1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Support/CFG.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/GetElementPtrTypeIterator.h" 79 #include "llvm/Support/InstIterator.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/Streams.h" 83 #include "llvm/ADT/Statistic.h" 84 #include "llvm/ADT/STLExtras.h" 85 #include <ostream> 86 #include <algorithm> 87 #include <cmath> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant derived loop"), 103 cl::init(100)); 104 105 static RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 107 char ScalarEvolution::ID = 0; 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 SCEV::~SCEV() {} 117 void SCEV::dump() const { 118 print(cerr); 119 cerr << '\n'; 120 } 121 122 bool SCEV::isZero() const { 123 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 124 return SC->getValue()->isZero(); 125 return false; 126 } 127 128 129 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 130 131 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 132 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 133 return false; 134 } 135 136 const Type *SCEVCouldNotCompute::getType() const { 137 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 138 return 0; 139 } 140 141 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 142 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 143 return false; 144 } 145 146 SCEVHandle SCEVCouldNotCompute:: 147 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 148 const SCEVHandle &Conc, 149 ScalarEvolution &SE) const { 150 return this; 151 } 152 153 void SCEVCouldNotCompute::print(std::ostream &OS) const { 154 OS << "***COULDNOTCOMPUTE***"; 155 } 156 157 bool SCEVCouldNotCompute::classof(const SCEV *S) { 158 return S->getSCEVType() == scCouldNotCompute; 159 } 160 161 162 // SCEVConstants - Only allow the creation of one SCEVConstant for any 163 // particular value. Don't use a SCEVHandle here, or else the object will 164 // never be deleted! 165 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 166 167 168 SCEVConstant::~SCEVConstant() { 169 SCEVConstants->erase(V); 170 } 171 172 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 173 SCEVConstant *&R = (*SCEVConstants)[V]; 174 if (R == 0) R = new SCEVConstant(V); 175 return R; 176 } 177 178 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 179 return getConstant(ConstantInt::get(Val)); 180 } 181 182 const Type *SCEVConstant::getType() const { return V->getType(); } 183 184 void SCEVConstant::print(std::ostream &OS) const { 185 WriteAsOperand(OS, V, false); 186 } 187 188 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 189 // particular input. Don't use a SCEVHandle here, or else the object will 190 // never be deleted! 191 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 192 SCEVTruncateExpr*> > SCEVTruncates; 193 194 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 195 : SCEV(scTruncate), Op(op), Ty(ty) { 196 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 197 (Ty->isInteger() || isa<PointerType>(Ty)) && 198 "Cannot truncate non-integer value!"); 199 assert((!Op->getType()->isInteger() || !Ty->isInteger() || 200 Op->getType()->getPrimitiveSizeInBits() > 201 Ty->getPrimitiveSizeInBits()) && 202 "This is not a truncating conversion!"); 203 } 204 205 SCEVTruncateExpr::~SCEVTruncateExpr() { 206 SCEVTruncates->erase(std::make_pair(Op, Ty)); 207 } 208 209 bool SCEVTruncateExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->dominates(BB, DT); 211 } 212 213 void SCEVTruncateExpr::print(std::ostream &OS) const { 214 OS << "(truncate " << *Op << " to " << *Ty << ")"; 215 } 216 217 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 218 // particular input. Don't use a SCEVHandle here, or else the object will never 219 // be deleted! 220 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 221 SCEVZeroExtendExpr*> > SCEVZeroExtends; 222 223 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 224 : SCEV(scZeroExtend), Op(op), Ty(ty) { 225 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 226 (Ty->isInteger() || isa<PointerType>(Ty)) && 227 "Cannot zero extend non-integer value!"); 228 } 229 230 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 231 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 232 } 233 234 bool SCEVZeroExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 235 return Op->dominates(BB, DT); 236 } 237 238 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 239 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 240 } 241 242 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 243 // particular input. Don't use a SCEVHandle here, or else the object will never 244 // be deleted! 245 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 246 SCEVSignExtendExpr*> > SCEVSignExtends; 247 248 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 249 : SCEV(scSignExtend), Op(op), Ty(ty) { 250 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 251 (Ty->isInteger() || isa<PointerType>(Ty)) && 252 "Cannot sign extend non-integer value!"); 253 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 254 && "This is not an extending conversion!"); 255 } 256 257 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 258 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 259 } 260 261 bool SCEVSignExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 262 return Op->dominates(BB, DT); 263 } 264 265 void SCEVSignExtendExpr::print(std::ostream &OS) const { 266 OS << "(signextend " << *Op << " to " << *Ty << ")"; 267 } 268 269 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 270 // particular input. Don't use a SCEVHandle here, or else the object will never 271 // be deleted! 