xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision c42f7cc3f80bbb8a23b4b94cef438f599a4035e2)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with XDEBUG when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's"
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 /// isNonConstantNegative - Return true if the specified scev is negated, but
291 /// not a constant.
292 bool SCEV::isNonConstantNegative() const {
293   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294   if (!Mul) return false;
295 
296   // If there is a constant factor, it will be first.
297   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298   if (!SC) return false;
299 
300   // Return true if the value is negative, this matches things like (-42 * V).
301   return SC->getAPInt().isNegative();
302 }
303 
304 SCEVCouldNotCompute::SCEVCouldNotCompute() :
305   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306 
307 bool SCEVCouldNotCompute::classof(const SCEV *S) {
308   return S->getSCEVType() == scCouldNotCompute;
309 }
310 
311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312   FoldingSetNodeID ID;
313   ID.AddInteger(scConstant);
314   ID.AddPointer(V);
315   void *IP = nullptr;
316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318   UniqueSCEVs.InsertNode(S, IP);
319   return S;
320 }
321 
322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323   return getConstant(ConstantInt::get(getContext(), Val));
324 }
325 
326 const SCEV *
327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329   return getConstant(ConstantInt::get(ITy, V, isSigned));
330 }
331 
332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333                            unsigned SCEVTy, const SCEV *op, Type *ty)
334   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335 
336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337                                    const SCEV *op, Type *ty)
338   : SCEVCastExpr(ID, scTruncate, op, ty) {
339   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
341          "Cannot truncate non-integer value!");
342 }
343 
344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345                                        const SCEV *op, Type *ty)
346   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
349          "Cannot zero extend non-integer value!");
350 }
351 
352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353                                        const SCEV *op, Type *ty)
354   : SCEVCastExpr(ID, scSignExtend, op, ty) {
355   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
357          "Cannot sign extend non-integer value!");
358 }
359 
360 void SCEVUnknown::deleted() {
361   // Clear this SCEVUnknown from various maps.
362   SE->forgetMemoizedResults(this);
363 
364   // Remove this SCEVUnknown from the uniquing map.
365   SE->UniqueSCEVs.RemoveNode(this);
366 
367   // Release the value.
368   setValPtr(nullptr);
369 }
370 
371 void SCEVUnknown::allUsesReplacedWith(Value *New) {
372   // Clear this SCEVUnknown from various maps.
373   SE->forgetMemoizedResults(this);
374 
375   // Remove this SCEVUnknown from the uniquing map.
376   SE->UniqueSCEVs.RemoveNode(this);
377 
378   // Update this SCEVUnknown to point to the new value. This is needed
379   // because there may still be outstanding SCEVs which still point to
380   // this SCEVUnknown.
381   setValPtr(New);
382 }
383 
384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386     if (VCE->getOpcode() == Instruction::PtrToInt)
387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388         if (CE->getOpcode() == Instruction::GetElementPtr &&
389             CE->getOperand(0)->isNullValue() &&
390             CE->getNumOperands() == 2)
391           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392             if (CI->isOne()) {
393               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394                                  ->getElementType();
395               return true;
396             }
397 
398   return false;
399 }
400 
401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403     if (VCE->getOpcode() == Instruction::PtrToInt)
404       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405         if (CE->getOpcode() == Instruction::GetElementPtr &&
406             CE->getOperand(0)->isNullValue()) {
407           Type *Ty =
408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409           if (StructType *STy = dyn_cast<StructType>(Ty))
410             if (!STy->isPacked() &&
411                 CE->getNumOperands() == 3 &&
412                 CE->getOperand(1)->isNullValue()) {
413               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414                 if (CI->isOne() &&
415                     STy->getNumElements() == 2 &&
416                     STy->getElementType(0)->isIntegerTy(1)) {
417                   AllocTy = STy->getElementType(1);
418                   return true;
419                 }
420             }
421         }
422 
423   return false;
424 }
425 
426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428     if (VCE->getOpcode() == Instruction::PtrToInt)
429       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430         if (CE->getOpcode() == Instruction::GetElementPtr &&
431             CE->getNumOperands() == 3 &&
432             CE->getOperand(0)->isNullValue() &&
433             CE->getOperand(1)->isNullValue()) {
434           Type *Ty =
435             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436           // Ignore vector types here so that ScalarEvolutionExpander doesn't
437           // emit getelementptrs that index into vectors.
438           if (Ty->isStructTy() || Ty->isArrayTy()) {
439             CTy = Ty;
440             FieldNo = CE->getOperand(2);
441             return true;
442           }
443         }
444 
445   return false;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                               SCEV Utilities
450 //===----------------------------------------------------------------------===//
451 
452 namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS.  This comparator is used to canonicalize
455 /// expressions.
456 class SCEVComplexityCompare {
457   const LoopInfo *const LI;
458 public:
459   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460 
461   // Return true or false if LHS is less than, or at least RHS, respectively.
462   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463     return compare(LHS, RHS) < 0;
464   }
465 
466   // Return negative, zero, or positive, if LHS is less than, equal to, or
467   // greater than RHS, respectively. A three-way result allows recursive
468   // comparisons to be more efficient.
469   int compare(const SCEV *LHS, const SCEV *RHS) const {
470     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471     if (LHS == RHS)
472       return 0;
473 
474     // Primarily, sort the SCEVs by their getSCEVType().
475     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476     if (LType != RType)
477       return (int)LType - (int)RType;
478 
479     // Aside from the getSCEVType() ordering, the particular ordering
480     // isn't very important except that it's beneficial to be consistent,
481     // so that (a + b) and (b + a) don't end up as different expressions.
482     switch (static_cast<SCEVTypes>(LType)) {
483     case scUnknown: {
484       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486 
487       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488       // not as complete as it could be.
489       const Value *LV = LU->getValue(), *RV = RU->getValue();
490 
491       // Order pointer values after integer values. This helps SCEVExpander
492       // form GEPs.
493       bool LIsPointer = LV->getType()->isPointerTy(),
494         RIsPointer = RV->getType()->isPointerTy();
495       if (LIsPointer != RIsPointer)
496         return (int)LIsPointer - (int)RIsPointer;
497 
498       // Compare getValueID values.
499       unsigned LID = LV->getValueID(),
500         RID = RV->getValueID();
501       if (LID != RID)
502         return (int)LID - (int)RID;
503 
504       // Sort arguments by their position.
505       if (const Argument *LA = dyn_cast<Argument>(LV)) {
506         const Argument *RA = cast<Argument>(RV);
507         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508         return (int)LArgNo - (int)RArgNo;
509       }
510 
511       // For instructions, compare their loop depth, and their operand
512       // count.  This is pretty loose.
513       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514         const Instruction *RInst = cast<Instruction>(RV);
515 
516         // Compare loop depths.
517         const BasicBlock *LParent = LInst->getParent(),
518           *RParent = RInst->getParent();
519         if (LParent != RParent) {
520           unsigned LDepth = LI->getLoopDepth(LParent),
521             RDepth = LI->getLoopDepth(RParent);
522           if (LDepth != RDepth)
523             return (int)LDepth - (int)RDepth;
524         }
525 
526         // Compare the number of operands.
527         unsigned LNumOps = LInst->getNumOperands(),
528           RNumOps = RInst->getNumOperands();
529         return (int)LNumOps - (int)RNumOps;
530       }
531 
532       return 0;
533     }
534 
535     case scConstant: {
536       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538 
539       // Compare constant values.
540       const APInt &LA = LC->getAPInt();
541       const APInt &RA = RC->getAPInt();
542       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543       if (LBitWidth != RBitWidth)
544         return (int)LBitWidth - (int)RBitWidth;
545       return LA.ult(RA) ? -1 : 1;
546     }
547 
548     case scAddRecExpr: {
549       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551 
552       // Compare addrec loop depths.
553       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554       if (LLoop != RLoop) {
555         unsigned LDepth = LLoop->getLoopDepth(),
556           RDepth = RLoop->getLoopDepth();
557         if (LDepth != RDepth)
558           return (int)LDepth - (int)RDepth;
559       }
560 
561       // Addrec complexity grows with operand count.
562       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563       if (LNumOps != RNumOps)
564         return (int)LNumOps - (int)RNumOps;
565 
566       // Lexicographically compare.
567       for (unsigned i = 0; i != LNumOps; ++i) {
568         long X = compare(LA->getOperand(i), RA->getOperand(i));
569         if (X != 0)
570           return X;
571       }
572 
573       return 0;
574     }
575 
576     case scAddExpr:
577     case scMulExpr:
578     case scSMaxExpr:
579     case scUMaxExpr: {
580       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582 
583       // Lexicographically compare n-ary expressions.
584       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585       if (LNumOps != RNumOps)
586         return (int)LNumOps - (int)RNumOps;
587 
588       for (unsigned i = 0; i != LNumOps; ++i) {
589         if (i >= RNumOps)
590           return 1;
591         long X = compare(LC->getOperand(i), RC->getOperand(i));
592         if (X != 0)
593           return X;
594       }
595       return (int)LNumOps - (int)RNumOps;
596     }
597 
598     case scUDivExpr: {
599       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601 
602       // Lexicographically compare udiv expressions.
603       long X = compare(LC->getLHS(), RC->getLHS());
604       if (X != 0)
605         return X;
606       return compare(LC->getRHS(), RC->getRHS());
607     }
608 
609     case scTruncate:
610     case scZeroExtend:
611     case scSignExtend: {
612       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614 
615       // Compare cast expressions by operand.
616       return compare(LC->getOperand(), RC->getOperand());
617     }
618 
619     case scCouldNotCompute:
620       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621     }
622     llvm_unreachable("Unknown SCEV kind!");
623   }
624 };
625 }  // end anonymous namespace
626 
627 /// GroupByComplexity - Given a list of SCEV objects, order them by their
628 /// complexity, and group objects of the same complexity together by value.
629 /// When this routine is finished, we know that any duplicates in the vector are
630 /// consecutive and that complexity is monotonically increasing.
631 ///
632 /// Note that we go take special precautions to ensure that we get deterministic
633 /// results from this routine.  In other words, we don't want the results of
634 /// this to depend on where the addresses of various SCEV objects happened to
635 /// land in memory.
636 ///
637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638                               LoopInfo *LI) {
639   if (Ops.size() < 2) return;  // Noop
640   if (Ops.size() == 2) {
641     // This is the common case, which also happens to be trivially simple.
642     // Special case it.
643     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644     if (SCEVComplexityCompare(LI)(RHS, LHS))
645       std::swap(LHS, RHS);
646     return;
647   }
648 
649   // Do the rough sort by complexity.
650   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651 
652   // Now that we are sorted by complexity, group elements of the same
653   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
654   // be extremely short in practice.  Note that we take this approach because we
655   // do not want to depend on the addresses of the objects we are grouping.
656   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657     const SCEV *S = Ops[i];
658     unsigned Complexity = S->getSCEVType();
659 
660     // If there are any objects of the same complexity and same value as this
661     // one, group them.
662     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663       if (Ops[j] == S) { // Found a duplicate.
664         // Move it to immediately after i'th element.
665         std::swap(Ops[i+1], Ops[j]);
666         ++i;   // no need to rescan it.
667         if (i == e-2) return;  // Done!
668       }
669     }
670   }
671 }
672 
673 // Returns the size of the SCEV S.
674 static inline int sizeOfSCEV(const SCEV *S) {
675   struct FindSCEVSize {
676     int Size;
677     FindSCEVSize() : Size(0) {}
678 
679     bool follow(const SCEV *S) {
680       ++Size;
681       // Keep looking at all operands of S.
682       return true;
683     }
684     bool isDone() const {
685       return false;
686     }
687   };
688 
689   FindSCEVSize F;
690   SCEVTraversal<FindSCEVSize> ST(F);
691   ST.visitAll(S);
692   return F.Size;
693 }
694 
695 namespace {
696 
697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698 public:
699   // Computes the Quotient and Remainder of the division of Numerator by
700   // Denominator.
701   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702                      const SCEV *Denominator, const SCEV **Quotient,
703                      const SCEV **Remainder) {
704     assert(Numerator && Denominator && "Uninitialized SCEV");
705 
706     SCEVDivision D(SE, Numerator, Denominator);
707 
708     // Check for the trivial case here to avoid having to check for it in the
709     // rest of the code.
710     if (Numerator == Denominator) {
711       *Quotient = D.One;
712       *Remainder = D.Zero;
713       return;
714     }
715 
716     if (Numerator->isZero()) {
717       *Quotient = D.Zero;
718       *Remainder = D.Zero;
719       return;
720     }
721 
722     // A simple case when N/1. The quotient is N.
723     if (Denominator->isOne()) {
724       *Quotient = Numerator;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getAPInt();
768       APInt DenominatorVal = D->getAPInt();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     if (!Numerator->isAffine())
789       return cannotDivide(Numerator);
790     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792     // Bail out if the types do not match.
793     Type *Ty = Denominator->getType();
794     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795         Ty != StepQ->getType() || Ty != StepR->getType())
796       return cannotDivide(Numerator);
797     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798                                 Numerator->getNoWrapFlags());
799     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800                                  Numerator->getNoWrapFlags());
801   }
802 
803   void visitAddExpr(const SCEVAddExpr *Numerator) {
804     SmallVector<const SCEV *, 2> Qs, Rs;
805     Type *Ty = Denominator->getType();
806 
807     for (const SCEV *Op : Numerator->operands()) {
808       const SCEV *Q, *R;
809       divide(SE, Op, Denominator, &Q, &R);
810 
811       // Bail out if types do not match.
812       if (Ty != Q->getType() || Ty != R->getType())
813         return cannotDivide(Numerator);
814 
815       Qs.push_back(Q);
816       Rs.push_back(R);
817     }
818 
819     if (Qs.size() == 1) {
820       Quotient = Qs[0];
821       Remainder = Rs[0];
822       return;
823     }
824 
825     Quotient = SE.getAddExpr(Qs);
826     Remainder = SE.getAddExpr(Rs);
827   }
828 
829   void visitMulExpr(const SCEVMulExpr *Numerator) {
830     SmallVector<const SCEV *, 2> Qs;
831     Type *Ty = Denominator->getType();
832 
833     bool FoundDenominatorTerm = false;
834     for (const SCEV *Op : Numerator->operands()) {
835       // Bail out if types do not match.
836       if (Ty != Op->getType())
837         return cannotDivide(Numerator);
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType())
854         return cannotDivide(Numerator);
855 
856       FoundDenominatorTerm = true;
857       Qs.push_back(Q);
858     }
859 
860     if (FoundDenominatorTerm) {
861       Remainder = Zero;
862       if (Qs.size() == 1)
863         Quotient = Qs[0];
864       else
865         Quotient = SE.getMulExpr(Qs);
866       return;
867     }
868 
869     if (!isa<SCEVUnknown>(Denominator))
870       return cannotDivide(Numerator);
871 
872     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873     ValueToValueMap RewriteMap;
874     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875         cast<SCEVConstant>(Zero)->getValue();
876     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877 
878     if (Remainder->isZero()) {
879       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881           cast<SCEVConstant>(One)->getValue();
882       Quotient =
883           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884       return;
885     }
886 
887     // Quotient is (Numerator - Remainder) divided by Denominator.
888     const SCEV *Q, *R;
889     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890     // This SCEV does not seem to simplify: fail the division here.
891     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892       return cannotDivide(Numerator);
893     divide(SE, Diff, Denominator, &Q, &R);
894     if (R != Zero)
895       return cannotDivide(Numerator);
896     Quotient = Q;
897   }
898 
899 private:
900   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901                const SCEV *Denominator)
902       : SE(S), Denominator(Denominator) {
903     Zero = SE.getZero(Denominator->getType());
904     One = SE.getOne(Denominator->getType());
905 
906     // We generally do not know how to divide Expr by Denominator. We
907     // initialize the division to a "cannot divide" state to simplify the rest
908     // of the code.
909     cannotDivide(Numerator);
910   }
911 
912   // Convenience function for giving up on the division. We set the quotient to
913   // be equal to zero and the remainder to be equal to the numerator.
914   void cannotDivide(const SCEV *Numerator) {
915     Quotient = Zero;
916     Remainder = Numerator;
917   }
918 
919   ScalarEvolution &SE;
920   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921 };
922 
923 }
924 
925 //===----------------------------------------------------------------------===//
926 //                      Simple SCEV method implementations
927 //===----------------------------------------------------------------------===//
928 
929 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
930 /// Assume, K > 0.
931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932                                        ScalarEvolution &SE,
933                                        Type *ResultTy) {
934   // Handle the simplest case efficiently.
935   if (K == 1)
936     return SE.getTruncateOrZeroExtend(It, ResultTy);
937 
938   // We are using the following formula for BC(It, K):
939   //
940   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941   //
942   // Suppose, W is the bitwidth of the return value.  We must be prepared for
943   // overflow.  Hence, we must assure that the result of our computation is
944   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
945   // safe in modular arithmetic.
946   //
947   // However, this code doesn't use exactly that formula; the formula it uses
948   // is something like the following, where T is the number of factors of 2 in
949   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950   // exponentiation:
951   //
952   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953   //
954   // This formula is trivially equivalent to the previous formula.  However,
955   // this formula can be implemented much more efficiently.  The trick is that
956   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957   // arithmetic.  To do exact division in modular arithmetic, all we have
958   // to do is multiply by the inverse.  Therefore, this step can be done at
959   // width W.
960   //
961   // The next issue is how to safely do the division by 2^T.  The way this
962   // is done is by doing the multiplication step at a width of at least W + T
963   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
964   // when we perform the division by 2^T (which is equivalent to a right shift
965   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
966   // truncated out after the division by 2^T.
967   //
968   // In comparison to just directly using the first formula, this technique
969   // is much more efficient; using the first formula requires W * K bits,
970   // but this formula less than W + K bits. Also, the first formula requires
971   // a division step, whereas this formula only requires multiplies and shifts.
972   //
973   // It doesn't matter whether the subtraction step is done in the calculation
974   // width or the input iteration count's width; if the subtraction overflows,
975   // the result must be zero anyway.  We prefer here to do it in the width of
976   // the induction variable because it helps a lot for certain cases; CodeGen
977   // isn't smart enough to ignore the overflow, which leads to much less
978   // efficient code if the width of the subtraction is wider than the native
979   // register width.
980   //
981   // (It's possible to not widen at all by pulling out factors of 2 before
982   // the multiplication; for example, K=2 can be calculated as
983   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984   // extra arithmetic, so it's not an obvious win, and it gets
985   // much more complicated for K > 3.)
986 
987   // Protection from insane SCEVs; this bound is conservative,
988   // but it probably doesn't matter.
989   if (K > 1000)
990     return SE.getCouldNotCompute();
991 
992   unsigned W = SE.getTypeSizeInBits(ResultTy);
993 
994   // Calculate K! / 2^T and T; we divide out the factors of two before
995   // multiplying for calculating K! / 2^T to avoid overflow.
996   // Other overflow doesn't matter because we only care about the bottom
997   // W bits of the result.
998   APInt OddFactorial(W, 1);
999   unsigned T = 1;
1000   for (unsigned i = 3; i <= K; ++i) {
1001     APInt Mult(W, i);
1002     unsigned TwoFactors = Mult.countTrailingZeros();
1003     T += TwoFactors;
1004     Mult = Mult.lshr(TwoFactors);
1005     OddFactorial *= Mult;
1006   }
1007 
1008   // We need at least W + T bits for the multiplication step
1009   unsigned CalculationBits = W + T;
1010 
1011   // Calculate 2^T, at width T+W.
1012   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013 
1014   // Calculate the multiplicative inverse of K! / 2^T;
1015   // this multiplication factor will perform the exact division by
1016   // K! / 2^T.
1017   APInt Mod = APInt::getSignedMinValue(W+1);
1018   APInt MultiplyFactor = OddFactorial.zext(W+1);
1019   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020   MultiplyFactor = MultiplyFactor.trunc(W);
1021 
1022   // Calculate the product, at width T+W
1023   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024                                                       CalculationBits);
1025   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026   for (unsigned i = 1; i != K; ++i) {
1027     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028     Dividend = SE.getMulExpr(Dividend,
1029                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1030   }
1031 
1032   // Divide by 2^T
1033   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034 
1035   // Truncate the result, and divide by K! / 2^T.
1036 
1037   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039 }
1040 
1041 /// evaluateAtIteration - Return the value of this chain of recurrences at
1042 /// the specified iteration number.  We can evaluate this recurrence by
1043 /// multiplying each element in the chain by the binomial coefficient
1044 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045 ///
1046 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047 ///
1048 /// where BC(It, k) stands for binomial coefficient.
1049 ///
1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051                                                 ScalarEvolution &SE) const {
1052   const SCEV *Result = getStart();
1053   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071                                              Type *Ty) {
1072   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1073          "This is not a truncating conversion!");
1074   assert(isSCEVable(Ty) &&
1075          "This is not a conversion to a SCEVable type!");
1076   Ty = getEffectiveSCEVType(Ty);
1077 
1078   FoldingSetNodeID ID;
1079   ID.AddInteger(scTruncate);
1080   ID.AddPointer(Op);
1081   ID.AddPointer(Ty);
1082   void *IP = nullptr;
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084 
1085   // Fold if the operand is constant.
1086   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087     return getConstant(
1088       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089 
1090   // trunc(trunc(x)) --> trunc(x)
1091   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092     return getTruncateExpr(ST->getOperand(), Ty);
1093 
1094   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097 
1098   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101 
1102   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103   // eliminate all the truncates, or we replace other casts with truncates.
1104   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105     SmallVector<const SCEV *, 4> Operands;
1106     bool hasTrunc = false;
1107     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110         hasTrunc = isa<SCEVTruncateExpr>(S);
1111       Operands.push_back(S);
1112     }
1113     if (!hasTrunc)
1114       return getAddExpr(Operands);
1115     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1116   }
1117 
1118   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119   // eliminate all the truncates, or we replace other casts with truncates.
1120   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     bool hasTrunc = false;
1123     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126         hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (const SCEV *Op : AddRec->operands())
1138       Operands.push_back(getTruncateExpr(Op, Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   auto PreStartFlags =
1274     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278 
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282 
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287 
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303 
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308 
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311     return PreStart;
1312 
1313   return nullptr;
1314 }
1315 
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321 
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325 
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329 
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377 
1378   APInt StartAI = StartC->getAPInt();
1379 
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382 
1383     FoldingSetNodeID ID;
1384     ID.AddInteger(scAddRecExpr);
1385     ID.AddPointer(PreStart);
1386     ID.AddPointer(Step);
1387     ID.AddPointer(L);
1388     void *IP = nullptr;
1389     const auto *PreAR =
1390       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391 
1392     // Give up if we don't already have the add recurrence we need because
1393     // actually constructing an add recurrence is relatively expensive.
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       // If we have special knowledge that this addrec won't overflow,
1458       // we don't need to do any further analysis.
1459       if (AR->hasNoUnsignedWrap())
1460         return getAddRecExpr(
1461             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1463 
1464       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465       // Note that this serves two purposes: It filters out loops that are
1466       // simply not analyzable, and it covers the case where this code is
1467       // being called from within backedge-taken count analysis, such that
1468       // attempting to ask for the backedge-taken count would likely result
1469       // in infinite recursion. In the later case, the analysis code will
1470       // cope with a conservative value, and it will take care to purge
1471       // that value once it has finished.
1472       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1473       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1474         // Manually compute the final value for AR, checking for
1475         // overflow.
1476 
1477         // Check whether the backedge-taken count can be losslessly casted to
1478         // the addrec's type. The count is always unsigned.
1479         const SCEV *CastedMaxBECount =
1480           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1481         const SCEV *RecastedMaxBECount =
1482           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483         if (MaxBECount == RecastedMaxBECount) {
1484           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1485           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1486           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1487           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489           const SCEV *WideMaxBECount =
1490             getZeroExtendExpr(CastedMaxBECount, WideTy);
1491           const SCEV *OperandExtendedAdd =
1492             getAddExpr(WideStart,
1493                        getMulExpr(WideMaxBECount,
1494                                   getZeroExtendExpr(Step, WideTy)));
1495           if (ZAdd == OperandExtendedAdd) {
1496             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1498             // Return the expression with the addrec on the outside.
1499             return getAddRecExpr(
1500                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1502           }
1503           // Similar to above, only this time treat the step value as signed.
1504           // This covers loops that count down.
1505           OperandExtendedAdd =
1506             getAddExpr(WideStart,
1507                        getMulExpr(WideMaxBECount,
1508                                   getSignExtendExpr(Step, WideTy)));
1509           if (ZAdd == OperandExtendedAdd) {
1510             // Cache knowledge of AR NW, which is propagated to this AddRec.
1511             // Negative step causes unsigned wrap, but it still can't self-wrap.
1512             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513             // Return the expression with the addrec on the outside.
1514             return getAddRecExpr(
1515                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1517           }
1518         }
1519 
1520         // If the backedge is guarded by a comparison with the pre-inc value
1521         // the addrec is safe. Also, if the entry is guarded by a comparison
1522         // with the start value and the backedge is guarded by a comparison
1523         // with the post-inc value, the addrec is safe.
1524         if (isKnownPositive(Step)) {
1525           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526                                       getUnsignedRange(Step).getUnsignedMax());
1527           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1528               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1529                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1530                                            AR->getPostIncExpr(*this), N))) {
1531             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1533             // Return the expression with the addrec on the outside.
1534             return getAddRecExpr(
1535                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1537           }
1538         } else if (isKnownNegative(Step)) {
1539           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540                                       getSignedRange(Step).getSignedMin());
1541           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1543                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1544                                            AR->getPostIncExpr(*this), N))) {
1545             // Cache knowledge of AR NW, which is propagated to this AddRec.
1546             // Negative step causes unsigned wrap, but it still can't self-wrap.
1547             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548             // Return the expression with the addrec on the outside.
1549             return getAddRecExpr(
1550                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1552           }
1553         }
1554       }
1555 
1556       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558         return getAddRecExpr(
1559             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561       }
1562     }
1563 
1564   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1565     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1566     if (SA->hasNoUnsignedWrap()) {
1567       // If the addition does not unsign overflow then we can, by definition,
1568       // commute the zero extension with the addition operation.
1569       SmallVector<const SCEV *, 4> Ops;
1570       for (const auto *Op : SA->operands())
1571         Ops.push_back(getZeroExtendExpr(Op, Ty));
1572       return getAddExpr(Ops, SCEV::FlagNUW);
1573     }
1574   }
1575 
1576   // The cast wasn't folded; create an explicit cast node.
1577   // Recompute the insert position, as it may have been invalidated.
1578   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1579   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1580                                                    Op, Ty);
1581   UniqueSCEVs.InsertNode(S, IP);
1582   return S;
1583 }
1584 
1585 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1586                                                Type *Ty) {
1587   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1588          "This is not an extending conversion!");
1589   assert(isSCEVable(Ty) &&
1590          "This is not a conversion to a SCEVable type!");
1591   Ty = getEffectiveSCEVType(Ty);
1592 
1593   // Fold if the operand is constant.
1594   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1595     return getConstant(
1596       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1597 
1598   // sext(sext(x)) --> sext(x)
1599   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1600     return getSignExtendExpr(SS->getOperand(), Ty);
1601 
1602   // sext(zext(x)) --> zext(x)
1603   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1604     return getZeroExtendExpr(SZ->getOperand(), Ty);
1605 
1606   // Before doing any expensive analysis, check to see if we've already
1607   // computed a SCEV for this Op and Ty.
1608   FoldingSetNodeID ID;
1609   ID.AddInteger(scSignExtend);
1610   ID.AddPointer(Op);
1611   ID.AddPointer(Ty);
1612   void *IP = nullptr;
1613   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1614 
1615   // If the input value is provably positive, build a zext instead.
1616   if (isKnownNonNegative(Op))
1617     return getZeroExtendExpr(Op, Ty);
1618 
1619   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1620   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1621     // It's possible the bits taken off by the truncate were all sign bits. If
1622     // so, we should be able to simplify this further.
1623     const SCEV *X = ST->getOperand();
1624     ConstantRange CR = getSignedRange(X);
1625     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1626     unsigned NewBits = getTypeSizeInBits(Ty);
1627     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1628             CR.sextOrTrunc(NewBits)))
1629       return getTruncateOrSignExtend(X, Ty);
1630   }
1631 
1632   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1633   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1634     if (SA->getNumOperands() == 2) {
1635       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1636       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1637       if (SMul && SC1) {
1638         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1639           const APInt &C1 = SC1->getAPInt();
1640           const APInt &C2 = SC2->getAPInt();
1641           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1642               C2.ugt(C1) && C2.isPowerOf2())
1643             return getAddExpr(getSignExtendExpr(SC1, Ty),
1644                               getSignExtendExpr(SMul, Ty));
1645         }
1646       }
1647     }
1648 
1649     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1650     if (SA->hasNoSignedWrap()) {
1651       // If the addition does not sign overflow then we can, by definition,
1652       // commute the sign extension with the addition operation.
1653       SmallVector<const SCEV *, 4> Ops;
1654       for (const auto *Op : SA->operands())
1655         Ops.push_back(getSignExtendExpr(Op, Ty));
1656       return getAddExpr(Ops, SCEV::FlagNSW);
1657     }
1658   }
1659   // If the input value is a chrec scev, and we can prove that the value
1660   // did not overflow the old, smaller, value, we can sign extend all of the
1661   // operands (often constants).  This allows analysis of something like
1662   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1663   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1664     if (AR->isAffine()) {
1665       const SCEV *Start = AR->getStart();
1666       const SCEV *Step = AR->getStepRecurrence(*this);
1667       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1668       const Loop *L = AR->getLoop();
1669 
1670       // If we have special knowledge that this addrec won't overflow,
1671       // we don't need to do any further analysis.
1672       if (AR->hasNoSignedWrap())
1673         return getAddRecExpr(
1674             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1675             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1676 
1677       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1678       // Note that this serves two purposes: It filters out loops that are
1679       // simply not analyzable, and it covers the case where this code is
1680       // being called from within backedge-taken count analysis, such that
1681       // attempting to ask for the backedge-taken count would likely result
1682       // in infinite recursion. In the later case, the analysis code will
1683       // cope with a conservative value, and it will take care to purge
1684       // that value once it has finished.
1685       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1686       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1687         // Manually compute the final value for AR, checking for
1688         // overflow.
1689 
1690         // Check whether the backedge-taken count can be losslessly casted to
1691         // the addrec's type. The count is always unsigned.
1692         const SCEV *CastedMaxBECount =
1693           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1694         const SCEV *RecastedMaxBECount =
1695           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1696         if (MaxBECount == RecastedMaxBECount) {
1697           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1698           // Check whether Start+Step*MaxBECount has no signed overflow.
1699           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1700           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1701           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1702           const SCEV *WideMaxBECount =
1703             getZeroExtendExpr(CastedMaxBECount, WideTy);
1704           const SCEV *OperandExtendedAdd =
1705             getAddExpr(WideStart,
1706                        getMulExpr(WideMaxBECount,
1707                                   getSignExtendExpr(Step, WideTy)));
1708           if (SAdd == OperandExtendedAdd) {
1709             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1710             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1711             // Return the expression with the addrec on the outside.
1712             return getAddRecExpr(
1713                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1715           }
1716           // Similar to above, only this time treat the step value as unsigned.
1717           // This covers loops that count up with an unsigned step.
1718           OperandExtendedAdd =
1719             getAddExpr(WideStart,
1720                        getMulExpr(WideMaxBECount,
1721                                   getZeroExtendExpr(Step, WideTy)));
1722           if (SAdd == OperandExtendedAdd) {
1723             // If AR wraps around then
1724             //
1725             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1726             // => SAdd != OperandExtendedAdd
1727             //
1728             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1729             // (SAdd == OperandExtendedAdd => AR is NW)
1730 
1731             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1732 
1733             // Return the expression with the addrec on the outside.
1734             return getAddRecExpr(
1735                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1737           }
1738         }
1739 
1740         // If the backedge is guarded by a comparison with the pre-inc value
1741         // the addrec is safe. Also, if the entry is guarded by a comparison
1742         // with the start value and the backedge is guarded by a comparison
1743         // with the post-inc value, the addrec is safe.
1744         ICmpInst::Predicate Pred;
1745         const SCEV *OverflowLimit =
1746             getSignedOverflowLimitForStep(Step, &Pred, this);
1747         if (OverflowLimit &&
1748             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1749              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1750               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1751                                           OverflowLimit)))) {
1752           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1753           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1754           return getAddRecExpr(
1755               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1756               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1757         }
1758       }
1759       // If Start and Step are constants, check if we can apply this
1760       // transformation:
1761       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1762       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1763       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1764       if (SC1 && SC2) {
1765         const APInt &C1 = SC1->getAPInt();
1766         const APInt &C2 = SC2->getAPInt();
1767         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1768             C2.isPowerOf2()) {
1769           Start = getSignExtendExpr(Start, Ty);
1770           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1771                                             AR->getNoWrapFlags());
1772           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1777         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1780             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // The cast wasn't folded; create an explicit cast node.
1785   // Recompute the insert position, as it may have been invalidated.
1786   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1787   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1788                                                    Op, Ty);
1789   UniqueSCEVs.InsertNode(S, IP);
1790   return S;
1791 }
1792 
1793 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1794 /// unspecified bits out to the given type.
1795 ///
1796 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1797                                               Type *Ty) {
1798   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1799          "This is not an extending conversion!");
1800   assert(isSCEVable(Ty) &&
1801          "This is not a conversion to a SCEVable type!");
1802   Ty = getEffectiveSCEVType(Ty);
1803 
1804   // Sign-extend negative constants.
1805   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1806     if (SC->getAPInt().isNegative())
1807       return getSignExtendExpr(Op, Ty);
1808 
1809   // Peel off a truncate cast.
1810   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1811     const SCEV *NewOp = T->getOperand();
1812     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1813       return getAnyExtendExpr(NewOp, Ty);
1814     return getTruncateOrNoop(NewOp, Ty);
1815   }
1816 
1817   // Next try a zext cast. If the cast is folded, use it.
1818   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1819   if (!isa<SCEVZeroExtendExpr>(ZExt))
1820     return ZExt;
1821 
1822   // Next try a sext cast. If the cast is folded, use it.
1823   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1824   if (!isa<SCEVSignExtendExpr>(SExt))
1825     return SExt;
1826 
1827   // Force the cast to be folded into the operands of an addrec.
1828   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1829     SmallVector<const SCEV *, 4> Ops;
1830     for (const SCEV *Op : AR->operands())
1831       Ops.push_back(getAnyExtendExpr(Op, Ty));
1832     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1833   }
1834 
1835   // If the expression is obviously signed, use the sext cast value.
1836   if (isa<SCEVSMaxExpr>(Op))
1837     return SExt;
1838 
1839   // Absent any other information, use the zext cast value.
1840   return ZExt;
1841 }
1842 
1843 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1844 /// a list of operands to be added under the given scale, update the given
1845 /// map. This is a helper function for getAddRecExpr. As an example of
1846 /// what it does, given a sequence of operands that would form an add
1847 /// expression like this:
1848 ///
1849 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1850 ///
1851 /// where A and B are constants, update the map with these values:
1852 ///
1853 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1854 ///
1855 /// and add 13 + A*B*29 to AccumulatedConstant.
1856 /// This will allow getAddRecExpr to produce this:
1857 ///
1858 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1859 ///
1860 /// This form often exposes folding opportunities that are hidden in
1861 /// the original operand list.
