1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 static cl::opt<bool> 119 VerifySCEVMap("verify-scev-maps", 120 cl::desc("Verify no dangling value in ScalarEvolution's" 121 "ExprValueMap (slow)")); 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 LLVM_DUMP_METHOD 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->hasNoUnsignedWrap()) 170 OS << "nuw><"; 171 if (AR->hasNoSignedWrap()) 172 OS << "nsw><"; 173 if (AR->hasNoSelfWrap() && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = nullptr; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->hasNoUnsignedWrap()) 204 OS << "<nuw>"; 205 if (NAry->hasNoSignedWrap()) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getAPInt().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = nullptr; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(nullptr); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getAPInt(); 541 const APInt &RA = RC->getAPInt(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } // end anonymous namespace 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 // Returns the size of the SCEV S. 674 static inline int sizeOfSCEV(const SCEV *S) { 675 struct FindSCEVSize { 676 int Size; 677 FindSCEVSize() : Size(0) {} 678 679 bool follow(const SCEV *S) { 680 ++Size; 681 // Keep looking at all operands of S. 682 return true; 683 } 684 bool isDone() const { 685 return false; 686 } 687 }; 688 689 FindSCEVSize F; 690 SCEVTraversal<FindSCEVSize> ST(F); 691 ST.visitAll(S); 692 return F.Size; 693 } 694 695 namespace { 696 697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 698 public: 699 // Computes the Quotient and Remainder of the division of Numerator by 700 // Denominator. 701 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 702 const SCEV *Denominator, const SCEV **Quotient, 703 const SCEV **Remainder) { 704 assert(Numerator && Denominator && "Uninitialized SCEV"); 705 706 SCEVDivision D(SE, Numerator, Denominator); 707 708 // Check for the trivial case here to avoid having to check for it in the 709 // rest of the code. 710 if (Numerator == Denominator) { 711 *Quotient = D.One; 712 *Remainder = D.Zero; 713 return; 714 } 715 716 if (Numerator->isZero()) { 717 *Quotient = D.Zero; 718 *Remainder = D.Zero; 719 return; 720 } 721 722 // A simple case when N/1. The quotient is N. 723 if (Denominator->isOne()) { 724 *Quotient = Numerator; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getAPInt(); 768 APInt DenominatorVal = D->getAPInt(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 if (!Numerator->isAffine()) 789 return cannotDivide(Numerator); 790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 792 // Bail out if the types do not match. 793 Type *Ty = Denominator->getType(); 794 if (Ty != StartQ->getType() || Ty != StartR->getType() || 795 Ty != StepQ->getType() || Ty != StepR->getType()) 796 return cannotDivide(Numerator); 797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 800 Numerator->getNoWrapFlags()); 801 } 802 803 void visitAddExpr(const SCEVAddExpr *Numerator) { 804 SmallVector<const SCEV *, 2> Qs, Rs; 805 Type *Ty = Denominator->getType(); 806 807 for (const SCEV *Op : Numerator->operands()) { 808 const SCEV *Q, *R; 809 divide(SE, Op, Denominator, &Q, &R); 810 811 // Bail out if types do not match. 812 if (Ty != Q->getType() || Ty != R->getType()) 813 return cannotDivide(Numerator); 814 815 Qs.push_back(Q); 816 Rs.push_back(R); 817 } 818 819 if (Qs.size() == 1) { 820 Quotient = Qs[0]; 821 Remainder = Rs[0]; 822 return; 823 } 824 825 Quotient = SE.getAddExpr(Qs); 826 Remainder = SE.getAddExpr(Rs); 827 } 828 829 void visitMulExpr(const SCEVMulExpr *Numerator) { 830 SmallVector<const SCEV *, 2> Qs; 831 Type *Ty = Denominator->getType(); 832 833 bool FoundDenominatorTerm = false; 834 for (const SCEV *Op : Numerator->operands()) { 835 // Bail out if types do not match. 836 if (Ty != Op->getType()) 837 return cannotDivide(Numerator); 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) 854 return cannotDivide(Numerator); 855 856 FoundDenominatorTerm = true; 857 Qs.push_back(Q); 858 } 859 860 if (FoundDenominatorTerm) { 861 Remainder = Zero; 862 if (Qs.size() == 1) 863 Quotient = Qs[0]; 864 else 865 Quotient = SE.getMulExpr(Qs); 866 return; 867 } 868 869 if (!isa<SCEVUnknown>(Denominator)) 870 return cannotDivide(Numerator); 871 872 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 873 ValueToValueMap RewriteMap; 874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 875 cast<SCEVConstant>(Zero)->getValue(); 876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 877 878 if (Remainder->isZero()) { 879 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(One)->getValue(); 882 Quotient = 883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 884 return; 885 } 886 887 // Quotient is (Numerator - Remainder) divided by Denominator. 888 const SCEV *Q, *R; 889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 890 // This SCEV does not seem to simplify: fail the division here. 891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 892 return cannotDivide(Numerator); 893 divide(SE, Diff, Denominator, &Q, &R); 894 if (R != Zero) 895 return cannotDivide(Numerator); 896 Quotient = Q; 897 } 898 899 private: 900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 901 const SCEV *Denominator) 902 : SE(S), Denominator(Denominator) { 903 Zero = SE.getZero(Denominator->getType()); 904 One = SE.getOne(Denominator->getType()); 905 906 // We generally do not know how to divide Expr by Denominator. We 907 // initialize the division to a "cannot divide" state to simplify the rest 908 // of the code. 909 cannotDivide(Numerator); 910 } 911 912 // Convenience function for giving up on the division. We set the quotient to 913 // be equal to zero and the remainder to be equal to the numerator. 914 void cannotDivide(const SCEV *Numerator) { 915 Quotient = Zero; 916 Remainder = Numerator; 917 } 918 919 ScalarEvolution &SE; 920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 921 }; 922 923 } 924 925 //===----------------------------------------------------------------------===// 926 // Simple SCEV method implementations 927 //===----------------------------------------------------------------------===// 928 929 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 930 /// Assume, K > 0. 931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 932 ScalarEvolution &SE, 933 Type *ResultTy) { 934 // Handle the simplest case efficiently. 935 if (K == 1) 936 return SE.getTruncateOrZeroExtend(It, ResultTy); 937 938 // We are using the following formula for BC(It, K): 939 // 940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 941 // 942 // Suppose, W is the bitwidth of the return value. We must be prepared for 943 // overflow. Hence, we must assure that the result of our computation is 944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 945 // safe in modular arithmetic. 946 // 947 // However, this code doesn't use exactly that formula; the formula it uses 948 // is something like the following, where T is the number of factors of 2 in 949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 950 // exponentiation: 951 // 952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 953 // 954 // This formula is trivially equivalent to the previous formula. However, 955 // this formula can be implemented much more efficiently. The trick is that 956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 957 // arithmetic. To do exact division in modular arithmetic, all we have 958 // to do is multiply by the inverse. Therefore, this step can be done at 959 // width W. 960 // 961 // The next issue is how to safely do the division by 2^T. The way this 962 // is done is by doing the multiplication step at a width of at least W + T 963 // bits. This way, the bottom W+T bits of the product are accurate. Then, 964 // when we perform the division by 2^T (which is equivalent to a right shift 965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 966 // truncated out after the division by 2^T. 967 // 968 // In comparison to just directly using the first formula, this technique 969 // is much more efficient; using the first formula requires W * K bits, 970 // but this formula less than W + K bits. Also, the first formula requires 971 // a division step, whereas this formula only requires multiplies and shifts. 972 // 973 // It doesn't matter whether the subtraction step is done in the calculation 974 // width or the input iteration count's width; if the subtraction overflows, 975 // the result must be zero anyway. We prefer here to do it in the width of 976 // the induction variable because it helps a lot for certain cases; CodeGen 977 // isn't smart enough to ignore the overflow, which leads to much less 978 // efficient code if the width of the subtraction is wider than the native 979 // register width. 980 // 981 // (It's possible to not widen at all by pulling out factors of 2 before 982 // the multiplication; for example, K=2 can be calculated as 983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 984 // extra arithmetic, so it's not an obvious win, and it gets 985 // much more complicated for K > 3.) 986 987 // Protection from insane SCEVs; this bound is conservative, 988 // but it probably doesn't matter. 989 if (K > 1000) 990 return SE.getCouldNotCompute(); 991 992 unsigned W = SE.getTypeSizeInBits(ResultTy); 993 994 // Calculate K! / 2^T and T; we divide out the factors of two before 995 // multiplying for calculating K! / 2^T to avoid overflow. 996 // Other overflow doesn't matter because we only care about the bottom 997 // W bits of the result. 998 APInt OddFactorial(W, 1); 999 unsigned T = 1; 1000 for (unsigned i = 3; i <= K; ++i) { 1001 APInt Mult(W, i); 1002 unsigned TwoFactors = Mult.countTrailingZeros(); 1003 T += TwoFactors; 1004 Mult = Mult.lshr(TwoFactors); 1005 OddFactorial *= Mult; 1006 } 1007 1008 // We need at least W + T bits for the multiplication step 1009 unsigned CalculationBits = W + T; 1010 1011 // Calculate 2^T, at width T+W. 1012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1013 1014 // Calculate the multiplicative inverse of K! / 2^T; 1015 // this multiplication factor will perform the exact division by 1016 // K! / 2^T. 1017 APInt Mod = APInt::getSignedMinValue(W+1); 1018 APInt MultiplyFactor = OddFactorial.zext(W+1); 1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1020 MultiplyFactor = MultiplyFactor.trunc(W); 1021 1022 // Calculate the product, at width T+W 1023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1024 CalculationBits); 1025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1026 for (unsigned i = 1; i != K; ++i) { 1027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1028 Dividend = SE.getMulExpr(Dividend, 1029 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1030 } 1031 1032 // Divide by 2^T 1033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1034 1035 // Truncate the result, and divide by K! / 2^T. 1036 1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1039 } 1040 1041 /// evaluateAtIteration - Return the value of this chain of recurrences at 1042 /// the specified iteration number. We can evaluate this recurrence by 1043 /// multiplying each element in the chain by the binomial coefficient 1044 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1045 /// 1046 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1047 /// 1048 /// where BC(It, k) stands for binomial coefficient. 1049 /// 1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1051 ScalarEvolution &SE) const { 1052 const SCEV *Result = getStart(); 1053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1071 Type *Ty) { 1072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1073 "This is not a truncating conversion!"); 1074 assert(isSCEVable(Ty) && 1075 "This is not a conversion to a SCEVable type!"); 1076 Ty = getEffectiveSCEVType(Ty); 1077 1078 FoldingSetNodeID ID; 1079 ID.AddInteger(scTruncate); 1080 ID.AddPointer(Op); 1081 ID.AddPointer(Ty); 1082 void *IP = nullptr; 1083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1084 1085 // Fold if the operand is constant. 1086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1087 return getConstant( 1088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1089 1090 // trunc(trunc(x)) --> trunc(x) 1091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1092 return getTruncateExpr(ST->getOperand(), Ty); 1093 1094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1096 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1097 1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1101 1102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1103 // eliminate all the truncates, or we replace other casts with truncates. 1104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1105 SmallVector<const SCEV *, 4> Operands; 1106 bool hasTrunc = false; 1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1109 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1110 hasTrunc = isa<SCEVTruncateExpr>(S); 1111 Operands.push_back(S); 1112 } 1113 if (!hasTrunc) 1114 return getAddExpr(Operands); 1115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1116 } 1117 1118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1119 // eliminate all the truncates, or we replace other casts with truncates. 1120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1121 SmallVector<const SCEV *, 4> Operands; 1122 bool hasTrunc = false; 1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1125 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (const SCEV *Op : AddRec->operands()) 1138 Operands.push_back(getTruncateExpr(Op, Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 auto PreStartFlags = 1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1278 1279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1280 // "S+X does not sign/unsign-overflow". 1281 // 1282 1283 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1286 return PreStart; 1287 1288 // 2. Direct overflow check on the step operation's expression. 1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1291 const SCEV *OperandExtendedStart = 1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1293 (SE->*GetExtendExpr)(Step, WideTy)); 1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1295 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1300 } 1301 return PreStart; 1302 } 1303 1304 // 3. Loop precondition. 1305 ICmpInst::Predicate Pred; 1306 const SCEV *OverflowLimit = 1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1308 1309 if (OverflowLimit && 1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1311 return PreStart; 1312 1313 return nullptr; 1314 } 1315 1316 // Get the normalized zero or sign extended expression for this AddRec's Start. 1317 template <typename ExtendOpTy> 1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1319 ScalarEvolution *SE) { 1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1321 1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1323 if (!PreStart) 1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1325 1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1327 (SE->*GetExtendExpr)(PreStart, Ty)); 1328 } 1329 1330 // Try to prove away overflow by looking at "nearby" add recurrences. A 1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1333 // 1334 // Formally: 1335 // 1336 // {S,+,X} == {S-T,+,X} + T 1337 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1338 // 1339 // If ({S-T,+,X} + T) does not overflow ... (1) 1340 // 1341 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1342 // 1343 // If {S-T,+,X} does not overflow ... (2) 1344 // 1345 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1346 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1347 // 1348 // If (S-T)+T does not overflow ... (3) 1349 // 1350 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1351 // == {Ext(S),+,Ext(X)} == LHS 1352 // 1353 // Thus, if (1), (2) and (3) are true for some T, then 1354 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1355 // 1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1357 // does not overflow" restricted to the 0th iteration. Therefore we only need 1358 // to check for (1) and (2). 1359 // 1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1361 // is `Delta` (defined below). 1362 // 1363 template <typename ExtendOpTy> 1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1365 const SCEV *Step, 1366 const Loop *L) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 1369 // We restrict `Start` to a constant to prevent SCEV from spending too much 1370 // time here. It is correct (but more expensive) to continue with a 1371 // non-constant `Start` and do a general SCEV subtraction to compute 1372 // `PreStart` below. 1373 // 1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1375 if (!StartC) 1376 return false; 1377 1378 APInt StartAI = StartC->getAPInt(); 1379 1380 for (unsigned Delta : {-2, -1, 1, 2}) { 1381 const SCEV *PreStart = getConstant(StartAI - Delta); 1382 1383 FoldingSetNodeID ID; 1384 ID.AddInteger(scAddRecExpr); 1385 ID.AddPointer(PreStart); 1386 ID.AddPointer(Step); 1387 ID.AddPointer(L); 1388 void *IP = nullptr; 1389 const auto *PreAR = 1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1391 1392 // Give up if we don't already have the add recurrence we need because 1393 // actually constructing an add recurrence is relatively expensive. 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 // If we have special knowledge that this addrec won't overflow, 1458 // we don't need to do any further analysis. 1459 if (AR->hasNoUnsignedWrap()) 1460 return getAddRecExpr( 1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1463 1464 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1465 // Note that this serves two purposes: It filters out loops that are 1466 // simply not analyzable, and it covers the case where this code is 1467 // being called from within backedge-taken count analysis, such that 1468 // attempting to ask for the backedge-taken count would likely result 1469 // in infinite recursion. In the later case, the analysis code will 1470 // cope with a conservative value, and it will take care to purge 1471 // that value once it has finished. 1472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1474 // Manually compute the final value for AR, checking for 1475 // overflow. 1476 1477 // Check whether the backedge-taken count can be losslessly casted to 1478 // the addrec's type. The count is always unsigned. 1479 const SCEV *CastedMaxBECount = 1480 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1481 const SCEV *RecastedMaxBECount = 1482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1483 if (MaxBECount == RecastedMaxBECount) { 1484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1485 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1489 const SCEV *WideMaxBECount = 1490 getZeroExtendExpr(CastedMaxBECount, WideTy); 1491 const SCEV *OperandExtendedAdd = 1492 getAddExpr(WideStart, 1493 getMulExpr(WideMaxBECount, 1494 getZeroExtendExpr(Step, WideTy))); 1495 if (ZAdd == OperandExtendedAdd) { 1496 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1498 // Return the expression with the addrec on the outside. 1499 return getAddRecExpr( 1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy))); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1517 } 1518 } 1519 1520 // If the backedge is guarded by a comparison with the pre-inc value 1521 // the addrec is safe. Also, if the entry is guarded by a comparison 1522 // with the start value and the backedge is guarded by a comparison 1523 // with the post-inc value, the addrec is safe. 1524 if (isKnownPositive(Step)) { 1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1526 getUnsignedRange(Step).getUnsignedMax()); 1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1530 AR->getPostIncExpr(*this), N))) { 1531 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1533 // Return the expression with the addrec on the outside. 1534 return getAddRecExpr( 1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1537 } 1538 } else if (isKnownNegative(Step)) { 1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1540 getSignedRange(Step).getSignedMin()); 1541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1544 AR->getPostIncExpr(*this), N))) { 1545 // Cache knowledge of AR NW, which is propagated to this AddRec. 1546 // Negative step causes unsigned wrap, but it still can't self-wrap. 1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1548 // Return the expression with the addrec on the outside. 1549 return getAddRecExpr( 1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1552 } 1553 } 1554 } 1555 1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1558 return getAddRecExpr( 1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1561 } 1562 } 1563 1564 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1565 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1566 if (SA->hasNoUnsignedWrap()) { 1567 // If the addition does not unsign overflow then we can, by definition, 1568 // commute the zero extension with the addition operation. 1569 SmallVector<const SCEV *, 4> Ops; 1570 for (const auto *Op : SA->operands()) 1571 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1572 return getAddExpr(Ops, SCEV::FlagNUW); 1573 } 1574 } 1575 1576 // The cast wasn't folded; create an explicit cast node. 1577 // Recompute the insert position, as it may have been invalidated. 1578 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1579 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1580 Op, Ty); 1581 UniqueSCEVs.InsertNode(S, IP); 1582 return S; 1583 } 1584 1585 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1586 Type *Ty) { 1587 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1588 "This is not an extending conversion!"); 1589 assert(isSCEVable(Ty) && 1590 "This is not a conversion to a SCEVable type!"); 1591 Ty = getEffectiveSCEVType(Ty); 1592 1593 // Fold if the operand is constant. 1594 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1595 return getConstant( 1596 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1597 1598 // sext(sext(x)) --> sext(x) 1599 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1600 return getSignExtendExpr(SS->getOperand(), Ty); 1601 1602 // sext(zext(x)) --> zext(x) 1603 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1604 return getZeroExtendExpr(SZ->getOperand(), Ty); 1605 1606 // Before doing any expensive analysis, check to see if we've already 1607 // computed a SCEV for this Op and Ty. 1608 FoldingSetNodeID ID; 1609 ID.AddInteger(scSignExtend); 1610 ID.AddPointer(Op); 1611 ID.AddPointer(Ty); 1612 void *IP = nullptr; 1613 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1614 1615 // If the input value is provably positive, build a zext instead. 1616 if (isKnownNonNegative(Op)) 1617 return getZeroExtendExpr(Op, Ty); 1618 1619 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1620 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1621 // It's possible the bits taken off by the truncate were all sign bits. If 1622 // so, we should be able to simplify this further. 1623 const SCEV *X = ST->getOperand(); 1624 ConstantRange CR = getSignedRange(X); 1625 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1626 unsigned NewBits = getTypeSizeInBits(Ty); 1627 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1628 CR.sextOrTrunc(NewBits))) 1629 return getTruncateOrSignExtend(X, Ty); 1630 } 1631 1632 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1633 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1634 if (SA->getNumOperands() == 2) { 1635 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1636 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1637 if (SMul && SC1) { 1638 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1639 const APInt &C1 = SC1->getAPInt(); 1640 const APInt &C2 = SC2->getAPInt(); 1641 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1642 C2.ugt(C1) && C2.isPowerOf2()) 1643 return getAddExpr(getSignExtendExpr(SC1, Ty), 1644 getSignExtendExpr(SMul, Ty)); 1645 } 1646 } 1647 } 1648 1649 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1650 if (SA->hasNoSignedWrap()) { 1651 // If the addition does not sign overflow then we can, by definition, 1652 // commute the sign extension with the addition operation. 1653 SmallVector<const SCEV *, 4> Ops; 1654 for (const auto *Op : SA->operands()) 1655 Ops.push_back(getSignExtendExpr(Op, Ty)); 1656 return getAddExpr(Ops, SCEV::FlagNSW); 1657 } 1658 } 1659 // If the input value is a chrec scev, and we can prove that the value 1660 // did not overflow the old, smaller, value, we can sign extend all of the 1661 // operands (often constants). This allows analysis of something like 1662 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1663 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1664 if (AR->isAffine()) { 1665 const SCEV *Start = AR->getStart(); 1666 const SCEV *Step = AR->getStepRecurrence(*this); 1667 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1668 const Loop *L = AR->getLoop(); 1669 1670 // If we have special knowledge that this addrec won't overflow, 1671 // we don't need to do any further analysis. 1672 if (AR->hasNoSignedWrap()) 1673 return getAddRecExpr( 1674 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1675 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1676 1677 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1678 // Note that this serves two purposes: It filters out loops that are 1679 // simply not analyzable, and it covers the case where this code is 1680 // being called from within backedge-taken count analysis, such that 1681 // attempting to ask for the backedge-taken count would likely result 1682 // in infinite recursion. In the later case, the analysis code will 1683 // cope with a conservative value, and it will take care to purge 1684 // that value once it has finished. 1685 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1686 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1687 // Manually compute the final value for AR, checking for 1688 // overflow. 1689 1690 // Check whether the backedge-taken count can be losslessly casted to 1691 // the addrec's type. The count is always unsigned. 1692 const SCEV *CastedMaxBECount = 1693 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1694 const SCEV *RecastedMaxBECount = 1695 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1696 if (MaxBECount == RecastedMaxBECount) { 1697 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1698 // Check whether Start+Step*MaxBECount has no signed overflow. 1699 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1700 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1701 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1702 const SCEV *WideMaxBECount = 1703 getZeroExtendExpr(CastedMaxBECount, WideTy); 1704 const SCEV *OperandExtendedAdd = 1705 getAddExpr(WideStart, 1706 getMulExpr(WideMaxBECount, 1707 getSignExtendExpr(Step, WideTy))); 1708 if (SAdd == OperandExtendedAdd) { 1709 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1710 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1711 // Return the expression with the addrec on the outside. 1712 return getAddRecExpr( 1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1714 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1715 } 1716 // Similar to above, only this time treat the step value as unsigned. 1717 // This covers loops that count up with an unsigned step. 1718 OperandExtendedAdd = 1719 getAddExpr(WideStart, 1720 getMulExpr(WideMaxBECount, 1721 getZeroExtendExpr(Step, WideTy))); 1722 if (SAdd == OperandExtendedAdd) { 1723 // If AR wraps around then 1724 // 1725 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1726 // => SAdd != OperandExtendedAdd 1727 // 1728 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1729 // (SAdd == OperandExtendedAdd => AR is NW) 1730 1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1732 1733 // Return the expression with the addrec on the outside. 1734 return getAddRecExpr( 1735 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1736 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1737 } 1738 } 1739 1740 // If the backedge is guarded by a comparison with the pre-inc value 1741 // the addrec is safe. Also, if the entry is guarded by a comparison 1742 // with the start value and the backedge is guarded by a comparison 1743 // with the post-inc value, the addrec is safe. 1744 ICmpInst::Predicate Pred; 1745 const SCEV *OverflowLimit = 1746 getSignedOverflowLimitForStep(Step, &Pred, this); 1747 if (OverflowLimit && 1748 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1749 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1750 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1751 OverflowLimit)))) { 1752 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 // If Start and Step are constants, check if we can apply this 1760 // transformation: 1761 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1762 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1763 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1764 if (SC1 && SC2) { 1765 const APInt &C1 = SC1->getAPInt(); 1766 const APInt &C2 = SC2->getAPInt(); 1767 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1768 C2.isPowerOf2()) { 1769 Start = getSignExtendExpr(Start, Ty); 1770 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1771 AR->getNoWrapFlags()); 1772 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1777 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1780 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // The cast wasn't folded; create an explicit cast node. 1785 // Recompute the insert position, as it may have been invalidated. 1786 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1787 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1788 Op, Ty); 1789 UniqueSCEVs.InsertNode(S, IP); 1790 return S; 1791 } 1792 1793 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1794 /// unspecified bits out to the given type. 1795 /// 1796 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1797 Type *Ty) { 1798 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1799 "This is not an extending conversion!"); 1800 assert(isSCEVable(Ty) && 1801 "This is not a conversion to a SCEVable type!"); 1802 Ty = getEffectiveSCEVType(Ty); 1803 1804 // Sign-extend negative constants. 1805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1806 if (SC->getAPInt().isNegative()) 1807 return getSignExtendExpr(Op, Ty); 1808 1809 // Peel off a truncate cast. 1810 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1811 const SCEV *NewOp = T->getOperand(); 1812 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1813 return getAnyExtendExpr(NewOp, Ty); 1814 return getTruncateOrNoop(NewOp, Ty); 1815 } 1816 1817 // Next try a zext cast. If the cast is folded, use it. 1818 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1819 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1820 return ZExt; 1821 1822 // Next try a sext cast. If the cast is folded, use it. 1823 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1824 if (!isa<SCEVSignExtendExpr>(SExt)) 1825 return SExt; 1826 1827 // Force the cast to be folded into the operands of an addrec. 1828 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1829 SmallVector<const SCEV *, 4> Ops; 1830 for (const SCEV *Op : AR->operands()) 1831 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1832 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1833 } 1834 1835 // If the expression is obviously signed, use the sext cast value. 1836 if (isa<SCEVSMaxExpr>(Op)) 1837 return SExt; 1838 1839 // Absent any other information, use the zext cast value. 1840 return ZExt; 1841 } 1842 1843 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1844 /// a list of operands to be added under the given scale, update the given 1845 /// map. This is a helper function for getAddRecExpr. As an example of 1846 /// what it does, given a sequence of operands that would form an add 1847 /// expression like this: 1848 /// 1849 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1850 /// 1851 /// where A and B are constants, update the map with these values: 1852 /// 1853 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1854 /// 1855 /// and add 13 + A*B*29 to AccumulatedConstant. 1856 /// This will allow getAddRecExpr to produce this: 1857 /// 1858 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1859 /// 1860 /// This form often exposes folding opportunities that are hidden in 1861 /// the original operand list. 1862 /// 1863 /// Return true iff it appears that any interesting folding opportunities 1864 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1865 /// the common case where no interesting opportunities are present, and 1866 /// is also used as a check to avoid infinite recursion. 1867 /// 1868 static bool 1869 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1870 SmallVectorImpl<const SCEV *> &NewOps, 1871 APInt &AccumulatedConstant, 1872 const SCEV *const *Ops, size_t NumOperands, 1873 const APInt &Scale, 1874 ScalarEvolution &SE) { 1875 bool Interesting = false; 1876 1877 // Iterate over the add operands. They are sorted, with constants first. 1878 unsigned i = 0; 1879 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1880 ++i; 1881 // Pull a buried constant out to the outside. 1882 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1883 Interesting = true; 1884 AccumulatedConstant += Scale * C->getAPInt(); 1885 } 1886 1887 // Next comes everything else. We're especially interested in multiplies 1888 // here, but they're in the middle, so just visit the rest with one loop. 1889 for (; i != NumOperands; ++i) { 1890 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1891 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1892 APInt NewScale = 1893 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1894 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1895 // A multiplication of a constant with another add; recurse. 1896 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1897 Interesting |= 1898 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1899 Add->op_begin(), Add->getNumOperands(), 1900 NewScale, SE); 1901 } else { 1902 // A multiplication of a constant with some other value. Update 1903 // the map. 1904 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1905 const SCEV *Key = SE.getMulExpr(MulOps); 1906 auto Pair = M.insert({Key, NewScale}); 1907 if (Pair.second) { 1908 NewOps.push_back(Pair.first->first); 1909 } else { 1910 Pair.first->second += NewScale; 1911 // The map already had an entry for this value, which may indicate 1912 // a folding opportunity. 1913 Interesting = true; 1914 } 1915 } 1916 } else { 1917 // An ordinary operand. Update the map. 1918 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1919 M.insert({Ops[i], Scale}); 1920 if (Pair.second) { 1921 NewOps.push_back(Pair.first->first); 1922 } else { 1923 Pair.first->second += Scale; 1924 // The map already had an entry for this value, which may indicate 1925 // a folding opportunity. 1926 Interesting = true; 1927 } 1928 } 1929 } 1930 1931 return Interesting; 1932 } 1933 1934 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1935 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1936 // can't-overflow flags for the operation if possible. 1937 static SCEV::NoWrapFlags 1938 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1939 const SmallVectorImpl<const SCEV *> &Ops, 1940 SCEV::NoWrapFlags Flags) { 1941 using namespace std::placeholders; 1942 typedef OverflowingBinaryOperator OBO; 1943 1944 bool CanAnalyze = 1945 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1946 (void)CanAnalyze; 1947 assert(CanAnalyze && "don't call from other places!"); 1948 1949 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1950 SCEV::NoWrapFlags SignOrUnsignWrap = 1951 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1952 1953 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1954 auto IsKnownNonNegative = [&](const SCEV *S) { 1955 return SE->isKnownNonNegative(S); 1956 }; 1957 1958 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1959 Flags = 1960 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1961 1962 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1963 1964 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1965 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1966 1967 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1968 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1969 1970 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 1971 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1972 auto NSWRegion = 1973 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1974 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1975 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1976 } 1977 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1978 auto NUWRegion = 1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1980 OBO::NoUnsignedWrap); 1981 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1982 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1983 } 1984 } 1985 1986 return Flags; 1987 } 1988 1989 /// getAddExpr - Get a canonical add expression, or something simpler if 1990 /// possible. 1991 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1992 SCEV::NoWrapFlags Flags) { 1993 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1994 "only nuw or nsw allowed"); 1995 assert(!Ops.empty() && "Cannot get empty add!"); 1996 if (Ops.size() == 1) return Ops[0]; 1997 #ifndef NDEBUG 1998 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1999 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2000 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2001 "SCEVAddExpr operand types don't match!"); 2002 #endif 2003 2004 // Sort by complexity, this groups all similar expression types together. 2005 GroupByComplexity(Ops, &LI); 2006 2007 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2008 2009 // If there are any constants, fold them together. 2010 unsigned Idx = 0; 2011 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2012 ++Idx; 2013 assert(Idx < Ops.size()); 2014 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2015 // We found two constants, fold them together! 2016 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2017 if (Ops.size() == 2) return Ops[0]; 2018 Ops.erase(Ops.begin()+1); // Erase the folded element 2019 LHSC = cast<SCEVConstant>(Ops[0]); 2020 } 2021 2022 // If we are left with a constant zero being added, strip it off. 2023 if (LHSC->getValue()->isZero()) { 2024 Ops.erase(Ops.begin()); 2025 --Idx; 2026 } 2027 2028 if (Ops.size() == 1) return Ops[0]; 2029 } 2030 2031 // Okay, check to see if the same value occurs in the operand list more than 2032 // once. If so, merge them together into an multiply expression. Since we 2033 // sorted the list, these values are required to be adjacent. 2034 Type *Ty = Ops[0]->getType(); 2035 bool FoundMatch = false; 2036 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2037 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2038 // Scan ahead to count how many equal operands there are. 2039 unsigned Count = 2; 2040 while (i+Count != e && Ops[i+Count] == Ops[i]) 2041 ++Count; 2042 // Merge the values into a multiply. 2043 const SCEV *Scale = getConstant(Ty, Count); 2044 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2045 if (Ops.size() == Count) 2046 return Mul; 2047 Ops[i] = Mul; 2048 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2049 --i; e -= Count - 1; 2050 FoundMatch = true; 2051 } 2052 if (FoundMatch) 2053 return getAddExpr(Ops, Flags); 2054 2055 // Check for truncates. If all the operands are truncated from the same 2056 // type, see if factoring out the truncate would permit the result to be 2057 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2058 // if the contents of the resulting outer trunc fold to something simple. 2059 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2060 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2061 Type *DstType = Trunc->getType(); 2062 Type *SrcType = Trunc->getOperand()->getType(); 2063 SmallVector<const SCEV *, 8> LargeOps; 2064 bool Ok = true; 2065 // Check all the operands to see if they can be represented in the 2066 // source type of the truncate. 