OS << "nuw><"; 171 if (AR->getNoWrapFlags(FlagNSW)) 172 OS << "nsw><"; 173 if (AR->getNoWrapFlags(FlagNW) && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = 0; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->getNoWrapFlags(FlagNUW)) 204 OS << "<nuw>"; 205 if (NAry->getNoWrapFlags(FlagNSW)) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getValue()->getValue().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = 0; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(0); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getValue()->getValue(); 541 const APInt &RA = RC->getValue()->getValue(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 674 675 //===----------------------------------------------------------------------===// 676 // Simple SCEV method implementations 677 //===----------------------------------------------------------------------===// 678 679 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 680 /// Assume, K > 0. 681 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 682 ScalarEvolution &SE, 683 Type *ResultTy) { 684 // Handle the simplest case efficiently. 685 if (K == 1) 686 return SE.getTruncateOrZeroExtend(It, ResultTy); 687 688 // We are using the following formula for BC(It, K): 689 // 690 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 691 // 692 // Suppose, W is the bitwidth of the return value. We must be prepared for 693 // overflow. Hence, we must assure that the result of our computation is 694 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 695 // safe in modular arithmetic. 696 // 697 // However, this code doesn't use exactly that formula; the formula it uses 698 // is something like the following, where T is the number of factors of 2 in 699 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 700 // exponentiation: 701 // 702 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 703 // 704 // This formula is trivially equivalent to the previous formula. However, 705 // this formula can be implemented much more efficiently. The trick is that 706 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 707 // arithmetic. To do exact division in modular arithmetic, all we have 708 // to do is multiply by the inverse. Therefore, this step can be done at 709 // width W. 710 // 711 // The next issue is how to safely do the division by 2^T. The way this 712 // is done is by doing the multiplication step at a width of at least W + T 713 // bits. This way, the bottom W+T bits of the product are accurate. Then, 714 // when we perform the division by 2^T (which is equivalent to a right shift 715 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 716 // truncated out after the division by 2^T. 717 // 718 // In comparison to just directly using the first formula, this technique 719 // is much more efficient; using the first formula requires W * K bits, 720 // but this formula less than W + K bits. Also, the first formula requires 721 // a division step, whereas this formula only requires multiplies and shifts. 722 // 723 // It doesn't matter whether the subtraction step is done in the calculation 724 // width or the input iteration count's width; if the subtraction overflows, 725 // the result must be zero anyway. We prefer here to do it in the width of 726 // the induction variable because it helps a lot for certain cases; CodeGen 727 // isn't smart enough to ignore the overflow, which leads to much less 728 // efficient code if the width of the subtraction is wider than the native 729 // register width. 730 // 731 // (It's possible to not widen at all by pulling out factors of 2 before 732 // the multiplication; for example, K=2 can be calculated as 733 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 734 // extra arithmetic, so it's not an obvious win, and it gets 735 // much more complicated for K > 3.) 736 737 // Protection from insane SCEVs; this bound is conservative, 738 // but it probably doesn't matter. 739 if (K > 1000) 740 return SE.getCouldNotCompute(); 741 742 unsigned W = SE.getTypeSizeInBits(ResultTy); 743 744 // Calculate K! / 2^T and T; we divide out the factors of two before 745 // multiplying for calculating K! / 2^T to avoid overflow. 746 // Other overflow doesn't matter because we only care about the bottom 747 // W bits of the result. 748 APInt OddFactorial(W, 1); 749 unsigned T = 1; 750 for (unsigned i = 3; i <= K; ++i) { 751 APInt Mult(W, i); 752 unsigned TwoFactors = Mult.countTrailingZeros(); 753 T += TwoFactors; 754 Mult = Mult.lshr(TwoFactors); 755 OddFactorial *= Mult; 756 } 757 758 // We need at least W + T bits for the multiplication step 759 unsigned CalculationBits = W + T; 760 761 // Calculate 2^T, at width T+W. 762 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 763 764 // Calculate the multiplicative inverse of K! / 2^T; 765 // this multiplication factor will perform the exact division by 766 // K! / 2^T. 767 APInt Mod = APInt::getSignedMinValue(W+1); 768 APInt MultiplyFactor = OddFactorial.zext(W+1); 769 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 770 MultiplyFactor = MultiplyFactor.trunc(W); 771 772 // Calculate the product, at width T+W 773 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 774 CalculationBits); 775 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 776 for (unsigned i = 1; i != K; ++i) { 777 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 778 Dividend = SE.getMulExpr(Dividend, 779 SE.getTruncateOrZeroExtend(S, CalculationTy)); 780 } 781 782 // Divide by 2^T 783 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 784 785 // Truncate the result, and divide by K! / 2^T. 786 787 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 788 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 789 } 790 791 /// evaluateAtIteration - Return the value of this chain of recurrences at 792 /// the specified iteration number. We can evaluate this recurrence by 793 /// multiplying each element in the chain by the binomial coefficient 794 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 795 /// 796 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 797 /// 798 /// where BC(It, k) stands for binomial coefficient. 799 /// 800 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 801 ScalarEvolution &SE) const { 802 const SCEV *Result = getStart(); 803 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 804 // The computation is correct in the face of overflow provided that the 805 // multiplication is performed _after_ the evaluation of the binomial 806 // coefficient. 807 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 808 if (isa<SCEVCouldNotCompute>(Coeff)) 809 return Coeff; 810 811 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 812 } 813 return Result; 814 } 815 816 //===----------------------------------------------------------------------===// 817 // SCEV Expression folder implementations 818 //===----------------------------------------------------------------------===// 819 820 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 821 Type *Ty) { 822 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 823 "This is not a truncating conversion!"); 824 assert(isSCEVable(Ty) && 825 "This is not a conversion to a SCEVable type!"); 826 Ty = getEffectiveSCEVType(Ty); 827 828 FoldingSetNodeID ID; 829 ID.AddInteger(scTruncate); 830 ID.AddPointer(Op); 831 ID.AddPointer(Ty); 832 void *IP = 0; 833 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 834 835 // Fold if the operand is constant. 836 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 837 return getConstant( 838 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 839 840 // trunc(trunc(x)) --> trunc(x) 841 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 842 return getTruncateExpr(ST->getOperand(), Ty); 843 844 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 846 return getTruncateOrSignExtend(SS->getOperand(), Ty); 847 848 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 850 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 851 852 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 853 // eliminate all the truncates. 854 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 855 SmallVector<const SCEV *, 4> Operands; 856 bool hasTrunc = false; 857 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 858 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 859 hasTrunc = isa<SCEVTruncateExpr>(S); 860 Operands.push_back(S); 861 } 862 if (!hasTrunc) 863 return getAddExpr(Operands); 864 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 865 } 866 867 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 868 // eliminate all the truncates. 869 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 870 SmallVector<const SCEV *, 4> Operands; 871 bool hasTrunc = false; 872 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 873 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 874 hasTrunc = isa<SCEVTruncateExpr>(S); 875 Operands.push_back(S); 876 } 877 if (!hasTrunc) 878 return getMulExpr(Operands); 879 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 880 } 881 882 // If the input value is a chrec scev, truncate the chrec's operands. 883 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 884 SmallVector<const SCEV *, 4> Operands; 885 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 886 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 887 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 888 } 889 890 // The cast wasn't folded; create an explicit cast node. We can reuse 891 // the existing insert position since if we get here, we won't have 892 // made any changes which would invalidate it. 893 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 894 Op, Ty); 895 UniqueSCEVs.InsertNode(S, IP); 896 return S; 897 } 898 899 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 900 Type *Ty) { 901 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 902 "This is not an extending conversion!"); 903 assert(isSCEVable(Ty) && 904 "This is not a conversion to a SCEVable type!"); 905 Ty = getEffectiveSCEVType(Ty); 906 907 // Fold if the operand is constant. 908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 909 return getConstant( 910 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 911 912 // zext(zext(x)) --> zext(x) 913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 914 return getZeroExtendExpr(SZ->getOperand(), Ty); 915 916 // Before doing any expensive analysis, check to see if we've already 917 // computed a SCEV for this Op and Ty. 918 FoldingSetNodeID ID; 919 ID.AddInteger(scZeroExtend); 920 ID.AddPointer(Op); 921 ID.AddPointer(Ty); 922 void *IP = 0; 923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 924 925 // zext(trunc(x)) --> zext(x) or x or trunc(x) 926 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 927 // It's possible the bits taken off by the truncate were all zero bits. If 928 // so, we should be able to simplify this further. 929 const SCEV *X = ST->getOperand(); 930 ConstantRange CR = getUnsignedRange(X); 931 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 932 unsigned NewBits = getTypeSizeInBits(Ty); 933 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 934 CR.zextOrTrunc(NewBits))) 935 return getTruncateOrZeroExtend(X, Ty); 936 } 937 938 // If the input value is a chrec scev, and we can prove that the value 939 // did not overflow the old, smaller, value, we can zero extend all of the 940 // operands (often constants). This allows analysis of something like 941 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 942 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 943 if (AR->isAffine()) { 944 const SCEV *Start = AR->getStart(); 945 const SCEV *Step = AR->getStepRecurrence(*this); 946 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 947 const Loop *L = AR->getLoop(); 948 949 // If we have special knowledge that this addrec won't overflow, 950 // we don't need to do any further analysis. 951 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 952 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 953 getZeroExtendExpr(Step, Ty), 954 L, AR->getNoWrapFlags()); 955 956 // Check whether the backedge-taken count is SCEVCouldNotCompute. 957 // Note that this serves two purposes: It filters out loops that are 958 // simply not analyzable, and it covers the case where this code is 959 // being called from within backedge-taken count analysis, such that 960 // attempting to ask for the backedge-taken count would likely result 961 // in infinite recursion. In the later case, the analysis code will 962 // cope with a conservative value, and it will take care to purge 963 // that value once it has finished. 964 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 965 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 966 // Manually compute the final value for AR, checking for 967 // overflow. 968 969 // Check whether the backedge-taken count can be losslessly casted to 970 // the addrec's type. The count is always unsigned. 971 const SCEV *CastedMaxBECount = 972 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 973 const SCEV *RecastedMaxBECount = 974 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 975 if (MaxBECount == RecastedMaxBECount) { 976 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 977 // Check whether Start+Step*MaxBECount has no unsigned overflow. 978 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 979 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 980 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 981 const SCEV *WideMaxBECount = 982 getZeroExtendExpr(CastedMaxBECount, WideTy); 983 const SCEV *OperandExtendedAdd = 984 getAddExpr(WideStart, 985 getMulExpr(WideMaxBECount, 986 getZeroExtendExpr(Step, WideTy))); 987 if (ZAdd == OperandExtendedAdd) { 988 // Cache knowledge of AR NUW, which is propagated to this AddRec. 989 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 990 // Return the expression with the addrec on the outside. 991 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 992 getZeroExtendExpr(Step, Ty), 993 L, AR->getNoWrapFlags()); 994 } 995 // Similar to above, only this time treat the step value as signed. 996 // This covers loops that count down. 997 OperandExtendedAdd = 998 getAddExpr(WideStart, 999 getMulExpr(WideMaxBECount, 1000 getSignExtendExpr(Step, WideTy))); 1001 if (ZAdd == OperandExtendedAdd) { 1002 // Cache knowledge of AR NW, which is propagated to this AddRec. 1003 // Negative step causes unsigned wrap, but it still can't self-wrap. 1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getSignExtendExpr(Step, Ty), 1008 L, AR->getNoWrapFlags()); 1009 } 1010 } 1011 1012 // If the backedge is guarded by a comparison with the pre-inc value 1013 // the addrec is safe. Also, if the entry is guarded by a comparison 1014 // with the start value and the backedge is guarded by a comparison 1015 // with the post-inc value, the addrec is safe. 1016 if (isKnownPositive(Step)) { 1017 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1018 getUnsignedRange(Step).getUnsignedMax()); 1019 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1020 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1021 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1022 AR->getPostIncExpr(*this), N))) { 1023 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1024 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1025 // Return the expression with the addrec on the outside. 1026 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1027 getZeroExtendExpr(Step, Ty), 1028 L, AR->getNoWrapFlags()); 1029 } 1030 } else if (isKnownNegative(Step)) { 1031 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1032 getSignedRange(Step).getSignedMin()); 1033 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1034 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1035 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1036 AR->getPostIncExpr(*this), N))) { 1037 // Cache knowledge of AR NW, which is propagated to this AddRec. 1038 // Negative step causes unsigned wrap, but it still can't self-wrap. 1039 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1040 // Return the expression with the addrec on the outside. 1041 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1042 getSignExtendExpr(Step, Ty), 1043 L, AR->getNoWrapFlags()); 1044 } 1045 } 1046 } 1047 } 1048 1049 // The cast wasn't folded; create an explicit cast node. 1050 // Recompute the insert position, as it may have been invalidated. 1051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1052 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1053 Op, Ty); 1054 UniqueSCEVs.InsertNode(S, IP); 1055 return S; 1056 } 1057 1058 // Get the limit of a recurrence such that incrementing by Step cannot cause 1059 // signed overflow as long as the value of the recurrence within the loop does 1060 // not exceed this limit before incrementing. 1061 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1062 ICmpInst::Predicate *Pred, 1063 ScalarEvolution *SE) { 1064 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1065 if (SE->isKnownPositive(Step)) { 1066 *Pred = ICmpInst::ICMP_SLT; 1067 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1068 SE->getSignedRange(Step).getSignedMax()); 1069 } 1070 if (SE->isKnownNegative(Step)) { 1071 *Pred = ICmpInst::ICMP_SGT; 1072 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1073 SE->getSignedRange(Step).getSignedMin()); 1074 } 1075 return 0; 1076 } 1077 1078 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1079 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1080 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1081 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1082 // result, the expression "Step + sext(PreIncAR)" is congruent with 1083 // "sext(PostIncAR)" 1084 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1085 Type *Ty, 1086 ScalarEvolution *SE) { 1087 const Loop *L = AR->getLoop(); 1088 const SCEV *Start = AR->getStart(); 1089 const SCEV *Step = AR->getStepRecurrence(*SE); 1090 1091 // Check for a simple looking step prior to loop entry. 1092 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1093 if (!SA) 1094 return 0; 1095 1096 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1097 // subtraction is expensive. For this purpose, perform a quick and dirty 1098 // difference, by checking for Step in the operand list. 1099 SmallVector<const SCEV *, 4> DiffOps; 1100 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1101 I != E; ++I) { 1102 if (*I != Step) 1103 DiffOps.push_back(*I); 1104 } 1105 if (DiffOps.size() == SA->getNumOperands()) 1106 return 0; 1107 1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1109 // same three conditions that getSignExtendedExpr checks. 1110 1111 // 1. NSW flags on the step increment. 1112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1115 1116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1117 return PreStart; 1118 1119 // 2. Direct overflow check on the step operation's expression. 1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1122 const SCEV *OperandExtendedStart = 1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1124 SE->getSignExtendExpr(Step, WideTy)); 1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1126 // Cache knowledge of PreAR NSW. 1127 if (PreAR) 1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1129 // FIXME: this optimization needs a unit test 1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1131 return PreStart; 1132 } 1133 1134 // 3. Loop precondition. 1135 ICmpInst::Predicate Pred; 1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1137 1138 if (OverflowLimit && 1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1140 return PreStart; 1141 } 1142 return 0; 1143 } 1144 1145 // Get the normalized sign-extended expression for this AddRec's Start. 1146 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1147 Type *Ty, 1148 ScalarEvolution *SE) { 1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1150 if (!PreStart) 1151 return SE->getSignExtendExpr(AR->getStart(), Ty); 1152 1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1154 SE->getSignExtendExpr(PreStart, Ty)); 1155 } 1156 1157 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1158 Type *Ty) { 1159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1160 "This is not an extending conversion!"); 1161 assert(isSCEVable(Ty) && 1162 "This is not a conversion to a SCEVable type!"); 1163 Ty = getEffectiveSCEVType(Ty); 1164 1165 // Fold if the operand is constant. 1166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1167 return getConstant( 1168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1169 1170 // sext(sext(x)) --> sext(x) 1171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1172 return getSignExtendExpr(SS->getOperand(), Ty); 1173 1174 // sext(zext(x)) --> zext(x) 1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1176 return getZeroExtendExpr(SZ->getOperand(), Ty); 1177 1178 // Before doing any expensive analysis, check to see if we've already 1179 // computed a SCEV for this Op and Ty. 1180 FoldingSetNodeID ID; 1181 ID.AddInteger(scSignExtend); 1182 ID.AddPointer(Op); 1183 ID.AddPointer(Ty); 1184 void *IP = 0; 1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1186 1187 // If the input value is provably positive, build a zext instead. 1188 if (isKnownNonNegative(Op)) 1189 return getZeroExtendExpr(Op, Ty); 1190 1191 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1193 // It's possible the bits taken off by the truncate were all sign bits. If 1194 // so, we should be able to simplify this further. 1195 const SCEV *X = ST->getOperand(); 1196 ConstantRange CR = getSignedRange(X); 1197 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1198 unsigned NewBits = getTypeSizeInBits(Ty); 1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1200 CR.sextOrTrunc(NewBits))) 1201 return getTruncateOrSignExtend(X, Ty); 1202 } 1203 1204 // If the input value is a chrec scev, and we can prove that the value 1205 // did not overflow the old, smaller, value, we can sign extend all of the 1206 // operands (often constants). This allows analysis of something like 1207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1209 if (AR->isAffine()) { 1210 const SCEV *Start = AR->getStart(); 1211 const SCEV *Step = AR->getStepRecurrence(*this); 1212 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1213 const Loop *L = AR->getLoop(); 1214 1215 // If we have special knowledge that this addrec won't overflow, 1216 // we don't need to do any further analysis. 1217 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1219 getSignExtendExpr(Step, Ty), 1220 L, SCEV::FlagNSW); 1221 1222 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1223 // Note that this serves two purposes: It filters out loops that are 1224 // simply not analyzable, and it covers the case where this code is 1225 // being called from within backedge-taken count analysis, such that 1226 // attempting to ask for the backedge-taken count would likely result 1227 // in infinite recursion. In the later case, the analysis code will 1228 // cope with a conservative value, and it will take care to purge 1229 // that value once it has finished. 1230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1232 // Manually compute the final value for AR, checking for 1233 // overflow. 1234 1235 // Check whether the backedge-taken count can be losslessly casted to 1236 // the addrec's type. The count is always unsigned. 1237 const SCEV *CastedMaxBECount = 1238 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1239 const SCEV *RecastedMaxBECount = 1240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1241 if (MaxBECount == RecastedMaxBECount) { 1242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1243 // Check whether Start+Step*MaxBECount has no signed overflow. 1244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1245 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1246 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1247 const SCEV *WideMaxBECount = 1248 getZeroExtendExpr(CastedMaxBECount, WideTy); 1249 const SCEV *OperandExtendedAdd = 1250 getAddExpr(WideStart, 1251 getMulExpr(WideMaxBECount, 1252 getSignExtendExpr(Step, WideTy))); 1253 if (SAdd == OperandExtendedAdd) { 1254 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1255 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1256 // Return the expression with the addrec on the outside. 1257 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1258 getSignExtendExpr(Step, Ty), 1259 L, AR->getNoWrapFlags()); 1260 } 1261 // Similar to above, only this time treat the step value as unsigned. 1262 // This covers loops that count up with an unsigned step. 1263 OperandExtendedAdd = 1264 getAddExpr(WideStart, 1265 getMulExpr(WideMaxBECount, 1266 getZeroExtendExpr(Step, WideTy))); 1267 if (SAdd == OperandExtendedAdd) { 1268 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1270 // Return the expression with the addrec on the outside. 1271 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1272 getZeroExtendExpr(Step, Ty), 1273 L, AR->getNoWrapFlags()); 1274 } 1275 } 1276 1277 // If the backedge is guarded by a comparison with the pre-inc value 1278 // the addrec is safe. Also, if the entry is guarded by a comparison 1279 // with the start value and the backedge is guarded by a comparison 1280 // with the post-inc value, the addrec is safe. 1281 ICmpInst::Predicate Pred; 1282 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1283 if (OverflowLimit && 1284 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1285 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1286 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1287 OverflowLimit)))) { 1288 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1291 getSignExtendExpr(Step, Ty), 1292 L, AR->getNoWrapFlags()); 1293 } 1294 } 1295 } 1296 1297 // The cast wasn't folded; create an explicit cast node. 1298 // Recompute the insert position, as it may have been invalidated. 1299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1300 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1301 Op, Ty); 1302 UniqueSCEVs.InsertNode(S, IP); 1303 return S; 1304 } 1305 1306 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1307 /// unspecified bits out to the given type. 1308 /// 1309 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1310 Type *Ty) { 1311 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1312 "This is not an extending conversion!"); 1313 assert(isSCEVable(Ty) && 1314 "This is not a conversion to a SCEVable type!"); 1315 Ty = getEffectiveSCEVType(Ty); 1316 1317 // Sign-extend negative constants. 1318 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1319 if (SC->getValue()->getValue().isNegative()) 1320 return getSignExtendExpr(Op, Ty); 1321 1322 // Peel off a truncate cast. 1323 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1324 const SCEV *NewOp = T->getOperand(); 1325 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1326 return getAnyExtendExpr(NewOp, Ty); 1327 return getTruncateOrNoop(NewOp, Ty); 1328 } 1329 1330 // Next try a zext cast. If the cast is folded, use it. 1331 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1332 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1333 return ZExt; 1334 1335 // Next try a sext cast. If the cast is folded, use it. 1336 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1337 if (!isa<SCEVSignExtendExpr>(SExt)) 1338 return SExt; 1339 1340 // Force the cast to be folded into the operands of an addrec. 1341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1342 SmallVector<const SCEV *, 4> Ops; 1343 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1344 I != E; ++I) 1345 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1346 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1347 } 1348 1349 // If the expression is obviously signed, use the sext cast value. 1350 if (isa<SCEVSMaxExpr>(Op)) 1351 return SExt; 1352 1353 // Absent any other information, use the zext cast value. 1354 return ZExt; 1355 } 1356 1357 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1358 /// a list of operands to be added under the given scale, update the given 1359 /// map. This is a helper function for getAddRecExpr. As an example of 1360 /// what it does, given a sequence of operands that would form an add 1361 /// expression like this: 1362 /// 1363 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1364 /// 1365 /// where A and B are constants, update the map with these values: 1366 /// 1367 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1368 /// 1369 /// and add 13 + A*B*29 to AccumulatedConstant. 1370 /// This will allow getAddRecExpr to produce this: 1371 /// 1372 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1373 /// 1374 /// This form often exposes folding opportunities that are hidden in 1375 /// the original operand list. 1376 /// 1377 /// Return true iff it appears that any interesting folding opportunities 1378 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1379 /// the common case where no interesting opportunities are present, and 1380 /// is also used as a check to avoid infinite recursion. 1381 /// 1382 static bool 1383 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1384 SmallVectorImpl<const SCEV *> &NewOps, 1385 APInt &AccumulatedConstant, 1386 const SCEV *const *Ops, size_t NumOperands, 1387 const APInt &Scale, 1388 ScalarEvolution &SE) { 1389 bool Interesting = false; 1390 1391 // Iterate over the add operands. They are sorted, with constants first. 1392 unsigned i = 0; 1393 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1394 ++i; 1395 // Pull a buried constant out to the outside. 1396 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1397 Interesting = true; 1398 AccumulatedConstant += Scale * C->getValue()->getValue(); 1399 } 1400 1401 // Next comes everything else. We're especially interested in multiplies 1402 // here, but they're in the middle, so just visit the rest with one loop. 1403 for (; i != NumOperands; ++i) { 1404 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1405 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1406 APInt NewScale = 1407 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1408 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1409 // A multiplication of a constant with another add; recurse. 1410 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1411 Interesting |= 1412 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1413 Add->op_begin(), Add->getNumOperands(), 1414 NewScale, SE); 1415 } else { 1416 // A multiplication of a constant with some other value. Update 1417 // the map. 1418 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1419 const SCEV *Key = SE.getMulExpr(MulOps); 1420 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1421 M.insert(std::make_pair(Key, NewScale)); 1422 if (Pair.second) { 1423 NewOps.push_back(Pair.first->first); 1424 } else { 1425 Pair.first->second += NewScale; 1426 // The map already had an entry for this value, which may indicate 1427 // a folding opportunity. 1428 Interesting = true; 1429 } 1430 } 1431 } else { 1432 // An ordinary operand. Update the map. 1433 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1434 M.insert(std::make_pair(Ops[i], Scale)); 1435 if (Pair.second) { 1436 NewOps.push_back(Pair.first->first); 1437 } else { 1438 Pair.first->second += Scale; 1439 // The map already had an entry for this value, which may indicate 1440 // a folding opportunity. 1441 Interesting = true; 1442 } 1443 } 1444 } 1445 1446 return Interesting; 1447 } 1448 1449 namespace { 1450 struct APIntCompare { 1451 bool operator()(const APInt &LHS, const APInt &RHS) const { 1452 return LHS.ult(RHS); 1453 } 1454 }; 1455 } 1456 1457 /// getAddExpr - Get a canonical add expression, or something simpler if 1458 /// possible. 1459 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1460 SCEV::NoWrapFlags Flags) { 1461 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1462 "only nuw or nsw allowed"); 1463 assert(!Ops.empty() && "Cannot get empty add!"); 1464 if (Ops.size() == 1) return Ops[0]; 1465 #ifndef NDEBUG 1466 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1467 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1468 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1469 "SCEVAddExpr operand types don't match!"); 1470 #endif 1471 1472 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1473 // And vice-versa. 1474 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1475 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1476 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1477 bool All = true; 1478 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1479 E = Ops.end(); I != E; ++I) 1480 if (!isKnownNonNegative(*I)) { 1481 All = false; 1482 break; 1483 } 1484 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1485 } 1486 1487 // Sort by complexity, this groups all similar expression types together. 1488 GroupByComplexity(Ops, LI); 1489 1490 // If there are any constants, fold them together. 1491 unsigned Idx = 0; 1492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1493 ++Idx; 1494 assert(Idx < Ops.size()); 1495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1496 // We found two constants, fold them together! 