1862 ///
1863 /// Return true iff it appears that any interesting folding opportunities
1864 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1865 /// the common case where no interesting opportunities are present, and
1866 /// is also used as a check to avoid infinite recursion.
1867 ///
1868 static bool
1869 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1870                              SmallVectorImpl<const SCEV *> &NewOps,
1871                              APInt &AccumulatedConstant,
1872                              const SCEV *const *Ops, size_t NumOperands,
1873                              const APInt &Scale,
1874                              ScalarEvolution &SE) {
1875   bool Interesting = false;
1876 
1877   // Iterate over the add operands. They are sorted, with constants first.
1878   unsigned i = 0;
1879   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1880     ++i;
1881     // Pull a buried constant out to the outside.
1882     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1883       Interesting = true;
1884     AccumulatedConstant += Scale * C->getAPInt();
1885   }
1886 
1887   // Next comes everything else. We're especially interested in multiplies
1888   // here, but they're in the middle, so just visit the rest with one loop.
1889   for (; i != NumOperands; ++i) {
1890     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1891     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1892       APInt NewScale =
1893           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1894       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1895         // A multiplication of a constant with another add; recurse.
1896         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1897         Interesting |=
1898           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1899                                        Add->op_begin(), Add->getNumOperands(),
1900                                        NewScale, SE);
1901       } else {
1902         // A multiplication of a constant with some other value. Update
1903         // the map.
1904         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1905         const SCEV *Key = SE.getMulExpr(MulOps);
1906         auto Pair = M.insert({Key, NewScale});
1907         if (Pair.second) {
1908           NewOps.push_back(Pair.first->first);
1909         } else {
1910           Pair.first->second += NewScale;
1911           // The map already had an entry for this value, which may indicate
1912           // a folding opportunity.
1913           Interesting = true;
1914         }
1915       }
1916     } else {
1917       // An ordinary operand. Update the map.
1918       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1919           M.insert({Ops[i], Scale});
1920       if (Pair.second) {
1921         NewOps.push_back(Pair.first->first);
1922       } else {
1923         Pair.first->second += Scale;
1924         // The map already had an entry for this value, which may indicate
1925         // a folding opportunity.
1926         Interesting = true;
1927       }
1928     }
1929   }
1930 
1931   return Interesting;
1932 }
1933 
1934 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1935 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1936 // can't-overflow flags for the operation if possible.
1937 static SCEV::NoWrapFlags
1938 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1939                       const SmallVectorImpl<const SCEV *> &Ops,
1940                       SCEV::NoWrapFlags Flags) {
1941   using namespace std::placeholders;
1942   typedef OverflowingBinaryOperator OBO;
1943 
1944   bool CanAnalyze =
1945       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1946   (void)CanAnalyze;
1947   assert(CanAnalyze && "don't call from other places!");
1948 
1949   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1950   SCEV::NoWrapFlags SignOrUnsignWrap =
1951       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1952 
1953   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1954   auto IsKnownNonNegative = [&](const SCEV *S) {
1955     return SE->isKnownNonNegative(S);
1956   };
1957 
1958   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1959     Flags =
1960         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1961 
1962   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1963 
1964   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1965       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1966 
1967     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1968     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1969 
1970     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1971     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1972       auto NSWRegion =
1973         ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1974       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1975         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1976     }
1977     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1978       auto NUWRegion =
1979         ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1980                                         OBO::NoUnsignedWrap);
1981       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1982         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1983     }
1984   }
1985 
1986   return Flags;
1987 }
1988 
1989 /// getAddExpr - Get a canonical add expression, or something simpler if
1990 /// possible.
1991 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1992                                         SCEV::NoWrapFlags Flags) {
1993   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1994          "only nuw or nsw allowed");
1995   assert(!Ops.empty() && "Cannot get empty add!");
1996   if (Ops.size() == 1) return Ops[0];
1997 #ifndef NDEBUG
1998   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1999   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2000     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2001            "SCEVAddExpr operand types don't match!");
2002 #endif
2003 
2004   // Sort by complexity, this groups all similar expression types together.
2005   GroupByComplexity(Ops, &LI);
2006 
2007   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2008 
2009   // If there are any constants, fold them together.
2010   unsigned Idx = 0;
2011   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2012     ++Idx;
2013     assert(Idx < Ops.size());
2014     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2015       // We found two constants, fold them together!
2016       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2017       if (Ops.size() == 2) return Ops[0];
2018       Ops.erase(Ops.begin()+1);  // Erase the folded element
2019       LHSC = cast<SCEVConstant>(Ops[0]);
2020     }
2021 
2022     // If we are left with a constant zero being added, strip it off.
2023     if (LHSC->getValue()->isZero()) {
2024       Ops.erase(Ops.begin());
2025       --Idx;
2026     }
2027 
2028     if (Ops.size() == 1) return Ops[0];
2029   }
2030 
2031   // Okay, check to see if the same value occurs in the operand list more than
2032   // once.  If so, merge them together into an multiply expression.  Since we
2033   // sorted the list, these values are required to be adjacent.
2034   Type *Ty = Ops[0]->getType();
2035   bool FoundMatch = false;
2036   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2037     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2038       // Scan ahead to count how many equal operands there are.
2039       unsigned Count = 2;
2040       while (i+Count != e && Ops[i+Count] == Ops[i])
2041         ++Count;
2042       // Merge the values into a multiply.
2043       const SCEV *Scale = getConstant(Ty, Count);
2044       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2045       if (Ops.size() == Count)
2046         return Mul;
2047       Ops[i] = Mul;
2048       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2049       --i; e -= Count - 1;
2050       FoundMatch = true;
2051     }
2052   if (FoundMatch)
2053     return getAddExpr(Ops, Flags);
2054 
2055   // Check for truncates. If all the operands are truncated from the same
2056   // type, see if factoring out the truncate would permit the result to be
2057   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2058   // if the contents of the resulting outer trunc fold to something simple.
2059   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2060     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2061     Type *DstType = Trunc->getType();
2062     Type *SrcType = Trunc->getOperand()->getType();
2063     SmallVector<const SCEV *, 8> LargeOps;
2064     bool Ok = true;
2065     // Check all the operands to see if they can be represented in the
2066     // source type of the truncate.
2067     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2068       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2069         if (T->getOperand()->getType() != SrcType) {
2070           Ok = false;
2071           break;
2072         }
2073         LargeOps.push_back(T->getOperand());
2074       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2075         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2076       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2077         SmallVector<const SCEV *, 8> LargeMulOps;
2078         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2079           if (const SCEVTruncateExpr *T =
2080                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2081             if (T->getOperand()->getType() != SrcType) {
2082               Ok = false;
2083               break;
2084             }
2085             LargeMulOps.push_back(T->getOperand());
2086           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2087             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2088           } else {
2089             Ok = false;
2090             break;
2091           }
2092         }
2093         if (Ok)
2094           LargeOps.push_back(getMulExpr(LargeMulOps));
2095       } else {
2096         Ok = false;
2097         break;
2098       }
2099     }
2100     if (Ok) {
2101       // Evaluate the expression in the larger type.
2102       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2103       // If it folds to something simple, use it. Otherwise, don't.
2104       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2105         return getTruncateExpr(Fold, DstType);
2106     }
2107   }
2108 
2109   // Skip past any other cast SCEVs.
2110   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2111     ++Idx;
2112 
2113   // If there are add operands they would be next.
2114   if (Idx < Ops.size()) {
2115     bool DeletedAdd = false;
2116     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2117       // If we have an add, expand the add operands onto the end of the operands
2118       // list.
2119       Ops.erase(Ops.begin()+Idx);
2120       Ops.append(Add->op_begin(), Add->op_end());
2121       DeletedAdd = true;
2122     }
2123 
2124     // If we deleted at least one add, we added operands to the end of the list,
2125     // and they are not necessarily sorted.  Recurse to resort and resimplify
2126     // any operands we just acquired.
2127     if (DeletedAdd)
2128       return getAddExpr(Ops);
2129   }
2130 
2131   // Skip over the add expression until we get to a multiply.
2132   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2133     ++Idx;
2134 
2135   // Check to see if there are any folding opportunities present with
2136   // operands multiplied by constant values.
2137   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2138     uint64_t BitWidth = getTypeSizeInBits(Ty);
2139     DenseMap<const SCEV *, APInt> M;
2140     SmallVector<const SCEV *, 8> NewOps;
2141     APInt AccumulatedConstant(BitWidth, 0);
2142     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2143                                      Ops.data(), Ops.size(),
2144                                      APInt(BitWidth, 1), *this)) {
2145       struct APIntCompare {
2146         bool operator()(const APInt &LHS, const APInt &RHS) const {
2147           return LHS.ult(RHS);
2148         }
2149       };
2150 
2151       // Some interesting folding opportunity is present, so its worthwhile to
2152       // re-generate the operands list. Group the operands by constant scale,
2153       // to avoid multiplying by the same constant scale multiple times.
2154       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2155       for (const SCEV *NewOp : NewOps)
2156         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2157       // Re-generate the operands list.
2158       Ops.clear();
2159       if (AccumulatedConstant != 0)
2160         Ops.push_back(getConstant(AccumulatedConstant));
2161       for (auto &MulOp : MulOpLists)
2162         if (MulOp.first != 0)
2163           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2164                                    getAddExpr(MulOp.second)));
2165       if (Ops.empty())
2166         return getZero(Ty);
2167       if (Ops.size() == 1)
2168         return Ops[0];
2169       return getAddExpr(Ops);
2170     }
2171   }
2172 
2173   // If we are adding something to a multiply expression, make sure the
2174   // something is not already an operand of the multiply.  If so, merge it into
2175   // the multiply.
2176   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2177     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2178     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2179       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2180       if (isa<SCEVConstant>(MulOpSCEV))
2181         continue;
2182       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2183         if (MulOpSCEV == Ops[AddOp]) {
2184           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2185           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2186           if (Mul->getNumOperands() != 2) {
2187             // If the multiply has more than two operands, we must get the
2188             // Y*Z term.
2189             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2190                                                 Mul->op_begin()+MulOp);
2191             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2192             InnerMul = getMulExpr(MulOps);
2193           }
2194           const SCEV *One = getOne(Ty);
2195           const SCEV *AddOne = getAddExpr(One, InnerMul);
2196           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2197           if (Ops.size() == 2) return OuterMul;
2198           if (AddOp < Idx) {
2199             Ops.erase(Ops.begin()+AddOp);
2200             Ops.erase(Ops.begin()+Idx-1);
2201           } else {
2202             Ops.erase(Ops.begin()+Idx);
2203             Ops.erase(Ops.begin()+AddOp-1);
2204           }
2205           Ops.push_back(OuterMul);
2206           return getAddExpr(Ops);
2207         }
2208 
2209       // Check this multiply against other multiplies being added together.
2210       for (unsigned OtherMulIdx = Idx+1;
2211            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2212            ++OtherMulIdx) {
2213         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2214         // If MulOp occurs in OtherMul, we can fold the two multiplies
2215         // together.
2216         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2217              OMulOp != e; ++OMulOp)
2218           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2219             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2220             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2221             if (Mul->getNumOperands() != 2) {
2222               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2223                                                   Mul->op_begin()+MulOp);
2224               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2225               InnerMul1 = getMulExpr(MulOps);
2226             }
2227             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2228             if (OtherMul->getNumOperands() != 2) {
2229               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2230                                                   OtherMul->op_begin()+OMulOp);
2231               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2232               InnerMul2 = getMulExpr(MulOps);
2233             }
2234             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2235             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2236             if (Ops.size() == 2) return OuterMul;
2237             Ops.erase(Ops.begin()+Idx);
2238             Ops.erase(Ops.begin()+OtherMulIdx-1);
2239             Ops.push_back(OuterMul);
2240             return getAddExpr(Ops);
2241           }
2242       }
2243     }
2244   }
2245 
2246   // If there are any add recurrences in the operands list, see if any other
2247   // added values are loop invariant.  If so, we can fold them into the
2248   // recurrence.
2249   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2250     ++Idx;
2251 
2252   // Scan over all recurrences, trying to fold loop invariants into them.
2253   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2254     // Scan all of the other operands to this add and add them to the vector if
2255     // they are loop invariant w.r.t. the recurrence.
2256     SmallVector<const SCEV *, 8> LIOps;
2257     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2258     const Loop *AddRecLoop = AddRec->getLoop();
2259     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2260       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2261         LIOps.push_back(Ops[i]);
2262         Ops.erase(Ops.begin()+i);
2263         --i; --e;
2264       }
2265 
2266     // If we found some loop invariants, fold them into the recurrence.
2267     if (!LIOps.empty()) {
2268       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2269       LIOps.push_back(AddRec->getStart());
2270 
2271       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2272                                              AddRec->op_end());
2273       AddRecOps[0] = getAddExpr(LIOps);
2274 
2275       // Build the new addrec. Propagate the NUW and NSW flags if both the
2276       // outer add and the inner addrec are guaranteed to have no overflow.
2277       // Always propagate NW.
2278       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2279       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2280 
2281       // If all of the other operands were loop invariant, we are done.
2282       if (Ops.size() == 1) return NewRec;
2283 
2284       // Otherwise, add the folded AddRec by the non-invariant parts.
2285       for (unsigned i = 0;; ++i)
2286         if (Ops[i] == AddRec) {
2287           Ops[i] = NewRec;
2288           break;
2289         }
2290       return getAddExpr(Ops);
2291     }
2292 
2293     // Okay, if there weren't any loop invariants to be folded, check to see if
2294     // there are multiple AddRec's with the same loop induction variable being
2295     // added together.  If so, we can fold them.
2296     for (unsigned OtherIdx = Idx+1;
2297          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2298          ++OtherIdx)
2299       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2300         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2301         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2302                                                AddRec->op_end());
2303         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2304              ++OtherIdx)
2305           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2306             if (OtherAddRec->getLoop() == AddRecLoop) {
2307               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2308                    i != e; ++i) {
2309                 if (i >= AddRecOps.size()) {
2310                   AddRecOps.append(OtherAddRec->op_begin()+i,
2311                                    OtherAddRec->op_end());
2312                   break;
2313                 }
2314                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2315                                           OtherAddRec->getOperand(i));
2316               }
2317               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2318             }
2319         // Step size has changed, so we cannot guarantee no self-wraparound.
2320         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2321         return getAddExpr(Ops);
2322       }
2323 
2324     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2325     // next one.
2326   }
2327 
2328   // Okay, it looks like we really DO need an add expr.  Check to see if we
2329   // already have one, otherwise create a new one.
2330   FoldingSetNodeID ID;
2331   ID.AddInteger(scAddExpr);
2332   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2333     ID.AddPointer(Ops[i]);
2334   void *IP = nullptr;
2335   SCEVAddExpr *S =
2336     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2337   if (!S) {
2338     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2339     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2340     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2341                                         O, Ops.size());
2342     UniqueSCEVs.InsertNode(S, IP);
2343   }
2344   S->setNoWrapFlags(Flags);
2345   return S;
2346 }
2347 
2348 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2349   uint64_t k = i*j;
2350   if (j > 1 && k / j != i) Overflow = true;
2351   return k;
2352 }
2353 
2354 /// Compute the result of "n choose k", the binomial coefficient.  If an
2355 /// intermediate computation overflows, Overflow will be set and the return will
2356 /// be garbage. Overflow is not cleared on absence of overflow.
2357 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2358   // We use the multiplicative formula:
2359   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2360   // At each iteration, we take the n-th term of the numeral and divide by the
2361   // (k-n)th term of the denominator.  This division will always produce an
2362   // integral result, and helps reduce the chance of overflow in the
2363   // intermediate computations. However, we can still overflow even when the
2364   // final result would fit.
2365 
2366   if (n == 0 || n == k) return 1;
2367   if (k > n) return 0;
2368 
2369   if (k > n/2)
2370     k = n-k;
2371 
2372   uint64_t r = 1;
2373   for (uint64_t i = 1; i <= k; ++i) {
2374     r = umul_ov(r, n-(i-1), Overflow);
2375     r /= i;
2376   }
2377   return r;
2378 }
2379 
2380 /// Determine if any of the operands in this SCEV are a constant or if
2381 /// any of the add or multiply expressions in this SCEV contain a constant.
2382 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2383   SmallVector<const SCEV *, 4> Ops;
2384   Ops.push_back(StartExpr);
2385   while (!Ops.empty()) {
2386     const SCEV *CurrentExpr = Ops.pop_back_val();
2387     if (isa<SCEVConstant>(*CurrentExpr))
2388       return true;
2389 
2390     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2391       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2392       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2393     }
2394   }
2395   return false;
2396 }
2397 
2398 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2399 /// possible.
2400 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2401                                         SCEV::NoWrapFlags Flags) {
2402   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2403          "only nuw or nsw allowed");
2404   assert(!Ops.empty() && "Cannot get empty mul!");
2405   if (Ops.size() == 1) return Ops[0];
2406 #ifndef NDEBUG
2407   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2408   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2409     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2410            "SCEVMulExpr operand types don't match!");
2411 #endif
2412 
2413   // Sort by complexity, this groups all similar expression types together.
2414   GroupByComplexity(Ops, &LI);
2415 
2416   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2417 
2418   // If there are any constants, fold them together.
2419   unsigned Idx = 0;
2420   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2421 
2422     // C1*(C2+V) -> C1*C2 + C1*V
2423     if (Ops.size() == 2)
2424         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2425           // If any of Add's ops are Adds or Muls with a constant,
2426           // apply this transformation as well.
2427           if (Add->getNumOperands() == 2)
2428             if (containsConstantSomewhere(Add))
2429               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2430                                 getMulExpr(LHSC, Add->getOperand(1)));
2431 
2432     ++Idx;
2433     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2434       // We found two constants, fold them together!
2435       ConstantInt *Fold =
2436           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2437       Ops[0] = getConstant(Fold);
2438       Ops.erase(Ops.begin()+1);  // Erase the folded element
2439       if (Ops.size() == 1) return Ops[0];
2440       LHSC = cast<SCEVConstant>(Ops[0]);
2441     }
2442 
2443     // If we are left with a constant one being multiplied, strip it off.
2444     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2445       Ops.erase(Ops.begin());
2446       --Idx;
2447     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2448       // If we have a multiply of zero, it will always be zero.
2449       return Ops[0];
2450     } else if (Ops[0]->isAllOnesValue()) {
2451       // If we have a mul by -1 of an add, try distributing the -1 among the
2452       // add operands.
2453       if (Ops.size() == 2) {
2454         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2455           SmallVector<const SCEV *, 4> NewOps;
2456           bool AnyFolded = false;
2457           for (const SCEV *AddOp : Add->operands()) {
2458             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2459             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2460             NewOps.push_back(Mul);
2461           }
2462           if (AnyFolded)
2463             return getAddExpr(NewOps);
2464         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2465           // Negation preserves a recurrence's no self-wrap property.
2466           SmallVector<const SCEV *, 4> Operands;
2467           for (const SCEV *AddRecOp : AddRec->operands())
2468             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2469 
2470           return getAddRecExpr(Operands, AddRec->getLoop(),
2471                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2472         }
2473       }
2474     }
2475 
2476     if (Ops.size() == 1)
2477       return Ops[0];
2478   }
2479 
2480   // Skip over the add expression until we get to a multiply.
2481   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2482     ++Idx;
2483 
2484   // If there are mul operands inline them all into this expression.
2485   if (Idx < Ops.size()) {
2486     bool DeletedMul = false;
2487     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2488       // If we have an mul, expand the mul operands onto the end of the operands
2489       // list.
2490       Ops.erase(Ops.begin()+Idx);
2491       Ops.append(Mul->op_begin(), Mul->op_end());
2492       DeletedMul = true;
2493     }
2494 
2495     // If we deleted at least one mul, we added operands to the end of the list,
2496     // and they are not necessarily sorted.  Recurse to resort and resimplify
2497     // any operands we just acquired.
2498     if (DeletedMul)
2499       return getMulExpr(Ops);
2500   }
2501 
2502   // If there are any add recurrences in the operands list, see if any other
2503   // added values are loop invariant.  If so, we can fold them into the
2504   // recurrence.
2505   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2506     ++Idx;
2507 
2508   // Scan over all recurrences, trying to fold loop invariants into them.
2509   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2510     // Scan all of the other operands to this mul and add them to the vector if
2511     // they are loop invariant w.r.t. the recurrence.
2512     SmallVector<const SCEV *, 8> LIOps;
2513     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2514     const Loop *AddRecLoop = AddRec->getLoop();
2515     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2516       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2517         LIOps.push_back(Ops[i]);
2518         Ops.erase(Ops.begin()+i);
2519         --i; --e;
2520       }
2521 
2522     // If we found some loop invariants, fold them into the recurrence.
2523     if (!LIOps.empty()) {
2524       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2525       SmallVector<const SCEV *, 4> NewOps;
2526       NewOps.reserve(AddRec->getNumOperands());
2527       const SCEV *Scale = getMulExpr(LIOps);
2528       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2529         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2530 
2531       // Build the new addrec. Propagate the NUW and NSW flags if both the
2532       // outer mul and the inner addrec are guaranteed to have no overflow.
2533       //
2534       // No self-wrap cannot be guaranteed after changing the step size, but
2535       // will be inferred if either NUW or NSW is true.
2536       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2537       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2538 
2539       // If all of the other operands were loop invariant, we are done.
2540       if (Ops.size() == 1) return NewRec;
2541 
2542       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2543       for (unsigned i = 0;; ++i)
2544         if (Ops[i] == AddRec) {
2545           Ops[i] = NewRec;
2546           break;
2547         }
2548       return getMulExpr(Ops);
2549     }
2550 
2551     // Okay, if there weren't any loop invariants to be folded, check to see if
2552     // there are multiple AddRec's with the same loop induction variable being
2553     // multiplied together.  If so, we can fold them.
2554 
2555     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2556     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2557     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2558     //   ]]],+,...up to x=2n}.
2559     // Note that the arguments to choose() are always integers with values
2560     // known at compile time, never SCEV objects.
2561     //
2562     // The implementation avoids pointless extra computations when the two
2563     // addrec's are of different length (mathematically, it's equivalent to
2564     // an infinite stream of zeros on the right).
2565     bool OpsModified = false;
2566     for (unsigned OtherIdx = Idx+1;
2567          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2568          ++OtherIdx) {
2569       const SCEVAddRecExpr *OtherAddRec =
2570         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2571       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2572         continue;
2573 
2574       bool Overflow = false;
2575       Type *Ty = AddRec->getType();
2576       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2577       SmallVector<const SCEV*, 7> AddRecOps;
2578       for (int x = 0, xe = AddRec->getNumOperands() +
2579              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2580         const SCEV *Term = getZero(Ty);
2581         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2582           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2583           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2584                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2585                z < ze && !Overflow; ++z) {
2586             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2587             uint64_t Coeff;
2588             if (LargerThan64Bits)
2589               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2590             else
2591               Coeff = Coeff1*Coeff2;
2592             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2593             const SCEV *Term1 = AddRec->getOperand(y-z);
2594             const SCEV *Term2 = OtherAddRec->getOperand(z);
2595             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2596           }
2597         }
2598         AddRecOps.push_back(Term);
2599       }
2600       if (!Overflow) {
2601         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2602                                               SCEV::FlagAnyWrap);
2603         if (Ops.size() == 2) return NewAddRec;
2604         Ops[Idx] = NewAddRec;
2605         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2606         OpsModified = true;
2607         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2608         if (!AddRec)
2609           break;
2610       }
2611     }
2612     if (OpsModified)
2613       return getMulExpr(Ops);
2614 
2615     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2616     // next one.
2617   }
2618 
2619   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2620   // already have one, otherwise create a new one.
2621   FoldingSetNodeID ID;
2622   ID.AddInteger(scMulExpr);
2623   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2624     ID.AddPointer(Ops[i]);
2625   void *IP = nullptr;
2626   SCEVMulExpr *S =
2627     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2628   if (!S) {
2629     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2630     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2631     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2632                                         O, Ops.size());
2633     UniqueSCEVs.InsertNode(S, IP);
2634   }
2635   S->setNoWrapFlags(Flags);
2636   return S;
2637 }
2638 
2639 /// getUDivExpr - Get a canonical unsigned division expression, or something
2640 /// simpler if possible.
2641 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2642                                          const SCEV *RHS) {
2643   assert(getEffectiveSCEVType(LHS->getType()) ==
2644          getEffectiveSCEVType(RHS->getType()) &&
2645          "SCEVUDivExpr operand types don't match!");
2646 
2647   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2648     if (RHSC->getValue()->equalsInt(1))
2649       return LHS;                               // X udiv 1 --> x
2650     // If the denominator is zero, the result of the udiv is undefined. Don't
2651     // try to analyze it, because the resolution chosen here may differ from
2652     // the resolution chosen in other parts of the compiler.
2653     if (!RHSC->getValue()->isZero()) {
2654       // Determine if the division can be folded into the operands of
2655       // its operands.
2656       // TODO: Generalize this to non-constants by using known-bits information.
2657       Type *Ty = LHS->getType();
2658       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2659       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2660       // For non-power-of-two values, effectively round the value up to the
2661       // nearest power of two.
2662       if (!RHSC->getAPInt().isPowerOf2())
2663         ++MaxShiftAmt;
2664       IntegerType *ExtTy =
2665         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2666       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2667         if (const SCEVConstant *Step =
2668             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2669           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2670           const APInt &StepInt = Step->getAPInt();
2671           const APInt &DivInt = RHSC->getAPInt();
2672           if (!StepInt.urem(DivInt) &&
2673               getZeroExtendExpr(AR, ExtTy) ==
2674               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2675                             getZeroExtendExpr(Step, ExtTy),
2676                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2677             SmallVector<const SCEV *, 4> Operands;
2678             for (const SCEV *Op : AR->operands())
2679               Operands.push_back(getUDivExpr(Op, RHS));
2680             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2681           }
2682           /// Get a canonical UDivExpr for a recurrence.
2683           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2684           // We can currently only fold X%N if X is constant.
2685           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2686           if (StartC && !DivInt.urem(StepInt) &&
2687               getZeroExtendExpr(AR, ExtTy) ==
2688               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2689                             getZeroExtendExpr(Step, ExtTy),
2690                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2691             const APInt &StartInt = StartC->getAPInt();
2692             const APInt &StartRem = StartInt.urem(StepInt);
2693             if (StartRem != 0)
2694               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2695                                   AR->getLoop(), SCEV::FlagNW);
2696           }
2697         }
2698       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2699       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2700         SmallVector<const SCEV *, 4> Operands;
2701         for (const SCEV *Op : M->operands())
2702           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2703         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2704           // Find an operand that's safely divisible.
2705           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2706             const SCEV *Op = M->getOperand(i);
2707             const SCEV *Div = getUDivExpr(Op, RHSC);
2708             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2709               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2710                                                       M->op_end());
2711               Operands[i] = Div;
2712               return getMulExpr(Operands);
2713             }
2714           }
2715       }
2716       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2717       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2718         SmallVector<const SCEV *, 4> Operands;
2719         for (const SCEV *Op : A->operands())
2720           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2721         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2722           Operands.clear();
2723           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2724             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2725             if (isa<SCEVUDivExpr>(Op) ||
2726                 getMulExpr(Op, RHS) != A->getOperand(i))
2727               break;
2728             Operands.push_back(Op);
2729           }
2730           if (Operands.size() == A->getNumOperands())
2731             return getAddExpr(Operands);
2732         }
2733       }
2734 
2735       // Fold if both operands are constant.
2736       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2737         Constant *LHSCV = LHSC->getValue();
2738         Constant *RHSCV = RHSC->getValue();
2739         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2740                                                                    RHSCV)));
2741       }
2742     }
2743   }
2744 
2745   FoldingSetNodeID ID;
2746   ID.AddInteger(scUDivExpr);
2747   ID.AddPointer(LHS);
2748   ID.AddPointer(RHS);
2749   void *IP = nullptr;
2750   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2751   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2752                                              LHS, RHS);
2753   UniqueSCEVs.InsertNode(S, IP);
2754   return S;
2755 }
2756 
2757 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2758   APInt A = C1->getAPInt().abs();
2759   APInt B = C2->getAPInt().abs();
2760   uint32_t ABW = A.getBitWidth();
2761   uint32_t BBW = B.getBitWidth();
2762 
2763   if (ABW > BBW)
2764     B = B.zext(ABW);
2765   else if (ABW < BBW)
2766     A = A.zext(BBW);
2767 
2768   return APIntOps::GreatestCommonDivisor(A, B);
2769 }
2770 
2771 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2772 /// something simpler if possible. There is no representation for an exact udiv
2773 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2774 /// We can't do this when it's not exact because the udiv may be clearing bits.
2775 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2776                                               const SCEV *RHS) {
2777   // TODO: we could try to find factors in all sorts of things, but for now we
2778   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2779   // end of this file for inspiration.
2780 
2781   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2782   if (!Mul)
2783     return getUDivExpr(LHS, RHS);
2784 
2785   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2786     // If the mulexpr multiplies by a constant, then that constant must be the
2787     // first element of the mulexpr.
2788     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2789       if (LHSCst == RHSCst) {
2790         SmallVector<const SCEV *, 2> Operands;
2791         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2792         return getMulExpr(Operands);
2793       }
2794 
2795       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2796       // that there's a factor provided by one of the other terms. We need to
2797       // check.
2798       APInt Factor = gcd(LHSCst, RHSCst);
2799       if (!Factor.isIntN(1)) {
2800         LHSCst =
2801             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2802         RHSCst =
2803             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2804         SmallVector<const SCEV *, 2> Operands;
2805         Operands.push_back(LHSCst);
2806         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2807         LHS = getMulExpr(Operands);
2808         RHS = RHSCst;
2809         Mul = dyn_cast<SCEVMulExpr>(LHS);
2810         if (!Mul)
2811           return getUDivExactExpr(LHS, RHS);
2812       }
2813     }
2814   }
2815 
2816   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2817     if (Mul->getOperand(i) == RHS) {
2818       SmallVector<const SCEV *, 2> Operands;
2819       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2820       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2821       return getMulExpr(Operands);
2822     }
2823   }
2824 
2825   return getUDivExpr(LHS, RHS);
2826 }
2827 
2828 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2829 /// Simplify the expression as much as possible.
2830 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2831                                            const Loop *L,
2832                                            SCEV::NoWrapFlags Flags) {
2833   SmallVector<const SCEV *, 4> Operands;
2834   Operands.push_back(Start);
2835   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2836     if (StepChrec->getLoop() == L) {
2837       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2838       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2839     }
2840 
2841   Operands.push_back(Step);
2842   return getAddRecExpr(Operands, L, Flags);
2843 }
2844 
2845 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2846 /// Simplify the expression as much as possible.
2847 const SCEV *
2848 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2849                                const Loop *L, SCEV::NoWrapFlags Flags) {
2850   if (Operands.size() == 1) return Operands[0];
2851 #ifndef NDEBUG
2852   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2853   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2854     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2855            "SCEVAddRecExpr operand types don't match!");
2856   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2857     assert(isLoopInvariant(Operands[i], L) &&
2858            "SCEVAddRecExpr operand is not loop-invariant!");
2859 #endif
2860 
2861   if (Operands.back()->isZero()) {
2862     Operands.pop_back();
2863     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2864   }
2865 
2866   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2867   // use that information to infer NUW and NSW flags. However, computing a
2868   // BE count requires calling getAddRecExpr, so we may not yet have a
2869   // meaningful BE count at this point (and if we don't, we'd be stuck
2870   // with a SCEVCouldNotCompute as the cached BE count).
2871 
2872   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2873 
2874   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2875   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2876     const Loop *NestedLoop = NestedAR->getLoop();
2877     if (L->contains(NestedLoop)
2878             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2879             : (!NestedLoop->contains(L) &&
2880                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2881       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2882                                                   NestedAR->op_end());
2883       Operands[0] = NestedAR->getStart();
2884       // AddRecs require their operands be loop-invariant with respect to their
2885       // loops. Don't perform this transformation if it would break this
2886       // requirement.
2887       bool AllInvariant = all_of(
2888           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2889 
2890       if (AllInvariant) {
2891         // Create a recurrence for the outer loop with the same step size.
2892         //
2893         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2894         // inner recurrence has the same property.
2895         SCEV::NoWrapFlags OuterFlags =
2896           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2897 
2898         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2899         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2900           return isLoopInvariant(Op, NestedLoop);
2901         });
2902 
2903         if (AllInvariant) {
2904           // Ok, both add recurrences are valid after the transformation.
2905           //
2906           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2907           // the outer recurrence has the same property.
2908           SCEV::NoWrapFlags InnerFlags =
2909             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2910           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2911         }
2912       }
2913       // Reset Operands to its original state.
2914       Operands[0] = NestedAR;
2915     }
2916   }
2917 
2918   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2919   // already have one, otherwise create a new one.
2920   FoldingSetNodeID ID;
2921   ID.AddInteger(scAddRecExpr);
2922   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2923     ID.AddPointer(Operands[i]);
2924   ID.AddPointer(L);
2925   void *IP = nullptr;
2926   SCEVAddRecExpr *S =
2927     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2928   if (!S) {
2929     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2930     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2931     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2932                                            O, Operands.size(), L);
2933     UniqueSCEVs.InsertNode(S, IP);
2934   }
2935   S->setNoWrapFlags(Flags);
2936   return S;
2937 }
2938 
2939 const SCEV *
2940 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2941                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2942                             bool InBounds) {
2943   // getSCEV(Base)->getType() has the same address space as Base->getType()
2944   // because SCEV::getType() preserves the address space.
2945   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2946   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2947   // instruction to its SCEV, because the Instruction may be guarded by control
2948   // flow and the no-overflow bits may not be valid for the expression in any
2949   // context. This can be fixed similarly to how these flags are handled for
2950   // adds.
2951   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2952 
2953   const SCEV *TotalOffset = getZero(IntPtrTy);
2954   // The address space is unimportant. The first thing we do on CurTy is getting
2955   // its element type.
2956   Type *CurTy = PointerType::getUnqual(PointeeType);
2957   for (const SCEV *IndexExpr : IndexExprs) {
2958     // Compute the (potentially symbolic) offset in bytes for this index.
2959     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2960       // For a struct, add the member offset.
2961       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2962       unsigned FieldNo = Index->getZExtValue();
2963       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2964 
2965       // Add the field offset to the running total offset.
2966       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2967 
2968       // Update CurTy to the type of the field at Index.
2969       CurTy = STy->getTypeAtIndex(Index);
2970     } else {
2971       // Update CurTy to its element type.
2972       CurTy = cast<SequentialType>(CurTy)->getElementType();
2973       // For an array, add the element offset, explicitly scaled.
2974       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2975       // Getelementptr indices are signed.
2976       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2977 
2978       // Multiply the index by the element size to compute the element offset.
2979       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2980 
2981       // Add the element offset to the running total offset.
2982       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2983     }
2984   }
2985 
2986   // Add the total offset from all the GEP indices to the base.
2987   return getAddExpr(BaseExpr, TotalOffset, Wrap);
2988 }
2989 
2990 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2991                                          const SCEV *RHS) {
2992   SmallVector<const SCEV *, 2> Ops;
2993   Ops.push_back(LHS);
2994   Ops.push_back(RHS);
2995   return getSMaxExpr(Ops);
2996 }
2997 
2998 const SCEV *
2999 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3000   assert(!Ops.empty() && "Cannot get empty smax!");
3001   if (Ops.size() == 1) return Ops[0];
3002 #ifndef NDEBUG
3003   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3004   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3005     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3006            "SCEVSMaxExpr operand types don't match!");
3007 #endif
3008 
3009   // Sort by complexity, this groups all similar expression types together.