2067 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2068 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2069 if (T->getOperand()->getType() != SrcType) { 2070 Ok = false; 2071 break; 2072 } 2073 LargeOps.push_back(T->getOperand()); 2074 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2075 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2076 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2077 SmallVector<const SCEV *, 8> LargeMulOps; 2078 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2079 if (const SCEVTruncateExpr *T = 2080 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2081 if (T->getOperand()->getType() != SrcType) { 2082 Ok = false; 2083 break; 2084 } 2085 LargeMulOps.push_back(T->getOperand()); 2086 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2087 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2088 } else { 2089 Ok = false; 2090 break; 2091 } 2092 } 2093 if (Ok) 2094 LargeOps.push_back(getMulExpr(LargeMulOps)); 2095 } else { 2096 Ok = false; 2097 break; 2098 } 2099 } 2100 if (Ok) { 2101 // Evaluate the expression in the larger type. 2102 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2103 // If it folds to something simple, use it. Otherwise, don't. 2104 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2105 return getTruncateExpr(Fold, DstType); 2106 } 2107 } 2108 2109 // Skip past any other cast SCEVs. 2110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2111 ++Idx; 2112 2113 // If there are add operands they would be next. 2114 if (Idx < Ops.size()) { 2115 bool DeletedAdd = false; 2116 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2117 // If we have an add, expand the add operands onto the end of the operands 2118 // list. 2119 Ops.erase(Ops.begin()+Idx); 2120 Ops.append(Add->op_begin(), Add->op_end()); 2121 DeletedAdd = true; 2122 } 2123 2124 // If we deleted at least one add, we added operands to the end of the list, 2125 // and they are not necessarily sorted. Recurse to resort and resimplify 2126 // any operands we just acquired. 2127 if (DeletedAdd) 2128 return getAddExpr(Ops); 2129 } 2130 2131 // Skip over the add expression until we get to a multiply. 2132 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2133 ++Idx; 2134 2135 // Check to see if there are any folding opportunities present with 2136 // operands multiplied by constant values. 2137 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2138 uint64_t BitWidth = getTypeSizeInBits(Ty); 2139 DenseMap<const SCEV *, APInt> M; 2140 SmallVector<const SCEV *, 8> NewOps; 2141 APInt AccumulatedConstant(BitWidth, 0); 2142 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2143 Ops.data(), Ops.size(), 2144 APInt(BitWidth, 1), *this)) { 2145 struct APIntCompare { 2146 bool operator()(const APInt &LHS, const APInt &RHS) const { 2147 return LHS.ult(RHS); 2148 } 2149 }; 2150 2151 // Some interesting folding opportunity is present, so its worthwhile to 2152 // re-generate the operands list. Group the operands by constant scale, 2153 // to avoid multiplying by the same constant scale multiple times. 2154 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2155 for (const SCEV *NewOp : NewOps) 2156 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2157 // Re-generate the operands list. 2158 Ops.clear(); 2159 if (AccumulatedConstant != 0) 2160 Ops.push_back(getConstant(AccumulatedConstant)); 2161 for (auto &MulOp : MulOpLists) 2162 if (MulOp.first != 0) 2163 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2164 getAddExpr(MulOp.second))); 2165 if (Ops.empty()) 2166 return getZero(Ty); 2167 if (Ops.size() == 1) 2168 return Ops[0]; 2169 return getAddExpr(Ops); 2170 } 2171 } 2172 2173 // If we are adding something to a multiply expression, make sure the 2174 // something is not already an operand of the multiply. If so, merge it into 2175 // the multiply. 2176 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2177 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2178 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2179 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2180 if (isa<SCEVConstant>(MulOpSCEV)) 2181 continue; 2182 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2183 if (MulOpSCEV == Ops[AddOp]) { 2184 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2185 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2186 if (Mul->getNumOperands() != 2) { 2187 // If the multiply has more than two operands, we must get the 2188 // Y*Z term. 2189 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2190 Mul->op_begin()+MulOp); 2191 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2192 InnerMul = getMulExpr(MulOps); 2193 } 2194 const SCEV *One = getOne(Ty); 2195 const SCEV *AddOne = getAddExpr(One, InnerMul); 2196 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2197 if (Ops.size() == 2) return OuterMul; 2198 if (AddOp < Idx) { 2199 Ops.erase(Ops.begin()+AddOp); 2200 Ops.erase(Ops.begin()+Idx-1); 2201 } else { 2202 Ops.erase(Ops.begin()+Idx); 2203 Ops.erase(Ops.begin()+AddOp-1); 2204 } 2205 Ops.push_back(OuterMul); 2206 return getAddExpr(Ops); 2207 } 2208 2209 // Check this multiply against other multiplies being added together. 2210 for (unsigned OtherMulIdx = Idx+1; 2211 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2212 ++OtherMulIdx) { 2213 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2214 // If MulOp occurs in OtherMul, we can fold the two multiplies 2215 // together. 2216 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2217 OMulOp != e; ++OMulOp) 2218 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2219 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2220 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2221 if (Mul->getNumOperands() != 2) { 2222 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2223 Mul->op_begin()+MulOp); 2224 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2225 InnerMul1 = getMulExpr(MulOps); 2226 } 2227 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2228 if (OtherMul->getNumOperands() != 2) { 2229 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2230 OtherMul->op_begin()+OMulOp); 2231 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2232 InnerMul2 = getMulExpr(MulOps); 2233 } 2234 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2235 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2236 if (Ops.size() == 2) return OuterMul; 2237 Ops.erase(Ops.begin()+Idx); 2238 Ops.erase(Ops.begin()+OtherMulIdx-1); 2239 Ops.push_back(OuterMul); 2240 return getAddExpr(Ops); 2241 } 2242 } 2243 } 2244 } 2245 2246 // If there are any add recurrences in the operands list, see if any other 2247 // added values are loop invariant. If so, we can fold them into the 2248 // recurrence. 2249 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2250 ++Idx; 2251 2252 // Scan over all recurrences, trying to fold loop invariants into them. 2253 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2254 // Scan all of the other operands to this add and add them to the vector if 2255 // they are loop invariant w.r.t. the recurrence. 2256 SmallVector<const SCEV *, 8> LIOps; 2257 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2258 const Loop *AddRecLoop = AddRec->getLoop(); 2259 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2260 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2261 LIOps.push_back(Ops[i]); 2262 Ops.erase(Ops.begin()+i); 2263 --i; --e; 2264 } 2265 2266 // If we found some loop invariants, fold them into the recurrence. 2267 if (!LIOps.empty()) { 2268 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2269 LIOps.push_back(AddRec->getStart()); 2270 2271 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2272 AddRec->op_end()); 2273 AddRecOps[0] = getAddExpr(LIOps); 2274 2275 // Build the new addrec. Propagate the NUW and NSW flags if both the 2276 // outer add and the inner addrec are guaranteed to have no overflow. 2277 // Always propagate NW. 2278 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2279 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2280 2281 // If all of the other operands were loop invariant, we are done. 2282 if (Ops.size() == 1) return NewRec; 2283 2284 // Otherwise, add the folded AddRec by the non-invariant parts. 2285 for (unsigned i = 0;; ++i) 2286 if (Ops[i] == AddRec) { 2287 Ops[i] = NewRec; 2288 break; 2289 } 2290 return getAddExpr(Ops); 2291 } 2292 2293 // Okay, if there weren't any loop invariants to be folded, check to see if 2294 // there are multiple AddRec's with the same loop induction variable being 2295 // added together. If so, we can fold them. 2296 for (unsigned OtherIdx = Idx+1; 2297 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2298 ++OtherIdx) 2299 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2300 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2301 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2302 AddRec->op_end()); 2303 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2304 ++OtherIdx) 2305 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2306 if (OtherAddRec->getLoop() == AddRecLoop) { 2307 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2308 i != e; ++i) { 2309 if (i >= AddRecOps.size()) { 2310 AddRecOps.append(OtherAddRec->op_begin()+i, 2311 OtherAddRec->op_end()); 2312 break; 2313 } 2314 AddRecOps[i] = getAddExpr(AddRecOps[i], 2315 OtherAddRec->getOperand(i)); 2316 } 2317 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2318 } 2319 // Step size has changed, so we cannot guarantee no self-wraparound. 2320 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2321 return getAddExpr(Ops); 2322 } 2323 2324 // Otherwise couldn't fold anything into this recurrence. Move onto the 2325 // next one. 2326 } 2327 2328 // Okay, it looks like we really DO need an add expr. Check to see if we 2329 // already have one, otherwise create a new one. 2330 FoldingSetNodeID ID; 2331 ID.AddInteger(scAddExpr); 2332 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2333 ID.AddPointer(Ops[i]); 2334 void *IP = nullptr; 2335 SCEVAddExpr *S = 2336 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2337 if (!S) { 2338 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2339 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2340 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2341 O, Ops.size()); 2342 UniqueSCEVs.InsertNode(S, IP); 2343 } 2344 S->setNoWrapFlags(Flags); 2345 return S; 2346 } 2347 2348 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2349 uint64_t k = i*j; 2350 if (j > 1 && k / j != i) Overflow = true; 2351 return k; 2352 } 2353 2354 /// Compute the result of "n choose k", the binomial coefficient. If an 2355 /// intermediate computation overflows, Overflow will be set and the return will 2356 /// be garbage. Overflow is not cleared on absence of overflow. 2357 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2358 // We use the multiplicative formula: 2359 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2360 // At each iteration, we take the n-th term of the numeral and divide by the 2361 // (k-n)th term of the denominator. This division will always produce an 2362 // integral result, and helps reduce the chance of overflow in the 2363 // intermediate computations. However, we can still overflow even when the 2364 // final result would fit. 2365 2366 if (n == 0 || n == k) return 1; 2367 if (k > n) return 0; 2368 2369 if (k > n/2) 2370 k = n-k; 2371 2372 uint64_t r = 1; 2373 for (uint64_t i = 1; i <= k; ++i) { 2374 r = umul_ov(r, n-(i-1), Overflow); 2375 r /= i; 2376 } 2377 return r; 2378 } 2379 2380 /// Determine if any of the operands in this SCEV are a constant or if 2381 /// any of the add or multiply expressions in this SCEV contain a constant. 2382 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2383 SmallVector<const SCEV *, 4> Ops; 2384 Ops.push_back(StartExpr); 2385 while (!Ops.empty()) { 2386 const SCEV *CurrentExpr = Ops.pop_back_val(); 2387 if (isa<SCEVConstant>(*CurrentExpr)) 2388 return true; 2389 2390 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2391 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2392 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2393 } 2394 } 2395 return false; 2396 } 2397 2398 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2399 /// possible. 2400 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2401 SCEV::NoWrapFlags Flags) { 2402 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2403 "only nuw or nsw allowed"); 2404 assert(!Ops.empty() && "Cannot get empty mul!"); 2405 if (Ops.size() == 1) return Ops[0]; 2406 #ifndef NDEBUG 2407 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2408 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2409 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2410 "SCEVMulExpr operand types don't match!"); 2411 #endif 2412 2413 // Sort by complexity, this groups all similar expression types together. 2414 GroupByComplexity(Ops, &LI); 2415 2416 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2417 2418 // If there are any constants, fold them together. 2419 unsigned Idx = 0; 2420 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2421 2422 // C1*(C2+V) -> C1*C2 + C1*V 2423 if (Ops.size() == 2) 2424 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2425 // If any of Add's ops are Adds or Muls with a constant, 2426 // apply this transformation as well. 2427 if (Add->getNumOperands() == 2) 2428 if (containsConstantSomewhere(Add)) 2429 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2430 getMulExpr(LHSC, Add->getOperand(1))); 2431 2432 ++Idx; 2433 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2434 // We found two constants, fold them together! 2435 ConstantInt *Fold = 2436 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2437 Ops[0] = getConstant(Fold); 2438 Ops.erase(Ops.begin()+1); // Erase the folded element 2439 if (Ops.size() == 1) return Ops[0]; 2440 LHSC = cast<SCEVConstant>(Ops[0]); 2441 } 2442 2443 // If we are left with a constant one being multiplied, strip it off. 2444 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2445 Ops.erase(Ops.begin()); 2446 --Idx; 2447 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2448 // If we have a multiply of zero, it will always be zero. 2449 return Ops[0]; 2450 } else if (Ops[0]->isAllOnesValue()) { 2451 // If we have a mul by -1 of an add, try distributing the -1 among the 2452 // add operands. 2453 if (Ops.size() == 2) { 2454 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2455 SmallVector<const SCEV *, 4> NewOps; 2456 bool AnyFolded = false; 2457 for (const SCEV *AddOp : Add->operands()) { 2458 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2459 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2460 NewOps.push_back(Mul); 2461 } 2462 if (AnyFolded) 2463 return getAddExpr(NewOps); 2464 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2465 // Negation preserves a recurrence's no self-wrap property. 2466 SmallVector<const SCEV *, 4> Operands; 2467 for (const SCEV *AddRecOp : AddRec->operands()) 2468 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2469 2470 return getAddRecExpr(Operands, AddRec->getLoop(), 2471 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2472 } 2473 } 2474 } 2475 2476 if (Ops.size() == 1) 2477 return Ops[0]; 2478 } 2479 2480 // Skip over the add expression until we get to a multiply. 2481 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2482 ++Idx; 2483 2484 // If there are mul operands inline them all into this expression. 2485 if (Idx < Ops.size()) { 2486 bool DeletedMul = false; 2487 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2488 // If we have an mul, expand the mul operands onto the end of the operands 2489 // list. 2490 Ops.erase(Ops.begin()+Idx); 2491 Ops.append(Mul->op_begin(), Mul->op_end()); 2492 DeletedMul = true; 2493 } 2494 2495 // If we deleted at least one mul, we added operands to the end of the list, 2496 // and they are not necessarily sorted. Recurse to resort and resimplify 2497 // any operands we just acquired. 2498 if (DeletedMul) 2499 return getMulExpr(Ops); 2500 } 2501 2502 // If there are any add recurrences in the operands list, see if any other 2503 // added values are loop invariant. If so, we can fold them into the 2504 // recurrence. 2505 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2506 ++Idx; 2507 2508 // Scan over all recurrences, trying to fold loop invariants into them. 2509 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2510 // Scan all of the other operands to this mul and add them to the vector if 2511 // they are loop invariant w.r.t. the recurrence. 2512 SmallVector<const SCEV *, 8> LIOps; 2513 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2514 const Loop *AddRecLoop = AddRec->getLoop(); 2515 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2516 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2517 LIOps.push_back(Ops[i]); 2518 Ops.erase(Ops.begin()+i); 2519 --i; --e; 2520 } 2521 2522 // If we found some loop invariants, fold them into the recurrence. 2523 if (!LIOps.empty()) { 2524 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2525 SmallVector<const SCEV *, 4> NewOps; 2526 NewOps.reserve(AddRec->getNumOperands()); 2527 const SCEV *Scale = getMulExpr(LIOps); 2528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2529 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2530 2531 // Build the new addrec. Propagate the NUW and NSW flags if both the 2532 // outer mul and the inner addrec are guaranteed to have no overflow. 2533 // 2534 // No self-wrap cannot be guaranteed after changing the step size, but 2535 // will be inferred if either NUW or NSW is true. 2536 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2537 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2538 2539 // If all of the other operands were loop invariant, we are done. 2540 if (Ops.size() == 1) return NewRec; 2541 2542 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2543 for (unsigned i = 0;; ++i) 2544 if (Ops[i] == AddRec) { 2545 Ops[i] = NewRec; 2546 break; 2547 } 2548 return getMulExpr(Ops); 2549 } 2550 2551 // Okay, if there weren't any loop invariants to be folded, check to see if 2552 // there are multiple AddRec's with the same loop induction variable being 2553 // multiplied together. If so, we can fold them. 2554 2555 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2556 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2557 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2558 // ]]],+,...up to x=2n}. 2559 // Note that the arguments to choose() are always integers with values 2560 // known at compile time, never SCEV objects. 2561 // 2562 // The implementation avoids pointless extra computations when the two 2563 // addrec's are of different length (mathematically, it's equivalent to 2564 // an infinite stream of zeros on the right). 2565 bool OpsModified = false; 2566 for (unsigned OtherIdx = Idx+1; 2567 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2568 ++OtherIdx) { 2569 const SCEVAddRecExpr *OtherAddRec = 2570 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2571 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2572 continue; 2573 2574 bool Overflow = false; 2575 Type *Ty = AddRec->getType(); 2576 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2577 SmallVector<const SCEV*, 7> AddRecOps; 2578 for (int x = 0, xe = AddRec->getNumOperands() + 2579 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2580 const SCEV *Term = getZero(Ty); 2581 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2582 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2583 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2584 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2585 z < ze && !Overflow; ++z) { 2586 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2587 uint64_t Coeff; 2588 if (LargerThan64Bits) 2589 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2590 else 2591 Coeff = Coeff1*Coeff2; 2592 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2593 const SCEV *Term1 = AddRec->getOperand(y-z); 2594 const SCEV *Term2 = OtherAddRec->getOperand(z); 2595 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2596 } 2597 } 2598 AddRecOps.push_back(Term); 2599 } 2600 if (!Overflow) { 2601 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2602 SCEV::FlagAnyWrap); 2603 if (Ops.size() == 2) return NewAddRec; 2604 Ops[Idx] = NewAddRec; 2605 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2606 OpsModified = true; 2607 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2608 if (!AddRec) 2609 break; 2610 } 2611 } 2612 if (OpsModified) 2613 return getMulExpr(Ops); 2614 2615 // Otherwise couldn't fold anything into this recurrence. Move onto the 2616 // next one. 2617 } 2618 2619 // Okay, it looks like we really DO need an mul expr. Check to see if we 2620 // already have one, otherwise create a new one. 2621 FoldingSetNodeID ID; 2622 ID.AddInteger(scMulExpr); 2623 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2624 ID.AddPointer(Ops[i]); 2625 void *IP = nullptr; 2626 SCEVMulExpr *S = 2627 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2628 if (!S) { 2629 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2630 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2631 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2632 O, Ops.size()); 2633 UniqueSCEVs.InsertNode(S, IP); 2634 } 2635 S->setNoWrapFlags(Flags); 2636 return S; 2637 } 2638 2639 /// getUDivExpr - Get a canonical unsigned division expression, or something 2640 /// simpler if possible. 2641 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2642 const SCEV *RHS) { 2643 assert(getEffectiveSCEVType(LHS->getType()) == 2644 getEffectiveSCEVType(RHS->getType()) && 2645 "SCEVUDivExpr operand types don't match!"); 2646 2647 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2648 if (RHSC->getValue()->equalsInt(1)) 2649 return LHS; // X udiv 1 --> x 2650 // If the denominator is zero, the result of the udiv is undefined. Don't 2651 // try to analyze it, because the resolution chosen here may differ from 2652 // the resolution chosen in other parts of the compiler. 2653 if (!RHSC->getValue()->isZero()) { 2654 // Determine if the division can be folded into the operands of 2655 // its operands. 2656 // TODO: Generalize this to non-constants by using known-bits information. 2657 Type *Ty = LHS->getType(); 2658 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2659 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2660 // For non-power-of-two values, effectively round the value up to the 2661 // nearest power of two. 2662 if (!RHSC->getAPInt().isPowerOf2()) 2663 ++MaxShiftAmt; 2664 IntegerType *ExtTy = 2665 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2667 if (const SCEVConstant *Step = 2668 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2669 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2670 const APInt &StepInt = Step->getAPInt(); 2671 const APInt &DivInt = RHSC->getAPInt(); 2672 if (!StepInt.urem(DivInt) && 2673 getZeroExtendExpr(AR, ExtTy) == 2674 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2675 getZeroExtendExpr(Step, ExtTy), 2676 AR->getLoop(), SCEV::FlagAnyWrap)) { 2677 SmallVector<const SCEV *, 4> Operands; 2678 for (const SCEV *Op : AR->operands()) 2679 Operands.push_back(getUDivExpr(Op, RHS)); 2680 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2681 } 2682 /// Get a canonical UDivExpr for a recurrence. 2683 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2684 // We can currently only fold X%N if X is constant. 2685 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2686 if (StartC && !DivInt.urem(StepInt) && 2687 getZeroExtendExpr(AR, ExtTy) == 2688 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2689 getZeroExtendExpr(Step, ExtTy), 2690 AR->getLoop(), SCEV::FlagAnyWrap)) { 2691 const APInt &StartInt = StartC->getAPInt(); 2692 const APInt &StartRem = StartInt.urem(StepInt); 2693 if (StartRem != 0) 2694 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2695 AR->getLoop(), SCEV::FlagNW); 2696 } 2697 } 2698 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2699 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2700 SmallVector<const SCEV *, 4> Operands; 2701 for (const SCEV *Op : M->operands()) 2702 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2703 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2704 // Find an operand that's safely divisible. 2705 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2706 const SCEV *Op = M->getOperand(i); 2707 const SCEV *Div = getUDivExpr(Op, RHSC); 2708 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2709 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2710 M->op_end()); 2711 Operands[i] = Div; 2712 return getMulExpr(Operands); 2713 } 2714 } 2715 } 2716 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2717 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2718 SmallVector<const SCEV *, 4> Operands; 2719 for (const SCEV *Op : A->operands()) 2720 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2721 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2722 Operands.clear(); 2723 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2724 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2725 if (isa<SCEVUDivExpr>(Op) || 2726 getMulExpr(Op, RHS) != A->getOperand(i)) 2727 break; 2728 Operands.push_back(Op); 2729 } 2730 if (Operands.size() == A->getNumOperands()) 2731 return getAddExpr(Operands); 2732 } 2733 } 2734 2735 // Fold if both operands are constant. 2736 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2737 Constant *LHSCV = LHSC->getValue(); 2738 Constant *RHSCV = RHSC->getValue(); 2739 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2740 RHSCV))); 2741 } 2742 } 2743 } 2744 2745 FoldingSetNodeID ID; 2746 ID.AddInteger(scUDivExpr); 2747 ID.AddPointer(LHS); 2748 ID.AddPointer(RHS); 2749 void *IP = nullptr; 2750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2751 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2752 LHS, RHS); 2753 UniqueSCEVs.InsertNode(S, IP); 2754 return S; 2755 } 2756 2757 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2758 APInt A = C1->getAPInt().abs(); 2759 APInt B = C2->getAPInt().abs(); 2760 uint32_t ABW = A.getBitWidth(); 2761 uint32_t BBW = B.getBitWidth(); 2762 2763 if (ABW > BBW) 2764 B = B.zext(ABW); 2765 else if (ABW < BBW) 2766 A = A.zext(BBW); 2767 2768 return APIntOps::GreatestCommonDivisor(A, B); 2769 } 2770 2771 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2772 /// something simpler if possible. There is no representation for an exact udiv 2773 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2774 /// We can't do this when it's not exact because the udiv may be clearing bits. 2775 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2776 const SCEV *RHS) { 2777 // TODO: we could try to find factors in all sorts of things, but for now we 2778 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2779 // end of this file for inspiration. 2780 2781 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2782 if (!Mul) 2783 return getUDivExpr(LHS, RHS); 2784 2785 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2786 // If the mulexpr multiplies by a constant, then that constant must be the 2787 // first element of the mulexpr. 2788 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2789 if (LHSCst == RHSCst) { 2790 SmallVector<const SCEV *, 2> Operands; 2791 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2792 return getMulExpr(Operands); 2793 } 2794 2795 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2796 // that there's a factor provided by one of the other terms. We need to 2797 // check. 2798 APInt Factor = gcd(LHSCst, RHSCst); 2799 if (!Factor.isIntN(1)) { 2800 LHSCst = 2801 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2802 RHSCst = 2803 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2804 SmallVector<const SCEV *, 2> Operands; 2805 Operands.push_back(LHSCst); 2806 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2807 LHS = getMulExpr(Operands); 2808 RHS = RHSCst; 2809 Mul = dyn_cast<SCEVMulExpr>(LHS); 2810 if (!Mul) 2811 return getUDivExactExpr(LHS, RHS); 2812 } 2813 } 2814 } 2815 2816 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2817 if (Mul->getOperand(i) == RHS) { 2818 SmallVector<const SCEV *, 2> Operands; 2819 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2820 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2821 return getMulExpr(Operands); 2822 } 2823 } 2824 2825 return getUDivExpr(LHS, RHS); 2826 } 2827 2828 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2829 /// Simplify the expression as much as possible. 2830 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2831 const Loop *L, 2832 SCEV::NoWrapFlags Flags) { 2833 SmallVector<const SCEV *, 4> Operands; 2834 Operands.push_back(Start); 2835 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2836 if (StepChrec->getLoop() == L) { 2837 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2838 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2839 } 2840 2841 Operands.push_back(Step); 2842 return getAddRecExpr(Operands, L, Flags); 2843 } 2844 2845 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2846 /// Simplify the expression as much as possible. 2847 const SCEV * 2848 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2849 const Loop *L, SCEV::NoWrapFlags Flags) { 2850 if (Operands.size() == 1) return Operands[0]; 2851 #ifndef NDEBUG 2852 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2853 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2854 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2855 "SCEVAddRecExpr operand types don't match!"); 2856 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2857 assert(isLoopInvariant(Operands[i], L) && 2858 "SCEVAddRecExpr operand is not loop-invariant!"); 2859 #endif 2860 2861 if (Operands.back()->isZero()) { 2862 Operands.pop_back(); 2863 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2864 } 2865 2866 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2867 // use that information to infer NUW and NSW flags. However, computing a 2868 // BE count requires calling getAddRecExpr, so we may not yet have a 2869 // meaningful BE count at this point (and if we don't, we'd be stuck 2870 // with a SCEVCouldNotCompute as the cached BE count). 2871 2872 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2873 2874 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2875 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2876 const Loop *NestedLoop = NestedAR->getLoop(); 2877 if (L->contains(NestedLoop) 2878 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2879 : (!NestedLoop->contains(L) && 2880 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2881 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2882 NestedAR->op_end()); 2883 Operands[0] = NestedAR->getStart(); 2884 // AddRecs require their operands be loop-invariant with respect to their 2885 // loops. Don't perform this transformation if it would break this 2886 // requirement. 2887 bool AllInvariant = all_of( 2888 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2889 2890 if (AllInvariant) { 2891 // Create a recurrence for the outer loop with the same step size. 2892 // 2893 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2894 // inner recurrence has the same property. 2895 SCEV::NoWrapFlags OuterFlags = 2896 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2897 2898 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2899 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2900 return isLoopInvariant(Op, NestedLoop); 2901 }); 2902 2903 if (AllInvariant) { 2904 // Ok, both add recurrences are valid after the transformation. 2905 // 2906 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2907 // the outer recurrence has the same property. 2908 SCEV::NoWrapFlags InnerFlags = 2909 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2910 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2911 } 2912 } 2913 // Reset Operands to its original state. 2914 Operands[0] = NestedAR; 2915 } 2916 } 2917 2918 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2919 // already have one, otherwise create a new one. 2920 FoldingSetNodeID ID; 2921 ID.AddInteger(scAddRecExpr); 2922 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2923 ID.AddPointer(Operands[i]); 2924 ID.AddPointer(L); 2925 void *IP = nullptr; 2926 SCEVAddRecExpr *S = 2927 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2928 if (!S) { 2929 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2930 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2931 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2932 O, Operands.size(), L); 2933 UniqueSCEVs.InsertNode(S, IP); 2934 } 2935 S->setNoWrapFlags(Flags); 2936 return S; 2937 } 2938 2939 const SCEV * 2940 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2941 const SmallVectorImpl<const SCEV *> &IndexExprs, 2942 bool InBounds) { 2943 // getSCEV(Base)->getType() has the same address space as Base->getType() 2944 // because SCEV::getType() preserves the address space. 2945 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2946 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2947 // instruction to its SCEV, because the Instruction may be guarded by control 2948 // flow and the no-overflow bits may not be valid for the expression in any 2949 // context. This can be fixed similarly to how these flags are handled for 2950 // adds. 2951 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2952 2953 const SCEV *TotalOffset = getZero(IntPtrTy); 2954 // The address space is unimportant. The first thing we do on CurTy is getting 2955 // its element type. 2956 Type *CurTy = PointerType::getUnqual(PointeeType); 2957 for (const SCEV *IndexExpr : IndexExprs) { 2958 // Compute the (potentially symbolic) offset in bytes for this index. 2959 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2960 // For a struct, add the member offset. 2961 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2962 unsigned FieldNo = Index->getZExtValue(); 2963 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2964 2965 // Add the field offset to the running total offset. 2966 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2967 2968 // Update CurTy to the type of the field at Index. 2969 CurTy = STy->getTypeAtIndex(Index); 2970 } else { 2971 // Update CurTy to its element type. 2972 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2973 // For an array, add the element offset, explicitly scaled. 2974 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2975 // Getelementptr indices are signed. 2976 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2977 2978 // Multiply the index by the element size to compute the element offset. 2979 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2980 2981 // Add the element offset to the running total offset. 2982 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2983 } 2984 } 2985 2986 // Add the total offset from all the GEP indices to the base. 2987 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2988 } 2989 2990 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2991 const SCEV *RHS) { 2992 SmallVector<const SCEV *, 2> Ops; 2993 Ops.push_back(LHS); 2994 Ops.push_back(RHS); 2995 return getSMaxExpr(Ops); 2996 } 2997 2998 const SCEV * 2999 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3000 assert(!Ops.empty() && "Cannot get empty smax!"); 3001 if (Ops.size() == 1) return Ops[0]; 3002 #ifndef NDEBUG 3003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3004 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3006 "SCEVSMaxExpr operand types don't match!"); 3007 #endif 3008 3009 // Sort by complexity, this groups all similar expression types together. 3010 GroupByComplexity(Ops, &LI); 3011 3012 // If there are any constants, fold them together. 3013 unsigned Idx = 0; 3014 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3015 ++Idx; 3016 assert(Idx < Ops.size()); 3017 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3018 // We found two constants, fold them together! 3019 ConstantInt *Fold = ConstantInt::get( 3020 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3021 Ops[0] = getConstant(Fold); 3022 Ops.erase(Ops.begin()+1); // Erase the folded element 3023 if (Ops.size() == 1) return Ops[0]; 3024 LHSC = cast<SCEVConstant>(Ops[0]); 3025 } 3026 3027 // If we are left with a constant minimum-int, strip it off. 3028 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3029 Ops.erase(Ops.begin()); 3030 --Idx; 3031 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3032 // If we have an smax with a constant maximum-int, it will always be 3033 // maximum-int. 3034 return Ops[0]; 3035 } 3036 3037 if (Ops.size() == 1) return Ops[0]; 3038 } 3039 3040 // Find the first SMax 3041 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3042 ++Idx; 3043 3044 // Check to see if one of the operands is an SMax. If so, expand its operands 3045 // onto our operand list, and recurse to simplify. 3046 if (Idx < Ops.size()) { 3047 bool DeletedSMax = false; 3048 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3049 Ops.erase(Ops.begin()+Idx); 3050 Ops.append(SMax->op_begin(), SMax->op_end()); 3051 DeletedSMax = true; 3052 } 3053 3054 if (DeletedSMax) 3055 return getSMaxExpr(Ops); 3056 } 3057 3058 // Okay, check to see if the same value occurs in the operand list twice. If 3059 // so, delete one. Since we sorted the list, these values are required to 3060 // be adjacent. 3061 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3062 // X smax Y smax Y --> X smax Y 3063 // X smax Y --> X, if X is always greater than Y 3064 if (Ops[i] == Ops[i+1] || 3065 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3066 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3067 --i; --e; 3068 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3069 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3070 --i; --e; 3071 } 3072 3073 if (Ops.size() == 1) return Ops[0]; 3074 3075 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3076 3077 // Okay, it looks like we really DO need an smax expr. Check to see if we 3078 // already have one, otherwise create a new one. 3079 FoldingSetNodeID ID; 3080 ID.AddInteger(scSMaxExpr); 3081 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3082 ID.AddPointer(Ops[i]); 3083 void *IP = nullptr; 3084 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3085 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3086 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3087 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3088 O, Ops.size()); 3089 UniqueSCEVs.InsertNode(S, IP); 3090 return S; 3091 } 3092 3093 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3094 const SCEV *RHS) { 3095 SmallVector<const SCEV *, 2> Ops; 3096 Ops.push_back(LHS); 3097 Ops.push_back(RHS); 3098 return getUMaxExpr(Ops); 3099 } 3100 3101 const SCEV * 3102 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3103 assert(!Ops.empty() && "Cannot get empty umax!"); 3104 if (Ops.size() == 1) return Ops[0]; 3105 #ifndef NDEBUG 3106 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3107 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3108 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3109 "SCEVUMaxExpr operand types don't match!"); 3110 #endif 3111 3112 // Sort by complexity, this groups all similar expression types together. 3113 GroupByComplexity(Ops, &LI); 3114 3115 // If there are any constants, fold them together. 3116 unsigned Idx = 0; 3117 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3118 ++Idx; 3119 assert(Idx < Ops.size()); 3120 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3121 // We found two constants, fold them together! 3122 ConstantInt *Fold = ConstantInt::get( 3123 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3124 Ops[0] = getConstant(Fold); 3125 Ops.erase(Ops.begin()+1); // Erase the folded element 3126 if (Ops.size() == 1) return Ops[0]; 3127 LHSC = cast<SCEVConstant>(Ops[0]); 3128 } 3129 3130 // If we are left with a constant minimum-int, strip it off. 3131 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3132 Ops.erase(Ops.begin()); 3133 --Idx; 3134 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3135 // If we have an umax with a constant maximum-int, it will always be 3136 // maximum-int. 3137 return Ops[0]; 3138 } 3139 3140 if (Ops.size() == 1) return Ops[0]; 3141 } 3142 3143 // Find the first UMax 3144 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3145 ++Idx; 3146 3147 // Check to see if one of the operands is a UMax. If so, expand its operands 3148 // onto our operand list, and recurse to simplify. 