272 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 273 SCEVCommutativeExpr*> > SCEVCommExprs; 274 275 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 276 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 277 std::vector<SCEV*>(Operands.begin(), 278 Operands.end()))); 279 } 280 281 void SCEVCommutativeExpr::print(std::ostream &OS) const { 282 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 283 const char *OpStr = getOperationStr(); 284 OS << "(" << *Operands[0]; 285 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 286 OS << OpStr << *Operands[i]; 287 OS << ")"; 288 } 289 290 SCEVHandle SCEVCommutativeExpr:: 291 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 292 const SCEVHandle &Conc, 293 ScalarEvolution &SE) const { 294 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 295 SCEVHandle H = 296 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 297 if (H != getOperand(i)) { 298 std::vector<SCEVHandle> NewOps; 299 NewOps.reserve(getNumOperands()); 300 for (unsigned j = 0; j != i; ++j) 301 NewOps.push_back(getOperand(j)); 302 NewOps.push_back(H); 303 for (++i; i != e; ++i) 304 NewOps.push_back(getOperand(i)-> 305 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 306 307 if (isa<SCEVAddExpr>(this)) 308 return SE.getAddExpr(NewOps); 309 else if (isa<SCEVMulExpr>(this)) 310 return SE.getMulExpr(NewOps); 311 else if (isa<SCEVSMaxExpr>(this)) 312 return SE.getSMaxExpr(NewOps); 313 else if (isa<SCEVUMaxExpr>(this)) 314 return SE.getUMaxExpr(NewOps); 315 else 316 assert(0 && "Unknown commutative expr!"); 317 } 318 } 319 return this; 320 } 321 322 bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 323 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 324 if (!getOperand(i)->dominates(BB, DT)) 325 return false; 326 } 327 return true; 328 } 329 330 331 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 332 // input. Don't use a SCEVHandle here, or else the object will never be 333 // deleted! 334 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 335 SCEVUDivExpr*> > SCEVUDivs; 336 337 SCEVUDivExpr::~SCEVUDivExpr() { 338 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 339 } 340 341 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 342 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 343 } 344 345 void SCEVUDivExpr::print(std::ostream &OS) const { 346 OS << "(" << *LHS << " /u " << *RHS << ")"; 347 } 348 349 const Type *SCEVUDivExpr::getType() const { 350 return LHS->getType(); 351 } 352 353 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 354 // particular input. Don't use a SCEVHandle here, or else the object will never 355 // be deleted! 356 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 357 SCEVAddRecExpr*> > SCEVAddRecExprs; 358 359 SCEVAddRecExpr::~SCEVAddRecExpr() { 360 SCEVAddRecExprs->erase(std::make_pair(L, 361 std::vector<SCEV*>(Operands.begin(), 362 Operands.end()))); 363 } 364 365 bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 366 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 367 if (!getOperand(i)->dominates(BB, DT)) 368 return false; 369 } 370 return true; 371 } 372 373 374 SCEVHandle SCEVAddRecExpr:: 375 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 376 const SCEVHandle &Conc, 377 ScalarEvolution &SE) const { 378 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 379 SCEVHandle H = 380 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 381 if (H != getOperand(i)) { 382 std::vector<SCEVHandle> NewOps; 383 NewOps.reserve(getNumOperands()); 384 for (unsigned j = 0; j != i; ++j) 385 NewOps.push_back(getOperand(j)); 386 NewOps.push_back(H); 387 for (++i; i != e; ++i) 388 NewOps.push_back(getOperand(i)-> 389 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 390 391 return SE.getAddRecExpr(NewOps, L); 392 } 393 } 394 return this; 395 } 396 397 398 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 399 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 400 // contain L and if the start is invariant. 401 return !QueryLoop->contains(L->getHeader()) && 402 getOperand(0)->isLoopInvariant(QueryLoop); 403 } 404 405 406 void SCEVAddRecExpr::print(std::ostream &OS) const { 407 OS << "{" << *Operands[0]; 408 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 409 OS << ",+," << *Operands[i]; 410 OS << "}<" << L->getHeader()->getName() + ">"; 411 } 412 413 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 414 // value. Don't use a SCEVHandle here, or else the object will never be 415 // deleted! 