3010   GroupByComplexity(Ops, &LI);
3011 
3012   // If there are any constants, fold them together.
3013   unsigned Idx = 0;
3014   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3015     ++Idx;
3016     assert(Idx < Ops.size());
3017     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3018       // We found two constants, fold them together!
3019       ConstantInt *Fold = ConstantInt::get(
3020           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3021       Ops[0] = getConstant(Fold);
3022       Ops.erase(Ops.begin()+1);  // Erase the folded element
3023       if (Ops.size() == 1) return Ops[0];
3024       LHSC = cast<SCEVConstant>(Ops[0]);
3025     }
3026 
3027     // If we are left with a constant minimum-int, strip it off.
3028     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3029       Ops.erase(Ops.begin());
3030       --Idx;
3031     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3032       // If we have an smax with a constant maximum-int, it will always be
3033       // maximum-int.
3034       return Ops[0];
3035     }
3036 
3037     if (Ops.size() == 1) return Ops[0];
3038   }
3039 
3040   // Find the first SMax
3041   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3042     ++Idx;
3043 
3044   // Check to see if one of the operands is an SMax. If so, expand its operands
3045   // onto our operand list, and recurse to simplify.
3046   if (Idx < Ops.size()) {
3047     bool DeletedSMax = false;
3048     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3049       Ops.erase(Ops.begin()+Idx);
3050       Ops.append(SMax->op_begin(), SMax->op_end());
3051       DeletedSMax = true;
3052     }
3053 
3054     if (DeletedSMax)
3055       return getSMaxExpr(Ops);
3056   }
3057 
3058   // Okay, check to see if the same value occurs in the operand list twice.  If
3059   // so, delete one.  Since we sorted the list, these values are required to
3060   // be adjacent.
3061   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3062     //  X smax Y smax Y  -->  X smax Y
3063     //  X smax Y         -->  X, if X is always greater than Y
3064     if (Ops[i] == Ops[i+1] ||
3065         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3066       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3067       --i; --e;
3068     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3069       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3070       --i; --e;
3071     }
3072 
3073   if (Ops.size() == 1) return Ops[0];
3074 
3075   assert(!Ops.empty() && "Reduced smax down to nothing!");
3076 
3077   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3078   // already have one, otherwise create a new one.
3079   FoldingSetNodeID ID;
3080   ID.AddInteger(scSMaxExpr);
3081   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3082     ID.AddPointer(Ops[i]);
3083   void *IP = nullptr;
3084   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3085   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3086   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3087   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3088                                              O, Ops.size());
3089   UniqueSCEVs.InsertNode(S, IP);
3090   return S;
3091 }
3092 
3093 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3094                                          const SCEV *RHS) {
3095   SmallVector<const SCEV *, 2> Ops;
3096   Ops.push_back(LHS);
3097   Ops.push_back(RHS);
3098   return getUMaxExpr(Ops);
3099 }
3100 
3101 const SCEV *
3102 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3103   assert(!Ops.empty() && "Cannot get empty umax!");
3104   if (Ops.size() == 1) return Ops[0];
3105 #ifndef NDEBUG
3106   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3107   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3108     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3109            "SCEVUMaxExpr operand types don't match!");
3110 #endif
3111 
3112   // Sort by complexity, this groups all similar expression types together.
3113   GroupByComplexity(Ops, &LI);
3114 
3115   // If there are any constants, fold them together.
3116   unsigned Idx = 0;
3117   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3118     ++Idx;
3119     assert(Idx < Ops.size());
3120     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3121       // We found two constants, fold them together!
3122       ConstantInt *Fold = ConstantInt::get(
3123           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3124       Ops[0] = getConstant(Fold);
3125       Ops.erase(Ops.begin()+1);  // Erase the folded element
3126       if (Ops.size() == 1) return Ops[0];
3127       LHSC = cast<SCEVConstant>(Ops[0]);
3128     }
3129 
3130     // If we are left with a constant minimum-int, strip it off.
3131     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3132       Ops.erase(Ops.begin());
3133       --Idx;
3134     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3135       // If we have an umax with a constant maximum-int, it will always be
3136       // maximum-int.
3137       return Ops[0];
3138     }
3139 
3140     if (Ops.size() == 1) return Ops[0];
3141   }
3142 
3143   // Find the first UMax
3144   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3145     ++Idx;
3146 
3147   // Check to see if one of the operands is a UMax. If so, expand its operands
3148   // onto our operand list, and recurse to simplify.
3149   if (Idx < Ops.size()) {
3150     bool DeletedUMax = false;
3151     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3152       Ops.erase(Ops.begin()+Idx);
3153       Ops.append(UMax->op_begin(), UMax->op_end());
3154       DeletedUMax = true;
3155     }
3156 
3157     if (DeletedUMax)
3158       return getUMaxExpr(Ops);
3159   }
3160 
3161   // Okay, check to see if the same value occurs in the operand list twice.  If
3162   // so, delete one.  Since we sorted the list, these values are required to
3163   // be adjacent.
3164   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3165     //  X umax Y umax Y  -->  X umax Y
3166     //  X umax Y         -->  X, if X is always greater than Y
3167     if (Ops[i] == Ops[i+1] ||
3168         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3169       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3170       --i; --e;
3171     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3172       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3173       --i; --e;
3174     }
3175 
3176   if (Ops.size() == 1) return Ops[0];
3177 
3178   assert(!Ops.empty() && "Reduced umax down to nothing!");
3179 
3180   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3181   // already have one, otherwise create a new one.
3182   FoldingSetNodeID ID;
3183   ID.AddInteger(scUMaxExpr);
3184   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3185     ID.AddPointer(Ops[i]);
3186   void *IP = nullptr;
3187   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3188   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3189   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3190   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3191                                              O, Ops.size());
3192   UniqueSCEVs.InsertNode(S, IP);
3193   return S;
3194 }
3195 
3196 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3197                                          const SCEV *RHS) {
3198   // ~smax(~x, ~y) == smin(x, y).
3199   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3200 }
3201 
3202 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3203                                          const SCEV *RHS) {
3204   // ~umax(~x, ~y) == umin(x, y)
3205   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3206 }
3207 
3208 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3209   // We can bypass creating a target-independent
3210   // constant expression and then folding it back into a ConstantInt.
3211   // This is just a compile-time optimization.
3212   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3213 }
3214 
3215 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3216                                              StructType *STy,
3217                                              unsigned FieldNo) {
3218   // We can bypass creating a target-independent
3219   // constant expression and then folding it back into a ConstantInt.
3220   // This is just a compile-time optimization.
3221   return getConstant(
3222       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3223 }
3224 
3225 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3226   // Don't attempt to do anything other than create a SCEVUnknown object
3227   // here.  createSCEV only calls getUnknown after checking for all other
3228   // interesting possibilities, and any other code that calls getUnknown
3229   // is doing so in order to hide a value from SCEV canonicalization.
3230 
3231   FoldingSetNodeID ID;
3232   ID.AddInteger(scUnknown);
3233   ID.AddPointer(V);
3234   void *IP = nullptr;
3235   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3236     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3237            "Stale SCEVUnknown in uniquing map!");
3238     return S;
3239   }
3240   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3241                                             FirstUnknown);
3242   FirstUnknown = cast<SCEVUnknown>(S);
3243   UniqueSCEVs.InsertNode(S, IP);
3244   return S;
3245 }
3246 
3247 //===----------------------------------------------------------------------===//
3248 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3249 //
3250 
3251 /// isSCEVable - Test if values of the given type are analyzable within
3252 /// the SCEV framework. This primarily includes integer types, and it
3253 /// can optionally include pointer types if the ScalarEvolution class
3254 /// has access to target-specific information.
3255 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3256   // Integers and pointers are always SCEVable.
3257   return Ty->isIntegerTy() || Ty->isPointerTy();
3258 }
3259 
3260 /// getTypeSizeInBits - Return the size in bits of the specified type,
3261 /// for which isSCEVable must return true.
3262 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3263   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3264   return getDataLayout().getTypeSizeInBits(Ty);
3265 }
3266 
3267 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3268 /// the given type and which represents how SCEV will treat the given
3269 /// type, for which isSCEVable must return true. For pointer types,
3270 /// this is the pointer-sized integer type.
3271 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3272   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3273 
3274   if (Ty->isIntegerTy())
3275     return Ty;
3276 
3277   // The only other support type is pointer.
3278   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3279   return getDataLayout().getIntPtrType(Ty);
3280 }
3281 
3282 const SCEV *ScalarEvolution::getCouldNotCompute() {
3283   return CouldNotCompute.get();
3284 }
3285 
3286 
3287 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3288   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3289   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3290   // is set iff if find such SCEVUnknown.
3291   //
3292   struct FindInvalidSCEVUnknown {
3293     bool FindOne;
3294     FindInvalidSCEVUnknown() { FindOne = false; }
3295     bool follow(const SCEV *S) {
3296       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3297       case scConstant:
3298         return false;
3299       case scUnknown:
3300         if (!cast<SCEVUnknown>(S)->getValue())
3301           FindOne = true;
3302         return false;
3303       default:
3304         return true;
3305       }
3306     }
3307     bool isDone() const { return FindOne; }
3308   };
3309 
3310   FindInvalidSCEVUnknown F;
3311   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3312   ST.visitAll(S);
3313 
3314   return !F.FindOne;
3315 }
3316 
3317 namespace {
3318 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3319 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3320 // iff if such sub scAddRecExpr type SCEV is found.
3321 struct FindAddRecurrence {
3322   bool FoundOne;
3323   FindAddRecurrence() : FoundOne(false) {}
3324 
3325   bool follow(const SCEV *S) {
3326     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3327     case scAddRecExpr:
3328       FoundOne = true;
3329     case scConstant:
3330     case scUnknown:
3331     case scCouldNotCompute:
3332       return false;
3333     default:
3334       return true;
3335     }
3336   }
3337   bool isDone() const { return FoundOne; }
3338 };
3339 }
3340 
3341 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3342   HasRecMapType::iterator I = HasRecMap.find_as(S);
3343   if (I != HasRecMap.end())
3344     return I->second;
3345 
3346   FindAddRecurrence F;
3347   SCEVTraversal<FindAddRecurrence> ST(F);
3348   ST.visitAll(S);
3349   HasRecMap.insert({S, F.FoundOne});
3350   return F.FoundOne;
3351 }
3352 
3353 /// getSCEVValues - Return the Value set from S.
3354 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3355   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3356   if (SI == ExprValueMap.end())
3357     return nullptr;
3358 #ifndef NDEBUG
3359   if (VerifySCEVMap) {
3360     // Check there is no dangling Value in the set returned.
3361     for (const auto &VE : SI->second)
3362       assert(ValueExprMap.count(VE));
3363   }
3364 #endif
3365   return &SI->second;
3366 }
3367 
3368 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3369 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3370 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3371 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3372 void ScalarEvolution::eraseValueFromMap(Value *V) {
3373   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3374   if (I != ValueExprMap.end()) {
3375     const SCEV *S = I->second;
3376     SetVector<Value *> *SV = getSCEVValues(S);
3377     // Remove V from the set of ExprValueMap[S]
3378     if (SV)
3379       SV->remove(V);
3380     ValueExprMap.erase(V);
3381   }
3382 }
3383 
3384 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3385 /// expression and create a new one.
3386 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3387   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3388 
3389   const SCEV *S = getExistingSCEV(V);
3390   if (S == nullptr) {
3391     S = createSCEV(V);
3392     // During PHI resolution, it is possible to create two SCEVs for the same
3393     // V, so it is needed to double check whether V->S is inserted into
3394     // ValueExprMap before insert S->V into ExprValueMap.
3395     std::pair<ValueExprMapType::iterator, bool> Pair =
3396         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3397     if (Pair.second)
3398       ExprValueMap[S].insert(V);
3399   }
3400   return S;
3401 }
3402 
3403 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3404   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3405 
3406   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3407   if (I != ValueExprMap.end()) {
3408     const SCEV *S = I->second;
3409     if (checkValidity(S))
3410       return S;
3411     forgetMemoizedResults(S);
3412     ValueExprMap.erase(I);
3413   }
3414   return nullptr;
3415 }
3416 
3417 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3418 ///
3419 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3420                                              SCEV::NoWrapFlags Flags) {
3421   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3422     return getConstant(
3423                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3424 
3425   Type *Ty = V->getType();
3426   Ty = getEffectiveSCEVType(Ty);
3427   return getMulExpr(
3428       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3429 }
3430 
3431 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3432 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3433   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3434     return getConstant(
3435                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3436 
3437   Type *Ty = V->getType();
3438   Ty = getEffectiveSCEVType(Ty);
3439   const SCEV *AllOnes =
3440                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3441   return getMinusSCEV(AllOnes, V);
3442 }
3443 
3444 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3445 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3446                                           SCEV::NoWrapFlags Flags) {
3447   // Fast path: X - X --> 0.
3448   if (LHS == RHS)
3449     return getZero(LHS->getType());
3450 
3451   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3452   // makes it so that we cannot make much use of NUW.
3453   auto AddFlags = SCEV::FlagAnyWrap;
3454   const bool RHSIsNotMinSigned =
3455       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3456   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3457     // Let M be the minimum representable signed value. Then (-1)*RHS
3458     // signed-wraps if and only if RHS is M. That can happen even for
3459     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3460     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3461     // (-1)*RHS, we need to prove that RHS != M.
3462     //
3463     // If LHS is non-negative and we know that LHS - RHS does not
3464     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3465     // either by proving that RHS > M or that LHS >= 0.
3466     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3467       AddFlags = SCEV::FlagNSW;
3468     }
3469   }
3470 
3471   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3472   // RHS is NSW and LHS >= 0.
3473   //
3474   // The difficulty here is that the NSW flag may have been proven
3475   // relative to a loop that is to be found in a recurrence in LHS and
3476   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3477   // larger scope than intended.
3478   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3479 
3480   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3481 }
3482 
3483 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3484 /// input value to the specified type.  If the type must be extended, it is zero
3485 /// extended.
3486 const SCEV *
3487 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3488   Type *SrcTy = V->getType();
3489   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3490          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3491          "Cannot truncate or zero extend with non-integer arguments!");
3492   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3493     return V;  // No conversion
3494   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3495     return getTruncateExpr(V, Ty);
3496   return getZeroExtendExpr(V, Ty);
3497 }
3498 
3499 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3500 /// input value to the specified type.  If the type must be extended, it is sign
3501 /// extended.
3502 const SCEV *
3503 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3504                                          Type *Ty) {
3505   Type *SrcTy = V->getType();
3506   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3507          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3508          "Cannot truncate or zero extend with non-integer arguments!");
3509   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3510     return V;  // No conversion
3511   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3512     return getTruncateExpr(V, Ty);
3513   return getSignExtendExpr(V, Ty);
3514 }
3515 
3516 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3517 /// input value to the specified type.  If the type must be extended, it is zero
3518 /// extended.  The conversion must not be narrowing.
3519 const SCEV *
3520 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3521   Type *SrcTy = V->getType();
3522   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3523          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3524          "Cannot noop or zero extend with non-integer arguments!");
3525   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3526          "getNoopOrZeroExtend cannot truncate!");
3527   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3528     return V;  // No conversion
3529   return getZeroExtendExpr(V, Ty);
3530 }
3531 
3532 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3533 /// input value to the specified type.  If the type must be extended, it is sign
3534 /// extended.  The conversion must not be narrowing.
3535 const SCEV *
3536 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3537   Type *SrcTy = V->getType();
3538   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3539          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3540          "Cannot noop or sign extend with non-integer arguments!");
3541   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3542          "getNoopOrSignExtend cannot truncate!");
3543   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3544     return V;  // No conversion
3545   return getSignExtendExpr(V, Ty);
3546 }
3547 
3548 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3549 /// the input value to the specified type. If the type must be extended,
3550 /// it is extended with unspecified bits. The conversion must not be
3551 /// narrowing.
3552 const SCEV *
3553 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3554   Type *SrcTy = V->getType();
3555   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3556          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3557          "Cannot noop or any extend with non-integer arguments!");
3558   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3559          "getNoopOrAnyExtend cannot truncate!");
3560   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3561     return V;  // No conversion
3562   return getAnyExtendExpr(V, Ty);
3563 }
3564 
3565 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3566 /// input value to the specified type.  The conversion must not be widening.
3567 const SCEV *
3568 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3569   Type *SrcTy = V->getType();
3570   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3571          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3572          "Cannot truncate or noop with non-integer arguments!");
3573   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3574          "getTruncateOrNoop cannot extend!");
3575   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3576     return V;  // No conversion
3577   return getTruncateExpr(V, Ty);
3578 }
3579 
3580 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3581 /// the types using zero-extension, and then perform a umax operation
3582 /// with them.
3583 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3584                                                         const SCEV *RHS) {
3585   const SCEV *PromotedLHS = LHS;
3586   const SCEV *PromotedRHS = RHS;
3587 
3588   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3589     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3590   else
3591     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3592 
3593   return getUMaxExpr(PromotedLHS, PromotedRHS);
3594 }
3595 
3596 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3597 /// the types using zero-extension, and then perform a umin operation
3598 /// with them.
3599 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3600                                                         const SCEV *RHS) {
3601   const SCEV *PromotedLHS = LHS;
3602   const SCEV *PromotedRHS = RHS;
3603 
3604   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3605     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3606   else
3607     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3608 
3609   return getUMinExpr(PromotedLHS, PromotedRHS);
3610 }
3611 
3612 /// getPointerBase - Transitively follow the chain of pointer-type operands
3613 /// until reaching a SCEV that does not have a single pointer operand. This
3614 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3615 /// but corner cases do exist.
3616 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3617   // A pointer operand may evaluate to a nonpointer expression, such as null.
3618   if (!V->getType()->isPointerTy())
3619     return V;
3620 
3621   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3622     return getPointerBase(Cast->getOperand());
3623   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3624     const SCEV *PtrOp = nullptr;
3625     for (const SCEV *NAryOp : NAry->operands()) {
3626       if (NAryOp->getType()->isPointerTy()) {
3627         // Cannot find the base of an expression with multiple pointer operands.
3628         if (PtrOp)
3629           return V;
3630         PtrOp = NAryOp;
3631       }
3632     }
3633     if (!PtrOp)
3634       return V;
3635     return getPointerBase(PtrOp);
3636   }
3637   return V;
3638 }
3639 
3640 /// PushDefUseChildren - Push users of the given Instruction
3641 /// onto the given Worklist.
3642 static void
3643 PushDefUseChildren(Instruction *I,
3644                    SmallVectorImpl<Instruction *> &Worklist) {
3645   // Push the def-use children onto the Worklist stack.
3646   for (User *U : I->users())
3647     Worklist.push_back(cast<Instruction>(U));
3648 }
3649 
3650 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3651 /// instructions that depend on the given instruction and removes them from
3652 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3653 /// resolution.
3654 void
3655 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3656   SmallVector<Instruction *, 16> Worklist;
3657   PushDefUseChildren(PN, Worklist);
3658 
3659   SmallPtrSet<Instruction *, 8> Visited;
3660   Visited.insert(PN);
3661   while (!Worklist.empty()) {
3662     Instruction *I = Worklist.pop_back_val();
3663     if (!Visited.insert(I).second)
3664       continue;
3665 
3666     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3667     if (It != ValueExprMap.end()) {
3668       const SCEV *Old = It->second;
3669 
3670       // Short-circuit the def-use traversal if the symbolic name
3671       // ceases to appear in expressions.
3672       if (Old != SymName && !hasOperand(Old, SymName))
3673         continue;
3674 
3675       // SCEVUnknown for a PHI either means that it has an unrecognized
3676       // structure, it's a PHI that's in the progress of being computed
3677       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3678       // additional loop trip count information isn't going to change anything.
3679       // In the second case, createNodeForPHI will perform the necessary
3680       // updates on its own when it gets to that point. In the third, we do
3681       // want to forget the SCEVUnknown.
3682       if (!isa<PHINode>(I) ||
3683           !isa<SCEVUnknown>(Old) ||
3684           (I != PN && Old == SymName)) {
3685         forgetMemoizedResults(Old);
3686         ValueExprMap.erase(It);
3687       }
3688     }
3689 
3690     PushDefUseChildren(I, Worklist);
3691   }
3692 }
3693 
3694 namespace {
3695 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3696 public:
3697   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3698                              ScalarEvolution &SE) {
3699     SCEVInitRewriter Rewriter(L, SE);
3700     const SCEV *Result = Rewriter.visit(Scev);
3701     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3702   }
3703 
3704   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3705       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3706 
3707   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3708     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3709       Valid = false;
3710     return Expr;
3711   }
3712 
3713   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3714     // Only allow AddRecExprs for this loop.
3715     if (Expr->getLoop() == L)
3716       return Expr->getStart();
3717     Valid = false;
3718     return Expr;
3719   }
3720 
3721   bool isValid() { return Valid; }
3722 
3723 private:
3724   const Loop *L;
3725   bool Valid;
3726 };
3727 
3728 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3729 public:
3730   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3731                              ScalarEvolution &SE) {
3732     SCEVShiftRewriter Rewriter(L, SE);
3733     const SCEV *Result = Rewriter.visit(Scev);
3734     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3735   }
3736 
3737   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3738       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3739 
3740   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3741     // Only allow AddRecExprs for this loop.
3742     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3743       Valid = false;
3744     return Expr;
3745   }
3746 
3747   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3748     if (Expr->getLoop() == L && Expr->isAffine())
3749       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3750     Valid = false;
3751     return Expr;
3752   }
3753   bool isValid() { return Valid; }
3754 
3755 private:
3756   const Loop *L;
3757   bool Valid;
3758 };
3759 } // end anonymous namespace
3760 
3761 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3762   const Loop *L = LI.getLoopFor(PN->getParent());
3763   if (!L || L->getHeader() != PN->getParent())
3764     return nullptr;
3765 
3766   // The loop may have multiple entrances or multiple exits; we can analyze
3767   // this phi as an addrec if it has a unique entry value and a unique
3768   // backedge value.
3769   Value *BEValueV = nullptr, *StartValueV = nullptr;
3770   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3771     Value *V = PN->getIncomingValue(i);
3772     if (L->contains(PN->getIncomingBlock(i))) {
3773       if (!BEValueV) {
3774         BEValueV = V;
3775       } else if (BEValueV != V) {
3776         BEValueV = nullptr;
3777         break;
3778       }
3779     } else if (!StartValueV) {
3780       StartValueV = V;
3781     } else if (StartValueV != V) {
3782       StartValueV = nullptr;
3783       break;
3784     }
3785   }
3786   if (BEValueV && StartValueV) {
3787     // While we are analyzing this PHI node, handle its value symbolically.
3788     const SCEV *SymbolicName = getUnknown(PN);
3789     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3790            "PHI node already processed?");
3791     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3792 
3793     // Using this symbolic name for the PHI, analyze the value coming around
3794     // the back-edge.
3795     const SCEV *BEValue = getSCEV(BEValueV);
3796 
3797     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3798     // has a special value for the first iteration of the loop.
3799 
3800     // If the value coming around the backedge is an add with the symbolic
3801     // value we just inserted, then we found a simple induction variable!
3802     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3803       // If there is a single occurrence of the symbolic value, replace it
3804       // with a recurrence.
3805       unsigned FoundIndex = Add->getNumOperands();
3806       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3807         if (Add->getOperand(i) == SymbolicName)
3808           if (FoundIndex == e) {
3809             FoundIndex = i;
3810             break;
3811           }
3812 
3813       if (FoundIndex != Add->getNumOperands()) {
3814         // Create an add with everything but the specified operand.
3815         SmallVector<const SCEV *, 8> Ops;
3816         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3817           if (i != FoundIndex)
3818             Ops.push_back(Add->getOperand(i));
3819         const SCEV *Accum = getAddExpr(Ops);
3820 
3821         // This is not a valid addrec if the step amount is varying each
3822         // loop iteration, but is not itself an addrec in this loop.
3823         if (isLoopInvariant(Accum, L) ||
3824             (isa<SCEVAddRecExpr>(Accum) &&
3825              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3826           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3827 
3828           // If the increment doesn't overflow, then neither the addrec nor
3829           // the post-increment will overflow.
3830           if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3831             if (OBO->getOperand(0) == PN) {
3832               if (OBO->hasNoUnsignedWrap())
3833                 Flags = setFlags(Flags, SCEV::FlagNUW);
3834               if (OBO->hasNoSignedWrap())
3835                 Flags = setFlags(Flags, SCEV::FlagNSW);
3836             }
3837           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3838             // If the increment is an inbounds GEP, then we know the address
3839             // space cannot be wrapped around. We cannot make any guarantee
3840             // about signed or unsigned overflow because pointers are
3841             // unsigned but we may have a negative index from the base
3842             // pointer. We can guarantee that no unsigned wrap occurs if the
3843             // indices form a positive value.
3844             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3845               Flags = setFlags(Flags, SCEV::FlagNW);
3846 
3847               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3848               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3849                 Flags = setFlags(Flags, SCEV::FlagNUW);
3850             }
3851 
3852             // We cannot transfer nuw and nsw flags from subtraction
3853             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3854             // for instance.
3855           }
3856 
3857           const SCEV *StartVal = getSCEV(StartValueV);
3858           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3859 
3860           // Since the no-wrap flags are on the increment, they apply to the
3861           // post-incremented value as well.
3862           if (isLoopInvariant(Accum, L))
3863             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3864 
3865           // Okay, for the entire analysis of this edge we assumed the PHI
3866           // to be symbolic.  We now need to go back and purge all of the
3867           // entries for the scalars that use the symbolic expression.
3868           ForgetSymbolicName(PN, SymbolicName);
3869           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3870           return PHISCEV;
3871         }
3872       }
3873     } else {
3874       // Otherwise, this could be a loop like this:
3875       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3876       // In this case, j = {1,+,1}  and BEValue is j.
3877       // Because the other in-value of i (0) fits the evolution of BEValue
3878       // i really is an addrec evolution.
3879       //
3880       // We can generalize this saying that i is the shifted value of BEValue
3881       // by one iteration:
3882       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
3883       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3884       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3885       if (Shifted != getCouldNotCompute() &&
3886           Start != getCouldNotCompute()) {
3887         const SCEV *StartVal = getSCEV(StartValueV);
3888         if (Start == StartVal) {
3889           // Okay, for the entire analysis of this edge we assumed the PHI
3890           // to be symbolic.  We now need to go back and purge all of the
3891           // entries for the scalars that use the symbolic expression.
3892           ForgetSymbolicName(PN, SymbolicName);
3893           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3894           return Shifted;
3895         }
3896       }
3897     }
3898   }
3899 
3900   return nullptr;
3901 }
3902 
3903 // Checks if the SCEV S is available at BB.  S is considered available at BB
3904 // if S can be materialized at BB without introducing a fault.
3905 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3906                                BasicBlock *BB) {
3907   struct CheckAvailable {
3908     bool TraversalDone = false;
3909     bool Available = true;
3910 
3911     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
3912     BasicBlock *BB = nullptr;
3913     DominatorTree &DT;
3914 
3915     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3916       : L(L), BB(BB), DT(DT) {}
3917 
3918     bool setUnavailable() {
3919       TraversalDone = true;
3920       Available = false;
3921       return false;
3922     }
3923 
3924     bool follow(const SCEV *S) {
3925       switch (S->getSCEVType()) {
3926       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3927       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3928         // These expressions are available if their operand(s) is/are.
3929         return true;
3930 
3931       case scAddRecExpr: {
3932         // We allow add recurrences that are on the loop BB is in, or some
3933         // outer loop.  This guarantees availability because the value of the
3934         // add recurrence at BB is simply the "current" value of the induction
3935         // variable.  We can relax this in the future; for instance an add
3936         // recurrence on a sibling dominating loop is also available at BB.
3937         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3938         if (L && (ARLoop == L || ARLoop->contains(L)))
3939           return true;
3940 
3941         return setUnavailable();
3942       }
3943 
3944       case scUnknown: {
3945         // For SCEVUnknown, we check for simple dominance.
3946         const auto *SU = cast<SCEVUnknown>(S);
3947         Value *V = SU->getValue();
3948 
3949         if (isa<Argument>(V))
3950           return false;
3951 
3952         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3953           return false;
3954 
3955         return setUnavailable();
3956       }
3957 
3958       case scUDivExpr:
3959       case scCouldNotCompute:
3960         // We do not try to smart about these at all.
3961         return setUnavailable();
3962       }
3963       llvm_unreachable("switch should be fully covered!");
3964     }
3965 
3966     bool isDone() { return TraversalDone; }
3967   };
3968 
3969   CheckAvailable CA(L, BB, DT);
3970   SCEVTraversal<CheckAvailable> ST(CA);
3971 
3972   ST.visitAll(S);
3973   return CA.Available;
3974 }
3975 
3976 // Try to match a control flow sequence that branches out at BI and merges back
3977 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
3978 // match.
3979 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3980                           Value *&C, Value *&LHS, Value *&RHS) {
3981   C = BI->getCondition();
3982 
3983   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3984   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3985 
3986   if (!LeftEdge.isSingleEdge())
3987     return false;
3988 
3989   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3990 
3991   Use &LeftUse = Merge->getOperandUse(0);
3992   Use &RightUse = Merge->getOperandUse(1);
3993 
3994   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3995     LHS = LeftUse;
3996     RHS = RightUse;
3997     return true;
3998   }
3999 
4000   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4001     LHS = RightUse;
4002     RHS = LeftUse;
4003     return true;
4004   }
4005 
4006   return false;
4007 }
4008 
4009 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4010   if (PN->getNumIncomingValues() == 2) {
4011     const Loop *L = LI.getLoopFor(PN->getParent());
4012 
4013     // We don't want to break LCSSA, even in a SCEV expression tree.
4014     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4015       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4016         return nullptr;
4017 
4018     // Try to match
4019     //
4020     //  br %cond, label %left, label %right
4021     // left:
4022     //  br label %merge
4023     // right:
4024     //  br label %merge
4025     // merge:
4026     //  V = phi [ %x, %left ], [ %y, %right ]
4027     //
4028     // as "select %cond, %x, %y"
4029 
4030     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4031     assert(IDom && "At least the entry block should dominate PN");
4032 
4033     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4034     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4035 
4036     if (BI && BI->isConditional() &&
4037         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4038         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4039         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4040       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4041   }
4042 
4043   return nullptr;
4044 }
4045 
4046 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4047   if (const SCEV *S = createAddRecFromPHI(PN))
4048     return S;
4049 
4050   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4051     return S;
4052 
4053   // If the PHI has a single incoming value, follow that value, unless the
4054   // PHI's incoming blocks are in a different loop, in which case doing so
4055   // risks breaking LCSSA form. Instcombine would normally zap these, but
4056   // it doesn't have DominatorTree information, so it may miss cases.
4057   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4058     if (LI.replacementPreservesLCSSAForm(PN, V))
4059       return getSCEV(V);
4060 
4061   // If it's not a loop phi, we can't handle it yet.
4062   return getUnknown(PN);
4063 }
4064 
4065 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4066                                                       Value *Cond,
4067                                                       Value *TrueVal,
4068                                                       Value *FalseVal) {
4069   // Handle "constant" branch or select. This can occur for instance when a
4070   // loop pass transforms an inner loop and moves on to process the outer loop.
4071   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4072     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4073 
4074   // Try to match some simple smax or umax patterns.
4075   auto *ICI = dyn_cast<ICmpInst>(Cond);
4076   if (!ICI)
4077     return getUnknown(I);
4078 
4079   Value *LHS = ICI->getOperand(0);
4080   Value *RHS = ICI->getOperand(1);
4081 
4082   switch (ICI->getPredicate()) {
4083   case ICmpInst::ICMP_SLT:
4084   case ICmpInst::ICMP_SLE:
4085     std::swap(LHS, RHS);
4086   // fall through
4087   case ICmpInst::ICMP_SGT:
4088   case ICmpInst::ICMP_SGE:
4089     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4090     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4091     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4092       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4093       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4094       const SCEV *LA = getSCEV(TrueVal);
4095       const SCEV *RA = getSCEV(FalseVal);
4096       const SCEV *LDiff = getMinusSCEV(LA, LS);
4097       const SCEV *RDiff = getMinusSCEV(RA, RS);
4098       if (LDiff == RDiff)
4099         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4100       LDiff = getMinusSCEV(LA, RS);
4101       RDiff = getMinusSCEV(RA, LS);
4102       if (LDiff == RDiff)
4103         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4104     }
4105     break;
4106   case ICmpInst::ICMP_ULT:
4107   case ICmpInst::ICMP_ULE:
4108     std::swap(LHS, RHS);
4109   // fall through
4110   case ICmpInst::ICMP_UGT:
4111   case ICmpInst::ICMP_UGE:
4112     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4113     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4114     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4115       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4116       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4117       const SCEV *LA = getSCEV(TrueVal);
4118       const SCEV *RA = getSCEV(FalseVal);
4119       const SCEV *LDiff = getMinusSCEV(LA, LS);
4120       const SCEV *RDiff = getMinusSCEV(RA, RS);
4121       if (LDiff == RDiff)
4122         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4123       LDiff = getMinusSCEV(LA, RS);
4124       RDiff = getMinusSCEV(RA, LS);
4125       if (LDiff == RDiff)
4126         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4127     }
4128     break;
4129   case ICmpInst::ICMP_NE:
4130     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4131     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4132         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4133       const SCEV *One = getOne(I->getType());
4134       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4135       const SCEV *LA = getSCEV(TrueVal);
4136       const SCEV *RA = getSCEV(FalseVal);
4137       const SCEV *LDiff = getMinusSCEV(LA, LS);
4138       const SCEV *RDiff = getMinusSCEV(RA, One);
4139       if (LDiff == RDiff)
4140         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4141     }
4142     break;
4143   case ICmpInst::ICMP_EQ:
4144     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4145     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4146         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4147       const SCEV *One = getOne(I->getType());
4148       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4149       const SCEV *LA = getSCEV(TrueVal);
4150       const SCEV *RA = getSCEV(FalseVal);
4151       const SCEV *LDiff = getMinusSCEV(LA, One);
4152       const SCEV *RDiff = getMinusSCEV(RA, LS);
4153       if (LDiff == RDiff)
4154         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4155     }
4156     break;
4157   default:
4158     break;
4159   }
4160 
4161   return getUnknown(I);
4162 }
4163 
4164 /// createNodeForGEP - Expand GEP instructions into add and multiply
4165 /// operations. This allows them to be analyzed by regular SCEV code.
4166 ///
4167 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4168   // Don't attempt to analyze GEPs over unsized objects.
4169   if (!GEP->getSourceElementType()->isSized())
4170     return getUnknown(GEP);
4171 
4172   SmallVector<const SCEV *, 4> IndexExprs;
4173   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4174     IndexExprs.push_back(getSCEV(*Index));
4175   return getGEPExpr(GEP->getSourceElementType(),
4176                     getSCEV(GEP->getPointerOperand()),
4177                     IndexExprs, GEP->isInBounds());
4178 }
4179 
4180 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4181 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4182 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4183 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4184 uint32_t
4185 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4186   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4187     return C->getAPInt().countTrailingZeros();
4188 
4189   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4190     return std::min(GetMinTrailingZeros(T->getOperand()),
4191                     (uint32_t)getTypeSizeInBits(T->getType()));
4192 
4193   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4194     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4195     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4196              getTypeSizeInBits(E->getType()) : OpRes;
4197   }
4198 
4199   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4200     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4201     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4202              getTypeSizeInBits(E->getType()) : OpRes;
4203   }
4204 
4205   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4206     // The result is the min of all operands results.