3149 if (Idx < Ops.size()) { 3150 bool DeletedUMax = false; 3151 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3152 Ops.erase(Ops.begin()+Idx); 3153 Ops.append(UMax->op_begin(), UMax->op_end()); 3154 DeletedUMax = true; 3155 } 3156 3157 if (DeletedUMax) 3158 return getUMaxExpr(Ops); 3159 } 3160 3161 // Okay, check to see if the same value occurs in the operand list twice. If 3162 // so, delete one. Since we sorted the list, these values are required to 3163 // be adjacent. 3164 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3165 // X umax Y umax Y --> X umax Y 3166 // X umax Y --> X, if X is always greater than Y 3167 if (Ops[i] == Ops[i+1] || 3168 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3169 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3170 --i; --e; 3171 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3172 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3173 --i; --e; 3174 } 3175 3176 if (Ops.size() == 1) return Ops[0]; 3177 3178 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3179 3180 // Okay, it looks like we really DO need a umax expr. Check to see if we 3181 // already have one, otherwise create a new one. 3182 FoldingSetNodeID ID; 3183 ID.AddInteger(scUMaxExpr); 3184 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3185 ID.AddPointer(Ops[i]); 3186 void *IP = nullptr; 3187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3188 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3189 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3190 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3191 O, Ops.size()); 3192 UniqueSCEVs.InsertNode(S, IP); 3193 return S; 3194 } 3195 3196 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3197 const SCEV *RHS) { 3198 // ~smax(~x, ~y) == smin(x, y). 3199 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3200 } 3201 3202 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3203 const SCEV *RHS) { 3204 // ~umax(~x, ~y) == umin(x, y) 3205 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3206 } 3207 3208 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3209 // We can bypass creating a target-independent 3210 // constant expression and then folding it back into a ConstantInt. 3211 // This is just a compile-time optimization. 3212 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3213 } 3214 3215 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3216 StructType *STy, 3217 unsigned FieldNo) { 3218 // We can bypass creating a target-independent 3219 // constant expression and then folding it back into a ConstantInt. 3220 // This is just a compile-time optimization. 3221 return getConstant( 3222 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3223 } 3224 3225 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3226 // Don't attempt to do anything other than create a SCEVUnknown object 3227 // here. createSCEV only calls getUnknown after checking for all other 3228 // interesting possibilities, and any other code that calls getUnknown 3229 // is doing so in order to hide a value from SCEV canonicalization. 3230 3231 FoldingSetNodeID ID; 3232 ID.AddInteger(scUnknown); 3233 ID.AddPointer(V); 3234 void *IP = nullptr; 3235 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3236 assert(cast<SCEVUnknown>(S)->getValue() == V && 3237 "Stale SCEVUnknown in uniquing map!"); 3238 return S; 3239 } 3240 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3241 FirstUnknown); 3242 FirstUnknown = cast<SCEVUnknown>(S); 3243 UniqueSCEVs.InsertNode(S, IP); 3244 return S; 3245 } 3246 3247 //===----------------------------------------------------------------------===// 3248 // Basic SCEV Analysis and PHI Idiom Recognition Code 3249 // 3250 3251 /// isSCEVable - Test if values of the given type are analyzable within 3252 /// the SCEV framework. This primarily includes integer types, and it 3253 /// can optionally include pointer types if the ScalarEvolution class 3254 /// has access to target-specific information. 3255 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3256 // Integers and pointers are always SCEVable. 3257 return Ty->isIntegerTy() || Ty->isPointerTy(); 3258 } 3259 3260 /// getTypeSizeInBits - Return the size in bits of the specified type, 3261 /// for which isSCEVable must return true. 3262 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3263 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3264 return getDataLayout().getTypeSizeInBits(Ty); 3265 } 3266 3267 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3268 /// the given type and which represents how SCEV will treat the given 3269 /// type, for which isSCEVable must return true. For pointer types, 3270 /// this is the pointer-sized integer type. 3271 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3272 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3273 3274 if (Ty->isIntegerTy()) 3275 return Ty; 3276 3277 // The only other support type is pointer. 3278 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3279 return getDataLayout().getIntPtrType(Ty); 3280 } 3281 3282 const SCEV *ScalarEvolution::getCouldNotCompute() { 3283 return CouldNotCompute.get(); 3284 } 3285 3286 3287 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3288 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3289 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3290 // is set iff if find such SCEVUnknown. 3291 // 3292 struct FindInvalidSCEVUnknown { 3293 bool FindOne; 3294 FindInvalidSCEVUnknown() { FindOne = false; } 3295 bool follow(const SCEV *S) { 3296 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3297 case scConstant: 3298 return false; 3299 case scUnknown: 3300 if (!cast<SCEVUnknown>(S)->getValue()) 3301 FindOne = true; 3302 return false; 3303 default: 3304 return true; 3305 } 3306 } 3307 bool isDone() const { return FindOne; } 3308 }; 3309 3310 FindInvalidSCEVUnknown F; 3311 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3312 ST.visitAll(S); 3313 3314 return !F.FindOne; 3315 } 3316 3317 namespace { 3318 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3319 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set 3320 // iff if such sub scAddRecExpr type SCEV is found. 3321 struct FindAddRecurrence { 3322 bool FoundOne; 3323 FindAddRecurrence() : FoundOne(false) {} 3324 3325 bool follow(const SCEV *S) { 3326 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3327 case scAddRecExpr: 3328 FoundOne = true; 3329 case scConstant: 3330 case scUnknown: 3331 case scCouldNotCompute: 3332 return false; 3333 default: 3334 return true; 3335 } 3336 } 3337 bool isDone() const { return FoundOne; } 3338 }; 3339 } 3340 3341 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3342 HasRecMapType::iterator I = HasRecMap.find_as(S); 3343 if (I != HasRecMap.end()) 3344 return I->second; 3345 3346 FindAddRecurrence F; 3347 SCEVTraversal<FindAddRecurrence> ST(F); 3348 ST.visitAll(S); 3349 HasRecMap.insert({S, F.FoundOne}); 3350 return F.FoundOne; 3351 } 3352 3353 /// getSCEVValues - Return the Value set from S. 3354 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) { 3355 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3356 if (SI == ExprValueMap.end()) 3357 return nullptr; 3358 #ifndef NDEBUG 3359 if (VerifySCEVMap) { 3360 // Check there is no dangling Value in the set returned. 3361 for (const auto &VE : SI->second) 3362 assert(ValueExprMap.count(VE)); 3363 } 3364 #endif 3365 return &SI->second; 3366 } 3367 3368 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap. 3369 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S), 3370 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed 3371 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S]. 3372 void ScalarEvolution::eraseValueFromMap(Value *V) { 3373 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3374 if (I != ValueExprMap.end()) { 3375 const SCEV *S = I->second; 3376 SetVector<Value *> *SV = getSCEVValues(S); 3377 // Remove V from the set of ExprValueMap[S] 3378 if (SV) 3379 SV->remove(V); 3380 ValueExprMap.erase(V); 3381 } 3382 } 3383 3384 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3385 /// expression and create a new one. 3386 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3387 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3388 3389 const SCEV *S = getExistingSCEV(V); 3390 if (S == nullptr) { 3391 S = createSCEV(V); 3392 // During PHI resolution, it is possible to create two SCEVs for the same 3393 // V, so it is needed to double check whether V->S is inserted into 3394 // ValueExprMap before insert S->V into ExprValueMap. 3395 std::pair<ValueExprMapType::iterator, bool> Pair = 3396 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3397 if (Pair.second) 3398 ExprValueMap[S].insert(V); 3399 } 3400 return S; 3401 } 3402 3403 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3404 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3405 3406 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3407 if (I != ValueExprMap.end()) { 3408 const SCEV *S = I->second; 3409 if (checkValidity(S)) 3410 return S; 3411 forgetMemoizedResults(S); 3412 ValueExprMap.erase(I); 3413 } 3414 return nullptr; 3415 } 3416 3417 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3418 /// 3419 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3420 SCEV::NoWrapFlags Flags) { 3421 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3422 return getConstant( 3423 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3424 3425 Type *Ty = V->getType(); 3426 Ty = getEffectiveSCEVType(Ty); 3427 return getMulExpr( 3428 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3429 } 3430 3431 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3432 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3433 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3434 return getConstant( 3435 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3436 3437 Type *Ty = V->getType(); 3438 Ty = getEffectiveSCEVType(Ty); 3439 const SCEV *AllOnes = 3440 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3441 return getMinusSCEV(AllOnes, V); 3442 } 3443 3444 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3445 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3446 SCEV::NoWrapFlags Flags) { 3447 // Fast path: X - X --> 0. 3448 if (LHS == RHS) 3449 return getZero(LHS->getType()); 3450 3451 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3452 // makes it so that we cannot make much use of NUW. 3453 auto AddFlags = SCEV::FlagAnyWrap; 3454 const bool RHSIsNotMinSigned = 3455 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3456 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3457 // Let M be the minimum representable signed value. Then (-1)*RHS 3458 // signed-wraps if and only if RHS is M. That can happen even for 3459 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3460 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3461 // (-1)*RHS, we need to prove that RHS != M. 3462 // 3463 // If LHS is non-negative and we know that LHS - RHS does not 3464 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3465 // either by proving that RHS > M or that LHS >= 0. 3466 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3467 AddFlags = SCEV::FlagNSW; 3468 } 3469 } 3470 3471 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3472 // RHS is NSW and LHS >= 0. 3473 // 3474 // The difficulty here is that the NSW flag may have been proven 3475 // relative to a loop that is to be found in a recurrence in LHS and 3476 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3477 // larger scope than intended. 3478 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3479 3480 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3481 } 3482 3483 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3484 /// input value to the specified type. If the type must be extended, it is zero 3485 /// extended. 3486 const SCEV * 3487 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3488 Type *SrcTy = V->getType(); 3489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3490 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3491 "Cannot truncate or zero extend with non-integer arguments!"); 3492 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3493 return V; // No conversion 3494 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3495 return getTruncateExpr(V, Ty); 3496 return getZeroExtendExpr(V, Ty); 3497 } 3498 3499 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3500 /// input value to the specified type. If the type must be extended, it is sign 3501 /// extended. 3502 const SCEV * 3503 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3504 Type *Ty) { 3505 Type *SrcTy = V->getType(); 3506 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3507 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3508 "Cannot truncate or zero extend with non-integer arguments!"); 3509 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3510 return V; // No conversion 3511 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3512 return getTruncateExpr(V, Ty); 3513 return getSignExtendExpr(V, Ty); 3514 } 3515 3516 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3517 /// input value to the specified type. If the type must be extended, it is zero 3518 /// extended. The conversion must not be narrowing. 3519 const SCEV * 3520 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3521 Type *SrcTy = V->getType(); 3522 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3523 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3524 "Cannot noop or zero extend with non-integer arguments!"); 3525 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3526 "getNoopOrZeroExtend cannot truncate!"); 3527 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3528 return V; // No conversion 3529 return getZeroExtendExpr(V, Ty); 3530 } 3531 3532 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3533 /// input value to the specified type. If the type must be extended, it is sign 3534 /// extended. The conversion must not be narrowing. 3535 const SCEV * 3536 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3537 Type *SrcTy = V->getType(); 3538 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3539 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3540 "Cannot noop or sign extend with non-integer arguments!"); 3541 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3542 "getNoopOrSignExtend cannot truncate!"); 3543 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3544 return V; // No conversion 3545 return getSignExtendExpr(V, Ty); 3546 } 3547 3548 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3549 /// the input value to the specified type. If the type must be extended, 3550 /// it is extended with unspecified bits. The conversion must not be 3551 /// narrowing. 3552 const SCEV * 3553 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3554 Type *SrcTy = V->getType(); 3555 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3556 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3557 "Cannot noop or any extend with non-integer arguments!"); 3558 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3559 "getNoopOrAnyExtend cannot truncate!"); 3560 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3561 return V; // No conversion 3562 return getAnyExtendExpr(V, Ty); 3563 } 3564 3565 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3566 /// input value to the specified type. The conversion must not be widening. 3567 const SCEV * 3568 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3569 Type *SrcTy = V->getType(); 3570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3571 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3572 "Cannot truncate or noop with non-integer arguments!"); 3573 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3574 "getTruncateOrNoop cannot extend!"); 3575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3576 return V; // No conversion 3577 return getTruncateExpr(V, Ty); 3578 } 3579 3580 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3581 /// the types using zero-extension, and then perform a umax operation 3582 /// with them. 3583 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3584 const SCEV *RHS) { 3585 const SCEV *PromotedLHS = LHS; 3586 const SCEV *PromotedRHS = RHS; 3587 3588 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3589 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3590 else 3591 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3592 3593 return getUMaxExpr(PromotedLHS, PromotedRHS); 3594 } 3595 3596 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3597 /// the types using zero-extension, and then perform a umin operation 3598 /// with them. 3599 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3600 const SCEV *RHS) { 3601 const SCEV *PromotedLHS = LHS; 3602 const SCEV *PromotedRHS = RHS; 3603 3604 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3605 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3606 else 3607 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3608 3609 return getUMinExpr(PromotedLHS, PromotedRHS); 3610 } 3611 3612 /// getPointerBase - Transitively follow the chain of pointer-type operands 3613 /// until reaching a SCEV that does not have a single pointer operand. This 3614 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3615 /// but corner cases do exist. 3616 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3617 // A pointer operand may evaluate to a nonpointer expression, such as null. 3618 if (!V->getType()->isPointerTy()) 3619 return V; 3620 3621 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3622 return getPointerBase(Cast->getOperand()); 3623 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3624 const SCEV *PtrOp = nullptr; 3625 for (const SCEV *NAryOp : NAry->operands()) { 3626 if (NAryOp->getType()->isPointerTy()) { 3627 // Cannot find the base of an expression with multiple pointer operands. 3628 if (PtrOp) 3629 return V; 3630 PtrOp = NAryOp; 3631 } 3632 } 3633 if (!PtrOp) 3634 return V; 3635 return getPointerBase(PtrOp); 3636 } 3637 return V; 3638 } 3639 3640 /// PushDefUseChildren - Push users of the given Instruction 3641 /// onto the given Worklist. 3642 static void 3643 PushDefUseChildren(Instruction *I, 3644 SmallVectorImpl<Instruction *> &Worklist) { 3645 // Push the def-use children onto the Worklist stack. 3646 for (User *U : I->users()) 3647 Worklist.push_back(cast<Instruction>(U)); 3648 } 3649 3650 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3651 /// instructions that depend on the given instruction and removes them from 3652 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3653 /// resolution. 3654 void 3655 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3656 SmallVector<Instruction *, 16> Worklist; 3657 PushDefUseChildren(PN, Worklist); 3658 3659 SmallPtrSet<Instruction *, 8> Visited; 3660 Visited.insert(PN); 3661 while (!Worklist.empty()) { 3662 Instruction *I = Worklist.pop_back_val(); 3663 if (!Visited.insert(I).second) 3664 continue; 3665 3666 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3667 if (It != ValueExprMap.end()) { 3668 const SCEV *Old = It->second; 3669 3670 // Short-circuit the def-use traversal if the symbolic name 3671 // ceases to appear in expressions. 3672 if (Old != SymName && !hasOperand(Old, SymName)) 3673 continue; 3674 3675 // SCEVUnknown for a PHI either means that it has an unrecognized 3676 // structure, it's a PHI that's in the progress of being computed 3677 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3678 // additional loop trip count information isn't going to change anything. 3679 // In the second case, createNodeForPHI will perform the necessary 3680 // updates on its own when it gets to that point. In the third, we do 3681 // want to forget the SCEVUnknown. 3682 if (!isa<PHINode>(I) || 3683 !isa<SCEVUnknown>(Old) || 3684 (I != PN && Old == SymName)) { 3685 forgetMemoizedResults(Old); 3686 ValueExprMap.erase(It); 3687 } 3688 } 3689 3690 PushDefUseChildren(I, Worklist); 3691 } 3692 } 3693 3694 namespace { 3695 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3696 public: 3697 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3698 ScalarEvolution &SE) { 3699 SCEVInitRewriter Rewriter(L, SE); 3700 const SCEV *Result = Rewriter.visit(Scev); 3701 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3702 } 3703 3704 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3705 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3706 3707 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3708 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3709 Valid = false; 3710 return Expr; 3711 } 3712 3713 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3714 // Only allow AddRecExprs for this loop. 3715 if (Expr->getLoop() == L) 3716 return Expr->getStart(); 3717 Valid = false; 3718 return Expr; 3719 } 3720 3721 bool isValid() { return Valid; } 3722 3723 private: 3724 const Loop *L; 3725 bool Valid; 3726 }; 3727 3728 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3729 public: 3730 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3731 ScalarEvolution &SE) { 3732 SCEVShiftRewriter Rewriter(L, SE); 3733 const SCEV *Result = Rewriter.visit(Scev); 3734 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3735 } 3736 3737 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3738 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3739 3740 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3741 // Only allow AddRecExprs for this loop. 3742 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3743 Valid = false; 3744 return Expr; 3745 } 3746 3747 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3748 if (Expr->getLoop() == L && Expr->isAffine()) 3749 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3750 Valid = false; 3751 return Expr; 3752 } 3753 bool isValid() { return Valid; } 3754 3755 private: 3756 const Loop *L; 3757 bool Valid; 3758 }; 3759 } // end anonymous namespace 3760 3761 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3762 const Loop *L = LI.getLoopFor(PN->getParent()); 3763 if (!L || L->getHeader() != PN->getParent()) 3764 return nullptr; 3765 3766 // The loop may have multiple entrances or multiple exits; we can analyze 3767 // this phi as an addrec if it has a unique entry value and a unique 3768 // backedge value. 3769 Value *BEValueV = nullptr, *StartValueV = nullptr; 3770 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3771 Value *V = PN->getIncomingValue(i); 3772 if (L->contains(PN->getIncomingBlock(i))) { 3773 if (!BEValueV) { 3774 BEValueV = V; 3775 } else if (BEValueV != V) { 3776 BEValueV = nullptr; 3777 break; 3778 } 3779 } else if (!StartValueV) { 3780 StartValueV = V; 3781 } else if (StartValueV != V) { 3782 StartValueV = nullptr; 3783 break; 3784 } 3785 } 3786 if (BEValueV && StartValueV) { 3787 // While we are analyzing this PHI node, handle its value symbolically. 3788 const SCEV *SymbolicName = getUnknown(PN); 3789 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3790 "PHI node already processed?"); 3791 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3792 3793 // Using this symbolic name for the PHI, analyze the value coming around 3794 // the back-edge. 3795 const SCEV *BEValue = getSCEV(BEValueV); 3796 3797 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3798 // has a special value for the first iteration of the loop. 3799 3800 // If the value coming around the backedge is an add with the symbolic 3801 // value we just inserted, then we found a simple induction variable! 3802 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3803 // If there is a single occurrence of the symbolic value, replace it 3804 // with a recurrence. 3805 unsigned FoundIndex = Add->getNumOperands(); 3806 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3807 if (Add->getOperand(i) == SymbolicName) 3808 if (FoundIndex == e) { 3809 FoundIndex = i; 3810 break; 3811 } 3812 3813 if (FoundIndex != Add->getNumOperands()) { 3814 // Create an add with everything but the specified operand. 3815 SmallVector<const SCEV *, 8> Ops; 3816 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3817 if (i != FoundIndex) 3818 Ops.push_back(Add->getOperand(i)); 3819 const SCEV *Accum = getAddExpr(Ops); 3820 3821 // This is not a valid addrec if the step amount is varying each 3822 // loop iteration, but is not itself an addrec in this loop. 3823 if (isLoopInvariant(Accum, L) || 3824 (isa<SCEVAddRecExpr>(Accum) && 3825 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3826 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3827 3828 // If the increment doesn't overflow, then neither the addrec nor 3829 // the post-increment will overflow. 3830 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3831 if (OBO->getOperand(0) == PN) { 3832 if (OBO->hasNoUnsignedWrap()) 3833 Flags = setFlags(Flags, SCEV::FlagNUW); 3834 if (OBO->hasNoSignedWrap()) 3835 Flags = setFlags(Flags, SCEV::FlagNSW); 3836 } 3837 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3838 // If the increment is an inbounds GEP, then we know the address 3839 // space cannot be wrapped around. We cannot make any guarantee 3840 // about signed or unsigned overflow because pointers are 3841 // unsigned but we may have a negative index from the base 3842 // pointer. We can guarantee that no unsigned wrap occurs if the 3843 // indices form a positive value. 3844 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3845 Flags = setFlags(Flags, SCEV::FlagNW); 3846 3847 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3848 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3849 Flags = setFlags(Flags, SCEV::FlagNUW); 3850 } 3851 3852 // We cannot transfer nuw and nsw flags from subtraction 3853 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3854 // for instance. 3855 } 3856 3857 const SCEV *StartVal = getSCEV(StartValueV); 3858 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3859 3860 // Since the no-wrap flags are on the increment, they apply to the 3861 // post-incremented value as well. 3862 if (isLoopInvariant(Accum, L)) 3863 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3864 3865 // Okay, for the entire analysis of this edge we assumed the PHI 3866 // to be symbolic. We now need to go back and purge all of the 3867 // entries for the scalars that use the symbolic expression. 3868 ForgetSymbolicName(PN, SymbolicName); 3869 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3870 return PHISCEV; 3871 } 3872 } 3873 } else { 3874 // Otherwise, this could be a loop like this: 3875 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3876 // In this case, j = {1,+,1} and BEValue is j. 3877 // Because the other in-value of i (0) fits the evolution of BEValue 3878 // i really is an addrec evolution. 3879 // 3880 // We can generalize this saying that i is the shifted value of BEValue 3881 // by one iteration: 3882 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3883 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3884 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3885 if (Shifted != getCouldNotCompute() && 3886 Start != getCouldNotCompute()) { 3887 const SCEV *StartVal = getSCEV(StartValueV); 3888 if (Start == StartVal) { 3889 // Okay, for the entire analysis of this edge we assumed the PHI 3890 // to be symbolic. We now need to go back and purge all of the 3891 // entries for the scalars that use the symbolic expression. 3892 ForgetSymbolicName(PN, SymbolicName); 3893 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3894 return Shifted; 3895 } 3896 } 3897 } 3898 } 3899 3900 return nullptr; 3901 } 3902 3903 // Checks if the SCEV S is available at BB. S is considered available at BB 3904 // if S can be materialized at BB without introducing a fault. 3905 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3906 BasicBlock *BB) { 3907 struct CheckAvailable { 3908 bool TraversalDone = false; 3909 bool Available = true; 3910 3911 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3912 BasicBlock *BB = nullptr; 3913 DominatorTree &DT; 3914 3915 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3916 : L(L), BB(BB), DT(DT) {} 3917 3918 bool setUnavailable() { 3919 TraversalDone = true; 3920 Available = false; 3921 return false; 3922 } 3923 3924 bool follow(const SCEV *S) { 3925 switch (S->getSCEVType()) { 3926 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3927 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3928 // These expressions are available if their operand(s) is/are. 3929 return true; 3930 3931 case scAddRecExpr: { 3932 // We allow add recurrences that are on the loop BB is in, or some 3933 // outer loop. This guarantees availability because the value of the 3934 // add recurrence at BB is simply the "current" value of the induction 3935 // variable. We can relax this in the future; for instance an add 3936 // recurrence on a sibling dominating loop is also available at BB. 3937 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3938 if (L && (ARLoop == L || ARLoop->contains(L))) 3939 return true; 3940 3941 return setUnavailable(); 3942 } 3943 3944 case scUnknown: { 3945 // For SCEVUnknown, we check for simple dominance. 3946 const auto *SU = cast<SCEVUnknown>(S); 3947 Value *V = SU->getValue(); 3948 3949 if (isa<Argument>(V)) 3950 return false; 3951 3952 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3953 return false; 3954 3955 return setUnavailable(); 3956 } 3957 3958 case scUDivExpr: 3959 case scCouldNotCompute: 3960 // We do not try to smart about these at all. 3961 return setUnavailable(); 3962 } 3963 llvm_unreachable("switch should be fully covered!"); 3964 } 3965 3966 bool isDone() { return TraversalDone; } 3967 }; 3968 3969 CheckAvailable CA(L, BB, DT); 3970 SCEVTraversal<CheckAvailable> ST(CA); 3971 3972 ST.visitAll(S); 3973 return CA.Available; 3974 } 3975 3976 // Try to match a control flow sequence that branches out at BI and merges back 3977 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3978 // match. 3979 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3980 Value *&C, Value *&LHS, Value *&RHS) { 3981 C = BI->getCondition(); 3982 3983 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3984 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3985 3986 if (!LeftEdge.isSingleEdge()) 3987 return false; 3988 3989 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3990 3991 Use &LeftUse = Merge->getOperandUse(0); 3992 Use &RightUse = Merge->getOperandUse(1); 3993 3994 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3995 LHS = LeftUse; 3996 RHS = RightUse; 3997 return true; 3998 } 3999 4000 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4001 LHS = RightUse; 4002 RHS = LeftUse; 4003 return true; 4004 } 4005 4006 return false; 4007 } 4008 4009 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4010 if (PN->getNumIncomingValues() == 2) { 4011 const Loop *L = LI.getLoopFor(PN->getParent()); 4012 4013 // We don't want to break LCSSA, even in a SCEV expression tree. 4014 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4015 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4016 return nullptr; 4017 4018 // Try to match 4019 // 4020 // br %cond, label %left, label %right 4021 // left: 4022 // br label %merge 4023 // right: 4024 // br label %merge 4025 // merge: 4026 // V = phi [ %x, %left ], [ %y, %right ] 4027 // 4028 // as "select %cond, %x, %y" 4029 4030 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4031 assert(IDom && "At least the entry block should dominate PN"); 4032 4033 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4034 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4035 4036 if (BI && BI->isConditional() && 4037 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4038 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4039 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4040 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4041 } 4042 4043 return nullptr; 4044 } 4045 4046 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4047 if (const SCEV *S = createAddRecFromPHI(PN)) 4048 return S; 4049 4050 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4051 return S; 4052 4053 // If the PHI has a single incoming value, follow that value, unless the 4054 // PHI's incoming blocks are in a different loop, in which case doing so 4055 // risks breaking LCSSA form. Instcombine would normally zap these, but 4056 // it doesn't have DominatorTree information, so it may miss cases. 4057 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4058 if (LI.replacementPreservesLCSSAForm(PN, V)) 4059 return getSCEV(V); 4060 4061 // If it's not a loop phi, we can't handle it yet. 4062 return getUnknown(PN); 4063 } 4064 4065 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4066 Value *Cond, 4067 Value *TrueVal, 4068 Value *FalseVal) { 4069 // Handle "constant" branch or select. This can occur for instance when a 4070 // loop pass transforms an inner loop and moves on to process the outer loop. 4071 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4072 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4073 4074 // Try to match some simple smax or umax patterns. 4075 auto *ICI = dyn_cast<ICmpInst>(Cond); 4076 if (!ICI) 4077 return getUnknown(I); 4078 4079 Value *LHS = ICI->getOperand(0); 4080 Value *RHS = ICI->getOperand(1); 4081 4082 switch (ICI->getPredicate()) { 4083 case ICmpInst::ICMP_SLT: 4084 case ICmpInst::ICMP_SLE: 4085 std::swap(LHS, RHS); 4086 // fall through 4087 case ICmpInst::ICMP_SGT: 4088 case ICmpInst::ICMP_SGE: 4089 // a >s b ? a+x : b+x -> smax(a, b)+x 4090 // a >s b ? b+x : a+x -> smin(a, b)+x 4091 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4092 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4093 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4094 const SCEV *LA = getSCEV(TrueVal); 4095 const SCEV *RA = getSCEV(FalseVal); 4096 const SCEV *LDiff = getMinusSCEV(LA, LS); 4097 const SCEV *RDiff = getMinusSCEV(RA, RS); 4098 if (LDiff == RDiff) 4099 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4100 LDiff = getMinusSCEV(LA, RS); 4101 RDiff = getMinusSCEV(RA, LS); 4102 if (LDiff == RDiff) 4103 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4104 } 4105 break; 4106 case ICmpInst::ICMP_ULT: 4107 case ICmpInst::ICMP_ULE: 4108 std::swap(LHS, RHS); 4109 // fall through 4110 case ICmpInst::ICMP_UGT: 4111 case ICmpInst::ICMP_UGE: 4112 // a >u b ? a+x : b+x -> umax(a, b)+x 4113 // a >u b ? b+x : a+x -> umin(a, b)+x 4114 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4115 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4116 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4117 const SCEV *LA = getSCEV(TrueVal); 4118 const SCEV *RA = getSCEV(FalseVal); 4119 const SCEV *LDiff = getMinusSCEV(LA, LS); 4120 const SCEV *RDiff = getMinusSCEV(RA, RS); 4121 if (LDiff == RDiff) 4122 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4123 LDiff = getMinusSCEV(LA, RS); 4124 RDiff = getMinusSCEV(RA, LS); 4125 if (LDiff == RDiff) 4126 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4127 } 4128 break; 4129 case ICmpInst::ICMP_NE: 4130 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4131 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4132 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4133 const SCEV *One = getOne(I->getType()); 4134 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4135 const SCEV *LA = getSCEV(TrueVal); 4136 const SCEV *RA = getSCEV(FalseVal); 4137 const SCEV *LDiff = getMinusSCEV(LA, LS); 4138 const SCEV *RDiff = getMinusSCEV(RA, One); 4139 if (LDiff == RDiff) 4140 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4141 } 4142 break; 4143 case ICmpInst::ICMP_EQ: 4144 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4145 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4146 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4147 const SCEV *One = getOne(I->getType()); 4148 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4149 const SCEV *LA = getSCEV(TrueVal); 4150 const SCEV *RA = getSCEV(FalseVal); 4151 const SCEV *LDiff = getMinusSCEV(LA, One); 4152 const SCEV *RDiff = getMinusSCEV(RA, LS); 4153 if (LDiff == RDiff) 4154 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4155 } 4156 break; 4157 default: 4158 break; 4159 } 4160 4161 return getUnknown(I); 4162 } 4163 4164 /// createNodeForGEP - Expand GEP instructions into add and multiply 4165 /// operations. This allows them to be analyzed by regular SCEV code. 4166 /// 4167 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4168 // Don't attempt to analyze GEPs over unsized objects. 4169 if (!GEP->getSourceElementType()->isSized()) 4170 return getUnknown(GEP); 4171 4172 SmallVector<const SCEV *, 4> IndexExprs; 4173 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4174 IndexExprs.push_back(getSCEV(*Index)); 4175 return getGEPExpr(GEP->getSourceElementType(), 4176 getSCEV(GEP->getPointerOperand()), 4177 IndexExprs, GEP->isInBounds()); 4178 } 4179 4180 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4181 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4182 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4183 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4184 uint32_t 4185 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4186 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4187 return C->getAPInt().countTrailingZeros(); 4188 4189 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4190 return std::min(GetMinTrailingZeros(T->getOperand()), 4191 (uint32_t)getTypeSizeInBits(T->getType())); 4192 4193 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4194 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4195 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4196 getTypeSizeInBits(E->getType()) : OpRes; 4197 } 4198 4199 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4200 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4201 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4202 getTypeSizeInBits(E->getType()) : OpRes; 4203 } 4204 4205 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4206 // The result is the min of all operands results. 4207 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4208 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4209 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4210 return MinOpRes; 4211 } 4212 4213 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4214 // The result is the sum of all operands results. 4215 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4216 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4217 for (unsigned i = 1, e = M->getNumOperands(); 4218 SumOpRes != BitWidth && i != e; ++i) 4219 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4220 BitWidth); 4221 return SumOpRes; 4222 } 4223 4224 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4225 // The result is the min of all operands results. 4226 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4227 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4228 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4229 return MinOpRes; 4230 } 4231 4232 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4233 // The result is the min of all operands results. 4234 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4235 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4236 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4237 return MinOpRes; 4238 } 4239 4240 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4241 // The result is the min of all operands results. 4242 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4243 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4244 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4245 return MinOpRes; 4246 } 4247 4248 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4249 // For a SCEVUnknown, ask ValueTracking. 4250 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4251 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4252 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4253 nullptr, &DT); 4254 return Zeros.countTrailingOnes(); 4255 } 4256 4257 // SCEVUDivExpr 4258 return 0; 4259 } 4260 4261 /// GetRangeFromMetadata - Helper method to assign a range to V from 4262 /// metadata present in the IR. 4263 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4264 if (Instruction *I = dyn_cast<Instruction>(V)) 4265 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4266 return getConstantRangeFromMetadata(*MD); 4267 4268 return None; 4269 } 4270 4271 /// getRange - Determine the range for a particular SCEV. If SignHint is 4272 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4273 /// with a "cleaner" unsigned (resp. signed) representation. 4274 /// 4275 ConstantRange 4276 ScalarEvolution::getRange(const SCEV *S, 4277 ScalarEvolution::RangeSignHint SignHint) { 4278 DenseMap<const SCEV *, ConstantRange> &Cache = 4279 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4280 : SignedRanges; 4281 4282 // See if we've computed this range already. 