416 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 417 418 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 419 420 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 421 // All non-instruction values are loop invariant. All instructions are loop 422 // invariant if they are not contained in the specified loop. 423 if (Instruction *I = dyn_cast<Instruction>(V)) 424 return !L->contains(I->getParent()); 425 return true; 426 } 427 428 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 429 if (Instruction *I = dyn_cast<Instruction>(getValue())) 430 return DT->dominates(I->getParent(), BB); 431 return true; 432 } 433 434 const Type *SCEVUnknown::getType() const { 435 return V->getType(); 436 } 437 438 void SCEVUnknown::print(std::ostream &OS) const { 439 if (isa<PointerType>(V->getType())) 440 OS << "(ptrtoint " << *V->getType() << " "; 441 WriteAsOperand(OS, V, false); 442 if (isa<PointerType>(V->getType())) 443 OS << " to iPTR)"; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SCEV Utilities 448 //===----------------------------------------------------------------------===// 449 450 namespace { 451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 452 /// than the complexity of the RHS. This comparator is used to canonicalize 453 /// expressions. 454 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 455 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 456 return LHS->getSCEVType() < RHS->getSCEVType(); 457 } 458 }; 459 } 460 461 /// GroupByComplexity - Given a list of SCEV objects, order them by their 462 /// complexity, and group objects of the same complexity together by value. 463 /// When this routine is finished, we know that any duplicates in the vector are 464 /// consecutive and that complexity is monotonically increasing. 465 /// 466 /// Note that we go take special precautions to ensure that we get determinstic 467 /// results from this routine. In other words, we don't want the results of 468 /// this to depend on where the addresses of various SCEV objects happened to 469 /// land in memory. 470 /// 471 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 472 if (Ops.size() < 2) return; // Noop 473 if (Ops.size() == 2) { 474 // This is the common case, which also happens to be trivially simple. 475 // Special case it. 476 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 477 std::swap(Ops[0], Ops[1]); 478 return; 479 } 480 481 // Do the rough sort by complexity. 482 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 483 484 // Now that we are sorted by complexity, group elements of the same 485 // complexity. Note that this is, at worst, N^2, but the vector is likely to 486 // be extremely short in practice. Note that we take this approach because we 487 // do not want to depend on the addresses of the objects we are grouping. 488 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 489 SCEV *S = Ops[i]; 490 unsigned Complexity = S->getSCEVType(); 491 492 // If there are any objects of the same complexity and same value as this 493 // one, group them. 494 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 495 if (Ops[j] == S) { // Found a duplicate. 496 // Move it to immediately after i'th element. 497 std::swap(Ops[i+1], Ops[j]); 498 ++i; // no need to rescan it. 499 if (i == e-2) return; // Done! 500 } 501 } 502 } 503 } 504 505 506 507 //===----------------------------------------------------------------------===// 508 // Simple SCEV method implementations 509 //===----------------------------------------------------------------------===// 510 511 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 512 // Assume, K > 0. 513 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 514 ScalarEvolution &SE, 515 const Type* ResultTy) { 516 // Handle the simplest case efficiently. 517 if (K == 1) 518 return SE.getTruncateOrZeroExtend(It, ResultTy); 519 520 // We are using the following formula for BC(It, K): 521 // 522 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 523 // 524 // Suppose, W is the bitwidth of the return value. We must be prepared for 525 // overflow. Hence, we must assure that the result of our computation is 526 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 527 // safe in modular arithmetic. 528 // 529 // However, this code doesn't use exactly that formula; the formula it uses 530 // is something like the following, where T is the number of factors of 2 in 531 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 532 // exponentiation: 533 // 534 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 535 // 536 // This formula is trivially equivalent to the previous formula. However, 537 // this formula can be implemented much more efficiently. The trick is that 538 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 539 // arithmetic. To do exact division in modular arithmetic, all we have 540 // to do is multiply by the inverse. Therefore, this step can be done at 541 // width W. 542 // 543 // The next issue is how to safely do the division by 2^T. The way this 544 // is done is by doing the multiplication step at a width of at least W + T 545 // bits. This way, the bottom W+T bits of the product are accurate. Then, 546 // when we perform the division by 2^T (which is equivalent to a right shift 547 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 548 // truncated out after the division by 2^T. 549 // 550 // In comparison to just directly using the first formula, this technique 551 // is much more efficient; using the first formula requires W * K bits, 552 // but this formula less than W + K bits. Also, the first formula requires 553 // a division step, whereas this formula only requires multiplies and shifts. 