1497 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1498 RHSC->getValue()->getValue()); 1499 if (Ops.size() == 2) return Ops[0]; 1500 Ops.erase(Ops.begin()+1); // Erase the folded element 1501 LHSC = cast<SCEVConstant>(Ops[0]); 1502 } 1503 1504 // If we are left with a constant zero being added, strip it off. 1505 if (LHSC->getValue()->isZero()) { 1506 Ops.erase(Ops.begin()); 1507 --Idx; 1508 } 1509 1510 if (Ops.size() == 1) return Ops[0]; 1511 } 1512 1513 // Okay, check to see if the same value occurs in the operand list more than 1514 // once. If so, merge them together into an multiply expression. Since we 1515 // sorted the list, these values are required to be adjacent. 1516 Type *Ty = Ops[0]->getType(); 1517 bool FoundMatch = false; 1518 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1519 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1520 // Scan ahead to count how many equal operands there are. 1521 unsigned Count = 2; 1522 while (i+Count != e && Ops[i+Count] == Ops[i]) 1523 ++Count; 1524 // Merge the values into a multiply. 1525 const SCEV *Scale = getConstant(Ty, Count); 1526 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1527 if (Ops.size() == Count) 1528 return Mul; 1529 Ops[i] = Mul; 1530 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1531 --i; e -= Count - 1; 1532 FoundMatch = true; 1533 } 1534 if (FoundMatch) 1535 return getAddExpr(Ops, Flags); 1536 1537 // Check for truncates. If all the operands are truncated from the same 1538 // type, see if factoring out the truncate would permit the result to be 1539 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1540 // if the contents of the resulting outer trunc fold to something simple. 1541 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1542 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1543 Type *DstType = Trunc->getType(); 1544 Type *SrcType = Trunc->getOperand()->getType(); 1545 SmallVector<const SCEV *, 8> LargeOps; 1546 bool Ok = true; 1547 // Check all the operands to see if they can be represented in the 1548 // source type of the truncate. 1549 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1550 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1551 if (T->getOperand()->getType() != SrcType) { 1552 Ok = false; 1553 break; 1554 } 1555 LargeOps.push_back(T->getOperand()); 1556 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1557 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1558 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1559 SmallVector<const SCEV *, 8> LargeMulOps; 1560 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1561 if (const SCEVTruncateExpr *T = 1562 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1563 if (T->getOperand()->getType() != SrcType) { 1564 Ok = false; 1565 break; 1566 } 1567 LargeMulOps.push_back(T->getOperand()); 1568 } else if (const SCEVConstant *C = 1569 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1570 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1571 } else { 1572 Ok = false; 1573 break; 1574 } 1575 } 1576 if (Ok) 1577 LargeOps.push_back(getMulExpr(LargeMulOps)); 1578 } else { 1579 Ok = false; 1580 break; 1581 } 1582 } 1583 if (Ok) { 1584 // Evaluate the expression in the larger type. 1585 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1586 // If it folds to something simple, use it. Otherwise, don't. 1587 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1588 return getTruncateExpr(Fold, DstType); 1589 } 1590 } 1591 1592 // Skip past any other cast SCEVs. 1593 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1594 ++Idx; 1595 1596 // If there are add operands they would be next. 1597 if (Idx < Ops.size()) { 1598 bool DeletedAdd = false; 1599 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1600 // If we have an add, expand the add operands onto the end of the operands 1601 // list. 1602 Ops.erase(Ops.begin()+Idx); 1603 Ops.append(Add->op_begin(), Add->op_end()); 1604 DeletedAdd = true; 1605 } 1606 1607 // If we deleted at least one add, we added operands to the end of the list, 1608 // and they are not necessarily sorted. Recurse to resort and resimplify 1609 // any operands we just acquired. 1610 if (DeletedAdd) 1611 return getAddExpr(Ops); 1612 } 1613 1614 // Skip over the add expression until we get to a multiply. 1615 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1616 ++Idx; 1617 1618 // Check to see if there are any folding opportunities present with 1619 // operands multiplied by constant values. 1620 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1621 uint64_t BitWidth = getTypeSizeInBits(Ty); 1622 DenseMap<const SCEV *, APInt> M; 1623 SmallVector<const SCEV *, 8> NewOps; 1624 APInt AccumulatedConstant(BitWidth, 0); 1625 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1626 Ops.data(), Ops.size(), 1627 APInt(BitWidth, 1), *this)) { 1628 // Some interesting folding opportunity is present, so its worthwhile to 1629 // re-generate the operands list. Group the operands by constant scale, 1630 // to avoid multiplying by the same constant scale multiple times. 1631 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1632 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1633 E = NewOps.end(); I != E; ++I) 1634 MulOpLists[M.find(*I)->second].push_back(*I); 1635 // Re-generate the operands list. 1636 Ops.clear(); 1637 if (AccumulatedConstant != 0) 1638 Ops.push_back(getConstant(AccumulatedConstant)); 1639 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1640 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1641 if (I->first != 0) 1642 Ops.push_back(getMulExpr(getConstant(I->first), 1643 getAddExpr(I->second))); 1644 if (Ops.empty()) 1645 return getConstant(Ty, 0); 1646 if (Ops.size() == 1) 1647 return Ops[0]; 1648 return getAddExpr(Ops); 1649 } 1650 } 1651 1652 // If we are adding something to a multiply expression, make sure the 1653 // something is not already an operand of the multiply. If so, merge it into 1654 // the multiply. 1655 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1656 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1657 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1658 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1659 if (isa<SCEVConstant>(MulOpSCEV)) 1660 continue; 1661 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1662 if (MulOpSCEV == Ops[AddOp]) { 1663 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1664 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1665 if (Mul->getNumOperands() != 2) { 1666 // If the multiply has more than two operands, we must get the 1667 // Y*Z term. 1668 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1669 Mul->op_begin()+MulOp); 1670 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1671 InnerMul = getMulExpr(MulOps); 1672 } 1673 const SCEV *One = getConstant(Ty, 1); 1674 const SCEV *AddOne = getAddExpr(One, InnerMul); 1675 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1676 if (Ops.size() == 2) return OuterMul; 1677 if (AddOp < Idx) { 1678 Ops.erase(Ops.begin()+AddOp); 1679 Ops.erase(Ops.begin()+Idx-1); 1680 } else { 1681 Ops.erase(Ops.begin()+Idx); 1682 Ops.erase(Ops.begin()+AddOp-1); 1683 } 1684 Ops.push_back(OuterMul); 1685 return getAddExpr(Ops); 1686 } 1687 1688 // Check this multiply against other multiplies being added together. 1689 for (unsigned OtherMulIdx = Idx+1; 1690 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1691 ++OtherMulIdx) { 1692 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1693 // If MulOp occurs in OtherMul, we can fold the two multiplies 1694 // together. 1695 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1696 OMulOp != e; ++OMulOp) 1697 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1698 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1699 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1700 if (Mul->getNumOperands() != 2) { 1701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1702 Mul->op_begin()+MulOp); 1703 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1704 InnerMul1 = getMulExpr(MulOps); 1705 } 1706 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1707 if (OtherMul->getNumOperands() != 2) { 1708 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1709 OtherMul->op_begin()+OMulOp); 1710 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1711 InnerMul2 = getMulExpr(MulOps); 1712 } 1713 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1714 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1715 if (Ops.size() == 2) return OuterMul; 1716 Ops.erase(Ops.begin()+Idx); 1717 Ops.erase(Ops.begin()+OtherMulIdx-1); 1718 Ops.push_back(OuterMul); 1719 return getAddExpr(Ops); 1720 } 1721 } 1722 } 1723 } 1724 1725 // If there are any add recurrences in the operands list, see if any other 1726 // added values are loop invariant. If so, we can fold them into the 1727 // recurrence. 1728 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1729 ++Idx; 1730 1731 // Scan over all recurrences, trying to fold loop invariants into them. 1732 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1733 // Scan all of the other operands to this add and add them to the vector if 1734 // they are loop invariant w.r.t. the recurrence. 1735 SmallVector<const SCEV *, 8> LIOps; 1736 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1737 const Loop *AddRecLoop = AddRec->getLoop(); 1738 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1739 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1740 LIOps.push_back(Ops[i]); 1741 Ops.erase(Ops.begin()+i); 1742 --i; --e; 1743 } 1744 1745 // If we found some loop invariants, fold them into the recurrence. 1746 if (!LIOps.empty()) { 1747 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1748 LIOps.push_back(AddRec->getStart()); 1749 1750 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1751 AddRec->op_end()); 1752 AddRecOps[0] = getAddExpr(LIOps); 1753 1754 // Build the new addrec. Propagate the NUW and NSW flags if both the 1755 // outer add and the inner addrec are guaranteed to have no overflow. 1756 // Always propagate NW. 1757 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1758 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1759 1760 // If all of the other operands were loop invariant, we are done. 1761 if (Ops.size() == 1) return NewRec; 1762 1763 // Otherwise, add the folded AddRec by the non-invariant parts. 1764 for (unsigned i = 0;; ++i) 1765 if (Ops[i] == AddRec) { 1766 Ops[i] = NewRec; 1767 break; 1768 } 1769 return getAddExpr(Ops); 1770 } 1771 1772 // Okay, if there weren't any loop invariants to be folded, check to see if 1773 // there are multiple AddRec's with the same loop induction variable being 1774 // added together. If so, we can fold them. 1775 for (unsigned OtherIdx = Idx+1; 1776 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1777 ++OtherIdx) 1778 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1779 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1780 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1781 AddRec->op_end()); 1782 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1783 ++OtherIdx) 1784 if (const SCEVAddRecExpr *OtherAddRec = 1785 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1786 if (OtherAddRec->getLoop() == AddRecLoop) { 1787 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1788 i != e; ++i) { 1789 if (i >= AddRecOps.size()) { 1790 AddRecOps.append(OtherAddRec->op_begin()+i, 1791 OtherAddRec->op_end()); 1792 break; 1793 } 1794 AddRecOps[i] = getAddExpr(AddRecOps[i], 1795 OtherAddRec->getOperand(i)); 1796 } 1797 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1798 } 1799 // Step size has changed, so we cannot guarantee no self-wraparound. 1800 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1801 return getAddExpr(Ops); 1802 } 1803 1804 // Otherwise couldn't fold anything into this recurrence. Move onto the 1805 // next one. 1806 } 1807 1808 // Okay, it looks like we really DO need an add expr. Check to see if we 1809 // already have one, otherwise create a new one. 1810 FoldingSetNodeID ID; 1811 ID.AddInteger(scAddExpr); 1812 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1813 ID.AddPointer(Ops[i]); 1814 void *IP = 0; 1815 SCEVAddExpr *S = 1816 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1817 if (!S) { 1818 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1819 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1820 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1821 O, Ops.size()); 1822 UniqueSCEVs.InsertNode(S, IP); 1823 } 1824 S->setNoWrapFlags(Flags); 1825 return S; 1826 } 1827 1828 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1829 uint64_t k = i*j; 1830 if (j > 1 && k / j != i) Overflow = true; 1831 return k; 1832 } 1833 1834 /// Compute the result of "n choose k", the binomial coefficient. If an 1835 /// intermediate computation overflows, Overflow will be set and the return will 1836 /// be garbage. Overflow is not cleared on absence of overflow. 1837 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1838 // We use the multiplicative formula: 1839 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1840 // At each iteration, we take the n-th term of the numeral and divide by the 1841 // (k-n)th term of the denominator. This division will always produce an 1842 // integral result, and helps reduce the chance of overflow in the 1843 // intermediate computations. However, we can still overflow even when the 1844 // final result would fit. 1845 1846 if (n == 0 || n == k) return 1; 1847 if (k > n) return 0; 1848 1849 if (k > n/2) 1850 k = n-k; 1851 1852 uint64_t r = 1; 1853 for (uint64_t i = 1; i <= k; ++i) { 1854 r = umul_ov(r, n-(i-1), Overflow); 1855 r /= i; 1856 } 1857 return r; 1858 } 1859 1860 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1861 /// possible. 1862 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1863 SCEV::NoWrapFlags Flags) { 1864 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1865 "only nuw or nsw allowed"); 1866 assert(!Ops.empty() && "Cannot get empty mul!"); 1867 if (Ops.size() == 1) return Ops[0]; 1868 #ifndef NDEBUG 1869 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1870 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1871 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1872 "SCEVMulExpr operand types don't match!"); 1873 #endif 1874 1875 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1876 // And vice-versa. 1877 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1878 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1879 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1880 bool All = true; 1881 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1882 E = Ops.end(); I != E; ++I) 1883 if (!isKnownNonNegative(*I)) { 1884 All = false; 1885 break; 1886 } 1887 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1888 } 1889 1890 // Sort by complexity, this groups all similar expression types together. 1891 GroupByComplexity(Ops, LI); 1892 1893 // If there are any constants, fold them together. 1894 unsigned Idx = 0; 1895 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1896 1897 // C1*(C2+V) -> C1*C2 + C1*V 1898 if (Ops.size() == 2) 1899 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1900 if (Add->getNumOperands() == 2 && 1901 isa<SCEVConstant>(Add->getOperand(0))) 1902 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1903 getMulExpr(LHSC, Add->getOperand(1))); 1904 1905 ++Idx; 1906 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1907 // We found two constants, fold them together! 1908 ConstantInt *Fold = ConstantInt::get(getContext(), 1909 LHSC->getValue()->getValue() * 1910 RHSC->getValue()->getValue()); 1911 Ops[0] = getConstant(Fold); 1912 Ops.erase(Ops.begin()+1); // Erase the folded element 1913 if (Ops.size() == 1) return Ops[0]; 1914 LHSC = cast<SCEVConstant>(Ops[0]); 1915 } 1916 1917 // If we are left with a constant one being multiplied, strip it off. 1918 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1919 Ops.erase(Ops.begin()); 1920 --Idx; 1921 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1922 // If we have a multiply of zero, it will always be zero. 1923 return Ops[0]; 1924 } else if (Ops[0]->isAllOnesValue()) { 1925 // If we have a mul by -1 of an add, try distributing the -1 among the 1926 // add operands. 1927 if (Ops.size() == 2) { 1928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1929 SmallVector<const SCEV *, 4> NewOps; 1930 bool AnyFolded = false; 1931 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1932 E = Add->op_end(); I != E; ++I) { 1933 const SCEV *Mul = getMulExpr(Ops[0], *I); 1934 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1935 NewOps.push_back(Mul); 1936 } 1937 if (AnyFolded) 1938 return getAddExpr(NewOps); 1939 } 1940 else if (const SCEVAddRecExpr * 1941 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1942 // Negation preserves a recurrence's no self-wrap property. 1943 SmallVector<const SCEV *, 4> Operands; 1944 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1945 E = AddRec->op_end(); I != E; ++I) { 1946 Operands.push_back(getMulExpr(Ops[0], *I)); 1947 } 1948 return getAddRecExpr(Operands, AddRec->getLoop(), 1949 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1950 } 1951 } 1952 } 1953 1954 if (Ops.size() == 1) 1955 return Ops[0]; 1956 } 1957 1958 // Skip over the add expression until we get to a multiply. 1959 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1960 ++Idx; 1961 1962 // If there are mul operands inline them all into this expression. 1963 if (Idx < Ops.size()) { 1964 bool DeletedMul = false; 1965 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1966 // If we have an mul, expand the mul operands onto the end of the operands 1967 // list. 1968 Ops.erase(Ops.begin()+Idx); 1969 Ops.append(Mul->op_begin(), Mul->op_end()); 1970 DeletedMul = true; 1971 } 1972 1973 // If we deleted at least one mul, we added operands to the end of the list, 1974 // and they are not necessarily sorted. Recurse to resort and resimplify 1975 // any operands we just acquired. 1976 if (DeletedMul) 1977 return getMulExpr(Ops); 1978 } 1979 1980 // If there are any add recurrences in the operands list, see if any other 1981 // added values are loop invariant. If so, we can fold them into the 1982 // recurrence. 1983 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1984 ++Idx; 1985 1986 // Scan over all recurrences, trying to fold loop invariants into them. 1987 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1988 // Scan all of the other operands to this mul and add them to the vector if 1989 // they are loop invariant w.r.t. the recurrence. 1990 SmallVector<const SCEV *, 8> LIOps; 1991 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1992 const Loop *AddRecLoop = AddRec->getLoop(); 1993 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1994 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1995 LIOps.push_back(Ops[i]); 1996 Ops.erase(Ops.begin()+i); 1997 --i; --e; 1998 } 1999 2000 // If we found some loop invariants, fold them into the recurrence. 2001 if (!LIOps.empty()) { 2002 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2003 SmallVector<const SCEV *, 4> NewOps; 2004 NewOps.reserve(AddRec->getNumOperands()); 2005 const SCEV *Scale = getMulExpr(LIOps); 2006 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2007 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2008 2009 // Build the new addrec. Propagate the NUW and NSW flags if both the 2010 // outer mul and the inner addrec are guaranteed to have no overflow. 2011 // 2012 // No self-wrap cannot be guaranteed after changing the step size, but 2013 // will be inferred if either NUW or NSW is true. 2014 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2015 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2016 2017 // If all of the other operands were loop invariant, we are done. 2018 if (Ops.size() == 1) return NewRec; 2019 2020 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2021 for (unsigned i = 0;; ++i) 2022 if (Ops[i] == AddRec) { 2023 Ops[i] = NewRec; 2024 break; 2025 } 2026 return getMulExpr(Ops); 2027 } 2028 2029 // Okay, if there weren't any loop invariants to be folded, check to see if 2030 // there are multiple AddRec's with the same loop induction variable being 2031 // multiplied together. If so, we can fold them. 2032 for (unsigned OtherIdx = Idx+1; 2033 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2034 ++OtherIdx) { 2035 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2036 continue; 2037 2038 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2039 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2040 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2041 // ]]],+,...up to x=2n}. 2042 // Note that the arguments to choose() are always integers with values 2043 // known at compile time, never SCEV objects. 2044 // 2045 // The implementation avoids pointless extra computations when the two 2046 // addrec's are of different length (mathematically, it's equivalent to 2047 // an infinite stream of zeros on the right). 2048 bool OpsModified = false; 2049 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2050 ++OtherIdx) { 2051 const SCEVAddRecExpr *OtherAddRec = 2052 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2053 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2054 continue; 2055 2056 bool Overflow = false; 2057 Type *Ty = AddRec->getType(); 2058 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2059 SmallVector<const SCEV*, 7> AddRecOps; 2060 for (int x = 0, xe = AddRec->getNumOperands() + 2061 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2062 const SCEV *Term = getConstant(Ty, 0); 2063 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2064 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2065 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2066 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2067 z < ze && !Overflow; ++z) { 2068 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2069 uint64_t Coeff; 2070 if (LargerThan64Bits) 2071 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2072 else 2073 Coeff = Coeff1*Coeff2; 2074 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2075 const SCEV *Term1 = AddRec->getOperand(y-z); 2076 const SCEV *Term2 = OtherAddRec->getOperand(z); 2077 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2078 } 2079 } 2080 AddRecOps.push_back(Term); 2081 } 2082 if (!Overflow) { 2083 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2084 SCEV::FlagAnyWrap); 2085 if (Ops.size() == 2) return NewAddRec; 2086 Ops[Idx] = NewAddRec; 2087 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2088 OpsModified = true; 2089 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2090 if (!AddRec) 2091 break; 2092 } 2093 } 2094 if (OpsModified) 2095 return getMulExpr(Ops); 2096 } 2097 2098 // Otherwise couldn't fold anything into this recurrence. Move onto the 2099 // next one. 2100 } 2101 2102 // Okay, it looks like we really DO need an mul expr. Check to see if we 2103 // already have one, otherwise create a new one. 2104 FoldingSetNodeID ID; 2105 ID.AddInteger(scMulExpr); 2106 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2107 ID.AddPointer(Ops[i]); 2108 void *IP = 0; 2109 SCEVMulExpr *S = 2110 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2111 if (!S) { 2112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2113 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2114 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2115 O, Ops.size()); 2116 UniqueSCEVs.InsertNode(S, IP); 2117 } 2118 S->setNoWrapFlags(Flags); 2119 return S; 2120 } 2121 2122 /// getUDivExpr - Get a canonical unsigned division expression, or something 2123 /// simpler if possible. 2124 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2125 const SCEV *RHS) { 2126 assert(getEffectiveSCEVType(LHS->getType()) == 2127 getEffectiveSCEVType(RHS->getType()) && 2128 "SCEVUDivExpr operand types don't match!"); 2129 2130 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2131 if (RHSC->getValue()->equalsInt(1)) 2132 return LHS; // X udiv 1 --> x 2133 // If the denominator is zero, the result of the udiv is undefined. Don't 2134 // try to analyze it, because the resolution chosen here may differ from 2135 // the resolution chosen in other parts of the compiler. 2136 if (!RHSC->getValue()->isZero()) { 2137 // Determine if the division can be folded into the operands of 2138 // its operands. 2139 // TODO: Generalize this to non-constants by using known-bits information. 2140 Type *Ty = LHS->getType(); 2141 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2142 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2143 // For non-power-of-two values, effectively round the value up to the 2144 // nearest power of two. 2145 if (!RHSC->getValue()->getValue().isPowerOf2()) 2146 ++MaxShiftAmt; 2147 IntegerType *ExtTy = 2148 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2150 if (const SCEVConstant *Step = 2151 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2152 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2153 const APInt &StepInt = Step->getValue()->getValue(); 2154 const APInt &DivInt = RHSC->getValue()->getValue(); 2155 if (!StepInt.urem(DivInt) && 2156 getZeroExtendExpr(AR, ExtTy) == 2157 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2158 getZeroExtendExpr(Step, ExtTy), 2159 AR->getLoop(), SCEV::FlagAnyWrap)) { 2160 SmallVector<const SCEV *, 4> Operands; 2161 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2162 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2163 return getAddRecExpr(Operands, AR->getLoop(), 2164 SCEV::FlagNW); 2165 } 2166 /// Get a canonical UDivExpr for a recurrence. 2167 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2168 // We can currently only fold X%N if X is constant. 2169 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2170 if (StartC && !DivInt.urem(StepInt) && 2171 getZeroExtendExpr(AR, ExtTy) == 2172 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2173 getZeroExtendExpr(Step, ExtTy), 2174 AR->getLoop(), SCEV::FlagAnyWrap)) { 2175 const APInt &StartInt = StartC->getValue()->getValue(); 2176 const APInt &StartRem = StartInt.urem(StepInt); 2177 if (StartRem != 0) 2178 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2179 AR->getLoop(), SCEV::FlagNW); 2180 } 2181 } 2182 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2183 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2184 SmallVector<const SCEV *, 4> Operands; 2185 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2186 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2187 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2188 // Find an operand that's safely divisible. 2189 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2190 const SCEV *Op = M->getOperand(i); 2191 const SCEV *Div = getUDivExpr(Op, RHSC); 2192 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2193 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2194 M->op_end()); 2195 Operands[i] = Div; 2196 return getMulExpr(Operands); 2197 } 2198 } 2199 } 2200 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2201 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2202 SmallVector<const SCEV *, 4> Operands; 2203 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2204 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2205 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2206 Operands.clear(); 2207 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2208 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2209 if (isa<SCEVUDivExpr>(Op) || 2210 getMulExpr(Op, RHS) != A->getOperand(i)) 2211 break; 2212 Operands.push_back(Op); 2213 } 2214 if (Operands.size() == A->getNumOperands()) 2215 return getAddExpr(Operands); 2216 } 2217 } 2218 2219 // Fold if both operands are constant. 2220 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2221 Constant *LHSCV = LHSC->getValue(); 2222 Constant *RHSCV = RHSC->getValue(); 2223 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2224 RHSCV))); 2225 } 2226 } 2227 } 2228 2229 FoldingSetNodeID ID; 2230 ID.AddInteger(scUDivExpr); 2231 ID.AddPointer(LHS); 2232 ID.AddPointer(RHS); 2233 void *IP = 0; 2234 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2235 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2236 LHS, RHS); 2237 UniqueSCEVs.InsertNode(S, IP); 2238 return S; 2239 } 2240 2241 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2242 APInt A = C1->getValue()->getValue().abs(); 2243 APInt B = C2->getValue()->getValue().abs(); 2244 uint32_t ABW = A.getBitWidth(); 2245 uint32_t BBW = B.getBitWidth(); 2246 2247 if (ABW > BBW) 2248 B = B.zext(ABW); 2249 else if (ABW < BBW) 2250 A = A.zext(BBW); 2251 2252 return APIntOps::GreatestCommonDivisor(A, B); 2253 } 2254 2255 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2256 /// something simpler if possible. There is no representation for an exact udiv 2257 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2258 /// We can't do this when it's not exact because the udiv may be clearing bits. 2259 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2260 const SCEV *RHS) { 2261 // TODO: we could try to find factors in all sorts of things, but for now we 2262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2263 // end of this file for inspiration. 2264 2265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2266 if (!Mul) 2267 return getUDivExpr(LHS, RHS); 2268 2269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2270 // If the mulexpr multiplies by a constant, then that constant must be the 2271 // first element of the mulexpr. 2272 if (const SCEVConstant *LHSCst = 2273 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2274 if (LHSCst == RHSCst) { 2275 SmallVector<const SCEV *, 2> Operands; 2276 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2277 return getMulExpr(Operands); 2278 } 2279 2280 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2281 // that there's a factor provided by one of the other terms. We need to 2282 // check. 2283 APInt Factor = gcd(LHSCst, RHSCst); 2284 if (!Factor.isIntN(1)) { 2285 LHSCst = cast<SCEVConstant>( 2286 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2287 RHSCst = cast<SCEVConstant>( 2288 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2289 SmallVector<const SCEV *, 2> Operands; 2290 Operands.push_back(LHSCst); 2291 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2292 LHS = getMulExpr(Operands); 2293 RHS = RHSCst; 2294 Mul = dyn_cast<SCEVMulExpr>(LHS); 2295 if (!Mul) 2296 return getUDivExactExpr(LHS, RHS); 2297 } 2298 } 2299 } 2300 2301 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2302 if (Mul->getOperand(i) == RHS) { 2303 SmallVector<const SCEV *, 2> Operands; 2304 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2305 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2306 return getMulExpr(Operands); 2307 } 2308 } 2309 2310 return getUDivExpr(LHS, RHS); 2311 } 2312 2313 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2314 /// Simplify the expression as much as possible. 2315 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2316 const Loop *L, 2317 SCEV::NoWrapFlags Flags) { 2318 SmallVector<const SCEV *, 4> Operands; 2319 Operands.push_back(Start); 2320 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2321 if (StepChrec->getLoop() == L) { 2322 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2323 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2324 } 2325 2326 Operands.push_back(Step); 2327 return getAddRecExpr(Operands, L, Flags); 2328 } 2329 2330 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2331 /// Simplify the expression as much as possible. 2332 const SCEV * 2333 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2334 const Loop *L, SCEV::NoWrapFlags Flags) { 2335 if (Operands.size() == 1) return Operands[0]; 2336 #ifndef NDEBUG 2337 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2338 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2339 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2340 "SCEVAddRecExpr operand types don't match!"); 2341 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2342 assert(isLoopInvariant(Operands[i], L) && 2343 "SCEVAddRecExpr operand is not loop-invariant!"); 2344 #endif 2345 2346 if (Operands.back()->isZero()) { 2347 Operands.pop_back(); 2348 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2349 } 2350 2351 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2352 // use that information to infer NUW and NSW flags. However, computing a 2353 // BE count requires calling getAddRecExpr, so we may not yet have a 2354 // meaningful BE count at this point (and if we don't, we'd be stuck 2355 // with a SCEVCouldNotCompute as the cached BE count). 2356 2357 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2358 // And vice-versa. 2359 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2360 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2361 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2362 bool All = true; 2363 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2364 E = Operands.end(); I != E; ++I) 2365 if (!isKnownNonNegative(*I)) { 2366 All = false; 2367 break; 2368 } 2369 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2370 } 2371 2372 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2373 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2374 const Loop *NestedLoop = NestedAR->getLoop(); 2375 if (L->contains(NestedLoop) ? 2376 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2377 (!NestedLoop->contains(L) && 2378 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2379 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2380 NestedAR->op_end()); 2381 Operands[0] = NestedAR->getStart(); 2382 // AddRecs require their operands be loop-invariant with respect to their 2383 // loops. Don't perform this transformation if it would break this 2384 // requirement. 