4283 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4284 if (I != Cache.end()) 4285 return I->second; 4286 4287 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4288 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4289 4290 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4291 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4292 4293 // If the value has known zeros, the maximum value will have those known zeros 4294 // as well. 4295 uint32_t TZ = GetMinTrailingZeros(S); 4296 if (TZ != 0) { 4297 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4298 ConservativeResult = 4299 ConstantRange(APInt::getMinValue(BitWidth), 4300 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4301 else 4302 ConservativeResult = ConstantRange( 4303 APInt::getSignedMinValue(BitWidth), 4304 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4305 } 4306 4307 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4308 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4309 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4310 X = X.add(getRange(Add->getOperand(i), SignHint)); 4311 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4312 } 4313 4314 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4315 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4316 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4317 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4318 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4319 } 4320 4321 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4322 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4323 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4324 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4325 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4326 } 4327 4328 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4329 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4330 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4331 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4332 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4333 } 4334 4335 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4336 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4337 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4338 return setRange(UDiv, SignHint, 4339 ConservativeResult.intersectWith(X.udiv(Y))); 4340 } 4341 4342 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4343 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4344 return setRange(ZExt, SignHint, 4345 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4346 } 4347 4348 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4349 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4350 return setRange(SExt, SignHint, 4351 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4352 } 4353 4354 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4355 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4356 return setRange(Trunc, SignHint, 4357 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4358 } 4359 4360 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4361 // If there's no unsigned wrap, the value will never be less than its 4362 // initial value. 4363 if (AddRec->hasNoUnsignedWrap()) 4364 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4365 if (!C->getValue()->isZero()) 4366 ConservativeResult = ConservativeResult.intersectWith( 4367 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4368 4369 // If there's no signed wrap, and all the operands have the same sign or 4370 // zero, the value won't ever change sign. 4371 if (AddRec->hasNoSignedWrap()) { 4372 bool AllNonNeg = true; 4373 bool AllNonPos = true; 4374 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4375 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4376 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4377 } 4378 if (AllNonNeg) 4379 ConservativeResult = ConservativeResult.intersectWith( 4380 ConstantRange(APInt(BitWidth, 0), 4381 APInt::getSignedMinValue(BitWidth))); 4382 else if (AllNonPos) 4383 ConservativeResult = ConservativeResult.intersectWith( 4384 ConstantRange(APInt::getSignedMinValue(BitWidth), 4385 APInt(BitWidth, 1))); 4386 } 4387 4388 // TODO: non-affine addrec 4389 if (AddRec->isAffine()) { 4390 Type *Ty = AddRec->getType(); 4391 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4392 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4393 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4394 4395 // Check for overflow. This must be done with ConstantRange arithmetic 4396 // because we could be called from within the ScalarEvolution overflow 4397 // checking code. 4398 4399 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4400 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4401 ConstantRange ZExtMaxBECountRange = 4402 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4403 4404 const SCEV *Start = AddRec->getStart(); 4405 const SCEV *Step = AddRec->getStepRecurrence(*this); 4406 ConstantRange StepSRange = getSignedRange(Step); 4407 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4408 4409 ConstantRange StartURange = getUnsignedRange(Start); 4410 ConstantRange EndURange = 4411 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4412 4413 // Check for unsigned overflow. 4414 ConstantRange ZExtStartURange = 4415 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4416 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4417 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4418 ZExtEndURange) { 4419 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4420 EndURange.getUnsignedMin()); 4421 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4422 EndURange.getUnsignedMax()); 4423 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4424 if (!IsFullRange) 4425 ConservativeResult = 4426 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4427 } 4428 4429 ConstantRange StartSRange = getSignedRange(Start); 4430 ConstantRange EndSRange = 4431 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4432 4433 // Check for signed overflow. This must be done with ConstantRange 4434 // arithmetic because we could be called from within the ScalarEvolution 4435 // overflow checking code. 4436 ConstantRange SExtStartSRange = 4437 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4438 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4439 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4440 SExtEndSRange) { 4441 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4442 EndSRange.getSignedMin()); 4443 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4444 EndSRange.getSignedMax()); 4445 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4446 if (!IsFullRange) 4447 ConservativeResult = 4448 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4449 } 4450 } 4451 } 4452 4453 return setRange(AddRec, SignHint, ConservativeResult); 4454 } 4455 4456 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4457 // Check if the IR explicitly contains !range metadata. 4458 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4459 if (MDRange.hasValue()) 4460 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4461 4462 // Split here to avoid paying the compile-time cost of calling both 4463 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4464 // if needed. 4465 const DataLayout &DL = getDataLayout(); 4466 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4467 // For a SCEVUnknown, ask ValueTracking. 4468 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4469 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4470 if (Ones != ~Zeros + 1) 4471 ConservativeResult = 4472 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4473 } else { 4474 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4475 "generalize as needed!"); 4476 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4477 if (NS > 1) 4478 ConservativeResult = ConservativeResult.intersectWith( 4479 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4480 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4481 } 4482 4483 return setRange(U, SignHint, ConservativeResult); 4484 } 4485 4486 return setRange(S, SignHint, ConservativeResult); 4487 } 4488 4489 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4490 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4491 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4492 4493 // Return early if there are no flags to propagate to the SCEV. 4494 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4495 if (BinOp->hasNoUnsignedWrap()) 4496 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4497 if (BinOp->hasNoSignedWrap()) 4498 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4499 if (Flags == SCEV::FlagAnyWrap) { 4500 return SCEV::FlagAnyWrap; 4501 } 4502 4503 // Here we check that BinOp is in the header of the innermost loop 4504 // containing BinOp, since we only deal with instructions in the loop 4505 // header. The actual loop we need to check later will come from an add 4506 // recurrence, but getting that requires computing the SCEV of the operands, 4507 // which can be expensive. This check we can do cheaply to rule out some 4508 // cases early. 4509 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4510 if (innermostContainingLoop == nullptr || 4511 innermostContainingLoop->getHeader() != BinOp->getParent()) 4512 return SCEV::FlagAnyWrap; 4513 4514 // Only proceed if we can prove that BinOp does not yield poison. 4515 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4516 4517 // At this point we know that if V is executed, then it does not wrap 4518 // according to at least one of NSW or NUW. If V is not executed, then we do 4519 // not know if the calculation that V represents would wrap. Multiple 4520 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4521 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4522 // derived from other instructions that map to the same SCEV. We cannot make 4523 // that guarantee for cases where V is not executed. So we need to find the 4524 // loop that V is considered in relation to and prove that V is executed for 4525 // every iteration of that loop. That implies that the value that V 4526 // calculates does not wrap anywhere in the loop, so then we can apply the 4527 // flags to the SCEV. 4528 // 4529 // We check isLoopInvariant to disambiguate in case we are adding two 4530 // recurrences from different loops, so that we know which loop to prove 4531 // that V is executed in. 4532 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4533 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4534 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4535 const int OtherOpIndex = 1 - OpIndex; 4536 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4537 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4538 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4539 return Flags; 4540 } 4541 } 4542 return SCEV::FlagAnyWrap; 4543 } 4544 4545 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4546 /// the expression. 4547 /// 4548 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4549 if (!isSCEVable(V->getType())) 4550 return getUnknown(V); 4551 4552 unsigned Opcode = Instruction::UserOp1; 4553 if (Instruction *I = dyn_cast<Instruction>(V)) { 4554 Opcode = I->getOpcode(); 4555 4556 // Don't attempt to analyze instructions in blocks that aren't 4557 // reachable. Such instructions don't matter, and they aren't required 4558 // to obey basic rules for definitions dominating uses which this 4559 // analysis depends on. 4560 if (!DT.isReachableFromEntry(I->getParent())) 4561 return getUnknown(V); 4562 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4563 Opcode = CE->getOpcode(); 4564 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4565 return getConstant(CI); 4566 else if (isa<ConstantPointerNull>(V)) 4567 return getZero(V->getType()); 4568 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4569 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4570 else 4571 return getUnknown(V); 4572 4573 Operator *U = cast<Operator>(V); 4574 switch (Opcode) { 4575 case Instruction::Add: { 4576 // The simple thing to do would be to just call getSCEV on both operands 4577 // and call getAddExpr with the result. However if we're looking at a 4578 // bunch of things all added together, this can be quite inefficient, 4579 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4580 // Instead, gather up all the operands and make a single getAddExpr call. 4581 // LLVM IR canonical form means we need only traverse the left operands. 4582 SmallVector<const SCEV *, 4> AddOps; 4583 for (Value *Op = U;; Op = U->getOperand(0)) { 4584 U = dyn_cast<Operator>(Op); 4585 unsigned Opcode = U ? U->getOpcode() : 0; 4586 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4587 assert(Op != V && "V should be an add"); 4588 AddOps.push_back(getSCEV(Op)); 4589 break; 4590 } 4591 4592 if (auto *OpSCEV = getExistingSCEV(U)) { 4593 AddOps.push_back(OpSCEV); 4594 break; 4595 } 4596 4597 // If a NUW or NSW flag can be applied to the SCEV for this 4598 // addition, then compute the SCEV for this addition by itself 4599 // with a separate call to getAddExpr. We need to do that 4600 // instead of pushing the operands of the addition onto AddOps, 4601 // since the flags are only known to apply to this particular 4602 // addition - they may not apply to other additions that can be 4603 // formed with operands from AddOps. 4604 const SCEV *RHS = getSCEV(U->getOperand(1)); 4605 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4606 if (Flags != SCEV::FlagAnyWrap) { 4607 const SCEV *LHS = getSCEV(U->getOperand(0)); 4608 if (Opcode == Instruction::Sub) 4609 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4610 else 4611 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4612 break; 4613 } 4614 4615 if (Opcode == Instruction::Sub) 4616 AddOps.push_back(getNegativeSCEV(RHS)); 4617 else 4618 AddOps.push_back(RHS); 4619 } 4620 return getAddExpr(AddOps); 4621 } 4622 4623 case Instruction::Mul: { 4624 SmallVector<const SCEV *, 4> MulOps; 4625 for (Value *Op = U;; Op = U->getOperand(0)) { 4626 U = dyn_cast<Operator>(Op); 4627 if (!U || U->getOpcode() != Instruction::Mul) { 4628 assert(Op != V && "V should be a mul"); 4629 MulOps.push_back(getSCEV(Op)); 4630 break; 4631 } 4632 4633 if (auto *OpSCEV = getExistingSCEV(U)) { 4634 MulOps.push_back(OpSCEV); 4635 break; 4636 } 4637 4638 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4639 if (Flags != SCEV::FlagAnyWrap) { 4640 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4641 getSCEV(U->getOperand(1)), Flags)); 4642 break; 4643 } 4644 4645 MulOps.push_back(getSCEV(U->getOperand(1))); 4646 } 4647 return getMulExpr(MulOps); 4648 } 4649 case Instruction::UDiv: 4650 return getUDivExpr(getSCEV(U->getOperand(0)), 4651 getSCEV(U->getOperand(1))); 4652 case Instruction::Sub: 4653 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4654 getNoWrapFlagsFromUB(U)); 4655 case Instruction::And: 4656 // For an expression like x&255 that merely masks off the high bits, 4657 // use zext(trunc(x)) as the SCEV expression. 4658 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4659 if (CI->isNullValue()) 4660 return getSCEV(U->getOperand(1)); 4661 if (CI->isAllOnesValue()) 4662 return getSCEV(U->getOperand(0)); 4663 const APInt &A = CI->getValue(); 4664 4665 // Instcombine's ShrinkDemandedConstant may strip bits out of 4666 // constants, obscuring what would otherwise be a low-bits mask. 4667 // Use computeKnownBits to compute what ShrinkDemandedConstant 4668 // knew about to reconstruct a low-bits mask value. 4669 unsigned LZ = A.countLeadingZeros(); 4670 unsigned TZ = A.countTrailingZeros(); 4671 unsigned BitWidth = A.getBitWidth(); 4672 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4673 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4674 0, &AC, nullptr, &DT); 4675 4676 APInt EffectiveMask = 4677 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4678 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4679 const SCEV *MulCount = getConstant( 4680 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4681 return getMulExpr( 4682 getZeroExtendExpr( 4683 getTruncateExpr( 4684 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4685 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4686 U->getType()), 4687 MulCount); 4688 } 4689 } 4690 break; 4691 4692 case Instruction::Or: 4693 // If the RHS of the Or is a constant, we may have something like: 4694 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4695 // optimizations will transparently handle this case. 4696 // 4697 // In order for this transformation to be safe, the LHS must be of the 4698 // form X*(2^n) and the Or constant must be less than 2^n. 4699 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4700 const SCEV *LHS = getSCEV(U->getOperand(0)); 4701 const APInt &CIVal = CI->getValue(); 4702 if (GetMinTrailingZeros(LHS) >= 4703 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4704 // Build a plain add SCEV. 4705 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4706 // If the LHS of the add was an addrec and it has no-wrap flags, 4707 // transfer the no-wrap flags, since an or won't introduce a wrap. 4708 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4709 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4710 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4711 OldAR->getNoWrapFlags()); 4712 } 4713 return S; 4714 } 4715 } 4716 break; 4717 case Instruction::Xor: 4718 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4719 // If the RHS of the xor is a signbit, then this is just an add. 4720 // Instcombine turns add of signbit into xor as a strength reduction step. 4721 if (CI->getValue().isSignBit()) 4722 return getAddExpr(getSCEV(U->getOperand(0)), 4723 getSCEV(U->getOperand(1))); 4724 4725 // If the RHS of xor is -1, then this is a not operation. 4726 if (CI->isAllOnesValue()) 4727 return getNotSCEV(getSCEV(U->getOperand(0))); 4728 4729 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4730 // This is a variant of the check for xor with -1, and it handles 4731 // the case where instcombine has trimmed non-demanded bits out 4732 // of an xor with -1. 4733 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4734 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4735 if (BO->getOpcode() == Instruction::And && 4736 LCI->getValue() == CI->getValue()) 4737 if (const SCEVZeroExtendExpr *Z = 4738 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4739 Type *UTy = U->getType(); 4740 const SCEV *Z0 = Z->getOperand(); 4741 Type *Z0Ty = Z0->getType(); 4742 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4743 4744 // If C is a low-bits mask, the zero extend is serving to 4745 // mask off the high bits. Complement the operand and 4746 // re-apply the zext. 4747 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4748 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4749 4750 // If C is a single bit, it may be in the sign-bit position 4751 // before the zero-extend. In this case, represent the xor 4752 // using an add, which is equivalent, and re-apply the zext. 4753 APInt Trunc = CI->getValue().trunc(Z0TySize); 4754 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4755 Trunc.isSignBit()) 4756 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4757 UTy); 4758 } 4759 } 4760 break; 4761 4762 case Instruction::Shl: 4763 // Turn shift left of a constant amount into a multiply. 4764 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4765 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4766 4767 // If the shift count is not less than the bitwidth, the result of 4768 // the shift is undefined. Don't try to analyze it, because the 4769 // resolution chosen here may differ from the resolution chosen in 4770 // other parts of the compiler. 4771 if (SA->getValue().uge(BitWidth)) 4772 break; 4773 4774 // It is currently not resolved how to interpret NSW for left 4775 // shift by BitWidth - 1, so we avoid applying flags in that 4776 // case. Remove this check (or this comment) once the situation 4777 // is resolved. See 4778 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4779 // and http://reviews.llvm.org/D8890 . 4780 auto Flags = SCEV::FlagAnyWrap; 4781 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4782 4783 Constant *X = ConstantInt::get(getContext(), 4784 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4785 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4786 } 4787 break; 4788 4789 case Instruction::LShr: 4790 // Turn logical shift right of a constant into a unsigned divide. 4791 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4792 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4793 4794 // If the shift count is not less than the bitwidth, the result of 4795 // the shift is undefined. Don't try to analyze it, because the 4796 // resolution chosen here may differ from the resolution chosen in 4797 // other parts of the compiler. 4798 if (SA->getValue().uge(BitWidth)) 4799 break; 4800 4801 Constant *X = ConstantInt::get(getContext(), 4802 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4803 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4804 } 4805 break; 4806 4807 case Instruction::AShr: 4808 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4809 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4810 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4811 if (L->getOpcode() == Instruction::Shl && 4812 L->getOperand(1) == U->getOperand(1)) { 4813 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4814 4815 // If the shift count is not less than the bitwidth, the result of 4816 // the shift is undefined. Don't try to analyze it, because the 4817 // resolution chosen here may differ from the resolution chosen in 4818 // other parts of the compiler. 4819 if (CI->getValue().uge(BitWidth)) 4820 break; 4821 4822 uint64_t Amt = BitWidth - CI->getZExtValue(); 4823 if (Amt == BitWidth) 4824 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4825 return 4826 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4827 IntegerType::get(getContext(), 4828 Amt)), 4829 U->getType()); 4830 } 4831 break; 4832 4833 case Instruction::Trunc: 4834 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4835 4836 case Instruction::ZExt: 4837 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4838 4839 case Instruction::SExt: 4840 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4841 4842 case Instruction::BitCast: 4843 // BitCasts are no-op casts so we just eliminate the cast. 4844 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4845 return getSCEV(U->getOperand(0)); 4846 break; 4847 4848 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4849 // lead to pointer expressions which cannot safely be expanded to GEPs, 4850 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4851 // simplifying integer expressions. 4852 4853 case Instruction::GetElementPtr: 4854 return createNodeForGEP(cast<GEPOperator>(U)); 4855 4856 case Instruction::PHI: 4857 return createNodeForPHI(cast<PHINode>(U)); 4858 4859 case Instruction::Select: 4860 // U can also be a select constant expr, which let fall through. Since 4861 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4862 // constant expressions cannot have instructions as operands, we'd have 4863 // returned getUnknown for a select constant expressions anyway. 4864 if (isa<Instruction>(U)) 4865 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4866 U->getOperand(1), U->getOperand(2)); 4867 4868 default: // We cannot analyze this expression. 4869 break; 4870 } 4871 4872 return getUnknown(V); 4873 } 4874 4875 4876 4877 //===----------------------------------------------------------------------===// 4878 // Iteration Count Computation Code 4879 // 4880 4881 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4882 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4883 return getSmallConstantTripCount(L, ExitingBB); 4884 4885 // No trip count information for multiple exits. 4886 return 0; 4887 } 4888 4889 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4890 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4891 /// constant. Will also return 0 if the maximum trip count is very large (>= 4892 /// 2^32). 4893 /// 4894 /// This "trip count" assumes that control exits via ExitingBlock. More 4895 /// precisely, it is the number of times that control may reach ExitingBlock 4896 /// before taking the branch. For loops with multiple exits, it may not be the 4897 /// number times that the loop header executes because the loop may exit 4898 /// prematurely via another branch. 4899 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4900 BasicBlock *ExitingBlock) { 4901 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4902 assert(L->isLoopExiting(ExitingBlock) && 4903 "Exiting block must actually branch out of the loop!"); 4904 const SCEVConstant *ExitCount = 4905 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4906 if (!ExitCount) 4907 return 0; 4908 4909 ConstantInt *ExitConst = ExitCount->getValue(); 4910 4911 // Guard against huge trip counts. 4912 if (ExitConst->getValue().getActiveBits() > 32) 4913 return 0; 4914 4915 // In case of integer overflow, this returns 0, which is correct. 4916 return ((unsigned)ExitConst->getZExtValue()) + 1; 4917 } 4918 4919 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4920 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4921 return getSmallConstantTripMultiple(L, ExitingBB); 4922 4923 // No trip multiple information for multiple exits. 4924 return 0; 4925 } 4926 4927 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4928 /// trip count of this loop as a normal unsigned value, if possible. This 4929 /// means that the actual trip count is always a multiple of the returned 4930 /// value (don't forget the trip count could very well be zero as well!). 4931 /// 4932 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4933 /// multiple of a constant (which is also the case if the trip count is simply 4934 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4935 /// if the trip count is very large (>= 2^32). 4936 /// 4937 /// As explained in the comments for getSmallConstantTripCount, this assumes 4938 /// that control exits the loop via ExitingBlock. 4939 unsigned 4940 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4941 BasicBlock *ExitingBlock) { 4942 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4943 assert(L->isLoopExiting(ExitingBlock) && 4944 "Exiting block must actually branch out of the loop!"); 4945 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4946 if (ExitCount == getCouldNotCompute()) 4947 return 1; 4948 4949 // Get the trip count from the BE count by adding 1. 4950 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4951 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4952 // to factor simple cases. 4953 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4954 TCMul = Mul->getOperand(0); 4955 4956 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4957 if (!MulC) 4958 return 1; 4959 4960 ConstantInt *Result = MulC->getValue(); 4961 4962 // Guard against huge trip counts (this requires checking 4963 // for zero to handle the case where the trip count == -1 and the 4964 // addition wraps). 4965 if (!Result || Result->getValue().getActiveBits() > 32 || 4966 Result->getValue().getActiveBits() == 0) 4967 return 1; 4968 4969 return (unsigned)Result->getZExtValue(); 4970 } 4971 4972 // getExitCount - Get the expression for the number of loop iterations for which 4973 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4974 // SCEVCouldNotCompute. 4975 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4976 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4977 } 4978 4979 /// getBackedgeTakenCount - If the specified loop has a predictable 4980 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4981 /// object. The backedge-taken count is the number of times the loop header 4982 /// will be branched to from within the loop. This is one less than the 4983 /// trip count of the loop, since it doesn't count the first iteration, 4984 /// when the header is branched to from outside the loop. 4985 /// 4986 /// Note that it is not valid to call this method on a loop without a 4987 /// loop-invariant backedge-taken count (see 4988 /// hasLoopInvariantBackedgeTakenCount). 4989 /// 4990 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4991 return getBackedgeTakenInfo(L).getExact(this); 4992 } 4993 4994 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4995 /// return the least SCEV value that is known never to be less than the 4996 /// actual backedge taken count. 4997 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4998 return getBackedgeTakenInfo(L).getMax(this); 4999 } 5000 5001 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 5002 /// onto the given Worklist. 5003 static void 5004 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5005 BasicBlock *Header = L->getHeader(); 5006 5007 // Push all Loop-header PHIs onto the Worklist stack. 5008 for (BasicBlock::iterator I = Header->begin(); 5009 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5010 Worklist.push_back(PN); 5011 } 5012 5013 const ScalarEvolution::BackedgeTakenInfo & 5014 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5015 // Initially insert an invalid entry for this loop. If the insertion 5016 // succeeds, proceed to actually compute a backedge-taken count and 5017 // update the value. The temporary CouldNotCompute value tells SCEV 5018 // code elsewhere that it shouldn't attempt to request a new 5019 // backedge-taken count, which could result in infinite recursion. 5020 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5021 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5022 if (!Pair.second) 5023 return Pair.first->second; 5024 5025 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5026 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5027 // must be cleared in this scope. 5028 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5029 5030 if (Result.getExact(this) != getCouldNotCompute()) { 5031 assert(isLoopInvariant(Result.getExact(this), L) && 5032 isLoopInvariant(Result.getMax(this), L) && 5033 "Computed backedge-taken count isn't loop invariant for loop!"); 5034 ++NumTripCountsComputed; 5035 } 5036 else if (Result.getMax(this) == getCouldNotCompute() && 5037 isa<PHINode>(L->getHeader()->begin())) { 5038 // Only count loops that have phi nodes as not being computable. 5039 ++NumTripCountsNotComputed; 5040 } 5041 5042 // Now that we know more about the trip count for this loop, forget any 5043 // existing SCEV values for PHI nodes in this loop since they are only 5044 // conservative estimates made without the benefit of trip count 5045 // information. This is similar to the code in forgetLoop, except that 5046 // it handles SCEVUnknown PHI nodes specially. 5047 if (Result.hasAnyInfo()) { 5048 SmallVector<Instruction *, 16> Worklist; 5049 PushLoopPHIs(L, Worklist); 5050 5051 SmallPtrSet<Instruction *, 8> Visited; 5052 while (!Worklist.empty()) { 5053 Instruction *I = Worklist.pop_back_val(); 5054 if (!Visited.insert(I).second) 5055 continue; 5056 5057 ValueExprMapType::iterator It = 5058 ValueExprMap.find_as(static_cast<Value *>(I)); 5059 if (It != ValueExprMap.end()) { 5060 const SCEV *Old = It->second; 5061 5062 // SCEVUnknown for a PHI either means that it has an unrecognized 5063 // structure, or it's a PHI that's in the progress of being computed 5064 // by createNodeForPHI. In the former case, additional loop trip 5065 // count information isn't going to change anything. In the later 5066 // case, createNodeForPHI will perform the necessary updates on its 5067 // own when it gets to that point. 5068 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5069 forgetMemoizedResults(Old); 5070 ValueExprMap.erase(It); 5071 } 5072 if (PHINode *PN = dyn_cast<PHINode>(I)) 5073 ConstantEvolutionLoopExitValue.erase(PN); 5074 } 5075 5076 PushDefUseChildren(I, Worklist); 5077 } 5078 } 5079 5080 // Re-lookup the insert position, since the call to 5081 // computeBackedgeTakenCount above could result in a 5082 // recusive call to getBackedgeTakenInfo (on a different 5083 // loop), which would invalidate the iterator computed 5084 // earlier. 5085 return BackedgeTakenCounts.find(L)->second = Result; 5086 } 5087 5088 /// forgetLoop - This method should be called by the client when it has 5089 /// changed a loop in a way that may effect ScalarEvolution's ability to 5090 /// compute a trip count, or if the loop is deleted. 5091 void ScalarEvolution::forgetLoop(const Loop *L) { 5092 // Drop any stored trip count value. 5093 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5094 BackedgeTakenCounts.find(L); 5095 if (BTCPos != BackedgeTakenCounts.end()) { 5096 BTCPos->second.clear(); 5097 BackedgeTakenCounts.erase(BTCPos); 5098 } 5099 5100 // Drop information about expressions based on loop-header PHIs. 5101 SmallVector<Instruction *, 16> Worklist; 5102 PushLoopPHIs(L, Worklist); 5103 5104 SmallPtrSet<Instruction *, 8> Visited; 5105 while (!Worklist.empty()) { 5106 Instruction *I = Worklist.pop_back_val(); 5107 if (!Visited.insert(I).second) 5108 continue; 5109 5110 ValueExprMapType::iterator It = 5111 ValueExprMap.find_as(static_cast<Value *>(I)); 5112 if (It != ValueExprMap.end()) { 5113 forgetMemoizedResults(It->second); 5114 ValueExprMap.erase(It); 5115 if (PHINode *PN = dyn_cast<PHINode>(I)) 5116 ConstantEvolutionLoopExitValue.erase(PN); 5117 } 5118 5119 PushDefUseChildren(I, Worklist); 5120 } 5121 5122 // Forget all contained loops too, to avoid dangling entries in the 5123 // ValuesAtScopes map. 5124 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5125 forgetLoop(*I); 5126 } 5127 5128 /// forgetValue - This method should be called by the client when it has 5129 /// changed a value in a way that may effect its value, or which may 5130 /// disconnect it from a def-use chain linking it to a loop. 5131 void ScalarEvolution::forgetValue(Value *V) { 5132 Instruction *I = dyn_cast<Instruction>(V); 5133 if (!I) return; 5134 5135 // Drop information about expressions based on loop-header PHIs. 5136 SmallVector<Instruction *, 16> Worklist; 5137 Worklist.push_back(I); 5138 5139 SmallPtrSet<Instruction *, 8> Visited; 5140 while (!Worklist.empty()) { 5141 I = Worklist.pop_back_val(); 5142 if (!Visited.insert(I).second) 5143 continue; 5144 5145 ValueExprMapType::iterator It = 5146 ValueExprMap.find_as(static_cast<Value *>(I)); 5147 if (It != ValueExprMap.end()) { 5148 forgetMemoizedResults(It->second); 5149 ValueExprMap.erase(It); 5150 if (PHINode *PN = dyn_cast<PHINode>(I)) 5151 ConstantEvolutionLoopExitValue.erase(PN); 5152 } 5153 5154 PushDefUseChildren(I, Worklist); 5155 } 5156 } 5157 5158 /// getExact - Get the exact loop backedge taken count considering all loop 5159 /// exits. A computable result can only be returned for loops with a single 5160 /// exit. Returning the minimum taken count among all exits is incorrect 5161 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5162 /// assumes that the limit of each loop test is never skipped. This is a valid 5163 /// assumption as long as the loop exits via that test. For precise results, it 5164 /// is the caller's responsibility to specify the relevant loop exit using 5165 /// getExact(ExitingBlock, SE). 5166 const SCEV * 5167 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5168 // If any exits were not computable, the loop is not computable. 5169 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5170 5171 // We need exactly one computable exit. 5172 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5173 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5174 5175 const SCEV *BECount = nullptr; 5176 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5177 ENT != nullptr; ENT = ENT->getNextExit()) { 5178 5179 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5180 5181 if (!BECount) 5182 BECount = ENT->ExactNotTaken; 5183 else if (BECount != ENT->ExactNotTaken) 5184 return SE->getCouldNotCompute(); 5185 } 5186 assert(BECount && "Invalid not taken count for loop exit"); 5187 return BECount; 5188 } 5189 5190 /// getExact - Get the exact not taken count for this loop exit. 5191 const SCEV * 5192 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5193 ScalarEvolution *SE) const { 5194 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5195 ENT != nullptr; ENT = ENT->getNextExit()) { 5196 5197 if (ENT->ExitingBlock == ExitingBlock) 5198 return ENT->ExactNotTaken; 5199 } 5200 return SE->getCouldNotCompute(); 5201 } 5202 5203 /// getMax - Get the max backedge taken count for the loop. 5204 const SCEV * 5205 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5206 return Max ? Max : SE->getCouldNotCompute(); 5207 } 5208 5209 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5210 ScalarEvolution *SE) const { 5211 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5212 return true; 5213 5214 if (!ExitNotTaken.ExitingBlock) 5215 return false; 5216 5217 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5218 ENT != nullptr; ENT = ENT->getNextExit()) { 5219 5220 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5221 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5222 return true; 5223 } 5224 } 5225 return false; 5226 } 5227 5228 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5229 /// computable exit into a persistent ExitNotTakenInfo array. 5230 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5231 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5232 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5233 5234 if (!Complete) 5235 ExitNotTaken.setIncomplete(); 5236 5237 unsigned NumExits = ExitCounts.size(); 5238 if (NumExits == 0) return; 5239 5240 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5241 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5242 if (NumExits == 1) return; 5243 5244 // Handle the rare case of multiple computable exits. 5245 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5246 5247 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5248 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5249 PrevENT->setNextExit(ENT); 5250 ENT->ExitingBlock = ExitCounts[i].first; 5251 ENT->ExactNotTaken = ExitCounts[i].second; 5252 } 5253 } 5254 5255 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5256 void ScalarEvolution::BackedgeTakenInfo::clear() { 5257 ExitNotTaken.ExitingBlock = nullptr; 5258 ExitNotTaken.ExactNotTaken = nullptr; 5259 delete[] ExitNotTaken.getNextExit(); 5260 } 5261 5262 /// computeBackedgeTakenCount - Compute the number of times the backedge 5263 /// of the specified loop will execute. 5264 ScalarEvolution::BackedgeTakenInfo 5265 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5266 SmallVector<BasicBlock *, 8> ExitingBlocks; 5267 L->getExitingBlocks(ExitingBlocks); 5268 5269 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5270 bool CouldComputeBECount = true; 5271 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5272 const SCEV *MustExitMaxBECount = nullptr; 5273 const SCEV *MayExitMaxBECount = nullptr; 5274 5275 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5276 // and compute maxBECount. 5277 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5278 BasicBlock *ExitBB = ExitingBlocks[i]; 5279 ExitLimit EL = computeExitLimit(L, ExitBB); 5280 5281 // 1. For each exit that can be computed, add an entry to ExitCounts. 5282 // CouldComputeBECount is true only if all exits can be computed. 5283 if (EL.Exact == getCouldNotCompute()) 5284 // We couldn't compute an exact value for this exit, so 5285 // we won't be able to compute an exact value for the loop. 5286 CouldComputeBECount = false; 5287 else 5288 ExitCounts.push_back({ExitBB, EL.Exact}); 5289 5290 // 2. Derive the loop's MaxBECount from each exit's max number of 5291 // non-exiting iterations. Partition the loop exits into two kinds: 5292 // LoopMustExits and LoopMayExits. 