554 // 555 // It doesn't matter whether the subtraction step is done in the calculation 556 // width or the input iteration count's width; if the subtraction overflows, 557 // the result must be zero anyway. We prefer here to do it in the width of 558 // the induction variable because it helps a lot for certain cases; CodeGen 559 // isn't smart enough to ignore the overflow, which leads to much less 560 // efficient code if the width of the subtraction is wider than the native 561 // register width. 562 // 563 // (It's possible to not widen at all by pulling out factors of 2 before 564 // the multiplication; for example, K=2 can be calculated as 565 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 566 // extra arithmetic, so it's not an obvious win, and it gets 567 // much more complicated for K > 3.) 568 569 // Protection from insane SCEVs; this bound is conservative, 570 // but it probably doesn't matter. 571 if (K > 1000) 572 return new SCEVCouldNotCompute(); 573 574 unsigned W = SE.getTargetData().getTypeSizeInBits(ResultTy); 575 576 // Calculate K! / 2^T and T; we divide out the factors of two before 577 // multiplying for calculating K! / 2^T to avoid overflow. 578 // Other overflow doesn't matter because we only care about the bottom 579 // W bits of the result. 580 APInt OddFactorial(W, 1); 581 unsigned T = 1; 582 for (unsigned i = 3; i <= K; ++i) { 583 APInt Mult(W, i); 584 unsigned TwoFactors = Mult.countTrailingZeros(); 585 T += TwoFactors; 586 Mult = Mult.lshr(TwoFactors); 587 OddFactorial *= Mult; 588 } 589 590 // We need at least W + T bits for the multiplication step 591 unsigned CalculationBits = W + T; 592 593 // Calcuate 2^T, at width T+W. 594 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 595 596 // Calculate the multiplicative inverse of K! / 2^T; 597 // this multiplication factor will perform the exact division by 598 // K! / 2^T. 599 APInt Mod = APInt::getSignedMinValue(W+1); 600 APInt MultiplyFactor = OddFactorial.zext(W+1); 601 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 602 MultiplyFactor = MultiplyFactor.trunc(W); 603 604 // Calculate the product, at width T+W 605 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 606 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 607 for (unsigned i = 1; i != K; ++i) { 608 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 609 Dividend = SE.getMulExpr(Dividend, 610 SE.getTruncateOrZeroExtend(S, CalculationTy)); 611 } 612 613 // Divide by 2^T 614 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 615 616 // Truncate the result, and divide by K! / 2^T. 617 618 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 619 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 620 } 621 622 /// evaluateAtIteration - Return the value of this chain of recurrences at 623 /// the specified iteration number. We can evaluate this recurrence by 624 /// multiplying each element in the chain by the binomial coefficient 625 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 626 /// 627 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 628 /// 629 /// where BC(It, k) stands for binomial coefficient. 630 /// 631 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 632 ScalarEvolution &SE) const { 633 SCEVHandle Result = getStart(); 634 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 635 // The computation is correct in the face of overflow provided that the 636 // multiplication is performed _after_ the evaluation of the binomial 637 // coefficient. 638 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 639 if (isa<SCEVCouldNotCompute>(Coeff)) 640 return Coeff; 641 642 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 643 } 644 return Result; 645 } 646 647 //===----------------------------------------------------------------------===// 648 // SCEV Expression folder implementations 649 //===----------------------------------------------------------------------===// 650 651 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 652 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 653 return getUnknown( 654 ConstantExpr::getTrunc(SC->getValue(), Ty)); 655 656 // If the input value is a chrec scev made out of constants, truncate 657 // all of the constants. 658 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 659 std::vector<SCEVHandle> Operands; 660 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 661 // FIXME: This should allow truncation of other expression types! 