4207     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4208     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4209       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4210     return MinOpRes;
4211   }
4212 
4213   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4214     // The result is the sum of all operands results.
4215     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4216     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4217     for (unsigned i = 1, e = M->getNumOperands();
4218          SumOpRes != BitWidth && i != e; ++i)
4219       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4220                           BitWidth);
4221     return SumOpRes;
4222   }
4223 
4224   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4225     // The result is the min of all operands results.
4226     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4227     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4228       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4229     return MinOpRes;
4230   }
4231 
4232   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4233     // The result is the min of all operands results.
4234     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4235     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4236       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4237     return MinOpRes;
4238   }
4239 
4240   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4241     // The result is the min of all operands results.
4242     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4243     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4244       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4245     return MinOpRes;
4246   }
4247 
4248   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4249     // For a SCEVUnknown, ask ValueTracking.
4250     unsigned BitWidth = getTypeSizeInBits(U->getType());
4251     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4252     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4253                      nullptr, &DT);
4254     return Zeros.countTrailingOnes();
4255   }
4256 
4257   // SCEVUDivExpr
4258   return 0;
4259 }
4260 
4261 /// GetRangeFromMetadata - Helper method to assign a range to V from
4262 /// metadata present in the IR.
4263 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4264   if (Instruction *I = dyn_cast<Instruction>(V))
4265     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4266       return getConstantRangeFromMetadata(*MD);
4267 
4268   return None;
4269 }
4270 
4271 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4272 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4273 /// with a "cleaner" unsigned (resp. signed) representation.
4274 ///
4275 ConstantRange
4276 ScalarEvolution::getRange(const SCEV *S,
4277                           ScalarEvolution::RangeSignHint SignHint) {
4278   DenseMap<const SCEV *, ConstantRange> &Cache =
4279       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4280                                                        : SignedRanges;
4281 
4282   // See if we've computed this range already.
4283   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4284   if (I != Cache.end())
4285     return I->second;
4286 
4287   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4288     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4289 
4290   unsigned BitWidth = getTypeSizeInBits(S->getType());
4291   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4292 
4293   // If the value has known zeros, the maximum value will have those known zeros
4294   // as well.
4295   uint32_t TZ = GetMinTrailingZeros(S);
4296   if (TZ != 0) {
4297     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4298       ConservativeResult =
4299           ConstantRange(APInt::getMinValue(BitWidth),
4300                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4301     else
4302       ConservativeResult = ConstantRange(
4303           APInt::getSignedMinValue(BitWidth),
4304           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4305   }
4306 
4307   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4308     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4309     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4310       X = X.add(getRange(Add->getOperand(i), SignHint));
4311     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4312   }
4313 
4314   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4315     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4316     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4317       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4318     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4319   }
4320 
4321   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4322     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4323     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4324       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4325     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4326   }
4327 
4328   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4329     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4330     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4331       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4332     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4333   }
4334 
4335   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4336     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4337     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4338     return setRange(UDiv, SignHint,
4339                     ConservativeResult.intersectWith(X.udiv(Y)));
4340   }
4341 
4342   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4343     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4344     return setRange(ZExt, SignHint,
4345                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4346   }
4347 
4348   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4349     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4350     return setRange(SExt, SignHint,
4351                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4352   }
4353 
4354   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4355     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4356     return setRange(Trunc, SignHint,
4357                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4358   }
4359 
4360   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4361     // If there's no unsigned wrap, the value will never be less than its
4362     // initial value.
4363     if (AddRec->hasNoUnsignedWrap())
4364       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4365         if (!C->getValue()->isZero())
4366           ConservativeResult = ConservativeResult.intersectWith(
4367               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4368 
4369     // If there's no signed wrap, and all the operands have the same sign or
4370     // zero, the value won't ever change sign.
4371     if (AddRec->hasNoSignedWrap()) {
4372       bool AllNonNeg = true;
4373       bool AllNonPos = true;
4374       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4375         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4376         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4377       }
4378       if (AllNonNeg)
4379         ConservativeResult = ConservativeResult.intersectWith(
4380           ConstantRange(APInt(BitWidth, 0),
4381                         APInt::getSignedMinValue(BitWidth)));
4382       else if (AllNonPos)
4383         ConservativeResult = ConservativeResult.intersectWith(
4384           ConstantRange(APInt::getSignedMinValue(BitWidth),
4385                         APInt(BitWidth, 1)));
4386     }
4387 
4388     // TODO: non-affine addrec
4389     if (AddRec->isAffine()) {
4390       Type *Ty = AddRec->getType();
4391       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4392       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4393           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4394 
4395         // Check for overflow.  This must be done with ConstantRange arithmetic
4396         // because we could be called from within the ScalarEvolution overflow
4397         // checking code.
4398 
4399         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4400         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4401         ConstantRange ZExtMaxBECountRange =
4402             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4403 
4404         const SCEV *Start = AddRec->getStart();
4405         const SCEV *Step = AddRec->getStepRecurrence(*this);
4406         ConstantRange StepSRange = getSignedRange(Step);
4407         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4408 
4409         ConstantRange StartURange = getUnsignedRange(Start);
4410         ConstantRange EndURange =
4411             StartURange.add(MaxBECountRange.multiply(StepSRange));
4412 
4413         // Check for unsigned overflow.
4414         ConstantRange ZExtStartURange =
4415             StartURange.zextOrTrunc(BitWidth * 2 + 1);
4416         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4417         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4418             ZExtEndURange) {
4419           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4420                                      EndURange.getUnsignedMin());
4421           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4422                                      EndURange.getUnsignedMax());
4423           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4424           if (!IsFullRange)
4425             ConservativeResult =
4426                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4427         }
4428 
4429         ConstantRange StartSRange = getSignedRange(Start);
4430         ConstantRange EndSRange =
4431             StartSRange.add(MaxBECountRange.multiply(StepSRange));
4432 
4433         // Check for signed overflow. This must be done with ConstantRange
4434         // arithmetic because we could be called from within the ScalarEvolution
4435         // overflow checking code.
4436         ConstantRange SExtStartSRange =
4437             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4438         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4439         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4440             SExtEndSRange) {
4441           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4442                                      EndSRange.getSignedMin());
4443           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4444                                      EndSRange.getSignedMax());
4445           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4446           if (!IsFullRange)
4447             ConservativeResult =
4448                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4449         }
4450       }
4451     }
4452 
4453     return setRange(AddRec, SignHint, ConservativeResult);
4454   }
4455 
4456   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4457     // Check if the IR explicitly contains !range metadata.
4458     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4459     if (MDRange.hasValue())
4460       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4461 
4462     // Split here to avoid paying the compile-time cost of calling both
4463     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4464     // if needed.
4465     const DataLayout &DL = getDataLayout();
4466     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4467       // For a SCEVUnknown, ask ValueTracking.
4468       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4469       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4470       if (Ones != ~Zeros + 1)
4471         ConservativeResult =
4472             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4473     } else {
4474       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4475              "generalize as needed!");
4476       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4477       if (NS > 1)
4478         ConservativeResult = ConservativeResult.intersectWith(
4479             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4480                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4481     }
4482 
4483     return setRange(U, SignHint, ConservativeResult);
4484   }
4485 
4486   return setRange(S, SignHint, ConservativeResult);
4487 }
4488 
4489 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4490   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4491   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4492 
4493   // Return early if there are no flags to propagate to the SCEV.
4494   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4495   if (BinOp->hasNoUnsignedWrap())
4496     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4497   if (BinOp->hasNoSignedWrap())
4498     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4499   if (Flags == SCEV::FlagAnyWrap) {
4500     return SCEV::FlagAnyWrap;
4501   }
4502 
4503   // Here we check that BinOp is in the header of the innermost loop
4504   // containing BinOp, since we only deal with instructions in the loop
4505   // header. The actual loop we need to check later will come from an add
4506   // recurrence, but getting that requires computing the SCEV of the operands,
4507   // which can be expensive. This check we can do cheaply to rule out some
4508   // cases early.
4509   Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4510   if (innermostContainingLoop == nullptr ||
4511       innermostContainingLoop->getHeader() != BinOp->getParent())
4512     return SCEV::FlagAnyWrap;
4513 
4514   // Only proceed if we can prove that BinOp does not yield poison.
4515   if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4516 
4517   // At this point we know that if V is executed, then it does not wrap
4518   // according to at least one of NSW or NUW. If V is not executed, then we do
4519   // not know if the calculation that V represents would wrap. Multiple
4520   // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4521   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4522   // derived from other instructions that map to the same SCEV. We cannot make
4523   // that guarantee for cases where V is not executed. So we need to find the
4524   // loop that V is considered in relation to and prove that V is executed for
4525   // every iteration of that loop. That implies that the value that V
4526   // calculates does not wrap anywhere in the loop, so then we can apply the
4527   // flags to the SCEV.
4528   //
4529   // We check isLoopInvariant to disambiguate in case we are adding two
4530   // recurrences from different loops, so that we know which loop to prove
4531   // that V is executed in.
4532   for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4533     const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4534     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4535       const int OtherOpIndex = 1 - OpIndex;
4536       const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4537       if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4538           isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4539         return Flags;
4540     }
4541   }
4542   return SCEV::FlagAnyWrap;
4543 }
4544 
4545 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4546 /// the expression.
4547 ///
4548 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4549   if (!isSCEVable(V->getType()))
4550     return getUnknown(V);
4551 
4552   unsigned Opcode = Instruction::UserOp1;
4553   if (Instruction *I = dyn_cast<Instruction>(V)) {
4554     Opcode = I->getOpcode();
4555 
4556     // Don't attempt to analyze instructions in blocks that aren't
4557     // reachable. Such instructions don't matter, and they aren't required
4558     // to obey basic rules for definitions dominating uses which this
4559     // analysis depends on.
4560     if (!DT.isReachableFromEntry(I->getParent()))
4561       return getUnknown(V);
4562   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4563     Opcode = CE->getOpcode();
4564   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4565     return getConstant(CI);
4566   else if (isa<ConstantPointerNull>(V))
4567     return getZero(V->getType());
4568   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4569     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4570   else
4571     return getUnknown(V);
4572 
4573   Operator *U = cast<Operator>(V);
4574   switch (Opcode) {
4575   case Instruction::Add: {
4576     // The simple thing to do would be to just call getSCEV on both operands
4577     // and call getAddExpr with the result. However if we're looking at a
4578     // bunch of things all added together, this can be quite inefficient,
4579     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4580     // Instead, gather up all the operands and make a single getAddExpr call.
4581     // LLVM IR canonical form means we need only traverse the left operands.
4582     SmallVector<const SCEV *, 4> AddOps;
4583     for (Value *Op = U;; Op = U->getOperand(0)) {
4584       U = dyn_cast<Operator>(Op);
4585       unsigned Opcode = U ? U->getOpcode() : 0;
4586       if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4587         assert(Op != V && "V should be an add");
4588         AddOps.push_back(getSCEV(Op));
4589         break;
4590       }
4591 
4592       if (auto *OpSCEV = getExistingSCEV(U)) {
4593         AddOps.push_back(OpSCEV);
4594         break;
4595       }
4596 
4597       // If a NUW or NSW flag can be applied to the SCEV for this
4598       // addition, then compute the SCEV for this addition by itself
4599       // with a separate call to getAddExpr. We need to do that
4600       // instead of pushing the operands of the addition onto AddOps,
4601       // since the flags are only known to apply to this particular
4602       // addition - they may not apply to other additions that can be
4603       // formed with operands from AddOps.
4604       const SCEV *RHS = getSCEV(U->getOperand(1));
4605       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4606       if (Flags != SCEV::FlagAnyWrap) {
4607         const SCEV *LHS = getSCEV(U->getOperand(0));
4608         if (Opcode == Instruction::Sub)
4609           AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4610         else
4611           AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4612         break;
4613       }
4614 
4615       if (Opcode == Instruction::Sub)
4616         AddOps.push_back(getNegativeSCEV(RHS));
4617       else
4618         AddOps.push_back(RHS);
4619     }
4620     return getAddExpr(AddOps);
4621   }
4622 
4623   case Instruction::Mul: {
4624     SmallVector<const SCEV *, 4> MulOps;
4625     for (Value *Op = U;; Op = U->getOperand(0)) {
4626       U = dyn_cast<Operator>(Op);
4627       if (!U || U->getOpcode() != Instruction::Mul) {
4628         assert(Op != V && "V should be a mul");
4629         MulOps.push_back(getSCEV(Op));
4630         break;
4631       }
4632 
4633       if (auto *OpSCEV = getExistingSCEV(U)) {
4634         MulOps.push_back(OpSCEV);
4635         break;
4636       }
4637 
4638       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4639       if (Flags != SCEV::FlagAnyWrap) {
4640         MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4641                                     getSCEV(U->getOperand(1)), Flags));
4642         break;
4643       }
4644 
4645       MulOps.push_back(getSCEV(U->getOperand(1)));
4646     }
4647     return getMulExpr(MulOps);
4648   }
4649   case Instruction::UDiv:
4650     return getUDivExpr(getSCEV(U->getOperand(0)),
4651                        getSCEV(U->getOperand(1)));
4652   case Instruction::Sub:
4653     return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4654                         getNoWrapFlagsFromUB(U));
4655   case Instruction::And:
4656     // For an expression like x&255 that merely masks off the high bits,
4657     // use zext(trunc(x)) as the SCEV expression.
4658     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4659       if (CI->isNullValue())
4660         return getSCEV(U->getOperand(1));
4661       if (CI->isAllOnesValue())
4662         return getSCEV(U->getOperand(0));
4663       const APInt &A = CI->getValue();
4664 
4665       // Instcombine's ShrinkDemandedConstant may strip bits out of
4666       // constants, obscuring what would otherwise be a low-bits mask.
4667       // Use computeKnownBits to compute what ShrinkDemandedConstant
4668       // knew about to reconstruct a low-bits mask value.
4669       unsigned LZ = A.countLeadingZeros();
4670       unsigned TZ = A.countTrailingZeros();
4671       unsigned BitWidth = A.getBitWidth();
4672       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4673       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4674                        0, &AC, nullptr, &DT);
4675 
4676       APInt EffectiveMask =
4677           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4678       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4679         const SCEV *MulCount = getConstant(
4680             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4681         return getMulExpr(
4682             getZeroExtendExpr(
4683                 getTruncateExpr(
4684                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4685                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4686                 U->getType()),
4687             MulCount);
4688       }
4689     }
4690     break;
4691 
4692   case Instruction::Or:
4693     // If the RHS of the Or is a constant, we may have something like:
4694     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4695     // optimizations will transparently handle this case.
4696     //
4697     // In order for this transformation to be safe, the LHS must be of the
4698     // form X*(2^n) and the Or constant must be less than 2^n.
4699     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4700       const SCEV *LHS = getSCEV(U->getOperand(0));
4701       const APInt &CIVal = CI->getValue();
4702       if (GetMinTrailingZeros(LHS) >=
4703           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4704         // Build a plain add SCEV.
4705         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4706         // If the LHS of the add was an addrec and it has no-wrap flags,
4707         // transfer the no-wrap flags, since an or won't introduce a wrap.
4708         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4709           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4710           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4711             OldAR->getNoWrapFlags());
4712         }
4713         return S;
4714       }
4715     }
4716     break;
4717   case Instruction::Xor:
4718     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4719       // If the RHS of the xor is a signbit, then this is just an add.
4720       // Instcombine turns add of signbit into xor as a strength reduction step.
4721       if (CI->getValue().isSignBit())
4722         return getAddExpr(getSCEV(U->getOperand(0)),
4723                           getSCEV(U->getOperand(1)));
4724 
4725       // If the RHS of xor is -1, then this is a not operation.
4726       if (CI->isAllOnesValue())
4727         return getNotSCEV(getSCEV(U->getOperand(0)));
4728 
4729       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4730       // This is a variant of the check for xor with -1, and it handles
4731       // the case where instcombine has trimmed non-demanded bits out
4732       // of an xor with -1.
4733       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4734         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4735           if (BO->getOpcode() == Instruction::And &&
4736               LCI->getValue() == CI->getValue())
4737             if (const SCEVZeroExtendExpr *Z =
4738                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4739               Type *UTy = U->getType();
4740               const SCEV *Z0 = Z->getOperand();
4741               Type *Z0Ty = Z0->getType();
4742               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4743 
4744               // If C is a low-bits mask, the zero extend is serving to
4745               // mask off the high bits. Complement the operand and
4746               // re-apply the zext.
4747               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4748                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4749 
4750               // If C is a single bit, it may be in the sign-bit position
4751               // before the zero-extend. In this case, represent the xor
4752               // using an add, which is equivalent, and re-apply the zext.
4753               APInt Trunc = CI->getValue().trunc(Z0TySize);
4754               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4755                   Trunc.isSignBit())
4756                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4757                                          UTy);
4758             }
4759     }
4760     break;
4761 
4762   case Instruction::Shl:
4763     // Turn shift left of a constant amount into a multiply.
4764     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4765       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4766 
4767       // If the shift count is not less than the bitwidth, the result of
4768       // the shift is undefined. Don't try to analyze it, because the
4769       // resolution chosen here may differ from the resolution chosen in
4770       // other parts of the compiler.
4771       if (SA->getValue().uge(BitWidth))
4772         break;
4773 
4774       // It is currently not resolved how to interpret NSW for left
4775       // shift by BitWidth - 1, so we avoid applying flags in that
4776       // case. Remove this check (or this comment) once the situation
4777       // is resolved. See
4778       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4779       // and http://reviews.llvm.org/D8890 .
4780       auto Flags = SCEV::FlagAnyWrap;
4781       if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4782 
4783       Constant *X = ConstantInt::get(getContext(),
4784         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4785       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
4786     }
4787     break;
4788 
4789   case Instruction::LShr:
4790     // Turn logical shift right of a constant into a unsigned divide.
4791     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4792       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4793 
4794       // If the shift count is not less than the bitwidth, the result of
4795       // the shift is undefined. Don't try to analyze it, because the
4796       // resolution chosen here may differ from the resolution chosen in
4797       // other parts of the compiler.
4798       if (SA->getValue().uge(BitWidth))
4799         break;
4800 
4801       Constant *X = ConstantInt::get(getContext(),
4802         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4803       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4804     }
4805     break;
4806 
4807   case Instruction::AShr:
4808     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4809     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4810       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4811         if (L->getOpcode() == Instruction::Shl &&
4812             L->getOperand(1) == U->getOperand(1)) {
4813           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4814 
4815           // If the shift count is not less than the bitwidth, the result of
4816           // the shift is undefined. Don't try to analyze it, because the
4817           // resolution chosen here may differ from the resolution chosen in
4818           // other parts of the compiler.
4819           if (CI->getValue().uge(BitWidth))
4820             break;
4821 
4822           uint64_t Amt = BitWidth - CI->getZExtValue();
4823           if (Amt == BitWidth)
4824             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4825           return
4826             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4827                                               IntegerType::get(getContext(),
4828                                                                Amt)),
4829                               U->getType());
4830         }
4831     break;
4832 
4833   case Instruction::Trunc:
4834     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4835 
4836   case Instruction::ZExt:
4837     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4838 
4839   case Instruction::SExt:
4840     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4841 
4842   case Instruction::BitCast:
4843     // BitCasts are no-op casts so we just eliminate the cast.
4844     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4845       return getSCEV(U->getOperand(0));
4846     break;
4847 
4848   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4849   // lead to pointer expressions which cannot safely be expanded to GEPs,
4850   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4851   // simplifying integer expressions.
4852 
4853   case Instruction::GetElementPtr:
4854     return createNodeForGEP(cast<GEPOperator>(U));
4855 
4856   case Instruction::PHI:
4857     return createNodeForPHI(cast<PHINode>(U));
4858 
4859   case Instruction::Select:
4860     // U can also be a select constant expr, which let fall through.  Since
4861     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4862     // constant expressions cannot have instructions as operands, we'd have
4863     // returned getUnknown for a select constant expressions anyway.
4864     if (isa<Instruction>(U))
4865       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4866                                       U->getOperand(1), U->getOperand(2));
4867 
4868   default: // We cannot analyze this expression.
4869     break;
4870   }
4871 
4872   return getUnknown(V);
4873 }
4874 
4875 
4876 
4877 //===----------------------------------------------------------------------===//
4878 //                   Iteration Count Computation Code
4879 //
4880 
4881 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4882   if (BasicBlock *ExitingBB = L->getExitingBlock())
4883     return getSmallConstantTripCount(L, ExitingBB);
4884 
4885   // No trip count information for multiple exits.
4886   return 0;
4887 }
4888 
4889 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4890 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4891 /// constant. Will also return 0 if the maximum trip count is very large (>=
4892 /// 2^32).
4893 ///
4894 /// This "trip count" assumes that control exits via ExitingBlock. More
4895 /// precisely, it is the number of times that control may reach ExitingBlock
4896 /// before taking the branch. For loops with multiple exits, it may not be the
4897 /// number times that the loop header executes because the loop may exit
4898 /// prematurely via another branch.
4899 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4900                                                     BasicBlock *ExitingBlock) {
4901   assert(ExitingBlock && "Must pass a non-null exiting block!");
4902   assert(L->isLoopExiting(ExitingBlock) &&
4903          "Exiting block must actually branch out of the loop!");
4904   const SCEVConstant *ExitCount =
4905       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4906   if (!ExitCount)
4907     return 0;
4908 
4909   ConstantInt *ExitConst = ExitCount->getValue();
4910 
4911   // Guard against huge trip counts.
4912   if (ExitConst->getValue().getActiveBits() > 32)
4913     return 0;
4914 
4915   // In case of integer overflow, this returns 0, which is correct.
4916   return ((unsigned)ExitConst->getZExtValue()) + 1;
4917 }
4918 
4919 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4920   if (BasicBlock *ExitingBB = L->getExitingBlock())
4921     return getSmallConstantTripMultiple(L, ExitingBB);
4922 
4923   // No trip multiple information for multiple exits.
4924   return 0;
4925 }
4926 
4927 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4928 /// trip count of this loop as a normal unsigned value, if possible. This
4929 /// means that the actual trip count is always a multiple of the returned
4930 /// value (don't forget the trip count could very well be zero as well!).
4931 ///
4932 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4933 /// multiple of a constant (which is also the case if the trip count is simply
4934 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4935 /// if the trip count is very large (>= 2^32).
4936 ///
4937 /// As explained in the comments for getSmallConstantTripCount, this assumes
4938 /// that control exits the loop via ExitingBlock.
4939 unsigned
4940 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4941                                               BasicBlock *ExitingBlock) {
4942   assert(ExitingBlock && "Must pass a non-null exiting block!");
4943   assert(L->isLoopExiting(ExitingBlock) &&
4944          "Exiting block must actually branch out of the loop!");
4945   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4946   if (ExitCount == getCouldNotCompute())
4947     return 1;
4948 
4949   // Get the trip count from the BE count by adding 1.
4950   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
4951   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4952   // to factor simple cases.
4953   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4954     TCMul = Mul->getOperand(0);
4955 
4956   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4957   if (!MulC)
4958     return 1;
4959 
4960   ConstantInt *Result = MulC->getValue();
4961 
4962   // Guard against huge trip counts (this requires checking
4963   // for zero to handle the case where the trip count == -1 and the
4964   // addition wraps).
4965   if (!Result || Result->getValue().getActiveBits() > 32 ||
4966       Result->getValue().getActiveBits() == 0)
4967     return 1;
4968 
4969   return (unsigned)Result->getZExtValue();
4970 }
4971 
4972 // getExitCount - Get the expression for the number of loop iterations for which
4973 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4974 // SCEVCouldNotCompute.
4975 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4976   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4977 }
4978 
4979 /// getBackedgeTakenCount - If the specified loop has a predictable
4980 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4981 /// object. The backedge-taken count is the number of times the loop header
4982 /// will be branched to from within the loop. This is one less than the
4983 /// trip count of the loop, since it doesn't count the first iteration,
4984 /// when the header is branched to from outside the loop.
4985 ///
4986 /// Note that it is not valid to call this method on a loop without a
4987 /// loop-invariant backedge-taken count (see
4988 /// hasLoopInvariantBackedgeTakenCount).
4989 ///
4990 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4991   return getBackedgeTakenInfo(L).getExact(this);
4992 }
4993 
4994 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4995 /// return the least SCEV value that is known never to be less than the
4996 /// actual backedge taken count.
4997 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4998   return getBackedgeTakenInfo(L).getMax(this);
4999 }
5000 
5001 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
5002 /// onto the given Worklist.
5003 static void
5004 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5005   BasicBlock *Header = L->getHeader();
5006 
5007   // Push all Loop-header PHIs onto the Worklist stack.
5008   for (BasicBlock::iterator I = Header->begin();
5009        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5010     Worklist.push_back(PN);
5011 }
5012 
5013 const ScalarEvolution::BackedgeTakenInfo &
5014 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5015   // Initially insert an invalid entry for this loop. If the insertion
5016   // succeeds, proceed to actually compute a backedge-taken count and
5017   // update the value. The temporary CouldNotCompute value tells SCEV
5018   // code elsewhere that it shouldn't attempt to request a new
5019   // backedge-taken count, which could result in infinite recursion.
5020   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5021       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5022   if (!Pair.second)
5023     return Pair.first->second;
5024 
5025   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5026   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5027   // must be cleared in this scope.
5028   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5029 
5030   if (Result.getExact(this) != getCouldNotCompute()) {
5031     assert(isLoopInvariant(Result.getExact(this), L) &&
5032            isLoopInvariant(Result.getMax(this), L) &&
5033            "Computed backedge-taken count isn't loop invariant for loop!");
5034     ++NumTripCountsComputed;
5035   }
5036   else if (Result.getMax(this) == getCouldNotCompute() &&
5037            isa<PHINode>(L->getHeader()->begin())) {
5038     // Only count loops that have phi nodes as not being computable.
5039     ++NumTripCountsNotComputed;
5040   }
5041 
5042   // Now that we know more about the trip count for this loop, forget any
5043   // existing SCEV values for PHI nodes in this loop since they are only
5044   // conservative estimates made without the benefit of trip count
5045   // information. This is similar to the code in forgetLoop, except that
5046   // it handles SCEVUnknown PHI nodes specially.
5047   if (Result.hasAnyInfo()) {
5048     SmallVector<Instruction *, 16> Worklist;
5049     PushLoopPHIs(L, Worklist);
5050 
5051     SmallPtrSet<Instruction *, 8> Visited;
5052     while (!Worklist.empty()) {
5053       Instruction *I = Worklist.pop_back_val();
5054       if (!Visited.insert(I).second)
5055         continue;
5056 
5057       ValueExprMapType::iterator It =
5058         ValueExprMap.find_as(static_cast<Value *>(I));
5059       if (It != ValueExprMap.end()) {
5060         const SCEV *Old = It->second;
5061 
5062         // SCEVUnknown for a PHI either means that it has an unrecognized
5063         // structure, or it's a PHI that's in the progress of being computed
5064         // by createNodeForPHI.  In the former case, additional loop trip
5065         // count information isn't going to change anything. In the later
5066         // case, createNodeForPHI will perform the necessary updates on its
5067         // own when it gets to that point.
5068         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5069           forgetMemoizedResults(Old);
5070           ValueExprMap.erase(It);
5071         }
5072         if (PHINode *PN = dyn_cast<PHINode>(I))
5073           ConstantEvolutionLoopExitValue.erase(PN);
5074       }
5075 
5076       PushDefUseChildren(I, Worklist);
5077     }
5078   }
5079 
5080   // Re-lookup the insert position, since the call to
5081   // computeBackedgeTakenCount above could result in a
5082   // recusive call to getBackedgeTakenInfo (on a different
5083   // loop), which would invalidate the iterator computed
5084   // earlier.
5085   return BackedgeTakenCounts.find(L)->second = Result;
5086 }
5087 
5088 /// forgetLoop - This method should be called by the client when it has
5089 /// changed a loop in a way that may effect ScalarEvolution's ability to
5090 /// compute a trip count, or if the loop is deleted.
5091 void ScalarEvolution::forgetLoop(const Loop *L) {
5092   // Drop any stored trip count value.
5093   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5094     BackedgeTakenCounts.find(L);
5095   if (BTCPos != BackedgeTakenCounts.end()) {
5096     BTCPos->second.clear();
5097     BackedgeTakenCounts.erase(BTCPos);
5098   }
5099 
5100   // Drop information about expressions based on loop-header PHIs.
5101   SmallVector<Instruction *, 16> Worklist;
5102   PushLoopPHIs(L, Worklist);
5103 
5104   SmallPtrSet<Instruction *, 8> Visited;
5105   while (!Worklist.empty()) {
5106     Instruction *I = Worklist.pop_back_val();
5107     if (!Visited.insert(I).second)
5108       continue;
5109 
5110     ValueExprMapType::iterator It =
5111       ValueExprMap.find_as(static_cast<Value *>(I));
5112     if (It != ValueExprMap.end()) {
5113       forgetMemoizedResults(It->second);
5114       ValueExprMap.erase(It);
5115       if (PHINode *PN = dyn_cast<PHINode>(I))
5116         ConstantEvolutionLoopExitValue.erase(PN);
5117     }
5118 
5119     PushDefUseChildren(I, Worklist);
5120   }
5121 
5122   // Forget all contained loops too, to avoid dangling entries in the
5123   // ValuesAtScopes map.
5124   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5125     forgetLoop(*I);
5126 }
5127 
5128 /// forgetValue - This method should be called by the client when it has
5129 /// changed a value in a way that may effect its value, or which may
5130 /// disconnect it from a def-use chain linking it to a loop.
5131 void ScalarEvolution::forgetValue(Value *V) {
5132   Instruction *I = dyn_cast<Instruction>(V);
5133   if (!I) return;
5134 
5135   // Drop information about expressions based on loop-header PHIs.
5136   SmallVector<Instruction *, 16> Worklist;
5137   Worklist.push_back(I);
5138 
5139   SmallPtrSet<Instruction *, 8> Visited;
5140   while (!Worklist.empty()) {
5141     I = Worklist.pop_back_val();
5142     if (!Visited.insert(I).second)
5143       continue;
5144 
5145     ValueExprMapType::iterator It =
5146       ValueExprMap.find_as(static_cast<Value *>(I));
5147     if (It != ValueExprMap.end()) {
5148       forgetMemoizedResults(It->second);
5149       ValueExprMap.erase(It);
5150       if (PHINode *PN = dyn_cast<PHINode>(I))
5151         ConstantEvolutionLoopExitValue.erase(PN);
5152     }
5153 
5154     PushDefUseChildren(I, Worklist);
5155   }
5156 }
5157 
5158 /// getExact - Get the exact loop backedge taken count considering all loop
5159 /// exits. A computable result can only be returned for loops with a single
5160 /// exit.  Returning the minimum taken count among all exits is incorrect
5161 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5162 /// assumes that the limit of each loop test is never skipped. This is a valid
5163 /// assumption as long as the loop exits via that test. For precise results, it
5164 /// is the caller's responsibility to specify the relevant loop exit using
5165 /// getExact(ExitingBlock, SE).
5166 const SCEV *
5167 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5168   // If any exits were not computable, the loop is not computable.
5169   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5170 
5171   // We need exactly one computable exit.
5172   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5173   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5174 
5175   const SCEV *BECount = nullptr;
5176   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5177        ENT != nullptr; ENT = ENT->getNextExit()) {
5178 
5179     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5180 
5181     if (!BECount)
5182       BECount = ENT->ExactNotTaken;
5183     else if (BECount != ENT->ExactNotTaken)
5184       return SE->getCouldNotCompute();
5185   }
5186   assert(BECount && "Invalid not taken count for loop exit");
5187   return BECount;
5188 }
5189 
5190 /// getExact - Get the exact not taken count for this loop exit.
5191 const SCEV *
5192 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5193                                              ScalarEvolution *SE) const {
5194   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5195        ENT != nullptr; ENT = ENT->getNextExit()) {
5196 
5197     if (ENT->ExitingBlock == ExitingBlock)
5198       return ENT->ExactNotTaken;
5199   }
5200   return SE->getCouldNotCompute();
5201 }
5202 
5203 /// getMax - Get the max backedge taken count for the loop.
5204 const SCEV *
5205 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5206   return Max ? Max : SE->getCouldNotCompute();
5207 }
5208 
5209 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5210                                                     ScalarEvolution *SE) const {
5211   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5212     return true;
5213 
5214   if (!ExitNotTaken.ExitingBlock)
5215     return false;
5216 
5217   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5218        ENT != nullptr; ENT = ENT->getNextExit()) {
5219 
5220     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5221         && SE->hasOperand(ENT->ExactNotTaken, S)) {
5222       return true;
5223     }
5224   }
5225   return false;
5226 }
5227 
5228 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5229 /// computable exit into a persistent ExitNotTakenInfo array.
5230 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5231   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5232   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5233 
5234   if (!Complete)
5235     ExitNotTaken.setIncomplete();
5236 
5237   unsigned NumExits = ExitCounts.size();
5238   if (NumExits == 0) return;
5239 
5240   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5241   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5242   if (NumExits == 1) return;
5243 
5244   // Handle the rare case of multiple computable exits.
5245   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5246 
5247   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5248   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5249     PrevENT->setNextExit(ENT);
5250     ENT->ExitingBlock = ExitCounts[i].first;
5251     ENT->ExactNotTaken = ExitCounts[i].second;
5252   }
5253 }
5254 
5255 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5256 void ScalarEvolution::BackedgeTakenInfo::clear() {
5257   ExitNotTaken.ExitingBlock = nullptr;
5258   ExitNotTaken.ExactNotTaken = nullptr;
5259   delete[] ExitNotTaken.getNextExit();
5260 }
5261 
5262 /// computeBackedgeTakenCount - Compute the number of times the backedge
5263 /// of the specified loop will execute.
5264 ScalarEvolution::BackedgeTakenInfo
5265 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5266   SmallVector<BasicBlock *, 8> ExitingBlocks;
5267   L->getExitingBlocks(ExitingBlocks);
5268 
5269   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5270   bool CouldComputeBECount = true;
5271   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5272   const SCEV *MustExitMaxBECount = nullptr;
5273   const SCEV *MayExitMaxBECount = nullptr;
5274 
5275   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5276   // and compute maxBECount.
5277   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5278     BasicBlock *ExitBB = ExitingBlocks[i];
5279     ExitLimit EL = computeExitLimit(L, ExitBB);
5280 
5281     // 1. For each exit that can be computed, add an entry to ExitCounts.
5282     // CouldComputeBECount is true only if all exits can be computed.
5283     if (EL.Exact == getCouldNotCompute())
5284       // We couldn't compute an exact value for this exit, so
5285       // we won't be able to compute an exact value for the loop.
5286       CouldComputeBECount = false;
5287     else
5288       ExitCounts.push_back({ExitBB, EL.Exact});
5289 
5290     // 2. Derive the loop's MaxBECount from each exit's max number of
5291     // non-exiting iterations. Partition the loop exits into two kinds:
5292     // LoopMustExits and LoopMayExits.
5293     //
5294     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5295     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5296     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5297     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5298     // considered greater than any computable EL.Max.