5293 // 5294 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5295 // is a LoopMayExit. If any computable LoopMustExit is found, then 5296 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5297 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5298 // considered greater than any computable EL.Max. 5299 if (EL.Max != getCouldNotCompute() && Latch && 5300 DT.dominates(ExitBB, Latch)) { 5301 if (!MustExitMaxBECount) 5302 MustExitMaxBECount = EL.Max; 5303 else { 5304 MustExitMaxBECount = 5305 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5306 } 5307 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5308 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5309 MayExitMaxBECount = EL.Max; 5310 else { 5311 MayExitMaxBECount = 5312 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5313 } 5314 } 5315 } 5316 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5317 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5318 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5319 } 5320 5321 ScalarEvolution::ExitLimit 5322 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5323 5324 // Okay, we've chosen an exiting block. See what condition causes us to exit 5325 // at this block and remember the exit block and whether all other targets 5326 // lead to the loop header. 5327 bool MustExecuteLoopHeader = true; 5328 BasicBlock *Exit = nullptr; 5329 for (auto *SBB : successors(ExitingBlock)) 5330 if (!L->contains(SBB)) { 5331 if (Exit) // Multiple exit successors. 5332 return getCouldNotCompute(); 5333 Exit = SBB; 5334 } else if (SBB != L->getHeader()) { 5335 MustExecuteLoopHeader = false; 5336 } 5337 5338 // At this point, we know we have a conditional branch that determines whether 5339 // the loop is exited. However, we don't know if the branch is executed each 5340 // time through the loop. If not, then the execution count of the branch will 5341 // not be equal to the trip count of the loop. 5342 // 5343 // Currently we check for this by checking to see if the Exit branch goes to 5344 // the loop header. If so, we know it will always execute the same number of 5345 // times as the loop. We also handle the case where the exit block *is* the 5346 // loop header. This is common for un-rotated loops. 5347 // 5348 // If both of those tests fail, walk up the unique predecessor chain to the 5349 // header, stopping if there is an edge that doesn't exit the loop. If the 5350 // header is reached, the execution count of the branch will be equal to the 5351 // trip count of the loop. 5352 // 5353 // More extensive analysis could be done to handle more cases here. 5354 // 5355 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5356 // The simple checks failed, try climbing the unique predecessor chain 5357 // up to the header. 5358 bool Ok = false; 5359 for (BasicBlock *BB = ExitingBlock; BB; ) { 5360 BasicBlock *Pred = BB->getUniquePredecessor(); 5361 if (!Pred) 5362 return getCouldNotCompute(); 5363 TerminatorInst *PredTerm = Pred->getTerminator(); 5364 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5365 if (PredSucc == BB) 5366 continue; 5367 // If the predecessor has a successor that isn't BB and isn't 5368 // outside the loop, assume the worst. 5369 if (L->contains(PredSucc)) 5370 return getCouldNotCompute(); 5371 } 5372 if (Pred == L->getHeader()) { 5373 Ok = true; 5374 break; 5375 } 5376 BB = Pred; 5377 } 5378 if (!Ok) 5379 return getCouldNotCompute(); 5380 } 5381 5382 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5383 TerminatorInst *Term = ExitingBlock->getTerminator(); 5384 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5385 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5386 // Proceed to the next level to examine the exit condition expression. 5387 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5388 BI->getSuccessor(1), 5389 /*ControlsExit=*/IsOnlyExit); 5390 } 5391 5392 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5393 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5394 /*ControlsExit=*/IsOnlyExit); 5395 5396 return getCouldNotCompute(); 5397 } 5398 5399 /// computeExitLimitFromCond - Compute the number of times the 5400 /// backedge of the specified loop will execute if its exit condition 5401 /// were a conditional branch of ExitCond, TBB, and FBB. 5402 /// 5403 /// @param ControlsExit is true if ExitCond directly controls the exit 5404 /// branch. In this case, we can assume that the loop exits only if the 5405 /// condition is true and can infer that failing to meet the condition prior to 5406 /// integer wraparound results in undefined behavior. 5407 ScalarEvolution::ExitLimit 5408 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5409 Value *ExitCond, 5410 BasicBlock *TBB, 5411 BasicBlock *FBB, 5412 bool ControlsExit) { 5413 // Check if the controlling expression for this loop is an And or Or. 5414 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5415 if (BO->getOpcode() == Instruction::And) { 5416 // Recurse on the operands of the and. 5417 bool EitherMayExit = L->contains(TBB); 5418 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5419 ControlsExit && !EitherMayExit); 5420 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5421 ControlsExit && !EitherMayExit); 5422 const SCEV *BECount = getCouldNotCompute(); 5423 const SCEV *MaxBECount = getCouldNotCompute(); 5424 if (EitherMayExit) { 5425 // Both conditions must be true for the loop to continue executing. 5426 // Choose the less conservative count. 5427 if (EL0.Exact == getCouldNotCompute() || 5428 EL1.Exact == getCouldNotCompute()) 5429 BECount = getCouldNotCompute(); 5430 else 5431 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5432 if (EL0.Max == getCouldNotCompute()) 5433 MaxBECount = EL1.Max; 5434 else if (EL1.Max == getCouldNotCompute()) 5435 MaxBECount = EL0.Max; 5436 else 5437 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5438 } else { 5439 // Both conditions must be true at the same time for the loop to exit. 5440 // For now, be conservative. 5441 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5442 if (EL0.Max == EL1.Max) 5443 MaxBECount = EL0.Max; 5444 if (EL0.Exact == EL1.Exact) 5445 BECount = EL0.Exact; 5446 } 5447 5448 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5449 // to be more aggressive when computing BECount than when computing 5450 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact 5451 // to match, but for EL0.Max and EL1.Max to not. 5452 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5453 !isa<SCEVCouldNotCompute>(BECount)) 5454 MaxBECount = BECount; 5455 5456 return ExitLimit(BECount, MaxBECount); 5457 } 5458 if (BO->getOpcode() == Instruction::Or) { 5459 // Recurse on the operands of the or. 5460 bool EitherMayExit = L->contains(FBB); 5461 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5462 ControlsExit && !EitherMayExit); 5463 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5464 ControlsExit && !EitherMayExit); 5465 const SCEV *BECount = getCouldNotCompute(); 5466 const SCEV *MaxBECount = getCouldNotCompute(); 5467 if (EitherMayExit) { 5468 // Both conditions must be false for the loop to continue executing. 5469 // Choose the less conservative count. 5470 if (EL0.Exact == getCouldNotCompute() || 5471 EL1.Exact == getCouldNotCompute()) 5472 BECount = getCouldNotCompute(); 5473 else 5474 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5475 if (EL0.Max == getCouldNotCompute()) 5476 MaxBECount = EL1.Max; 5477 else if (EL1.Max == getCouldNotCompute()) 5478 MaxBECount = EL0.Max; 5479 else 5480 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5481 } else { 5482 // Both conditions must be false at the same time for the loop to exit. 5483 // For now, be conservative. 5484 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5485 if (EL0.Max == EL1.Max) 5486 MaxBECount = EL0.Max; 5487 if (EL0.Exact == EL1.Exact) 5488 BECount = EL0.Exact; 5489 } 5490 5491 return ExitLimit(BECount, MaxBECount); 5492 } 5493 } 5494 5495 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5496 // Proceed to the next level to examine the icmp. 5497 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5498 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5499 5500 // Check for a constant condition. These are normally stripped out by 5501 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5502 // preserve the CFG and is temporarily leaving constant conditions 5503 // in place. 5504 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5505 if (L->contains(FBB) == !CI->getZExtValue()) 5506 // The backedge is always taken. 5507 return getCouldNotCompute(); 5508 else 5509 // The backedge is never taken. 5510 return getZero(CI->getType()); 5511 } 5512 5513 // If it's not an integer or pointer comparison then compute it the hard way. 5514 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5515 } 5516 5517 ScalarEvolution::ExitLimit 5518 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5519 ICmpInst *ExitCond, 5520 BasicBlock *TBB, 5521 BasicBlock *FBB, 5522 bool ControlsExit) { 5523 5524 // If the condition was exit on true, convert the condition to exit on false 5525 ICmpInst::Predicate Cond; 5526 if (!L->contains(FBB)) 5527 Cond = ExitCond->getPredicate(); 5528 else 5529 Cond = ExitCond->getInversePredicate(); 5530 5531 // Handle common loops like: for (X = "string"; *X; ++X) 5532 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5533 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5534 ExitLimit ItCnt = 5535 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5536 if (ItCnt.hasAnyInfo()) 5537 return ItCnt; 5538 } 5539 5540 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5541 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5542 if (ShiftEL.hasAnyInfo()) 5543 return ShiftEL; 5544 5545 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5546 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5547 5548 // Try to evaluate any dependencies out of the loop. 5549 LHS = getSCEVAtScope(LHS, L); 5550 RHS = getSCEVAtScope(RHS, L); 5551 5552 // At this point, we would like to compute how many iterations of the 5553 // loop the predicate will return true for these inputs. 5554 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5555 // If there is a loop-invariant, force it into the RHS. 5556 std::swap(LHS, RHS); 5557 Cond = ICmpInst::getSwappedPredicate(Cond); 5558 } 5559 5560 // Simplify the operands before analyzing them. 5561 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5562 5563 // If we have a comparison of a chrec against a constant, try to use value 5564 // ranges to answer this query. 5565 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5566 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5567 if (AddRec->getLoop() == L) { 5568 // Form the constant range. 5569 ConstantRange CompRange( 5570 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 5571 5572 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5573 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5574 } 5575 5576 switch (Cond) { 5577 case ICmpInst::ICMP_NE: { // while (X != Y) 5578 // Convert to: while (X-Y != 0) 5579 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5580 if (EL.hasAnyInfo()) return EL; 5581 break; 5582 } 5583 case ICmpInst::ICMP_EQ: { // while (X == Y) 5584 // Convert to: while (X-Y == 0) 5585 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5586 if (EL.hasAnyInfo()) return EL; 5587 break; 5588 } 5589 case ICmpInst::ICMP_SLT: 5590 case ICmpInst::ICMP_ULT: { // while (X < Y) 5591 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5592 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5593 if (EL.hasAnyInfo()) return EL; 5594 break; 5595 } 5596 case ICmpInst::ICMP_SGT: 5597 case ICmpInst::ICMP_UGT: { // while (X > Y) 5598 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5599 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5600 if (EL.hasAnyInfo()) return EL; 5601 break; 5602 } 5603 default: 5604 break; 5605 } 5606 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5607 } 5608 5609 ScalarEvolution::ExitLimit 5610 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5611 SwitchInst *Switch, 5612 BasicBlock *ExitingBlock, 5613 bool ControlsExit) { 5614 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5615 5616 // Give up if the exit is the default dest of a switch. 5617 if (Switch->getDefaultDest() == ExitingBlock) 5618 return getCouldNotCompute(); 5619 5620 assert(L->contains(Switch->getDefaultDest()) && 5621 "Default case must not exit the loop!"); 5622 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5623 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5624 5625 // while (X != Y) --> while (X-Y != 0) 5626 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5627 if (EL.hasAnyInfo()) 5628 return EL; 5629 5630 return getCouldNotCompute(); 5631 } 5632 5633 static ConstantInt * 5634 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5635 ScalarEvolution &SE) { 5636 const SCEV *InVal = SE.getConstant(C); 5637 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5638 assert(isa<SCEVConstant>(Val) && 5639 "Evaluation of SCEV at constant didn't fold correctly?"); 5640 return cast<SCEVConstant>(Val)->getValue(); 5641 } 5642 5643 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5644 /// 'icmp op load X, cst', try to see if we can compute the backedge 5645 /// execution count. 5646 ScalarEvolution::ExitLimit 5647 ScalarEvolution::computeLoadConstantCompareExitLimit( 5648 LoadInst *LI, 5649 Constant *RHS, 5650 const Loop *L, 5651 ICmpInst::Predicate predicate) { 5652 5653 if (LI->isVolatile()) return getCouldNotCompute(); 5654 5655 // Check to see if the loaded pointer is a getelementptr of a global. 5656 // TODO: Use SCEV instead of manually grubbing with GEPs. 5657 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5658 if (!GEP) return getCouldNotCompute(); 5659 5660 // Make sure that it is really a constant global we are gepping, with an 5661 // initializer, and make sure the first IDX is really 0. 5662 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5663 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5664 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5665 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5666 return getCouldNotCompute(); 5667 5668 // Okay, we allow one non-constant index into the GEP instruction. 5669 Value *VarIdx = nullptr; 5670 std::vector<Constant*> Indexes; 5671 unsigned VarIdxNum = 0; 5672 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5673 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5674 Indexes.push_back(CI); 5675 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5676 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5677 VarIdx = GEP->getOperand(i); 5678 VarIdxNum = i-2; 5679 Indexes.push_back(nullptr); 5680 } 5681 5682 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5683 if (!VarIdx) 5684 return getCouldNotCompute(); 5685 5686 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5687 // Check to see if X is a loop variant variable value now. 5688 const SCEV *Idx = getSCEV(VarIdx); 5689 Idx = getSCEVAtScope(Idx, L); 5690 5691 // We can only recognize very limited forms of loop index expressions, in 5692 // particular, only affine AddRec's like {C1,+,C2}. 5693 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5694 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5695 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5696 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5697 return getCouldNotCompute(); 5698 5699 unsigned MaxSteps = MaxBruteForceIterations; 5700 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5701 ConstantInt *ItCst = ConstantInt::get( 5702 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5703 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5704 5705 // Form the GEP offset. 5706 Indexes[VarIdxNum] = Val; 5707 5708 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5709 Indexes); 5710 if (!Result) break; // Cannot compute! 5711 5712 // Evaluate the condition for this iteration. 5713 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5714 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5715 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5716 ++NumArrayLenItCounts; 5717 return getConstant(ItCst); // Found terminating iteration! 5718 } 5719 } 5720 return getCouldNotCompute(); 5721 } 5722 5723 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5724 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5725 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5726 if (!RHS) 5727 return getCouldNotCompute(); 5728 5729 const BasicBlock *Latch = L->getLoopLatch(); 5730 if (!Latch) 5731 return getCouldNotCompute(); 5732 5733 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5734 if (!Predecessor) 5735 return getCouldNotCompute(); 5736 5737 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5738 // Return LHS in OutLHS and shift_opt in OutOpCode. 5739 auto MatchPositiveShift = 5740 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5741 5742 using namespace PatternMatch; 5743 5744 ConstantInt *ShiftAmt; 5745 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5746 OutOpCode = Instruction::LShr; 5747 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5748 OutOpCode = Instruction::AShr; 5749 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5750 OutOpCode = Instruction::Shl; 5751 else 5752 return false; 5753 5754 return ShiftAmt->getValue().isStrictlyPositive(); 5755 }; 5756 5757 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5758 // 5759 // loop: 5760 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5761 // %iv.shifted = lshr i32 %iv, <positive constant> 5762 // 5763 // Return true on a succesful match. Return the corresponding PHI node (%iv 5764 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5765 auto MatchShiftRecurrence = 5766 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5767 Optional<Instruction::BinaryOps> PostShiftOpCode; 5768 5769 { 5770 Instruction::BinaryOps OpC; 5771 Value *V; 5772 5773 // If we encounter a shift instruction, "peel off" the shift operation, 5774 // and remember that we did so. Later when we inspect %iv's backedge 5775 // value, we will make sure that the backedge value uses the same 5776 // operation. 5777 // 5778 // Note: the peeled shift operation does not have to be the same 5779 // instruction as the one feeding into the PHI's backedge value. We only 5780 // really care about it being the same *kind* of shift instruction -- 5781 // that's all that is required for our later inferences to hold. 5782 if (MatchPositiveShift(LHS, V, OpC)) { 5783 PostShiftOpCode = OpC; 5784 LHS = V; 5785 } 5786 } 5787 5788 PNOut = dyn_cast<PHINode>(LHS); 5789 if (!PNOut || PNOut->getParent() != L->getHeader()) 5790 return false; 5791 5792 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5793 Value *OpLHS; 5794 5795 return 5796 // The backedge value for the PHI node must be a shift by a positive 5797 // amount 5798 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5799 5800 // of the PHI node itself 5801 OpLHS == PNOut && 5802 5803 // and the kind of shift should be match the kind of shift we peeled 5804 // off, if any. 5805 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5806 }; 5807 5808 PHINode *PN; 5809 Instruction::BinaryOps OpCode; 5810 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5811 return getCouldNotCompute(); 5812 5813 const DataLayout &DL = getDataLayout(); 5814 5815 // The key rationale for this optimization is that for some kinds of shift 5816 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5817 // within a finite number of iterations. If the condition guarding the 5818 // backedge (in the sense that the backedge is taken if the condition is true) 5819 // is false for the value the shift recurrence stabilizes to, then we know 5820 // that the backedge is taken only a finite number of times. 5821 5822 ConstantInt *StableValue = nullptr; 5823 switch (OpCode) { 5824 default: 5825 llvm_unreachable("Impossible case!"); 5826 5827 case Instruction::AShr: { 5828 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5829 // bitwidth(K) iterations. 5830 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5831 bool KnownZero, KnownOne; 5832 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5833 Predecessor->getTerminator(), &DT); 5834 auto *Ty = cast<IntegerType>(RHS->getType()); 5835 if (KnownZero) 5836 StableValue = ConstantInt::get(Ty, 0); 5837 else if (KnownOne) 5838 StableValue = ConstantInt::get(Ty, -1, true); 5839 else 5840 return getCouldNotCompute(); 5841 5842 break; 5843 } 5844 case Instruction::LShr: 5845 case Instruction::Shl: 5846 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5847 // stabilize to 0 in at most bitwidth(K) iterations. 5848 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5849 break; 5850 } 5851 5852 auto *Result = 5853 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5854 assert(Result->getType()->isIntegerTy(1) && 5855 "Otherwise cannot be an operand to a branch instruction"); 5856 5857 if (Result->isZeroValue()) { 5858 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5859 const SCEV *UpperBound = 5860 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5861 return ExitLimit(getCouldNotCompute(), UpperBound); 5862 } 5863 5864 return getCouldNotCompute(); 5865 } 5866 5867 /// CanConstantFold - Return true if we can constant fold an instruction of the 5868 /// specified type, assuming that all operands were constants. 5869 static bool CanConstantFold(const Instruction *I) { 5870 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5871 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5872 isa<LoadInst>(I)) 5873 return true; 5874 5875 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5876 if (const Function *F = CI->getCalledFunction()) 5877 return canConstantFoldCallTo(F); 5878 return false; 5879 } 5880 5881 /// Determine whether this instruction can constant evolve within this loop 5882 /// assuming its operands can all constant evolve. 5883 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5884 // An instruction outside of the loop can't be derived from a loop PHI. 5885 if (!L->contains(I)) return false; 5886 5887 if (isa<PHINode>(I)) { 5888 // We don't currently keep track of the control flow needed to evaluate 5889 // PHIs, so we cannot handle PHIs inside of loops. 5890 return L->getHeader() == I->getParent(); 5891 } 5892 5893 // If we won't be able to constant fold this expression even if the operands 5894 // are constants, bail early. 5895 return CanConstantFold(I); 5896 } 5897 5898 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5899 /// recursing through each instruction operand until reaching a loop header phi. 5900 static PHINode * 5901 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5902 DenseMap<Instruction *, PHINode *> &PHIMap) { 5903 5904 // Otherwise, we can evaluate this instruction if all of its operands are 5905 // constant or derived from a PHI node themselves. 5906 PHINode *PHI = nullptr; 5907 for (Value *Op : UseInst->operands()) { 5908 if (isa<Constant>(Op)) continue; 5909 5910 Instruction *OpInst = dyn_cast<Instruction>(Op); 5911 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5912 5913 PHINode *P = dyn_cast<PHINode>(OpInst); 5914 if (!P) 5915 // If this operand is already visited, reuse the prior result. 5916 // We may have P != PHI if this is the deepest point at which the 5917 // inconsistent paths meet. 5918 P = PHIMap.lookup(OpInst); 5919 if (!P) { 5920 // Recurse and memoize the results, whether a phi is found or not. 5921 // This recursive call invalidates pointers into PHIMap. 5922 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5923 PHIMap[OpInst] = P; 5924 } 5925 if (!P) 5926 return nullptr; // Not evolving from PHI 5927 if (PHI && PHI != P) 5928 return nullptr; // Evolving from multiple different PHIs. 5929 PHI = P; 5930 } 5931 // This is a expression evolving from a constant PHI! 5932 return PHI; 5933 } 5934 5935 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5936 /// in the loop that V is derived from. We allow arbitrary operations along the 5937 /// way, but the operands of an operation must either be constants or a value 5938 /// derived from a constant PHI. If this expression does not fit with these 5939 /// constraints, return null. 5940 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5941 Instruction *I = dyn_cast<Instruction>(V); 5942 if (!I || !canConstantEvolve(I, L)) return nullptr; 5943 5944 if (PHINode *PN = dyn_cast<PHINode>(I)) 5945 return PN; 5946 5947 // Record non-constant instructions contained by the loop. 5948 DenseMap<Instruction *, PHINode *> PHIMap; 5949 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5950 } 5951 5952 /// EvaluateExpression - Given an expression that passes the 5953 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5954 /// in the loop has the value PHIVal. If we can't fold this expression for some 5955 /// reason, return null. 5956 static Constant *EvaluateExpression(Value *V, const Loop *L, 5957 DenseMap<Instruction *, Constant *> &Vals, 5958 const DataLayout &DL, 5959 const TargetLibraryInfo *TLI) { 5960 // Convenient constant check, but redundant for recursive calls. 5961 if (Constant *C = dyn_cast<Constant>(V)) return C; 5962 Instruction *I = dyn_cast<Instruction>(V); 5963 if (!I) return nullptr; 5964 5965 if (Constant *C = Vals.lookup(I)) return C; 5966 5967 // An instruction inside the loop depends on a value outside the loop that we 5968 // weren't given a mapping for, or a value such as a call inside the loop. 5969 if (!canConstantEvolve(I, L)) return nullptr; 5970 5971 // An unmapped PHI can be due to a branch or another loop inside this loop, 5972 // or due to this not being the initial iteration through a loop where we 5973 // couldn't compute the evolution of this particular PHI last time. 5974 if (isa<PHINode>(I)) return nullptr; 5975 5976 std::vector<Constant*> Operands(I->getNumOperands()); 5977 5978 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5979 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5980 if (!Operand) { 5981 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5982 if (!Operands[i]) return nullptr; 5983 continue; 5984 } 5985 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5986 Vals[Operand] = C; 5987 if (!C) return nullptr; 5988 Operands[i] = C; 5989 } 5990 5991 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5992 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5993 Operands[1], DL, TLI); 5994 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5995 if (!LI->isVolatile()) 5996 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 5997 } 5998 return ConstantFoldInstOperands(I, Operands, DL, TLI); 5999 } 6000 6001 6002 // If every incoming value to PN except the one for BB is a specific Constant, 6003 // return that, else return nullptr. 6004 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6005 Constant *IncomingVal = nullptr; 6006 6007 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6008 if (PN->getIncomingBlock(i) == BB) 6009 continue; 6010 6011 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6012 if (!CurrentVal) 6013 return nullptr; 6014 6015 if (IncomingVal != CurrentVal) { 6016 if (IncomingVal) 6017 return nullptr; 6018 IncomingVal = CurrentVal; 6019 } 6020 } 6021 6022 return IncomingVal; 6023 } 6024 6025 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6026 /// in the header of its containing loop, we know the loop executes a 6027 /// constant number of times, and the PHI node is just a recurrence 6028 /// involving constants, fold it. 6029 Constant * 6030 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6031 const APInt &BEs, 6032 const Loop *L) { 6033 auto I = ConstantEvolutionLoopExitValue.find(PN); 6034 if (I != ConstantEvolutionLoopExitValue.end()) 6035 return I->second; 6036 6037 if (BEs.ugt(MaxBruteForceIterations)) 6038 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6039 6040 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6041 6042 DenseMap<Instruction *, Constant *> CurrentIterVals; 6043 BasicBlock *Header = L->getHeader(); 6044 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6045 6046 BasicBlock *Latch = L->getLoopLatch(); 6047 if (!Latch) 6048 return nullptr; 6049 6050 for (auto &I : *Header) { 6051 PHINode *PHI = dyn_cast<PHINode>(&I); 6052 if (!PHI) break; 6053 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6054 if (!StartCST) continue; 6055 CurrentIterVals[PHI] = StartCST; 6056 } 6057 if (!CurrentIterVals.count(PN)) 6058 return RetVal = nullptr; 6059 6060 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6061 6062 // Execute the loop symbolically to determine the exit value. 6063 if (BEs.getActiveBits() >= 32) 6064 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6065 6066 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6067 unsigned IterationNum = 0; 6068 const DataLayout &DL = getDataLayout(); 6069 for (; ; ++IterationNum) { 6070 if (IterationNum == NumIterations) 6071 return RetVal = CurrentIterVals[PN]; // Got exit value! 6072 6073 // Compute the value of the PHIs for the next iteration. 6074 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6075 DenseMap<Instruction *, Constant *> NextIterVals; 6076 Constant *NextPHI = 6077 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6078 if (!NextPHI) 6079 return nullptr; // Couldn't evaluate! 6080 NextIterVals[PN] = NextPHI; 6081 6082 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6083 6084 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6085 // cease to be able to evaluate one of them or if they stop evolving, 6086 // because that doesn't necessarily prevent us from computing PN. 6087 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6088 for (const auto &I : CurrentIterVals) { 6089 PHINode *PHI = dyn_cast<PHINode>(I.first); 6090 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6091 PHIsToCompute.emplace_back(PHI, I.second); 6092 } 6093 // We use two distinct loops because EvaluateExpression may invalidate any 6094 // iterators into CurrentIterVals. 6095 for (const auto &I : PHIsToCompute) { 6096 PHINode *PHI = I.first; 6097 Constant *&NextPHI = NextIterVals[PHI]; 6098 if (!NextPHI) { // Not already computed. 6099 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6100 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6101 } 6102 if (NextPHI != I.second) 6103 StoppedEvolving = false; 6104 } 6105 6106 // If all entries in CurrentIterVals == NextIterVals then we can stop 6107 // iterating, the loop can't continue to change. 6108 if (StoppedEvolving) 6109 return RetVal = CurrentIterVals[PN]; 6110 6111 CurrentIterVals.swap(NextIterVals); 6112 } 6113 } 6114 6115 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6116 Value *Cond, 6117 bool ExitWhen) { 6118 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6119 if (!PN) return getCouldNotCompute(); 6120 6121 // If the loop is canonicalized, the PHI will have exactly two entries. 6122 // That's the only form we support here. 6123 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6124 6125 DenseMap<Instruction *, Constant *> CurrentIterVals; 6126 BasicBlock *Header = L->getHeader(); 6127 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6128 6129 BasicBlock *Latch = L->getLoopLatch(); 6130 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6131 6132 for (auto &I : *Header) { 6133 PHINode *PHI = dyn_cast<PHINode>(&I); 6134 if (!PHI) 6135 break; 6136 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6137 if (!StartCST) continue; 6138 CurrentIterVals[PHI] = StartCST; 6139 } 6140 if (!CurrentIterVals.count(PN)) 6141 return getCouldNotCompute(); 6142 6143 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6144 // the loop symbolically to determine when the condition gets a value of 6145 // "ExitWhen". 6146 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6147 const DataLayout &DL = getDataLayout(); 6148 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6149 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6150 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6151 6152 // Couldn't symbolically evaluate. 6153 if (!CondVal) return getCouldNotCompute(); 6154 6155 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6156 ++NumBruteForceTripCountsComputed; 6157 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6158 } 6159 6160 // Update all the PHI nodes for the next iteration. 6161 DenseMap<Instruction *, Constant *> NextIterVals; 6162 6163 // Create a list of which PHIs we need to compute. We want to do this before 6164 // calling EvaluateExpression on them because that may invalidate iterators 6165 // into CurrentIterVals. 6166 SmallVector<PHINode *, 8> PHIsToCompute; 6167 for (const auto &I : CurrentIterVals) { 6168 PHINode *PHI = dyn_cast<PHINode>(I.first); 6169 if (!PHI || PHI->getParent() != Header) continue; 6170 PHIsToCompute.push_back(PHI); 6171 } 6172 for (PHINode *PHI : PHIsToCompute) { 6173 Constant *&NextPHI = NextIterVals[PHI]; 6174 if (NextPHI) continue; // Already computed! 6175 6176 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6177 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6178 } 6179 CurrentIterVals.swap(NextIterVals); 6180 } 6181 6182 // Too many iterations were needed to evaluate. 6183 return getCouldNotCompute(); 6184 } 6185 6186 /// getSCEVAtScope - Return a SCEV expression for the specified value 6187 /// at the specified scope in the program. The L value specifies a loop 6188 /// nest to evaluate the expression at, where null is the top-level or a 6189 /// specified loop is immediately inside of the loop. 6190 /// 6191 /// This method can be used to compute the exit value for a variable defined 6192 /// in a loop by querying what the value will hold in the parent loop. 6193 /// 6194 /// In the case that a relevant loop exit value cannot be computed, the 6195 /// original value V is returned. 6196 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6197 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6198 ValuesAtScopes[V]; 6199 // Check to see if we've folded this expression at this loop before. 6200 for (auto &LS : Values) 6201 if (LS.first == L) 6202 return LS.second ? LS.second : V; 6203 6204 Values.emplace_back(L, nullptr); 6205 6206 // Otherwise compute it. 6207 const SCEV *C = computeSCEVAtScope(V, L); 6208 for (auto &LS : reverse(ValuesAtScopes[V])) 6209 if (LS.first == L) { 6210 LS.second = C; 6211 break; 6212 } 6213 return C; 6214 } 6215 6216 /// This builds up a Constant using the ConstantExpr interface. That way, we 6217 /// will return Constants for objects which aren't represented by a 6218 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6219 /// Returns NULL if the SCEV isn't representable as a Constant. 6220 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6221 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6222 case scCouldNotCompute: 6223 case scAddRecExpr: 6224 break; 6225 case scConstant: 6226 return cast<SCEVConstant>(V)->getValue(); 6227 case scUnknown: 6228 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6229 case scSignExtend: { 6230 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6231 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6232 return ConstantExpr::getSExt(CastOp, SS->getType()); 6233 break; 6234 } 6235 case scZeroExtend: { 6236 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6237 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6238 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6239 break; 6240 } 6241 case scTruncate: { 6242 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6243 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6244 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6245 break; 6246 } 6247 case scAddExpr: { 6248 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6249 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6250 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6251 unsigned AS = PTy->getAddressSpace(); 6252 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6253 C = ConstantExpr::getBitCast(C, DestPtrTy); 6254 } 6255 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6256 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6257 if (!C2) return nullptr; 6258 6259 // First pointer! 6260 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6261 unsigned AS = C2->getType()->getPointerAddressSpace(); 6262 std::swap(C, C2); 6263 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6264 // The offsets have been converted to bytes. We can add bytes to an 6265 // i8* by GEP with the byte count in the first index. 6266 C = ConstantExpr::getBitCast(C, DestPtrTy); 6267 } 6268 6269 // Don't bother trying to sum two pointers. We probably can't 6270 // statically compute a load that results from it anyway. 6271 if (C2->getType()->isPointerTy()) 6272 return nullptr; 6273 6274 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6275 if (PTy->getElementType()->isStructTy()) 6276 C2 = ConstantExpr::getIntegerCast( 6277 C2, Type::getInt32Ty(C->getContext()), true); 6278 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6279 } else 6280 C = ConstantExpr::getAdd(C, C2); 6281 } 6282 return C; 6283 } 6284 break; 6285 } 6286 case scMulExpr: { 6287 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6288 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6289 // Don't bother with pointers at all. 6290 if (C->getType()->isPointerTy()) return nullptr; 6291 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6292 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6293 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6294 C = ConstantExpr::getMul(C, C2); 6295 } 6296 return C; 6297 } 6298 break; 6299 } 6300 case scUDivExpr: { 6301 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6302 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6303 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6304 if (LHS->getType() == RHS->getType()) 6305 return ConstantExpr::getUDiv(LHS, RHS); 6306 break; 6307 } 6308 case scSMaxExpr: 6309 case scUMaxExpr: 6310 break; // TODO: smax, umax. 6311 } 6312 return nullptr; 6313 } 6314 6315 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6316 if (isa<SCEVConstant>(V)) return V; 6317 6318 // If this instruction is evolved from a constant-evolving PHI, compute the 6319 // exit value from the loop without using SCEVs. 6320 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6321 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6322 const Loop *LI = this->LI[I->getParent()]; 6323 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6324 if (PHINode *PN = dyn_cast<PHINode>(I)) 6325 if (PN->getParent() == LI->getHeader()) { 6326 // Okay, there is no closed form solution for the PHI node. Check 6327 // to see if the loop that contains it has a known backedge-taken 6328 // count. If so, we may be able to force computation of the exit 6329 // value. 6330 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6331 if (const SCEVConstant *BTCC = 6332 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6333 // Okay, we know how many times the containing loop executes. If 6334 // this is a constant evolving PHI node, get the final value at 6335 // the specified iteration number. 6336 Constant *RV = 6337 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6338 if (RV) return getSCEV(RV); 6339 } 6340 } 6341 6342 // Okay, this is an expression that we cannot symbolically evaluate 6343 // into a SCEV. Check to see if it's possible to symbolically evaluate 6344 // the arguments into constants, and if so, try to constant propagate the 6345 // result. This is particularly useful for computing loop exit values. 6346 if (CanConstantFold(I)) { 6347 SmallVector<Constant *, 4> Operands; 6348 bool MadeImprovement = false; 6349 for (Value *Op : I->operands()) { 6350 if (Constant *C = dyn_cast<Constant>(Op)) { 6351 Operands.push_back(C); 6352 continue; 6353 } 6354 6355 // If any of the operands is non-constant and if they are 6356 // non-integer and non-pointer, don't even try to analyze them 6357 // with scev techniques. 6358 if (!isSCEVable(Op->getType())) 6359 return V; 6360 6361 const SCEV *OrigV = getSCEV(Op); 6362 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6363 MadeImprovement |= OrigV != OpV; 6364 6365 Constant *C = BuildConstantFromSCEV(OpV); 6366 if (!C) return V; 6367 if (C->getType() != Op->getType()) 6368 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6369 Op->getType(), 6370 false), 6371 C, Op->getType()); 6372 Operands.push_back(C); 6373 } 6374 6375 // Check to see if getSCEVAtScope actually made an improvement. 6376 if (MadeImprovement) { 6377 Constant *C = nullptr; 6378 const DataLayout &DL = getDataLayout(); 6379 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6380 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6381 Operands[1], DL, &TLI); 6382 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6383 if (!LI->isVolatile()) 6384 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6385 } else 6386 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6387 if (!C) return V; 6388 return getSCEV(C); 6389 } 6390 } 6391 } 6392 6393 // This is some other type of SCEVUnknown, just return it. 6394 return V; 6395 } 6396 6397 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6398 // Avoid performing the look-up in the common case where the specified 6399 // expression has no loop-variant portions. 