2385 bool AllInvariant = true; 2386 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2387 if (!isLoopInvariant(Operands[i], L)) { 2388 AllInvariant = false; 2389 break; 2390 } 2391 if (AllInvariant) { 2392 // Create a recurrence for the outer loop with the same step size. 2393 // 2394 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2395 // inner recurrence has the same property. 2396 SCEV::NoWrapFlags OuterFlags = 2397 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2398 2399 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2400 AllInvariant = true; 2401 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2402 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2403 AllInvariant = false; 2404 break; 2405 } 2406 if (AllInvariant) { 2407 // Ok, both add recurrences are valid after the transformation. 2408 // 2409 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2410 // the outer recurrence has the same property. 2411 SCEV::NoWrapFlags InnerFlags = 2412 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2413 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2414 } 2415 } 2416 // Reset Operands to its original state. 2417 Operands[0] = NestedAR; 2418 } 2419 } 2420 2421 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2422 // already have one, otherwise create a new one. 2423 FoldingSetNodeID ID; 2424 ID.AddInteger(scAddRecExpr); 2425 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2426 ID.AddPointer(Operands[i]); 2427 ID.AddPointer(L); 2428 void *IP = 0; 2429 SCEVAddRecExpr *S = 2430 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2431 if (!S) { 2432 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2433 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2434 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2435 O, Operands.size(), L); 2436 UniqueSCEVs.InsertNode(S, IP); 2437 } 2438 S->setNoWrapFlags(Flags); 2439 return S; 2440 } 2441 2442 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2443 const SCEV *RHS) { 2444 SmallVector<const SCEV *, 2> Ops; 2445 Ops.push_back(LHS); 2446 Ops.push_back(RHS); 2447 return getSMaxExpr(Ops); 2448 } 2449 2450 const SCEV * 2451 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2452 assert(!Ops.empty() && "Cannot get empty smax!"); 2453 if (Ops.size() == 1) return Ops[0]; 2454 #ifndef NDEBUG 2455 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2456 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2457 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2458 "SCEVSMaxExpr operand types don't match!"); 2459 #endif 2460 2461 // Sort by complexity, this groups all similar expression types together. 2462 GroupByComplexity(Ops, LI); 2463 2464 // If there are any constants, fold them together. 2465 unsigned Idx = 0; 2466 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2467 ++Idx; 2468 assert(Idx < Ops.size()); 2469 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2470 // We found two constants, fold them together! 2471 ConstantInt *Fold = ConstantInt::get(getContext(), 2472 APIntOps::smax(LHSC->getValue()->getValue(), 2473 RHSC->getValue()->getValue())); 2474 Ops[0] = getConstant(Fold); 2475 Ops.erase(Ops.begin()+1); // Erase the folded element 2476 if (Ops.size() == 1) return Ops[0]; 2477 LHSC = cast<SCEVConstant>(Ops[0]); 2478 } 2479 2480 // If we are left with a constant minimum-int, strip it off. 2481 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2482 Ops.erase(Ops.begin()); 2483 --Idx; 2484 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2485 // If we have an smax with a constant maximum-int, it will always be 2486 // maximum-int. 2487 return Ops[0]; 2488 } 2489 2490 if (Ops.size() == 1) return Ops[0]; 2491 } 2492 2493 // Find the first SMax 2494 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2495 ++Idx; 2496 2497 // Check to see if one of the operands is an SMax. If so, expand its operands 2498 // onto our operand list, and recurse to simplify. 2499 if (Idx < Ops.size()) { 2500 bool DeletedSMax = false; 2501 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2502 Ops.erase(Ops.begin()+Idx); 2503 Ops.append(SMax->op_begin(), SMax->op_end()); 2504 DeletedSMax = true; 2505 } 2506 2507 if (DeletedSMax) 2508 return getSMaxExpr(Ops); 2509 } 2510 2511 // Okay, check to see if the same value occurs in the operand list twice. If 2512 // so, delete one. Since we sorted the list, these values are required to 2513 // be adjacent. 2514 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2515 // X smax Y smax Y --> X smax Y 2516 // X smax Y --> X, if X is always greater than Y 2517 if (Ops[i] == Ops[i+1] || 2518 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2519 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2520 --i; --e; 2521 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2522 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2523 --i; --e; 2524 } 2525 2526 if (Ops.size() == 1) return Ops[0]; 2527 2528 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2529 2530 // Okay, it looks like we really DO need an smax expr. Check to see if we 2531 // already have one, otherwise create a new one. 2532 FoldingSetNodeID ID; 2533 ID.AddInteger(scSMaxExpr); 2534 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2535 ID.AddPointer(Ops[i]); 2536 void *IP = 0; 2537 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2538 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2539 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2540 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2541 O, Ops.size()); 2542 UniqueSCEVs.InsertNode(S, IP); 2543 return S; 2544 } 2545 2546 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2547 const SCEV *RHS) { 2548 SmallVector<const SCEV *, 2> Ops; 2549 Ops.push_back(LHS); 2550 Ops.push_back(RHS); 2551 return getUMaxExpr(Ops); 2552 } 2553 2554 const SCEV * 2555 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2556 assert(!Ops.empty() && "Cannot get empty umax!"); 2557 if (Ops.size() == 1) return Ops[0]; 2558 #ifndef NDEBUG 2559 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2560 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2561 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2562 "SCEVUMaxExpr operand types don't match!"); 2563 #endif 2564 2565 // Sort by complexity, this groups all similar expression types together. 2566 GroupByComplexity(Ops, LI); 2567 2568 // If there are any constants, fold them together. 2569 unsigned Idx = 0; 2570 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2571 ++Idx; 2572 assert(Idx < Ops.size()); 2573 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2574 // We found two constants, fold them together! 2575 ConstantInt *Fold = ConstantInt::get(getContext(), 2576 APIntOps::umax(LHSC->getValue()->getValue(), 2577 RHSC->getValue()->getValue())); 2578 Ops[0] = getConstant(Fold); 2579 Ops.erase(Ops.begin()+1); // Erase the folded element 2580 if (Ops.size() == 1) return Ops[0]; 2581 LHSC = cast<SCEVConstant>(Ops[0]); 2582 } 2583 2584 // If we are left with a constant minimum-int, strip it off. 2585 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2586 Ops.erase(Ops.begin()); 2587 --Idx; 2588 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2589 // If we have an umax with a constant maximum-int, it will always be 2590 // maximum-int. 2591 return Ops[0]; 2592 } 2593 2594 if (Ops.size() == 1) return Ops[0]; 2595 } 2596 2597 // Find the first UMax 2598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2599 ++Idx; 2600 2601 // Check to see if one of the operands is a UMax. If so, expand its operands 2602 // onto our operand list, and recurse to simplify. 2603 if (Idx < Ops.size()) { 2604 bool DeletedUMax = false; 2605 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2606 Ops.erase(Ops.begin()+Idx); 2607 Ops.append(UMax->op_begin(), UMax->op_end()); 2608 DeletedUMax = true; 2609 } 2610 2611 if (DeletedUMax) 2612 return getUMaxExpr(Ops); 2613 } 2614 2615 // Okay, check to see if the same value occurs in the operand list twice. If 2616 // so, delete one. Since we sorted the list, these values are required to 2617 // be adjacent. 2618 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2619 // X umax Y umax Y --> X umax Y 2620 // X umax Y --> X, if X is always greater than Y 2621 if (Ops[i] == Ops[i+1] || 2622 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2623 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2624 --i; --e; 2625 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2626 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2627 --i; --e; 2628 } 2629 2630 if (Ops.size() == 1) return Ops[0]; 2631 2632 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2633 2634 // Okay, it looks like we really DO need a umax expr. Check to see if we 2635 // already have one, otherwise create a new one. 2636 FoldingSetNodeID ID; 2637 ID.AddInteger(scUMaxExpr); 2638 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2639 ID.AddPointer(Ops[i]); 2640 void *IP = 0; 2641 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2642 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2643 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2644 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2645 O, Ops.size()); 2646 UniqueSCEVs.InsertNode(S, IP); 2647 return S; 2648 } 2649 2650 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2651 const SCEV *RHS) { 2652 // ~smax(~x, ~y) == smin(x, y). 2653 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2654 } 2655 2656 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2657 const SCEV *RHS) { 2658 // ~umax(~x, ~y) == umin(x, y) 2659 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2660 } 2661 2662 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2663 // If we have DataLayout, we can bypass creating a target-independent 2664 // constant expression and then folding it back into a ConstantInt. 2665 // This is just a compile-time optimization. 2666 if (DL) 2667 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 2668 2669 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2670 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2671 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2672 C = Folded; 2673 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2674 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2675 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2676 } 2677 2678 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2679 StructType *STy, 2680 unsigned FieldNo) { 2681 // If we have DataLayout, we can bypass creating a target-independent 2682 // constant expression and then folding it back into a ConstantInt. 2683 // This is just a compile-time optimization. 2684 if (DL) { 2685 return getConstant(IntTy, 2686 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 2687 } 2688 2689 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2691 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2692 C = Folded; 2693 2694 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2695 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2696 } 2697 2698 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2699 // Don't attempt to do anything other than create a SCEVUnknown object 2700 // here. createSCEV only calls getUnknown after checking for all other 2701 // interesting possibilities, and any other code that calls getUnknown 2702 // is doing so in order to hide a value from SCEV canonicalization. 2703 2704 FoldingSetNodeID ID; 2705 ID.AddInteger(scUnknown); 2706 ID.AddPointer(V); 2707 void *IP = 0; 2708 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2709 assert(cast<SCEVUnknown>(S)->getValue() == V && 2710 "Stale SCEVUnknown in uniquing map!"); 2711 return S; 2712 } 2713 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2714 FirstUnknown); 2715 FirstUnknown = cast<SCEVUnknown>(S); 2716 UniqueSCEVs.InsertNode(S, IP); 2717 return S; 2718 } 2719 2720 //===----------------------------------------------------------------------===// 2721 // Basic SCEV Analysis and PHI Idiom Recognition Code 2722 // 2723 2724 /// isSCEVable - Test if values of the given type are analyzable within 2725 /// the SCEV framework. This primarily includes integer types, and it 2726 /// can optionally include pointer types if the ScalarEvolution class 2727 /// has access to target-specific information. 2728 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2729 // Integers and pointers are always SCEVable. 2730 return Ty->isIntegerTy() || Ty->isPointerTy(); 2731 } 2732 2733 /// getTypeSizeInBits - Return the size in bits of the specified type, 2734 /// for which isSCEVable must return true. 2735 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2736 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2737 2738 // If we have a DataLayout, use it! 2739 if (DL) 2740 return DL->getTypeSizeInBits(Ty); 2741 2742 // Integer types have fixed sizes. 2743 if (Ty->isIntegerTy()) 2744 return Ty->getPrimitiveSizeInBits(); 2745 2746 // The only other support type is pointer. Without DataLayout, conservatively 2747 // assume pointers are 64-bit. 2748 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2749 return 64; 2750 } 2751 2752 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2753 /// the given type and which represents how SCEV will treat the given 2754 /// type, for which isSCEVable must return true. For pointer types, 2755 /// this is the pointer-sized integer type. 2756 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2757 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2758 2759 if (Ty->isIntegerTy()) { 2760 return Ty; 2761 } 2762 2763 // The only other support type is pointer. 2764 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2765 2766 if (DL) 2767 return DL->getIntPtrType(Ty); 2768 2769 // Without DataLayout, conservatively assume pointers are 64-bit. 2770 return Type::getInt64Ty(getContext()); 2771 } 2772 2773 const SCEV *ScalarEvolution::getCouldNotCompute() { 2774 return &CouldNotCompute; 2775 } 2776 2777 namespace { 2778 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2779 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2780 // is set iff if find such SCEVUnknown. 2781 // 2782 struct FindInvalidSCEVUnknown { 2783 bool FindOne; 2784 FindInvalidSCEVUnknown() { FindOne = false; } 2785 bool follow(const SCEV *S) { 2786 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2787 case scConstant: 2788 return false; 2789 case scUnknown: 2790 if (!cast<SCEVUnknown>(S)->getValue()) 2791 FindOne = true; 2792 return false; 2793 default: 2794 return true; 2795 } 2796 } 2797 bool isDone() const { return FindOne; } 2798 }; 2799 } 2800 2801 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2802 FindInvalidSCEVUnknown F; 2803 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2804 ST.visitAll(S); 2805 2806 return !F.FindOne; 2807 } 2808 2809 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2810 /// expression and create a new one. 2811 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2812 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2813 2814 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2815 if (I != ValueExprMap.end()) { 2816 const SCEV *S = I->second; 2817 if (checkValidity(S)) 2818 return S; 2819 else 2820 ValueExprMap.erase(I); 2821 } 2822 const SCEV *S = createSCEV(V); 2823 2824 // The process of creating a SCEV for V may have caused other SCEVs 2825 // to have been created, so it's necessary to insert the new entry 2826 // from scratch, rather than trying to remember the insert position 2827 // above. 2828 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2829 return S; 2830 } 2831 2832 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2833 /// 2834 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2835 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2836 return getConstant( 2837 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2838 2839 Type *Ty = V->getType(); 2840 Ty = getEffectiveSCEVType(Ty); 2841 return getMulExpr(V, 2842 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2843 } 2844 2845 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2846 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2847 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2848 return getConstant( 2849 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2850 2851 Type *Ty = V->getType(); 2852 Ty = getEffectiveSCEVType(Ty); 2853 const SCEV *AllOnes = 2854 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2855 return getMinusSCEV(AllOnes, V); 2856 } 2857 2858 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2859 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2860 SCEV::NoWrapFlags Flags) { 2861 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2862 2863 // Fast path: X - X --> 0. 2864 if (LHS == RHS) 2865 return getConstant(LHS->getType(), 0); 2866 2867 // X - Y --> X + -Y 2868 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2869 } 2870 2871 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2872 /// input value to the specified type. If the type must be extended, it is zero 2873 /// extended. 2874 const SCEV * 2875 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2876 Type *SrcTy = V->getType(); 2877 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2878 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2879 "Cannot truncate or zero extend with non-integer arguments!"); 2880 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2881 return V; // No conversion 2882 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2883 return getTruncateExpr(V, Ty); 2884 return getZeroExtendExpr(V, Ty); 2885 } 2886 2887 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2888 /// input value to the specified type. If the type must be extended, it is sign 2889 /// extended. 2890 const SCEV * 2891 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2892 Type *Ty) { 2893 Type *SrcTy = V->getType(); 2894 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2895 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2896 "Cannot truncate or zero extend with non-integer arguments!"); 2897 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2898 return V; // No conversion 2899 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2900 return getTruncateExpr(V, Ty); 2901 return getSignExtendExpr(V, Ty); 2902 } 2903 2904 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2905 /// input value to the specified type. If the type must be extended, it is zero 2906 /// extended. The conversion must not be narrowing. 2907 const SCEV * 2908 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2909 Type *SrcTy = V->getType(); 2910 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2911 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2912 "Cannot noop or zero extend with non-integer arguments!"); 2913 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2914 "getNoopOrZeroExtend cannot truncate!"); 2915 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2916 return V; // No conversion 2917 return getZeroExtendExpr(V, Ty); 2918 } 2919 2920 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2921 /// input value to the specified type. If the type must be extended, it is sign 2922 /// extended. The conversion must not be narrowing. 2923 const SCEV * 2924 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2925 Type *SrcTy = V->getType(); 2926 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2927 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2928 "Cannot noop or sign extend with non-integer arguments!"); 2929 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2930 "getNoopOrSignExtend cannot truncate!"); 2931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2932 return V; // No conversion 2933 return getSignExtendExpr(V, Ty); 2934 } 2935 2936 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2937 /// the input value to the specified type. If the type must be extended, 2938 /// it is extended with unspecified bits. The conversion must not be 2939 /// narrowing. 2940 const SCEV * 2941 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2942 Type *SrcTy = V->getType(); 2943 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2944 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2945 "Cannot noop or any extend with non-integer arguments!"); 2946 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2947 "getNoopOrAnyExtend cannot truncate!"); 2948 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2949 return V; // No conversion 2950 return getAnyExtendExpr(V, Ty); 2951 } 2952 2953 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2954 /// input value to the specified type. The conversion must not be widening. 2955 const SCEV * 2956 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2957 Type *SrcTy = V->getType(); 2958 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2959 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2960 "Cannot truncate or noop with non-integer arguments!"); 2961 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2962 "getTruncateOrNoop cannot extend!"); 2963 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2964 return V; // No conversion 2965 return getTruncateExpr(V, Ty); 2966 } 2967 2968 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2969 /// the types using zero-extension, and then perform a umax operation 2970 /// with them. 2971 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2972 const SCEV *RHS) { 2973 const SCEV *PromotedLHS = LHS; 2974 const SCEV *PromotedRHS = RHS; 2975 2976 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2977 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2978 else 2979 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2980 2981 return getUMaxExpr(PromotedLHS, PromotedRHS); 2982 } 2983 2984 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2985 /// the types using zero-extension, and then perform a umin operation 2986 /// with them. 2987 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2988 const SCEV *RHS) { 2989 const SCEV *PromotedLHS = LHS; 2990 const SCEV *PromotedRHS = RHS; 2991 2992 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2993 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2994 else 2995 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2996 2997 return getUMinExpr(PromotedLHS, PromotedRHS); 2998 } 2999 3000 /// getPointerBase - Transitively follow the chain of pointer-type operands 3001 /// until reaching a SCEV that does not have a single pointer operand. This 3002 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3003 /// but corner cases do exist. 3004 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3005 // A pointer operand may evaluate to a nonpointer expression, such as null. 3006 if (!V->getType()->isPointerTy()) 3007 return V; 3008 3009 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3010 return getPointerBase(Cast->getOperand()); 3011 } 3012 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3013 const SCEV *PtrOp = 0; 3014 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3015 I != E; ++I) { 3016 if ((*I)->getType()->isPointerTy()) { 3017 // Cannot find the base of an expression with multiple pointer operands. 3018 if (PtrOp) 3019 return V; 3020 PtrOp = *I; 3021 } 3022 } 3023 if (!PtrOp) 3024 return V; 3025 return getPointerBase(PtrOp); 3026 } 3027 return V; 3028 } 3029 3030 /// PushDefUseChildren - Push users of the given Instruction 3031 /// onto the given Worklist. 3032 static void 3033 PushDefUseChildren(Instruction *I, 3034 SmallVectorImpl<Instruction *> &Worklist) { 3035 // Push the def-use children onto the Worklist stack. 3036 for (User *U : I->users()) 3037 Worklist.push_back(cast<Instruction>(U)); 3038 } 3039 3040 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3041 /// instructions that depend on the given instruction and removes them from 3042 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3043 /// resolution. 3044 void 3045 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3046 SmallVector<Instruction *, 16> Worklist; 3047 PushDefUseChildren(PN, Worklist); 3048 3049 SmallPtrSet<Instruction *, 8> Visited; 3050 Visited.insert(PN); 3051 while (!Worklist.empty()) { 3052 Instruction *I = Worklist.pop_back_val(); 3053 if (!Visited.insert(I)) continue; 3054 3055 ValueExprMapType::iterator It = 3056 ValueExprMap.find_as(static_cast<Value *>(I)); 3057 if (It != ValueExprMap.end()) { 3058 const SCEV *Old = It->second; 3059 3060 // Short-circuit the def-use traversal if the symbolic name 3061 // ceases to appear in expressions. 3062 if (Old != SymName && !hasOperand(Old, SymName)) 3063 continue; 3064 3065 // SCEVUnknown for a PHI either means that it has an unrecognized 3066 // structure, it's a PHI that's in the progress of being computed 3067 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3068 // additional loop trip count information isn't going to change anything. 3069 // In the second case, createNodeForPHI will perform the necessary 3070 // updates on its own when it gets to that point. In the third, we do 3071 // want to forget the SCEVUnknown. 3072 if (!isa<PHINode>(I) || 3073 !isa<SCEVUnknown>(Old) || 3074 (I != PN && Old == SymName)) { 3075 forgetMemoizedResults(Old); 3076 ValueExprMap.erase(It); 3077 } 3078 } 3079 3080 PushDefUseChildren(I, Worklist); 3081 } 3082 } 3083 3084 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3085 /// a loop header, making it a potential recurrence, or it doesn't. 3086 /// 3087 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3088 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3089 if (L->getHeader() == PN->getParent()) { 3090 // The loop may have multiple entrances or multiple exits; we can analyze 3091 // this phi as an addrec if it has a unique entry value and a unique 3092 // backedge value. 3093 Value *BEValueV = 0, *StartValueV = 0; 3094 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3095 Value *V = PN->getIncomingValue(i); 3096 if (L->contains(PN->getIncomingBlock(i))) { 3097 if (!BEValueV) { 3098 BEValueV = V; 3099 } else if (BEValueV != V) { 3100 BEValueV = 0; 3101 break; 3102 } 3103 } else if (!StartValueV) { 3104 StartValueV = V; 3105 } else if (StartValueV != V) { 3106 StartValueV = 0; 3107 break; 3108 } 3109 } 3110 if (BEValueV && StartValueV) { 3111 // While we are analyzing this PHI node, handle its value symbolically. 3112 const SCEV *SymbolicName = getUnknown(PN); 3113 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3114 "PHI node already processed?"); 3115 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3116 3117 // Using this symbolic name for the PHI, analyze the value coming around 3118 // the back-edge. 3119 const SCEV *BEValue = getSCEV(BEValueV); 3120 3121 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3122 // has a special value for the first iteration of the loop. 3123 3124 // If the value coming around the backedge is an add with the symbolic 3125 // value we just inserted, then we found a simple induction variable! 3126 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3127 // If there is a single occurrence of the symbolic value, replace it 3128 // with a recurrence. 3129 unsigned FoundIndex = Add->getNumOperands(); 3130 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3131 if (Add->getOperand(i) == SymbolicName) 3132 if (FoundIndex == e) { 3133 FoundIndex = i; 3134 break; 3135 } 3136 3137 if (FoundIndex != Add->getNumOperands()) { 3138 // Create an add with everything but the specified operand. 3139 SmallVector<const SCEV *, 8> Ops; 3140 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3141 if (i != FoundIndex) 3142 Ops.push_back(Add->getOperand(i)); 3143 const SCEV *Accum = getAddExpr(Ops); 3144 3145 // This is not a valid addrec if the step amount is varying each 3146 // loop iteration, but is not itself an addrec in this loop. 3147 if (isLoopInvariant(Accum, L) || 3148 (isa<SCEVAddRecExpr>(Accum) && 3149 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3150 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3151 3152 // If the increment doesn't overflow, then neither the addrec nor 3153 // the post-increment will overflow. 3154 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3155 if (OBO->hasNoUnsignedWrap()) 3156 Flags = setFlags(Flags, SCEV::FlagNUW); 3157 if (OBO->hasNoSignedWrap()) 3158 Flags = setFlags(Flags, SCEV::FlagNSW); 3159 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3160 // If the increment is an inbounds GEP, then we know the address 3161 // space cannot be wrapped around. We cannot make any guarantee 3162 // about signed or unsigned overflow because pointers are 3163 // unsigned but we may have a negative index from the base 3164 // pointer. We can guarantee that no unsigned wrap occurs if the 3165 // indices form a positive value. 3166 if (GEP->isInBounds()) { 3167 Flags = setFlags(Flags, SCEV::FlagNW); 3168 3169 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3170 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3171 Flags = setFlags(Flags, SCEV::FlagNUW); 3172 } 3173 } else if (const SubOperator *OBO = 3174 dyn_cast<SubOperator>(BEValueV)) { 3175 if (OBO->hasNoUnsignedWrap()) 3176 Flags = setFlags(Flags, SCEV::FlagNUW); 3177 if (OBO->hasNoSignedWrap()) 3178 Flags = setFlags(Flags, SCEV::FlagNSW); 3179 } 3180 3181 const SCEV *StartVal = getSCEV(StartValueV); 3182 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3183 3184 // Since the no-wrap flags are on the increment, they apply to the 3185 // post-incremented value as well. 3186 if (isLoopInvariant(Accum, L)) 3187 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3188 Accum, L, Flags); 3189 3190 // Okay, for the entire analysis of this edge we assumed the PHI 3191 // to be symbolic. We now need to go back and purge all of the 3192 // entries for the scalars that use the symbolic expression. 3193 ForgetSymbolicName(PN, SymbolicName); 3194 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3195 return PHISCEV; 3196 } 3197 } 3198 } else if (const SCEVAddRecExpr *AddRec = 3199 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3200 // Otherwise, this could be a loop like this: 3201 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3202 // In this case, j = {1,+,1} and BEValue is j. 3203 // Because the other in-value of i (0) fits the evolution of BEValue 3204 // i really is an addrec evolution. 3205 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3206 const SCEV *StartVal = getSCEV(StartValueV); 3207 3208 // If StartVal = j.start - j.stride, we can use StartVal as the 3209 // initial step of the addrec evolution. 3210 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3211 AddRec->getOperand(1))) { 3212 // FIXME: For constant StartVal, we should be able to infer 3213 // no-wrap flags. 3214 const SCEV *PHISCEV = 3215 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3216 SCEV::FlagAnyWrap); 3217 3218 // Okay, for the entire analysis of this edge we assumed the PHI 3219 // to be symbolic. We now need to go back and purge all of the 3220 // entries for the scalars that use the symbolic expression. 3221 ForgetSymbolicName(PN, SymbolicName); 3222 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3223 return PHISCEV; 3224 } 3225 } 3226 } 3227 } 3228 } 3229 3230 // If the PHI has a single incoming value, follow that value, unless the 3231 // PHI's incoming blocks are in a different loop, in which case doing so 3232 // risks breaking LCSSA form. Instcombine would normally zap these, but 3233 // it doesn't have DominatorTree information, so it may miss cases. 3234 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT)) 3235 if (LI->replacementPreservesLCSSAForm(PN, V)) 3236 return getSCEV(V); 3237 3238 // If it's not a loop phi, we can't handle it yet. 3239 return getUnknown(PN); 3240 } 3241 3242 /// createNodeForGEP - Expand GEP instructions into add and multiply 3243 /// operations. This allows them to be analyzed by regular SCEV code. 3244 /// 3245 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3246 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3247 Value *Base = GEP->getOperand(0); 3248 // Don't attempt to analyze GEPs over unsized objects. 3249 if (!Base->getType()->getPointerElementType()->isSized()) 3250 return getUnknown(GEP); 3251 3252 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3253 // Add expression, because the Instruction may be guarded by control flow 3254 // and the no-overflow bits may not be valid for the expression in any 3255 // context. 3256 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3257 3258 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3259 gep_type_iterator GTI = gep_type_begin(GEP); 3260 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3261 E = GEP->op_end(); 3262 I != E; ++I) { 3263 Value *Index = *I; 3264 // Compute the (potentially symbolic) offset in bytes for this index. 3265 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3266 // For a struct, add the member offset. 3267 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3268 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3269 3270 // Add the field offset to the running total offset. 3271 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3272 } else { 3273 // For an array, add the element offset, explicitly scaled. 3274 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3275 const SCEV *IndexS = getSCEV(Index); 3276 // Getelementptr indices are signed. 3277 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3278 3279 // Multiply the index by the element size to compute the element offset. 