662 if (isa<SCEVConstant>(AddRec->getOperand(i))) 663 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 664 else 665 break; 666 if (Operands.size() == AddRec->getNumOperands()) 667 return getAddRecExpr(Operands, AddRec->getLoop()); 668 } 669 670 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 671 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 672 return Result; 673 } 674 675 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 676 const Type *Ty) { 677 assert(getTargetData().getTypeSizeInBits(Op->getType()) < 678 getTargetData().getTypeSizeInBits(Ty) && 679 "This is not an extending conversion!"); 680 681 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 682 const Type *IntTy = Ty; 683 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType(); 684 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 685 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 686 return getUnknown(C); 687 } 688 689 // FIXME: If the input value is a chrec scev, and we can prove that the value 690 // did not overflow the old, smaller, value, we can zero extend all of the 691 // operands (often constants). This would allow analysis of something like 692 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 693 694 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 695 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 696 return Result; 697 } 698 699 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 700 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 701 const Type *IntTy = Ty; 702 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType(); 703 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 704 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 705 return getUnknown(C); 706 } 707 708 // FIXME: If the input value is a chrec scev, and we can prove that the value 709 // did not overflow the old, smaller, value, we can sign extend all of the 710 // operands (often constants). This would allow analysis of something like 711 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 712 713 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 714 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 715 return Result; 716 } 717 718 // get - Get a canonical add expression, or something simpler if possible. 719 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 720 assert(!Ops.empty() && "Cannot get empty add!"); 721 if (Ops.size() == 1) return Ops[0]; 722 723 // Sort by complexity, this groups all similar expression types together. 724 GroupByComplexity(Ops); 725 726 // If there are any constants, fold them together. 727 unsigned Idx = 0; 728 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 729 ++Idx; 730 assert(Idx < Ops.size()); 731 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 732 // We found two constants, fold them together! 733 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 734 RHSC->getValue()->getValue()); 735 Ops[0] = getConstant(Fold); 736 Ops.erase(Ops.begin()+1); // Erase the folded element 737 if (Ops.size() == 1) return Ops[0]; 738 LHSC = cast<SCEVConstant>(Ops[0]); 739 } 740 741 // If we are left with a constant zero being added, strip it off. 742 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 743 Ops.erase(Ops.begin()); 744 --Idx; 745 } 746 } 747 748 if (Ops.size() == 1) return Ops[0]; 749 750 // Okay, check to see if the same value occurs in the operand list twice. If 751 // so, merge them together into an multiply expression. Since we sorted the 752 // list, these values are required to be adjacent. 753 const Type *Ty = Ops[0]->getType(); 754 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 755 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 756 // Found a match, merge the two values into a multiply, and add any 757 // remaining values to the result. 758 SCEVHandle Two = getIntegerSCEV(2, Ty); 759 SCEVHandle Mul = getMulExpr(Ops[i], Two); 760 if (Ops.size() == 2) 761 return Mul; 762 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 763 Ops.push_back(Mul); 764 return getAddExpr(Ops); 765 } 766 767 // Now we know the first non-constant operand. Skip past any cast SCEVs. 768 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 769 ++Idx; 770 771 // If there are add operands they would be next. 772 if (Idx < Ops.size()) { 773 bool DeletedAdd = false; 774 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 775 // If we have an add, expand the add operands onto the end of the operands 776 // list. 777 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 778 Ops.erase(Ops.begin()+Idx); 779 DeletedAdd = true; 780 } 781 782 // If we deleted at least one add, we added operands to the end of the list, 783 // and they are not necessarily sorted. Recurse to resort and resimplify 784 // any operands we just aquired. 785 if (DeletedAdd) 786 return getAddExpr(Ops); 787 } 788 789 // Skip over the add expression until we get to a multiply. 790 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 791 ++Idx; 792 793 // If we are adding something to a multiply expression, make sure the 794 // something is not already an operand of the multiply. If so, merge it into 795 // the multiply. 796 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 797 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 798 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 799 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 800 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 801 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 802 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 803 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 804 if (Mul->getNumOperands() != 2) { 805 // If the multiply has more than two operands, we must get the 806 // Y*Z term. 807 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 808 MulOps.erase(MulOps.begin()+MulOp); 809 InnerMul = getMulExpr(MulOps); 810 } 811 SCEVHandle One = getIntegerSCEV(1, Ty); 812 SCEVHandle AddOne = getAddExpr(InnerMul, One); 813 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 814 if (Ops.size() == 2) return OuterMul; 815 if (AddOp < Idx) { 816 Ops.erase(Ops.begin()+AddOp); 817 Ops.erase(Ops.begin()+Idx-1); 818 } else { 819 Ops.erase(Ops.begin()+Idx); 820 Ops.erase(Ops.begin()+AddOp-1); 821 } 822 Ops.push_back(OuterMul); 823 return getAddExpr(Ops); 824 } 825 826 // Check this multiply against other multiplies being added together. 