6400 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6401 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6402 if (OpAtScope != Comm->getOperand(i)) { 6403 // Okay, at least one of these operands is loop variant but might be 6404 // foldable. Build a new instance of the folded commutative expression. 6405 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6406 Comm->op_begin()+i); 6407 NewOps.push_back(OpAtScope); 6408 6409 for (++i; i != e; ++i) { 6410 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6411 NewOps.push_back(OpAtScope); 6412 } 6413 if (isa<SCEVAddExpr>(Comm)) 6414 return getAddExpr(NewOps); 6415 if (isa<SCEVMulExpr>(Comm)) 6416 return getMulExpr(NewOps); 6417 if (isa<SCEVSMaxExpr>(Comm)) 6418 return getSMaxExpr(NewOps); 6419 if (isa<SCEVUMaxExpr>(Comm)) 6420 return getUMaxExpr(NewOps); 6421 llvm_unreachable("Unknown commutative SCEV type!"); 6422 } 6423 } 6424 // If we got here, all operands are loop invariant. 6425 return Comm; 6426 } 6427 6428 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6429 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6430 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6431 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6432 return Div; // must be loop invariant 6433 return getUDivExpr(LHS, RHS); 6434 } 6435 6436 // If this is a loop recurrence for a loop that does not contain L, then we 6437 // are dealing with the final value computed by the loop. 6438 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6439 // First, attempt to evaluate each operand. 6440 // Avoid performing the look-up in the common case where the specified 6441 // expression has no loop-variant portions. 6442 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6443 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6444 if (OpAtScope == AddRec->getOperand(i)) 6445 continue; 6446 6447 // Okay, at least one of these operands is loop variant but might be 6448 // foldable. Build a new instance of the folded commutative expression. 6449 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6450 AddRec->op_begin()+i); 6451 NewOps.push_back(OpAtScope); 6452 for (++i; i != e; ++i) 6453 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6454 6455 const SCEV *FoldedRec = 6456 getAddRecExpr(NewOps, AddRec->getLoop(), 6457 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6458 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6459 // The addrec may be folded to a nonrecurrence, for example, if the 6460 // induction variable is multiplied by zero after constant folding. Go 6461 // ahead and return the folded value. 6462 if (!AddRec) 6463 return FoldedRec; 6464 break; 6465 } 6466 6467 // If the scope is outside the addrec's loop, evaluate it by using the 6468 // loop exit value of the addrec. 6469 if (!AddRec->getLoop()->contains(L)) { 6470 // To evaluate this recurrence, we need to know how many times the AddRec 6471 // loop iterates. Compute this now. 6472 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6473 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6474 6475 // Then, evaluate the AddRec. 6476 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6477 } 6478 6479 return AddRec; 6480 } 6481 6482 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6483 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6484 if (Op == Cast->getOperand()) 6485 return Cast; // must be loop invariant 6486 return getZeroExtendExpr(Op, Cast->getType()); 6487 } 6488 6489 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6490 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6491 if (Op == Cast->getOperand()) 6492 return Cast; // must be loop invariant 6493 return getSignExtendExpr(Op, Cast->getType()); 6494 } 6495 6496 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6497 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6498 if (Op == Cast->getOperand()) 6499 return Cast; // must be loop invariant 6500 return getTruncateExpr(Op, Cast->getType()); 6501 } 6502 6503 llvm_unreachable("Unknown SCEV type!"); 6504 } 6505 6506 /// getSCEVAtScope - This is a convenience function which does 6507 /// getSCEVAtScope(getSCEV(V), L). 6508 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6509 return getSCEVAtScope(getSCEV(V), L); 6510 } 6511 6512 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6513 /// following equation: 6514 /// 6515 /// A * X = B (mod N) 6516 /// 6517 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6518 /// A and B isn't important. 6519 /// 6520 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6521 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6522 ScalarEvolution &SE) { 6523 uint32_t BW = A.getBitWidth(); 6524 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6525 assert(A != 0 && "A must be non-zero."); 6526 6527 // 1. D = gcd(A, N) 6528 // 6529 // The gcd of A and N may have only one prime factor: 2. The number of 6530 // trailing zeros in A is its multiplicity 6531 uint32_t Mult2 = A.countTrailingZeros(); 6532 // D = 2^Mult2 6533 6534 // 2. Check if B is divisible by D. 6535 // 6536 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6537 // is not less than multiplicity of this prime factor for D. 6538 if (B.countTrailingZeros() < Mult2) 6539 return SE.getCouldNotCompute(); 6540 6541 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6542 // modulo (N / D). 6543 // 6544 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6545 // bit width during computations. 6546 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6547 APInt Mod(BW + 1, 0); 6548 Mod.setBit(BW - Mult2); // Mod = N / D 6549 APInt I = AD.multiplicativeInverse(Mod); 6550 6551 // 4. Compute the minimum unsigned root of the equation: 6552 // I * (B / D) mod (N / D) 6553 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6554 6555 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6556 // bits. 6557 return SE.getConstant(Result.trunc(BW)); 6558 } 6559 6560 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6561 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6562 /// might be the same) or two SCEVCouldNotCompute objects. 6563 /// 6564 static std::pair<const SCEV *,const SCEV *> 6565 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6566 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6567 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6568 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6569 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6570 6571 // We currently can only solve this if the coefficients are constants. 6572 if (!LC || !MC || !NC) { 6573 const SCEV *CNC = SE.getCouldNotCompute(); 6574 return {CNC, CNC}; 6575 } 6576 6577 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 6578 const APInt &L = LC->getAPInt(); 6579 const APInt &M = MC->getAPInt(); 6580 const APInt &N = NC->getAPInt(); 6581 APInt Two(BitWidth, 2); 6582 APInt Four(BitWidth, 4); 6583 6584 { 6585 using namespace APIntOps; 6586 const APInt& C = L; 6587 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6588 // The B coefficient is M-N/2 6589 APInt B(M); 6590 B -= sdiv(N,Two); 6591 6592 // The A coefficient is N/2 6593 APInt A(N.sdiv(Two)); 6594 6595 // Compute the B^2-4ac term. 6596 APInt SqrtTerm(B); 6597 SqrtTerm *= B; 6598 SqrtTerm -= Four * (A * C); 6599 6600 if (SqrtTerm.isNegative()) { 6601 // The loop is provably infinite. 6602 const SCEV *CNC = SE.getCouldNotCompute(); 6603 return {CNC, CNC}; 6604 } 6605 6606 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6607 // integer value or else APInt::sqrt() will assert. 6608 APInt SqrtVal(SqrtTerm.sqrt()); 6609 6610 // Compute the two solutions for the quadratic formula. 6611 // The divisions must be performed as signed divisions. 6612 APInt NegB(-B); 6613 APInt TwoA(A << 1); 6614 if (TwoA.isMinValue()) { 6615 const SCEV *CNC = SE.getCouldNotCompute(); 6616 return {CNC, CNC}; 6617 } 6618 6619 LLVMContext &Context = SE.getContext(); 6620 6621 ConstantInt *Solution1 = 6622 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6623 ConstantInt *Solution2 = 6624 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6625 6626 return {SE.getConstant(Solution1), SE.getConstant(Solution2)}; 6627 } // end APIntOps namespace 6628 } 6629 6630 /// HowFarToZero - Return the number of times a backedge comparing the specified 6631 /// value to zero will execute. If not computable, return CouldNotCompute. 6632 /// 6633 /// This is only used for loops with a "x != y" exit test. The exit condition is 6634 /// now expressed as a single expression, V = x-y. So the exit test is 6635 /// effectively V != 0. We know and take advantage of the fact that this 6636 /// expression only being used in a comparison by zero context. 6637 ScalarEvolution::ExitLimit 6638 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6639 // If the value is a constant 6640 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6641 // If the value is already zero, the branch will execute zero times. 6642 if (C->getValue()->isZero()) return C; 6643 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6644 } 6645 6646 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6647 if (!AddRec || AddRec->getLoop() != L) 6648 return getCouldNotCompute(); 6649 6650 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6651 // the quadratic equation to solve it. 6652 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6653 std::pair<const SCEV *,const SCEV *> Roots = 6654 SolveQuadraticEquation(AddRec, *this); 6655 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6656 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6657 if (R1 && R2) { 6658 // Pick the smallest positive root value. 6659 if (ConstantInt *CB = 6660 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6661 R1->getValue(), 6662 R2->getValue()))) { 6663 if (!CB->getZExtValue()) 6664 std::swap(R1, R2); // R1 is the minimum root now. 6665 6666 // We can only use this value if the chrec ends up with an exact zero 6667 // value at this index. When solving for "X*X != 5", for example, we 6668 // should not accept a root of 2. 6669 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6670 if (Val->isZero()) 6671 return R1; // We found a quadratic root! 6672 } 6673 } 6674 return getCouldNotCompute(); 6675 } 6676 6677 // Otherwise we can only handle this if it is affine. 6678 if (!AddRec->isAffine()) 6679 return getCouldNotCompute(); 6680 6681 // If this is an affine expression, the execution count of this branch is 6682 // the minimum unsigned root of the following equation: 6683 // 6684 // Start + Step*N = 0 (mod 2^BW) 6685 // 6686 // equivalent to: 6687 // 6688 // Step*N = -Start (mod 2^BW) 6689 // 6690 // where BW is the common bit width of Start and Step. 6691 6692 // Get the initial value for the loop. 6693 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6694 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6695 6696 // For now we handle only constant steps. 6697 // 6698 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6699 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6700 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6701 // We have not yet seen any such cases. 6702 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6703 if (!StepC || StepC->getValue()->equalsInt(0)) 6704 return getCouldNotCompute(); 6705 6706 // For positive steps (counting up until unsigned overflow): 6707 // N = -Start/Step (as unsigned) 6708 // For negative steps (counting down to zero): 6709 // N = Start/-Step 6710 // First compute the unsigned distance from zero in the direction of Step. 6711 bool CountDown = StepC->getAPInt().isNegative(); 6712 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6713 6714 // Handle unitary steps, which cannot wraparound. 6715 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6716 // N = Distance (as unsigned) 6717 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6718 ConstantRange CR = getUnsignedRange(Start); 6719 const SCEV *MaxBECount; 6720 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6721 // When counting up, the worst starting value is 1, not 0. 6722 MaxBECount = CR.getUnsignedMax().isMinValue() 6723 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6724 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6725 else 6726 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6727 : -CR.getUnsignedMin()); 6728 return ExitLimit(Distance, MaxBECount); 6729 } 6730 6731 // As a special case, handle the instance where Step is a positive power of 6732 // two. In this case, determining whether Step divides Distance evenly can be 6733 // done by counting and comparing the number of trailing zeros of Step and 6734 // Distance. 6735 if (!CountDown) { 6736 const APInt &StepV = StepC->getAPInt(); 6737 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6738 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6739 // case is not handled as this code is guarded by !CountDown. 6740 if (StepV.isPowerOf2() && 6741 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6742 // Here we've constrained the equation to be of the form 6743 // 6744 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6745 // 6746 // where we're operating on a W bit wide integer domain and k is 6747 // non-negative. The smallest unsigned solution for X is the trip count. 6748 // 6749 // (0) is equivalent to: 6750 // 6751 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6752 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6753 // <=> 2^k * Distance' - X = L * 2^(W - N) 6754 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6755 // 6756 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6757 // by 2^(W - N). 6758 // 6759 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6760 // 6761 // E.g. say we're solving 6762 // 6763 // 2 * Val = 2 * X (in i8) ... (3) 6764 // 6765 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6766 // 6767 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6768 // necessarily the smallest unsigned value of X that satisfies (3). 6769 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6770 // is i8 1, not i8 -127 6771 6772 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6773 6774 // Since SCEV does not have a URem node, we construct one using a truncate 6775 // and a zero extend. 6776 6777 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6778 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6779 auto *WideTy = Distance->getType(); 6780 6781 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6782 } 6783 } 6784 6785 // If the condition controls loop exit (the loop exits only if the expression 6786 // is true) and the addition is no-wrap we can use unsigned divide to 6787 // compute the backedge count. In this case, the step may not divide the 6788 // distance, but we don't care because if the condition is "missed" the loop 6789 // will have undefined behavior due to wrapping. 6790 if (ControlsExit && AddRec->hasNoSelfWrap()) { 6791 const SCEV *Exact = 6792 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6793 return ExitLimit(Exact, Exact); 6794 } 6795 6796 // Then, try to solve the above equation provided that Start is constant. 6797 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6798 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(), 6799 *this); 6800 return getCouldNotCompute(); 6801 } 6802 6803 /// HowFarToNonZero - Return the number of times a backedge checking the 6804 /// specified value for nonzero will execute. If not computable, return 6805 /// CouldNotCompute 6806 ScalarEvolution::ExitLimit 6807 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6808 // Loops that look like: while (X == 0) are very strange indeed. We don't 6809 // handle them yet except for the trivial case. This could be expanded in the 6810 // future as needed. 6811 6812 // If the value is a constant, check to see if it is known to be non-zero 6813 // already. If so, the backedge will execute zero times. 6814 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6815 if (!C->getValue()->isNullValue()) 6816 return getZero(C->getType()); 6817 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6818 } 6819 6820 // We could implement others, but I really doubt anyone writes loops like 6821 // this, and if they did, they would already be constant folded. 6822 return getCouldNotCompute(); 6823 } 6824 6825 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6826 /// (which may not be an immediate predecessor) which has exactly one 6827 /// successor from which BB is reachable, or null if no such block is 6828 /// found. 6829 /// 6830 std::pair<BasicBlock *, BasicBlock *> 6831 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6832 // If the block has a unique predecessor, then there is no path from the 6833 // predecessor to the block that does not go through the direct edge 6834 // from the predecessor to the block. 6835 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6836 return {Pred, BB}; 6837 6838 // A loop's header is defined to be a block that dominates the loop. 6839 // If the header has a unique predecessor outside the loop, it must be 6840 // a block that has exactly one successor that can reach the loop. 6841 if (Loop *L = LI.getLoopFor(BB)) 6842 return {L->getLoopPredecessor(), L->getHeader()}; 6843 6844 return {nullptr, nullptr}; 6845 } 6846 6847 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6848 /// testing whether two expressions are equal, however for the purposes of 6849 /// looking for a condition guarding a loop, it can be useful to be a little 6850 /// more general, since a front-end may have replicated the controlling 6851 /// expression. 6852 /// 6853 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6854 // Quick check to see if they are the same SCEV. 6855 if (A == B) return true; 6856 6857 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6858 // Not all instructions that are "identical" compute the same value. For 6859 // instance, two distinct alloca instructions allocating the same type are 6860 // identical and do not read memory; but compute distinct values. 6861 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6862 }; 6863 6864 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6865 // two different instructions with the same value. Check for this case. 6866 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6867 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6868 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6869 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6870 if (ComputesEqualValues(AI, BI)) 6871 return true; 6872 6873 // Otherwise assume they may have a different value. 6874 return false; 6875 } 6876 6877 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6878 /// predicate Pred. Return true iff any changes were made. 6879 /// 6880 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6881 const SCEV *&LHS, const SCEV *&RHS, 6882 unsigned Depth) { 6883 bool Changed = false; 6884 6885 // If we hit the max recursion limit bail out. 6886 if (Depth >= 3) 6887 return false; 6888 6889 // Canonicalize a constant to the right side. 6890 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6891 // Check for both operands constant. 6892 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6893 if (ConstantExpr::getICmp(Pred, 6894 LHSC->getValue(), 6895 RHSC->getValue())->isNullValue()) 6896 goto trivially_false; 6897 else 6898 goto trivially_true; 6899 } 6900 // Otherwise swap the operands to put the constant on the right. 6901 std::swap(LHS, RHS); 6902 Pred = ICmpInst::getSwappedPredicate(Pred); 6903 Changed = true; 6904 } 6905 6906 // If we're comparing an addrec with a value which is loop-invariant in the 6907 // addrec's loop, put the addrec on the left. Also make a dominance check, 6908 // as both operands could be addrecs loop-invariant in each other's loop. 6909 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6910 const Loop *L = AR->getLoop(); 6911 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6912 std::swap(LHS, RHS); 6913 Pred = ICmpInst::getSwappedPredicate(Pred); 6914 Changed = true; 6915 } 6916 } 6917 6918 // If there's a constant operand, canonicalize comparisons with boundary 6919 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6920 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6921 const APInt &RA = RC->getAPInt(); 6922 switch (Pred) { 6923 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6924 case ICmpInst::ICMP_EQ: 6925 case ICmpInst::ICMP_NE: 6926 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6927 if (!RA) 6928 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6929 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6930 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6931 ME->getOperand(0)->isAllOnesValue()) { 6932 RHS = AE->getOperand(1); 6933 LHS = ME->getOperand(1); 6934 Changed = true; 6935 } 6936 break; 6937 case ICmpInst::ICMP_UGE: 6938 if ((RA - 1).isMinValue()) { 6939 Pred = ICmpInst::ICMP_NE; 6940 RHS = getConstant(RA - 1); 6941 Changed = true; 6942 break; 6943 } 6944 if (RA.isMaxValue()) { 6945 Pred = ICmpInst::ICMP_EQ; 6946 Changed = true; 6947 break; 6948 } 6949 if (RA.isMinValue()) goto trivially_true; 6950 6951 Pred = ICmpInst::ICMP_UGT; 6952 RHS = getConstant(RA - 1); 6953 Changed = true; 6954 break; 6955 case ICmpInst::ICMP_ULE: 6956 if ((RA + 1).isMaxValue()) { 6957 Pred = ICmpInst::ICMP_NE; 6958 RHS = getConstant(RA + 1); 6959 Changed = true; 6960 break; 6961 } 6962 if (RA.isMinValue()) { 6963 Pred = ICmpInst::ICMP_EQ; 6964 Changed = true; 6965 break; 6966 } 6967 if (RA.isMaxValue()) goto trivially_true; 6968 6969 Pred = ICmpInst::ICMP_ULT; 6970 RHS = getConstant(RA + 1); 6971 Changed = true; 6972 break; 6973 case ICmpInst::ICMP_SGE: 6974 if ((RA - 1).isMinSignedValue()) { 6975 Pred = ICmpInst::ICMP_NE; 6976 RHS = getConstant(RA - 1); 6977 Changed = true; 6978 break; 6979 } 6980 if (RA.isMaxSignedValue()) { 6981 Pred = ICmpInst::ICMP_EQ; 6982 Changed = true; 6983 break; 6984 } 6985 if (RA.isMinSignedValue()) goto trivially_true; 6986 6987 Pred = ICmpInst::ICMP_SGT; 6988 RHS = getConstant(RA - 1); 6989 Changed = true; 6990 break; 6991 case ICmpInst::ICMP_SLE: 6992 if ((RA + 1).isMaxSignedValue()) { 6993 Pred = ICmpInst::ICMP_NE; 6994 RHS = getConstant(RA + 1); 6995 Changed = true; 6996 break; 6997 } 6998 if (RA.isMinSignedValue()) { 6999 Pred = ICmpInst::ICMP_EQ; 7000 Changed = true; 7001 break; 7002 } 7003 if (RA.isMaxSignedValue()) goto trivially_true; 7004 7005 Pred = ICmpInst::ICMP_SLT; 7006 RHS = getConstant(RA + 1); 7007 Changed = true; 7008 break; 7009 case ICmpInst::ICMP_UGT: 7010 if (RA.isMinValue()) { 7011 Pred = ICmpInst::ICMP_NE; 7012 Changed = true; 7013 break; 7014 } 7015 if ((RA + 1).isMaxValue()) { 7016 Pred = ICmpInst::ICMP_EQ; 7017 RHS = getConstant(RA + 1); 7018 Changed = true; 7019 break; 7020 } 7021 if (RA.isMaxValue()) goto trivially_false; 7022 break; 7023 case ICmpInst::ICMP_ULT: 7024 if (RA.isMaxValue()) { 7025 Pred = ICmpInst::ICMP_NE; 7026 Changed = true; 7027 break; 7028 } 7029 if ((RA - 1).isMinValue()) { 7030 Pred = ICmpInst::ICMP_EQ; 7031 RHS = getConstant(RA - 1); 7032 Changed = true; 7033 break; 7034 } 7035 if (RA.isMinValue()) goto trivially_false; 7036 break; 7037 case ICmpInst::ICMP_SGT: 7038 if (RA.isMinSignedValue()) { 7039 Pred = ICmpInst::ICMP_NE; 7040 Changed = true; 7041 break; 7042 } 7043 if ((RA + 1).isMaxSignedValue()) { 7044 Pred = ICmpInst::ICMP_EQ; 7045 RHS = getConstant(RA + 1); 7046 Changed = true; 7047 break; 7048 } 7049 if (RA.isMaxSignedValue()) goto trivially_false; 7050 break; 7051 case ICmpInst::ICMP_SLT: 7052 if (RA.isMaxSignedValue()) { 7053 Pred = ICmpInst::ICMP_NE; 7054 Changed = true; 7055 break; 7056 } 7057 if ((RA - 1).isMinSignedValue()) { 7058 Pred = ICmpInst::ICMP_EQ; 7059 RHS = getConstant(RA - 1); 7060 Changed = true; 7061 break; 7062 } 7063 if (RA.isMinSignedValue()) goto trivially_false; 7064 break; 7065 } 7066 } 7067 7068 // Check for obvious equality. 7069 if (HasSameValue(LHS, RHS)) { 7070 if (ICmpInst::isTrueWhenEqual(Pred)) 7071 goto trivially_true; 7072 if (ICmpInst::isFalseWhenEqual(Pred)) 7073 goto trivially_false; 7074 } 7075 7076 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7077 // adding or subtracting 1 from one of the operands. 7078 switch (Pred) { 7079 case ICmpInst::ICMP_SLE: 7080 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7081 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7082 SCEV::FlagNSW); 7083 Pred = ICmpInst::ICMP_SLT; 7084 Changed = true; 7085 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7086 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7087 SCEV::FlagNSW); 7088 Pred = ICmpInst::ICMP_SLT; 7089 Changed = true; 7090 } 7091 break; 7092 case ICmpInst::ICMP_SGE: 7093 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7094 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7095 SCEV::FlagNSW); 7096 Pred = ICmpInst::ICMP_SGT; 7097 Changed = true; 7098 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7099 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7100 SCEV::FlagNSW); 7101 Pred = ICmpInst::ICMP_SGT; 7102 Changed = true; 7103 } 7104 break; 7105 case ICmpInst::ICMP_ULE: 7106 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7107 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7108 SCEV::FlagNUW); 7109 Pred = ICmpInst::ICMP_ULT; 7110 Changed = true; 7111 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7112 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7113 Pred = ICmpInst::ICMP_ULT; 7114 Changed = true; 7115 } 7116 break; 7117 case ICmpInst::ICMP_UGE: 7118 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7119 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7120 Pred = ICmpInst::ICMP_UGT; 7121 Changed = true; 7122 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7123 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7124 SCEV::FlagNUW); 7125 Pred = ICmpInst::ICMP_UGT; 7126 Changed = true; 7127 } 7128 break; 7129 default: 7130 break; 7131 } 7132 7133 // TODO: More simplifications are possible here. 7134 7135 // Recursively simplify until we either hit a recursion limit or nothing 7136 // changes. 7137 if (Changed) 7138 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7139 7140 return Changed; 7141 7142 trivially_true: 7143 // Return 0 == 0. 7144 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7145 Pred = ICmpInst::ICMP_EQ; 7146 return true; 7147 7148 trivially_false: 7149 // Return 0 != 0. 7150 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7151 Pred = ICmpInst::ICMP_NE; 7152 return true; 7153 } 7154 7155 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7156 return getSignedRange(S).getSignedMax().isNegative(); 7157 } 7158 7159 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7160 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7161 } 7162 7163 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7164 return !getSignedRange(S).getSignedMin().isNegative(); 7165 } 7166 7167 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7168 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7169 } 7170 7171 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7172 return isKnownNegative(S) || isKnownPositive(S); 7173 } 7174 7175 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7176 const SCEV *LHS, const SCEV *RHS) { 7177 // Canonicalize the inputs first. 7178 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7179 7180 // If LHS or RHS is an addrec, check to see if the condition is true in 7181 // every iteration of the loop. 7182 // If LHS and RHS are both addrec, both conditions must be true in 7183 // every iteration of the loop. 7184 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7185 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7186 bool LeftGuarded = false; 7187 bool RightGuarded = false; 7188 if (LAR) { 7189 const Loop *L = LAR->getLoop(); 7190 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7191 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7192 if (!RAR) return true; 7193 LeftGuarded = true; 7194 } 7195 } 7196 if (RAR) { 7197 const Loop *L = RAR->getLoop(); 7198 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7199 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7200 if (!LAR) return true; 7201 RightGuarded = true; 7202 } 7203 } 7204 if (LeftGuarded && RightGuarded) 7205 return true; 7206 7207 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7208 return true; 7209 7210 // Otherwise see what can be done with known constant ranges. 7211 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7212 } 7213 7214 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7215 ICmpInst::Predicate Pred, 7216 bool &Increasing) { 7217 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7218 7219 #ifndef NDEBUG 7220 // Verify an invariant: inverting the predicate should turn a monotonically 7221 // increasing change to a monotonically decreasing one, and vice versa. 7222 bool IncreasingSwapped; 7223 bool ResultSwapped = isMonotonicPredicateImpl( 7224 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7225 7226 assert(Result == ResultSwapped && "should be able to analyze both!"); 7227 if (ResultSwapped) 7228 assert(Increasing == !IncreasingSwapped && 7229 "monotonicity should flip as we flip the predicate"); 7230 #endif 7231 7232 return Result; 7233 } 7234 7235 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7236 ICmpInst::Predicate Pred, 7237 bool &Increasing) { 7238 7239 // A zero step value for LHS means the induction variable is essentially a 7240 // loop invariant value. We don't really depend on the predicate actually 7241 // flipping from false to true (for increasing predicates, and the other way 7242 // around for decreasing predicates), all we care about is that *if* the 7243 // predicate changes then it only changes from false to true. 7244 // 7245 // A zero step value in itself is not very useful, but there may be places 7246 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7247 // as general as possible. 7248 7249 switch (Pred) { 7250 default: 7251 return false; // Conservative answer 7252 7253 case ICmpInst::ICMP_UGT: 7254 case ICmpInst::ICMP_UGE: 7255 case ICmpInst::ICMP_ULT: 7256 case ICmpInst::ICMP_ULE: 7257 if (!LHS->hasNoUnsignedWrap()) 7258 return false; 7259 7260 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7261 return true; 7262 7263 case ICmpInst::ICMP_SGT: 7264 case ICmpInst::ICMP_SGE: 7265 case ICmpInst::ICMP_SLT: 7266 case ICmpInst::ICMP_SLE: { 7267 if (!LHS->hasNoSignedWrap()) 7268 return false; 7269 7270 const SCEV *Step = LHS->getStepRecurrence(*this); 7271 7272 if (isKnownNonNegative(Step)) { 7273 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7274 return true; 7275 } 7276 7277 if (isKnownNonPositive(Step)) { 7278 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7279 return true; 7280 } 7281 7282 return false; 7283 } 7284 7285 } 7286 7287 llvm_unreachable("switch has default clause!"); 7288 } 7289 7290 bool ScalarEvolution::isLoopInvariantPredicate( 7291 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7292 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7293 const SCEV *&InvariantRHS) { 7294 7295 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7296 if (!isLoopInvariant(RHS, L)) { 7297 if (!isLoopInvariant(LHS, L)) 7298 return false; 7299 7300 std::swap(LHS, RHS); 7301 Pred = ICmpInst::getSwappedPredicate(Pred); 7302 } 7303 7304 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7305 if (!ArLHS || ArLHS->getLoop() != L) 7306 return false; 7307 7308 bool Increasing; 7309 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7310 return false; 7311 7312 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7313 // true as the loop iterates, and the backedge is control dependent on 7314 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7315 // 7316 // * if the predicate was false in the first iteration then the predicate 7317 // is never evaluated again, since the loop exits without taking the 7318 // backedge. 7319 // * if the predicate was true in the first iteration then it will 7320 // continue to be true for all future iterations since it is 7321 // monotonically increasing. 7322 // 7323 // For both the above possibilities, we can replace the loop varying 7324 // predicate with its value on the first iteration of the loop (which is 7325 // loop invariant). 7326 // 7327 // A similar reasoning applies for a monotonically decreasing predicate, by 7328 // replacing true with false and false with true in the above two bullets. 7329 7330 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7331 7332 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7333 return false; 7334 7335 InvariantPred = Pred; 7336 InvariantLHS = ArLHS->getStart(); 7337 InvariantRHS = RHS; 7338 return true; 7339 } 7340 7341 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7342 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7343 if (HasSameValue(LHS, RHS)) 7344 return ICmpInst::isTrueWhenEqual(Pred); 7345 7346 // This code is split out from isKnownPredicate because it is called from 7347 // within isLoopEntryGuardedByCond. 7348 7349 auto CheckRanges = 7350 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7351 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7352 .contains(RangeLHS); 7353 }; 7354 7355 // The check at the top of the function catches the case where the values are 7356 // known to be equal. 7357 if (Pred == CmpInst::ICMP_EQ) 7358 return false; 7359 7360 if (Pred == CmpInst::ICMP_NE) 7361 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7362 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7363 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7364 7365 if (CmpInst::isSigned(Pred)) 7366 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7367 7368 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7369 } 7370 7371 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7372 const SCEV *LHS, 7373 const SCEV *RHS) { 7374 7375 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7376 // Return Y via OutY. 7377 auto MatchBinaryAddToConst = 7378 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7379 SCEV::NoWrapFlags ExpectedFlags) { 7380 const SCEV *NonConstOp, *ConstOp; 7381 SCEV::NoWrapFlags FlagsPresent; 7382 7383 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7384 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7385 return false; 7386 7387 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7388 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7389 }; 7390 7391 APInt C; 7392 7393 switch (Pred) { 7394 default: 7395 break; 7396 7397 case ICmpInst::ICMP_SGE: 7398 std::swap(LHS, RHS); 7399 case ICmpInst::ICMP_SLE: 7400 // X s<= (X + C)<nsw> if C >= 0 7401 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7402 return true; 7403 7404 // (X + C)<nsw> s<= X if C <= 0 7405 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7406 !C.isStrictlyPositive()) 7407 return true; 7408 break; 7409 7410 case ICmpInst::ICMP_SGT: 7411 std::swap(LHS, RHS); 7412 case ICmpInst::ICMP_SLT: 7413 // X s< (X + C)<nsw> if C > 0 7414 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7415 C.isStrictlyPositive()) 7416 return true; 7417 7418 // (X + C)<nsw> s< X if C < 0 7419 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7420 return true; 7421 break; 7422 } 7423 7424 return false; 7425 } 7426 7427 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7428 const SCEV *LHS, 7429 const SCEV *RHS) { 7430 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7431 return false; 7432 7433 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7434 // the stack can result in exponential time complexity. 7435 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7436 7437 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7438 // 7439 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7440 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7441 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7442 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7443 // use isKnownPredicate later if needed. 7444 return isKnownNonNegative(RHS) && 7445 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7446 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7447 } 7448 7449 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7450 /// protected by a conditional between LHS and RHS. This is used to 7451 /// to eliminate casts. 7452 bool 7453 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7454 ICmpInst::Predicate Pred, 7455 const SCEV *LHS, const SCEV *RHS) { 7456 // Interpret a null as meaning no loop, where there is obviously no guard 7457 // (interprocedural conditions notwithstanding). 7458 if (!L) return true; 7459 7460 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7461 return true; 7462 7463 BasicBlock *Latch = L->getLoopLatch(); 7464 if (!Latch) 7465 return false; 7466 7467 BranchInst *LoopContinuePredicate = 7468 dyn_cast<BranchInst>(Latch->getTerminator()); 7469 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7470 isImpliedCond(Pred, LHS, RHS, 7471 LoopContinuePredicate->getCondition(), 7472 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7473 return true; 7474 7475 // We don't want more than one activation of the following loops on the stack 7476 // -- that can lead to O(n!) time complexity. 7477 if (WalkingBEDominatingConds) 7478 return false; 7479 7480 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7481 7482 // See if we can exploit a trip count to prove the predicate. 7483 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7484 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7485 if (LatchBECount != getCouldNotCompute()) { 7486 // We know that Latch branches back to the loop header exactly 7487 // LatchBECount times. This means the backdege condition at Latch is 7488 // equivalent to "{0,+,1} u< LatchBECount". 7489 Type *Ty = LatchBECount->getType(); 7490 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7491 const SCEV *LoopCounter = 7492 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7493 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7494 LatchBECount)) 7495 return true; 7496 } 7497 7498 // Check conditions due to any @llvm.assume intrinsics. 7499 for (auto &AssumeVH : AC.assumptions()) { 7500 if (!AssumeVH) 7501 continue; 7502 auto *CI = cast<CallInst>(AssumeVH); 7503 if (!DT.dominates(CI, Latch->getTerminator())) 7504 continue; 7505 7506 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7507 return true; 7508 } 7509 7510 // If the loop is not reachable from the entry block, we risk running into an 7511 // infinite loop as we walk up into the dom tree. These loops do not matter 7512 // anyway, so we just return a conservative answer when we see them. 7513 if (!DT.isReachableFromEntry(L->getHeader())) 7514 return false; 7515 7516 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7517 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7518 7519 assert(DTN && "should reach the loop header before reaching the root!"); 7520 7521 BasicBlock *BB = DTN->getBlock(); 7522 BasicBlock *PBB = BB->getSinglePredecessor(); 7523 if (!PBB) 7524 continue; 7525 7526 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7527 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7528 continue; 7529 7530 Value *Condition = ContinuePredicate->getCondition(); 7531 7532 // If we have an edge `E` within the loop body that dominates the only 7533 // latch, the condition guarding `E` also guards the backedge. This 7534 // reasoning works only for loops with a single latch. 7535 7536 BasicBlockEdge DominatingEdge(PBB, BB); 7537 if (DominatingEdge.isSingleEdge()) { 7538 // We're constructively (and conservatively) enumerating edges within the 7539 // loop body that dominate the latch. The dominator tree better agree 7540 // with us on this: 7541 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7542 7543 if (isImpliedCond(Pred, LHS, RHS, Condition, 7544 BB != ContinuePredicate->getSuccessor(0))) 7545 return true; 7546 } 7547 } 7548 7549 return false; 7550 } 7551 7552 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7553 /// by a conditional between LHS and RHS. This is used to help avoid max 7554 /// expressions in loop trip counts, and to eliminate casts. 7555 bool 7556 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7557 ICmpInst::Predicate Pred, 7558 const SCEV *LHS, const SCEV *RHS) { 7559 // Interpret a null as meaning no loop, where there is obviously no guard 7560 // (interprocedural conditions notwithstanding). 