5299     if (EL.Max != getCouldNotCompute() && Latch &&
5300         DT.dominates(ExitBB, Latch)) {
5301       if (!MustExitMaxBECount)
5302         MustExitMaxBECount = EL.Max;
5303       else {
5304         MustExitMaxBECount =
5305           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5306       }
5307     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5308       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5309         MayExitMaxBECount = EL.Max;
5310       else {
5311         MayExitMaxBECount =
5312           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5313       }
5314     }
5315   }
5316   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5317     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5318   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5319 }
5320 
5321 ScalarEvolution::ExitLimit
5322 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5323 
5324   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5325   // at this block and remember the exit block and whether all other targets
5326   // lead to the loop header.
5327   bool MustExecuteLoopHeader = true;
5328   BasicBlock *Exit = nullptr;
5329   for (auto *SBB : successors(ExitingBlock))
5330     if (!L->contains(SBB)) {
5331       if (Exit) // Multiple exit successors.
5332         return getCouldNotCompute();
5333       Exit = SBB;
5334     } else if (SBB != L->getHeader()) {
5335       MustExecuteLoopHeader = false;
5336     }
5337 
5338   // At this point, we know we have a conditional branch that determines whether
5339   // the loop is exited.  However, we don't know if the branch is executed each
5340   // time through the loop.  If not, then the execution count of the branch will
5341   // not be equal to the trip count of the loop.
5342   //
5343   // Currently we check for this by checking to see if the Exit branch goes to
5344   // the loop header.  If so, we know it will always execute the same number of
5345   // times as the loop.  We also handle the case where the exit block *is* the
5346   // loop header.  This is common for un-rotated loops.
5347   //
5348   // If both of those tests fail, walk up the unique predecessor chain to the
5349   // header, stopping if there is an edge that doesn't exit the loop. If the
5350   // header is reached, the execution count of the branch will be equal to the
5351   // trip count of the loop.
5352   //
5353   //  More extensive analysis could be done to handle more cases here.
5354   //
5355   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5356     // The simple checks failed, try climbing the unique predecessor chain
5357     // up to the header.
5358     bool Ok = false;
5359     for (BasicBlock *BB = ExitingBlock; BB; ) {
5360       BasicBlock *Pred = BB->getUniquePredecessor();
5361       if (!Pred)
5362         return getCouldNotCompute();
5363       TerminatorInst *PredTerm = Pred->getTerminator();
5364       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5365         if (PredSucc == BB)
5366           continue;
5367         // If the predecessor has a successor that isn't BB and isn't
5368         // outside the loop, assume the worst.
5369         if (L->contains(PredSucc))
5370           return getCouldNotCompute();
5371       }
5372       if (Pred == L->getHeader()) {
5373         Ok = true;
5374         break;
5375       }
5376       BB = Pred;
5377     }
5378     if (!Ok)
5379       return getCouldNotCompute();
5380   }
5381 
5382   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5383   TerminatorInst *Term = ExitingBlock->getTerminator();
5384   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5385     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5386     // Proceed to the next level to examine the exit condition expression.
5387     return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5388                                     BI->getSuccessor(1),
5389                                     /*ControlsExit=*/IsOnlyExit);
5390   }
5391 
5392   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5393     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5394                                                 /*ControlsExit=*/IsOnlyExit);
5395 
5396   return getCouldNotCompute();
5397 }
5398 
5399 /// computeExitLimitFromCond - Compute the number of times the
5400 /// backedge of the specified loop will execute if its exit condition
5401 /// were a conditional branch of ExitCond, TBB, and FBB.
5402 ///
5403 /// @param ControlsExit is true if ExitCond directly controls the exit
5404 /// branch. In this case, we can assume that the loop exits only if the
5405 /// condition is true and can infer that failing to meet the condition prior to
5406 /// integer wraparound results in undefined behavior.
5407 ScalarEvolution::ExitLimit
5408 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5409                                           Value *ExitCond,
5410                                           BasicBlock *TBB,
5411                                           BasicBlock *FBB,
5412                                           bool ControlsExit) {
5413   // Check if the controlling expression for this loop is an And or Or.
5414   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5415     if (BO->getOpcode() == Instruction::And) {
5416       // Recurse on the operands of the and.
5417       bool EitherMayExit = L->contains(TBB);
5418       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5419                                                ControlsExit && !EitherMayExit);
5420       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5421                                                ControlsExit && !EitherMayExit);
5422       const SCEV *BECount = getCouldNotCompute();
5423       const SCEV *MaxBECount = getCouldNotCompute();
5424       if (EitherMayExit) {
5425         // Both conditions must be true for the loop to continue executing.
5426         // Choose the less conservative count.
5427         if (EL0.Exact == getCouldNotCompute() ||
5428             EL1.Exact == getCouldNotCompute())
5429           BECount = getCouldNotCompute();
5430         else
5431           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5432         if (EL0.Max == getCouldNotCompute())
5433           MaxBECount = EL1.Max;
5434         else if (EL1.Max == getCouldNotCompute())
5435           MaxBECount = EL0.Max;
5436         else
5437           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5438       } else {
5439         // Both conditions must be true at the same time for the loop to exit.
5440         // For now, be conservative.
5441         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5442         if (EL0.Max == EL1.Max)
5443           MaxBECount = EL0.Max;
5444         if (EL0.Exact == EL1.Exact)
5445           BECount = EL0.Exact;
5446       }
5447 
5448       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5449       // to be more aggressive when computing BECount than when computing
5450       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5451       // to match, but for EL0.Max and EL1.Max to not.
5452       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5453           !isa<SCEVCouldNotCompute>(BECount))
5454         MaxBECount = BECount;
5455 
5456       return ExitLimit(BECount, MaxBECount);
5457     }
5458     if (BO->getOpcode() == Instruction::Or) {
5459       // Recurse on the operands of the or.
5460       bool EitherMayExit = L->contains(FBB);
5461       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5462                                                ControlsExit && !EitherMayExit);
5463       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5464                                                ControlsExit && !EitherMayExit);
5465       const SCEV *BECount = getCouldNotCompute();
5466       const SCEV *MaxBECount = getCouldNotCompute();
5467       if (EitherMayExit) {
5468         // Both conditions must be false for the loop to continue executing.
5469         // Choose the less conservative count.
5470         if (EL0.Exact == getCouldNotCompute() ||
5471             EL1.Exact == getCouldNotCompute())
5472           BECount = getCouldNotCompute();
5473         else
5474           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5475         if (EL0.Max == getCouldNotCompute())
5476           MaxBECount = EL1.Max;
5477         else if (EL1.Max == getCouldNotCompute())
5478           MaxBECount = EL0.Max;
5479         else
5480           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5481       } else {
5482         // Both conditions must be false at the same time for the loop to exit.
5483         // For now, be conservative.
5484         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5485         if (EL0.Max == EL1.Max)
5486           MaxBECount = EL0.Max;
5487         if (EL0.Exact == EL1.Exact)
5488           BECount = EL0.Exact;
5489       }
5490 
5491       return ExitLimit(BECount, MaxBECount);
5492     }
5493   }
5494 
5495   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5496   // Proceed to the next level to examine the icmp.
5497   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5498     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5499 
5500   // Check for a constant condition. These are normally stripped out by
5501   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5502   // preserve the CFG and is temporarily leaving constant conditions
5503   // in place.
5504   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5505     if (L->contains(FBB) == !CI->getZExtValue())
5506       // The backedge is always taken.
5507       return getCouldNotCompute();
5508     else
5509       // The backedge is never taken.
5510       return getZero(CI->getType());
5511   }
5512 
5513   // If it's not an integer or pointer comparison then compute it the hard way.
5514   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5515 }
5516 
5517 ScalarEvolution::ExitLimit
5518 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5519                                           ICmpInst *ExitCond,
5520                                           BasicBlock *TBB,
5521                                           BasicBlock *FBB,
5522                                           bool ControlsExit) {
5523 
5524   // If the condition was exit on true, convert the condition to exit on false
5525   ICmpInst::Predicate Cond;
5526   if (!L->contains(FBB))
5527     Cond = ExitCond->getPredicate();
5528   else
5529     Cond = ExitCond->getInversePredicate();
5530 
5531   // Handle common loops like: for (X = "string"; *X; ++X)
5532   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5533     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5534       ExitLimit ItCnt =
5535         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5536       if (ItCnt.hasAnyInfo())
5537         return ItCnt;
5538     }
5539 
5540   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5541       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5542   if (ShiftEL.hasAnyInfo())
5543     return ShiftEL;
5544 
5545   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5546   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5547 
5548   // Try to evaluate any dependencies out of the loop.
5549   LHS = getSCEVAtScope(LHS, L);
5550   RHS = getSCEVAtScope(RHS, L);
5551 
5552   // At this point, we would like to compute how many iterations of the
5553   // loop the predicate will return true for these inputs.
5554   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5555     // If there is a loop-invariant, force it into the RHS.
5556     std::swap(LHS, RHS);
5557     Cond = ICmpInst::getSwappedPredicate(Cond);
5558   }
5559 
5560   // Simplify the operands before analyzing them.
5561   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5562 
5563   // If we have a comparison of a chrec against a constant, try to use value
5564   // ranges to answer this query.
5565   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5566     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5567       if (AddRec->getLoop() == L) {
5568         // Form the constant range.
5569         ConstantRange CompRange(
5570             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5571 
5572         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5573         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5574       }
5575 
5576   switch (Cond) {
5577   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5578     // Convert to: while (X-Y != 0)
5579     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5580     if (EL.hasAnyInfo()) return EL;
5581     break;
5582   }
5583   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5584     // Convert to: while (X-Y == 0)
5585     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5586     if (EL.hasAnyInfo()) return EL;
5587     break;
5588   }
5589   case ICmpInst::ICMP_SLT:
5590   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5591     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5592     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5593     if (EL.hasAnyInfo()) return EL;
5594     break;
5595   }
5596   case ICmpInst::ICMP_SGT:
5597   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5598     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5599     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5600     if (EL.hasAnyInfo()) return EL;
5601     break;
5602   }
5603   default:
5604     break;
5605   }
5606   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5607 }
5608 
5609 ScalarEvolution::ExitLimit
5610 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5611                                                       SwitchInst *Switch,
5612                                                       BasicBlock *ExitingBlock,
5613                                                       bool ControlsExit) {
5614   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5615 
5616   // Give up if the exit is the default dest of a switch.
5617   if (Switch->getDefaultDest() == ExitingBlock)
5618     return getCouldNotCompute();
5619 
5620   assert(L->contains(Switch->getDefaultDest()) &&
5621          "Default case must not exit the loop!");
5622   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5623   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5624 
5625   // while (X != Y) --> while (X-Y != 0)
5626   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5627   if (EL.hasAnyInfo())
5628     return EL;
5629 
5630   return getCouldNotCompute();
5631 }
5632 
5633 static ConstantInt *
5634 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5635                                 ScalarEvolution &SE) {
5636   const SCEV *InVal = SE.getConstant(C);
5637   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5638   assert(isa<SCEVConstant>(Val) &&
5639          "Evaluation of SCEV at constant didn't fold correctly?");
5640   return cast<SCEVConstant>(Val)->getValue();
5641 }
5642 
5643 /// computeLoadConstantCompareExitLimit - Given an exit condition of
5644 /// 'icmp op load X, cst', try to see if we can compute the backedge
5645 /// execution count.
5646 ScalarEvolution::ExitLimit
5647 ScalarEvolution::computeLoadConstantCompareExitLimit(
5648   LoadInst *LI,
5649   Constant *RHS,
5650   const Loop *L,
5651   ICmpInst::Predicate predicate) {
5652 
5653   if (LI->isVolatile()) return getCouldNotCompute();
5654 
5655   // Check to see if the loaded pointer is a getelementptr of a global.
5656   // TODO: Use SCEV instead of manually grubbing with GEPs.
5657   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5658   if (!GEP) return getCouldNotCompute();
5659 
5660   // Make sure that it is really a constant global we are gepping, with an
5661   // initializer, and make sure the first IDX is really 0.
5662   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5663   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5664       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5665       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5666     return getCouldNotCompute();
5667 
5668   // Okay, we allow one non-constant index into the GEP instruction.
5669   Value *VarIdx = nullptr;
5670   std::vector<Constant*> Indexes;
5671   unsigned VarIdxNum = 0;
5672   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5673     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5674       Indexes.push_back(CI);
5675     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5676       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5677       VarIdx = GEP->getOperand(i);
5678       VarIdxNum = i-2;
5679       Indexes.push_back(nullptr);
5680     }
5681 
5682   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5683   if (!VarIdx)
5684     return getCouldNotCompute();
5685 
5686   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5687   // Check to see if X is a loop variant variable value now.
5688   const SCEV *Idx = getSCEV(VarIdx);
5689   Idx = getSCEVAtScope(Idx, L);
5690 
5691   // We can only recognize very limited forms of loop index expressions, in
5692   // particular, only affine AddRec's like {C1,+,C2}.
5693   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5694   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5695       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5696       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5697     return getCouldNotCompute();
5698 
5699   unsigned MaxSteps = MaxBruteForceIterations;
5700   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5701     ConstantInt *ItCst = ConstantInt::get(
5702                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5703     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5704 
5705     // Form the GEP offset.
5706     Indexes[VarIdxNum] = Val;
5707 
5708     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5709                                                          Indexes);
5710     if (!Result) break;  // Cannot compute!
5711 
5712     // Evaluate the condition for this iteration.
5713     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5714     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5715     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5716       ++NumArrayLenItCounts;
5717       return getConstant(ItCst);   // Found terminating iteration!
5718     }
5719   }
5720   return getCouldNotCompute();
5721 }
5722 
5723 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5724     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5725   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5726   if (!RHS)
5727     return getCouldNotCompute();
5728 
5729   const BasicBlock *Latch = L->getLoopLatch();
5730   if (!Latch)
5731     return getCouldNotCompute();
5732 
5733   const BasicBlock *Predecessor = L->getLoopPredecessor();
5734   if (!Predecessor)
5735     return getCouldNotCompute();
5736 
5737   // Return true if V is of the form "LHS `shift_op` <positive constant>".
5738   // Return LHS in OutLHS and shift_opt in OutOpCode.
5739   auto MatchPositiveShift =
5740       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5741 
5742     using namespace PatternMatch;
5743 
5744     ConstantInt *ShiftAmt;
5745     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5746       OutOpCode = Instruction::LShr;
5747     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5748       OutOpCode = Instruction::AShr;
5749     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5750       OutOpCode = Instruction::Shl;
5751     else
5752       return false;
5753 
5754     return ShiftAmt->getValue().isStrictlyPositive();
5755   };
5756 
5757   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5758   //
5759   // loop:
5760   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5761   //   %iv.shifted = lshr i32 %iv, <positive constant>
5762   //
5763   // Return true on a succesful match.  Return the corresponding PHI node (%iv
5764   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5765   auto MatchShiftRecurrence =
5766       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5767     Optional<Instruction::BinaryOps> PostShiftOpCode;
5768 
5769     {
5770       Instruction::BinaryOps OpC;
5771       Value *V;
5772 
5773       // If we encounter a shift instruction, "peel off" the shift operation,
5774       // and remember that we did so.  Later when we inspect %iv's backedge
5775       // value, we will make sure that the backedge value uses the same
5776       // operation.
5777       //
5778       // Note: the peeled shift operation does not have to be the same
5779       // instruction as the one feeding into the PHI's backedge value.  We only
5780       // really care about it being the same *kind* of shift instruction --
5781       // that's all that is required for our later inferences to hold.
5782       if (MatchPositiveShift(LHS, V, OpC)) {
5783         PostShiftOpCode = OpC;
5784         LHS = V;
5785       }
5786     }
5787 
5788     PNOut = dyn_cast<PHINode>(LHS);
5789     if (!PNOut || PNOut->getParent() != L->getHeader())
5790       return false;
5791 
5792     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5793     Value *OpLHS;
5794 
5795     return
5796         // The backedge value for the PHI node must be a shift by a positive
5797         // amount
5798         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5799 
5800         // of the PHI node itself
5801         OpLHS == PNOut &&
5802 
5803         // and the kind of shift should be match the kind of shift we peeled
5804         // off, if any.
5805         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5806   };
5807 
5808   PHINode *PN;
5809   Instruction::BinaryOps OpCode;
5810   if (!MatchShiftRecurrence(LHS, PN, OpCode))
5811     return getCouldNotCompute();
5812 
5813   const DataLayout &DL = getDataLayout();
5814 
5815   // The key rationale for this optimization is that for some kinds of shift
5816   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5817   // within a finite number of iterations.  If the condition guarding the
5818   // backedge (in the sense that the backedge is taken if the condition is true)
5819   // is false for the value the shift recurrence stabilizes to, then we know
5820   // that the backedge is taken only a finite number of times.
5821 
5822   ConstantInt *StableValue = nullptr;
5823   switch (OpCode) {
5824   default:
5825     llvm_unreachable("Impossible case!");
5826 
5827   case Instruction::AShr: {
5828     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5829     // bitwidth(K) iterations.
5830     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5831     bool KnownZero, KnownOne;
5832     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5833                    Predecessor->getTerminator(), &DT);
5834     auto *Ty = cast<IntegerType>(RHS->getType());
5835     if (KnownZero)
5836       StableValue = ConstantInt::get(Ty, 0);
5837     else if (KnownOne)
5838       StableValue = ConstantInt::get(Ty, -1, true);
5839     else
5840       return getCouldNotCompute();
5841 
5842     break;
5843   }
5844   case Instruction::LShr:
5845   case Instruction::Shl:
5846     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5847     // stabilize to 0 in at most bitwidth(K) iterations.
5848     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5849     break;
5850   }
5851 
5852   auto *Result =
5853       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5854   assert(Result->getType()->isIntegerTy(1) &&
5855          "Otherwise cannot be an operand to a branch instruction");
5856 
5857   if (Result->isZeroValue()) {
5858     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5859     const SCEV *UpperBound =
5860         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5861     return ExitLimit(getCouldNotCompute(), UpperBound);
5862   }
5863 
5864   return getCouldNotCompute();
5865 }
5866 
5867 /// CanConstantFold - Return true if we can constant fold an instruction of the
5868 /// specified type, assuming that all operands were constants.
5869 static bool CanConstantFold(const Instruction *I) {
5870   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5871       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5872       isa<LoadInst>(I))
5873     return true;
5874 
5875   if (const CallInst *CI = dyn_cast<CallInst>(I))
5876     if (const Function *F = CI->getCalledFunction())
5877       return canConstantFoldCallTo(F);
5878   return false;
5879 }
5880 
5881 /// Determine whether this instruction can constant evolve within this loop
5882 /// assuming its operands can all constant evolve.
5883 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5884   // An instruction outside of the loop can't be derived from a loop PHI.
5885   if (!L->contains(I)) return false;
5886 
5887   if (isa<PHINode>(I)) {
5888     // We don't currently keep track of the control flow needed to evaluate
5889     // PHIs, so we cannot handle PHIs inside of loops.
5890     return L->getHeader() == I->getParent();
5891   }
5892 
5893   // If we won't be able to constant fold this expression even if the operands
5894   // are constants, bail early.
5895   return CanConstantFold(I);
5896 }
5897 
5898 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5899 /// recursing through each instruction operand until reaching a loop header phi.
5900 static PHINode *
5901 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5902                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5903 
5904   // Otherwise, we can evaluate this instruction if all of its operands are
5905   // constant or derived from a PHI node themselves.
5906   PHINode *PHI = nullptr;
5907   for (Value *Op : UseInst->operands()) {
5908     if (isa<Constant>(Op)) continue;
5909 
5910     Instruction *OpInst = dyn_cast<Instruction>(Op);
5911     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5912 
5913     PHINode *P = dyn_cast<PHINode>(OpInst);
5914     if (!P)
5915       // If this operand is already visited, reuse the prior result.
5916       // We may have P != PHI if this is the deepest point at which the
5917       // inconsistent paths meet.
5918       P = PHIMap.lookup(OpInst);
5919     if (!P) {
5920       // Recurse and memoize the results, whether a phi is found or not.
5921       // This recursive call invalidates pointers into PHIMap.
5922       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5923       PHIMap[OpInst] = P;
5924     }
5925     if (!P)
5926       return nullptr;  // Not evolving from PHI
5927     if (PHI && PHI != P)
5928       return nullptr;  // Evolving from multiple different PHIs.
5929     PHI = P;
5930   }
5931   // This is a expression evolving from a constant PHI!
5932   return PHI;
5933 }
5934 
5935 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5936 /// in the loop that V is derived from.  We allow arbitrary operations along the
5937 /// way, but the operands of an operation must either be constants or a value
5938 /// derived from a constant PHI.  If this expression does not fit with these
5939 /// constraints, return null.
5940 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5941   Instruction *I = dyn_cast<Instruction>(V);
5942   if (!I || !canConstantEvolve(I, L)) return nullptr;
5943 
5944   if (PHINode *PN = dyn_cast<PHINode>(I))
5945     return PN;
5946 
5947   // Record non-constant instructions contained by the loop.
5948   DenseMap<Instruction *, PHINode *> PHIMap;
5949   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5950 }
5951 
5952 /// EvaluateExpression - Given an expression that passes the
5953 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5954 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5955 /// reason, return null.
5956 static Constant *EvaluateExpression(Value *V, const Loop *L,
5957                                     DenseMap<Instruction *, Constant *> &Vals,
5958                                     const DataLayout &DL,
5959                                     const TargetLibraryInfo *TLI) {
5960   // Convenient constant check, but redundant for recursive calls.
5961   if (Constant *C = dyn_cast<Constant>(V)) return C;
5962   Instruction *I = dyn_cast<Instruction>(V);
5963   if (!I) return nullptr;
5964 
5965   if (Constant *C = Vals.lookup(I)) return C;
5966 
5967   // An instruction inside the loop depends on a value outside the loop that we
5968   // weren't given a mapping for, or a value such as a call inside the loop.
5969   if (!canConstantEvolve(I, L)) return nullptr;
5970 
5971   // An unmapped PHI can be due to a branch or another loop inside this loop,
5972   // or due to this not being the initial iteration through a loop where we
5973   // couldn't compute the evolution of this particular PHI last time.
5974   if (isa<PHINode>(I)) return nullptr;
5975 
5976   std::vector<Constant*> Operands(I->getNumOperands());
5977 
5978   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5979     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5980     if (!Operand) {
5981       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5982       if (!Operands[i]) return nullptr;
5983       continue;
5984     }
5985     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5986     Vals[Operand] = C;
5987     if (!C) return nullptr;
5988     Operands[i] = C;
5989   }
5990 
5991   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5992     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5993                                            Operands[1], DL, TLI);
5994   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5995     if (!LI->isVolatile())
5996       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
5997   }
5998   return ConstantFoldInstOperands(I, Operands, DL, TLI);
5999 }
6000 
6001 
6002 // If every incoming value to PN except the one for BB is a specific Constant,
6003 // return that, else return nullptr.
6004 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6005   Constant *IncomingVal = nullptr;
6006 
6007   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6008     if (PN->getIncomingBlock(i) == BB)
6009       continue;
6010 
6011     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6012     if (!CurrentVal)
6013       return nullptr;
6014 
6015     if (IncomingVal != CurrentVal) {
6016       if (IncomingVal)
6017         return nullptr;
6018       IncomingVal = CurrentVal;
6019     }
6020   }
6021 
6022   return IncomingVal;
6023 }
6024 
6025 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6026 /// in the header of its containing loop, we know the loop executes a
6027 /// constant number of times, and the PHI node is just a recurrence
6028 /// involving constants, fold it.
6029 Constant *
6030 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6031                                                    const APInt &BEs,
6032                                                    const Loop *L) {
6033   auto I = ConstantEvolutionLoopExitValue.find(PN);
6034   if (I != ConstantEvolutionLoopExitValue.end())
6035     return I->second;
6036 
6037   if (BEs.ugt(MaxBruteForceIterations))
6038     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6039 
6040   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6041 
6042   DenseMap<Instruction *, Constant *> CurrentIterVals;
6043   BasicBlock *Header = L->getHeader();
6044   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6045 
6046   BasicBlock *Latch = L->getLoopLatch();
6047   if (!Latch)
6048     return nullptr;
6049 
6050   for (auto &I : *Header) {
6051     PHINode *PHI = dyn_cast<PHINode>(&I);
6052     if (!PHI) break;
6053     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6054     if (!StartCST) continue;
6055     CurrentIterVals[PHI] = StartCST;
6056   }
6057   if (!CurrentIterVals.count(PN))
6058     return RetVal = nullptr;
6059 
6060   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6061 
6062   // Execute the loop symbolically to determine the exit value.
6063   if (BEs.getActiveBits() >= 32)
6064     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6065 
6066   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6067   unsigned IterationNum = 0;
6068   const DataLayout &DL = getDataLayout();
6069   for (; ; ++IterationNum) {
6070     if (IterationNum == NumIterations)
6071       return RetVal = CurrentIterVals[PN];  // Got exit value!
6072 
6073     // Compute the value of the PHIs for the next iteration.
6074     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6075     DenseMap<Instruction *, Constant *> NextIterVals;
6076     Constant *NextPHI =
6077         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6078     if (!NextPHI)
6079       return nullptr;        // Couldn't evaluate!
6080     NextIterVals[PN] = NextPHI;
6081 
6082     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6083 
6084     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6085     // cease to be able to evaluate one of them or if they stop evolving,
6086     // because that doesn't necessarily prevent us from computing PN.
6087     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6088     for (const auto &I : CurrentIterVals) {
6089       PHINode *PHI = dyn_cast<PHINode>(I.first);
6090       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6091       PHIsToCompute.emplace_back(PHI, I.second);
6092     }
6093     // We use two distinct loops because EvaluateExpression may invalidate any
6094     // iterators into CurrentIterVals.
6095     for (const auto &I : PHIsToCompute) {
6096       PHINode *PHI = I.first;
6097       Constant *&NextPHI = NextIterVals[PHI];
6098       if (!NextPHI) {   // Not already computed.
6099         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6100         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6101       }
6102       if (NextPHI != I.second)
6103         StoppedEvolving = false;
6104     }
6105 
6106     // If all entries in CurrentIterVals == NextIterVals then we can stop
6107     // iterating, the loop can't continue to change.
6108     if (StoppedEvolving)
6109       return RetVal = CurrentIterVals[PN];
6110 
6111     CurrentIterVals.swap(NextIterVals);
6112   }
6113 }
6114 
6115 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6116                                                           Value *Cond,
6117                                                           bool ExitWhen) {
6118   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6119   if (!PN) return getCouldNotCompute();
6120 
6121   // If the loop is canonicalized, the PHI will have exactly two entries.
6122   // That's the only form we support here.
6123   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6124 
6125   DenseMap<Instruction *, Constant *> CurrentIterVals;
6126   BasicBlock *Header = L->getHeader();
6127   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6128 
6129   BasicBlock *Latch = L->getLoopLatch();
6130   assert(Latch && "Should follow from NumIncomingValues == 2!");
6131 
6132   for (auto &I : *Header) {
6133     PHINode *PHI = dyn_cast<PHINode>(&I);
6134     if (!PHI)
6135       break;
6136     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6137     if (!StartCST) continue;
6138     CurrentIterVals[PHI] = StartCST;
6139   }
6140   if (!CurrentIterVals.count(PN))
6141     return getCouldNotCompute();
6142 
6143   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6144   // the loop symbolically to determine when the condition gets a value of
6145   // "ExitWhen".
6146   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6147   const DataLayout &DL = getDataLayout();
6148   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6149     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6150         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6151 
6152     // Couldn't symbolically evaluate.
6153     if (!CondVal) return getCouldNotCompute();
6154 
6155     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6156       ++NumBruteForceTripCountsComputed;
6157       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6158     }
6159 
6160     // Update all the PHI nodes for the next iteration.
6161     DenseMap<Instruction *, Constant *> NextIterVals;
6162 
6163     // Create a list of which PHIs we need to compute. We want to do this before
6164     // calling EvaluateExpression on them because that may invalidate iterators
6165     // into CurrentIterVals.
6166     SmallVector<PHINode *, 8> PHIsToCompute;
6167     for (const auto &I : CurrentIterVals) {
6168       PHINode *PHI = dyn_cast<PHINode>(I.first);
6169       if (!PHI || PHI->getParent() != Header) continue;
6170       PHIsToCompute.push_back(PHI);
6171     }
6172     for (PHINode *PHI : PHIsToCompute) {
6173       Constant *&NextPHI = NextIterVals[PHI];
6174       if (NextPHI) continue;    // Already computed!
6175 
6176       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6177       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6178     }
6179     CurrentIterVals.swap(NextIterVals);
6180   }
6181 
6182   // Too many iterations were needed to evaluate.
6183   return getCouldNotCompute();
6184 }
6185 
6186 /// getSCEVAtScope - Return a SCEV expression for the specified value
6187 /// at the specified scope in the program.  The L value specifies a loop
6188 /// nest to evaluate the expression at, where null is the top-level or a
6189 /// specified loop is immediately inside of the loop.
6190 ///
6191 /// This method can be used to compute the exit value for a variable defined
6192 /// in a loop by querying what the value will hold in the parent loop.
6193 ///
6194 /// In the case that a relevant loop exit value cannot be computed, the
6195 /// original value V is returned.
6196 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6197   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6198       ValuesAtScopes[V];
6199   // Check to see if we've folded this expression at this loop before.
6200   for (auto &LS : Values)
6201     if (LS.first == L)
6202       return LS.second ? LS.second : V;
6203 
6204   Values.emplace_back(L, nullptr);
6205 
6206   // Otherwise compute it.
6207   const SCEV *C = computeSCEVAtScope(V, L);
6208   for (auto &LS : reverse(ValuesAtScopes[V]))
6209     if (LS.first == L) {
6210       LS.second = C;
6211       break;
6212     }
6213   return C;
6214 }
6215 
6216 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6217 /// will return Constants for objects which aren't represented by a
6218 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6219 /// Returns NULL if the SCEV isn't representable as a Constant.
6220 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6221   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6222     case scCouldNotCompute:
6223     case scAddRecExpr:
6224       break;
6225     case scConstant:
6226       return cast<SCEVConstant>(V)->getValue();
6227     case scUnknown:
6228       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6229     case scSignExtend: {
6230       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6231       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6232         return ConstantExpr::getSExt(CastOp, SS->getType());
6233       break;
6234     }
6235     case scZeroExtend: {
6236       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6237       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6238         return ConstantExpr::getZExt(CastOp, SZ->getType());
6239       break;
6240     }
6241     case scTruncate: {
6242       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6243       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6244         return ConstantExpr::getTrunc(CastOp, ST->getType());
6245       break;
6246     }
6247     case scAddExpr: {
6248       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6249       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6250         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6251           unsigned AS = PTy->getAddressSpace();
6252           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6253           C = ConstantExpr::getBitCast(C, DestPtrTy);
6254         }
6255         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6256           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6257           if (!C2) return nullptr;
6258 
6259           // First pointer!
6260           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6261             unsigned AS = C2->getType()->getPointerAddressSpace();
6262             std::swap(C, C2);
6263             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6264             // The offsets have been converted to bytes.  We can add bytes to an
6265             // i8* by GEP with the byte count in the first index.
6266             C = ConstantExpr::getBitCast(C, DestPtrTy);
6267           }
6268 
6269           // Don't bother trying to sum two pointers. We probably can't
6270           // statically compute a load that results from it anyway.
6271           if (C2->getType()->isPointerTy())
6272             return nullptr;
6273 
6274           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6275             if (PTy->getElementType()->isStructTy())
6276               C2 = ConstantExpr::getIntegerCast(
6277                   C2, Type::getInt32Ty(C->getContext()), true);
6278             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6279           } else
6280             C = ConstantExpr::getAdd(C, C2);
6281         }
6282         return C;
6283       }
6284       break;
6285     }
6286     case scMulExpr: {
6287       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6288       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6289         // Don't bother with pointers at all.
6290         if (C->getType()->isPointerTy()) return nullptr;
6291         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6292           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6293           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6294           C = ConstantExpr::getMul(C, C2);
6295         }
6296         return C;
6297       }
6298       break;
6299     }
6300     case scUDivExpr: {
6301       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6302       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6303         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6304           if (LHS->getType() == RHS->getType())
6305             return ConstantExpr::getUDiv(LHS, RHS);
6306       break;
6307     }
6308     case scSMaxExpr:
6309     case scUMaxExpr:
6310       break; // TODO: smax, umax.
6311   }
6312   return nullptr;
6313 }
6314 
6315 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6316   if (isa<SCEVConstant>(V)) return V;
6317 
6318   // If this instruction is evolved from a constant-evolving PHI, compute the
6319   // exit value from the loop without using SCEVs.
6320   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6321     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6322       const Loop *LI = this->LI[I->getParent()];
6323       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6324         if (PHINode *PN = dyn_cast<PHINode>(I))
6325           if (PN->getParent() == LI->getHeader()) {
6326             // Okay, there is no closed form solution for the PHI node.  Check
6327             // to see if the loop that contains it has a known backedge-taken
6328             // count.  If so, we may be able to force computation of the exit
6329             // value.
6330             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6331             if (const SCEVConstant *BTCC =
6332                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6333               // Okay, we know how many times the containing loop executes.  If
6334               // this is a constant evolving PHI node, get the final value at
6335               // the specified iteration number.
6336               Constant *RV =
6337                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6338               if (RV) return getSCEV(RV);
6339             }
6340           }
6341 
6342       // Okay, this is an expression that we cannot symbolically evaluate
6343       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6344       // the arguments into constants, and if so, try to constant propagate the
6345       // result.  This is particularly useful for computing loop exit values.
6346       if (CanConstantFold(I)) {
6347         SmallVector<Constant *, 4> Operands;
6348         bool MadeImprovement = false;
6349         for (Value *Op : I->operands()) {
6350           if (Constant *C = dyn_cast<Constant>(Op)) {
6351             Operands.push_back(C);
6352             continue;
6353           }
6354 
6355           // If any of the operands is non-constant and if they are
6356           // non-integer and non-pointer, don't even try to analyze them
6357           // with scev techniques.
6358           if (!isSCEVable(Op->getType()))
6359             return V;
6360 
6361           const SCEV *OrigV = getSCEV(Op);
6362           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6363           MadeImprovement |= OrigV != OpV;
6364 
6365           Constant *C = BuildConstantFromSCEV(OpV);
6366           if (!C) return V;
6367           if (C->getType() != Op->getType())
6368             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6369                                                               Op->getType(),
6370                                                               false),
6371                                       C, Op->getType());
6372           Operands.push_back(C);
6373         }
6374 
6375         // Check to see if getSCEVAtScope actually made an improvement.
6376         if (MadeImprovement) {
6377           Constant *C = nullptr;
6378           const DataLayout &DL = getDataLayout();
6379           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6380             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6381                                                 Operands[1], DL, &TLI);
6382           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6383             if (!LI->isVolatile())
6384               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6385           } else
6386             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6387           if (!C) return V;
6388           return getSCEV(C);
6389         }
6390       }
6391     }
6392 
6393     // This is some other type of SCEVUnknown, just return it.
6394     return V;
6395   }
6396 
6397   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6398     // Avoid performing the look-up in the common case where the specified
6399     // expression has no loop-variant portions.
6400     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6401       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6402       if (OpAtScope != Comm->getOperand(i)) {
6403         // Okay, at least one of these operands is loop variant but might be
6404         // foldable.  Build a new instance of the folded commutative expression.