827 for (unsigned OtherMulIdx = Idx+1; 828 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 829 ++OtherMulIdx) { 830 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 831 // If MulOp occurs in OtherMul, we can fold the two multiplies 832 // together. 833 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 834 OMulOp != e; ++OMulOp) 835 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 836 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 837 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 838 if (Mul->getNumOperands() != 2) { 839 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 840 MulOps.erase(MulOps.begin()+MulOp); 841 InnerMul1 = getMulExpr(MulOps); 842 } 843 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 844 if (OtherMul->getNumOperands() != 2) { 845 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 846 OtherMul->op_end()); 847 MulOps.erase(MulOps.begin()+OMulOp); 848 InnerMul2 = getMulExpr(MulOps); 849 } 850 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 851 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 852 if (Ops.size() == 2) return OuterMul; 853 Ops.erase(Ops.begin()+Idx); 854 Ops.erase(Ops.begin()+OtherMulIdx-1); 855 Ops.push_back(OuterMul); 856 return getAddExpr(Ops); 857 } 858 } 859 } 860 } 861 862 // If there are any add recurrences in the operands list, see if any other 863 // added values are loop invariant. If so, we can fold them into the 864 // recurrence. 865 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 866 ++Idx; 867 868 // Scan over all recurrences, trying to fold loop invariants into them. 869 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 870 // Scan all of the other operands to this add and add them to the vector if 871 // they are loop invariant w.r.t. the recurrence. 872 std::vector<SCEVHandle> LIOps; 873 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 874 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 875 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 876 LIOps.push_back(Ops[i]); 877 Ops.erase(Ops.begin()+i); 878 --i; --e; 879 } 880 881 // If we found some loop invariants, fold them into the recurrence. 882 if (!LIOps.empty()) { 883 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 884 LIOps.push_back(AddRec->getStart()); 885 886 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 887 AddRecOps[0] = getAddExpr(LIOps); 888 889 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 890 // If all of the other operands were loop invariant, we are done. 891 if (Ops.size() == 1) return NewRec; 892 893 // Otherwise, add the folded AddRec by the non-liv parts. 894 for (unsigned i = 0;; ++i) 895 if (Ops[i] == AddRec) { 896 Ops[i] = NewRec; 897 break; 898 } 899 return getAddExpr(Ops); 900 } 901 902 // Okay, if there weren't any loop invariants to be folded, check to see if 903 // there are multiple AddRec's with the same loop induction variable being 904 // added together. If so, we can fold them. 905 for (unsigned OtherIdx = Idx+1; 906 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 907 if (OtherIdx != Idx) { 908 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 909 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 910 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 911 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 912 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 913 if (i >= NewOps.size()) { 914 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 915 OtherAddRec->op_end()); 916 break; 917 } 918 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 919 } 920 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 921 922 if (Ops.size() == 2) return NewAddRec; 923 924 Ops.erase(Ops.begin()+Idx); 925 Ops.erase(Ops.begin()+OtherIdx-1); 926 Ops.push_back(NewAddRec); 927 return getAddExpr(Ops); 928 } 929 } 930 931 // Otherwise couldn't fold anything into this recurrence. Move onto the 932 // next one. 933 } 934 935 // Okay, it looks like we really DO need an add expr. Check to see if we 936 // already have one, otherwise create a new one. 937 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 938 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 939 SCEVOps)]; 940 if (Result == 0) Result = new SCEVAddExpr(Ops); 941 return Result; 942 } 943 944 945 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 946 assert(!Ops.empty() && "Cannot get empty mul!"); 947 948 // Sort by complexity, this groups all similar expression types together. 949 GroupByComplexity(Ops); 950 951 // If there are any constants, fold them together. 952 unsigned Idx = 0; 953 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 954 955 // C1*(C2+V) -> C1*C2 + C1*V 956 if (Ops.size() == 2) 957 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 958 if (Add->getNumOperands() == 2 && 959 isa<SCEVConstant>(Add->getOperand(0))) 960 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 961 getMulExpr(LHSC, Add->getOperand(1))); 962 963 964 ++Idx; 965 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 966 // We found two constants, fold them together! 