7561 if (!L) return false; 7562 7563 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7564 return true; 7565 7566 // Starting at the loop predecessor, climb up the predecessor chain, as long 7567 // as there are predecessors that can be found that have unique successors 7568 // leading to the original header. 7569 for (std::pair<BasicBlock *, BasicBlock *> 7570 Pair(L->getLoopPredecessor(), L->getHeader()); 7571 Pair.first; 7572 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7573 7574 BranchInst *LoopEntryPredicate = 7575 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7576 if (!LoopEntryPredicate || 7577 LoopEntryPredicate->isUnconditional()) 7578 continue; 7579 7580 if (isImpliedCond(Pred, LHS, RHS, 7581 LoopEntryPredicate->getCondition(), 7582 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7583 return true; 7584 } 7585 7586 // Check conditions due to any @llvm.assume intrinsics. 7587 for (auto &AssumeVH : AC.assumptions()) { 7588 if (!AssumeVH) 7589 continue; 7590 auto *CI = cast<CallInst>(AssumeVH); 7591 if (!DT.dominates(CI, L->getHeader())) 7592 continue; 7593 7594 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7595 return true; 7596 } 7597 7598 return false; 7599 } 7600 7601 namespace { 7602 /// RAII wrapper to prevent recursive application of isImpliedCond. 7603 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7604 /// currently evaluating isImpliedCond. 7605 struct MarkPendingLoopPredicate { 7606 Value *Cond; 7607 DenseSet<Value*> &LoopPreds; 7608 bool Pending; 7609 7610 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7611 : Cond(C), LoopPreds(LP) { 7612 Pending = !LoopPreds.insert(Cond).second; 7613 } 7614 ~MarkPendingLoopPredicate() { 7615 if (!Pending) 7616 LoopPreds.erase(Cond); 7617 } 7618 }; 7619 } // end anonymous namespace 7620 7621 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7622 /// and RHS is true whenever the given Cond value evaluates to true. 7623 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7624 const SCEV *LHS, const SCEV *RHS, 7625 Value *FoundCondValue, 7626 bool Inverse) { 7627 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7628 if (Mark.Pending) 7629 return false; 7630 7631 // Recursively handle And and Or conditions. 7632 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7633 if (BO->getOpcode() == Instruction::And) { 7634 if (!Inverse) 7635 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7636 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7637 } else if (BO->getOpcode() == Instruction::Or) { 7638 if (Inverse) 7639 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7640 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7641 } 7642 } 7643 7644 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7645 if (!ICI) return false; 7646 7647 // Now that we found a conditional branch that dominates the loop or controls 7648 // the loop latch. Check to see if it is the comparison we are looking for. 7649 ICmpInst::Predicate FoundPred; 7650 if (Inverse) 7651 FoundPred = ICI->getInversePredicate(); 7652 else 7653 FoundPred = ICI->getPredicate(); 7654 7655 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7656 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7657 7658 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7659 } 7660 7661 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7662 const SCEV *RHS, 7663 ICmpInst::Predicate FoundPred, 7664 const SCEV *FoundLHS, 7665 const SCEV *FoundRHS) { 7666 // Balance the types. 7667 if (getTypeSizeInBits(LHS->getType()) < 7668 getTypeSizeInBits(FoundLHS->getType())) { 7669 if (CmpInst::isSigned(Pred)) { 7670 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7671 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7672 } else { 7673 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7674 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7675 } 7676 } else if (getTypeSizeInBits(LHS->getType()) > 7677 getTypeSizeInBits(FoundLHS->getType())) { 7678 if (CmpInst::isSigned(FoundPred)) { 7679 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7680 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7681 } else { 7682 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7683 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7684 } 7685 } 7686 7687 // Canonicalize the query to match the way instcombine will have 7688 // canonicalized the comparison. 7689 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7690 if (LHS == RHS) 7691 return CmpInst::isTrueWhenEqual(Pred); 7692 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7693 if (FoundLHS == FoundRHS) 7694 return CmpInst::isFalseWhenEqual(FoundPred); 7695 7696 // Check to see if we can make the LHS or RHS match. 7697 if (LHS == FoundRHS || RHS == FoundLHS) { 7698 if (isa<SCEVConstant>(RHS)) { 7699 std::swap(FoundLHS, FoundRHS); 7700 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7701 } else { 7702 std::swap(LHS, RHS); 7703 Pred = ICmpInst::getSwappedPredicate(Pred); 7704 } 7705 } 7706 7707 // Check whether the found predicate is the same as the desired predicate. 7708 if (FoundPred == Pred) 7709 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7710 7711 // Check whether swapping the found predicate makes it the same as the 7712 // desired predicate. 7713 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7714 if (isa<SCEVConstant>(RHS)) 7715 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7716 else 7717 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7718 RHS, LHS, FoundLHS, FoundRHS); 7719 } 7720 7721 // Unsigned comparison is the same as signed comparison when both the operands 7722 // are non-negative. 7723 if (CmpInst::isUnsigned(FoundPred) && 7724 CmpInst::getSignedPredicate(FoundPred) == Pred && 7725 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7726 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7727 7728 // Check if we can make progress by sharpening ranges. 7729 if (FoundPred == ICmpInst::ICMP_NE && 7730 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7731 7732 const SCEVConstant *C = nullptr; 7733 const SCEV *V = nullptr; 7734 7735 if (isa<SCEVConstant>(FoundLHS)) { 7736 C = cast<SCEVConstant>(FoundLHS); 7737 V = FoundRHS; 7738 } else { 7739 C = cast<SCEVConstant>(FoundRHS); 7740 V = FoundLHS; 7741 } 7742 7743 // The guarding predicate tells us that C != V. If the known range 7744 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7745 // range we consider has to correspond to same signedness as the 7746 // predicate we're interested in folding. 7747 7748 APInt Min = ICmpInst::isSigned(Pred) ? 7749 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7750 7751 if (Min == C->getAPInt()) { 7752 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7753 // This is true even if (Min + 1) wraps around -- in case of 7754 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7755 7756 APInt SharperMin = Min + 1; 7757 7758 switch (Pred) { 7759 case ICmpInst::ICMP_SGE: 7760 case ICmpInst::ICMP_UGE: 7761 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7762 // RHS, we're done. 7763 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7764 getConstant(SharperMin))) 7765 return true; 7766 7767 case ICmpInst::ICMP_SGT: 7768 case ICmpInst::ICMP_UGT: 7769 // We know from the range information that (V `Pred` Min || 7770 // V == Min). We know from the guarding condition that !(V 7771 // == Min). This gives us 7772 // 7773 // V `Pred` Min || V == Min && !(V == Min) 7774 // => V `Pred` Min 7775 // 7776 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7777 7778 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7779 return true; 7780 7781 default: 7782 // No change 7783 break; 7784 } 7785 } 7786 } 7787 7788 // Check whether the actual condition is beyond sufficient. 7789 if (FoundPred == ICmpInst::ICMP_EQ) 7790 if (ICmpInst::isTrueWhenEqual(Pred)) 7791 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7792 return true; 7793 if (Pred == ICmpInst::ICMP_NE) 7794 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7795 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7796 return true; 7797 7798 // Otherwise assume the worst. 7799 return false; 7800 } 7801 7802 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7803 const SCEV *&L, const SCEV *&R, 7804 SCEV::NoWrapFlags &Flags) { 7805 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7806 if (!AE || AE->getNumOperands() != 2) 7807 return false; 7808 7809 L = AE->getOperand(0); 7810 R = AE->getOperand(1); 7811 Flags = AE->getNoWrapFlags(); 7812 return true; 7813 } 7814 7815 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7816 const SCEV *More, 7817 APInt &C) { 7818 // We avoid subtracting expressions here because this function is usually 7819 // fairly deep in the call stack (i.e. is called many times). 7820 7821 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7822 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7823 const auto *MAR = cast<SCEVAddRecExpr>(More); 7824 7825 if (LAR->getLoop() != MAR->getLoop()) 7826 return false; 7827 7828 // We look at affine expressions only; not for correctness but to keep 7829 // getStepRecurrence cheap. 7830 if (!LAR->isAffine() || !MAR->isAffine()) 7831 return false; 7832 7833 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7834 return false; 7835 7836 Less = LAR->getStart(); 7837 More = MAR->getStart(); 7838 7839 // fall through 7840 } 7841 7842 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7843 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 7844 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 7845 C = M - L; 7846 return true; 7847 } 7848 7849 const SCEV *L, *R; 7850 SCEV::NoWrapFlags Flags; 7851 if (splitBinaryAdd(Less, L, R, Flags)) 7852 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7853 if (R == More) { 7854 C = -(LC->getAPInt()); 7855 return true; 7856 } 7857 7858 if (splitBinaryAdd(More, L, R, Flags)) 7859 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7860 if (R == Less) { 7861 C = LC->getAPInt(); 7862 return true; 7863 } 7864 7865 return false; 7866 } 7867 7868 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7869 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7870 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7871 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7872 return false; 7873 7874 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7875 if (!AddRecLHS) 7876 return false; 7877 7878 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7879 if (!AddRecFoundLHS) 7880 return false; 7881 7882 // We'd like to let SCEV reason about control dependencies, so we constrain 7883 // both the inequalities to be about add recurrences on the same loop. This 7884 // way we can use isLoopEntryGuardedByCond later. 7885 7886 const Loop *L = AddRecFoundLHS->getLoop(); 7887 if (L != AddRecLHS->getLoop()) 7888 return false; 7889 7890 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7891 // 7892 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7893 // ... (2) 7894 // 7895 // Informal proof for (2), assuming (1) [*]: 7896 // 7897 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7898 // 7899 // Then 7900 // 7901 // FoundLHS s< FoundRHS s< INT_MIN - C 7902 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7903 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7904 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7905 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7906 // <=> FoundLHS + C s< FoundRHS + C 7907 // 7908 // [*]: (1) can be proved by ruling out overflow. 7909 // 7910 // [**]: This can be proved by analyzing all the four possibilities: 7911 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7912 // (A s>= 0, B s>= 0). 7913 // 7914 // Note: 7915 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7916 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7917 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7918 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7919 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7920 // C)". 7921 7922 APInt LDiff, RDiff; 7923 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7924 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7925 LDiff != RDiff) 7926 return false; 7927 7928 if (LDiff == 0) 7929 return true; 7930 7931 APInt FoundRHSLimit; 7932 7933 if (Pred == CmpInst::ICMP_ULT) { 7934 FoundRHSLimit = -RDiff; 7935 } else { 7936 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7937 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7938 } 7939 7940 // Try to prove (1) or (2), as needed. 7941 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7942 getConstant(FoundRHSLimit)); 7943 } 7944 7945 /// isImpliedCondOperands - Test whether the condition described by Pred, 7946 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7947 /// and FoundRHS is true. 7948 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7949 const SCEV *LHS, const SCEV *RHS, 7950 const SCEV *FoundLHS, 7951 const SCEV *FoundRHS) { 7952 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7953 return true; 7954 7955 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7956 return true; 7957 7958 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7959 FoundLHS, FoundRHS) || 7960 // ~x < ~y --> x > y 7961 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7962 getNotSCEV(FoundRHS), 7963 getNotSCEV(FoundLHS)); 7964 } 7965 7966 7967 /// If Expr computes ~A, return A else return nullptr 7968 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7969 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7970 if (!Add || Add->getNumOperands() != 2 || 7971 !Add->getOperand(0)->isAllOnesValue()) 7972 return nullptr; 7973 7974 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7975 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7976 !AddRHS->getOperand(0)->isAllOnesValue()) 7977 return nullptr; 7978 7979 return AddRHS->getOperand(1); 7980 } 7981 7982 7983 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7984 template<typename MaxExprType> 7985 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7986 const SCEV *Candidate) { 7987 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7988 if (!MaxExpr) return false; 7989 7990 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 7991 } 7992 7993 7994 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7995 template<typename MaxExprType> 7996 static bool IsMinConsistingOf(ScalarEvolution &SE, 7997 const SCEV *MaybeMinExpr, 7998 const SCEV *Candidate) { 7999 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8000 if (!MaybeMaxExpr) 8001 return false; 8002 8003 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8004 } 8005 8006 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8007 ICmpInst::Predicate Pred, 8008 const SCEV *LHS, const SCEV *RHS) { 8009 8010 // If both sides are affine addrecs for the same loop, with equal 8011 // steps, and we know the recurrences don't wrap, then we only 8012 // need to check the predicate on the starting values. 8013 8014 if (!ICmpInst::isRelational(Pred)) 8015 return false; 8016 8017 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8018 if (!LAR) 8019 return false; 8020 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8021 if (!RAR) 8022 return false; 8023 if (LAR->getLoop() != RAR->getLoop()) 8024 return false; 8025 if (!LAR->isAffine() || !RAR->isAffine()) 8026 return false; 8027 8028 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8029 return false; 8030 8031 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8032 SCEV::FlagNSW : SCEV::FlagNUW; 8033 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8034 return false; 8035 8036 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8037 } 8038 8039 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8040 /// expression? 8041 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8042 ICmpInst::Predicate Pred, 8043 const SCEV *LHS, const SCEV *RHS) { 8044 switch (Pred) { 8045 default: 8046 return false; 8047 8048 case ICmpInst::ICMP_SGE: 8049 std::swap(LHS, RHS); 8050 // fall through 8051 case ICmpInst::ICMP_SLE: 8052 return 8053 // min(A, ...) <= A 8054 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8055 // A <= max(A, ...) 8056 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8057 8058 case ICmpInst::ICMP_UGE: 8059 std::swap(LHS, RHS); 8060 // fall through 8061 case ICmpInst::ICMP_ULE: 8062 return 8063 // min(A, ...) <= A 8064 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8065 // A <= max(A, ...) 8066 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8067 } 8068 8069 llvm_unreachable("covered switch fell through?!"); 8070 } 8071 8072 /// isImpliedCondOperandsHelper - Test whether the condition described by 8073 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8074 /// FoundLHS, and FoundRHS is true. 8075 bool 8076 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8077 const SCEV *LHS, const SCEV *RHS, 8078 const SCEV *FoundLHS, 8079 const SCEV *FoundRHS) { 8080 auto IsKnownPredicateFull = 8081 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8082 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8083 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8084 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8085 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8086 }; 8087 8088 switch (Pred) { 8089 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8090 case ICmpInst::ICMP_EQ: 8091 case ICmpInst::ICMP_NE: 8092 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8093 return true; 8094 break; 8095 case ICmpInst::ICMP_SLT: 8096 case ICmpInst::ICMP_SLE: 8097 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8098 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8099 return true; 8100 break; 8101 case ICmpInst::ICMP_SGT: 8102 case ICmpInst::ICMP_SGE: 8103 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8104 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8105 return true; 8106 break; 8107 case ICmpInst::ICMP_ULT: 8108 case ICmpInst::ICMP_ULE: 8109 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8110 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8111 return true; 8112 break; 8113 case ICmpInst::ICMP_UGT: 8114 case ICmpInst::ICMP_UGE: 8115 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8116 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8117 return true; 8118 break; 8119 } 8120 8121 return false; 8122 } 8123 8124 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8125 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8126 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8127 const SCEV *LHS, 8128 const SCEV *RHS, 8129 const SCEV *FoundLHS, 8130 const SCEV *FoundRHS) { 8131 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8132 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8133 // reduce the compile time impact of this optimization. 8134 return false; 8135 8136 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8137 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8138 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8139 return false; 8140 8141 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8142 8143 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8144 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8145 ConstantRange FoundLHSRange = 8146 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8147 8148 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8149 // for `LHS`: 8150 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8151 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8152 8153 // We can also compute the range of values for `LHS` that satisfy the 8154 // consequent, "`LHS` `Pred` `RHS`": 8155 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8156 ConstantRange SatisfyingLHSRange = 8157 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8158 8159 // The antecedent implies the consequent if every value of `LHS` that 8160 // satisfies the antecedent also satisfies the consequent. 8161 return SatisfyingLHSRange.contains(LHSRange); 8162 } 8163 8164 // Verify if an linear IV with positive stride can overflow when in a 8165 // less-than comparison, knowing the invariant term of the comparison, the 8166 // stride and the knowledge of NSW/NUW flags on the recurrence. 8167 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8168 bool IsSigned, bool NoWrap) { 8169 if (NoWrap) return false; 8170 8171 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8172 const SCEV *One = getOne(Stride->getType()); 8173 8174 if (IsSigned) { 8175 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8176 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8177 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8178 .getSignedMax(); 8179 8180 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8181 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8182 } 8183 8184 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8185 APInt MaxValue = APInt::getMaxValue(BitWidth); 8186 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8187 .getUnsignedMax(); 8188 8189 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8190 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8191 } 8192 8193 // Verify if an linear IV with negative stride can overflow when in a 8194 // greater-than comparison, knowing the invariant term of the comparison, 8195 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8196 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8197 bool IsSigned, bool NoWrap) { 8198 if (NoWrap) return false; 8199 8200 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8201 const SCEV *One = getOne(Stride->getType()); 8202 8203 if (IsSigned) { 8204 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8205 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8206 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8207 .getSignedMax(); 8208 8209 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8210 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8211 } 8212 8213 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8214 APInt MinValue = APInt::getMinValue(BitWidth); 8215 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8216 .getUnsignedMax(); 8217 8218 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8219 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8220 } 8221 8222 // Compute the backedge taken count knowing the interval difference, the 8223 // stride and presence of the equality in the comparison. 8224 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8225 bool Equality) { 8226 const SCEV *One = getOne(Step->getType()); 8227 Delta = Equality ? getAddExpr(Delta, Step) 8228 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8229 return getUDivExpr(Delta, Step); 8230 } 8231 8232 /// HowManyLessThans - Return the number of times a backedge containing the 8233 /// specified less-than comparison will execute. If not computable, return 8234 /// CouldNotCompute. 8235 /// 8236 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8237 /// the branch (loops exits only if condition is true). In this case, we can use 8238 /// NoWrapFlags to skip overflow checks. 8239 ScalarEvolution::ExitLimit 8240 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8241 const Loop *L, bool IsSigned, 8242 bool ControlsExit) { 8243 // We handle only IV < Invariant 8244 if (!isLoopInvariant(RHS, L)) 8245 return getCouldNotCompute(); 8246 8247 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8248 8249 // Avoid weird loops 8250 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8251 return getCouldNotCompute(); 8252 8253 bool NoWrap = ControlsExit && 8254 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8255 8256 const SCEV *Stride = IV->getStepRecurrence(*this); 8257 8258 // Avoid negative or zero stride values 8259 if (!isKnownPositive(Stride)) 8260 return getCouldNotCompute(); 8261 8262 // Avoid proven overflow cases: this will ensure that the backedge taken count 8263 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8264 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8265 // behaviors like the case of C language. 8266 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8267 return getCouldNotCompute(); 8268 8269 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8270 : ICmpInst::ICMP_ULT; 8271 const SCEV *Start = IV->getStart(); 8272 const SCEV *End = RHS; 8273 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8274 const SCEV *Diff = getMinusSCEV(RHS, Start); 8275 // If we have NoWrap set, then we can assume that the increment won't 8276 // overflow, in which case if RHS - Start is a constant, we don't need to 8277 // do a max operation since we can just figure it out statically 8278 if (NoWrap && isa<SCEVConstant>(Diff)) { 8279 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8280 if (D.isNegative()) 8281 End = Start; 8282 } else 8283 End = IsSigned ? getSMaxExpr(RHS, Start) 8284 : getUMaxExpr(RHS, Start); 8285 } 8286 8287 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8288 8289 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8290 : getUnsignedRange(Start).getUnsignedMin(); 8291 8292 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8293 : getUnsignedRange(Stride).getUnsignedMin(); 8294 8295 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8296 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8297 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8298 8299 // Although End can be a MAX expression we estimate MaxEnd considering only 8300 // the case End = RHS. This is safe because in the other case (End - Start) 8301 // is zero, leading to a zero maximum backedge taken count. 8302 APInt MaxEnd = 8303 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8304 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8305 8306 const SCEV *MaxBECount; 8307 if (isa<SCEVConstant>(BECount)) 8308 MaxBECount = BECount; 8309 else 8310 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8311 getConstant(MinStride), false); 8312 8313 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8314 MaxBECount = BECount; 8315 8316 return ExitLimit(BECount, MaxBECount); 8317 } 8318 8319 ScalarEvolution::ExitLimit 8320 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8321 const Loop *L, bool IsSigned, 8322 bool ControlsExit) { 8323 // We handle only IV > Invariant 8324 if (!isLoopInvariant(RHS, L)) 8325 return getCouldNotCompute(); 8326 8327 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8328 8329 // Avoid weird loops 8330 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8331 return getCouldNotCompute(); 8332 8333 bool NoWrap = ControlsExit && 8334 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8335 8336 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8337 8338 // Avoid negative or zero stride values 8339 if (!isKnownPositive(Stride)) 8340 return getCouldNotCompute(); 8341 8342 // Avoid proven overflow cases: this will ensure that the backedge taken count 8343 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8344 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8345 // behaviors like the case of C language. 8346 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8347 return getCouldNotCompute(); 8348 8349 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8350 : ICmpInst::ICMP_UGT; 8351 8352 const SCEV *Start = IV->getStart(); 8353 const SCEV *End = RHS; 8354 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8355 const SCEV *Diff = getMinusSCEV(RHS, Start); 8356 // If we have NoWrap set, then we can assume that the increment won't 8357 // overflow, in which case if RHS - Start is a constant, we don't need to 8358 // do a max operation since we can just figure it out statically 8359 if (NoWrap && isa<SCEVConstant>(Diff)) { 8360 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8361 if (!D.isNegative()) 8362 End = Start; 8363 } else 8364 End = IsSigned ? getSMinExpr(RHS, Start) 8365 : getUMinExpr(RHS, Start); 8366 } 8367 8368 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8369 8370 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8371 : getUnsignedRange(Start).getUnsignedMax(); 8372 8373 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8374 : getUnsignedRange(Stride).getUnsignedMin(); 8375 8376 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8377 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8378 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8379 8380 // Although End can be a MIN expression we estimate MinEnd considering only 8381 // the case End = RHS. This is safe because in the other case (Start - End) 8382 // is zero, leading to a zero maximum backedge taken count. 8383 APInt MinEnd = 8384 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8385 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8386 8387 8388 const SCEV *MaxBECount = getCouldNotCompute(); 8389 if (isa<SCEVConstant>(BECount)) 8390 MaxBECount = BECount; 8391 else 8392 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8393 getConstant(MinStride), false); 8394 8395 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8396 MaxBECount = BECount; 8397 8398 return ExitLimit(BECount, MaxBECount); 8399 } 8400 8401 /// getNumIterationsInRange - Return the number of iterations of this loop that 8402 /// produce values in the specified constant range. Another way of looking at 8403 /// this is that it returns the first iteration number where the value is not in 8404 /// the condition, thus computing the exit count. If the iteration count can't 8405 /// be computed, an instance of SCEVCouldNotCompute is returned. 8406 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8407 ScalarEvolution &SE) const { 8408 if (Range.isFullSet()) // Infinite loop. 8409 return SE.getCouldNotCompute(); 8410 8411 // If the start is a non-zero constant, shift the range to simplify things. 8412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8413 if (!SC->getValue()->isZero()) { 8414 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8415 Operands[0] = SE.getZero(SC->getType()); 8416 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8417 getNoWrapFlags(FlagNW)); 8418 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8419 return ShiftedAddRec->getNumIterationsInRange( 8420 Range.subtract(SC->getAPInt()), SE); 8421 // This is strange and shouldn't happen. 8422 return SE.getCouldNotCompute(); 8423 } 8424 8425 // The only time we can solve this is when we have all constant indices. 8426 // Otherwise, we cannot determine the overflow conditions. 8427 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8428 return SE.getCouldNotCompute(); 8429 8430 // Okay at this point we know that all elements of the chrec are constants and 8431 // that the start element is zero. 8432 8433 // First check to see if the range contains zero. If not, the first 8434 // iteration exits. 8435 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8436 if (!Range.contains(APInt(BitWidth, 0))) 8437 return SE.getZero(getType()); 8438 8439 if (isAffine()) { 8440 // If this is an affine expression then we have this situation: 8441 // Solve {0,+,A} in Range === Ax in Range 8442 8443 // We know that zero is in the range. If A is positive then we know that 8444 // the upper value of the range must be the first possible exit value. 8445 // If A is negative then the lower of the range is the last possible loop 8446 // value. Also note that we already checked for a full range. 8447 APInt One(BitWidth,1); 8448 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8449 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8450 8451 // The exit value should be (End+A)/A. 8452 APInt ExitVal = (End + A).udiv(A); 8453 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8454 8455 // Evaluate at the exit value. If we really did fall out of the valid 8456 // range, then we computed our trip count, otherwise wrap around or other 8457 // things must have happened. 8458 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8459 if (Range.contains(Val->getValue())) 8460 return SE.getCouldNotCompute(); // Something strange happened 8461 8462 // Ensure that the previous value is in the range. This is a sanity check. 8463 assert(Range.contains( 8464 EvaluateConstantChrecAtConstant(this, 8465 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8466 "Linear scev computation is off in a bad way!"); 8467 return SE.getConstant(ExitValue); 8468 } else if (isQuadratic()) { 8469 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8470 // quadratic equation to solve it. To do this, we must frame our problem in 8471 // terms of figuring out when zero is crossed, instead of when 8472 // Range.getUpper() is crossed. 8473 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8474 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8475 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8476 // getNoWrapFlags(FlagNW) 8477 FlagAnyWrap); 8478 8479 // Next, solve the constructed addrec 8480 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8481 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8482 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8483 if (R1) { 8484 // Pick the smallest positive root value. 8485 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8486 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8487 if (!CB->getZExtValue()) 8488 std::swap(R1, R2); // R1 is the minimum root now. 8489 8490 // Make sure the root is not off by one. The returned iteration should 8491 // not be in the range, but the previous one should be. When solving 8492 // for "X*X < 5", for example, we should not return a root of 2. 8493 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8494 R1->getValue(), 8495 SE); 8496 if (Range.contains(R1Val->getValue())) { 8497 // The next iteration must be out of the range... 8498 ConstantInt *NextVal = 8499 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8500 8501 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8502 if (!Range.contains(R1Val->getValue())) 8503 return SE.getConstant(NextVal); 8504 return SE.getCouldNotCompute(); // Something strange happened 8505 } 8506 8507 // If R1 was not in the range, then it is a good return value. Make 8508 // sure that R1-1 WAS in the range though, just in case. 8509 ConstantInt *NextVal = 8510 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8511 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8512 if (Range.contains(R1Val->getValue())) 8513 return R1; 8514 return SE.getCouldNotCompute(); // Something strange happened 8515 } 8516 } 8517 } 8518 8519 return SE.getCouldNotCompute(); 8520 } 8521 8522 namespace { 8523 struct FindUndefs { 8524 bool Found; 8525 FindUndefs() : Found(false) {} 8526 8527 bool follow(const SCEV *S) { 8528 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8529 if (isa<UndefValue>(C->getValue())) 8530 Found = true; 8531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8532 if (isa<UndefValue>(C->getValue())) 8533 Found = true; 8534 } 8535 8536 // Keep looking if we haven't found it yet. 8537 return !Found; 8538 } 8539 bool isDone() const { 8540 // Stop recursion if we have found an undef. 8541 return Found; 8542 } 8543 }; 8544 } 8545 8546 // Return true when S contains at least an undef value. 8547 static inline bool 8548 containsUndefs(const SCEV *S) { 8549 FindUndefs F; 8550 SCEVTraversal<FindUndefs> ST(F); 8551 ST.visitAll(S); 8552 8553 return F.Found; 8554 } 8555 8556 namespace { 8557 // Collect all steps of SCEV expressions. 8558 struct SCEVCollectStrides { 8559 ScalarEvolution &SE; 8560 SmallVectorImpl<const SCEV *> &Strides; 8561 8562 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8563 : SE(SE), Strides(S) {} 8564 8565 bool follow(const SCEV *S) { 8566 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8567 Strides.push_back(AR->getStepRecurrence(SE)); 8568 return true; 8569 } 8570 bool isDone() const { return false; } 8571 }; 8572 8573 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8574 struct SCEVCollectTerms { 8575 SmallVectorImpl<const SCEV *> &Terms; 8576 8577 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8578 : Terms(T) {} 8579 8580 bool follow(const SCEV *S) { 8581 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8582 if (!containsUndefs(S)) 8583 Terms.push_back(S); 8584 8585 // Stop recursion: once we collected a term, do not walk its operands. 8586 return false; 8587 } 8588 8589 // Keep looking. 8590 return true; 8591 } 8592 bool isDone() const { return false; } 8593 }; 8594 8595 // Check if a SCEV contains an AddRecExpr. 8596 struct SCEVHasAddRec { 8597 bool &ContainsAddRec; 8598 8599 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8600 ContainsAddRec = false; 8601 } 8602 8603 bool follow(const SCEV *S) { 8604 if (isa<SCEVAddRecExpr>(S)) { 8605 ContainsAddRec = true; 8606 8607 // Stop recursion: once we collected a term, do not walk its operands. 8608 return false; 8609 } 8610 8611 // Keep looking. 8612 return true; 8613 } 8614 bool isDone() const { return false; } 8615 }; 8616 8617 // Find factors that are multiplied with an expression that (possibly as a 8618 // subexpression) contains an AddRecExpr. In the expression: 8619 // 8620 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8621 // 8622 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8623 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8624 // parameters as they form a product with an induction variable. 8625 // 8626 // This collector expects all array size parameters to be in the same MulExpr. 8627 // It might be necessary to later add support for collecting parameters that are 8628 // spread over different nested MulExpr. 8629 struct SCEVCollectAddRecMultiplies { 8630 SmallVectorImpl<const SCEV *> &Terms; 8631 ScalarEvolution &SE; 8632 8633 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8634 : Terms(T), SE(SE) {} 8635 8636 bool follow(const SCEV *S) { 8637 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8638 bool HasAddRec = false; 8639 SmallVector<const SCEV *, 0> Operands; 8640 for (auto Op : Mul->operands()) { 8641 if (isa<SCEVUnknown>(Op)) { 8642 Operands.push_back(Op); 8643 } else { 8644 bool ContainsAddRec; 8645 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8646 visitAll(Op, ContiansAddRec); 8647 HasAddRec |= ContainsAddRec; 8648 } 8649 } 8650 if (Operands.size() == 0) 8651 return true; 8652 8653 if (!HasAddRec) 8654 return false; 8655 8656 Terms.push_back(SE.getMulExpr(Operands)); 8657 // Stop recursion: once we collected a term, do not walk its operands. 8658 return false; 8659 } 8660 8661 // Keep looking. 8662 return true; 8663 } 8664 bool isDone() const { return false; } 8665 }; 8666 } 8667 8668 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8669 /// two places: 8670 /// 1) The strides of AddRec expressions. 8671 /// 2) Unknowns that are multiplied with AddRec expressions. 8672 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8673 SmallVectorImpl<const SCEV *> &Terms) { 8674 SmallVector<const SCEV *, 4> Strides; 8675 SCEVCollectStrides StrideCollector(*this, Strides); 8676 visitAll(Expr, StrideCollector); 8677 8678 DEBUG({ 8679 dbgs() << "Strides:\n"; 8680 for (const SCEV *S : Strides) 8681 dbgs() << *S << "\n"; 8682 }); 8683 8684 for (const SCEV *S : Strides) { 8685 SCEVCollectTerms TermCollector(Terms); 8686 visitAll(S, TermCollector); 8687 } 8688 8689 DEBUG({ 8690 dbgs() << "Terms:\n"; 8691 for (const SCEV *T : Terms) 8692 dbgs() << *T << "\n"; 8693 }); 8694 8695 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8696 visitAll(Expr, MulCollector); 8697 } 8698 8699 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8700 SmallVectorImpl<const SCEV *> &Terms, 8701 SmallVectorImpl<const SCEV *> &Sizes) { 8702 int Last = Terms.size() - 1; 8703 const SCEV *Step = Terms[Last]; 8704 8705 // End of recursion. 8706 if (Last == 0) { 8707 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8708 SmallVector<const SCEV *, 2> Qs; 8709 for (const SCEV *Op : M->operands()) 8710 if (!isa<SCEVConstant>(Op)) 8711 Qs.push_back(Op); 8712 8713 Step = SE.getMulExpr(Qs); 8714 } 8715 8716 Sizes.push_back(Step); 8717 return true; 8718 } 8719 8720 for (const SCEV *&Term : Terms) { 8721 // Normalize the terms before the next call to findArrayDimensionsRec. 8722 const SCEV *Q, *R; 8723 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8724 8725 // Bail out when GCD does not evenly divide one of the terms. 8726 if (!R->isZero()) 8727 return false; 8728 8729 Term = Q; 8730 } 8731 8732 // Remove all SCEVConstants. 8733 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8734 return isa<SCEVConstant>(E); 8735 }), 8736 Terms.end()); 8737 8738 if (Terms.size() > 0) 8739 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8740 return false; 8741 8742 Sizes.push_back(Step); 8743 return true; 8744 } 8745 8746 // Returns true when S contains at least a SCEVUnknown parameter. 