3280 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3281 3282 // Add the element offset to the running total offset. 3283 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3284 } 3285 } 3286 3287 // Get the SCEV for the GEP base. 3288 const SCEV *BaseS = getSCEV(Base); 3289 3290 // Add the total offset from all the GEP indices to the base. 3291 return getAddExpr(BaseS, TotalOffset, Wrap); 3292 } 3293 3294 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3295 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3296 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3297 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3298 uint32_t 3299 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3300 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3301 return C->getValue()->getValue().countTrailingZeros(); 3302 3303 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3304 return std::min(GetMinTrailingZeros(T->getOperand()), 3305 (uint32_t)getTypeSizeInBits(T->getType())); 3306 3307 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3308 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3309 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3310 getTypeSizeInBits(E->getType()) : OpRes; 3311 } 3312 3313 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3314 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3315 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3316 getTypeSizeInBits(E->getType()) : OpRes; 3317 } 3318 3319 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3320 // The result is the min of all operands results. 3321 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3322 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3323 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3324 return MinOpRes; 3325 } 3326 3327 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3328 // The result is the sum of all operands results. 3329 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3330 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3331 for (unsigned i = 1, e = M->getNumOperands(); 3332 SumOpRes != BitWidth && i != e; ++i) 3333 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3334 BitWidth); 3335 return SumOpRes; 3336 } 3337 3338 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3339 // The result is the min of all operands results. 3340 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3341 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3342 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3343 return MinOpRes; 3344 } 3345 3346 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3347 // The result is the min of all operands results. 3348 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3349 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3350 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3351 return MinOpRes; 3352 } 3353 3354 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3355 // The result is the min of all operands results. 3356 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3357 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3358 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3359 return MinOpRes; 3360 } 3361 3362 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3363 // For a SCEVUnknown, ask ValueTracking. 3364 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3365 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3366 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3367 return Zeros.countTrailingOnes(); 3368 } 3369 3370 // SCEVUDivExpr 3371 return 0; 3372 } 3373 3374 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3375 /// 3376 ConstantRange 3377 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3378 // See if we've computed this range already. 3379 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3380 if (I != UnsignedRanges.end()) 3381 return I->second; 3382 3383 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3384 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3385 3386 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3387 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3388 3389 // If the value has known zeros, the maximum unsigned value will have those 3390 // known zeros as well. 3391 uint32_t TZ = GetMinTrailingZeros(S); 3392 if (TZ != 0) 3393 ConservativeResult = 3394 ConstantRange(APInt::getMinValue(BitWidth), 3395 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3396 3397 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3398 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3399 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3400 X = X.add(getUnsignedRange(Add->getOperand(i))); 3401 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3402 } 3403 3404 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3405 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3406 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3407 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3408 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3409 } 3410 3411 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3412 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3413 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3414 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3415 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3416 } 3417 3418 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3419 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3420 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3421 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3422 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3423 } 3424 3425 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3426 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3427 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3428 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3429 } 3430 3431 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3432 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3433 return setUnsignedRange(ZExt, 3434 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3435 } 3436 3437 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3438 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3439 return setUnsignedRange(SExt, 3440 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3441 } 3442 3443 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3444 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3445 return setUnsignedRange(Trunc, 3446 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3447 } 3448 3449 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3450 // If there's no unsigned wrap, the value will never be less than its 3451 // initial value. 3452 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3453 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3454 if (!C->getValue()->isZero()) 3455 ConservativeResult = 3456 ConservativeResult.intersectWith( 3457 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3458 3459 // TODO: non-affine addrec 3460 if (AddRec->isAffine()) { 3461 Type *Ty = AddRec->getType(); 3462 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3463 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3464 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3465 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3466 3467 const SCEV *Start = AddRec->getStart(); 3468 const SCEV *Step = AddRec->getStepRecurrence(*this); 3469 3470 ConstantRange StartRange = getUnsignedRange(Start); 3471 ConstantRange StepRange = getSignedRange(Step); 3472 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3473 ConstantRange EndRange = 3474 StartRange.add(MaxBECountRange.multiply(StepRange)); 3475 3476 // Check for overflow. This must be done with ConstantRange arithmetic 3477 // because we could be called from within the ScalarEvolution overflow 3478 // checking code. 3479 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3480 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3481 ConstantRange ExtMaxBECountRange = 3482 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3483 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3484 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3485 ExtEndRange) 3486 return setUnsignedRange(AddRec, ConservativeResult); 3487 3488 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3489 EndRange.getUnsignedMin()); 3490 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3491 EndRange.getUnsignedMax()); 3492 if (Min.isMinValue() && Max.isMaxValue()) 3493 return setUnsignedRange(AddRec, ConservativeResult); 3494 return setUnsignedRange(AddRec, 3495 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3496 } 3497 } 3498 3499 return setUnsignedRange(AddRec, ConservativeResult); 3500 } 3501 3502 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3503 // For a SCEVUnknown, ask ValueTracking. 3504 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3505 ComputeMaskedBits(U->getValue(), Zeros, Ones, DL); 3506 if (Ones == ~Zeros + 1) 3507 return setUnsignedRange(U, ConservativeResult); 3508 return setUnsignedRange(U, 3509 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3510 } 3511 3512 return setUnsignedRange(S, ConservativeResult); 3513 } 3514 3515 /// getSignedRange - Determine the signed range for a particular SCEV. 3516 /// 3517 ConstantRange 3518 ScalarEvolution::getSignedRange(const SCEV *S) { 3519 // See if we've computed this range already. 3520 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3521 if (I != SignedRanges.end()) 3522 return I->second; 3523 3524 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3525 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3526 3527 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3528 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3529 3530 // If the value has known zeros, the maximum signed value will have those 3531 // known zeros as well. 3532 uint32_t TZ = GetMinTrailingZeros(S); 3533 if (TZ != 0) 3534 ConservativeResult = 3535 ConstantRange(APInt::getSignedMinValue(BitWidth), 3536 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3537 3538 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3539 ConstantRange X = getSignedRange(Add->getOperand(0)); 3540 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3541 X = X.add(getSignedRange(Add->getOperand(i))); 3542 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3543 } 3544 3545 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3546 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3547 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3548 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3549 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3550 } 3551 3552 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3553 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3554 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3555 X = X.smax(getSignedRange(SMax->getOperand(i))); 3556 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3557 } 3558 3559 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3560 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3561 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3562 X = X.umax(getSignedRange(UMax->getOperand(i))); 3563 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3564 } 3565 3566 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3567 ConstantRange X = getSignedRange(UDiv->getLHS()); 3568 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3569 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3570 } 3571 3572 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3573 ConstantRange X = getSignedRange(ZExt->getOperand()); 3574 return setSignedRange(ZExt, 3575 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3576 } 3577 3578 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3579 ConstantRange X = getSignedRange(SExt->getOperand()); 3580 return setSignedRange(SExt, 3581 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3582 } 3583 3584 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3585 ConstantRange X = getSignedRange(Trunc->getOperand()); 3586 return setSignedRange(Trunc, 3587 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3588 } 3589 3590 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3591 // If there's no signed wrap, and all the operands have the same sign or 3592 // zero, the value won't ever change sign. 3593 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3594 bool AllNonNeg = true; 3595 bool AllNonPos = true; 3596 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3597 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3598 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3599 } 3600 if (AllNonNeg) 3601 ConservativeResult = ConservativeResult.intersectWith( 3602 ConstantRange(APInt(BitWidth, 0), 3603 APInt::getSignedMinValue(BitWidth))); 3604 else if (AllNonPos) 3605 ConservativeResult = ConservativeResult.intersectWith( 3606 ConstantRange(APInt::getSignedMinValue(BitWidth), 3607 APInt(BitWidth, 1))); 3608 } 3609 3610 // TODO: non-affine addrec 3611 if (AddRec->isAffine()) { 3612 Type *Ty = AddRec->getType(); 3613 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3614 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3615 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3616 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3617 3618 const SCEV *Start = AddRec->getStart(); 3619 const SCEV *Step = AddRec->getStepRecurrence(*this); 3620 3621 ConstantRange StartRange = getSignedRange(Start); 3622 ConstantRange StepRange = getSignedRange(Step); 3623 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3624 ConstantRange EndRange = 3625 StartRange.add(MaxBECountRange.multiply(StepRange)); 3626 3627 // Check for overflow. This must be done with ConstantRange arithmetic 3628 // because we could be called from within the ScalarEvolution overflow 3629 // checking code. 3630 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3631 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3632 ConstantRange ExtMaxBECountRange = 3633 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3634 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3635 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3636 ExtEndRange) 3637 return setSignedRange(AddRec, ConservativeResult); 3638 3639 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3640 EndRange.getSignedMin()); 3641 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3642 EndRange.getSignedMax()); 3643 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3644 return setSignedRange(AddRec, ConservativeResult); 3645 return setSignedRange(AddRec, 3646 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3647 } 3648 } 3649 3650 return setSignedRange(AddRec, ConservativeResult); 3651 } 3652 3653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3654 // For a SCEVUnknown, ask ValueTracking. 3655 if (!U->getValue()->getType()->isIntegerTy() && !DL) 3656 return setSignedRange(U, ConservativeResult); 3657 unsigned NS = ComputeNumSignBits(U->getValue(), DL); 3658 if (NS <= 1) 3659 return setSignedRange(U, ConservativeResult); 3660 return setSignedRange(U, ConservativeResult.intersectWith( 3661 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3662 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3663 } 3664 3665 return setSignedRange(S, ConservativeResult); 3666 } 3667 3668 /// createSCEV - We know that there is no SCEV for the specified value. 3669 /// Analyze the expression. 3670 /// 3671 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3672 if (!isSCEVable(V->getType())) 3673 return getUnknown(V); 3674 3675 unsigned Opcode = Instruction::UserOp1; 3676 if (Instruction *I = dyn_cast<Instruction>(V)) { 3677 Opcode = I->getOpcode(); 3678 3679 // Don't attempt to analyze instructions in blocks that aren't 3680 // reachable. Such instructions don't matter, and they aren't required 3681 // to obey basic rules for definitions dominating uses which this 3682 // analysis depends on. 3683 if (!DT->isReachableFromEntry(I->getParent())) 3684 return getUnknown(V); 3685 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3686 Opcode = CE->getOpcode(); 3687 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3688 return getConstant(CI); 3689 else if (isa<ConstantPointerNull>(V)) 3690 return getConstant(V->getType(), 0); 3691 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3692 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3693 else 3694 return getUnknown(V); 3695 3696 Operator *U = cast<Operator>(V); 3697 switch (Opcode) { 3698 case Instruction::Add: { 3699 // The simple thing to do would be to just call getSCEV on both operands 3700 // and call getAddExpr with the result. However if we're looking at a 3701 // bunch of things all added together, this can be quite inefficient, 3702 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3703 // Instead, gather up all the operands and make a single getAddExpr call. 3704 // LLVM IR canonical form means we need only traverse the left operands. 3705 // 3706 // Don't apply this instruction's NSW or NUW flags to the new 3707 // expression. The instruction may be guarded by control flow that the 3708 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3709 // mapped to the same SCEV expression, and it would be incorrect to transfer 3710 // NSW/NUW semantics to those operations. 3711 SmallVector<const SCEV *, 4> AddOps; 3712 AddOps.push_back(getSCEV(U->getOperand(1))); 3713 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3714 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3715 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3716 break; 3717 U = cast<Operator>(Op); 3718 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3719 if (Opcode == Instruction::Sub) 3720 AddOps.push_back(getNegativeSCEV(Op1)); 3721 else 3722 AddOps.push_back(Op1); 3723 } 3724 AddOps.push_back(getSCEV(U->getOperand(0))); 3725 return getAddExpr(AddOps); 3726 } 3727 case Instruction::Mul: { 3728 // Don't transfer NSW/NUW for the same reason as AddExpr. 3729 SmallVector<const SCEV *, 4> MulOps; 3730 MulOps.push_back(getSCEV(U->getOperand(1))); 3731 for (Value *Op = U->getOperand(0); 3732 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3733 Op = U->getOperand(0)) { 3734 U = cast<Operator>(Op); 3735 MulOps.push_back(getSCEV(U->getOperand(1))); 3736 } 3737 MulOps.push_back(getSCEV(U->getOperand(0))); 3738 return getMulExpr(MulOps); 3739 } 3740 case Instruction::UDiv: 3741 return getUDivExpr(getSCEV(U->getOperand(0)), 3742 getSCEV(U->getOperand(1))); 3743 case Instruction::Sub: 3744 return getMinusSCEV(getSCEV(U->getOperand(0)), 3745 getSCEV(U->getOperand(1))); 3746 case Instruction::And: 3747 // For an expression like x&255 that merely masks off the high bits, 3748 // use zext(trunc(x)) as the SCEV expression. 3749 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3750 if (CI->isNullValue()) 3751 return getSCEV(U->getOperand(1)); 3752 if (CI->isAllOnesValue()) 3753 return getSCEV(U->getOperand(0)); 3754 const APInt &A = CI->getValue(); 3755 3756 // Instcombine's ShrinkDemandedConstant may strip bits out of 3757 // constants, obscuring what would otherwise be a low-bits mask. 3758 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3759 // knew about to reconstruct a low-bits mask value. 3760 unsigned LZ = A.countLeadingZeros(); 3761 unsigned TZ = A.countTrailingZeros(); 3762 unsigned BitWidth = A.getBitWidth(); 3763 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3764 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL); 3765 3766 APInt EffectiveMask = 3767 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 3768 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 3769 const SCEV *MulCount = getConstant( 3770 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 3771 return getMulExpr( 3772 getZeroExtendExpr( 3773 getTruncateExpr( 3774 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 3775 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 3776 U->getType()), 3777 MulCount); 3778 } 3779 } 3780 break; 3781 3782 case Instruction::Or: 3783 // If the RHS of the Or is a constant, we may have something like: 3784 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3785 // optimizations will transparently handle this case. 3786 // 3787 // In order for this transformation to be safe, the LHS must be of the 3788 // form X*(2^n) and the Or constant must be less than 2^n. 3789 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3790 const SCEV *LHS = getSCEV(U->getOperand(0)); 3791 const APInt &CIVal = CI->getValue(); 3792 if (GetMinTrailingZeros(LHS) >= 3793 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3794 // Build a plain add SCEV. 3795 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3796 // If the LHS of the add was an addrec and it has no-wrap flags, 3797 // transfer the no-wrap flags, since an or won't introduce a wrap. 3798 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3799 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3800 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3801 OldAR->getNoWrapFlags()); 3802 } 3803 return S; 3804 } 3805 } 3806 break; 3807 case Instruction::Xor: 3808 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3809 // If the RHS of the xor is a signbit, then this is just an add. 3810 // Instcombine turns add of signbit into xor as a strength reduction step. 3811 if (CI->getValue().isSignBit()) 3812 return getAddExpr(getSCEV(U->getOperand(0)), 3813 getSCEV(U->getOperand(1))); 3814 3815 // If the RHS of xor is -1, then this is a not operation. 3816 if (CI->isAllOnesValue()) 3817 return getNotSCEV(getSCEV(U->getOperand(0))); 3818 3819 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3820 // This is a variant of the check for xor with -1, and it handles 3821 // the case where instcombine has trimmed non-demanded bits out 3822 // of an xor with -1. 3823 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3824 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3825 if (BO->getOpcode() == Instruction::And && 3826 LCI->getValue() == CI->getValue()) 3827 if (const SCEVZeroExtendExpr *Z = 3828 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3829 Type *UTy = U->getType(); 3830 const SCEV *Z0 = Z->getOperand(); 3831 Type *Z0Ty = Z0->getType(); 3832 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3833 3834 // If C is a low-bits mask, the zero extend is serving to 3835 // mask off the high bits. Complement the operand and 3836 // re-apply the zext. 3837 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3838 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3839 3840 // If C is a single bit, it may be in the sign-bit position 3841 // before the zero-extend. In this case, represent the xor 3842 // using an add, which is equivalent, and re-apply the zext. 3843 APInt Trunc = CI->getValue().trunc(Z0TySize); 3844 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3845 Trunc.isSignBit()) 3846 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3847 UTy); 3848 } 3849 } 3850 break; 3851 3852 case Instruction::Shl: 3853 // Turn shift left of a constant amount into a multiply. 3854 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3855 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3856 3857 // If the shift count is not less than the bitwidth, the result of 3858 // the shift is undefined. Don't try to analyze it, because the 3859 // resolution chosen here may differ from the resolution chosen in 3860 // other parts of the compiler. 3861 if (SA->getValue().uge(BitWidth)) 3862 break; 3863 3864 Constant *X = ConstantInt::get(getContext(), 3865 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3866 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3867 } 3868 break; 3869 3870 case Instruction::LShr: 3871 // Turn logical shift right of a constant into a unsigned divide. 3872 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3873 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3874 3875 // If the shift count is not less than the bitwidth, the result of 3876 // the shift is undefined. Don't try to analyze it, because the 3877 // resolution chosen here may differ from the resolution chosen in 3878 // other parts of the compiler. 3879 if (SA->getValue().uge(BitWidth)) 3880 break; 3881 3882 Constant *X = ConstantInt::get(getContext(), 3883 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3884 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3885 } 3886 break; 3887 3888 case Instruction::AShr: 3889 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3890 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3891 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3892 if (L->getOpcode() == Instruction::Shl && 3893 L->getOperand(1) == U->getOperand(1)) { 3894 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3895 3896 // If the shift count is not less than the bitwidth, the result of 3897 // the shift is undefined. Don't try to analyze it, because the 3898 // resolution chosen here may differ from the resolution chosen in 3899 // other parts of the compiler. 3900 if (CI->getValue().uge(BitWidth)) 3901 break; 3902 3903 uint64_t Amt = BitWidth - CI->getZExtValue(); 3904 if (Amt == BitWidth) 3905 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3906 return 3907 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3908 IntegerType::get(getContext(), 3909 Amt)), 3910 U->getType()); 3911 } 3912 break; 3913 3914 case Instruction::Trunc: 3915 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3916 3917 case Instruction::ZExt: 3918 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3919 3920 case Instruction::SExt: 3921 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3922 3923 case Instruction::BitCast: 3924 // BitCasts are no-op casts so we just eliminate the cast. 3925 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3926 return getSCEV(U->getOperand(0)); 3927 break; 3928 3929 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3930 // lead to pointer expressions which cannot safely be expanded to GEPs, 3931 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3932 // simplifying integer expressions. 3933 3934 case Instruction::GetElementPtr: 3935 return createNodeForGEP(cast<GEPOperator>(U)); 3936 3937 case Instruction::PHI: 3938 return createNodeForPHI(cast<PHINode>(U)); 3939 3940 case Instruction::Select: 3941 // This could be a smax or umax that was lowered earlier. 3942 // Try to recover it. 3943 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3944 Value *LHS = ICI->getOperand(0); 3945 Value *RHS = ICI->getOperand(1); 3946 switch (ICI->getPredicate()) { 3947 case ICmpInst::ICMP_SLT: 3948 case ICmpInst::ICMP_SLE: 3949 std::swap(LHS, RHS); 3950 // fall through 3951 case ICmpInst::ICMP_SGT: 3952 case ICmpInst::ICMP_SGE: 3953 // a >s b ? a+x : b+x -> smax(a, b)+x 3954 // a >s b ? b+x : a+x -> smin(a, b)+x 3955 if (LHS->getType() == U->getType()) { 3956 const SCEV *LS = getSCEV(LHS); 3957 const SCEV *RS = getSCEV(RHS); 3958 const SCEV *LA = getSCEV(U->getOperand(1)); 3959 const SCEV *RA = getSCEV(U->getOperand(2)); 3960 const SCEV *LDiff = getMinusSCEV(LA, LS); 3961 const SCEV *RDiff = getMinusSCEV(RA, RS); 3962 if (LDiff == RDiff) 3963 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3964 LDiff = getMinusSCEV(LA, RS); 3965 RDiff = getMinusSCEV(RA, LS); 3966 if (LDiff == RDiff) 3967 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3968 } 3969 break; 3970 case ICmpInst::ICMP_ULT: 3971 case ICmpInst::ICMP_ULE: 3972 std::swap(LHS, RHS); 3973 // fall through 3974 case ICmpInst::ICMP_UGT: 3975 case ICmpInst::ICMP_UGE: 3976 // a >u b ? a+x : b+x -> umax(a, b)+x 3977 // a >u b ? b+x : a+x -> umin(a, b)+x 3978 if (LHS->getType() == U->getType()) { 3979 const SCEV *LS = getSCEV(LHS); 3980 const SCEV *RS = getSCEV(RHS); 3981 const SCEV *LA = getSCEV(U->getOperand(1)); 3982 const SCEV *RA = getSCEV(U->getOperand(2)); 3983 const SCEV *LDiff = getMinusSCEV(LA, LS); 3984 const SCEV *RDiff = getMinusSCEV(RA, RS); 3985 if (LDiff == RDiff) 3986 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3987 LDiff = getMinusSCEV(LA, RS); 3988 RDiff = getMinusSCEV(RA, LS); 3989 if (LDiff == RDiff) 3990 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3991 } 3992 break; 3993 case ICmpInst::ICMP_NE: 3994 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3995 if (LHS->getType() == U->getType() && 3996 isa<ConstantInt>(RHS) && 3997 cast<ConstantInt>(RHS)->isZero()) { 3998 const SCEV *One = getConstant(LHS->getType(), 1); 3999 const SCEV *LS = getSCEV(LHS); 4000 const SCEV *LA = getSCEV(U->getOperand(1)); 4001 const SCEV *RA = getSCEV(U->getOperand(2)); 4002 const SCEV *LDiff = getMinusSCEV(LA, LS); 4003 const SCEV *RDiff = getMinusSCEV(RA, One); 4004 if (LDiff == RDiff) 4005 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4006 } 4007 break; 4008 case ICmpInst::ICMP_EQ: 4009 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4010 if (LHS->getType() == U->getType() && 4011 isa<ConstantInt>(RHS) && 4012 cast<ConstantInt>(RHS)->isZero()) { 4013 const SCEV *One = getConstant(LHS->getType(), 1); 4014 const SCEV *LS = getSCEV(LHS); 4015 const SCEV *LA = getSCEV(U->getOperand(1)); 4016 const SCEV *RA = getSCEV(U->getOperand(2)); 4017 const SCEV *LDiff = getMinusSCEV(LA, One); 4018 const SCEV *RDiff = getMinusSCEV(RA, LS); 4019 if (LDiff == RDiff) 4020 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4021 } 4022 break; 4023 default: 4024 break; 4025 } 4026 } 4027 4028 default: // We cannot analyze this expression. 4029 break; 4030 } 4031 4032 return getUnknown(V); 4033 } 4034 4035 4036 4037 //===----------------------------------------------------------------------===// 4038 // Iteration Count Computation Code 4039 // 4040 4041 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4042 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4043 /// constant. Will also return 0 if the maximum trip count is very large (>= 4044 /// 2^32). 4045 /// 4046 /// This "trip count" assumes that control exits via ExitingBlock. More 4047 /// precisely, it is the number of times that control may reach ExitingBlock 4048 /// before taking the branch. For loops with multiple exits, it may not be the 4049 /// number times that the loop header executes because the loop may exit 4050 /// prematurely via another branch. 4051 /// 4052 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 4053 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 4054 /// loop exits. getExitCount() may return an exact count for this branch 4055 /// assuming no-signed-wrap. The number of well-defined iterations may actually 4056 /// be higher than this trip count if this exit test is skipped and the loop 4057 /// exits via a different branch. Ideally, getExitCount() would know whether it 4058 /// depends on a NSW assumption, and we would only fall back to a conservative 4059 /// trip count in that case. 4060 unsigned ScalarEvolution:: 4061 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 4062 const SCEVConstant *ExitCount = 4063 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 4064 if (!ExitCount) 4065 return 0; 4066 4067 ConstantInt *ExitConst = ExitCount->getValue(); 4068 4069 // Guard against huge trip counts. 4070 if (ExitConst->getValue().getActiveBits() > 32) 4071 return 0; 4072 4073 // In case of integer overflow, this returns 0, which is correct. 4074 return ((unsigned)ExitConst->getZExtValue()) + 1; 4075 } 4076 4077 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4078 /// trip count of this loop as a normal unsigned value, if possible. This 4079 /// means that the actual trip count is always a multiple of the returned 4080 /// value (don't forget the trip count could very well be zero as well!). 4081 /// 4082 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4083 /// multiple of a constant (which is also the case if the trip count is simply 4084 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4085 /// if the trip count is very large (>= 2^32). 4086 /// 4087 /// As explained in the comments for getSmallConstantTripCount, this assumes 4088 /// that control exits the loop via ExitingBlock. 4089 unsigned ScalarEvolution:: 4090 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4091 const SCEV *ExitCount = getBackedgeTakenCount(L); 4092 if (ExitCount == getCouldNotCompute()) 4093 return 1; 4094 4095 // Get the trip count from the BE count by adding 1. 4096 const SCEV *TCMul = getAddExpr(ExitCount, 4097 getConstant(ExitCount->getType(), 1)); 4098 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4099 // to factor simple cases. 4100 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4101 TCMul = Mul->getOperand(0); 4102 4103 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4104 if (!MulC) 4105 return 1; 4106 4107 ConstantInt *Result = MulC->getValue(); 4108 4109 // Guard against huge trip counts (this requires checking 4110 // for zero to handle the case where the trip count == -1 and the 4111 // addition wraps). 4112 if (!Result || Result->getValue().getActiveBits() > 32 || 4113 Result->getValue().getActiveBits() == 0) 4114 return 1; 4115 4116 return (unsigned)Result->getZExtValue(); 4117 } 4118 4119 // getExitCount - Get the expression for the number of loop iterations for which 4120 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4121 // SCEVCouldNotCompute. 