6405         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6406                                             Comm->op_begin()+i);
6407         NewOps.push_back(OpAtScope);
6408 
6409         for (++i; i != e; ++i) {
6410           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6411           NewOps.push_back(OpAtScope);
6412         }
6413         if (isa<SCEVAddExpr>(Comm))
6414           return getAddExpr(NewOps);
6415         if (isa<SCEVMulExpr>(Comm))
6416           return getMulExpr(NewOps);
6417         if (isa<SCEVSMaxExpr>(Comm))
6418           return getSMaxExpr(NewOps);
6419         if (isa<SCEVUMaxExpr>(Comm))
6420           return getUMaxExpr(NewOps);
6421         llvm_unreachable("Unknown commutative SCEV type!");
6422       }
6423     }
6424     // If we got here, all operands are loop invariant.
6425     return Comm;
6426   }
6427 
6428   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6429     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6430     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6431     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6432       return Div;   // must be loop invariant
6433     return getUDivExpr(LHS, RHS);
6434   }
6435 
6436   // If this is a loop recurrence for a loop that does not contain L, then we
6437   // are dealing with the final value computed by the loop.
6438   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6439     // First, attempt to evaluate each operand.
6440     // Avoid performing the look-up in the common case where the specified
6441     // expression has no loop-variant portions.
6442     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6443       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6444       if (OpAtScope == AddRec->getOperand(i))
6445         continue;
6446 
6447       // Okay, at least one of these operands is loop variant but might be
6448       // foldable.  Build a new instance of the folded commutative expression.
6449       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6450                                           AddRec->op_begin()+i);
6451       NewOps.push_back(OpAtScope);
6452       for (++i; i != e; ++i)
6453         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6454 
6455       const SCEV *FoldedRec =
6456         getAddRecExpr(NewOps, AddRec->getLoop(),
6457                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6458       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6459       // The addrec may be folded to a nonrecurrence, for example, if the
6460       // induction variable is multiplied by zero after constant folding. Go
6461       // ahead and return the folded value.
6462       if (!AddRec)
6463         return FoldedRec;
6464       break;
6465     }
6466 
6467     // If the scope is outside the addrec's loop, evaluate it by using the
6468     // loop exit value of the addrec.
6469     if (!AddRec->getLoop()->contains(L)) {
6470       // To evaluate this recurrence, we need to know how many times the AddRec
6471       // loop iterates.  Compute this now.
6472       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6473       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6474 
6475       // Then, evaluate the AddRec.
6476       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6477     }
6478 
6479     return AddRec;
6480   }
6481 
6482   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6483     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6484     if (Op == Cast->getOperand())
6485       return Cast;  // must be loop invariant
6486     return getZeroExtendExpr(Op, Cast->getType());
6487   }
6488 
6489   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6490     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6491     if (Op == Cast->getOperand())
6492       return Cast;  // must be loop invariant
6493     return getSignExtendExpr(Op, Cast->getType());
6494   }
6495 
6496   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6497     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6498     if (Op == Cast->getOperand())
6499       return Cast;  // must be loop invariant
6500     return getTruncateExpr(Op, Cast->getType());
6501   }
6502 
6503   llvm_unreachable("Unknown SCEV type!");
6504 }
6505 
6506 /// getSCEVAtScope - This is a convenience function which does
6507 /// getSCEVAtScope(getSCEV(V), L).
6508 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6509   return getSCEVAtScope(getSCEV(V), L);
6510 }
6511 
6512 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6513 /// following equation:
6514 ///
6515 ///     A * X = B (mod N)
6516 ///
6517 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6518 /// A and B isn't important.
6519 ///
6520 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6521 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6522                                                ScalarEvolution &SE) {
6523   uint32_t BW = A.getBitWidth();
6524   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6525   assert(A != 0 && "A must be non-zero.");
6526 
6527   // 1. D = gcd(A, N)
6528   //
6529   // The gcd of A and N may have only one prime factor: 2. The number of
6530   // trailing zeros in A is its multiplicity
6531   uint32_t Mult2 = A.countTrailingZeros();
6532   // D = 2^Mult2
6533 
6534   // 2. Check if B is divisible by D.
6535   //
6536   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6537   // is not less than multiplicity of this prime factor for D.
6538   if (B.countTrailingZeros() < Mult2)
6539     return SE.getCouldNotCompute();
6540 
6541   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6542   // modulo (N / D).
6543   //
6544   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6545   // bit width during computations.
6546   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6547   APInt Mod(BW + 1, 0);
6548   Mod.setBit(BW - Mult2);  // Mod = N / D
6549   APInt I = AD.multiplicativeInverse(Mod);
6550 
6551   // 4. Compute the minimum unsigned root of the equation:
6552   // I * (B / D) mod (N / D)
6553   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6554 
6555   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6556   // bits.
6557   return SE.getConstant(Result.trunc(BW));
6558 }
6559 
6560 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6561 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6562 /// might be the same) or two SCEVCouldNotCompute objects.
6563 ///
6564 static std::pair<const SCEV *,const SCEV *>
6565 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6566   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6567   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6568   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6569   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6570 
6571   // We currently can only solve this if the coefficients are constants.
6572   if (!LC || !MC || !NC) {
6573     const SCEV *CNC = SE.getCouldNotCompute();
6574     return {CNC, CNC};
6575   }
6576 
6577   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6578   const APInt &L = LC->getAPInt();
6579   const APInt &M = MC->getAPInt();
6580   const APInt &N = NC->getAPInt();
6581   APInt Two(BitWidth, 2);
6582   APInt Four(BitWidth, 4);
6583 
6584   {
6585     using namespace APIntOps;
6586     const APInt& C = L;
6587     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6588     // The B coefficient is M-N/2
6589     APInt B(M);
6590     B -= sdiv(N,Two);
6591 
6592     // The A coefficient is N/2
6593     APInt A(N.sdiv(Two));
6594 
6595     // Compute the B^2-4ac term.
6596     APInt SqrtTerm(B);
6597     SqrtTerm *= B;
6598     SqrtTerm -= Four * (A * C);
6599 
6600     if (SqrtTerm.isNegative()) {
6601       // The loop is provably infinite.
6602       const SCEV *CNC = SE.getCouldNotCompute();
6603       return {CNC, CNC};
6604     }
6605 
6606     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6607     // integer value or else APInt::sqrt() will assert.
6608     APInt SqrtVal(SqrtTerm.sqrt());
6609 
6610     // Compute the two solutions for the quadratic formula.
6611     // The divisions must be performed as signed divisions.
6612     APInt NegB(-B);
6613     APInt TwoA(A << 1);
6614     if (TwoA.isMinValue()) {
6615       const SCEV *CNC = SE.getCouldNotCompute();
6616       return {CNC, CNC};
6617     }
6618 
6619     LLVMContext &Context = SE.getContext();
6620 
6621     ConstantInt *Solution1 =
6622       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6623     ConstantInt *Solution2 =
6624       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6625 
6626     return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
6627   } // end APIntOps namespace
6628 }
6629 
6630 /// HowFarToZero - Return the number of times a backedge comparing the specified
6631 /// value to zero will execute.  If not computable, return CouldNotCompute.
6632 ///
6633 /// This is only used for loops with a "x != y" exit test. The exit condition is
6634 /// now expressed as a single expression, V = x-y. So the exit test is
6635 /// effectively V != 0.  We know and take advantage of the fact that this
6636 /// expression only being used in a comparison by zero context.
6637 ScalarEvolution::ExitLimit
6638 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6639   // If the value is a constant
6640   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6641     // If the value is already zero, the branch will execute zero times.
6642     if (C->getValue()->isZero()) return C;
6643     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6644   }
6645 
6646   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6647   if (!AddRec || AddRec->getLoop() != L)
6648     return getCouldNotCompute();
6649 
6650   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6651   // the quadratic equation to solve it.
6652   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6653     std::pair<const SCEV *,const SCEV *> Roots =
6654       SolveQuadraticEquation(AddRec, *this);
6655     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6656     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6657     if (R1 && R2) {
6658       // Pick the smallest positive root value.
6659       if (ConstantInt *CB =
6660           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6661                                                       R1->getValue(),
6662                                                       R2->getValue()))) {
6663         if (!CB->getZExtValue())
6664           std::swap(R1, R2);   // R1 is the minimum root now.
6665 
6666         // We can only use this value if the chrec ends up with an exact zero
6667         // value at this index.  When solving for "X*X != 5", for example, we
6668         // should not accept a root of 2.
6669         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6670         if (Val->isZero())
6671           return R1;  // We found a quadratic root!
6672       }
6673     }
6674     return getCouldNotCompute();
6675   }
6676 
6677   // Otherwise we can only handle this if it is affine.
6678   if (!AddRec->isAffine())
6679     return getCouldNotCompute();
6680 
6681   // If this is an affine expression, the execution count of this branch is
6682   // the minimum unsigned root of the following equation:
6683   //
6684   //     Start + Step*N = 0 (mod 2^BW)
6685   //
6686   // equivalent to:
6687   //
6688   //             Step*N = -Start (mod 2^BW)
6689   //
6690   // where BW is the common bit width of Start and Step.
6691 
6692   // Get the initial value for the loop.
6693   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6694   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6695 
6696   // For now we handle only constant steps.
6697   //
6698   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6699   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6700   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6701   // We have not yet seen any such cases.
6702   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6703   if (!StepC || StepC->getValue()->equalsInt(0))
6704     return getCouldNotCompute();
6705 
6706   // For positive steps (counting up until unsigned overflow):
6707   //   N = -Start/Step (as unsigned)
6708   // For negative steps (counting down to zero):
6709   //   N = Start/-Step
6710   // First compute the unsigned distance from zero in the direction of Step.
6711   bool CountDown = StepC->getAPInt().isNegative();
6712   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6713 
6714   // Handle unitary steps, which cannot wraparound.
6715   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6716   //   N = Distance (as unsigned)
6717   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6718     ConstantRange CR = getUnsignedRange(Start);
6719     const SCEV *MaxBECount;
6720     if (!CountDown && CR.getUnsignedMin().isMinValue())
6721       // When counting up, the worst starting value is 1, not 0.
6722       MaxBECount = CR.getUnsignedMax().isMinValue()
6723         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6724         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6725     else
6726       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6727                                          : -CR.getUnsignedMin());
6728     return ExitLimit(Distance, MaxBECount);
6729   }
6730 
6731   // As a special case, handle the instance where Step is a positive power of
6732   // two. In this case, determining whether Step divides Distance evenly can be
6733   // done by counting and comparing the number of trailing zeros of Step and
6734   // Distance.
6735   if (!CountDown) {
6736     const APInt &StepV = StepC->getAPInt();
6737     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6738     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6739     // case is not handled as this code is guarded by !CountDown.
6740     if (StepV.isPowerOf2() &&
6741         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6742       // Here we've constrained the equation to be of the form
6743       //
6744       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
6745       //
6746       // where we're operating on a W bit wide integer domain and k is
6747       // non-negative.  The smallest unsigned solution for X is the trip count.
6748       //
6749       // (0) is equivalent to:
6750       //
6751       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
6752       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6753       // <=>  2^k * Distance' - X = L * 2^(W - N)
6754       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
6755       //
6756       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6757       // by 2^(W - N).
6758       //
6759       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
6760       //
6761       // E.g. say we're solving
6762       //
6763       //   2 * Val = 2 * X  (in i8)   ... (3)
6764       //
6765       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6766       //
6767       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6768       // necessarily the smallest unsigned value of X that satisfies (3).
6769       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6770       // is i8 1, not i8 -127
6771 
6772       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6773 
6774       // Since SCEV does not have a URem node, we construct one using a truncate
6775       // and a zero extend.
6776 
6777       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6778       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6779       auto *WideTy = Distance->getType();
6780 
6781       return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6782     }
6783   }
6784 
6785   // If the condition controls loop exit (the loop exits only if the expression
6786   // is true) and the addition is no-wrap we can use unsigned divide to
6787   // compute the backedge count.  In this case, the step may not divide the
6788   // distance, but we don't care because if the condition is "missed" the loop
6789   // will have undefined behavior due to wrapping.
6790   if (ControlsExit && AddRec->hasNoSelfWrap()) {
6791     const SCEV *Exact =
6792         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6793     return ExitLimit(Exact, Exact);
6794   }
6795 
6796   // Then, try to solve the above equation provided that Start is constant.
6797   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6798     return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
6799                                         *this);
6800   return getCouldNotCompute();
6801 }
6802 
6803 /// HowFarToNonZero - Return the number of times a backedge checking the
6804 /// specified value for nonzero will execute.  If not computable, return
6805 /// CouldNotCompute
6806 ScalarEvolution::ExitLimit
6807 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6808   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6809   // handle them yet except for the trivial case.  This could be expanded in the
6810   // future as needed.
6811 
6812   // If the value is a constant, check to see if it is known to be non-zero
6813   // already.  If so, the backedge will execute zero times.
6814   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6815     if (!C->getValue()->isNullValue())
6816       return getZero(C->getType());
6817     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6818   }
6819 
6820   // We could implement others, but I really doubt anyone writes loops like
6821   // this, and if they did, they would already be constant folded.
6822   return getCouldNotCompute();
6823 }
6824 
6825 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6826 /// (which may not be an immediate predecessor) which has exactly one
6827 /// successor from which BB is reachable, or null if no such block is
6828 /// found.
6829 ///
6830 std::pair<BasicBlock *, BasicBlock *>
6831 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6832   // If the block has a unique predecessor, then there is no path from the
6833   // predecessor to the block that does not go through the direct edge
6834   // from the predecessor to the block.
6835   if (BasicBlock *Pred = BB->getSinglePredecessor())
6836     return {Pred, BB};
6837 
6838   // A loop's header is defined to be a block that dominates the loop.
6839   // If the header has a unique predecessor outside the loop, it must be
6840   // a block that has exactly one successor that can reach the loop.
6841   if (Loop *L = LI.getLoopFor(BB))
6842     return {L->getLoopPredecessor(), L->getHeader()};
6843 
6844   return {nullptr, nullptr};
6845 }
6846 
6847 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6848 /// testing whether two expressions are equal, however for the purposes of
6849 /// looking for a condition guarding a loop, it can be useful to be a little
6850 /// more general, since a front-end may have replicated the controlling
6851 /// expression.
6852 ///
6853 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6854   // Quick check to see if they are the same SCEV.
6855   if (A == B) return true;
6856 
6857   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6858     // Not all instructions that are "identical" compute the same value.  For
6859     // instance, two distinct alloca instructions allocating the same type are
6860     // identical and do not read memory; but compute distinct values.
6861     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6862   };
6863 
6864   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6865   // two different instructions with the same value. Check for this case.
6866   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6867     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6868       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6869         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6870           if (ComputesEqualValues(AI, BI))
6871             return true;
6872 
6873   // Otherwise assume they may have a different value.
6874   return false;
6875 }
6876 
6877 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6878 /// predicate Pred. Return true iff any changes were made.
6879 ///
6880 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6881                                            const SCEV *&LHS, const SCEV *&RHS,
6882                                            unsigned Depth) {
6883   bool Changed = false;
6884 
6885   // If we hit the max recursion limit bail out.
6886   if (Depth >= 3)
6887     return false;
6888 
6889   // Canonicalize a constant to the right side.
6890   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6891     // Check for both operands constant.
6892     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6893       if (ConstantExpr::getICmp(Pred,
6894                                 LHSC->getValue(),
6895                                 RHSC->getValue())->isNullValue())
6896         goto trivially_false;
6897       else
6898         goto trivially_true;
6899     }
6900     // Otherwise swap the operands to put the constant on the right.
6901     std::swap(LHS, RHS);
6902     Pred = ICmpInst::getSwappedPredicate(Pred);
6903     Changed = true;
6904   }
6905 
6906   // If we're comparing an addrec with a value which is loop-invariant in the
6907   // addrec's loop, put the addrec on the left. Also make a dominance check,
6908   // as both operands could be addrecs loop-invariant in each other's loop.
6909   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6910     const Loop *L = AR->getLoop();
6911     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6912       std::swap(LHS, RHS);
6913       Pred = ICmpInst::getSwappedPredicate(Pred);
6914       Changed = true;
6915     }
6916   }
6917 
6918   // If there's a constant operand, canonicalize comparisons with boundary
6919   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6920   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6921     const APInt &RA = RC->getAPInt();
6922     switch (Pred) {
6923     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6924     case ICmpInst::ICMP_EQ:
6925     case ICmpInst::ICMP_NE:
6926       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6927       if (!RA)
6928         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6929           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6930             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6931                 ME->getOperand(0)->isAllOnesValue()) {
6932               RHS = AE->getOperand(1);
6933               LHS = ME->getOperand(1);
6934               Changed = true;
6935             }
6936       break;
6937     case ICmpInst::ICMP_UGE:
6938       if ((RA - 1).isMinValue()) {
6939         Pred = ICmpInst::ICMP_NE;
6940         RHS = getConstant(RA - 1);
6941         Changed = true;
6942         break;
6943       }
6944       if (RA.isMaxValue()) {
6945         Pred = ICmpInst::ICMP_EQ;
6946         Changed = true;
6947         break;
6948       }
6949       if (RA.isMinValue()) goto trivially_true;
6950 
6951       Pred = ICmpInst::ICMP_UGT;
6952       RHS = getConstant(RA - 1);
6953       Changed = true;
6954       break;
6955     case ICmpInst::ICMP_ULE:
6956       if ((RA + 1).isMaxValue()) {
6957         Pred = ICmpInst::ICMP_NE;
6958         RHS = getConstant(RA + 1);
6959         Changed = true;
6960         break;
6961       }
6962       if (RA.isMinValue()) {
6963         Pred = ICmpInst::ICMP_EQ;
6964         Changed = true;
6965         break;
6966       }
6967       if (RA.isMaxValue()) goto trivially_true;
6968 
6969       Pred = ICmpInst::ICMP_ULT;
6970       RHS = getConstant(RA + 1);
6971       Changed = true;
6972       break;
6973     case ICmpInst::ICMP_SGE:
6974       if ((RA - 1).isMinSignedValue()) {
6975         Pred = ICmpInst::ICMP_NE;
6976         RHS = getConstant(RA - 1);
6977         Changed = true;
6978         break;
6979       }
6980       if (RA.isMaxSignedValue()) {
6981         Pred = ICmpInst::ICMP_EQ;
6982         Changed = true;
6983         break;
6984       }
6985       if (RA.isMinSignedValue()) goto trivially_true;
6986 
6987       Pred = ICmpInst::ICMP_SGT;
6988       RHS = getConstant(RA - 1);
6989       Changed = true;
6990       break;
6991     case ICmpInst::ICMP_SLE:
6992       if ((RA + 1).isMaxSignedValue()) {
6993         Pred = ICmpInst::ICMP_NE;
6994         RHS = getConstant(RA + 1);
6995         Changed = true;
6996         break;
6997       }
6998       if (RA.isMinSignedValue()) {
6999         Pred = ICmpInst::ICMP_EQ;
7000         Changed = true;
7001         break;
7002       }
7003       if (RA.isMaxSignedValue()) goto trivially_true;
7004 
7005       Pred = ICmpInst::ICMP_SLT;
7006       RHS = getConstant(RA + 1);
7007       Changed = true;
7008       break;
7009     case ICmpInst::ICMP_UGT:
7010       if (RA.isMinValue()) {
7011         Pred = ICmpInst::ICMP_NE;
7012         Changed = true;
7013         break;
7014       }
7015       if ((RA + 1).isMaxValue()) {
7016         Pred = ICmpInst::ICMP_EQ;
7017         RHS = getConstant(RA + 1);
7018         Changed = true;
7019         break;
7020       }
7021       if (RA.isMaxValue()) goto trivially_false;
7022       break;
7023     case ICmpInst::ICMP_ULT:
7024       if (RA.isMaxValue()) {
7025         Pred = ICmpInst::ICMP_NE;
7026         Changed = true;
7027         break;
7028       }
7029       if ((RA - 1).isMinValue()) {
7030         Pred = ICmpInst::ICMP_EQ;
7031         RHS = getConstant(RA - 1);
7032         Changed = true;
7033         break;
7034       }
7035       if (RA.isMinValue()) goto trivially_false;
7036       break;
7037     case ICmpInst::ICMP_SGT:
7038       if (RA.isMinSignedValue()) {
7039         Pred = ICmpInst::ICMP_NE;
7040         Changed = true;
7041         break;
7042       }
7043       if ((RA + 1).isMaxSignedValue()) {
7044         Pred = ICmpInst::ICMP_EQ;
7045         RHS = getConstant(RA + 1);
7046         Changed = true;
7047         break;
7048       }
7049       if (RA.isMaxSignedValue()) goto trivially_false;
7050       break;
7051     case ICmpInst::ICMP_SLT:
7052       if (RA.isMaxSignedValue()) {
7053         Pred = ICmpInst::ICMP_NE;
7054         Changed = true;
7055         break;
7056       }
7057       if ((RA - 1).isMinSignedValue()) {
7058        Pred = ICmpInst::ICMP_EQ;
7059        RHS = getConstant(RA - 1);
7060         Changed = true;
7061        break;
7062       }
7063       if (RA.isMinSignedValue()) goto trivially_false;
7064       break;
7065     }
7066   }
7067 
7068   // Check for obvious equality.
7069   if (HasSameValue(LHS, RHS)) {
7070     if (ICmpInst::isTrueWhenEqual(Pred))
7071       goto trivially_true;
7072     if (ICmpInst::isFalseWhenEqual(Pred))
7073       goto trivially_false;
7074   }
7075 
7076   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7077   // adding or subtracting 1 from one of the operands.
7078   switch (Pred) {
7079   case ICmpInst::ICMP_SLE:
7080     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7081       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7082                        SCEV::FlagNSW);
7083       Pred = ICmpInst::ICMP_SLT;
7084       Changed = true;
7085     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7086       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7087                        SCEV::FlagNSW);
7088       Pred = ICmpInst::ICMP_SLT;
7089       Changed = true;
7090     }
7091     break;
7092   case ICmpInst::ICMP_SGE:
7093     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7094       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7095                        SCEV::FlagNSW);
7096       Pred = ICmpInst::ICMP_SGT;
7097       Changed = true;
7098     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7099       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7100                        SCEV::FlagNSW);
7101       Pred = ICmpInst::ICMP_SGT;
7102       Changed = true;
7103     }
7104     break;
7105   case ICmpInst::ICMP_ULE:
7106     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7107       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7108                        SCEV::FlagNUW);
7109       Pred = ICmpInst::ICMP_ULT;
7110       Changed = true;
7111     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7112       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7113       Pred = ICmpInst::ICMP_ULT;
7114       Changed = true;
7115     }
7116     break;
7117   case ICmpInst::ICMP_UGE:
7118     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7119       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7120       Pred = ICmpInst::ICMP_UGT;
7121       Changed = true;
7122     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7123       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7124                        SCEV::FlagNUW);
7125       Pred = ICmpInst::ICMP_UGT;
7126       Changed = true;
7127     }
7128     break;
7129   default:
7130     break;
7131   }
7132 
7133   // TODO: More simplifications are possible here.
7134 
7135   // Recursively simplify until we either hit a recursion limit or nothing
7136   // changes.
7137   if (Changed)
7138     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7139 
7140   return Changed;
7141 
7142 trivially_true:
7143   // Return 0 == 0.
7144   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7145   Pred = ICmpInst::ICMP_EQ;
7146   return true;
7147 
7148 trivially_false:
7149   // Return 0 != 0.
7150   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7151   Pred = ICmpInst::ICMP_NE;
7152   return true;
7153 }
7154 
7155 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7156   return getSignedRange(S).getSignedMax().isNegative();
7157 }
7158 
7159 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7160   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7161 }
7162 
7163 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7164   return !getSignedRange(S).getSignedMin().isNegative();
7165 }
7166 
7167 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7168   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7169 }
7170 
7171 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7172   return isKnownNegative(S) || isKnownPositive(S);
7173 }
7174 
7175 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7176                                        const SCEV *LHS, const SCEV *RHS) {
7177   // Canonicalize the inputs first.
7178   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7179 
7180   // If LHS or RHS is an addrec, check to see if the condition is true in
7181   // every iteration of the loop.
7182   // If LHS and RHS are both addrec, both conditions must be true in
7183   // every iteration of the loop.
7184   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7185   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7186   bool LeftGuarded = false;
7187   bool RightGuarded = false;
7188   if (LAR) {
7189     const Loop *L = LAR->getLoop();
7190     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7191         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7192       if (!RAR) return true;
7193       LeftGuarded = true;
7194     }
7195   }
7196   if (RAR) {
7197     const Loop *L = RAR->getLoop();
7198     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7199         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7200       if (!LAR) return true;
7201       RightGuarded = true;
7202     }
7203   }
7204   if (LeftGuarded && RightGuarded)
7205     return true;
7206 
7207   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7208     return true;
7209 
7210   // Otherwise see what can be done with known constant ranges.
7211   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7212 }
7213 
7214 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7215                                            ICmpInst::Predicate Pred,
7216                                            bool &Increasing) {
7217   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7218 
7219 #ifndef NDEBUG
7220   // Verify an invariant: inverting the predicate should turn a monotonically
7221   // increasing change to a monotonically decreasing one, and vice versa.
7222   bool IncreasingSwapped;
7223   bool ResultSwapped = isMonotonicPredicateImpl(
7224       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7225 
7226   assert(Result == ResultSwapped && "should be able to analyze both!");
7227   if (ResultSwapped)
7228     assert(Increasing == !IncreasingSwapped &&
7229            "monotonicity should flip as we flip the predicate");
7230 #endif
7231 
7232   return Result;
7233 }
7234 
7235 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7236                                                ICmpInst::Predicate Pred,
7237                                                bool &Increasing) {
7238 
7239   // A zero step value for LHS means the induction variable is essentially a
7240   // loop invariant value. We don't really depend on the predicate actually
7241   // flipping from false to true (for increasing predicates, and the other way
7242   // around for decreasing predicates), all we care about is that *if* the
7243   // predicate changes then it only changes from false to true.
7244   //
7245   // A zero step value in itself is not very useful, but there may be places
7246   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7247   // as general as possible.
7248 
7249   switch (Pred) {
7250   default:
7251     return false; // Conservative answer
7252 
7253   case ICmpInst::ICMP_UGT:
7254   case ICmpInst::ICMP_UGE:
7255   case ICmpInst::ICMP_ULT:
7256   case ICmpInst::ICMP_ULE:
7257     if (!LHS->hasNoUnsignedWrap())
7258       return false;
7259 
7260     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7261     return true;
7262 
7263   case ICmpInst::ICMP_SGT:
7264   case ICmpInst::ICMP_SGE:
7265   case ICmpInst::ICMP_SLT:
7266   case ICmpInst::ICMP_SLE: {
7267     if (!LHS->hasNoSignedWrap())
7268       return false;
7269 
7270     const SCEV *Step = LHS->getStepRecurrence(*this);
7271 
7272     if (isKnownNonNegative(Step)) {
7273       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7274       return true;
7275     }
7276 
7277     if (isKnownNonPositive(Step)) {
7278       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7279       return true;
7280     }
7281 
7282     return false;
7283   }
7284 
7285   }
7286 
7287   llvm_unreachable("switch has default clause!");
7288 }
7289 
7290 bool ScalarEvolution::isLoopInvariantPredicate(
7291     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7292     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7293     const SCEV *&InvariantRHS) {
7294 
7295   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7296   if (!isLoopInvariant(RHS, L)) {
7297     if (!isLoopInvariant(LHS, L))
7298       return false;
7299 
7300     std::swap(LHS, RHS);
7301     Pred = ICmpInst::getSwappedPredicate(Pred);
7302   }
7303 
7304   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7305   if (!ArLHS || ArLHS->getLoop() != L)
7306     return false;
7307 
7308   bool Increasing;
7309   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7310     return false;
7311 
7312   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7313   // true as the loop iterates, and the backedge is control dependent on
7314   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7315   //
7316   //   * if the predicate was false in the first iteration then the predicate
7317   //     is never evaluated again, since the loop exits without taking the
7318   //     backedge.
7319   //   * if the predicate was true in the first iteration then it will
7320   //     continue to be true for all future iterations since it is
7321   //     monotonically increasing.
7322   //
7323   // For both the above possibilities, we can replace the loop varying
7324   // predicate with its value on the first iteration of the loop (which is
7325   // loop invariant).
7326   //
7327   // A similar reasoning applies for a monotonically decreasing predicate, by
7328   // replacing true with false and false with true in the above two bullets.
7329 
7330   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7331 
7332   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7333     return false;
7334 
7335   InvariantPred = Pred;
7336   InvariantLHS = ArLHS->getStart();
7337   InvariantRHS = RHS;
7338   return true;
7339 }
7340 
7341 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7342     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7343   if (HasSameValue(LHS, RHS))
7344     return ICmpInst::isTrueWhenEqual(Pred);
7345 
7346   // This code is split out from isKnownPredicate because it is called from
7347   // within isLoopEntryGuardedByCond.
7348 
7349   auto CheckRanges =
7350       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7351     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7352         .contains(RangeLHS);
7353   };
7354 
7355   // The check at the top of the function catches the case where the values are
7356   // known to be equal.
7357   if (Pred == CmpInst::ICMP_EQ)
7358     return false;
7359 
7360   if (Pred == CmpInst::ICMP_NE)
7361     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7362            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7363            isKnownNonZero(getMinusSCEV(LHS, RHS));
7364 
7365   if (CmpInst::isSigned(Pred))
7366     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7367 
7368   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7369 }
7370 
7371 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7372                                                     const SCEV *LHS,
7373                                                     const SCEV *RHS) {
7374 
7375   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7376   // Return Y via OutY.
7377   auto MatchBinaryAddToConst =
7378       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7379              SCEV::NoWrapFlags ExpectedFlags) {
7380     const SCEV *NonConstOp, *ConstOp;
7381     SCEV::NoWrapFlags FlagsPresent;
7382 
7383     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7384         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7385       return false;
7386 
7387     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7388     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7389   };
7390 
7391   APInt C;
7392 
7393   switch (Pred) {
7394   default:
7395     break;
7396 
7397   case ICmpInst::ICMP_SGE:
7398     std::swap(LHS, RHS);
7399   case ICmpInst::ICMP_SLE:
7400     // X s<= (X + C)<nsw> if C >= 0
7401     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7402       return true;
7403 
7404     // (X + C)<nsw> s<= X if C <= 0
7405     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7406         !C.isStrictlyPositive())
7407       return true;
7408     break;
7409 
7410   case ICmpInst::ICMP_SGT:
7411     std::swap(LHS, RHS);
7412   case ICmpInst::ICMP_SLT:
7413     // X s< (X + C)<nsw> if C > 0
7414     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7415         C.isStrictlyPositive())
7416       return true;
7417 
7418     // (X + C)<nsw> s< X if C < 0
7419     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7420       return true;
7421     break;
7422   }
7423 
7424   return false;
7425 }
7426 
7427 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7428                                                    const SCEV *LHS,
7429                                                    const SCEV *RHS) {
7430   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7431     return false;
7432 
7433   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7434   // the stack can result in exponential time complexity.
7435   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7436 
7437   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7438   //
7439   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7440   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7441   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7442   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7443   // use isKnownPredicate later if needed.
7444   return isKnownNonNegative(RHS) &&
7445          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7446          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7447 }
7448 
7449 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7450 /// protected by a conditional between LHS and RHS.  This is used to
7451 /// to eliminate casts.
7452 bool
7453 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7454                                              ICmpInst::Predicate Pred,
7455                                              const SCEV *LHS, const SCEV *RHS) {
7456   // Interpret a null as meaning no loop, where there is obviously no guard
7457   // (interprocedural conditions notwithstanding).
7458   if (!L) return true;
7459 
7460   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7461     return true;
7462 
7463   BasicBlock *Latch = L->getLoopLatch();
7464   if (!Latch)
7465     return false;
7466 
7467   BranchInst *LoopContinuePredicate =
7468     dyn_cast<BranchInst>(Latch->getTerminator());
7469   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7470       isImpliedCond(Pred, LHS, RHS,
7471                     LoopContinuePredicate->getCondition(),
7472                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7473     return true;
7474 
7475   // We don't want more than one activation of the following loops on the stack
7476   // -- that can lead to O(n!) time complexity.
7477   if (WalkingBEDominatingConds)
7478     return false;
7479 
7480   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7481 
7482   // See if we can exploit a trip count to prove the predicate.
7483   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7484   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7485   if (LatchBECount != getCouldNotCompute()) {
7486     // We know that Latch branches back to the loop header exactly
7487     // LatchBECount times.  This means the backdege condition at Latch is
7488     // equivalent to  "{0,+,1} u< LatchBECount".
7489     Type *Ty = LatchBECount->getType();
7490     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7491     const SCEV *LoopCounter =
7492       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7493     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7494                       LatchBECount))
7495       return true;
7496   }
7497 
7498   // Check conditions due to any @llvm.assume intrinsics.
7499   for (auto &AssumeVH : AC.assumptions()) {
7500     if (!AssumeVH)
7501       continue;
7502     auto *CI = cast<CallInst>(AssumeVH);
7503     if (!DT.dominates(CI, Latch->getTerminator()))
7504       continue;
7505 
7506     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7507       return true;
7508   }
7509 
7510   // If the loop is not reachable from the entry block, we risk running into an
7511   // infinite loop as we walk up into the dom tree.  These loops do not matter
7512   // anyway, so we just return a conservative answer when we see them.
7513   if (!DT.isReachableFromEntry(L->getHeader()))
7514     return false;
7515 
7516   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7517        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7518 
7519     assert(DTN && "should reach the loop header before reaching the root!");
7520 
7521     BasicBlock *BB = DTN->getBlock();
7522     BasicBlock *PBB = BB->getSinglePredecessor();
7523     if (!PBB)
7524       continue;
7525 
7526     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7527     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7528       continue;
7529 
7530     Value *Condition = ContinuePredicate->getCondition();
7531 
7532     // If we have an edge `E` within the loop body that dominates the only
7533     // latch, the condition guarding `E` also guards the backedge.  This
7534     // reasoning works only for loops with a single latch.
7535 
7536     BasicBlockEdge DominatingEdge(PBB, BB);
7537     if (DominatingEdge.isSingleEdge()) {
7538       // We're constructively (and conservatively) enumerating edges within the
7539       // loop body that dominate the latch.  The dominator tree better agree
7540       // with us on this:
7541       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7542 
7543       if (isImpliedCond(Pred, LHS, RHS, Condition,
7544                         BB != ContinuePredicate->getSuccessor(0)))
7545         return true;
7546     }
7547   }
7548 
7549   return false;
7550 }
7551 
7552 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7553 /// by a conditional between LHS and RHS.  This is used to help avoid max
7554 /// expressions in loop trip counts, and to eliminate casts.
7555 bool
7556 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7557                                           ICmpInst::Predicate Pred,
7558                                           const SCEV *LHS, const SCEV *RHS) {
7559   // Interpret a null as meaning no loop, where there is obviously no guard
7560   // (interprocedural conditions notwithstanding).
7561   if (!L) return false;
7562 
7563   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7564     return true;
7565 
7566   // Starting at the loop predecessor, climb up the predecessor chain, as long
7567   // as there are predecessors that can be found that have unique successors
7568   // leading to the original header.
7569   for (std::pair<BasicBlock *, BasicBlock *>
7570          Pair(L->getLoopPredecessor(), L->getHeader());
7571        Pair.first;
7572        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7573 
7574     BranchInst *LoopEntryPredicate =
7575       dyn_cast<BranchInst>(Pair.first->getTerminator());
7576     if (!LoopEntryPredicate ||
7577         LoopEntryPredicate->isUnconditional())
7578       continue;
7579 
7580     if (isImpliedCond(Pred, LHS, RHS,
7581                       LoopEntryPredicate->getCondition(),
7582                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7583       return true;
7584   }
7585 
7586   // Check conditions due to any @llvm.assume intrinsics.