967 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 968 RHSC->getValue()->getValue()); 969 Ops[0] = getConstant(Fold); 970 Ops.erase(Ops.begin()+1); // Erase the folded element 971 if (Ops.size() == 1) return Ops[0]; 972 LHSC = cast<SCEVConstant>(Ops[0]); 973 } 974 975 // If we are left with a constant one being multiplied, strip it off. 976 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 977 Ops.erase(Ops.begin()); 978 --Idx; 979 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 980 // If we have a multiply of zero, it will always be zero. 981 return Ops[0]; 982 } 983 } 984 985 // Skip over the add expression until we get to a multiply. 986 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 987 ++Idx; 988 989 if (Ops.size() == 1) 990 return Ops[0]; 991 992 // If there are mul operands inline them all into this expression. 993 if (Idx < Ops.size()) { 994 bool DeletedMul = false; 995 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 996 // If we have an mul, expand the mul operands onto the end of the operands 997 // list. 998 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 999 Ops.erase(Ops.begin()+Idx); 1000 DeletedMul = true; 1001 } 1002 1003 // If we deleted at least one mul, we added operands to the end of the list, 1004 // and they are not necessarily sorted. Recurse to resort and resimplify 1005 // any operands we just aquired. 1006 if (DeletedMul) 1007 return getMulExpr(Ops); 1008 } 1009 1010 // If there are any add recurrences in the operands list, see if any other 1011 // added values are loop invariant. If so, we can fold them into the 1012 // recurrence. 1013 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1014 ++Idx; 1015 1016 // Scan over all recurrences, trying to fold loop invariants into them. 1017 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1018 // Scan all of the other operands to this mul and add them to the vector if 1019 // they are loop invariant w.r.t. the recurrence. 1020 std::vector<SCEVHandle> LIOps; 1021 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1022 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1023 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1024 LIOps.push_back(Ops[i]); 1025 Ops.erase(Ops.begin()+i); 1026 --i; --e; 1027 } 1028 1029 // If we found some loop invariants, fold them into the recurrence. 1030 if (!LIOps.empty()) { 1031 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1032 std::vector<SCEVHandle> NewOps; 1033 NewOps.reserve(AddRec->getNumOperands()); 1034 if (LIOps.size() == 1) { 1035 SCEV *Scale = LIOps[0]; 1036 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1037 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1038 } else { 1039 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1040 std::vector<SCEVHandle> MulOps(LIOps); 1041 MulOps.push_back(AddRec->getOperand(i)); 1042 NewOps.push_back(getMulExpr(MulOps)); 1043 } 1044 } 1045 1046 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1047 1048 // If all of the other operands were loop invariant, we are done. 1049 if (Ops.size() == 1) return NewRec; 1050 1051 // Otherwise, multiply the folded AddRec by the non-liv parts. 1052 for (unsigned i = 0;; ++i) 1053 if (Ops[i] == AddRec) { 1054 Ops[i] = NewRec; 1055 break; 1056 } 1057 return getMulExpr(Ops); 1058 } 1059 1060 // Okay, if there weren't any loop invariants to be folded, check to see if 1061 // there are multiple AddRec's with the same loop induction variable being 1062 // multiplied together. If so, we can fold them. 1063 for (unsigned OtherIdx = Idx+1; 1064 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1065 if (OtherIdx != Idx) { 1066 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1067 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1068 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1069 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1070 SCEVHandle NewStart = getMulExpr(F->getStart(), 1071 G->getStart()); 1072 SCEVHandle B = F->getStepRecurrence(*this); 1073 SCEVHandle D = G->getStepRecurrence(*this); 1074 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1075 getMulExpr(G, B), 1076 getMulExpr(B, D)); 1077 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1078 F->getLoop()); 1079 if (Ops.size() == 2) return NewAddRec; 1080 1081 Ops.erase(Ops.begin()+Idx); 1082 Ops.erase(Ops.begin()+OtherIdx-1); 1083 Ops.push_back(NewAddRec); 1084 return getMulExpr(Ops); 1085 } 1086 } 1087 1088 // Otherwise couldn't fold anything into this recurrence. Move onto the 1089 // next one. 1090 } 1091 1092 // Okay, it looks like we really DO need an mul expr. Check to see if we 1093 // already have one, otherwise create a new one. 1094 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1095 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1096 SCEVOps)]; 1097 if (Result == 0) 1098 Result = new SCEVMulExpr(Ops); 1099 return Result; 1100 } 1101 1102 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1103 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1104 if (RHSC->getValue()->equalsInt(1)) 1105 return LHS; // X udiv 1 --> x 1106 1107 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1108 Constant *LHSCV = LHSC->getValue(); 1109 Constant *RHSCV = RHSC->getValue(); 1110 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1111 } 1112 } 1113 1114 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1115 1116 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1117 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1118 return Result; 1119 } 1120 1121 1122 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1123 /// specified loop. Simplify the expression as much as possible. 