8747 static inline bool 8748 containsParameters(const SCEV *S) { 8749 struct FindParameter { 8750 bool FoundParameter; 8751 FindParameter() : FoundParameter(false) {} 8752 8753 bool follow(const SCEV *S) { 8754 if (isa<SCEVUnknown>(S)) { 8755 FoundParameter = true; 8756 // Stop recursion: we found a parameter. 8757 return false; 8758 } 8759 // Keep looking. 8760 return true; 8761 } 8762 bool isDone() const { 8763 // Stop recursion if we have found a parameter. 8764 return FoundParameter; 8765 } 8766 }; 8767 8768 FindParameter F; 8769 SCEVTraversal<FindParameter> ST(F); 8770 ST.visitAll(S); 8771 8772 return F.FoundParameter; 8773 } 8774 8775 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8776 static inline bool 8777 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8778 for (const SCEV *T : Terms) 8779 if (containsParameters(T)) 8780 return true; 8781 return false; 8782 } 8783 8784 // Return the number of product terms in S. 8785 static inline int numberOfTerms(const SCEV *S) { 8786 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8787 return Expr->getNumOperands(); 8788 return 1; 8789 } 8790 8791 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8792 if (isa<SCEVConstant>(T)) 8793 return nullptr; 8794 8795 if (isa<SCEVUnknown>(T)) 8796 return T; 8797 8798 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8799 SmallVector<const SCEV *, 2> Factors; 8800 for (const SCEV *Op : M->operands()) 8801 if (!isa<SCEVConstant>(Op)) 8802 Factors.push_back(Op); 8803 8804 return SE.getMulExpr(Factors); 8805 } 8806 8807 return T; 8808 } 8809 8810 /// Return the size of an element read or written by Inst. 8811 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8812 Type *Ty; 8813 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8814 Ty = Store->getValueOperand()->getType(); 8815 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8816 Ty = Load->getType(); 8817 else 8818 return nullptr; 8819 8820 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8821 return getSizeOfExpr(ETy, Ty); 8822 } 8823 8824 /// Second step of delinearization: compute the array dimensions Sizes from the 8825 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8826 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8827 SmallVectorImpl<const SCEV *> &Sizes, 8828 const SCEV *ElementSize) const { 8829 8830 if (Terms.size() < 1 || !ElementSize) 8831 return; 8832 8833 // Early return when Terms do not contain parameters: we do not delinearize 8834 // non parametric SCEVs. 8835 if (!containsParameters(Terms)) 8836 return; 8837 8838 DEBUG({ 8839 dbgs() << "Terms:\n"; 8840 for (const SCEV *T : Terms) 8841 dbgs() << *T << "\n"; 8842 }); 8843 8844 // Remove duplicates. 8845 std::sort(Terms.begin(), Terms.end()); 8846 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8847 8848 // Put larger terms first. 8849 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8850 return numberOfTerms(LHS) > numberOfTerms(RHS); 8851 }); 8852 8853 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8854 8855 // Try to divide all terms by the element size. If term is not divisible by 8856 // element size, proceed with the original term. 8857 for (const SCEV *&Term : Terms) { 8858 const SCEV *Q, *R; 8859 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8860 if (!Q->isZero()) 8861 Term = Q; 8862 } 8863 8864 SmallVector<const SCEV *, 4> NewTerms; 8865 8866 // Remove constant factors. 8867 for (const SCEV *T : Terms) 8868 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8869 NewTerms.push_back(NewT); 8870 8871 DEBUG({ 8872 dbgs() << "Terms after sorting:\n"; 8873 for (const SCEV *T : NewTerms) 8874 dbgs() << *T << "\n"; 8875 }); 8876 8877 if (NewTerms.empty() || 8878 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8879 Sizes.clear(); 8880 return; 8881 } 8882 8883 // The last element to be pushed into Sizes is the size of an element. 8884 Sizes.push_back(ElementSize); 8885 8886 DEBUG({ 8887 dbgs() << "Sizes:\n"; 8888 for (const SCEV *S : Sizes) 8889 dbgs() << *S << "\n"; 8890 }); 8891 } 8892 8893 /// Third step of delinearization: compute the access functions for the 8894 /// Subscripts based on the dimensions in Sizes. 8895 void ScalarEvolution::computeAccessFunctions( 8896 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8897 SmallVectorImpl<const SCEV *> &Sizes) { 8898 8899 // Early exit in case this SCEV is not an affine multivariate function. 8900 if (Sizes.empty()) 8901 return; 8902 8903 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8904 if (!AR->isAffine()) 8905 return; 8906 8907 const SCEV *Res = Expr; 8908 int Last = Sizes.size() - 1; 8909 for (int i = Last; i >= 0; i--) { 8910 const SCEV *Q, *R; 8911 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8912 8913 DEBUG({ 8914 dbgs() << "Res: " << *Res << "\n"; 8915 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8916 dbgs() << "Res divided by Sizes[i]:\n"; 8917 dbgs() << "Quotient: " << *Q << "\n"; 8918 dbgs() << "Remainder: " << *R << "\n"; 8919 }); 8920 8921 Res = Q; 8922 8923 // Do not record the last subscript corresponding to the size of elements in 8924 // the array. 8925 if (i == Last) { 8926 8927 // Bail out if the remainder is too complex. 8928 if (isa<SCEVAddRecExpr>(R)) { 8929 Subscripts.clear(); 8930 Sizes.clear(); 8931 return; 8932 } 8933 8934 continue; 8935 } 8936 8937 // Record the access function for the current subscript. 8938 Subscripts.push_back(R); 8939 } 8940 8941 // Also push in last position the remainder of the last division: it will be 8942 // the access function of the innermost dimension. 8943 Subscripts.push_back(Res); 8944 8945 std::reverse(Subscripts.begin(), Subscripts.end()); 8946 8947 DEBUG({ 8948 dbgs() << "Subscripts:\n"; 8949 for (const SCEV *S : Subscripts) 8950 dbgs() << *S << "\n"; 8951 }); 8952 } 8953 8954 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8955 /// sizes of an array access. Returns the remainder of the delinearization that 8956 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8957 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8958 /// expressions in the stride and base of a SCEV corresponding to the 8959 /// computation of a GCD (greatest common divisor) of base and stride. When 8960 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8961 /// 8962 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8963 /// 8964 /// void foo(long n, long m, long o, double A[n][m][o]) { 8965 /// 8966 /// for (long i = 0; i < n; i++) 8967 /// for (long j = 0; j < m; j++) 8968 /// for (long k = 0; k < o; k++) 8969 /// A[i][j][k] = 1.0; 8970 /// } 8971 /// 8972 /// the delinearization input is the following AddRec SCEV: 8973 /// 8974 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8975 /// 8976 /// From this SCEV, we are able to say that the base offset of the access is %A 8977 /// because it appears as an offset that does not divide any of the strides in 8978 /// the loops: 8979 /// 8980 /// CHECK: Base offset: %A 8981 /// 8982 /// and then SCEV->delinearize determines the size of some of the dimensions of 8983 /// the array as these are the multiples by which the strides are happening: 8984 /// 8985 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8986 /// 8987 /// Note that the outermost dimension remains of UnknownSize because there are 8988 /// no strides that would help identifying the size of the last dimension: when 8989 /// the array has been statically allocated, one could compute the size of that 8990 /// dimension by dividing the overall size of the array by the size of the known 8991 /// dimensions: %m * %o * 8. 8992 /// 8993 /// Finally delinearize provides the access functions for the array reference 8994 /// that does correspond to A[i][j][k] of the above C testcase: 8995 /// 8996 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8997 /// 8998 /// The testcases are checking the output of a function pass: 8999 /// DelinearizationPass that walks through all loads and stores of a function 9000 /// asking for the SCEV of the memory access with respect to all enclosing 9001 /// loops, calling SCEV->delinearize on that and printing the results. 9002 9003 void ScalarEvolution::delinearize(const SCEV *Expr, 9004 SmallVectorImpl<const SCEV *> &Subscripts, 9005 SmallVectorImpl<const SCEV *> &Sizes, 9006 const SCEV *ElementSize) { 9007 // First step: collect parametric terms. 9008 SmallVector<const SCEV *, 4> Terms; 9009 collectParametricTerms(Expr, Terms); 9010 9011 if (Terms.empty()) 9012 return; 9013 9014 // Second step: find subscript sizes. 9015 findArrayDimensions(Terms, Sizes, ElementSize); 9016 9017 if (Sizes.empty()) 9018 return; 9019 9020 // Third step: compute the access functions for each subscript. 9021 computeAccessFunctions(Expr, Subscripts, Sizes); 9022 9023 if (Subscripts.empty()) 9024 return; 9025 9026 DEBUG({ 9027 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9028 dbgs() << "ArrayDecl[UnknownSize]"; 9029 for (const SCEV *S : Sizes) 9030 dbgs() << "[" << *S << "]"; 9031 9032 dbgs() << "\nArrayRef"; 9033 for (const SCEV *S : Subscripts) 9034 dbgs() << "[" << *S << "]"; 9035 dbgs() << "\n"; 9036 }); 9037 } 9038 9039 //===----------------------------------------------------------------------===// 9040 // SCEVCallbackVH Class Implementation 9041 //===----------------------------------------------------------------------===// 9042 9043 void ScalarEvolution::SCEVCallbackVH::deleted() { 9044 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9045 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9046 SE->ConstantEvolutionLoopExitValue.erase(PN); 9047 SE->eraseValueFromMap(getValPtr()); 9048 // this now dangles! 9049 } 9050 9051 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9052 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9053 9054 // Forget all the expressions associated with users of the old value, 9055 // so that future queries will recompute the expressions using the new 9056 // value. 9057 Value *Old = getValPtr(); 9058 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9059 SmallPtrSet<User *, 8> Visited; 9060 while (!Worklist.empty()) { 9061 User *U = Worklist.pop_back_val(); 9062 // Deleting the Old value will cause this to dangle. Postpone 9063 // that until everything else is done. 9064 if (U == Old) 9065 continue; 9066 if (!Visited.insert(U).second) 9067 continue; 9068 if (PHINode *PN = dyn_cast<PHINode>(U)) 9069 SE->ConstantEvolutionLoopExitValue.erase(PN); 9070 SE->eraseValueFromMap(U); 9071 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9072 } 9073 // Delete the Old value. 9074 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9075 SE->ConstantEvolutionLoopExitValue.erase(PN); 9076 SE->eraseValueFromMap(Old); 9077 // this now dangles! 9078 } 9079 9080 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9081 : CallbackVH(V), SE(se) {} 9082 9083 //===----------------------------------------------------------------------===// 9084 // ScalarEvolution Class Implementation 9085 //===----------------------------------------------------------------------===// 9086 9087 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9088 AssumptionCache &AC, DominatorTree &DT, 9089 LoopInfo &LI) 9090 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9091 CouldNotCompute(new SCEVCouldNotCompute()), 9092 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9093 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9094 FirstUnknown(nullptr) {} 9095 9096 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9097 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9098 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9099 ValueExprMap(std::move(Arg.ValueExprMap)), 9100 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9101 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9102 ConstantEvolutionLoopExitValue( 9103 std::move(Arg.ConstantEvolutionLoopExitValue)), 9104 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9105 LoopDispositions(std::move(Arg.LoopDispositions)), 9106 BlockDispositions(std::move(Arg.BlockDispositions)), 9107 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9108 SignedRanges(std::move(Arg.SignedRanges)), 9109 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9110 UniquePreds(std::move(Arg.UniquePreds)), 9111 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9112 FirstUnknown(Arg.FirstUnknown) { 9113 Arg.FirstUnknown = nullptr; 9114 } 9115 9116 ScalarEvolution::~ScalarEvolution() { 9117 // Iterate through all the SCEVUnknown instances and call their 9118 // destructors, so that they release their references to their values. 9119 for (SCEVUnknown *U = FirstUnknown; U;) { 9120 SCEVUnknown *Tmp = U; 9121 U = U->Next; 9122 Tmp->~SCEVUnknown(); 9123 } 9124 FirstUnknown = nullptr; 9125 9126 ExprValueMap.clear(); 9127 ValueExprMap.clear(); 9128 HasRecMap.clear(); 9129 9130 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9131 // that a loop had multiple computable exits. 9132 for (auto &BTCI : BackedgeTakenCounts) 9133 BTCI.second.clear(); 9134 9135 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9136 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9137 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9138 } 9139 9140 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9141 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9142 } 9143 9144 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9145 const Loop *L) { 9146 // Print all inner loops first 9147 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9148 PrintLoopInfo(OS, SE, *I); 9149 9150 OS << "Loop "; 9151 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9152 OS << ": "; 9153 9154 SmallVector<BasicBlock *, 8> ExitBlocks; 9155 L->getExitBlocks(ExitBlocks); 9156 if (ExitBlocks.size() != 1) 9157 OS << "<multiple exits> "; 9158 9159 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9160 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9161 } else { 9162 OS << "Unpredictable backedge-taken count. "; 9163 } 9164 9165 OS << "\n" 9166 "Loop "; 9167 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9168 OS << ": "; 9169 9170 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9171 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9172 } else { 9173 OS << "Unpredictable max backedge-taken count. "; 9174 } 9175 9176 OS << "\n"; 9177 } 9178 9179 void ScalarEvolution::print(raw_ostream &OS) const { 9180 // ScalarEvolution's implementation of the print method is to print 9181 // out SCEV values of all instructions that are interesting. Doing 9182 // this potentially causes it to create new SCEV objects though, 9183 // which technically conflicts with the const qualifier. This isn't 9184 // observable from outside the class though, so casting away the 9185 // const isn't dangerous. 9186 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9187 9188 OS << "Classifying expressions for: "; 9189 F.printAsOperand(OS, /*PrintType=*/false); 9190 OS << "\n"; 9191 for (Instruction &I : instructions(F)) 9192 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9193 OS << I << '\n'; 9194 OS << " --> "; 9195 const SCEV *SV = SE.getSCEV(&I); 9196 SV->print(OS); 9197 if (!isa<SCEVCouldNotCompute>(SV)) { 9198 OS << " U: "; 9199 SE.getUnsignedRange(SV).print(OS); 9200 OS << " S: "; 9201 SE.getSignedRange(SV).print(OS); 9202 } 9203 9204 const Loop *L = LI.getLoopFor(I.getParent()); 9205 9206 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9207 if (AtUse != SV) { 9208 OS << " --> "; 9209 AtUse->print(OS); 9210 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9211 OS << " U: "; 9212 SE.getUnsignedRange(AtUse).print(OS); 9213 OS << " S: "; 9214 SE.getSignedRange(AtUse).print(OS); 9215 } 9216 } 9217 9218 if (L) { 9219 OS << "\t\t" "Exits: "; 9220 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9221 if (!SE.isLoopInvariant(ExitValue, L)) { 9222 OS << "<<Unknown>>"; 9223 } else { 9224 OS << *ExitValue; 9225 } 9226 } 9227 9228 OS << "\n"; 9229 } 9230 9231 OS << "Determining loop execution counts for: "; 9232 F.printAsOperand(OS, /*PrintType=*/false); 9233 OS << "\n"; 9234 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9235 PrintLoopInfo(OS, &SE, *I); 9236 } 9237 9238 ScalarEvolution::LoopDisposition 9239 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9240 auto &Values = LoopDispositions[S]; 9241 for (auto &V : Values) { 9242 if (V.getPointer() == L) 9243 return V.getInt(); 9244 } 9245 Values.emplace_back(L, LoopVariant); 9246 LoopDisposition D = computeLoopDisposition(S, L); 9247 auto &Values2 = LoopDispositions[S]; 9248 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9249 if (V.getPointer() == L) { 9250 V.setInt(D); 9251 break; 9252 } 9253 } 9254 return D; 9255 } 9256 9257 ScalarEvolution::LoopDisposition 9258 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9259 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9260 case scConstant: 9261 return LoopInvariant; 9262 case scTruncate: 9263 case scZeroExtend: 9264 case scSignExtend: 9265 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9266 case scAddRecExpr: { 9267 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9268 9269 // If L is the addrec's loop, it's computable. 9270 if (AR->getLoop() == L) 9271 return LoopComputable; 9272 9273 // Add recurrences are never invariant in the function-body (null loop). 9274 if (!L) 9275 return LoopVariant; 9276 9277 // This recurrence is variant w.r.t. L if L contains AR's loop. 9278 if (L->contains(AR->getLoop())) 9279 return LoopVariant; 9280 9281 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9282 if (AR->getLoop()->contains(L)) 9283 return LoopInvariant; 9284 9285 // This recurrence is variant w.r.t. L if any of its operands 9286 // are variant. 9287 for (auto *Op : AR->operands()) 9288 if (!isLoopInvariant(Op, L)) 9289 return LoopVariant; 9290 9291 // Otherwise it's loop-invariant. 9292 return LoopInvariant; 9293 } 9294 case scAddExpr: 9295 case scMulExpr: 9296 case scUMaxExpr: 9297 case scSMaxExpr: { 9298 bool HasVarying = false; 9299 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9300 LoopDisposition D = getLoopDisposition(Op, L); 9301 if (D == LoopVariant) 9302 return LoopVariant; 9303 if (D == LoopComputable) 9304 HasVarying = true; 9305 } 9306 return HasVarying ? LoopComputable : LoopInvariant; 9307 } 9308 case scUDivExpr: { 9309 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9310 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9311 if (LD == LoopVariant) 9312 return LoopVariant; 9313 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9314 if (RD == LoopVariant) 9315 return LoopVariant; 9316 return (LD == LoopInvariant && RD == LoopInvariant) ? 9317 LoopInvariant : LoopComputable; 9318 } 9319 case scUnknown: 9320 // All non-instruction values are loop invariant. All instructions are loop 9321 // invariant if they are not contained in the specified loop. 9322 // Instructions are never considered invariant in the function body 9323 // (null loop) because they are defined within the "loop". 9324 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9325 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9326 return LoopInvariant; 9327 case scCouldNotCompute: 9328 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9329 } 9330 llvm_unreachable("Unknown SCEV kind!"); 9331 } 9332 9333 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9334 return getLoopDisposition(S, L) == LoopInvariant; 9335 } 9336 9337 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9338 return getLoopDisposition(S, L) == LoopComputable; 9339 } 9340 9341 ScalarEvolution::BlockDisposition 9342 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9343 auto &Values = BlockDispositions[S]; 9344 for (auto &V : Values) { 9345 if (V.getPointer() == BB) 9346 return V.getInt(); 9347 } 9348 Values.emplace_back(BB, DoesNotDominateBlock); 9349 BlockDisposition D = computeBlockDisposition(S, BB); 9350 auto &Values2 = BlockDispositions[S]; 9351 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9352 if (V.getPointer() == BB) { 9353 V.setInt(D); 9354 break; 9355 } 9356 } 9357 return D; 9358 } 9359 9360 ScalarEvolution::BlockDisposition 9361 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9362 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9363 case scConstant: 9364 return ProperlyDominatesBlock; 9365 case scTruncate: 9366 case scZeroExtend: 9367 case scSignExtend: 9368 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9369 case scAddRecExpr: { 9370 // This uses a "dominates" query instead of "properly dominates" query 9371 // to test for proper dominance too, because the instruction which 9372 // produces the addrec's value is a PHI, and a PHI effectively properly 9373 // dominates its entire containing block. 9374 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9375 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9376 return DoesNotDominateBlock; 9377 } 9378 // FALL THROUGH into SCEVNAryExpr handling. 9379 case scAddExpr: 9380 case scMulExpr: 9381 case scUMaxExpr: 9382 case scSMaxExpr: { 9383 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9384 bool Proper = true; 9385 for (const SCEV *NAryOp : NAry->operands()) { 9386 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9387 if (D == DoesNotDominateBlock) 9388 return DoesNotDominateBlock; 9389 if (D == DominatesBlock) 9390 Proper = false; 9391 } 9392 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9393 } 9394 case scUDivExpr: { 9395 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9396 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9397 BlockDisposition LD = getBlockDisposition(LHS, BB); 9398 if (LD == DoesNotDominateBlock) 9399 return DoesNotDominateBlock; 9400 BlockDisposition RD = getBlockDisposition(RHS, BB); 9401 if (RD == DoesNotDominateBlock) 9402 return DoesNotDominateBlock; 9403 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9404 ProperlyDominatesBlock : DominatesBlock; 9405 } 9406 case scUnknown: 9407 if (Instruction *I = 9408 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9409 if (I->getParent() == BB) 9410 return DominatesBlock; 9411 if (DT.properlyDominates(I->getParent(), BB)) 9412 return ProperlyDominatesBlock; 9413 return DoesNotDominateBlock; 9414 } 9415 return ProperlyDominatesBlock; 9416 case scCouldNotCompute: 9417 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9418 } 9419 llvm_unreachable("Unknown SCEV kind!"); 9420 } 9421 9422 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9423 return getBlockDisposition(S, BB) >= DominatesBlock; 9424 } 9425 9426 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9427 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9428 } 9429 9430 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9431 // Search for a SCEV expression node within an expression tree. 9432 // Implements SCEVTraversal::Visitor. 9433 struct SCEVSearch { 9434 const SCEV *Node; 9435 bool IsFound; 9436 9437 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9438 9439 bool follow(const SCEV *S) { 9440 IsFound |= (S == Node); 9441 return !IsFound; 9442 } 9443 bool isDone() const { return IsFound; } 9444 }; 9445 9446 SCEVSearch Search(Op); 9447 visitAll(S, Search); 9448 return Search.IsFound; 9449 } 9450 9451 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9452 ValuesAtScopes.erase(S); 9453 LoopDispositions.erase(S); 9454 BlockDispositions.erase(S); 9455 UnsignedRanges.erase(S); 9456 SignedRanges.erase(S); 9457 ExprValueMap.erase(S); 9458 HasRecMap.erase(S); 9459 9460 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9461 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9462 BackedgeTakenInfo &BEInfo = I->second; 9463 if (BEInfo.hasOperand(S, this)) { 9464 BEInfo.clear(); 9465 BackedgeTakenCounts.erase(I++); 9466 } 9467 else 9468 ++I; 9469 } 9470 } 9471 9472 typedef DenseMap<const Loop *, std::string> VerifyMap; 9473 9474 /// replaceSubString - Replaces all occurrences of From in Str with To. 9475 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9476 size_t Pos = 0; 9477 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9478 Str.replace(Pos, From.size(), To.data(), To.size()); 9479 Pos += To.size(); 9480 } 9481 } 9482 9483 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9484 static void 9485 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9486 std::string &S = Map[L]; 9487 if (S.empty()) { 9488 raw_string_ostream OS(S); 9489 SE.getBackedgeTakenCount(L)->print(OS); 9490 9491 // false and 0 are semantically equivalent. This can happen in dead loops. 9492 replaceSubString(OS.str(), "false", "0"); 9493 // Remove wrap flags, their use in SCEV is highly fragile. 9494 // FIXME: Remove this when SCEV gets smarter about them. 9495 replaceSubString(OS.str(), "<nw>", ""); 9496 replaceSubString(OS.str(), "<nsw>", ""); 9497 replaceSubString(OS.str(), "<nuw>", ""); 9498 } 9499 9500 for (auto *R : reverse(*L)) 9501 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9502 } 9503 9504 void ScalarEvolution::verify() const { 9505 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9506 9507 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9508 // FIXME: It would be much better to store actual values instead of strings, 9509 // but SCEV pointers will change if we drop the caches. 9510 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9511 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9512 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9513 9514 // Gather stringified backedge taken counts for all loops using a fresh 9515 // ScalarEvolution object. 9516 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9517 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9518 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9519 9520 // Now compare whether they're the same with and without caches. This allows 9521 // verifying that no pass changed the cache. 9522 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9523 "New loops suddenly appeared!"); 9524 9525 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9526 OldE = BackedgeDumpsOld.end(), 9527 NewI = BackedgeDumpsNew.begin(); 9528 OldI != OldE; ++OldI, ++NewI) { 9529 assert(OldI->first == NewI->first && "Loop order changed!"); 9530 9531 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9532 // changes. 9533 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9534 // means that a pass is buggy or SCEV has to learn a new pattern but is 9535 // usually not harmful. 9536 if (OldI->second != NewI->second && 9537 OldI->second.find("undef") == std::string::npos && 9538 NewI->second.find("undef") == std::string::npos && 9539 OldI->second != "***COULDNOTCOMPUTE***" && 9540 NewI->second != "***COULDNOTCOMPUTE***") { 9541 dbgs() << "SCEVValidator: SCEV for loop '" 9542 << OldI->first->getHeader()->getName() 9543 << "' changed from '" << OldI->second 9544 << "' to '" << NewI->second << "'!\n"; 9545 std::abort(); 9546 } 9547 } 9548 9549 // TODO: Verify more things. 9550 } 9551 9552 char ScalarEvolutionAnalysis::PassID; 9553 9554 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9555 AnalysisManager<Function> *AM) { 9556 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9557 AM->getResult<AssumptionAnalysis>(F), 9558 AM->getResult<DominatorTreeAnalysis>(F), 9559 AM->getResult<LoopAnalysis>(F)); 9560 } 9561 9562 PreservedAnalyses 9563 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9564 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9565 return PreservedAnalyses::all(); 9566 } 9567 9568 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9569 "Scalar Evolution Analysis", false, true) 9570 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9571 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9572 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9573 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9574 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9575 "Scalar Evolution Analysis", false, true) 9576 char ScalarEvolutionWrapperPass::ID = 0; 9577 9578 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9579 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9580 } 9581 9582 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9583 SE.reset(new ScalarEvolution( 9584 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9585 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9586 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9587 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9588 return false; 9589 } 9590 9591 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9592 9593 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9594 SE->print(OS); 9595 } 9596 9597 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9598 if (!VerifySCEV) 9599 return; 9600 9601 SE->verify(); 9602 } 9603 9604 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9605 AU.setPreservesAll(); 9606 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9607 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9608 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9609 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9610 } 9611 9612 const SCEVPredicate * 9613 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9614 const SCEVConstant *RHS) { 9615 FoldingSetNodeID ID; 9616 // Unique this node based on the arguments 9617 ID.AddInteger(SCEVPredicate::P_Equal); 9618 ID.AddPointer(LHS); 9619 ID.AddPointer(RHS); 9620 void *IP = nullptr; 9621 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9622 return S; 9623 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9624 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9625 UniquePreds.InsertNode(Eq, IP); 9626 return Eq; 9627 } 9628 9629 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 9630 const SCEVAddRecExpr *AR, 9631 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9632 FoldingSetNodeID ID; 9633 // Unique this node based on the arguments 9634 ID.AddInteger(SCEVPredicate::P_Wrap); 9635 ID.AddPointer(AR); 9636 ID.AddInteger(AddedFlags); 9637 void *IP = nullptr; 9638 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9639 return S; 9640 auto *OF = new (SCEVAllocator) 9641 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 9642 UniquePreds.InsertNode(OF, IP); 9643 return OF; 9644 } 9645 9646 namespace { 9647 9648 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9649 public: 9650 // Rewrites Scev in the context of a loop L and the predicate A. 9651 // If Assume is true, rewrite is free to add further predicates to A 9652 // such that the result will be an AddRecExpr. 9653 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 9654 ScalarEvolution &SE, SCEVUnionPredicate &A, 9655 bool Assume) { 9656 SCEVPredicateRewriter Rewriter(L, SE, A, Assume); 9657 return Rewriter.visit(Scev); 9658 } 9659 9660 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 9661 SCEVUnionPredicate &P, bool Assume) 9662 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {} 9663 9664 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9665 auto ExprPreds = P.getPredicatesForExpr(Expr); 9666 for (auto *Pred : ExprPreds) 9667 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9668 if (IPred->getLHS() == Expr) 9669 return IPred->getRHS(); 9670 9671 return Expr; 9672 } 9673 9674 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 9675 const SCEV *Operand = visit(Expr->getOperand()); 9676 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9677 if (AR && AR->getLoop() == L && AR->isAffine()) { 9678 // This couldn't be folded because the operand didn't have the nuw 9679 // flag. Add the nusw flag as an assumption that we could make. 9680 const SCEV *Step = AR->getStepRecurrence(SE); 9681 Type *Ty = Expr->getType(); 9682 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 9683 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 9684 SE.getSignExtendExpr(Step, Ty), L, 9685 AR->getNoWrapFlags()); 9686 } 9687 return SE.getZeroExtendExpr(Operand, Expr->getType()); 9688 } 9689 9690 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 9691 const SCEV *Operand = visit(Expr->getOperand()); 9692 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9693 if (AR && AR->getLoop() == L && AR->isAffine()) { 9694 // This couldn't be folded because the operand didn't have the nsw 9695 // flag. Add the nssw flag as an assumption that we could make. 9696 const SCEV *Step = AR->getStepRecurrence(SE); 9697 Type *Ty = Expr->getType(); 9698 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 9699 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 9700 SE.getSignExtendExpr(Step, Ty), L, 9701 AR->getNoWrapFlags()); 9702 } 9703 return SE.getSignExtendExpr(Operand, Expr->getType()); 9704 } 9705 9706 private: 9707 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 9708 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9709 auto *A = SE.getWrapPredicate(AR, AddedFlags); 9710 if (!Assume) { 9711 // Check if we've already made this assumption. 9712 if (P.implies(A)) 9713 return true; 9714 return false; 9715 } 9716 P.add(A); 9717 return true; 9718 } 9719 9720 SCEVUnionPredicate &P; 9721 const Loop *L; 9722 bool Assume; 9723 }; 9724 } // end anonymous namespace 9725 9726 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev, 9727 const Loop *L, 9728 SCEVUnionPredicate &Preds) { 9729 return SCEVPredicateRewriter::rewrite(Scev, L, *this, Preds, false); 9730 } 9731 9732 const SCEV *ScalarEvolution::convertSCEVToAddRecWithPredicates( 9733 const SCEV *Scev, const Loop *L, SCEVUnionPredicate &Preds) { 9734 return SCEVPredicateRewriter::rewrite(Scev, L, *this, Preds, true); 9735 } 9736 9737 /// SCEV predicates 9738 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9739 SCEVPredicateKind Kind) 9740 : FastID(ID), Kind(Kind) {} 9741 9742 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9743 const SCEVUnknown *LHS, 9744 const SCEVConstant *RHS) 9745 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9746 9747 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9748 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9749 9750 if (!Op) 9751 return false; 9752 9753 return Op->LHS == LHS && Op->RHS == RHS; 9754 } 9755 9756 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9757 9758 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9759 9760 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9761 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9762 } 9763 9764 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 9765 const SCEVAddRecExpr *AR, 9766 IncrementWrapFlags Flags) 9767 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 9768 9769 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 9770 9771 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 9772 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 9773 9774 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 9775 } 9776 9777 bool SCEVWrapPredicate::isAlwaysTrue() const { 9778 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 9779 IncrementWrapFlags IFlags = Flags; 9780 9781 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 9782 IFlags = clearFlags(IFlags, IncrementNSSW); 9783 9784 return IFlags == IncrementAnyWrap; 9785 } 9786 9787 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 9788 OS.indent(Depth) << *getExpr() << " Added Flags: "; 9789 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 9790 OS << "<nusw>"; 9791 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 9792 OS << "<nssw>"; 9793 OS << "\n"; 9794 } 9795 9796 SCEVWrapPredicate::IncrementWrapFlags 9797 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 9798 ScalarEvolution &SE) { 9799 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 9800 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 9801 9802 // We can safely transfer the NSW flag as NSSW. 9803 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 9804 ImpliedFlags = IncrementNSSW; 9805 9806 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 9807 // If the increment is positive, the SCEV NUW flag will also imply the 9808 // WrapPredicate NUSW flag. 9809 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 9810 if (Step->getValue()->getValue().isNonNegative()) 9811 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 9812 } 9813 9814 return ImpliedFlags; 9815 } 9816 9817 /// Union predicates don't get cached so create a dummy set ID for it. 9818 SCEVUnionPredicate::SCEVUnionPredicate() 9819 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9820 9821 bool SCEVUnionPredicate::isAlwaysTrue() const { 9822 return all_of(Preds, 9823 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9824 } 9825 9826 ArrayRef<const SCEVPredicate *> 9827 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9828 auto I = SCEVToPreds.find(Expr); 9829 if (I == SCEVToPreds.end()) 9830 return ArrayRef<const SCEVPredicate *>(); 9831 return I->second; 9832 } 9833 9834 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9835 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9836 return all_of(Set->Preds, 9837 [this](const SCEVPredicate *I) { return this->implies(I); }); 9838 9839 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9840 if (ScevPredsIt == SCEVToPreds.end()) 9841 return false; 9842 auto &SCEVPreds = ScevPredsIt->second; 9843 9844 return any_of(SCEVPreds, 9845 [N](const SCEVPredicate *I) { return I->implies(N); }); 9846 } 9847 9848 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9849 9850 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9851 for (auto Pred : Preds) 9852 Pred->print(OS, Depth); 9853 } 9854 9855 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9856 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9857 for (auto Pred : Set->Preds) 9858 add(Pred); 9859 return; 9860 } 9861 9862 if (implies(N)) 9863 return; 9864 9865 const SCEV *Key = N->getExpr(); 9866 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9867 " associated expression!"); 9868 9869 SCEVToPreds[Key].push_back(N); 9870 Preds.push_back(N); 9871 } 9872 9873 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 9874 Loop &L) 9875 : SE(SE), L(L), Generation(0) {} 9876 9877 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 9878 const SCEV *Expr = SE.getSCEV(V); 9879 RewriteEntry &Entry = RewriteMap[Expr]; 9880 9881 // If we already have an entry and the version matches, return it. 9882 if (Entry.second && Generation == Entry.first) 9883 return Entry.second; 9884 9885 // We found an entry but it's stale. Rewrite the stale entry 9886 // acording to the current predicate. 9887 if (Entry.second) 9888 Expr = Entry.second; 9889 9890 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 9891 Entry = {Generation, NewSCEV}; 9892 9893 return NewSCEV; 9894 } 9895 9896 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 9897 if (Preds.implies(&Pred)) 9898 return; 9899 Preds.add(&Pred); 9900 updateGeneration(); 9901 } 9902 9903 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 9904 return Preds; 9905 } 9906 9907 void PredicatedScalarEvolution::updateGeneration() { 9908 // If the generation number wrapped recompute everything. 9909 if (++Generation == 0) { 9910 for (auto &II : RewriteMap) { 9911 const SCEV *Rewritten = II.second.second; 9912 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 9913 } 9914 } 9915 } 9916 9917 void PredicatedScalarEvolution::setNoOverflow( 9918 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 9919 const SCEV *Expr = getSCEV(V); 9920 const auto *AR = cast<SCEVAddRecExpr>(Expr); 9921 9922 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 9923 9924 // Clear the statically implied flags. 9925 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 9926 addPredicate(*SE.getWrapPredicate(AR, Flags)); 9927 9928 auto II = FlagsMap.insert({V, Flags}); 9929 if (!II.second) 9930 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 9931 } 9932 9933 bool PredicatedScalarEvolution::hasNoOverflow( 9934 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 9935 const SCEV *Expr = getSCEV(V); 9936 const auto *AR = cast<SCEVAddRecExpr>(Expr); 9937 9938 Flags = SCEVWrapPredicate::clearFlags( 9939 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 9940 9941 auto II = FlagsMap.find(V); 9942 9943 if (II != FlagsMap.end()) 9944 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 9945 9946 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 9947 } 9948 9949 const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) { 9950 const SCEV *Expr = this->getSCEV(V); 9951 const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds); 9952 updateGeneration(); 9953 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 9954 return New; 9955 } 9956 9957 PredicatedScalarEvolution:: 9958 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) : 9959 RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 9960 Generation(Init.Generation) { 9961 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I) 9962 FlagsMap.insert(*I); 9963 } 9964