7587   for (auto &AssumeVH : AC.assumptions()) {
7588     if (!AssumeVH)
7589       continue;
7590     auto *CI = cast<CallInst>(AssumeVH);
7591     if (!DT.dominates(CI, L->getHeader()))
7592       continue;
7593 
7594     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7595       return true;
7596   }
7597 
7598   return false;
7599 }
7600 
7601 namespace {
7602 /// RAII wrapper to prevent recursive application of isImpliedCond.
7603 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7604 /// currently evaluating isImpliedCond.
7605 struct MarkPendingLoopPredicate {
7606   Value *Cond;
7607   DenseSet<Value*> &LoopPreds;
7608   bool Pending;
7609 
7610   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7611     : Cond(C), LoopPreds(LP) {
7612     Pending = !LoopPreds.insert(Cond).second;
7613   }
7614   ~MarkPendingLoopPredicate() {
7615     if (!Pending)
7616       LoopPreds.erase(Cond);
7617   }
7618 };
7619 } // end anonymous namespace
7620 
7621 /// isImpliedCond - Test whether the condition described by Pred, LHS,
7622 /// and RHS is true whenever the given Cond value evaluates to true.
7623 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7624                                     const SCEV *LHS, const SCEV *RHS,
7625                                     Value *FoundCondValue,
7626                                     bool Inverse) {
7627   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7628   if (Mark.Pending)
7629     return false;
7630 
7631   // Recursively handle And and Or conditions.
7632   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7633     if (BO->getOpcode() == Instruction::And) {
7634       if (!Inverse)
7635         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7636                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7637     } else if (BO->getOpcode() == Instruction::Or) {
7638       if (Inverse)
7639         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7640                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7641     }
7642   }
7643 
7644   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7645   if (!ICI) return false;
7646 
7647   // Now that we found a conditional branch that dominates the loop or controls
7648   // the loop latch. Check to see if it is the comparison we are looking for.
7649   ICmpInst::Predicate FoundPred;
7650   if (Inverse)
7651     FoundPred = ICI->getInversePredicate();
7652   else
7653     FoundPred = ICI->getPredicate();
7654 
7655   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7656   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7657 
7658   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7659 }
7660 
7661 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7662                                     const SCEV *RHS,
7663                                     ICmpInst::Predicate FoundPred,
7664                                     const SCEV *FoundLHS,
7665                                     const SCEV *FoundRHS) {
7666   // Balance the types.
7667   if (getTypeSizeInBits(LHS->getType()) <
7668       getTypeSizeInBits(FoundLHS->getType())) {
7669     if (CmpInst::isSigned(Pred)) {
7670       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7671       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7672     } else {
7673       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7674       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7675     }
7676   } else if (getTypeSizeInBits(LHS->getType()) >
7677       getTypeSizeInBits(FoundLHS->getType())) {
7678     if (CmpInst::isSigned(FoundPred)) {
7679       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7680       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7681     } else {
7682       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7683       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7684     }
7685   }
7686 
7687   // Canonicalize the query to match the way instcombine will have
7688   // canonicalized the comparison.
7689   if (SimplifyICmpOperands(Pred, LHS, RHS))
7690     if (LHS == RHS)
7691       return CmpInst::isTrueWhenEqual(Pred);
7692   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7693     if (FoundLHS == FoundRHS)
7694       return CmpInst::isFalseWhenEqual(FoundPred);
7695 
7696   // Check to see if we can make the LHS or RHS match.
7697   if (LHS == FoundRHS || RHS == FoundLHS) {
7698     if (isa<SCEVConstant>(RHS)) {
7699       std::swap(FoundLHS, FoundRHS);
7700       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7701     } else {
7702       std::swap(LHS, RHS);
7703       Pred = ICmpInst::getSwappedPredicate(Pred);
7704     }
7705   }
7706 
7707   // Check whether the found predicate is the same as the desired predicate.
7708   if (FoundPred == Pred)
7709     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7710 
7711   // Check whether swapping the found predicate makes it the same as the
7712   // desired predicate.
7713   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7714     if (isa<SCEVConstant>(RHS))
7715       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7716     else
7717       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7718                                    RHS, LHS, FoundLHS, FoundRHS);
7719   }
7720 
7721   // Unsigned comparison is the same as signed comparison when both the operands
7722   // are non-negative.
7723   if (CmpInst::isUnsigned(FoundPred) &&
7724       CmpInst::getSignedPredicate(FoundPred) == Pred &&
7725       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7726     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7727 
7728   // Check if we can make progress by sharpening ranges.
7729   if (FoundPred == ICmpInst::ICMP_NE &&
7730       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7731 
7732     const SCEVConstant *C = nullptr;
7733     const SCEV *V = nullptr;
7734 
7735     if (isa<SCEVConstant>(FoundLHS)) {
7736       C = cast<SCEVConstant>(FoundLHS);
7737       V = FoundRHS;
7738     } else {
7739       C = cast<SCEVConstant>(FoundRHS);
7740       V = FoundLHS;
7741     }
7742 
7743     // The guarding predicate tells us that C != V. If the known range
7744     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
7745     // range we consider has to correspond to same signedness as the
7746     // predicate we're interested in folding.
7747 
7748     APInt Min = ICmpInst::isSigned(Pred) ?
7749         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7750 
7751     if (Min == C->getAPInt()) {
7752       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7753       // This is true even if (Min + 1) wraps around -- in case of
7754       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7755 
7756       APInt SharperMin = Min + 1;
7757 
7758       switch (Pred) {
7759         case ICmpInst::ICMP_SGE:
7760         case ICmpInst::ICMP_UGE:
7761           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
7762           // RHS, we're done.
7763           if (isImpliedCondOperands(Pred, LHS, RHS, V,
7764                                     getConstant(SharperMin)))
7765             return true;
7766 
7767         case ICmpInst::ICMP_SGT:
7768         case ICmpInst::ICMP_UGT:
7769           // We know from the range information that (V `Pred` Min ||
7770           // V == Min).  We know from the guarding condition that !(V
7771           // == Min).  This gives us
7772           //
7773           //       V `Pred` Min || V == Min && !(V == Min)
7774           //   =>  V `Pred` Min
7775           //
7776           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7777 
7778           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7779             return true;
7780 
7781         default:
7782           // No change
7783           break;
7784       }
7785     }
7786   }
7787 
7788   // Check whether the actual condition is beyond sufficient.
7789   if (FoundPred == ICmpInst::ICMP_EQ)
7790     if (ICmpInst::isTrueWhenEqual(Pred))
7791       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7792         return true;
7793   if (Pred == ICmpInst::ICMP_NE)
7794     if (!ICmpInst::isTrueWhenEqual(FoundPred))
7795       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7796         return true;
7797 
7798   // Otherwise assume the worst.
7799   return false;
7800 }
7801 
7802 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7803                                      const SCEV *&L, const SCEV *&R,
7804                                      SCEV::NoWrapFlags &Flags) {
7805   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7806   if (!AE || AE->getNumOperands() != 2)
7807     return false;
7808 
7809   L = AE->getOperand(0);
7810   R = AE->getOperand(1);
7811   Flags = AE->getNoWrapFlags();
7812   return true;
7813 }
7814 
7815 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7816                                                 const SCEV *More,
7817                                                 APInt &C) {
7818   // We avoid subtracting expressions here because this function is usually
7819   // fairly deep in the call stack (i.e. is called many times).
7820 
7821   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7822     const auto *LAR = cast<SCEVAddRecExpr>(Less);
7823     const auto *MAR = cast<SCEVAddRecExpr>(More);
7824 
7825     if (LAR->getLoop() != MAR->getLoop())
7826       return false;
7827 
7828     // We look at affine expressions only; not for correctness but to keep
7829     // getStepRecurrence cheap.
7830     if (!LAR->isAffine() || !MAR->isAffine())
7831       return false;
7832 
7833     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
7834       return false;
7835 
7836     Less = LAR->getStart();
7837     More = MAR->getStart();
7838 
7839     // fall through
7840   }
7841 
7842   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7843     const auto &M = cast<SCEVConstant>(More)->getAPInt();
7844     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
7845     C = M - L;
7846     return true;
7847   }
7848 
7849   const SCEV *L, *R;
7850   SCEV::NoWrapFlags Flags;
7851   if (splitBinaryAdd(Less, L, R, Flags))
7852     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7853       if (R == More) {
7854         C = -(LC->getAPInt());
7855         return true;
7856       }
7857 
7858   if (splitBinaryAdd(More, L, R, Flags))
7859     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7860       if (R == Less) {
7861         C = LC->getAPInt();
7862         return true;
7863       }
7864 
7865   return false;
7866 }
7867 
7868 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7869     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7870     const SCEV *FoundLHS, const SCEV *FoundRHS) {
7871   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7872     return false;
7873 
7874   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7875   if (!AddRecLHS)
7876     return false;
7877 
7878   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7879   if (!AddRecFoundLHS)
7880     return false;
7881 
7882   // We'd like to let SCEV reason about control dependencies, so we constrain
7883   // both the inequalities to be about add recurrences on the same loop.  This
7884   // way we can use isLoopEntryGuardedByCond later.
7885 
7886   const Loop *L = AddRecFoundLHS->getLoop();
7887   if (L != AddRecLHS->getLoop())
7888     return false;
7889 
7890   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
7891   //
7892   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7893   //                                                                  ... (2)
7894   //
7895   // Informal proof for (2), assuming (1) [*]:
7896   //
7897   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7898   //
7899   // Then
7900   //
7901   //       FoundLHS s< FoundRHS s< INT_MIN - C
7902   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
7903   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7904   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
7905   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7906   // <=>  FoundLHS + C s< FoundRHS + C
7907   //
7908   // [*]: (1) can be proved by ruling out overflow.
7909   //
7910   // [**]: This can be proved by analyzing all the four possibilities:
7911   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7912   //    (A s>= 0, B s>= 0).
7913   //
7914   // Note:
7915   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7916   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
7917   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
7918   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
7919   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7920   // C)".
7921 
7922   APInt LDiff, RDiff;
7923   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7924       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
7925       LDiff != RDiff)
7926     return false;
7927 
7928   if (LDiff == 0)
7929     return true;
7930 
7931   APInt FoundRHSLimit;
7932 
7933   if (Pred == CmpInst::ICMP_ULT) {
7934     FoundRHSLimit = -RDiff;
7935   } else {
7936     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
7937     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
7938   }
7939 
7940   // Try to prove (1) or (2), as needed.
7941   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7942                                   getConstant(FoundRHSLimit));
7943 }
7944 
7945 /// isImpliedCondOperands - Test whether the condition described by Pred,
7946 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
7947 /// and FoundRHS is true.
7948 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7949                                             const SCEV *LHS, const SCEV *RHS,
7950                                             const SCEV *FoundLHS,
7951                                             const SCEV *FoundRHS) {
7952   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7953     return true;
7954 
7955   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7956     return true;
7957 
7958   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7959                                      FoundLHS, FoundRHS) ||
7960          // ~x < ~y --> x > y
7961          isImpliedCondOperandsHelper(Pred, LHS, RHS,
7962                                      getNotSCEV(FoundRHS),
7963                                      getNotSCEV(FoundLHS));
7964 }
7965 
7966 
7967 /// If Expr computes ~A, return A else return nullptr
7968 static const SCEV *MatchNotExpr(const SCEV *Expr) {
7969   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7970   if (!Add || Add->getNumOperands() != 2 ||
7971       !Add->getOperand(0)->isAllOnesValue())
7972     return nullptr;
7973 
7974   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7975   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7976       !AddRHS->getOperand(0)->isAllOnesValue())
7977     return nullptr;
7978 
7979   return AddRHS->getOperand(1);
7980 }
7981 
7982 
7983 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7984 template<typename MaxExprType>
7985 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7986                               const SCEV *Candidate) {
7987   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7988   if (!MaxExpr) return false;
7989 
7990   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
7991 }
7992 
7993 
7994 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7995 template<typename MaxExprType>
7996 static bool IsMinConsistingOf(ScalarEvolution &SE,
7997                               const SCEV *MaybeMinExpr,
7998                               const SCEV *Candidate) {
7999   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8000   if (!MaybeMaxExpr)
8001     return false;
8002 
8003   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8004 }
8005 
8006 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8007                                            ICmpInst::Predicate Pred,
8008                                            const SCEV *LHS, const SCEV *RHS) {
8009 
8010   // If both sides are affine addrecs for the same loop, with equal
8011   // steps, and we know the recurrences don't wrap, then we only
8012   // need to check the predicate on the starting values.
8013 
8014   if (!ICmpInst::isRelational(Pred))
8015     return false;
8016 
8017   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8018   if (!LAR)
8019     return false;
8020   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8021   if (!RAR)
8022     return false;
8023   if (LAR->getLoop() != RAR->getLoop())
8024     return false;
8025   if (!LAR->isAffine() || !RAR->isAffine())
8026     return false;
8027 
8028   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8029     return false;
8030 
8031   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8032                          SCEV::FlagNSW : SCEV::FlagNUW;
8033   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8034     return false;
8035 
8036   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8037 }
8038 
8039 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8040 /// expression?
8041 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8042                                         ICmpInst::Predicate Pred,
8043                                         const SCEV *LHS, const SCEV *RHS) {
8044   switch (Pred) {
8045   default:
8046     return false;
8047 
8048   case ICmpInst::ICMP_SGE:
8049     std::swap(LHS, RHS);
8050     // fall through
8051   case ICmpInst::ICMP_SLE:
8052     return
8053       // min(A, ...) <= A
8054       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8055       // A <= max(A, ...)
8056       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8057 
8058   case ICmpInst::ICMP_UGE:
8059     std::swap(LHS, RHS);
8060     // fall through
8061   case ICmpInst::ICMP_ULE:
8062     return
8063       // min(A, ...) <= A
8064       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8065       // A <= max(A, ...)
8066       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8067   }
8068 
8069   llvm_unreachable("covered switch fell through?!");
8070 }
8071 
8072 /// isImpliedCondOperandsHelper - Test whether the condition described by
8073 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8074 /// FoundLHS, and FoundRHS is true.
8075 bool
8076 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8077                                              const SCEV *LHS, const SCEV *RHS,
8078                                              const SCEV *FoundLHS,
8079                                              const SCEV *FoundRHS) {
8080   auto IsKnownPredicateFull =
8081       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8082     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8083            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8084            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8085            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8086   };
8087 
8088   switch (Pred) {
8089   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8090   case ICmpInst::ICMP_EQ:
8091   case ICmpInst::ICMP_NE:
8092     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8093       return true;
8094     break;
8095   case ICmpInst::ICMP_SLT:
8096   case ICmpInst::ICMP_SLE:
8097     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8098         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8099       return true;
8100     break;
8101   case ICmpInst::ICMP_SGT:
8102   case ICmpInst::ICMP_SGE:
8103     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8104         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8105       return true;
8106     break;
8107   case ICmpInst::ICMP_ULT:
8108   case ICmpInst::ICMP_ULE:
8109     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8110         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8111       return true;
8112     break;
8113   case ICmpInst::ICMP_UGT:
8114   case ICmpInst::ICMP_UGE:
8115     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8116         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8117       return true;
8118     break;
8119   }
8120 
8121   return false;
8122 }
8123 
8124 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8125 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8126 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8127                                                      const SCEV *LHS,
8128                                                      const SCEV *RHS,
8129                                                      const SCEV *FoundLHS,
8130                                                      const SCEV *FoundRHS) {
8131   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8132     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8133     // reduce the compile time impact of this optimization.
8134     return false;
8135 
8136   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8137   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8138       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8139     return false;
8140 
8141   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8142 
8143   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8144   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8145   ConstantRange FoundLHSRange =
8146       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8147 
8148   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8149   // for `LHS`:
8150   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8151   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8152 
8153   // We can also compute the range of values for `LHS` that satisfy the
8154   // consequent, "`LHS` `Pred` `RHS`":
8155   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8156   ConstantRange SatisfyingLHSRange =
8157       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8158 
8159   // The antecedent implies the consequent if every value of `LHS` that
8160   // satisfies the antecedent also satisfies the consequent.
8161   return SatisfyingLHSRange.contains(LHSRange);
8162 }
8163 
8164 // Verify if an linear IV with positive stride can overflow when in a
8165 // less-than comparison, knowing the invariant term of the comparison, the
8166 // stride and the knowledge of NSW/NUW flags on the recurrence.
8167 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8168                                          bool IsSigned, bool NoWrap) {
8169   if (NoWrap) return false;
8170 
8171   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8172   const SCEV *One = getOne(Stride->getType());
8173 
8174   if (IsSigned) {
8175     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8176     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8177     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8178                                 .getSignedMax();
8179 
8180     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8181     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8182   }
8183 
8184   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8185   APInt MaxValue = APInt::getMaxValue(BitWidth);
8186   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8187                               .getUnsignedMax();
8188 
8189   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8190   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8191 }
8192 
8193 // Verify if an linear IV with negative stride can overflow when in a
8194 // greater-than comparison, knowing the invariant term of the comparison,
8195 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8196 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8197                                          bool IsSigned, bool NoWrap) {
8198   if (NoWrap) return false;
8199 
8200   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8201   const SCEV *One = getOne(Stride->getType());
8202 
8203   if (IsSigned) {
8204     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8205     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8206     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8207                                .getSignedMax();
8208 
8209     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8210     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8211   }
8212 
8213   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8214   APInt MinValue = APInt::getMinValue(BitWidth);
8215   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8216                             .getUnsignedMax();
8217 
8218   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8219   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8220 }
8221 
8222 // Compute the backedge taken count knowing the interval difference, the
8223 // stride and presence of the equality in the comparison.
8224 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8225                                             bool Equality) {
8226   const SCEV *One = getOne(Step->getType());
8227   Delta = Equality ? getAddExpr(Delta, Step)
8228                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8229   return getUDivExpr(Delta, Step);
8230 }
8231 
8232 /// HowManyLessThans - Return the number of times a backedge containing the
8233 /// specified less-than comparison will execute.  If not computable, return
8234 /// CouldNotCompute.
8235 ///
8236 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8237 /// the branch (loops exits only if condition is true). In this case, we can use
8238 /// NoWrapFlags to skip overflow checks.
8239 ScalarEvolution::ExitLimit
8240 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8241                                   const Loop *L, bool IsSigned,
8242                                   bool ControlsExit) {
8243   // We handle only IV < Invariant
8244   if (!isLoopInvariant(RHS, L))
8245     return getCouldNotCompute();
8246 
8247   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8248 
8249   // Avoid weird loops
8250   if (!IV || IV->getLoop() != L || !IV->isAffine())
8251     return getCouldNotCompute();
8252 
8253   bool NoWrap = ControlsExit &&
8254                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8255 
8256   const SCEV *Stride = IV->getStepRecurrence(*this);
8257 
8258   // Avoid negative or zero stride values
8259   if (!isKnownPositive(Stride))
8260     return getCouldNotCompute();
8261 
8262   // Avoid proven overflow cases: this will ensure that the backedge taken count
8263   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8264   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8265   // behaviors like the case of C language.
8266   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8267     return getCouldNotCompute();
8268 
8269   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8270                                       : ICmpInst::ICMP_ULT;
8271   const SCEV *Start = IV->getStart();
8272   const SCEV *End = RHS;
8273   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8274     const SCEV *Diff = getMinusSCEV(RHS, Start);
8275     // If we have NoWrap set, then we can assume that the increment won't
8276     // overflow, in which case if RHS - Start is a constant, we don't need to
8277     // do a max operation since we can just figure it out statically
8278     if (NoWrap && isa<SCEVConstant>(Diff)) {
8279       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8280       if (D.isNegative())
8281         End = Start;
8282     } else
8283       End = IsSigned ? getSMaxExpr(RHS, Start)
8284                      : getUMaxExpr(RHS, Start);
8285   }
8286 
8287   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8288 
8289   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8290                             : getUnsignedRange(Start).getUnsignedMin();
8291 
8292   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8293                              : getUnsignedRange(Stride).getUnsignedMin();
8294 
8295   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8296   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8297                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8298 
8299   // Although End can be a MAX expression we estimate MaxEnd considering only
8300   // the case End = RHS. This is safe because in the other case (End - Start)
8301   // is zero, leading to a zero maximum backedge taken count.
8302   APInt MaxEnd =
8303     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8304              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8305 
8306   const SCEV *MaxBECount;
8307   if (isa<SCEVConstant>(BECount))
8308     MaxBECount = BECount;
8309   else
8310     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8311                                 getConstant(MinStride), false);
8312 
8313   if (isa<SCEVCouldNotCompute>(MaxBECount))
8314     MaxBECount = BECount;
8315 
8316   return ExitLimit(BECount, MaxBECount);
8317 }
8318 
8319 ScalarEvolution::ExitLimit
8320 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8321                                      const Loop *L, bool IsSigned,
8322                                      bool ControlsExit) {
8323   // We handle only IV > Invariant
8324   if (!isLoopInvariant(RHS, L))
8325     return getCouldNotCompute();
8326 
8327   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8328 
8329   // Avoid weird loops
8330   if (!IV || IV->getLoop() != L || !IV->isAffine())
8331     return getCouldNotCompute();
8332 
8333   bool NoWrap = ControlsExit &&
8334                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8335 
8336   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8337 
8338   // Avoid negative or zero stride values
8339   if (!isKnownPositive(Stride))
8340     return getCouldNotCompute();
8341 
8342   // Avoid proven overflow cases: this will ensure that the backedge taken count
8343   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8344   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8345   // behaviors like the case of C language.
8346   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8347     return getCouldNotCompute();
8348 
8349   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8350                                       : ICmpInst::ICMP_UGT;
8351 
8352   const SCEV *Start = IV->getStart();
8353   const SCEV *End = RHS;
8354   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8355     const SCEV *Diff = getMinusSCEV(RHS, Start);
8356     // If we have NoWrap set, then we can assume that the increment won't
8357     // overflow, in which case if RHS - Start is a constant, we don't need to
8358     // do a max operation since we can just figure it out statically
8359     if (NoWrap && isa<SCEVConstant>(Diff)) {
8360       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8361       if (!D.isNegative())
8362         End = Start;
8363     } else
8364       End = IsSigned ? getSMinExpr(RHS, Start)
8365                      : getUMinExpr(RHS, Start);
8366   }
8367 
8368   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8369 
8370   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8371                             : getUnsignedRange(Start).getUnsignedMax();
8372 
8373   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8374                              : getUnsignedRange(Stride).getUnsignedMin();
8375 
8376   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8377   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8378                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8379 
8380   // Although End can be a MIN expression we estimate MinEnd considering only
8381   // the case End = RHS. This is safe because in the other case (Start - End)
8382   // is zero, leading to a zero maximum backedge taken count.
8383   APInt MinEnd =
8384     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8385              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8386 
8387 
8388   const SCEV *MaxBECount = getCouldNotCompute();
8389   if (isa<SCEVConstant>(BECount))
8390     MaxBECount = BECount;
8391   else
8392     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8393                                 getConstant(MinStride), false);
8394 
8395   if (isa<SCEVCouldNotCompute>(MaxBECount))
8396     MaxBECount = BECount;
8397 
8398   return ExitLimit(BECount, MaxBECount);
8399 }
8400 
8401 /// getNumIterationsInRange - Return the number of iterations of this loop that
8402 /// produce values in the specified constant range.  Another way of looking at
8403 /// this is that it returns the first iteration number where the value is not in
8404 /// the condition, thus computing the exit count. If the iteration count can't
8405 /// be computed, an instance of SCEVCouldNotCompute is returned.
8406 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8407                                                     ScalarEvolution &SE) const {
8408   if (Range.isFullSet())  // Infinite loop.
8409     return SE.getCouldNotCompute();
8410 
8411   // If the start is a non-zero constant, shift the range to simplify things.
8412   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8413     if (!SC->getValue()->isZero()) {
8414       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8415       Operands[0] = SE.getZero(SC->getType());
8416       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8417                                              getNoWrapFlags(FlagNW));
8418       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8419         return ShiftedAddRec->getNumIterationsInRange(
8420             Range.subtract(SC->getAPInt()), SE);
8421       // This is strange and shouldn't happen.
8422       return SE.getCouldNotCompute();
8423     }
8424 
8425   // The only time we can solve this is when we have all constant indices.
8426   // Otherwise, we cannot determine the overflow conditions.
8427   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8428     return SE.getCouldNotCompute();
8429 
8430   // Okay at this point we know that all elements of the chrec are constants and
8431   // that the start element is zero.
8432 
8433   // First check to see if the range contains zero.  If not, the first
8434   // iteration exits.
8435   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8436   if (!Range.contains(APInt(BitWidth, 0)))
8437     return SE.getZero(getType());
8438 
8439   if (isAffine()) {
8440     // If this is an affine expression then we have this situation:
8441     //   Solve {0,+,A} in Range  ===  Ax in Range
8442 
8443     // We know that zero is in the range.  If A is positive then we know that
8444     // the upper value of the range must be the first possible exit value.
8445     // If A is negative then the lower of the range is the last possible loop
8446     // value.  Also note that we already checked for a full range.
8447     APInt One(BitWidth,1);
8448     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8449     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8450 
8451     // The exit value should be (End+A)/A.
8452     APInt ExitVal = (End + A).udiv(A);
8453     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8454 
8455     // Evaluate at the exit value.  If we really did fall out of the valid
8456     // range, then we computed our trip count, otherwise wrap around or other
8457     // things must have happened.
8458     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8459     if (Range.contains(Val->getValue()))
8460       return SE.getCouldNotCompute();  // Something strange happened
8461 
8462     // Ensure that the previous value is in the range.  This is a sanity check.
8463     assert(Range.contains(
8464            EvaluateConstantChrecAtConstant(this,
8465            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8466            "Linear scev computation is off in a bad way!");
8467     return SE.getConstant(ExitValue);
8468   } else if (isQuadratic()) {
8469     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8470     // quadratic equation to solve it.  To do this, we must frame our problem in
8471     // terms of figuring out when zero is crossed, instead of when
8472     // Range.getUpper() is crossed.
8473     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8474     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8475     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8476                                              // getNoWrapFlags(FlagNW)
8477                                              FlagAnyWrap);
8478 
8479     // Next, solve the constructed addrec
8480     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8481     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8482     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8483     if (R1) {
8484       // Pick the smallest positive root value.
8485       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8486               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8487         if (!CB->getZExtValue())
8488           std::swap(R1, R2);   // R1 is the minimum root now.
8489 
8490         // Make sure the root is not off by one.  The returned iteration should
8491         // not be in the range, but the previous one should be.  When solving
8492         // for "X*X < 5", for example, we should not return a root of 2.
8493         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8494                                                              R1->getValue(),
8495                                                              SE);
8496         if (Range.contains(R1Val->getValue())) {
8497           // The next iteration must be out of the range...
8498           ConstantInt *NextVal =
8499               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8500 
8501           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8502           if (!Range.contains(R1Val->getValue()))
8503             return SE.getConstant(NextVal);
8504           return SE.getCouldNotCompute();  // Something strange happened
8505         }
8506 
8507         // If R1 was not in the range, then it is a good return value.  Make
8508         // sure that R1-1 WAS in the range though, just in case.
8509         ConstantInt *NextVal =
8510             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8511         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8512         if (Range.contains(R1Val->getValue()))
8513           return R1;
8514         return SE.getCouldNotCompute();  // Something strange happened
8515       }
8516     }
8517   }
8518 
8519   return SE.getCouldNotCompute();
8520 }
8521 
8522 namespace {
8523 struct FindUndefs {
8524   bool Found;
8525   FindUndefs() : Found(false) {}
8526 
8527   bool follow(const SCEV *S) {
8528     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8529       if (isa<UndefValue>(C->getValue()))
8530         Found = true;
8531     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8532       if (isa<UndefValue>(C->getValue()))
8533         Found = true;
8534     }
8535 
8536     // Keep looking if we haven't found it yet.
8537     return !Found;
8538   }
8539   bool isDone() const {
8540     // Stop recursion if we have found an undef.
8541     return Found;
8542   }
8543 };
8544 }
8545 
8546 // Return true when S contains at least an undef value.
8547 static inline bool
8548 containsUndefs(const SCEV *S) {
8549   FindUndefs F;
8550   SCEVTraversal<FindUndefs> ST(F);
8551   ST.visitAll(S);
8552 
8553   return F.Found;
8554 }
8555 
8556 namespace {
8557 // Collect all steps of SCEV expressions.
8558 struct SCEVCollectStrides {
8559   ScalarEvolution &SE;
8560   SmallVectorImpl<const SCEV *> &Strides;
8561 
8562   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8563       : SE(SE), Strides(S) {}
8564 
8565   bool follow(const SCEV *S) {
8566     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8567       Strides.push_back(AR->getStepRecurrence(SE));
8568     return true;
8569   }
8570   bool isDone() const { return false; }
8571 };
8572 
8573 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8574 struct SCEVCollectTerms {
8575   SmallVectorImpl<const SCEV *> &Terms;
8576 
8577   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8578       : Terms(T) {}
8579 
8580   bool follow(const SCEV *S) {
8581     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8582       if (!containsUndefs(S))
8583         Terms.push_back(S);
8584 
8585       // Stop recursion: once we collected a term, do not walk its operands.
8586       return false;
8587     }
8588 
8589     // Keep looking.
8590     return true;
8591   }
8592   bool isDone() const { return false; }
8593 };
8594 
8595 // Check if a SCEV contains an AddRecExpr.
8596 struct SCEVHasAddRec {
8597   bool &ContainsAddRec;
8598 
8599   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8600    ContainsAddRec = false;
8601   }
8602 
8603   bool follow(const SCEV *S) {
8604     if (isa<SCEVAddRecExpr>(S)) {
8605       ContainsAddRec = true;
8606 
8607       // Stop recursion: once we collected a term, do not walk its operands.
8608       return false;
8609     }
8610 
8611     // Keep looking.
8612     return true;
8613   }
8614   bool isDone() const { return false; }
8615 };
8616 
8617 // Find factors that are multiplied with an expression that (possibly as a
8618 // subexpression) contains an AddRecExpr. In the expression:
8619 //
8620 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
8621 //
8622 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8623 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8624 // parameters as they form a product with an induction variable.
8625 //
8626 // This collector expects all array size parameters to be in the same MulExpr.
8627 // It might be necessary to later add support for collecting parameters that are
8628 // spread over different nested MulExpr.
8629 struct SCEVCollectAddRecMultiplies {
8630   SmallVectorImpl<const SCEV *> &Terms;
8631   ScalarEvolution &SE;
8632 
8633   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8634       : Terms(T), SE(SE) {}
8635 
8636   bool follow(const SCEV *S) {
8637     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8638       bool HasAddRec = false;
8639       SmallVector<const SCEV *, 0> Operands;
8640       for (auto Op : Mul->operands()) {
8641         if (isa<SCEVUnknown>(Op)) {
8642           Operands.push_back(Op);
8643         } else {
8644           bool ContainsAddRec;
8645           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8646           visitAll(Op, ContiansAddRec);
8647           HasAddRec |= ContainsAddRec;
8648         }
8649       }
8650       if (Operands.size() == 0)
8651         return true;
8652 
8653       if (!HasAddRec)
8654         return false;
8655 
8656       Terms.push_back(SE.getMulExpr(Operands));
8657       // Stop recursion: once we collected a term, do not walk its operands.
8658       return false;
8659     }
8660 
8661     // Keep looking.
8662     return true;
8663   }
8664   bool isDone() const { return false; }
8665 };
8666 }
8667 
8668 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8669 /// two places:
8670 ///   1) The strides of AddRec expressions.
8671 ///   2) Unknowns that are multiplied with AddRec expressions.
8672 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8673     SmallVectorImpl<const SCEV *> &Terms) {
8674   SmallVector<const SCEV *, 4> Strides;
8675   SCEVCollectStrides StrideCollector(*this, Strides);
8676   visitAll(Expr, StrideCollector);
8677 
8678   DEBUG({
8679       dbgs() << "Strides:\n";
8680       for (const SCEV *S : Strides)
8681         dbgs() << *S << "\n";
8682     });
8683 
8684   for (const SCEV *S : Strides) {
8685     SCEVCollectTerms TermCollector(Terms);
8686     visitAll(S, TermCollector);
8687   }
8688 
8689   DEBUG({
8690       dbgs() << "Terms:\n";
8691       for (const SCEV *T : Terms)
8692         dbgs() << *T << "\n";
8693     });
8694 
8695   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8696   visitAll(Expr, MulCollector);
8697 }
8698 
8699 static bool findArrayDimensionsRec(ScalarEvolution &SE,
8700                                    SmallVectorImpl<const SCEV *> &Terms,
8701                                    SmallVectorImpl<const SCEV *> &Sizes) {
8702   int Last = Terms.size() - 1;
8703   const SCEV *Step = Terms[Last];
8704 
8705   // End of recursion.
8706   if (Last == 0) {
8707     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8708       SmallVector<const SCEV *, 2> Qs;
8709       for (const SCEV *Op : M->operands())
8710         if (!isa<SCEVConstant>(Op))
8711           Qs.push_back(Op);
8712 
8713       Step = SE.getMulExpr(Qs);
8714     }
8715 
8716     Sizes.push_back(Step);
8717     return true;
8718   }
8719 
8720   for (const SCEV *&Term : Terms) {
8721     // Normalize the terms before the next call to findArrayDimensionsRec.
8722     const SCEV *Q, *R;
8723     SCEVDivision::divide(SE, Term, Step, &Q, &R);
8724 
8725     // Bail out when GCD does not evenly divide one of the terms.
8726     if (!R->isZero())
8727       return false;
8728 
8729     Term = Q;
8730   }
8731 
8732   // Remove all SCEVConstants.
8733   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8734                 return isa<SCEVConstant>(E);
8735               }),
8736               Terms.end());
8737 
8738   if (Terms.size() > 0)
8739     if (!findArrayDimensionsRec(SE, Terms, Sizes))
8740       return false;
8741 
8742   Sizes.push_back(Step);
8743   return true;
8744 }
8745 
8746 // Returns true when S contains at least a SCEVUnknown parameter.
8747 static inline bool
8748 containsParameters(const SCEV *S) {
8749   struct FindParameter {
8750     bool FoundParameter;
8751     FindParameter() : FoundParameter(false) {}
8752 
8753     bool follow(const SCEV *S) {
8754       if (isa<SCEVUnknown>(S)) {
8755         FoundParameter = true;
8756         // Stop recursion: we found a parameter.
8757         return false;
8758       }
8759       // Keep looking.
8760       return true;
8761     }
8762     bool isDone() const {
8763       // Stop recursion if we have found a parameter.
8764       return FoundParameter;
8765     }
8766   };
8767 
8768   FindParameter F;
8769   SCEVTraversal<FindParameter> ST(F);
8770   ST.visitAll(S);
8771 
8772   return F.FoundParameter;
8773 }
8774 
8775 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8776 static inline bool
8777 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8778   for (const SCEV *T : Terms)
8779     if (containsParameters(T))
8780       return true;
8781   return false;
8782 }
8783 
8784 // Return the number of product terms in S.