4122 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4123 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4124 } 4125 4126 /// getBackedgeTakenCount - If the specified loop has a predictable 4127 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4128 /// object. The backedge-taken count is the number of times the loop header 4129 /// will be branched to from within the loop. This is one less than the 4130 /// trip count of the loop, since it doesn't count the first iteration, 4131 /// when the header is branched to from outside the loop. 4132 /// 4133 /// Note that it is not valid to call this method on a loop without a 4134 /// loop-invariant backedge-taken count (see 4135 /// hasLoopInvariantBackedgeTakenCount). 4136 /// 4137 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4138 return getBackedgeTakenInfo(L).getExact(this); 4139 } 4140 4141 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4142 /// return the least SCEV value that is known never to be less than the 4143 /// actual backedge taken count. 4144 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4145 return getBackedgeTakenInfo(L).getMax(this); 4146 } 4147 4148 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4149 /// onto the given Worklist. 4150 static void 4151 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4152 BasicBlock *Header = L->getHeader(); 4153 4154 // Push all Loop-header PHIs onto the Worklist stack. 4155 for (BasicBlock::iterator I = Header->begin(); 4156 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4157 Worklist.push_back(PN); 4158 } 4159 4160 const ScalarEvolution::BackedgeTakenInfo & 4161 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4162 // Initially insert an invalid entry for this loop. If the insertion 4163 // succeeds, proceed to actually compute a backedge-taken count and 4164 // update the value. The temporary CouldNotCompute value tells SCEV 4165 // code elsewhere that it shouldn't attempt to request a new 4166 // backedge-taken count, which could result in infinite recursion. 4167 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4168 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4169 if (!Pair.second) 4170 return Pair.first->second; 4171 4172 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4173 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4174 // must be cleared in this scope. 4175 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4176 4177 if (Result.getExact(this) != getCouldNotCompute()) { 4178 assert(isLoopInvariant(Result.getExact(this), L) && 4179 isLoopInvariant(Result.getMax(this), L) && 4180 "Computed backedge-taken count isn't loop invariant for loop!"); 4181 ++NumTripCountsComputed; 4182 } 4183 else if (Result.getMax(this) == getCouldNotCompute() && 4184 isa<PHINode>(L->getHeader()->begin())) { 4185 // Only count loops that have phi nodes as not being computable. 4186 ++NumTripCountsNotComputed; 4187 } 4188 4189 // Now that we know more about the trip count for this loop, forget any 4190 // existing SCEV values for PHI nodes in this loop since they are only 4191 // conservative estimates made without the benefit of trip count 4192 // information. This is similar to the code in forgetLoop, except that 4193 // it handles SCEVUnknown PHI nodes specially. 4194 if (Result.hasAnyInfo()) { 4195 SmallVector<Instruction *, 16> Worklist; 4196 PushLoopPHIs(L, Worklist); 4197 4198 SmallPtrSet<Instruction *, 8> Visited; 4199 while (!Worklist.empty()) { 4200 Instruction *I = Worklist.pop_back_val(); 4201 if (!Visited.insert(I)) continue; 4202 4203 ValueExprMapType::iterator It = 4204 ValueExprMap.find_as(static_cast<Value *>(I)); 4205 if (It != ValueExprMap.end()) { 4206 const SCEV *Old = It->second; 4207 4208 // SCEVUnknown for a PHI either means that it has an unrecognized 4209 // structure, or it's a PHI that's in the progress of being computed 4210 // by createNodeForPHI. In the former case, additional loop trip 4211 // count information isn't going to change anything. In the later 4212 // case, createNodeForPHI will perform the necessary updates on its 4213 // own when it gets to that point. 4214 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4215 forgetMemoizedResults(Old); 4216 ValueExprMap.erase(It); 4217 } 4218 if (PHINode *PN = dyn_cast<PHINode>(I)) 4219 ConstantEvolutionLoopExitValue.erase(PN); 4220 } 4221 4222 PushDefUseChildren(I, Worklist); 4223 } 4224 } 4225 4226 // Re-lookup the insert position, since the call to 4227 // ComputeBackedgeTakenCount above could result in a 4228 // recusive call to getBackedgeTakenInfo (on a different 4229 // loop), which would invalidate the iterator computed 4230 // earlier. 4231 return BackedgeTakenCounts.find(L)->second = Result; 4232 } 4233 4234 /// forgetLoop - This method should be called by the client when it has 4235 /// changed a loop in a way that may effect ScalarEvolution's ability to 4236 /// compute a trip count, or if the loop is deleted. 4237 void ScalarEvolution::forgetLoop(const Loop *L) { 4238 // Drop any stored trip count value. 4239 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4240 BackedgeTakenCounts.find(L); 4241 if (BTCPos != BackedgeTakenCounts.end()) { 4242 BTCPos->second.clear(); 4243 BackedgeTakenCounts.erase(BTCPos); 4244 } 4245 4246 // Drop information about expressions based on loop-header PHIs. 4247 SmallVector<Instruction *, 16> Worklist; 4248 PushLoopPHIs(L, Worklist); 4249 4250 SmallPtrSet<Instruction *, 8> Visited; 4251 while (!Worklist.empty()) { 4252 Instruction *I = Worklist.pop_back_val(); 4253 if (!Visited.insert(I)) continue; 4254 4255 ValueExprMapType::iterator It = 4256 ValueExprMap.find_as(static_cast<Value *>(I)); 4257 if (It != ValueExprMap.end()) { 4258 forgetMemoizedResults(It->second); 4259 ValueExprMap.erase(It); 4260 if (PHINode *PN = dyn_cast<PHINode>(I)) 4261 ConstantEvolutionLoopExitValue.erase(PN); 4262 } 4263 4264 PushDefUseChildren(I, Worklist); 4265 } 4266 4267 // Forget all contained loops too, to avoid dangling entries in the 4268 // ValuesAtScopes map. 4269 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4270 forgetLoop(*I); 4271 } 4272 4273 /// forgetValue - This method should be called by the client when it has 4274 /// changed a value in a way that may effect its value, or which may 4275 /// disconnect it from a def-use chain linking it to a loop. 4276 void ScalarEvolution::forgetValue(Value *V) { 4277 Instruction *I = dyn_cast<Instruction>(V); 4278 if (!I) return; 4279 4280 // Drop information about expressions based on loop-header PHIs. 4281 SmallVector<Instruction *, 16> Worklist; 4282 Worklist.push_back(I); 4283 4284 SmallPtrSet<Instruction *, 8> Visited; 4285 while (!Worklist.empty()) { 4286 I = Worklist.pop_back_val(); 4287 if (!Visited.insert(I)) continue; 4288 4289 ValueExprMapType::iterator It = 4290 ValueExprMap.find_as(static_cast<Value *>(I)); 4291 if (It != ValueExprMap.end()) { 4292 forgetMemoizedResults(It->second); 4293 ValueExprMap.erase(It); 4294 if (PHINode *PN = dyn_cast<PHINode>(I)) 4295 ConstantEvolutionLoopExitValue.erase(PN); 4296 } 4297 4298 PushDefUseChildren(I, Worklist); 4299 } 4300 } 4301 4302 /// getExact - Get the exact loop backedge taken count considering all loop 4303 /// exits. A computable result can only be return for loops with a single exit. 4304 /// Returning the minimum taken count among all exits is incorrect because one 4305 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4306 /// the limit of each loop test is never skipped. This is a valid assumption as 4307 /// long as the loop exits via that test. For precise results, it is the 4308 /// caller's responsibility to specify the relevant loop exit using 4309 /// getExact(ExitingBlock, SE). 4310 const SCEV * 4311 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4312 // If any exits were not computable, the loop is not computable. 4313 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4314 4315 // We need exactly one computable exit. 4316 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4317 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4318 4319 const SCEV *BECount = 0; 4320 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4321 ENT != 0; ENT = ENT->getNextExit()) { 4322 4323 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4324 4325 if (!BECount) 4326 BECount = ENT->ExactNotTaken; 4327 else if (BECount != ENT->ExactNotTaken) 4328 return SE->getCouldNotCompute(); 4329 } 4330 assert(BECount && "Invalid not taken count for loop exit"); 4331 return BECount; 4332 } 4333 4334 /// getExact - Get the exact not taken count for this loop exit. 4335 const SCEV * 4336 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4337 ScalarEvolution *SE) const { 4338 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4339 ENT != 0; ENT = ENT->getNextExit()) { 4340 4341 if (ENT->ExitingBlock == ExitingBlock) 4342 return ENT->ExactNotTaken; 4343 } 4344 return SE->getCouldNotCompute(); 4345 } 4346 4347 /// getMax - Get the max backedge taken count for the loop. 4348 const SCEV * 4349 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4350 return Max ? Max : SE->getCouldNotCompute(); 4351 } 4352 4353 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4354 ScalarEvolution *SE) const { 4355 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4356 return true; 4357 4358 if (!ExitNotTaken.ExitingBlock) 4359 return false; 4360 4361 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4362 ENT != 0; ENT = ENT->getNextExit()) { 4363 4364 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4365 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4366 return true; 4367 } 4368 } 4369 return false; 4370 } 4371 4372 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4373 /// computable exit into a persistent ExitNotTakenInfo array. 4374 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4375 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4376 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4377 4378 if (!Complete) 4379 ExitNotTaken.setIncomplete(); 4380 4381 unsigned NumExits = ExitCounts.size(); 4382 if (NumExits == 0) return; 4383 4384 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4385 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4386 if (NumExits == 1) return; 4387 4388 // Handle the rare case of multiple computable exits. 4389 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4390 4391 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4392 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4393 PrevENT->setNextExit(ENT); 4394 ENT->ExitingBlock = ExitCounts[i].first; 4395 ENT->ExactNotTaken = ExitCounts[i].second; 4396 } 4397 } 4398 4399 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4400 void ScalarEvolution::BackedgeTakenInfo::clear() { 4401 ExitNotTaken.ExitingBlock = 0; 4402 ExitNotTaken.ExactNotTaken = 0; 4403 delete[] ExitNotTaken.getNextExit(); 4404 } 4405 4406 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4407 /// of the specified loop will execute. 4408 ScalarEvolution::BackedgeTakenInfo 4409 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4410 SmallVector<BasicBlock *, 8> ExitingBlocks; 4411 L->getExitingBlocks(ExitingBlocks); 4412 4413 // Examine all exits and pick the most conservative values. 4414 const SCEV *MaxBECount = getCouldNotCompute(); 4415 bool CouldComputeBECount = true; 4416 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4417 const SCEV *LatchMaxCount = 0; 4418 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4419 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4420 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4421 if (EL.Exact == getCouldNotCompute()) 4422 // We couldn't compute an exact value for this exit, so 4423 // we won't be able to compute an exact value for the loop. 4424 CouldComputeBECount = false; 4425 else 4426 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4427 4428 if (MaxBECount == getCouldNotCompute()) 4429 MaxBECount = EL.Max; 4430 else if (EL.Max != getCouldNotCompute()) { 4431 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4432 // skip some loop tests. Taking the max over the exits is sufficiently 4433 // conservative. TODO: We could do better taking into consideration 4434 // non-latch exits that dominate the latch. 4435 if (EL.MustExit && ExitingBlocks[i] == Latch) 4436 LatchMaxCount = EL.Max; 4437 else 4438 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4439 } 4440 } 4441 // Be more precise in the easy case of a loop latch that must exit. 4442 if (LatchMaxCount) { 4443 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount); 4444 } 4445 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4446 } 4447 4448 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4449 /// loop will execute if it exits via the specified block. 4450 ScalarEvolution::ExitLimit 4451 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4452 4453 // Okay, we've chosen an exiting block. See what condition causes us to 4454 // exit at this block and remember the exit block and whether all other targets 4455 // lead to the loop header. 4456 bool MustExecuteLoopHeader = true; 4457 BasicBlock *Exit = 0; 4458 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4459 SI != SE; ++SI) 4460 if (!L->contains(*SI)) { 4461 if (Exit) // Multiple exit successors. 4462 return getCouldNotCompute(); 4463 Exit = *SI; 4464 } else if (*SI != L->getHeader()) { 4465 MustExecuteLoopHeader = false; 4466 } 4467 4468 // At this point, we know we have a conditional branch that determines whether 4469 // the loop is exited. However, we don't know if the branch is executed each 4470 // time through the loop. If not, then the execution count of the branch will 4471 // not be equal to the trip count of the loop. 4472 // 4473 // Currently we check for this by checking to see if the Exit branch goes to 4474 // the loop header. If so, we know it will always execute the same number of 4475 // times as the loop. We also handle the case where the exit block *is* the 4476 // loop header. This is common for un-rotated loops. 4477 // 4478 // If both of those tests fail, walk up the unique predecessor chain to the 4479 // header, stopping if there is an edge that doesn't exit the loop. If the 4480 // header is reached, the execution count of the branch will be equal to the 4481 // trip count of the loop. 4482 // 4483 // More extensive analysis could be done to handle more cases here. 4484 // 4485 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4486 // The simple checks failed, try climbing the unique predecessor chain 4487 // up to the header. 4488 bool Ok = false; 4489 for (BasicBlock *BB = ExitingBlock; BB; ) { 4490 BasicBlock *Pred = BB->getUniquePredecessor(); 4491 if (!Pred) 4492 return getCouldNotCompute(); 4493 TerminatorInst *PredTerm = Pred->getTerminator(); 4494 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4495 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4496 if (PredSucc == BB) 4497 continue; 4498 // If the predecessor has a successor that isn't BB and isn't 4499 // outside the loop, assume the worst. 4500 if (L->contains(PredSucc)) 4501 return getCouldNotCompute(); 4502 } 4503 if (Pred == L->getHeader()) { 4504 Ok = true; 4505 break; 4506 } 4507 BB = Pred; 4508 } 4509 if (!Ok) 4510 return getCouldNotCompute(); 4511 } 4512 4513 TerminatorInst *Term = ExitingBlock->getTerminator(); 4514 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4515 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4516 // Proceed to the next level to examine the exit condition expression. 4517 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4518 BI->getSuccessor(1), 4519 /*IsSubExpr=*/false); 4520 } 4521 4522 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4523 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4524 /*IsSubExpr=*/false); 4525 4526 return getCouldNotCompute(); 4527 } 4528 4529 /// ComputeExitLimitFromCond - Compute the number of times the 4530 /// backedge of the specified loop will execute if its exit condition 4531 /// were a conditional branch of ExitCond, TBB, and FBB. 4532 /// 4533 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4534 /// branch. In this case, we cannot assume that the loop only exits when the 4535 /// condition is true and cannot infer that failing to meet the condition prior 4536 /// to integer wraparound results in undefined behavior. 4537 ScalarEvolution::ExitLimit 4538 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4539 Value *ExitCond, 4540 BasicBlock *TBB, 4541 BasicBlock *FBB, 4542 bool IsSubExpr) { 4543 // Check if the controlling expression for this loop is an And or Or. 4544 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4545 if (BO->getOpcode() == Instruction::And) { 4546 // Recurse on the operands of the and. 4547 bool EitherMayExit = L->contains(TBB); 4548 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4549 IsSubExpr || EitherMayExit); 4550 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4551 IsSubExpr || EitherMayExit); 4552 const SCEV *BECount = getCouldNotCompute(); 4553 const SCEV *MaxBECount = getCouldNotCompute(); 4554 bool MustExit = false; 4555 if (EitherMayExit) { 4556 // Both conditions must be true for the loop to continue executing. 4557 // Choose the less conservative count. 4558 if (EL0.Exact == getCouldNotCompute() || 4559 EL1.Exact == getCouldNotCompute()) 4560 BECount = getCouldNotCompute(); 4561 else 4562 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4563 if (EL0.Max == getCouldNotCompute()) 4564 MaxBECount = EL1.Max; 4565 else if (EL1.Max == getCouldNotCompute()) 4566 MaxBECount = EL0.Max; 4567 else 4568 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4569 MustExit = EL0.MustExit || EL1.MustExit; 4570 } else { 4571 // Both conditions must be true at the same time for the loop to exit. 4572 // For now, be conservative. 4573 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4574 if (EL0.Max == EL1.Max) 4575 MaxBECount = EL0.Max; 4576 if (EL0.Exact == EL1.Exact) 4577 BECount = EL0.Exact; 4578 MustExit = EL0.MustExit && EL1.MustExit; 4579 } 4580 4581 return ExitLimit(BECount, MaxBECount, MustExit); 4582 } 4583 if (BO->getOpcode() == Instruction::Or) { 4584 // Recurse on the operands of the or. 4585 bool EitherMayExit = L->contains(FBB); 4586 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4587 IsSubExpr || EitherMayExit); 4588 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4589 IsSubExpr || EitherMayExit); 4590 const SCEV *BECount = getCouldNotCompute(); 4591 const SCEV *MaxBECount = getCouldNotCompute(); 4592 bool MustExit = false; 4593 if (EitherMayExit) { 4594 // Both conditions must be false for the loop to continue executing. 4595 // Choose the less conservative count. 4596 if (EL0.Exact == getCouldNotCompute() || 4597 EL1.Exact == getCouldNotCompute()) 4598 BECount = getCouldNotCompute(); 4599 else 4600 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4601 if (EL0.Max == getCouldNotCompute()) 4602 MaxBECount = EL1.Max; 4603 else if (EL1.Max == getCouldNotCompute()) 4604 MaxBECount = EL0.Max; 4605 else 4606 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4607 MustExit = EL0.MustExit || EL1.MustExit; 4608 } else { 4609 // Both conditions must be false at the same time for the loop to exit. 4610 // For now, be conservative. 4611 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4612 if (EL0.Max == EL1.Max) 4613 MaxBECount = EL0.Max; 4614 if (EL0.Exact == EL1.Exact) 4615 BECount = EL0.Exact; 4616 MustExit = EL0.MustExit && EL1.MustExit; 4617 } 4618 4619 return ExitLimit(BECount, MaxBECount, MustExit); 4620 } 4621 } 4622 4623 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4624 // Proceed to the next level to examine the icmp. 4625 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4626 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4627 4628 // Check for a constant condition. These are normally stripped out by 4629 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4630 // preserve the CFG and is temporarily leaving constant conditions 4631 // in place. 4632 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4633 if (L->contains(FBB) == !CI->getZExtValue()) 4634 // The backedge is always taken. 4635 return getCouldNotCompute(); 4636 else 4637 // The backedge is never taken. 4638 return getConstant(CI->getType(), 0); 4639 } 4640 4641 // If it's not an integer or pointer comparison then compute it the hard way. 4642 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4643 } 4644 4645 /// ComputeExitLimitFromICmp - Compute the number of times the 4646 /// backedge of the specified loop will execute if its exit condition 4647 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4648 ScalarEvolution::ExitLimit 4649 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4650 ICmpInst *ExitCond, 4651 BasicBlock *TBB, 4652 BasicBlock *FBB, 4653 bool IsSubExpr) { 4654 4655 // If the condition was exit on true, convert the condition to exit on false 4656 ICmpInst::Predicate Cond; 4657 if (!L->contains(FBB)) 4658 Cond = ExitCond->getPredicate(); 4659 else 4660 Cond = ExitCond->getInversePredicate(); 4661 4662 // Handle common loops like: for (X = "string"; *X; ++X) 4663 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4664 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4665 ExitLimit ItCnt = 4666 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4667 if (ItCnt.hasAnyInfo()) 4668 return ItCnt; 4669 } 4670 4671 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4672 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4673 4674 // Try to evaluate any dependencies out of the loop. 4675 LHS = getSCEVAtScope(LHS, L); 4676 RHS = getSCEVAtScope(RHS, L); 4677 4678 // At this point, we would like to compute how many iterations of the 4679 // loop the predicate will return true for these inputs. 4680 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4681 // If there is a loop-invariant, force it into the RHS. 4682 std::swap(LHS, RHS); 4683 Cond = ICmpInst::getSwappedPredicate(Cond); 4684 } 4685 4686 // Simplify the operands before analyzing them. 4687 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4688 4689 // If we have a comparison of a chrec against a constant, try to use value 4690 // ranges to answer this query. 4691 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4692 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4693 if (AddRec->getLoop() == L) { 4694 // Form the constant range. 4695 ConstantRange CompRange( 4696 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4697 4698 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4699 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4700 } 4701 4702 switch (Cond) { 4703 case ICmpInst::ICMP_NE: { // while (X != Y) 4704 // Convert to: while (X-Y != 0) 4705 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4706 if (EL.hasAnyInfo()) return EL; 4707 break; 4708 } 4709 case ICmpInst::ICMP_EQ: { // while (X == Y) 4710 // Convert to: while (X-Y == 0) 4711 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4712 if (EL.hasAnyInfo()) return EL; 4713 break; 4714 } 4715 case ICmpInst::ICMP_SLT: 4716 case ICmpInst::ICMP_ULT: { // while (X < Y) 4717 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 4718 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 4719 if (EL.hasAnyInfo()) return EL; 4720 break; 4721 } 4722 case ICmpInst::ICMP_SGT: 4723 case ICmpInst::ICMP_UGT: { // while (X > Y) 4724 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 4725 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 4726 if (EL.hasAnyInfo()) return EL; 4727 break; 4728 } 4729 default: 4730 #if 0 4731 dbgs() << "ComputeBackedgeTakenCount "; 4732 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4733 dbgs() << "[unsigned] "; 4734 dbgs() << *LHS << " " 4735 << Instruction::getOpcodeName(Instruction::ICmp) 4736 << " " << *RHS << "\n"; 4737 #endif 4738 break; 4739 } 4740 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4741 } 4742 4743 ScalarEvolution::ExitLimit 4744 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 4745 SwitchInst *Switch, 4746 BasicBlock *ExitingBlock, 4747 bool IsSubExpr) { 4748 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 4749 4750 // Give up if the exit is the default dest of a switch. 4751 if (Switch->getDefaultDest() == ExitingBlock) 4752 return getCouldNotCompute(); 4753 4754 assert(L->contains(Switch->getDefaultDest()) && 4755 "Default case must not exit the loop!"); 4756 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 4757 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 4758 4759 // while (X != Y) --> while (X-Y != 0) 4760 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4761 if (EL.hasAnyInfo()) 4762 return EL; 4763 4764 return getCouldNotCompute(); 4765 } 4766 4767 static ConstantInt * 4768 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4769 ScalarEvolution &SE) { 4770 const SCEV *InVal = SE.getConstant(C); 4771 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4772 assert(isa<SCEVConstant>(Val) && 4773 "Evaluation of SCEV at constant didn't fold correctly?"); 4774 return cast<SCEVConstant>(Val)->getValue(); 4775 } 4776 4777 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4778 /// 'icmp op load X, cst', try to see if we can compute the backedge 4779 /// execution count. 4780 ScalarEvolution::ExitLimit 4781 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4782 LoadInst *LI, 4783 Constant *RHS, 4784 const Loop *L, 4785 ICmpInst::Predicate predicate) { 4786 4787 if (LI->isVolatile()) return getCouldNotCompute(); 4788 4789 // Check to see if the loaded pointer is a getelementptr of a global. 4790 // TODO: Use SCEV instead of manually grubbing with GEPs. 4791 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4792 if (!GEP) return getCouldNotCompute(); 4793 4794 // Make sure that it is really a constant global we are gepping, with an 4795 // initializer, and make sure the first IDX is really 0. 4796 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4797 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4798 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4799 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4800 return getCouldNotCompute(); 4801 4802 // Okay, we allow one non-constant index into the GEP instruction. 4803 Value *VarIdx = 0; 4804 std::vector<Constant*> Indexes; 4805 unsigned VarIdxNum = 0; 4806 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4807 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4808 Indexes.push_back(CI); 4809 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4810 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4811 VarIdx = GEP->getOperand(i); 4812 VarIdxNum = i-2; 4813 Indexes.push_back(0); 4814 } 4815 4816 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4817 if (!VarIdx) 4818 return getCouldNotCompute(); 4819 4820 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4821 // Check to see if X is a loop variant variable value now. 4822 const SCEV *Idx = getSCEV(VarIdx); 4823 Idx = getSCEVAtScope(Idx, L); 4824 4825 // We can only recognize very limited forms of loop index expressions, in 4826 // particular, only affine AddRec's like {C1,+,C2}. 4827 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4828 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4829 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4830 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4831 return getCouldNotCompute(); 4832 4833 unsigned MaxSteps = MaxBruteForceIterations; 4834 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4835 ConstantInt *ItCst = ConstantInt::get( 4836 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4837 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4838 4839 // Form the GEP offset. 4840 Indexes[VarIdxNum] = Val; 4841 4842 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4843 Indexes); 4844 if (Result == 0) break; // Cannot compute! 4845 4846 // Evaluate the condition for this iteration. 4847 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4848 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4849 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4850 #if 0 4851 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4852 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4853 << "***\n"; 4854 #endif 4855 ++NumArrayLenItCounts; 4856 return getConstant(ItCst); // Found terminating iteration! 4857 } 4858 } 4859 return getCouldNotCompute(); 4860 } 4861 4862 4863 /// CanConstantFold - Return true if we can constant fold an instruction of the 4864 /// specified type, assuming that all operands were constants. 4865 static bool CanConstantFold(const Instruction *I) { 4866 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4867 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4868 isa<LoadInst>(I)) 4869 return true; 4870 4871 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4872 if (const Function *F = CI->getCalledFunction()) 4873 return canConstantFoldCallTo(F); 4874 return false; 4875 } 4876 4877 /// Determine whether this instruction can constant evolve within this loop 4878 /// assuming its operands can all constant evolve. 4879 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4880 // An instruction outside of the loop can't be derived from a loop PHI. 4881 if (!L->contains(I)) return false; 4882 4883 if (isa<PHINode>(I)) { 4884 if (L->getHeader() == I->getParent()) 4885 return true; 4886 else 4887 // We don't currently keep track of the control flow needed to evaluate 4888 // PHIs, so we cannot handle PHIs inside of loops. 4889 return false; 4890 } 4891 4892 // If we won't be able to constant fold this expression even if the operands 4893 // are constants, bail early. 4894 return CanConstantFold(I); 4895 } 4896 4897 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4898 /// recursing through each instruction operand until reaching a loop header phi. 4899 static PHINode * 4900 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4901 DenseMap<Instruction *, PHINode *> &PHIMap) { 4902 4903 // Otherwise, we can evaluate this instruction if all of its operands are 4904 // constant or derived from a PHI node themselves. 4905 PHINode *PHI = 0; 4906 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4907 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4908 4909 if (isa<Constant>(*OpI)) continue; 4910 4911 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4912 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4913 4914 PHINode *P = dyn_cast<PHINode>(OpInst); 4915 if (!P) 4916 // If this operand is already visited, reuse the prior result. 4917 // We may have P != PHI if this is the deepest point at which the 4918 // inconsistent paths meet. 4919 P = PHIMap.lookup(OpInst); 4920 if (!P) { 4921 // Recurse and memoize the results, whether a phi is found or not. 4922 // This recursive call invalidates pointers into PHIMap. 4923 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4924 PHIMap[OpInst] = P; 4925 } 4926 if (P == 0) return 0; // Not evolving from PHI 4927 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4928 PHI = P; 4929 } 4930 // This is a expression evolving from a constant PHI! 4931 return PHI; 4932 } 4933 4934 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4935 /// in the loop that V is derived from. We allow arbitrary operations along the 4936 /// way, but the operands of an operation must either be constants or a value 4937 /// derived from a constant PHI. If this expression does not fit with these 4938 /// constraints, return null. 4939 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4940 Instruction *I = dyn_cast<Instruction>(V); 4941 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4942 4943 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4944 return PN; 4945 } 4946 4947 // Record non-constant instructions contained by the loop. 4948 DenseMap<Instruction *, PHINode *> PHIMap; 4949 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4950 } 4951 4952 /// EvaluateExpression - Given an expression that passes the 4953 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4954 /// in the loop has the value PHIVal. If we can't fold this expression for some 4955 /// reason, return null. 4956 static Constant *EvaluateExpression(Value *V, const Loop *L, 4957 DenseMap<Instruction *, Constant *> &Vals, 4958 const DataLayout *DL, 4959 const TargetLibraryInfo *TLI) { 4960 // Convenient constant check, but redundant for recursive calls. 4961 if (Constant *C = dyn_cast<Constant>(V)) return C; 4962 Instruction *I = dyn_cast<Instruction>(V); 4963 if (!I) return 0; 4964 4965 if (Constant *C = Vals.lookup(I)) return C; 4966 4967 // An instruction inside the loop depends on a value outside the loop that we 4968 // weren't given a mapping for, or a value such as a call inside the loop. 4969 if (!canConstantEvolve(I, L)) return 0; 4970 4971 // An unmapped PHI can be due to a branch or another loop inside this loop, 4972 // or due to this not being the initial iteration through a loop where we 4973 // couldn't compute the evolution of this particular PHI last time. 4974 if (isa<PHINode>(I)) return 0; 4975 4976 std::vector<Constant*> Operands(I->getNumOperands()); 4977 4978 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4979 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4980 if (!Operand) { 4981 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4982 if (!Operands[i]) return 0; 4983 continue; 4984 } 4985 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 4986 Vals[Operand] = C; 4987 if (!C) return 0; 4988 Operands[i] = C; 4989 } 4990 4991 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4992 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4993 Operands[1], DL, TLI); 4994 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4995 if (!LI->isVolatile()) 4996 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 4997 } 4998 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 4999 TLI); 5000 } 5001 5002 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5003 /// in the header of its containing loop, we know the loop executes a 5004 /// constant number of times, and the PHI node is just a recurrence 5005 /// involving constants, fold it. 5006 Constant * 5007 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5008 const APInt &BEs, 5009 const Loop *L) { 5010 DenseMap<PHINode*, Constant*>::const_iterator I = 5011 ConstantEvolutionLoopExitValue.find(PN); 5012 if (I != ConstantEvolutionLoopExitValue.end()) 5013 return I->second; 5014 5015 if (BEs.ugt(MaxBruteForceIterations)) 5016 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 5017 5018 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5019 5020 DenseMap<Instruction *, Constant *> CurrentIterVals; 5021 BasicBlock *Header = L->getHeader(); 5022 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5023 5024 // Since the loop is canonicalized, the PHI node must have two entries. One 5025 // entry must be a constant (coming in from outside of the loop), and the 5026 // second must be derived from the same PHI. 5027 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5028 PHINode *PHI = 0; 5029 for (BasicBlock::iterator I = Header->begin(); 5030 (PHI = dyn_cast<PHINode>(I)); ++I) { 5031 Constant *StartCST = 5032 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5033 if (StartCST == 0) continue; 5034 CurrentIterVals[PHI] = StartCST; 5035 } 5036 if (!CurrentIterVals.count(PN)) 5037 return RetVal = 0; 5038 5039 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5040 5041 // Execute the loop symbolically to determine the exit value. 5042 if (BEs.getActiveBits() >= 32) 5043 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 5044 5045 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5046 unsigned IterationNum = 0; 5047 for (; ; ++IterationNum) { 5048 if (IterationNum == NumIterations) 5049 return RetVal = CurrentIterVals[PN]; // Got exit value! 5050 5051 // Compute the value of the PHIs for the next iteration. 5052 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5053 DenseMap<Instruction *, Constant *> NextIterVals; 5054 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5055 TLI); 5056 if (NextPHI == 0) 5057 return 0; // Couldn't evaluate! 5058 NextIterVals[PN] = NextPHI; 5059 5060 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5061 5062 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5063 // cease to be able to evaluate one of them or if they stop evolving, 5064 // because that doesn't necessarily prevent us from computing PN. 5065 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5066 for (DenseMap<Instruction *, Constant *>::const_iterator 5067 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5068 PHINode *PHI = dyn_cast<PHINode>(I->first); 5069 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5070 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5071 } 5072 // We use two distinct loops because EvaluateExpression may invalidate any 5073 // iterators into CurrentIterVals. 5074 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5075 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5076 PHINode *PHI = I->first; 5077 Constant *&NextPHI = NextIterVals[PHI]; 5078 if (!NextPHI) { // Not already computed. 5079 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5080 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5081 } 5082 if (NextPHI != I->second) 5083 StoppedEvolving = false; 5084 } 5085 5086 // If all entries in CurrentIterVals == NextIterVals then we can stop 5087 // iterating, the loop can't continue to change. 5088 if (StoppedEvolving) 5089 return RetVal = CurrentIterVals[PN]; 5090 5091 CurrentIterVals.swap(NextIterVals); 5092 } 5093 } 5094 5095 /// ComputeExitCountExhaustively - If the loop is known to execute a 5096 /// constant number of times (the condition evolves only from constants), 5097 /// try to evaluate a few iterations of the loop until we get the exit 5098 /// condition gets a value of ExitWhen (true or false). If we cannot 5099 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5100 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5101 Value *Cond, 5102 bool ExitWhen) { 5103 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5104 if (PN == 0) return getCouldNotCompute(); 5105 5106 // If the loop is canonicalized, the PHI will have exactly two entries. 5107 // That's the only form we support here. 5108 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5109 5110 DenseMap<Instruction *, Constant *> CurrentIterVals; 5111 BasicBlock *Header = L->getHeader(); 5112 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5113 5114 // One entry must be a constant (coming in from outside of the loop), and the 5115 // second must be derived from the same PHI. 5116 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5117 PHINode *PHI = 0; 5118 for (BasicBlock::iterator I = Header->begin(); 5119 (PHI = dyn_cast<PHINode>(I)); ++I) { 5120 Constant *StartCST = 5121 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5122 if (StartCST == 0) continue; 5123 CurrentIterVals[PHI] = StartCST; 5124 } 5125 if (!CurrentIterVals.count(PN)) 5126 return getCouldNotCompute(); 5127 5128 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5129 // the loop symbolically to determine when the condition gets a value of 5130 // "ExitWhen". 5131 5132 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5133 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5134 ConstantInt *CondVal = 5135 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5136 DL, TLI)); 5137 5138 // Couldn't symbolically evaluate. 5139 if (!CondVal) return getCouldNotCompute(); 5140 5141 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5142 ++NumBruteForceTripCountsComputed; 5143 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5144 } 5145 5146 // Update all the PHI nodes for the next iteration. 5147 DenseMap<Instruction *, Constant *> NextIterVals; 5148 5149 // Create a list of which PHIs we need to compute. We want to do this before 5150 // calling EvaluateExpression on them because that may invalidate iterators 5151 // into CurrentIterVals. 5152 SmallVector<PHINode *, 8> PHIsToCompute; 5153 for (DenseMap<Instruction *, Constant *>::const_iterator 5154 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5155 PHINode *PHI = dyn_cast<PHINode>(I->first); 5156 if (!PHI || PHI->getParent() != Header) continue; 5157 PHIsToCompute.push_back(PHI); 5158 } 5159 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5160 E = PHIsToCompute.end(); I != E; ++I) { 5161 PHINode *PHI = *I; 5162 Constant *&NextPHI = NextIterVals[PHI]; 5163 if (NextPHI) continue; // Already computed! 5164 5165 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5166 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5167 } 5168 CurrentIterVals.swap(NextIterVals); 5169 } 5170 5171 // Too many iterations were needed to evaluate. 5172 return getCouldNotCompute(); 5173 } 5174 5175 /// getSCEVAtScope - Return a SCEV expression for the specified value 5176 /// at the specified scope in the program. The L value specifies a loop 5177 /// nest to evaluate the expression at, where null is the top-level or a 5178 /// specified loop is immediately inside of the loop. 5179 /// 5180 /// This method can be used to compute the exit value for a variable defined 5181 /// in a loop by querying what the value will hold in the parent loop. 5182 /// 5183 /// In the case that a relevant loop exit value cannot be computed, the 5184 /// original value V is returned. 5185 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5186 // Check to see if we've folded this expression at this loop before. 5187 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5188 for (unsigned u = 0; u < Values.size(); u++) { 5189 if (Values[u].first == L) 5190 return Values[u].second ? Values[u].second : V; 5191 } 5192 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0))); 5193 // Otherwise compute it. 5194 const SCEV *C = computeSCEVAtScope(V, L); 5195 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5196 for (unsigned u = Values2.size(); u > 0; u--) { 5197 if (Values2[u - 1].first == L) { 5198 Values2[u - 1].second = C; 5199 break; 5200 } 5201 } 5202 return C; 5203 } 5204 5205 /// This builds up a Constant using the ConstantExpr interface. That way, we 5206 /// will return Constants for objects which aren't represented by a 5207 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5208 /// Returns NULL if the SCEV isn't representable as a Constant. 5209 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5210 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5211 case scCouldNotCompute: 5212 case scAddRecExpr: 5213 break; 5214 case scConstant: 5215 return cast<SCEVConstant>(V)->getValue(); 5216 case scUnknown: 5217 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5218 case scSignExtend: { 5219 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5220 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5221 return ConstantExpr::getSExt(CastOp, SS->getType()); 5222 break; 5223 } 5224 case scZeroExtend: { 5225 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5226 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5227 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5228 break; 5229 } 5230 case scTruncate: { 5231 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5232 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5233 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5234 break; 5235 } 5236 case scAddExpr: { 5237 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5238 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5239 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5240 unsigned AS = PTy->getAddressSpace(); 5241 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5242 C = ConstantExpr::getBitCast(C, DestPtrTy); 5243 } 5244 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5245 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5246 if (!C2) return 0; 5247 5248 // First pointer! 5249 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5250 unsigned AS = C2->getType()->getPointerAddressSpace(); 5251 std::swap(C, C2); 5252 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5253 // The offsets have been converted to bytes. We can add bytes to an 5254 // i8* by GEP with the byte count in the first index. 5255 C = ConstantExpr::getBitCast(C, DestPtrTy); 5256 } 5257 5258 // Don't bother trying to sum two pointers. We probably can't 5259 // statically compute a load that results from it anyway. 5260 if (C2->getType()->isPointerTy()) 5261 return 0; 5262 5263 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5264 if (PTy->getElementType()->isStructTy()) 5265 C2 = ConstantExpr::getIntegerCast( 5266 C2, Type::getInt32Ty(C->getContext()), true); 5267 C = ConstantExpr::getGetElementPtr(C, C2); 5268 } else 5269 C = ConstantExpr::getAdd(C, C2); 5270 } 5271 return C; 5272 } 5273 break; 5274 } 5275 case scMulExpr: { 5276 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5277 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5278 // Don't bother with pointers at all. 5279 if (C->getType()->isPointerTy()) return 0; 5280 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5281 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5282 if (!C2 || C2->getType()->isPointerTy()) return 0; 5283 C = ConstantExpr::getMul(C, C2); 5284 } 5285 return C; 5286 } 5287 break; 5288 } 5289 case scUDivExpr: { 5290 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5291 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5292 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5293 if (LHS->getType() == RHS->getType()) 5294 return ConstantExpr::getUDiv(LHS, RHS); 5295 break; 5296 } 5297 case scSMaxExpr: 5298 case scUMaxExpr: 5299 break; // TODO: smax, umax. 5300 } 5301 return 0; 5302 } 5303 5304 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5305 if (isa<SCEVConstant>(V)) return V; 5306 5307 // If this instruction is evolved from a constant-evolving PHI, compute the 5308 // exit value from the loop without using SCEVs. 5309 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5310 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5311 const Loop *LI = (*this->LI)[I->getParent()]; 5312 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5313 if (PHINode *PN = dyn_cast<PHINode>(I)) 5314 if (PN->getParent() == LI->getHeader()) { 5315 // Okay, there is no closed form solution for the PHI node. Check 5316 // to see if the loop that contains it has a known backedge-taken 5317 // count. If so, we may be able to force computation of the exit 5318 // value. 5319 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5320 if (const SCEVConstant *BTCC = 5321 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5322 // Okay, we know how many times the containing loop executes. If 5323 // this is a constant evolving PHI node, get the final value at 5324 // the specified iteration number. 5325 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5326 BTCC->getValue()->getValue(), 5327 LI); 5328 if (RV) return getSCEV(RV); 5329 } 5330 } 5331 5332 // Okay, this is an expression that we cannot symbolically evaluate 5333 // into a SCEV. Check to see if it's possible to symbolically evaluate 5334 // the arguments into constants, and if so, try to constant propagate the 5335 // result. This is particularly useful for computing loop exit values. 5336 if (CanConstantFold(I)) { 5337 SmallVector<Constant *, 4> Operands; 5338 bool MadeImprovement = false; 5339 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5340 Value *Op = I->getOperand(i); 5341 if (Constant *C = dyn_cast<Constant>(Op)) { 5342 Operands.push_back(C); 5343 continue; 5344 } 5345 5346 // If any of the operands is non-constant and if they are 5347 // non-integer and non-pointer, don't even try to analyze them 5348 // with scev techniques. 5349 if (!isSCEVable(Op->getType())) 5350 return V; 5351 5352 const SCEV *OrigV = getSCEV(Op); 5353 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5354 MadeImprovement |= OrigV != OpV; 5355 5356 Constant *C = BuildConstantFromSCEV(OpV); 5357 if (!C) return V; 5358 if (C->getType() != Op->getType()) 5359 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5360 Op->getType(), 5361 false), 5362 C, Op->getType()); 5363 Operands.push_back(C); 5364 } 5365 5366 // Check to see if getSCEVAtScope actually made an improvement. 5367 if (MadeImprovement) { 5368 Constant *C = 0; 5369 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5370 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5371 Operands[0], Operands[1], DL, 5372 TLI); 5373 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5374 if (!LI->isVolatile()) 5375 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5376 } else 5377 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5378 Operands, DL, TLI); 5379 if (!C) return V; 5380 return getSCEV(C); 5381 } 5382 } 5383 } 5384 5385 // This is some other type of SCEVUnknown, just return it. 5386 return V; 5387 } 5388 5389 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5390 // Avoid performing the look-up in the common case where the specified 5391 // expression has no loop-variant portions. 5392 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5393 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5394 if (OpAtScope != Comm->getOperand(i)) { 5395 // Okay, at least one of these operands is loop variant but might be 5396 // foldable. Build a new instance of the folded commutative expression. 5397 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5398 Comm->op_begin()+i); 5399 NewOps.push_back(OpAtScope); 5400 5401 for (++i; i != e; ++i) { 5402 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5403 NewOps.push_back(OpAtScope); 5404 } 5405 if (isa<SCEVAddExpr>(Comm)) 5406 return getAddExpr(NewOps); 5407 if (isa<SCEVMulExpr>(Comm)) 5408 return getMulExpr(NewOps); 5409 if (isa<SCEVSMaxExpr>(Comm)) 5410 return getSMaxExpr(NewOps); 5411 if (isa<SCEVUMaxExpr>(Comm)) 5412 return getUMaxExpr(NewOps); 5413 llvm_unreachable("Unknown commutative SCEV type!"); 5414 } 5415 } 5416 // If we got here, all operands are loop invariant. 5417 return Comm; 5418 } 5419 5420 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5421 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5422 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5423 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5424 return Div; // must be loop invariant 5425 return getUDivExpr(LHS, RHS); 5426 } 5427 5428 // If this is a loop recurrence for a loop that does not contain L, then we 5429 // are dealing with the final value computed by the loop. 5430 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5431 // First, attempt to evaluate each operand. 5432 // Avoid performing the look-up in the common case where the specified 5433 // expression has no loop-variant portions. 5434 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5435 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5436 if (OpAtScope == AddRec->getOperand(i)) 5437 continue; 5438 5439 // Okay, at least one of these operands is loop variant but might be 5440 // foldable. Build a new instance of the folded commutative expression. 5441 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5442 AddRec->op_begin()+i); 5443 NewOps.push_back(OpAtScope); 5444 for (++i; i != e; ++i) 5445 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5446 5447 const SCEV *FoldedRec = 5448 getAddRecExpr(NewOps, AddRec->getLoop(), 5449 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5450 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5451 // The addrec may be folded to a nonrecurrence, for example, if the 5452 // induction variable is multiplied by zero after constant folding. Go 5453 // ahead and return the folded value. 5454 if (!AddRec) 5455 return FoldedRec; 5456 break; 5457 } 5458 5459 // If the scope is outside the addrec's loop, evaluate it by using the 5460 // loop exit value of the addrec. 5461 if (!AddRec->getLoop()->contains(L)) { 5462 // To evaluate this recurrence, we need to know how many times the AddRec 5463 // loop iterates. Compute this now. 5464 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5465 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5466 5467 // Then, evaluate the AddRec. 5468 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5469 } 5470 5471 return AddRec; 5472 } 5473 5474 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5475 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5476 if (Op == Cast->getOperand()) 5477 return Cast; // must be loop invariant 5478 return getZeroExtendExpr(Op, Cast->getType()); 5479 } 5480 5481 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5482 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5483 if (Op == Cast->getOperand()) 5484 return Cast; // must be loop invariant 5485 return getSignExtendExpr(Op, Cast->getType()); 5486 } 5487 5488 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5489 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5490 if (Op == Cast->getOperand()) 5491 return Cast; // must be loop invariant 5492 return getTruncateExpr(Op, Cast->getType()); 5493 } 5494 5495 llvm_unreachable("Unknown SCEV type!"); 5496 } 5497 5498 /// getSCEVAtScope - This is a convenience function which does 5499 /// getSCEVAtScope(getSCEV(V), L). 5500 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5501 return getSCEVAtScope(getSCEV(V), L); 5502 } 5503 5504 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5505 /// following equation: 5506 /// 5507 /// A * X = B (mod N) 5508 /// 5509 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5510 /// A and B isn't important. 5511 /// 5512 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5513 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5514 ScalarEvolution &SE) { 5515 uint32_t BW = A.getBitWidth(); 5516 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5517 assert(A != 0 && "A must be non-zero."); 5518 5519 // 1. D = gcd(A, N) 5520 // 5521 // The gcd of A and N may have only one prime factor: 2. The number of 5522 // trailing zeros in A is its multiplicity 5523 uint32_t Mult2 = A.countTrailingZeros(); 5524 // D = 2^Mult2 5525 5526 // 2. Check if B is divisible by D. 5527 // 5528 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5529 // is not less than multiplicity of this prime factor for D. 5530 if (B.countTrailingZeros() < Mult2) 5531 return SE.getCouldNotCompute(); 5532 5533 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5534 // modulo (N / D). 5535 // 5536 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5537 // bit width during computations. 5538 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5539 APInt Mod(BW + 1, 0); 5540 Mod.setBit(BW - Mult2); // Mod = N / D 5541 APInt I = AD.multiplicativeInverse(Mod); 5542 5543 // 4. Compute the minimum unsigned root of the equation: 5544 // I * (B / D) mod (N / D) 5545 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5546 5547 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5548 // bits. 5549 return SE.getConstant(Result.trunc(BW)); 5550 } 5551 5552 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5553 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5554 /// might be the same) or two SCEVCouldNotCompute objects. 5555 /// 5556 static std::pair<const SCEV *,const SCEV *> 5557 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5558 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5559 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5560 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5561 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5562 5563 // We currently can only solve this if the coefficients are constants. 5564 if (!LC || !MC || !NC) { 5565 const SCEV *CNC = SE.getCouldNotCompute(); 5566 return std::make_pair(CNC, CNC); 5567 } 5568 5569 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5570 const APInt &L = LC->getValue()->getValue(); 5571 const APInt &M = MC->getValue()->getValue(); 5572 const APInt &N = NC->getValue()->getValue(); 5573 APInt Two(BitWidth, 2); 5574 APInt Four(BitWidth, 4); 5575 5576 { 5577 using namespace APIntOps; 5578 const APInt& C = L; 5579 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5580 // The B coefficient is M-N/2 5581 APInt B(M); 5582 B -= sdiv(N,Two); 5583 5584 // The A coefficient is N/2 5585 APInt A(N.sdiv(Two)); 5586 5587 // Compute the B^2-4ac term. 5588 APInt SqrtTerm(B); 5589 SqrtTerm *= B; 5590 SqrtTerm -= Four * (A * C); 5591 5592 if (SqrtTerm.isNegative()) { 5593 // The loop is provably infinite. 5594 const SCEV *CNC = SE.getCouldNotCompute(); 5595 return std::make_pair(CNC, CNC); 5596 } 5597 5598 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5599 // integer value or else APInt::sqrt() will assert. 5600 APInt SqrtVal(SqrtTerm.sqrt()); 5601 5602 // Compute the two solutions for the quadratic formula. 5603 // The divisions must be performed as signed divisions. 5604 APInt NegB(-B); 5605 APInt TwoA(A << 1); 5606 if (TwoA.isMinValue()) { 5607 const SCEV *CNC = SE.getCouldNotCompute(); 5608 return std::make_pair(CNC, CNC); 5609 } 5610 5611 LLVMContext &Context = SE.getContext(); 5612 5613 ConstantInt *Solution1 = 5614 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5615 ConstantInt *Solution2 = 5616 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5617 5618 return std::make_pair(SE.getConstant(Solution1), 5619 SE.getConstant(Solution2)); 5620 } // end APIntOps namespace 5621 } 5622 5623 /// HowFarToZero - Return the number of times a backedge comparing the specified 5624 /// value to zero will execute. If not computable, return CouldNotCompute. 5625 /// 5626 /// This is only used for loops with a "x != y" exit test. The exit condition is 5627 /// now expressed as a single expression, V = x-y. So the exit test is 5628 /// effectively V != 0. We know and take advantage of the fact that this 5629 /// expression only being used in a comparison by zero context. 5630 ScalarEvolution::ExitLimit 5631 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5632 // If the value is a constant 5633 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5634 // If the value is already zero, the branch will execute zero times. 5635 if (C->getValue()->isZero()) return C; 5636 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5637 } 5638 5639 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5640 if (!AddRec || AddRec->getLoop() != L) 5641 return getCouldNotCompute(); 5642 5643 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5644 // the quadratic equation to solve it. 5645 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5646 std::pair<const SCEV *,const SCEV *> Roots = 5647 SolveQuadraticEquation(AddRec, *this); 5648 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5649 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5650 if (R1 && R2) { 5651 #if 0 5652 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5653 << " sol#2: " << *R2 << "\n"; 5654 #endif 5655 // Pick the smallest positive root value. 5656 if (ConstantInt *CB = 5657 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5658 R1->getValue(), 5659 R2->getValue()))) { 5660 if (CB->getZExtValue() == false) 5661 std::swap(R1, R2); // R1 is the minimum root now. 5662 5663 // We can only use this value if the chrec ends up with an exact zero 5664 // value at this index. When solving for "X*X != 5", for example, we 5665 // should not accept a root of 2. 5666 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5667 if (Val->isZero()) 5668 return R1; // We found a quadratic root! 5669 } 5670 } 5671 return getCouldNotCompute(); 5672 } 5673 5674 // Otherwise we can only handle this if it is affine. 5675 if (!AddRec->isAffine()) 5676 return getCouldNotCompute(); 5677 5678 // If this is an affine expression, the execution count of this branch is 5679 // the minimum unsigned root of the following equation: 5680 // 5681 // Start + Step*N = 0 (mod 2^BW) 5682 // 5683 // equivalent to: 5684 // 5685 // Step*N = -Start (mod 2^BW) 5686 // 5687 // where BW is the common bit width of Start and Step. 5688 5689 // Get the initial value for the loop. 5690 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5691 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5692 5693 // For now we handle only constant steps. 5694 // 5695 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5696 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5697 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5698 // We have not yet seen any such cases. 5699 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5700 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5701 return getCouldNotCompute(); 5702 5703 // For positive steps (counting up until unsigned overflow): 5704 // N = -Start/Step (as unsigned) 5705 // For negative steps (counting down to zero): 5706 // N = Start/-Step 5707 // First compute the unsigned distance from zero in the direction of Step. 5708 bool CountDown = StepC->getValue()->getValue().isNegative(); 5709 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5710 5711 // Handle unitary steps, which cannot wraparound. 5712 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5713 // N = Distance (as unsigned) 5714 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5715 ConstantRange CR = getUnsignedRange(Start); 5716 const SCEV *MaxBECount; 5717 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5718 // When counting up, the worst starting value is 1, not 0. 5719 MaxBECount = CR.getUnsignedMax().isMinValue() 5720 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5721 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5722 else 5723 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5724 : -CR.getUnsignedMin()); 5725 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); 5726 } 5727 5728 // If the recurrence is known not to wraparound, unsigned divide computes the 5729 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5730 // that the value will either become zero (and thus the loop terminates), that 5731 // the loop will terminate through some other exit condition first, or that 5732 // the loop has undefined behavior. This means we can't "miss" the exit 5733 // value, even with nonunit stride, and exit later via the same branch. Note 5734 // that we can skip this exit if loop later exits via a different 5735 // branch. Hence MustExit=false. 5736 // 5737 // This is only valid for expressions that directly compute the loop exit. It 5738 // is invalid for subexpressions in which the loop may exit through this 5739 // branch even if this subexpression is false. In that case, the trip count 5740 // computed by this udiv could be smaller than the number of well-defined 5741 // iterations. 5742 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5743 const SCEV *Exact = 5744 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5745 return ExitLimit(Exact, Exact, /*MustExit=*/false); 5746 } 5747 // Then, try to solve the above equation provided that Start is constant. 5748 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5749 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5750 -StartC->getValue()->getValue(), 5751 *this); 5752 return getCouldNotCompute(); 5753 } 5754 5755 /// HowFarToNonZero - Return the number of times a backedge checking the 5756 /// specified value for nonzero will execute. If not computable, return 5757 /// CouldNotCompute 5758 ScalarEvolution::ExitLimit 5759 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5760 // Loops that look like: while (X == 0) are very strange indeed. We don't 5761 // handle them yet except for the trivial case. This could be expanded in the 5762 // future as needed. 5763 5764 // If the value is a constant, check to see if it is known to be non-zero 5765 // already. If so, the backedge will execute zero times. 5766 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5767 if (!C->getValue()->isNullValue()) 5768 return getConstant(C->getType(), 0); 5769 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5770 } 5771 5772 // We could implement others, but I really doubt anyone writes loops like 5773 // this, and if they did, they would already be constant folded. 5774 return getCouldNotCompute(); 5775 } 5776 5777 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5778 /// (which may not be an immediate predecessor) which has exactly one 5779 /// successor from which BB is reachable, or null if no such block is 5780 /// found. 5781 /// 5782 std::pair<BasicBlock *, BasicBlock *> 5783 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5784 // If the block has a unique predecessor, then there is no path from the 5785 // predecessor to the block that does not go through the direct edge 5786 // from the predecessor to the block. 5787 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5788 return std::make_pair(Pred, BB); 5789 5790 // A loop's header is defined to be a block that dominates the loop. 5791 // If the header has a unique predecessor outside the loop, it must be 5792 // a block that has exactly one successor that can reach the loop. 5793 if (Loop *L = LI->getLoopFor(BB)) 5794 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5795 5796 return std::pair<BasicBlock *, BasicBlock *>(); 5797 } 5798 5799 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5800 /// testing whether two expressions are equal, however for the purposes of 5801 /// looking for a condition guarding a loop, it can be useful to be a little 5802 /// more general, since a front-end may have replicated the controlling 5803 /// expression. 5804 /// 5805 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5806 // Quick check to see if they are the same SCEV. 5807 if (A == B) return true; 5808 5809 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5810 // two different instructions with the same value. Check for this case. 5811 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5812 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5813 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5814 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5815 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5816 return true; 5817 5818 // Otherwise assume they may have a different value. 5819 return false; 5820 } 5821 5822 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5823 /// predicate Pred. Return true iff any changes were made. 5824 /// 5825 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5826 const SCEV *&LHS, const SCEV *&RHS, 5827 unsigned Depth) { 5828 bool Changed = false; 5829 5830 // If we hit the max recursion limit bail out. 5831 if (Depth >= 3) 5832 return false; 5833 5834 // Canonicalize a constant to the right side. 5835 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5836 // Check for both operands constant. 5837 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5838 if (ConstantExpr::getICmp(Pred, 5839 LHSC->getValue(), 5840 RHSC->getValue())->isNullValue()) 5841 goto trivially_false; 5842 else 5843 goto trivially_true; 5844 } 5845 // Otherwise swap the operands to put the constant on the right. 