8785 static inline int numberOfTerms(const SCEV *S) {
8786   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8787     return Expr->getNumOperands();
8788   return 1;
8789 }
8790 
8791 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8792   if (isa<SCEVConstant>(T))
8793     return nullptr;
8794 
8795   if (isa<SCEVUnknown>(T))
8796     return T;
8797 
8798   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8799     SmallVector<const SCEV *, 2> Factors;
8800     for (const SCEV *Op : M->operands())
8801       if (!isa<SCEVConstant>(Op))
8802         Factors.push_back(Op);
8803 
8804     return SE.getMulExpr(Factors);
8805   }
8806 
8807   return T;
8808 }
8809 
8810 /// Return the size of an element read or written by Inst.
8811 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8812   Type *Ty;
8813   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8814     Ty = Store->getValueOperand()->getType();
8815   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
8816     Ty = Load->getType();
8817   else
8818     return nullptr;
8819 
8820   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8821   return getSizeOfExpr(ETy, Ty);
8822 }
8823 
8824 /// Second step of delinearization: compute the array dimensions Sizes from the
8825 /// set of Terms extracted from the memory access function of this SCEVAddRec.
8826 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8827                                           SmallVectorImpl<const SCEV *> &Sizes,
8828                                           const SCEV *ElementSize) const {
8829 
8830   if (Terms.size() < 1 || !ElementSize)
8831     return;
8832 
8833   // Early return when Terms do not contain parameters: we do not delinearize
8834   // non parametric SCEVs.
8835   if (!containsParameters(Terms))
8836     return;
8837 
8838   DEBUG({
8839       dbgs() << "Terms:\n";
8840       for (const SCEV *T : Terms)
8841         dbgs() << *T << "\n";
8842     });
8843 
8844   // Remove duplicates.
8845   std::sort(Terms.begin(), Terms.end());
8846   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8847 
8848   // Put larger terms first.
8849   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8850     return numberOfTerms(LHS) > numberOfTerms(RHS);
8851   });
8852 
8853   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8854 
8855   // Try to divide all terms by the element size. If term is not divisible by
8856   // element size, proceed with the original term.
8857   for (const SCEV *&Term : Terms) {
8858     const SCEV *Q, *R;
8859     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
8860     if (!Q->isZero())
8861       Term = Q;
8862   }
8863 
8864   SmallVector<const SCEV *, 4> NewTerms;
8865 
8866   // Remove constant factors.
8867   for (const SCEV *T : Terms)
8868     if (const SCEV *NewT = removeConstantFactors(SE, T))
8869       NewTerms.push_back(NewT);
8870 
8871   DEBUG({
8872       dbgs() << "Terms after sorting:\n";
8873       for (const SCEV *T : NewTerms)
8874         dbgs() << *T << "\n";
8875     });
8876 
8877   if (NewTerms.empty() ||
8878       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
8879     Sizes.clear();
8880     return;
8881   }
8882 
8883   // The last element to be pushed into Sizes is the size of an element.
8884   Sizes.push_back(ElementSize);
8885 
8886   DEBUG({
8887       dbgs() << "Sizes:\n";
8888       for (const SCEV *S : Sizes)
8889         dbgs() << *S << "\n";
8890     });
8891 }
8892 
8893 /// Third step of delinearization: compute the access functions for the
8894 /// Subscripts based on the dimensions in Sizes.
8895 void ScalarEvolution::computeAccessFunctions(
8896     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8897     SmallVectorImpl<const SCEV *> &Sizes) {
8898 
8899   // Early exit in case this SCEV is not an affine multivariate function.
8900   if (Sizes.empty())
8901     return;
8902 
8903   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
8904     if (!AR->isAffine())
8905       return;
8906 
8907   const SCEV *Res = Expr;
8908   int Last = Sizes.size() - 1;
8909   for (int i = Last; i >= 0; i--) {
8910     const SCEV *Q, *R;
8911     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
8912 
8913     DEBUG({
8914         dbgs() << "Res: " << *Res << "\n";
8915         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8916         dbgs() << "Res divided by Sizes[i]:\n";
8917         dbgs() << "Quotient: " << *Q << "\n";
8918         dbgs() << "Remainder: " << *R << "\n";
8919       });
8920 
8921     Res = Q;
8922 
8923     // Do not record the last subscript corresponding to the size of elements in
8924     // the array.
8925     if (i == Last) {
8926 
8927       // Bail out if the remainder is too complex.
8928       if (isa<SCEVAddRecExpr>(R)) {
8929         Subscripts.clear();
8930         Sizes.clear();
8931         return;
8932       }
8933 
8934       continue;
8935     }
8936 
8937     // Record the access function for the current subscript.
8938     Subscripts.push_back(R);
8939   }
8940 
8941   // Also push in last position the remainder of the last division: it will be
8942   // the access function of the innermost dimension.
8943   Subscripts.push_back(Res);
8944 
8945   std::reverse(Subscripts.begin(), Subscripts.end());
8946 
8947   DEBUG({
8948       dbgs() << "Subscripts:\n";
8949       for (const SCEV *S : Subscripts)
8950         dbgs() << *S << "\n";
8951     });
8952 }
8953 
8954 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8955 /// sizes of an array access. Returns the remainder of the delinearization that
8956 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
8957 /// the multiples of SCEV coefficients: that is a pattern matching of sub
8958 /// expressions in the stride and base of a SCEV corresponding to the
8959 /// computation of a GCD (greatest common divisor) of base and stride.  When
8960 /// SCEV->delinearize fails, it returns the SCEV unchanged.
8961 ///
8962 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
8963 ///
8964 ///  void foo(long n, long m, long o, double A[n][m][o]) {
8965 ///
8966 ///    for (long i = 0; i < n; i++)
8967 ///      for (long j = 0; j < m; j++)
8968 ///        for (long k = 0; k < o; k++)
8969 ///          A[i][j][k] = 1.0;
8970 ///  }
8971 ///
8972 /// the delinearization input is the following AddRec SCEV:
8973 ///
8974 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8975 ///
8976 /// From this SCEV, we are able to say that the base offset of the access is %A
8977 /// because it appears as an offset that does not divide any of the strides in
8978 /// the loops:
8979 ///
8980 ///  CHECK: Base offset: %A
8981 ///
8982 /// and then SCEV->delinearize determines the size of some of the dimensions of
8983 /// the array as these are the multiples by which the strides are happening:
8984 ///
8985 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8986 ///
8987 /// Note that the outermost dimension remains of UnknownSize because there are
8988 /// no strides that would help identifying the size of the last dimension: when
8989 /// the array has been statically allocated, one could compute the size of that
8990 /// dimension by dividing the overall size of the array by the size of the known
8991 /// dimensions: %m * %o * 8.
8992 ///
8993 /// Finally delinearize provides the access functions for the array reference
8994 /// that does correspond to A[i][j][k] of the above C testcase:
8995 ///
8996 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8997 ///
8998 /// The testcases are checking the output of a function pass:
8999 /// DelinearizationPass that walks through all loads and stores of a function
9000 /// asking for the SCEV of the memory access with respect to all enclosing
9001 /// loops, calling SCEV->delinearize on that and printing the results.
9002 
9003 void ScalarEvolution::delinearize(const SCEV *Expr,
9004                                  SmallVectorImpl<const SCEV *> &Subscripts,
9005                                  SmallVectorImpl<const SCEV *> &Sizes,
9006                                  const SCEV *ElementSize) {
9007   // First step: collect parametric terms.
9008   SmallVector<const SCEV *, 4> Terms;
9009   collectParametricTerms(Expr, Terms);
9010 
9011   if (Terms.empty())
9012     return;
9013 
9014   // Second step: find subscript sizes.
9015   findArrayDimensions(Terms, Sizes, ElementSize);
9016 
9017   if (Sizes.empty())
9018     return;
9019 
9020   // Third step: compute the access functions for each subscript.
9021   computeAccessFunctions(Expr, Subscripts, Sizes);
9022 
9023   if (Subscripts.empty())
9024     return;
9025 
9026   DEBUG({
9027       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9028       dbgs() << "ArrayDecl[UnknownSize]";
9029       for (const SCEV *S : Sizes)
9030         dbgs() << "[" << *S << "]";
9031 
9032       dbgs() << "\nArrayRef";
9033       for (const SCEV *S : Subscripts)
9034         dbgs() << "[" << *S << "]";
9035       dbgs() << "\n";
9036     });
9037 }
9038 
9039 //===----------------------------------------------------------------------===//
9040 //                   SCEVCallbackVH Class Implementation
9041 //===----------------------------------------------------------------------===//
9042 
9043 void ScalarEvolution::SCEVCallbackVH::deleted() {
9044   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9045   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9046     SE->ConstantEvolutionLoopExitValue.erase(PN);
9047   SE->eraseValueFromMap(getValPtr());
9048   // this now dangles!
9049 }
9050 
9051 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9052   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9053 
9054   // Forget all the expressions associated with users of the old value,
9055   // so that future queries will recompute the expressions using the new
9056   // value.
9057   Value *Old = getValPtr();
9058   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9059   SmallPtrSet<User *, 8> Visited;
9060   while (!Worklist.empty()) {
9061     User *U = Worklist.pop_back_val();
9062     // Deleting the Old value will cause this to dangle. Postpone
9063     // that until everything else is done.
9064     if (U == Old)
9065       continue;
9066     if (!Visited.insert(U).second)
9067       continue;
9068     if (PHINode *PN = dyn_cast<PHINode>(U))
9069       SE->ConstantEvolutionLoopExitValue.erase(PN);
9070     SE->eraseValueFromMap(U);
9071     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9072   }
9073   // Delete the Old value.
9074   if (PHINode *PN = dyn_cast<PHINode>(Old))
9075     SE->ConstantEvolutionLoopExitValue.erase(PN);
9076   SE->eraseValueFromMap(Old);
9077   // this now dangles!
9078 }
9079 
9080 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9081   : CallbackVH(V), SE(se) {}
9082 
9083 //===----------------------------------------------------------------------===//
9084 //                   ScalarEvolution Class Implementation
9085 //===----------------------------------------------------------------------===//
9086 
9087 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9088                                  AssumptionCache &AC, DominatorTree &DT,
9089                                  LoopInfo &LI)
9090     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9091       CouldNotCompute(new SCEVCouldNotCompute()),
9092       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9093       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9094       FirstUnknown(nullptr) {}
9095 
9096 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9097     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9098       CouldNotCompute(std::move(Arg.CouldNotCompute)),
9099       ValueExprMap(std::move(Arg.ValueExprMap)),
9100       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9101       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9102       ConstantEvolutionLoopExitValue(
9103           std::move(Arg.ConstantEvolutionLoopExitValue)),
9104       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9105       LoopDispositions(std::move(Arg.LoopDispositions)),
9106       BlockDispositions(std::move(Arg.BlockDispositions)),
9107       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9108       SignedRanges(std::move(Arg.SignedRanges)),
9109       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9110       UniquePreds(std::move(Arg.UniquePreds)),
9111       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9112       FirstUnknown(Arg.FirstUnknown) {
9113   Arg.FirstUnknown = nullptr;
9114 }
9115 
9116 ScalarEvolution::~ScalarEvolution() {
9117   // Iterate through all the SCEVUnknown instances and call their
9118   // destructors, so that they release their references to their values.
9119   for (SCEVUnknown *U = FirstUnknown; U;) {
9120     SCEVUnknown *Tmp = U;
9121     U = U->Next;
9122     Tmp->~SCEVUnknown();
9123   }
9124   FirstUnknown = nullptr;
9125 
9126   ExprValueMap.clear();
9127   ValueExprMap.clear();
9128   HasRecMap.clear();
9129 
9130   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9131   // that a loop had multiple computable exits.
9132   for (auto &BTCI : BackedgeTakenCounts)
9133     BTCI.second.clear();
9134 
9135   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9136   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9137   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9138 }
9139 
9140 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9141   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9142 }
9143 
9144 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9145                           const Loop *L) {
9146   // Print all inner loops first
9147   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9148     PrintLoopInfo(OS, SE, *I);
9149 
9150   OS << "Loop ";
9151   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9152   OS << ": ";
9153 
9154   SmallVector<BasicBlock *, 8> ExitBlocks;
9155   L->getExitBlocks(ExitBlocks);
9156   if (ExitBlocks.size() != 1)
9157     OS << "<multiple exits> ";
9158 
9159   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9160     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9161   } else {
9162     OS << "Unpredictable backedge-taken count. ";
9163   }
9164 
9165   OS << "\n"
9166         "Loop ";
9167   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9168   OS << ": ";
9169 
9170   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9171     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9172   } else {
9173     OS << "Unpredictable max backedge-taken count. ";
9174   }
9175 
9176   OS << "\n";
9177 }
9178 
9179 void ScalarEvolution::print(raw_ostream &OS) const {
9180   // ScalarEvolution's implementation of the print method is to print
9181   // out SCEV values of all instructions that are interesting. Doing
9182   // this potentially causes it to create new SCEV objects though,
9183   // which technically conflicts with the const qualifier. This isn't
9184   // observable from outside the class though, so casting away the
9185   // const isn't dangerous.
9186   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9187 
9188   OS << "Classifying expressions for: ";
9189   F.printAsOperand(OS, /*PrintType=*/false);
9190   OS << "\n";
9191   for (Instruction &I : instructions(F))
9192     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9193       OS << I << '\n';
9194       OS << "  -->  ";
9195       const SCEV *SV = SE.getSCEV(&I);
9196       SV->print(OS);
9197       if (!isa<SCEVCouldNotCompute>(SV)) {
9198         OS << " U: ";
9199         SE.getUnsignedRange(SV).print(OS);
9200         OS << " S: ";
9201         SE.getSignedRange(SV).print(OS);
9202       }
9203 
9204       const Loop *L = LI.getLoopFor(I.getParent());
9205 
9206       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9207       if (AtUse != SV) {
9208         OS << "  -->  ";
9209         AtUse->print(OS);
9210         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9211           OS << " U: ";
9212           SE.getUnsignedRange(AtUse).print(OS);
9213           OS << " S: ";
9214           SE.getSignedRange(AtUse).print(OS);
9215         }
9216       }
9217 
9218       if (L) {
9219         OS << "\t\t" "Exits: ";
9220         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9221         if (!SE.isLoopInvariant(ExitValue, L)) {
9222           OS << "<<Unknown>>";
9223         } else {
9224           OS << *ExitValue;
9225         }
9226       }
9227 
9228       OS << "\n";
9229     }
9230 
9231   OS << "Determining loop execution counts for: ";
9232   F.printAsOperand(OS, /*PrintType=*/false);
9233   OS << "\n";
9234   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9235     PrintLoopInfo(OS, &SE, *I);
9236 }
9237 
9238 ScalarEvolution::LoopDisposition
9239 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9240   auto &Values = LoopDispositions[S];
9241   for (auto &V : Values) {
9242     if (V.getPointer() == L)
9243       return V.getInt();
9244   }
9245   Values.emplace_back(L, LoopVariant);
9246   LoopDisposition D = computeLoopDisposition(S, L);
9247   auto &Values2 = LoopDispositions[S];
9248   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9249     if (V.getPointer() == L) {
9250       V.setInt(D);
9251       break;
9252     }
9253   }
9254   return D;
9255 }
9256 
9257 ScalarEvolution::LoopDisposition
9258 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9259   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9260   case scConstant:
9261     return LoopInvariant;
9262   case scTruncate:
9263   case scZeroExtend:
9264   case scSignExtend:
9265     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9266   case scAddRecExpr: {
9267     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9268 
9269     // If L is the addrec's loop, it's computable.
9270     if (AR->getLoop() == L)
9271       return LoopComputable;
9272 
9273     // Add recurrences are never invariant in the function-body (null loop).
9274     if (!L)
9275       return LoopVariant;
9276 
9277     // This recurrence is variant w.r.t. L if L contains AR's loop.
9278     if (L->contains(AR->getLoop()))
9279       return LoopVariant;
9280 
9281     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9282     if (AR->getLoop()->contains(L))
9283       return LoopInvariant;
9284 
9285     // This recurrence is variant w.r.t. L if any of its operands
9286     // are variant.
9287     for (auto *Op : AR->operands())
9288       if (!isLoopInvariant(Op, L))
9289         return LoopVariant;
9290 
9291     // Otherwise it's loop-invariant.
9292     return LoopInvariant;
9293   }
9294   case scAddExpr:
9295   case scMulExpr:
9296   case scUMaxExpr:
9297   case scSMaxExpr: {
9298     bool HasVarying = false;
9299     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9300       LoopDisposition D = getLoopDisposition(Op, L);
9301       if (D == LoopVariant)
9302         return LoopVariant;
9303       if (D == LoopComputable)
9304         HasVarying = true;
9305     }
9306     return HasVarying ? LoopComputable : LoopInvariant;
9307   }
9308   case scUDivExpr: {
9309     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9310     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9311     if (LD == LoopVariant)
9312       return LoopVariant;
9313     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9314     if (RD == LoopVariant)
9315       return LoopVariant;
9316     return (LD == LoopInvariant && RD == LoopInvariant) ?
9317            LoopInvariant : LoopComputable;
9318   }
9319   case scUnknown:
9320     // All non-instruction values are loop invariant.  All instructions are loop
9321     // invariant if they are not contained in the specified loop.
9322     // Instructions are never considered invariant in the function body
9323     // (null loop) because they are defined within the "loop".
9324     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9325       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9326     return LoopInvariant;
9327   case scCouldNotCompute:
9328     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9329   }
9330   llvm_unreachable("Unknown SCEV kind!");
9331 }
9332 
9333 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9334   return getLoopDisposition(S, L) == LoopInvariant;
9335 }
9336 
9337 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9338   return getLoopDisposition(S, L) == LoopComputable;
9339 }
9340 
9341 ScalarEvolution::BlockDisposition
9342 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9343   auto &Values = BlockDispositions[S];
9344   for (auto &V : Values) {
9345     if (V.getPointer() == BB)
9346       return V.getInt();
9347   }
9348   Values.emplace_back(BB, DoesNotDominateBlock);
9349   BlockDisposition D = computeBlockDisposition(S, BB);
9350   auto &Values2 = BlockDispositions[S];
9351   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9352     if (V.getPointer() == BB) {
9353       V.setInt(D);
9354       break;
9355     }
9356   }
9357   return D;
9358 }
9359 
9360 ScalarEvolution::BlockDisposition
9361 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9362   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9363   case scConstant:
9364     return ProperlyDominatesBlock;
9365   case scTruncate:
9366   case scZeroExtend:
9367   case scSignExtend:
9368     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9369   case scAddRecExpr: {
9370     // This uses a "dominates" query instead of "properly dominates" query
9371     // to test for proper dominance too, because the instruction which
9372     // produces the addrec's value is a PHI, and a PHI effectively properly
9373     // dominates its entire containing block.
9374     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9375     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9376       return DoesNotDominateBlock;
9377   }
9378   // FALL THROUGH into SCEVNAryExpr handling.
9379   case scAddExpr:
9380   case scMulExpr:
9381   case scUMaxExpr:
9382   case scSMaxExpr: {
9383     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9384     bool Proper = true;
9385     for (const SCEV *NAryOp : NAry->operands()) {
9386       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9387       if (D == DoesNotDominateBlock)
9388         return DoesNotDominateBlock;
9389       if (D == DominatesBlock)
9390         Proper = false;
9391     }
9392     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9393   }
9394   case scUDivExpr: {
9395     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9396     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9397     BlockDisposition LD = getBlockDisposition(LHS, BB);
9398     if (LD == DoesNotDominateBlock)
9399       return DoesNotDominateBlock;
9400     BlockDisposition RD = getBlockDisposition(RHS, BB);
9401     if (RD == DoesNotDominateBlock)
9402       return DoesNotDominateBlock;
9403     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9404       ProperlyDominatesBlock : DominatesBlock;
9405   }
9406   case scUnknown:
9407     if (Instruction *I =
9408           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9409       if (I->getParent() == BB)
9410         return DominatesBlock;
9411       if (DT.properlyDominates(I->getParent(), BB))
9412         return ProperlyDominatesBlock;
9413       return DoesNotDominateBlock;
9414     }
9415     return ProperlyDominatesBlock;
9416   case scCouldNotCompute:
9417     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9418   }
9419   llvm_unreachable("Unknown SCEV kind!");
9420 }
9421 
9422 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9423   return getBlockDisposition(S, BB) >= DominatesBlock;
9424 }
9425 
9426 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9427   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9428 }
9429 
9430 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9431   // Search for a SCEV expression node within an expression tree.
9432   // Implements SCEVTraversal::Visitor.
9433   struct SCEVSearch {
9434     const SCEV *Node;
9435     bool IsFound;
9436 
9437     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9438 
9439     bool follow(const SCEV *S) {
9440       IsFound |= (S == Node);
9441       return !IsFound;
9442     }
9443     bool isDone() const { return IsFound; }
9444   };
9445 
9446   SCEVSearch Search(Op);
9447   visitAll(S, Search);
9448   return Search.IsFound;
9449 }
9450 
9451 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9452   ValuesAtScopes.erase(S);
9453   LoopDispositions.erase(S);
9454   BlockDispositions.erase(S);
9455   UnsignedRanges.erase(S);
9456   SignedRanges.erase(S);
9457   ExprValueMap.erase(S);
9458   HasRecMap.erase(S);
9459 
9460   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9461          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9462     BackedgeTakenInfo &BEInfo = I->second;
9463     if (BEInfo.hasOperand(S, this)) {
9464       BEInfo.clear();
9465       BackedgeTakenCounts.erase(I++);
9466     }
9467     else
9468       ++I;
9469   }
9470 }
9471 
9472 typedef DenseMap<const Loop *, std::string> VerifyMap;
9473 
9474 /// replaceSubString - Replaces all occurrences of From in Str with To.
9475 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9476   size_t Pos = 0;
9477   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9478     Str.replace(Pos, From.size(), To.data(), To.size());
9479     Pos += To.size();
9480   }
9481 }
9482 
9483 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9484 static void
9485 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9486   std::string &S = Map[L];
9487   if (S.empty()) {
9488     raw_string_ostream OS(S);
9489     SE.getBackedgeTakenCount(L)->print(OS);
9490 
9491     // false and 0 are semantically equivalent. This can happen in dead loops.
9492     replaceSubString(OS.str(), "false", "0");
9493     // Remove wrap flags, their use in SCEV is highly fragile.
9494     // FIXME: Remove this when SCEV gets smarter about them.
9495     replaceSubString(OS.str(), "<nw>", "");
9496     replaceSubString(OS.str(), "<nsw>", "");
9497     replaceSubString(OS.str(), "<nuw>", "");
9498   }
9499 
9500   for (auto *R : reverse(*L))
9501     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9502 }
9503 
9504 void ScalarEvolution::verify() const {
9505   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9506 
9507   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9508   // FIXME: It would be much better to store actual values instead of strings,
9509   //        but SCEV pointers will change if we drop the caches.
9510   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9511   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9512     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9513 
9514   // Gather stringified backedge taken counts for all loops using a fresh
9515   // ScalarEvolution object.
9516   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9517   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9518     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9519 
9520   // Now compare whether they're the same with and without caches. This allows
9521   // verifying that no pass changed the cache.
9522   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9523          "New loops suddenly appeared!");
9524 
9525   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9526                            OldE = BackedgeDumpsOld.end(),
9527                            NewI = BackedgeDumpsNew.begin();
9528        OldI != OldE; ++OldI, ++NewI) {
9529     assert(OldI->first == NewI->first && "Loop order changed!");
9530 
9531     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9532     // changes.
9533     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9534     // means that a pass is buggy or SCEV has to learn a new pattern but is
9535     // usually not harmful.
9536     if (OldI->second != NewI->second &&
9537         OldI->second.find("undef") == std::string::npos &&
9538         NewI->second.find("undef") == std::string::npos &&
9539         OldI->second != "***COULDNOTCOMPUTE***" &&
9540         NewI->second != "***COULDNOTCOMPUTE***") {
9541       dbgs() << "SCEVValidator: SCEV for loop '"
9542              << OldI->first->getHeader()->getName()
9543              << "' changed from '" << OldI->second
9544              << "' to '" << NewI->second << "'!\n";
9545       std::abort();
9546     }
9547   }
9548 
9549   // TODO: Verify more things.
9550 }
9551 
9552 char ScalarEvolutionAnalysis::PassID;
9553 
9554 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9555                                              AnalysisManager<Function> *AM) {
9556   return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9557                          AM->getResult<AssumptionAnalysis>(F),
9558                          AM->getResult<DominatorTreeAnalysis>(F),
9559                          AM->getResult<LoopAnalysis>(F));
9560 }
9561 
9562 PreservedAnalyses
9563 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9564   AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9565   return PreservedAnalyses::all();
9566 }
9567 
9568 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9569                       "Scalar Evolution Analysis", false, true)
9570 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9571 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9572 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9573 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9574 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9575                     "Scalar Evolution Analysis", false, true)
9576 char ScalarEvolutionWrapperPass::ID = 0;
9577 
9578 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9579   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9580 }
9581 
9582 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9583   SE.reset(new ScalarEvolution(
9584       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9585       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9586       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9587       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9588   return false;
9589 }
9590 
9591 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9592 
9593 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9594   SE->print(OS);
9595 }
9596 
9597 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9598   if (!VerifySCEV)
9599     return;
9600 
9601   SE->verify();
9602 }
9603 
9604 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9605   AU.setPreservesAll();
9606   AU.addRequiredTransitive<AssumptionCacheTracker>();
9607   AU.addRequiredTransitive<LoopInfoWrapperPass>();
9608   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9609   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9610 }
9611 
9612 const SCEVPredicate *
9613 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9614                                    const SCEVConstant *RHS) {
9615   FoldingSetNodeID ID;
9616   // Unique this node based on the arguments
9617   ID.AddInteger(SCEVPredicate::P_Equal);
9618   ID.AddPointer(LHS);
9619   ID.AddPointer(RHS);
9620   void *IP = nullptr;
9621   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9622     return S;
9623   SCEVEqualPredicate *Eq = new (SCEVAllocator)
9624       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9625   UniquePreds.InsertNode(Eq, IP);
9626   return Eq;
9627 }
9628 
9629 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
9630     const SCEVAddRecExpr *AR,
9631     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9632   FoldingSetNodeID ID;
9633   // Unique this node based on the arguments
9634   ID.AddInteger(SCEVPredicate::P_Wrap);
9635   ID.AddPointer(AR);
9636   ID.AddInteger(AddedFlags);
9637   void *IP = nullptr;
9638   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9639     return S;
9640   auto *OF = new (SCEVAllocator)
9641       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
9642   UniquePreds.InsertNode(OF, IP);
9643   return OF;
9644 }
9645 
9646 namespace {
9647 
9648 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9649 public:
9650   // Rewrites Scev in the context of a loop L and the predicate A.
9651   // If Assume is true, rewrite is free to add further predicates to A
9652   // such that the result will be an AddRecExpr.
9653   static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
9654                              ScalarEvolution &SE, SCEVUnionPredicate &A,
9655                              bool Assume) {
9656     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
9657     return Rewriter.visit(Scev);
9658   }
9659 
9660   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
9661                         SCEVUnionPredicate &P, bool Assume)
9662       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
9663 
9664   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9665     auto ExprPreds = P.getPredicatesForExpr(Expr);
9666     for (auto *Pred : ExprPreds)
9667       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9668         if (IPred->getLHS() == Expr)
9669           return IPred->getRHS();
9670 
9671     return Expr;
9672   }
9673 
9674   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
9675     const SCEV *Operand = visit(Expr->getOperand());
9676     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9677     if (AR && AR->getLoop() == L && AR->isAffine()) {
9678       // This couldn't be folded because the operand didn't have the nuw
9679       // flag. Add the nusw flag as an assumption that we could make.
9680       const SCEV *Step = AR->getStepRecurrence(SE);
9681       Type *Ty = Expr->getType();
9682       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
9683         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
9684                                 SE.getSignExtendExpr(Step, Ty), L,
9685                                 AR->getNoWrapFlags());
9686     }
9687     return SE.getZeroExtendExpr(Operand, Expr->getType());
9688   }
9689 
9690   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
9691     const SCEV *Operand = visit(Expr->getOperand());
9692     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9693     if (AR && AR->getLoop() == L && AR->isAffine()) {
9694       // This couldn't be folded because the operand didn't have the nsw
9695       // flag. Add the nssw flag as an assumption that we could make.
9696       const SCEV *Step = AR->getStepRecurrence(SE);
9697       Type *Ty = Expr->getType();
9698       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
9699         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
9700                                 SE.getSignExtendExpr(Step, Ty), L,
9701                                 AR->getNoWrapFlags());
9702     }
9703     return SE.getSignExtendExpr(Operand, Expr->getType());
9704   }
9705 
9706 private:
9707   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
9708                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9709     auto *A = SE.getWrapPredicate(AR, AddedFlags);
9710     if (!Assume) {
9711       // Check if we've already made this assumption.
9712       if (P.implies(A))
9713         return true;
9714       return false;
9715     }
9716     P.add(A);
9717     return true;
9718   }
9719 
9720   SCEVUnionPredicate &P;
9721   const Loop *L;
9722   bool Assume;
9723 };
9724 } // end anonymous namespace
9725 
9726 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9727                                                    const Loop *L,
9728                                                    SCEVUnionPredicate &Preds) {
9729   return SCEVPredicateRewriter::rewrite(Scev, L, *this, Preds, false);
9730 }
9731 
9732 const SCEV *ScalarEvolution::convertSCEVToAddRecWithPredicates(
9733     const SCEV *Scev, const Loop *L, SCEVUnionPredicate &Preds) {
9734   return SCEVPredicateRewriter::rewrite(Scev, L, *this, Preds, true);
9735 }
9736 
9737 /// SCEV predicates
9738 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9739                              SCEVPredicateKind Kind)
9740     : FastID(ID), Kind(Kind) {}
9741 
9742 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9743                                        const SCEVUnknown *LHS,
9744                                        const SCEVConstant *RHS)
9745     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9746 
9747 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9748   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9749 
9750   if (!Op)
9751     return false;
9752 
9753   return Op->LHS == LHS && Op->RHS == RHS;
9754 }
9755 
9756 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9757 
9758 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9759 
9760 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9761   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9762 }
9763 
9764 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
9765                                      const SCEVAddRecExpr *AR,
9766                                      IncrementWrapFlags Flags)
9767     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
9768 
9769 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
9770 
9771 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
9772   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
9773 
9774   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
9775 }
9776 
9777 bool SCEVWrapPredicate::isAlwaysTrue() const {
9778   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
9779   IncrementWrapFlags IFlags = Flags;
9780 
9781   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
9782     IFlags = clearFlags(IFlags, IncrementNSSW);
9783 
9784   return IFlags == IncrementAnyWrap;
9785 }
9786 
9787 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
9788   OS.indent(Depth) << *getExpr() << " Added Flags: ";
9789   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
9790     OS << "<nusw>";
9791   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
9792     OS << "<nssw>";
9793   OS << "\n";
9794 }
9795 
9796 SCEVWrapPredicate::IncrementWrapFlags
9797 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
9798                                    ScalarEvolution &SE) {
9799   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
9800   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
9801 
9802   // We can safely transfer the NSW flag as NSSW.
9803   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
9804     ImpliedFlags = IncrementNSSW;
9805 
9806   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
9807     // If the increment is positive, the SCEV NUW flag will also imply the
9808     // WrapPredicate NUSW flag.
9809     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
9810       if (Step->getValue()->getValue().isNonNegative())
9811         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
9812   }
9813 
9814   return ImpliedFlags;
9815 }
9816 
9817 /// Union predicates don't get cached so create a dummy set ID for it.
9818 SCEVUnionPredicate::SCEVUnionPredicate()
9819     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9820 
9821 bool SCEVUnionPredicate::isAlwaysTrue() const {
9822   return all_of(Preds,
9823                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
9824 }
9825 
9826 ArrayRef<const SCEVPredicate *>
9827 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9828   auto I = SCEVToPreds.find(Expr);
9829   if (I == SCEVToPreds.end())
9830     return ArrayRef<const SCEVPredicate *>();
9831   return I->second;
9832 }
9833 
9834 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9835   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
9836     return all_of(Set->Preds,
9837                   [this](const SCEVPredicate *I) { return this->implies(I); });
9838 
9839   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9840   if (ScevPredsIt == SCEVToPreds.end())
9841     return false;
9842   auto &SCEVPreds = ScevPredsIt->second;
9843 
9844   return any_of(SCEVPreds,
9845                 [N](const SCEVPredicate *I) { return I->implies(N); });
9846 }
9847 
9848 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9849 
9850 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9851   for (auto Pred : Preds)
9852     Pred->print(OS, Depth);
9853 }
9854 
9855 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9856   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9857     for (auto Pred : Set->Preds)
9858       add(Pred);
9859     return;
9860   }
9861 
9862   if (implies(N))
9863     return;
9864 
9865   const SCEV *Key = N->getExpr();
9866   assert(Key && "Only SCEVUnionPredicate doesn't have an "
9867                 " associated expression!");
9868 
9869   SCEVToPreds[Key].push_back(N);
9870   Preds.push_back(N);
9871 }
9872 
9873 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
9874                                                      Loop &L)
9875     : SE(SE), L(L), Generation(0) {}
9876 
9877 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9878   const SCEV *Expr = SE.getSCEV(V);
9879   RewriteEntry &Entry = RewriteMap[Expr];
9880 
9881   // If we already have an entry and the version matches, return it.
9882   if (Entry.second && Generation == Entry.first)
9883     return Entry.second;
9884 
9885   // We found an entry but it's stale. Rewrite the stale entry
9886   // acording to the current predicate.
9887   if (Entry.second)
9888     Expr = Entry.second;
9889 
9890   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
9891   Entry = {Generation, NewSCEV};
9892 
9893   return NewSCEV;
9894 }
9895 
9896 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9897   if (Preds.implies(&Pred))
9898     return;
9899   Preds.add(&Pred);
9900   updateGeneration();
9901 }
9902 
9903 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9904   return Preds;
9905 }
9906 
9907 void PredicatedScalarEvolution::updateGeneration() {
9908   // If the generation number wrapped recompute everything.
9909   if (++Generation == 0) {
9910     for (auto &II : RewriteMap) {
9911       const SCEV *Rewritten = II.second.second;
9912       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
9913     }
9914   }
9915 }
9916 
9917 void PredicatedScalarEvolution::setNoOverflow(
9918     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9919   const SCEV *Expr = getSCEV(V);
9920   const auto *AR = cast<SCEVAddRecExpr>(Expr);
9921 
9922   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
9923 
9924   // Clear the statically implied flags.
9925   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
9926   addPredicate(*SE.getWrapPredicate(AR, Flags));
9927 
9928   auto II = FlagsMap.insert({V, Flags});
9929   if (!II.second)
9930     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
9931 }
9932 
9933 bool PredicatedScalarEvolution::hasNoOverflow(
9934     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9935   const SCEV *Expr = getSCEV(V);
9936   const auto *AR = cast<SCEVAddRecExpr>(Expr);
9937 
9938   Flags = SCEVWrapPredicate::clearFlags(
9939       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
9940 
9941   auto II = FlagsMap.find(V);
9942 
9943   if (II != FlagsMap.end())
9944     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
9945 
9946   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
9947 }
9948 
9949 const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) {
9950   const SCEV *Expr = this->getSCEV(V);
9951   const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
9952   updateGeneration();
9953   RewriteMap[SE.getSCEV(V)] = {Generation, New};
9954   return New;
9955 }
9956 
9957 PredicatedScalarEvolution::
9958 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) :
9959   RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
9960   Generation(Init.Generation) {
9961   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
9962     FlagsMap.insert(*I);
9963 }
9964