5846 std::swap(LHS, RHS); 5847 Pred = ICmpInst::getSwappedPredicate(Pred); 5848 Changed = true; 5849 } 5850 5851 // If we're comparing an addrec with a value which is loop-invariant in the 5852 // addrec's loop, put the addrec on the left. Also make a dominance check, 5853 // as both operands could be addrecs loop-invariant in each other's loop. 5854 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5855 const Loop *L = AR->getLoop(); 5856 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5857 std::swap(LHS, RHS); 5858 Pred = ICmpInst::getSwappedPredicate(Pred); 5859 Changed = true; 5860 } 5861 } 5862 5863 // If there's a constant operand, canonicalize comparisons with boundary 5864 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5865 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5866 const APInt &RA = RC->getValue()->getValue(); 5867 switch (Pred) { 5868 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5869 case ICmpInst::ICMP_EQ: 5870 case ICmpInst::ICMP_NE: 5871 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5872 if (!RA) 5873 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5874 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5875 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5876 ME->getOperand(0)->isAllOnesValue()) { 5877 RHS = AE->getOperand(1); 5878 LHS = ME->getOperand(1); 5879 Changed = true; 5880 } 5881 break; 5882 case ICmpInst::ICMP_UGE: 5883 if ((RA - 1).isMinValue()) { 5884 Pred = ICmpInst::ICMP_NE; 5885 RHS = getConstant(RA - 1); 5886 Changed = true; 5887 break; 5888 } 5889 if (RA.isMaxValue()) { 5890 Pred = ICmpInst::ICMP_EQ; 5891 Changed = true; 5892 break; 5893 } 5894 if (RA.isMinValue()) goto trivially_true; 5895 5896 Pred = ICmpInst::ICMP_UGT; 5897 RHS = getConstant(RA - 1); 5898 Changed = true; 5899 break; 5900 case ICmpInst::ICMP_ULE: 5901 if ((RA + 1).isMaxValue()) { 5902 Pred = ICmpInst::ICMP_NE; 5903 RHS = getConstant(RA + 1); 5904 Changed = true; 5905 break; 5906 } 5907 if (RA.isMinValue()) { 5908 Pred = ICmpInst::ICMP_EQ; 5909 Changed = true; 5910 break; 5911 } 5912 if (RA.isMaxValue()) goto trivially_true; 5913 5914 Pred = ICmpInst::ICMP_ULT; 5915 RHS = getConstant(RA + 1); 5916 Changed = true; 5917 break; 5918 case ICmpInst::ICMP_SGE: 5919 if ((RA - 1).isMinSignedValue()) { 5920 Pred = ICmpInst::ICMP_NE; 5921 RHS = getConstant(RA - 1); 5922 Changed = true; 5923 break; 5924 } 5925 if (RA.isMaxSignedValue()) { 5926 Pred = ICmpInst::ICMP_EQ; 5927 Changed = true; 5928 break; 5929 } 5930 if (RA.isMinSignedValue()) goto trivially_true; 5931 5932 Pred = ICmpInst::ICMP_SGT; 5933 RHS = getConstant(RA - 1); 5934 Changed = true; 5935 break; 5936 case ICmpInst::ICMP_SLE: 5937 if ((RA + 1).isMaxSignedValue()) { 5938 Pred = ICmpInst::ICMP_NE; 5939 RHS = getConstant(RA + 1); 5940 Changed = true; 5941 break; 5942 } 5943 if (RA.isMinSignedValue()) { 5944 Pred = ICmpInst::ICMP_EQ; 5945 Changed = true; 5946 break; 5947 } 5948 if (RA.isMaxSignedValue()) goto trivially_true; 5949 5950 Pred = ICmpInst::ICMP_SLT; 5951 RHS = getConstant(RA + 1); 5952 Changed = true; 5953 break; 5954 case ICmpInst::ICMP_UGT: 5955 if (RA.isMinValue()) { 5956 Pred = ICmpInst::ICMP_NE; 5957 Changed = true; 5958 break; 5959 } 5960 if ((RA + 1).isMaxValue()) { 5961 Pred = ICmpInst::ICMP_EQ; 5962 RHS = getConstant(RA + 1); 5963 Changed = true; 5964 break; 5965 } 5966 if (RA.isMaxValue()) goto trivially_false; 5967 break; 5968 case ICmpInst::ICMP_ULT: 5969 if (RA.isMaxValue()) { 5970 Pred = ICmpInst::ICMP_NE; 5971 Changed = true; 5972 break; 5973 } 5974 if ((RA - 1).isMinValue()) { 5975 Pred = ICmpInst::ICMP_EQ; 5976 RHS = getConstant(RA - 1); 5977 Changed = true; 5978 break; 5979 } 5980 if (RA.isMinValue()) goto trivially_false; 5981 break; 5982 case ICmpInst::ICMP_SGT: 5983 if (RA.isMinSignedValue()) { 5984 Pred = ICmpInst::ICMP_NE; 5985 Changed = true; 5986 break; 5987 } 5988 if ((RA + 1).isMaxSignedValue()) { 5989 Pred = ICmpInst::ICMP_EQ; 5990 RHS = getConstant(RA + 1); 5991 Changed = true; 5992 break; 5993 } 5994 if (RA.isMaxSignedValue()) goto trivially_false; 5995 break; 5996 case ICmpInst::ICMP_SLT: 5997 if (RA.isMaxSignedValue()) { 5998 Pred = ICmpInst::ICMP_NE; 5999 Changed = true; 6000 break; 6001 } 6002 if ((RA - 1).isMinSignedValue()) { 6003 Pred = ICmpInst::ICMP_EQ; 6004 RHS = getConstant(RA - 1); 6005 Changed = true; 6006 break; 6007 } 6008 if (RA.isMinSignedValue()) goto trivially_false; 6009 break; 6010 } 6011 } 6012 6013 // Check for obvious equality. 6014 if (HasSameValue(LHS, RHS)) { 6015 if (ICmpInst::isTrueWhenEqual(Pred)) 6016 goto trivially_true; 6017 if (ICmpInst::isFalseWhenEqual(Pred)) 6018 goto trivially_false; 6019 } 6020 6021 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6022 // adding or subtracting 1 from one of the operands. 6023 switch (Pred) { 6024 case ICmpInst::ICMP_SLE: 6025 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6026 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6027 SCEV::FlagNSW); 6028 Pred = ICmpInst::ICMP_SLT; 6029 Changed = true; 6030 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6031 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6032 SCEV::FlagNSW); 6033 Pred = ICmpInst::ICMP_SLT; 6034 Changed = true; 6035 } 6036 break; 6037 case ICmpInst::ICMP_SGE: 6038 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6039 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6040 SCEV::FlagNSW); 6041 Pred = ICmpInst::ICMP_SGT; 6042 Changed = true; 6043 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6044 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6045 SCEV::FlagNSW); 6046 Pred = ICmpInst::ICMP_SGT; 6047 Changed = true; 6048 } 6049 break; 6050 case ICmpInst::ICMP_ULE: 6051 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6052 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6053 SCEV::FlagNUW); 6054 Pred = ICmpInst::ICMP_ULT; 6055 Changed = true; 6056 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6057 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6058 SCEV::FlagNUW); 6059 Pred = ICmpInst::ICMP_ULT; 6060 Changed = true; 6061 } 6062 break; 6063 case ICmpInst::ICMP_UGE: 6064 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6065 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6066 SCEV::FlagNUW); 6067 Pred = ICmpInst::ICMP_UGT; 6068 Changed = true; 6069 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6070 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6071 SCEV::FlagNUW); 6072 Pred = ICmpInst::ICMP_UGT; 6073 Changed = true; 6074 } 6075 break; 6076 default: 6077 break; 6078 } 6079 6080 // TODO: More simplifications are possible here. 6081 6082 // Recursively simplify until we either hit a recursion limit or nothing 6083 // changes. 6084 if (Changed) 6085 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6086 6087 return Changed; 6088 6089 trivially_true: 6090 // Return 0 == 0. 6091 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6092 Pred = ICmpInst::ICMP_EQ; 6093 return true; 6094 6095 trivially_false: 6096 // Return 0 != 0. 6097 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6098 Pred = ICmpInst::ICMP_NE; 6099 return true; 6100 } 6101 6102 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6103 return getSignedRange(S).getSignedMax().isNegative(); 6104 } 6105 6106 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6107 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6108 } 6109 6110 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6111 return !getSignedRange(S).getSignedMin().isNegative(); 6112 } 6113 6114 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6115 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6116 } 6117 6118 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6119 return isKnownNegative(S) || isKnownPositive(S); 6120 } 6121 6122 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6123 const SCEV *LHS, const SCEV *RHS) { 6124 // Canonicalize the inputs first. 6125 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6126 6127 // If LHS or RHS is an addrec, check to see if the condition is true in 6128 // every iteration of the loop. 6129 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 6130 if (isLoopEntryGuardedByCond( 6131 AR->getLoop(), Pred, AR->getStart(), RHS) && 6132 isLoopBackedgeGuardedByCond( 6133 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 6134 return true; 6135 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 6136 if (isLoopEntryGuardedByCond( 6137 AR->getLoop(), Pred, LHS, AR->getStart()) && 6138 isLoopBackedgeGuardedByCond( 6139 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 6140 return true; 6141 6142 // Otherwise see what can be done with known constant ranges. 6143 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6144 } 6145 6146 bool 6147 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6148 const SCEV *LHS, const SCEV *RHS) { 6149 if (HasSameValue(LHS, RHS)) 6150 return ICmpInst::isTrueWhenEqual(Pred); 6151 6152 // This code is split out from isKnownPredicate because it is called from 6153 // within isLoopEntryGuardedByCond. 6154 switch (Pred) { 6155 default: 6156 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6157 case ICmpInst::ICMP_SGT: 6158 Pred = ICmpInst::ICMP_SLT; 6159 std::swap(LHS, RHS); 6160 case ICmpInst::ICMP_SLT: { 6161 ConstantRange LHSRange = getSignedRange(LHS); 6162 ConstantRange RHSRange = getSignedRange(RHS); 6163 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6164 return true; 6165 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6166 return false; 6167 break; 6168 } 6169 case ICmpInst::ICMP_SGE: 6170 Pred = ICmpInst::ICMP_SLE; 6171 std::swap(LHS, RHS); 6172 case ICmpInst::ICMP_SLE: { 6173 ConstantRange LHSRange = getSignedRange(LHS); 6174 ConstantRange RHSRange = getSignedRange(RHS); 6175 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6176 return true; 6177 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6178 return false; 6179 break; 6180 } 6181 case ICmpInst::ICMP_UGT: 6182 Pred = ICmpInst::ICMP_ULT; 6183 std::swap(LHS, RHS); 6184 case ICmpInst::ICMP_ULT: { 6185 ConstantRange LHSRange = getUnsignedRange(LHS); 6186 ConstantRange RHSRange = getUnsignedRange(RHS); 6187 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6188 return true; 6189 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6190 return false; 6191 break; 6192 } 6193 case ICmpInst::ICMP_UGE: 6194 Pred = ICmpInst::ICMP_ULE; 6195 std::swap(LHS, RHS); 6196 case ICmpInst::ICMP_ULE: { 6197 ConstantRange LHSRange = getUnsignedRange(LHS); 6198 ConstantRange RHSRange = getUnsignedRange(RHS); 6199 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6200 return true; 6201 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6202 return false; 6203 break; 6204 } 6205 case ICmpInst::ICMP_NE: { 6206 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6207 return true; 6208 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6209 return true; 6210 6211 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6212 if (isKnownNonZero(Diff)) 6213 return true; 6214 break; 6215 } 6216 case ICmpInst::ICMP_EQ: 6217 // The check at the top of the function catches the case where 6218 // the values are known to be equal. 6219 break; 6220 } 6221 return false; 6222 } 6223 6224 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6225 /// protected by a conditional between LHS and RHS. This is used to 6226 /// to eliminate casts. 6227 bool 6228 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6229 ICmpInst::Predicate Pred, 6230 const SCEV *LHS, const SCEV *RHS) { 6231 // Interpret a null as meaning no loop, where there is obviously no guard 6232 // (interprocedural conditions notwithstanding). 6233 if (!L) return true; 6234 6235 BasicBlock *Latch = L->getLoopLatch(); 6236 if (!Latch) 6237 return false; 6238 6239 BranchInst *LoopContinuePredicate = 6240 dyn_cast<BranchInst>(Latch->getTerminator()); 6241 if (!LoopContinuePredicate || 6242 LoopContinuePredicate->isUnconditional()) 6243 return false; 6244 6245 return isImpliedCond(Pred, LHS, RHS, 6246 LoopContinuePredicate->getCondition(), 6247 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6248 } 6249 6250 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6251 /// by a conditional between LHS and RHS. This is used to help avoid max 6252 /// expressions in loop trip counts, and to eliminate casts. 6253 bool 6254 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6255 ICmpInst::Predicate Pred, 6256 const SCEV *LHS, const SCEV *RHS) { 6257 // Interpret a null as meaning no loop, where there is obviously no guard 6258 // (interprocedural conditions notwithstanding). 6259 if (!L) return false; 6260 6261 // Starting at the loop predecessor, climb up the predecessor chain, as long 6262 // as there are predecessors that can be found that have unique successors 6263 // leading to the original header. 6264 for (std::pair<BasicBlock *, BasicBlock *> 6265 Pair(L->getLoopPredecessor(), L->getHeader()); 6266 Pair.first; 6267 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6268 6269 BranchInst *LoopEntryPredicate = 6270 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6271 if (!LoopEntryPredicate || 6272 LoopEntryPredicate->isUnconditional()) 6273 continue; 6274 6275 if (isImpliedCond(Pred, LHS, RHS, 6276 LoopEntryPredicate->getCondition(), 6277 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6278 return true; 6279 } 6280 6281 return false; 6282 } 6283 6284 /// RAII wrapper to prevent recursive application of isImpliedCond. 6285 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6286 /// currently evaluating isImpliedCond. 6287 struct MarkPendingLoopPredicate { 6288 Value *Cond; 6289 DenseSet<Value*> &LoopPreds; 6290 bool Pending; 6291 6292 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6293 : Cond(C), LoopPreds(LP) { 6294 Pending = !LoopPreds.insert(Cond).second; 6295 } 6296 ~MarkPendingLoopPredicate() { 6297 if (!Pending) 6298 LoopPreds.erase(Cond); 6299 } 6300 }; 6301 6302 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6303 /// and RHS is true whenever the given Cond value evaluates to true. 6304 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6305 const SCEV *LHS, const SCEV *RHS, 6306 Value *FoundCondValue, 6307 bool Inverse) { 6308 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6309 if (Mark.Pending) 6310 return false; 6311 6312 // Recursively handle And and Or conditions. 6313 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6314 if (BO->getOpcode() == Instruction::And) { 6315 if (!Inverse) 6316 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6317 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6318 } else if (BO->getOpcode() == Instruction::Or) { 6319 if (Inverse) 6320 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6321 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6322 } 6323 } 6324 6325 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6326 if (!ICI) return false; 6327 6328 // Bail if the ICmp's operands' types are wider than the needed type 6329 // before attempting to call getSCEV on them. This avoids infinite 6330 // recursion, since the analysis of widening casts can require loop 6331 // exit condition information for overflow checking, which would 6332 // lead back here. 6333 if (getTypeSizeInBits(LHS->getType()) < 6334 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6335 return false; 6336 6337 // Now that we found a conditional branch that dominates the loop or controls 6338 // the loop latch. Check to see if it is the comparison we are looking for. 6339 ICmpInst::Predicate FoundPred; 6340 if (Inverse) 6341 FoundPred = ICI->getInversePredicate(); 6342 else 6343 FoundPred = ICI->getPredicate(); 6344 6345 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6346 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6347 6348 // Balance the types. The case where FoundLHS' type is wider than 6349 // LHS' type is checked for above. 6350 if (getTypeSizeInBits(LHS->getType()) > 6351 getTypeSizeInBits(FoundLHS->getType())) { 6352 if (CmpInst::isSigned(FoundPred)) { 6353 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6354 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6355 } else { 6356 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6357 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6358 } 6359 } 6360 6361 // Canonicalize the query to match the way instcombine will have 6362 // canonicalized the comparison. 6363 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6364 if (LHS == RHS) 6365 return CmpInst::isTrueWhenEqual(Pred); 6366 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6367 if (FoundLHS == FoundRHS) 6368 return CmpInst::isFalseWhenEqual(FoundPred); 6369 6370 // Check to see if we can make the LHS or RHS match. 6371 if (LHS == FoundRHS || RHS == FoundLHS) { 6372 if (isa<SCEVConstant>(RHS)) { 6373 std::swap(FoundLHS, FoundRHS); 6374 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6375 } else { 6376 std::swap(LHS, RHS); 6377 Pred = ICmpInst::getSwappedPredicate(Pred); 6378 } 6379 } 6380 6381 // Check whether the found predicate is the same as the desired predicate. 6382 if (FoundPred == Pred) 6383 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6384 6385 // Check whether swapping the found predicate makes it the same as the 6386 // desired predicate. 6387 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6388 if (isa<SCEVConstant>(RHS)) 6389 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6390 else 6391 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6392 RHS, LHS, FoundLHS, FoundRHS); 6393 } 6394 6395 // Check whether the actual condition is beyond sufficient. 6396 if (FoundPred == ICmpInst::ICMP_EQ) 6397 if (ICmpInst::isTrueWhenEqual(Pred)) 6398 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6399 return true; 6400 if (Pred == ICmpInst::ICMP_NE) 6401 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6402 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6403 return true; 6404 6405 // Otherwise assume the worst. 6406 return false; 6407 } 6408 6409 /// isImpliedCondOperands - Test whether the condition described by Pred, 6410 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6411 /// and FoundRHS is true. 6412 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6413 const SCEV *LHS, const SCEV *RHS, 6414 const SCEV *FoundLHS, 6415 const SCEV *FoundRHS) { 6416 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6417 FoundLHS, FoundRHS) || 6418 // ~x < ~y --> x > y 6419 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6420 getNotSCEV(FoundRHS), 6421 getNotSCEV(FoundLHS)); 6422 } 6423 6424 /// isImpliedCondOperandsHelper - Test whether the condition described by 6425 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6426 /// FoundLHS, and FoundRHS is true. 6427 bool 6428 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6429 const SCEV *LHS, const SCEV *RHS, 6430 const SCEV *FoundLHS, 6431 const SCEV *FoundRHS) { 6432 switch (Pred) { 6433 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6434 case ICmpInst::ICMP_EQ: 6435 case ICmpInst::ICMP_NE: 6436 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6437 return true; 6438 break; 6439 case ICmpInst::ICMP_SLT: 6440 case ICmpInst::ICMP_SLE: 6441 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6442 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6443 return true; 6444 break; 6445 case ICmpInst::ICMP_SGT: 6446 case ICmpInst::ICMP_SGE: 6447 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6448 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6449 return true; 6450 break; 6451 case ICmpInst::ICMP_ULT: 6452 case ICmpInst::ICMP_ULE: 6453 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6454 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6455 return true; 6456 break; 6457 case ICmpInst::ICMP_UGT: 6458 case ICmpInst::ICMP_UGE: 6459 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6460 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6461 return true; 6462 break; 6463 } 6464 6465 return false; 6466 } 6467 6468 // Verify if an linear IV with positive stride can overflow when in a 6469 // less-than comparison, knowing the invariant term of the comparison, the 6470 // stride and the knowledge of NSW/NUW flags on the recurrence. 6471 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 6472 bool IsSigned, bool NoWrap) { 6473 if (NoWrap) return false; 6474 6475 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6476 const SCEV *One = getConstant(Stride->getType(), 1); 6477 6478 if (IsSigned) { 6479 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 6480 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 6481 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6482 .getSignedMax(); 6483 6484 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 6485 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 6486 } 6487 6488 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 6489 APInt MaxValue = APInt::getMaxValue(BitWidth); 6490 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6491 .getUnsignedMax(); 6492 6493 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 6494 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 6495 } 6496 6497 // Verify if an linear IV with negative stride can overflow when in a 6498 // greater-than comparison, knowing the invariant term of the comparison, 6499 // the stride and the knowledge of NSW/NUW flags on the recurrence. 6500 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 6501 bool IsSigned, bool NoWrap) { 6502 if (NoWrap) return false; 6503 6504 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6505 const SCEV *One = getConstant(Stride->getType(), 1); 6506 6507 if (IsSigned) { 6508 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 6509 APInt MinValue = APInt::getSignedMinValue(BitWidth); 6510 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6511 .getSignedMax(); 6512 6513 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 6514 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 6515 } 6516 6517 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 6518 APInt MinValue = APInt::getMinValue(BitWidth); 6519 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6520 .getUnsignedMax(); 6521 6522 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 6523 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 6524 } 6525 6526 // Compute the backedge taken count knowing the interval difference, the 6527 // stride and presence of the equality in the comparison. 6528 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 6529 bool Equality) { 6530 const SCEV *One = getConstant(Step->getType(), 1); 6531 Delta = Equality ? getAddExpr(Delta, Step) 6532 : getAddExpr(Delta, getMinusSCEV(Step, One)); 6533 return getUDivExpr(Delta, Step); 6534 } 6535 6536 /// HowManyLessThans - Return the number of times a backedge containing the 6537 /// specified less-than comparison will execute. If not computable, return 6538 /// CouldNotCompute. 6539 /// 6540 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6541 /// control the branch. In this case, we can only compute an iteration count for 6542 /// a subexpression that cannot overflow before evaluating true. 6543 ScalarEvolution::ExitLimit 6544 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6545 const Loop *L, bool IsSigned, 6546 bool IsSubExpr) { 6547 // We handle only IV < Invariant 6548 if (!isLoopInvariant(RHS, L)) 6549 return getCouldNotCompute(); 6550 6551 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6552 6553 // Avoid weird loops 6554 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6555 return getCouldNotCompute(); 6556 6557 bool NoWrap = !IsSubExpr && 6558 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6559 6560 const SCEV *Stride = IV->getStepRecurrence(*this); 6561 6562 // Avoid negative or zero stride values 6563 if (!isKnownPositive(Stride)) 6564 return getCouldNotCompute(); 6565 6566 // Avoid proven overflow cases: this will ensure that the backedge taken count 6567 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6568 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6569 // behaviors like the case of C language. 6570 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 6571 return getCouldNotCompute(); 6572 6573 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 6574 : ICmpInst::ICMP_ULT; 6575 const SCEV *Start = IV->getStart(); 6576 const SCEV *End = RHS; 6577 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 6578 End = IsSigned ? getSMaxExpr(RHS, Start) 6579 : getUMaxExpr(RHS, Start); 6580 6581 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 6582 6583 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 6584 : getUnsignedRange(Start).getUnsignedMin(); 6585 6586 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6587 : getUnsignedRange(Stride).getUnsignedMin(); 6588 6589 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6590 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 6591 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 6592 6593 // Although End can be a MAX expression we estimate MaxEnd considering only 6594 // the case End = RHS. This is safe because in the other case (End - Start) 6595 // is zero, leading to a zero maximum backedge taken count. 6596 APInt MaxEnd = 6597 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 6598 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 6599 6600 const SCEV *MaxBECount = getCouldNotCompute(); 6601 if (isa<SCEVConstant>(BECount)) 6602 MaxBECount = BECount; 6603 else 6604 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 6605 getConstant(MinStride), false); 6606 6607 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6608 MaxBECount = BECount; 6609 6610 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6611 } 6612 6613 ScalarEvolution::ExitLimit 6614 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 6615 const Loop *L, bool IsSigned, 6616 bool IsSubExpr) { 6617 // We handle only IV > Invariant 6618 if (!isLoopInvariant(RHS, L)) 6619 return getCouldNotCompute(); 6620 6621 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6622 6623 // Avoid weird loops 6624 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6625 return getCouldNotCompute(); 6626 6627 bool NoWrap = !IsSubExpr && 6628 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6629 6630 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 6631 6632 // Avoid negative or zero stride values 6633 if (!isKnownPositive(Stride)) 6634 return getCouldNotCompute(); 6635 6636 // Avoid proven overflow cases: this will ensure that the backedge taken count 6637 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6638 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6639 // behaviors like the case of C language. 6640 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 6641 return getCouldNotCompute(); 6642 6643 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 6644 : ICmpInst::ICMP_UGT; 6645 6646 const SCEV *Start = IV->getStart(); 6647 const SCEV *End = RHS; 6648 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 6649 End = IsSigned ? getSMinExpr(RHS, Start) 6650 : getUMinExpr(RHS, Start); 6651 6652 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 6653 6654 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 6655 : getUnsignedRange(Start).getUnsignedMax(); 6656 6657 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6658 : getUnsignedRange(Stride).getUnsignedMin(); 6659 6660 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6661 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 6662 : APInt::getMinValue(BitWidth) + (MinStride - 1); 6663 6664 // Although End can be a MIN expression we estimate MinEnd considering only 6665 // the case End = RHS. This is safe because in the other case (Start - End) 6666 // is zero, leading to a zero maximum backedge taken count. 6667 APInt MinEnd = 6668 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 6669 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 6670 6671 6672 const SCEV *MaxBECount = getCouldNotCompute(); 6673 if (isa<SCEVConstant>(BECount)) 6674 MaxBECount = BECount; 6675 else 6676 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 6677 getConstant(MinStride), false); 6678 6679 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6680 MaxBECount = BECount; 6681 6682 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6683 } 6684 6685 /// getNumIterationsInRange - Return the number of iterations of this loop that 6686 /// produce values in the specified constant range. Another way of looking at 6687 /// this is that it returns the first iteration number where the value is not in 6688 /// the condition, thus computing the exit count. If the iteration count can't 6689 /// be computed, an instance of SCEVCouldNotCompute is returned. 6690 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6691 ScalarEvolution &SE) const { 6692 if (Range.isFullSet()) // Infinite loop. 6693 return SE.getCouldNotCompute(); 6694 6695 // If the start is a non-zero constant, shift the range to simplify things. 6696 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6697 if (!SC->getValue()->isZero()) { 6698 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6699 Operands[0] = SE.getConstant(SC->getType(), 0); 6700 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6701 getNoWrapFlags(FlagNW)); 6702 if (const SCEVAddRecExpr *ShiftedAddRec = 6703 dyn_cast<SCEVAddRecExpr>(Shifted)) 6704 return ShiftedAddRec->getNumIterationsInRange( 6705 Range.subtract(SC->getValue()->getValue()), SE); 6706 // This is strange and shouldn't happen. 6707 return SE.getCouldNotCompute(); 6708 } 6709 6710 // The only time we can solve this is when we have all constant indices. 6711 // Otherwise, we cannot determine the overflow conditions. 6712 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6713 if (!isa<SCEVConstant>(getOperand(i))) 6714 return SE.getCouldNotCompute(); 6715 6716 6717 // Okay at this point we know that all elements of the chrec are constants and 6718 // that the start element is zero. 6719 6720 // First check to see if the range contains zero. If not, the first 6721 // iteration exits. 6722 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6723 if (!Range.contains(APInt(BitWidth, 0))) 6724 return SE.getConstant(getType(), 0); 6725 6726 if (isAffine()) { 6727 // If this is an affine expression then we have this situation: 6728 // Solve {0,+,A} in Range === Ax in Range 6729 6730 // We know that zero is in the range. If A is positive then we know that 6731 // the upper value of the range must be the first possible exit value. 6732 // If A is negative then the lower of the range is the last possible loop 6733 // value. Also note that we already checked for a full range. 6734 APInt One(BitWidth,1); 6735 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6736 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6737 6738 // The exit value should be (End+A)/A. 6739 APInt ExitVal = (End + A).udiv(A); 6740 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6741 6742 // Evaluate at the exit value. If we really did fall out of the valid 6743 // range, then we computed our trip count, otherwise wrap around or other 6744 // things must have happened. 6745 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6746 if (Range.contains(Val->getValue())) 6747 return SE.getCouldNotCompute(); // Something strange happened 6748 6749 // Ensure that the previous value is in the range. This is a sanity check. 6750 assert(Range.contains( 6751 EvaluateConstantChrecAtConstant(this, 6752 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6753 "Linear scev computation is off in a bad way!"); 6754 return SE.getConstant(ExitValue); 6755 } else if (isQuadratic()) { 6756 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6757 // quadratic equation to solve it. To do this, we must frame our problem in 6758 // terms of figuring out when zero is crossed, instead of when 6759 // Range.getUpper() is crossed. 6760 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6761 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6762 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6763 // getNoWrapFlags(FlagNW) 6764 FlagAnyWrap); 6765 6766 // Next, solve the constructed addrec 6767 std::pair<const SCEV *,const SCEV *> Roots = 6768 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6769 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6770 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6771 if (R1) { 6772 // Pick the smallest positive root value. 6773 if (ConstantInt *CB = 6774 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6775 R1->getValue(), R2->getValue()))) { 6776 if (CB->getZExtValue() == false) 6777 std::swap(R1, R2); // R1 is the minimum root now. 6778 6779 // Make sure the root is not off by one. The returned iteration should 6780 // not be in the range, but the previous one should be. When solving 6781 // for "X*X < 5", for example, we should not return a root of 2. 6782 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6783 R1->getValue(), 6784 SE); 6785 if (Range.contains(R1Val->getValue())) { 6786 // The next iteration must be out of the range... 6787 ConstantInt *NextVal = 6788 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6789 6790 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6791 if (!Range.contains(R1Val->getValue())) 6792 return SE.getConstant(NextVal); 6793 return SE.getCouldNotCompute(); // Something strange happened 6794 } 6795 6796 // If R1 was not in the range, then it is a good return value. Make 6797 // sure that R1-1 WAS in the range though, just in case. 6798 ConstantInt *NextVal = 6799 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6800 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6801 if (Range.contains(R1Val->getValue())) 6802 return R1; 6803 return SE.getCouldNotCompute(); // Something strange happened 6804 } 6805 } 6806 } 6807 6808 return SE.getCouldNotCompute(); 6809 } 6810 6811 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 6812 APInt A = C1->getValue()->getValue(); 6813 APInt B = C2->getValue()->getValue(); 6814 uint32_t ABW = A.getBitWidth(); 6815 uint32_t BBW = B.getBitWidth(); 6816 6817 if (ABW > BBW) 6818 B = B.sext(ABW); 6819 else if (ABW < BBW) 6820 A = A.sext(BBW); 6821 6822 return APIntOps::srem(A, B); 6823 } 6824 6825 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 6826 APInt A = C1->getValue()->getValue(); 6827 APInt B = C2->getValue()->getValue(); 6828 uint32_t ABW = A.getBitWidth(); 6829 uint32_t BBW = B.getBitWidth(); 6830 6831 if (ABW > BBW) 6832 B = B.sext(ABW); 6833 else if (ABW < BBW) 6834 A = A.sext(BBW); 6835 6836 return APIntOps::sdiv(A, B); 6837 } 6838 6839 namespace { 6840 struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> { 6841 public: 6842 // Pattern match Step into Start. When Step is a multiply expression, find 6843 // the largest subexpression of Step that appears in Start. When Start is an 6844 // add expression, try to match Step in the subexpressions of Start, non 6845 // matching subexpressions are returned under Remainder. 6846 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start, 6847 const SCEV *Step, const SCEV **Remainder) { 6848 assert(Remainder && "Remainder should not be NULL"); 6849 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0)); 6850 const SCEV *Res = R.visit(Start); 6851 *Remainder = R.Remainder; 6852 return Res; 6853 } 6854 6855 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R) 6856 : SE(S), GCD(G), Remainder(R) { 6857 Zero = SE.getConstant(GCD->getType(), 0); 6858 One = SE.getConstant(GCD->getType(), 1); 6859 } 6860 6861 const SCEV *visitConstant(const SCEVConstant *Constant) { 6862 if (GCD == Constant || Constant == Zero) 6863 return GCD; 6864 6865 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) { 6866 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD)); 6867 if (Res != One) 6868 return Res; 6869 6870 Remainder = SE.getConstant(srem(Constant, CGCD)); 6871 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder)); 6872 Res = SE.getConstant(gcd(Constant, CGCD)); 6873 return Res; 6874 } 6875 6876 // When GCD is not a constant, it could be that the GCD is an Add, Mul, 6877 // AddRec, etc., in which case we want to find out how many times the 6878 // Constant divides the GCD: we then return that as the new GCD. 6879 const SCEV *Rem = Zero; 6880 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem); 6881 6882 if (Res == One || Rem != Zero) { 6883 Remainder = Constant; 6884 return One; 6885 } 6886 6887 assert(isa<SCEVConstant>(Res) && "Res should be a constant"); 6888 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res))); 6889 return Res; 6890 } 6891 6892 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 6893 if (GCD != Expr) 6894 Remainder = Expr; 6895 return GCD; 6896 } 6897 6898 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 6899 if (GCD != Expr) 6900 Remainder = Expr; 6901 return GCD; 6902 } 6903 6904 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 6905 if (GCD != Expr) 6906 Remainder = Expr; 6907 return GCD; 6908 } 6909 6910 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 6911 if (GCD == Expr) 6912 return GCD; 6913 6914 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6915 const SCEV *Rem = Zero; 6916 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem); 6917 6918 // FIXME: There may be ambiguous situations: for instance, 6919 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m). 6920 // The order in which the AddExpr is traversed computes a different GCD 6921 // and Remainder. 6922 if (Res != One) 6923 GCD = Res; 6924 if (Rem != Zero) 6925 Remainder = SE.getAddExpr(Remainder, Rem); 6926 } 6927 6928 return GCD; 6929 } 6930 6931 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 6932 if (GCD == Expr) 6933 return GCD; 6934 6935 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6936 if (Expr->getOperand(i) == GCD) 6937 return GCD; 6938 } 6939 6940 // If we have not returned yet, it means that GCD is not part of Expr. 6941 const SCEV *PartialGCD = One; 6942 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6943 const SCEV *Rem = Zero; 6944 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem); 6945 if (Rem != Zero) 6946 // GCD does not divide Expr->getOperand(i). 6947 continue; 6948 6949 if (Res == GCD) 6950 return GCD; 6951 PartialGCD = SE.getMulExpr(PartialGCD, Res); 6952 if (PartialGCD == GCD) 6953 return GCD; 6954 } 6955 6956 if (PartialGCD != One) 6957 return PartialGCD; 6958 6959 Remainder = Expr; 6960 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD); 6961 if (!Mul) 6962 return PartialGCD; 6963 6964 // When the GCD is a multiply expression, try to decompose it: 6965 // this occurs when Step does not divide the Start expression 6966 // as in: {(-4 + (3 * %m)),+,(2 * %m)} 6967 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) { 6968 const SCEV *Rem = Zero; 6969 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem); 6970 if (Rem == Zero) { 6971 Remainder = Rem; 6972 return Res; 6973 } 6974 } 6975 6976 return PartialGCD; 6977 } 6978 6979 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 6980 if (GCD != Expr) 6981 Remainder = Expr; 6982 return GCD; 6983 } 6984 6985 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 6986 if (GCD == Expr) 6987 return GCD; 6988 6989 if (!Expr->isAffine()) { 6990 Remainder = Expr; 6991 return GCD; 6992 } 6993 6994 const SCEV *Rem = Zero; 6995 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem); 6996 if (Rem != Zero) 6997 Remainder = SE.getAddExpr(Remainder, Rem); 6998 6999 Rem = Zero; 7000 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem); 7001 if (Rem != Zero) { 7002 Remainder = Expr; 7003 return GCD; 7004 } 7005 7006 return Res; 7007 } 7008 7009 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 7010 if (GCD != Expr) 7011 Remainder = Expr; 7012 return GCD; 7013 } 7014 7015 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 7016 if (GCD != Expr) 7017 Remainder = Expr; 7018 return GCD; 7019 } 7020 7021 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 7022 if (GCD != Expr) 7023 Remainder = Expr; 7024 return GCD; 7025 } 7026 7027 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 7028 return One; 7029 } 7030 7031 private: 7032 ScalarEvolution &SE; 7033 const SCEV *GCD, *Remainder, *Zero, *One; 7034 }; 7035 7036 struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> { 7037 public: 7038 // Remove from Start all multiples of Step. 7039 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start, 7040 const SCEV *Step) { 7041 SCEVDivision D(SE, Step); 7042 const SCEV *Rem = D.Zero; 7043 (void)Rem; 7044 // The division is guaranteed to succeed: Step should divide Start with no 7045 // remainder. 7046 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero && 7047 "Step should divide Start with no remainder."); 7048 return D.visit(Start); 7049 } 7050 7051 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) { 7052 Zero = SE.getConstant(GCD->getType(), 0); 7053 One = SE.getConstant(GCD->getType(), 1); 7054 } 7055 7056 const SCEV *visitConstant(const SCEVConstant *Constant) { 7057 if (GCD == Constant) 7058 return One; 7059 7060 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) 7061 return SE.getConstant(sdiv(Constant, CGCD)); 7062 return Constant; 7063 } 7064 7065 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 7066 if (GCD == Expr) 7067 return One; 7068 return Expr; 7069 } 7070 7071 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 7072 if (GCD == Expr) 7073 return One; 7074 return Expr; 7075 } 7076 7077 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 7078 if (GCD == Expr) 7079 return One; 7080 return Expr; 7081 } 7082 7083 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 7084 if (GCD == Expr) 7085 return One; 7086 7087 SmallVector<const SCEV *, 2> Operands; 7088 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) 7089 Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); 7090 7091 if (Operands.size() == 1) 7092 return Operands[0]; 7093 return SE.getAddExpr(Operands); 7094 } 7095 7096 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 7097 if (GCD == Expr) 7098 return One; 7099 7100 bool FoundGCDTerm = false; 7101 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) 7102 if (Expr->getOperand(i) == GCD) 7103 FoundGCDTerm = true; 7104 7105 SmallVector<const SCEV *, 2> Operands; 7106 if (FoundGCDTerm) { 7107 FoundGCDTerm = false; 7108 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 7109 if (FoundGCDTerm) 7110 Operands.push_back(Expr->getOperand(i)); 7111 else if (Expr->getOperand(i) == GCD) 7112 FoundGCDTerm = true; 7113 else 7114 Operands.push_back(Expr->getOperand(i)); 7115 } 7116 } else { 7117 FoundGCDTerm = false; 7118 const SCEV *PartialGCD = One; 7119 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 7120 if (PartialGCD == GCD) { 7121 Operands.push_back(Expr->getOperand(i)); 7122 continue; 7123 } 7124 7125 const SCEV *Rem = Zero; 7126 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem); 7127 if (Rem == Zero) { 7128 PartialGCD = SE.getMulExpr(PartialGCD, Res); 7129 Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); 7130 } else { 7131 Operands.push_back(Expr->getOperand(i)); 7132 } 7133 } 7134 } 7135 7136 if (Operands.size() == 1) 7137 return Operands[0]; 7138 return SE.getMulExpr(Operands); 7139 } 7140 7141 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 7142 if (GCD == Expr) 7143 return One; 7144 return Expr; 7145 } 7146 7147 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 7148 if (GCD == Expr) 7149 return One; 7150 7151 assert(Expr->isAffine() && "Expr should be affine"); 7152 7153 const SCEV *Start = divide(SE, Expr->getStart(), GCD); 7154 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD); 7155 7156 return SE.getAddRecExpr(Start, Step, Expr->getLoop(), 7157 Expr->getNoWrapFlags()); 7158 } 7159 7160 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 7161 if (GCD == Expr) 7162 return One; 7163 return Expr; 7164 } 7165 7166 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 7167 if (GCD == Expr) 7168 return One; 7169 return Expr; 7170 } 7171 7172 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 7173 if (GCD == Expr) 7174 return One; 7175 return Expr; 7176 } 7177 7178 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 7179 return Expr; 7180 } 7181 7182 private: 7183 ScalarEvolution &SE; 7184 const SCEV *GCD, *Zero, *One; 7185 }; 7186 } 7187 7188 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7189 /// sizes of an array access. Returns the remainder of the delinearization that 7190 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7191 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7192 /// expressions in the stride and base of a SCEV corresponding to the 7193 /// computation of a GCD (greatest common divisor) of base and stride. When 7194 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7195 /// 7196 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7197 /// 7198 /// void foo(long n, long m, long o, double A[n][m][o]) { 7199 /// 7200 /// for (long i = 0; i < n; i++) 7201 /// for (long j = 0; j < m; j++) 7202 /// for (long k = 0; k < o; k++) 7203 /// A[i][j][k] = 1.0; 7204 /// } 7205 /// 7206 /// the delinearization input is the following AddRec SCEV: 7207 /// 7208 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7209 /// 7210 /// From this SCEV, we are able to say that the base offset of the access is %A 7211 /// because it appears as an offset that does not divide any of the strides in 7212 /// the loops: 7213 /// 7214 /// CHECK: Base offset: %A 7215 /// 7216 /// and then SCEV->delinearize determines the size of some of the dimensions of 7217 /// the array as these are the multiples by which the strides are happening: 7218 /// 7219 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7220 /// 7221 /// Note that the outermost dimension remains of UnknownSize because there are 7222 /// no strides that would help identifying the size of the last dimension: when 7223 /// the array has been statically allocated, one could compute the size of that 7224 /// dimension by dividing the overall size of the array by the size of the known 7225 /// dimensions: %m * %o * 8. 7226 /// 7227 /// Finally delinearize provides the access functions for the array reference 7228 /// that does correspond to A[i][j][k] of the above C testcase: 7229 /// 7230 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7231 /// 7232 /// The testcases are checking the output of a function pass: 7233 /// DelinearizationPass that walks through all loads and stores of a function 7234 /// asking for the SCEV of the memory access with respect to all enclosing 7235 /// loops, calling SCEV->delinearize on that and printing the results. 7236 7237 const SCEV * 7238 SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7239 SmallVectorImpl<const SCEV *> &Subscripts, 7240 SmallVectorImpl<const SCEV *> &Sizes) const { 7241 // Early exit in case this SCEV is not an affine multivariate function. 7242 if (!this->isAffine()) 7243 return this; 7244 7245 const SCEV *Start = this->getStart(); 7246 const SCEV *Step = this->getStepRecurrence(SE); 7247 7248 // Build the SCEV representation of the canonical induction variable in the 7249 // loop of this SCEV. 7250 const SCEV *Zero = SE.getConstant(this->getType(), 0); 7251 const SCEV *One = SE.getConstant(this->getType(), 1); 7252 const SCEV *IV = 7253 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags()); 7254 7255 DEBUG(dbgs() << "(delinearize: " << *this << "\n"); 7256 7257 // When the stride of this SCEV is 1, do not compute the GCD: the size of this 7258 // subscript is 1, and this same SCEV for the access function. 7259 const SCEV *Remainder = Zero; 7260 const SCEV *GCD = One; 7261 7262 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV. 7263 if (Step != One && !Step->isAllOnesValue()) 7264 GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder); 7265 7266 DEBUG(dbgs() << "GCD: " << *GCD << "\n"); 7267 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n"); 7268 7269 const SCEV *Quotient = Start; 7270 if (GCD != One && !GCD->isAllOnesValue()) 7271 // As findGCD computed Remainder, GCD divides "Start - Remainder." The 7272 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The 7273 // Quotient is what will be used in the next subscript delinearization. 7274 Quotient = SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD); 7275 7276 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n"); 7277 7278 const SCEV *Rem = Quotient; 7279 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient)) 7280 // Recursively call delinearize on the Quotient until there are no more 7281 // multiples that can be recognized. 7282 Rem = AR->delinearize(SE, Subscripts, Sizes); 7283 7284 // Scale up the canonical induction variable IV by whatever remains from the 7285 // Step after division by the GCD: the GCD is the size of all the sub-array. 7286 if (Step != One && !Step->isAllOnesValue() && GCD != One && 7287 !GCD->isAllOnesValue() && Step != GCD) { 7288 Step = SCEVDivision::divide(SE, Step, GCD); 7289 IV = SE.getMulExpr(IV, Step); 7290 } 7291 // The access function in the current subscript is computed as the canonical 7292 // induction variable IV (potentially scaled up by the step) and offset by 7293 // Rem, the offset of delinearization in the sub-array. 7294 const SCEV *Index = SE.getAddExpr(IV, Rem); 7295 7296 // Record the access function and the size of the current subscript. 7297 Subscripts.push_back(Index); 7298 Sizes.push_back(GCD); 7299 7300 #ifndef NDEBUG 7301 int Size = Sizes.size(); 7302 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n"); 7303 DEBUG(dbgs() << "ArrayDecl[UnknownSize]"); 7304 for (int i = 0; i < Size - 1; i++) 7305 DEBUG(dbgs() << "[" << *Sizes[i] << "]"); 7306 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n"); 7307 7308 DEBUG(dbgs() << "ArrayRef"); 7309 for (int i = 0; i < Size; i++) 7310 DEBUG(dbgs() << "[" << *Subscripts[i] << "]"); 7311 DEBUG(dbgs() << "\n)\n"); 7312 #endif 7313 7314 return Remainder; 7315 } 7316 7317 //===----------------------------------------------------------------------===// 7318 // SCEVCallbackVH Class Implementation 7319 //===----------------------------------------------------------------------===// 7320 7321 void ScalarEvolution::SCEVCallbackVH::deleted() { 7322 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7323 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7324 SE->ConstantEvolutionLoopExitValue.erase(PN); 7325 SE->ValueExprMap.erase(getValPtr()); 7326 // this now dangles! 7327 } 7328 7329 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7330 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7331 7332 // Forget all the expressions associated with users of the old value, 7333 // so that future queries will recompute the expressions using the new 7334 // value. 7335 Value *Old = getValPtr(); 7336 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 7337 SmallPtrSet<User *, 8> Visited; 7338 while (!Worklist.empty()) { 7339 User *U = Worklist.pop_back_val(); 7340 // Deleting the Old value will cause this to dangle. Postpone 7341 // that until everything else is done. 7342 if (U == Old) 7343 continue; 7344 if (!Visited.insert(U)) 7345 continue; 7346 if (PHINode *PN = dyn_cast<PHINode>(U)) 7347 SE->ConstantEvolutionLoopExitValue.erase(PN); 7348 SE->ValueExprMap.erase(U); 7349 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 7350 } 7351 // Delete the Old value. 7352 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7353 SE->ConstantEvolutionLoopExitValue.erase(PN); 7354 SE->ValueExprMap.erase(Old); 7355 // this now dangles! 7356 } 7357 7358 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7359 : CallbackVH(V), SE(se) {} 7360 7361 //===----------------------------------------------------------------------===// 7362 // ScalarEvolution Class Implementation 7363 //===----------------------------------------------------------------------===// 7364 7365 ScalarEvolution::ScalarEvolution() 7366 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) { 7367 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7368 } 7369 7370 bool ScalarEvolution::runOnFunction(Function &F) { 7371 this->F = &F; 7372 LI = &getAnalysis<LoopInfo>(); 7373 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 7374 DL = DLP ? &DLP->getDataLayout() : 0; 7375 TLI = &getAnalysis<TargetLibraryInfo>(); 7376 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7377 return false; 7378 } 7379 7380 void ScalarEvolution::releaseMemory() { 7381 // Iterate through all the SCEVUnknown instances and call their 7382 // destructors, so that they release their references to their values. 7383 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7384 U->~SCEVUnknown(); 7385 FirstUnknown = 0; 7386 7387 ValueExprMap.clear(); 7388 7389 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7390 // that a loop had multiple computable exits. 7391 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7392 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7393 I != E; ++I) { 7394 I->second.clear(); 7395 } 7396 7397 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7398 7399 BackedgeTakenCounts.clear(); 7400 ConstantEvolutionLoopExitValue.clear(); 7401 ValuesAtScopes.clear(); 7402 LoopDispositions.clear(); 7403 BlockDispositions.clear(); 7404 UnsignedRanges.clear(); 7405 SignedRanges.clear(); 7406 UniqueSCEVs.clear(); 7407 SCEVAllocator.Reset(); 7408 } 7409 7410 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 7411 AU.setPreservesAll(); 7412 AU.addRequiredTransitive<LoopInfo>(); 7413 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 7414 AU.addRequired<TargetLibraryInfo>(); 7415 } 7416 7417 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 7418 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 7419 } 7420 7421 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 7422 const Loop *L) { 7423 // Print all inner loops first 7424 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 7425 PrintLoopInfo(OS, SE, *I); 7426 7427 OS << "Loop "; 7428 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7429 OS << ": "; 7430 7431 SmallVector<BasicBlock *, 8> ExitBlocks; 7432 L->getExitBlocks(ExitBlocks); 7433 if (ExitBlocks.size() != 1) 7434 OS << "<multiple exits> "; 7435 7436 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 7437 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 7438 } else { 7439 OS << "Unpredictable backedge-taken count. "; 7440 } 7441 7442 OS << "\n" 7443 "Loop "; 7444 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7445 OS << ": "; 7446 7447 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 7448 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 7449 } else { 7450 OS << "Unpredictable max backedge-taken count. "; 7451 } 7452 7453 OS << "\n"; 7454 } 7455 7456 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 7457 // ScalarEvolution's implementation of the print method is to print 7458 // out SCEV values of all instructions that are interesting. Doing 7459 // this potentially causes it to create new SCEV objects though, 7460 // which technically conflicts with the const qualifier. This isn't 7461 // observable from outside the class though, so casting away the 7462 // const isn't dangerous. 7463 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7464 7465 OS << "Classifying expressions for: "; 7466 F->printAsOperand(OS, /*PrintType=*/false); 7467 OS << "\n"; 7468 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 7469 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 7470 OS << *I << '\n'; 7471 OS << " --> "; 7472 const SCEV *SV = SE.getSCEV(&*I); 7473 SV->print(OS); 7474 7475 const Loop *L = LI->getLoopFor((*I).getParent()); 7476 7477 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 7478 if (AtUse != SV) { 7479 OS << " --> "; 7480 AtUse->print(OS); 7481 } 7482 7483 if (L) { 7484 OS << "\t\t" "Exits: "; 7485 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 7486 if (!SE.isLoopInvariant(ExitValue, L)) { 7487 OS << "<<Unknown>>"; 7488 } else { 7489 OS << *ExitValue; 7490 } 7491 } 7492 7493 OS << "\n"; 7494 } 7495 7496 OS << "Determining loop execution counts for: "; 7497 F->printAsOperand(OS, /*PrintType=*/false); 7498 OS << "\n"; 7499 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 7500 PrintLoopInfo(OS, &SE, *I); 7501 } 7502 7503 ScalarEvolution::LoopDisposition 7504 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 7505 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 7506 for (unsigned u = 0; u < Values.size(); u++) { 7507 if (Values[u].first == L) 7508 return Values[u].second; 7509 } 7510 Values.push_back(std::make_pair(L, LoopVariant)); 7511 LoopDisposition D = computeLoopDisposition(S, L); 7512 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 7513 for (unsigned u = Values2.size(); u > 0; u--) { 7514 if (Values2[u - 1].first == L) { 7515 Values2[u - 1].second = D; 7516 break; 7517 } 7518 } 7519 return D; 7520 } 7521 7522 ScalarEvolution::LoopDisposition 7523 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 7524 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7525 case scConstant: 7526 return LoopInvariant; 7527 case scTruncate: 7528 case scZeroExtend: 7529 case scSignExtend: 7530 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 7531 case scAddRecExpr: { 7532 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7533 7534 // If L is the addrec's loop, it's computable. 7535 if (AR->getLoop() == L) 7536 return LoopComputable; 7537 7538 // Add recurrences are never invariant in the function-body (null loop). 7539 if (!L) 7540 return LoopVariant; 7541 7542 // This recurrence is variant w.r.t. L if L contains AR's loop. 7543 if (L->contains(AR->getLoop())) 7544 return LoopVariant; 7545 7546 // This recurrence is invariant w.r.t. L if AR's loop contains L. 7547 if (AR->getLoop()->contains(L)) 7548 return LoopInvariant; 7549 7550 // This recurrence is variant w.r.t. L if any of its operands 7551 // are variant. 7552 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 7553 I != E; ++I) 7554 if (!isLoopInvariant(*I, L)) 7555 return LoopVariant; 7556 7557 // Otherwise it's loop-invariant. 7558 return LoopInvariant; 7559 } 7560 case scAddExpr: 7561 case scMulExpr: 7562 case scUMaxExpr: 7563 case scSMaxExpr: { 7564 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7565 bool HasVarying = false; 7566 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7567 I != E; ++I) { 7568 LoopDisposition D = getLoopDisposition(*I, L); 7569 if (D == LoopVariant) 7570 return LoopVariant; 7571 if (D == LoopComputable) 7572 HasVarying = true; 7573 } 7574 return HasVarying ? LoopComputable : LoopInvariant; 7575 } 7576 case scUDivExpr: { 7577 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7578 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 7579 if (LD == LoopVariant) 7580 return LoopVariant; 7581 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 7582 if (RD == LoopVariant) 7583 return LoopVariant; 7584 return (LD == LoopInvariant && RD == LoopInvariant) ? 7585 LoopInvariant : LoopComputable; 7586 } 7587 case scUnknown: 7588 // All non-instruction values are loop invariant. All instructions are loop 7589 // invariant if they are not contained in the specified loop. 7590 // Instructions are never considered invariant in the function body 7591 // (null loop) because they are defined within the "loop". 7592 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 7593 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 7594 return LoopInvariant; 7595 case scCouldNotCompute: 7596 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7597 } 7598 llvm_unreachable("Unknown SCEV kind!"); 7599 } 7600 7601 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 7602 return getLoopDisposition(S, L) == LoopInvariant; 7603 } 7604 7605 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 7606 return getLoopDisposition(S, L) == LoopComputable; 7607 } 7608 7609 ScalarEvolution::BlockDisposition 7610 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7611 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 7612 for (unsigned u = 0; u < Values.size(); u++) { 7613 if (Values[u].first == BB) 7614 return Values[u].second; 7615 } 7616 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 7617 BlockDisposition D = computeBlockDisposition(S, BB); 7618 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 7619 for (unsigned u = Values2.size(); u > 0; u--) { 7620 if (Values2[u - 1].first == BB) { 7621 Values2[u - 1].second = D; 7622 break; 7623 } 7624 } 7625 return D; 7626 } 7627 7628 ScalarEvolution::BlockDisposition 7629 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7630 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7631 case scConstant: 7632 return ProperlyDominatesBlock; 7633 case scTruncate: 7634 case scZeroExtend: 7635 case scSignExtend: 7636 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 7637 case scAddRecExpr: { 7638 // This uses a "dominates" query instead of "properly dominates" query 7639 // to test for proper dominance too, because the instruction which 7640 // produces the addrec's value is a PHI, and a PHI effectively properly 7641 // dominates its entire containing block. 7642 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7643 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 7644 return DoesNotDominateBlock; 7645 } 7646 // FALL THROUGH into SCEVNAryExpr handling. 7647 case scAddExpr: 7648 case scMulExpr: 7649 case scUMaxExpr: 7650 case scSMaxExpr: { 7651 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7652 bool Proper = true; 7653 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7654 I != E; ++I) { 7655 BlockDisposition D = getBlockDisposition(*I, BB); 7656 if (D == DoesNotDominateBlock) 7657 return DoesNotDominateBlock; 7658 if (D == DominatesBlock) 7659 Proper = false; 7660 } 7661 return Proper ? ProperlyDominatesBlock : DominatesBlock; 7662 } 7663 case scUDivExpr: { 7664 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7665 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 7666 BlockDisposition LD = getBlockDisposition(LHS, BB); 7667 if (LD == DoesNotDominateBlock) 7668 return DoesNotDominateBlock; 7669 BlockDisposition RD = getBlockDisposition(RHS, BB); 7670 if (RD == DoesNotDominateBlock) 7671 return DoesNotDominateBlock; 7672 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 7673 ProperlyDominatesBlock : DominatesBlock; 7674 } 7675 case scUnknown: 7676 if (Instruction *I = 7677 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 7678 if (I->getParent() == BB) 7679 return DominatesBlock; 7680 if (DT->properlyDominates(I->getParent(), BB)) 7681 return ProperlyDominatesBlock; 7682 return DoesNotDominateBlock; 7683 } 7684 return ProperlyDominatesBlock; 7685 case scCouldNotCompute: 7686 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7687 } 7688 llvm_unreachable("Unknown SCEV kind!"); 7689 } 7690 7691 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7692 return getBlockDisposition(S, BB) >= DominatesBlock; 7693 } 7694 7695 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7696 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7697 } 7698 7699 namespace { 7700 // Search for a SCEV expression node within an expression tree. 7701 // Implements SCEVTraversal::Visitor. 7702 struct SCEVSearch { 7703 const SCEV *Node; 7704 bool IsFound; 7705 7706 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7707 7708 bool follow(const SCEV *S) { 7709 IsFound |= (S == Node); 7710 return !IsFound; 7711 } 7712 bool isDone() const { return IsFound; } 7713 }; 7714 } 7715 7716 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7717 SCEVSearch Search(Op); 7718 visitAll(S, Search); 7719 return Search.IsFound; 7720 } 7721 7722 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7723 ValuesAtScopes.erase(S); 7724 LoopDispositions.erase(S); 7725 BlockDispositions.erase(S); 7726 UnsignedRanges.erase(S); 7727 SignedRanges.erase(S); 7728 7729 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7730 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7731 BackedgeTakenInfo &BEInfo = I->second; 7732 if (BEInfo.hasOperand(S, this)) { 7733 BEInfo.clear(); 7734 BackedgeTakenCounts.erase(I++); 7735 } 7736 else 7737 ++I; 7738 } 7739 } 7740 7741 typedef DenseMap<const Loop *, std::string> VerifyMap; 7742 7743 /// replaceSubString - Replaces all occurrences of From in Str with To. 7744 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7745 size_t Pos = 0; 7746 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7747 Str.replace(Pos, From.size(), To.data(), To.size()); 7748 Pos += To.size(); 7749 } 7750 } 7751 7752 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7753 static void 7754 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7755 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7756 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7757 7758 std::string &S = Map[L]; 7759 if (S.empty()) { 7760 raw_string_ostream OS(S); 7761 SE.getBackedgeTakenCount(L)->print(OS); 7762 7763 // false and 0 are semantically equivalent. This can happen in dead loops. 7764 replaceSubString(OS.str(), "false", "0"); 7765 // Remove wrap flags, their use in SCEV is highly fragile. 7766 // FIXME: Remove this when SCEV gets smarter about them. 7767 replaceSubString(OS.str(), "<nw>", ""); 7768 replaceSubString(OS.str(), "<nsw>", ""); 7769 replaceSubString(OS.str(), "<nuw>", ""); 7770 } 7771 } 7772 } 7773 7774 void ScalarEvolution::verifyAnalysis() const { 7775 if (!VerifySCEV) 7776 return; 7777 7778 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7779 7780 // Gather stringified backedge taken counts for all loops using SCEV's caches. 7781 // FIXME: It would be much better to store actual values instead of strings, 7782 // but SCEV pointers will change if we drop the caches. 7783 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 7784 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7785 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 7786 7787 // Gather stringified backedge taken counts for all loops without using 7788 // SCEV's caches. 7789 SE.releaseMemory(); 7790 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7791 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 7792 7793 // Now compare whether they're the same with and without caches. This allows 7794 // verifying that no pass changed the cache. 7795 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7796 "New loops suddenly appeared!"); 7797 7798 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7799 OldE = BackedgeDumpsOld.end(), 7800 NewI = BackedgeDumpsNew.begin(); 7801 OldI != OldE; ++OldI, ++NewI) { 7802 assert(OldI->first == NewI->first && "Loop order changed!"); 7803 7804 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7805 // changes. 7806 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7807 // means that a pass is buggy or SCEV has to learn a new pattern but is 7808 // usually not harmful. 7809 if (OldI->second != NewI->second && 7810 OldI->second.find("undef") == std::string::npos && 7811 NewI->second.find("undef") == std::string::npos && 7812 OldI->second != "***COULDNOTCOMPUTE***" && 7813 NewI->second != "***COULDNOTCOMPUTE***") { 7814 dbgs() << "SCEVValidator: SCEV for loop '" 7815 << OldI->first->getHeader()->getName() 7816 << "' changed from '" << OldI->second 7817 << "' to '" << NewI->second << "'!\n"; 7818 std::abort(); 7819 } 7820 } 7821 7822 // TODO: Verify more things. 7823 } 7824