1124 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1125 const SCEVHandle &Step, const Loop *L) { 1126 std::vector<SCEVHandle> Operands; 1127 Operands.push_back(Start); 1128 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1129 if (StepChrec->getLoop() == L) { 1130 Operands.insert(Operands.end(), StepChrec->op_begin(), 1131 StepChrec->op_end()); 1132 return getAddRecExpr(Operands, L); 1133 } 1134 1135 Operands.push_back(Step); 1136 return getAddRecExpr(Operands, L); 1137 } 1138 1139 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1140 /// specified loop. Simplify the expression as much as possible. 1141 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1142 const Loop *L) { 1143 if (Operands.size() == 1) return Operands[0]; 1144 1145 if (Operands.back()->isZero()) { 1146 Operands.pop_back(); 1147 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1148 } 1149 1150 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1151 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1152 const Loop* NestedLoop = NestedAR->getLoop(); 1153 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1154 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1155 NestedAR->op_end()); 1156 SCEVHandle NestedARHandle(NestedAR); 1157 Operands[0] = NestedAR->getStart(); 1158 NestedOperands[0] = getAddRecExpr(Operands, L); 1159 return getAddRecExpr(NestedOperands, NestedLoop); 1160 } 1161 } 1162 1163 SCEVAddRecExpr *&Result = 1164 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1165 Operands.end()))]; 1166 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1167 return Result; 1168 } 1169 1170 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1171 const SCEVHandle &RHS) { 1172 std::vector<SCEVHandle> Ops; 1173 Ops.push_back(LHS); 1174 Ops.push_back(RHS); 1175 return getSMaxExpr(Ops); 1176 } 1177 1178 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1179 assert(!Ops.empty() && "Cannot get empty smax!"); 1180 if (Ops.size() == 1) return Ops[0]; 1181 1182 // Sort by complexity, this groups all similar expression types together. 1183 GroupByComplexity(Ops); 1184 1185 // If there are any constants, fold them together. 1186 unsigned Idx = 0; 1187 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1188 ++Idx; 1189 assert(Idx < Ops.size()); 1190 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1191 // We found two constants, fold them together! 1192 ConstantInt *Fold = ConstantInt::get( 1193 APIntOps::smax(LHSC->getValue()->getValue(), 1194 RHSC->getValue()->getValue())); 1195 Ops[0] = getConstant(Fold); 1196 Ops.erase(Ops.begin()+1); // Erase the folded element 1197 if (Ops.size() == 1) return Ops[0]; 1198 LHSC = cast<SCEVConstant>(Ops[0]); 1199 } 1200 1201 // If we are left with a constant -inf, strip it off. 1202 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1203 Ops.erase(Ops.begin()); 1204 --Idx; 1205 } 1206 } 1207 1208 if (Ops.size() == 1) return Ops[0]; 1209 1210 // Find the first SMax 1211 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1212 ++Idx; 1213 1214 // Check to see if one of the operands is an SMax. If so, expand its operands 1215 // onto our operand list, and recurse to simplify. 1216 if (Idx < Ops.size()) { 1217 bool DeletedSMax = false; 1218 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1219 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1220 Ops.erase(Ops.begin()+Idx); 1221 DeletedSMax = true; 1222 } 1223 1224 if (DeletedSMax) 1225 return getSMaxExpr(Ops); 1226 } 1227 1228 // Okay, check to see if the same value occurs in the operand list twice. If 1229 // so, delete one. Since we sorted the list, these values are required to 1230 // be adjacent. 1231 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1232 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1233 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1234 --i; --e; 1235 } 1236 1237 if (Ops.size() == 1) return Ops[0]; 1238 1239 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1240 1241 // Okay, it looks like we really DO need an smax expr. Check to see if we 1242 // already have one, otherwise create a new one. 1243 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1244 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1245 SCEVOps)]; 1246 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1247 return Result; 1248 } 1249 1250 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1251 const SCEVHandle &RHS) { 1252 std::vector<SCEVHandle> Ops; 1253 Ops.push_back(LHS); 1254 Ops.push_back(RHS); 1255 return getUMaxExpr(Ops); 1256 } 1257 1258 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1259 assert(!Ops.empty() && "Cannot get empty umax!"); 1260 if (Ops.size() == 1) return Ops[0]; 1261 1262 // Sort by complexity, this groups all similar expression types together. 1263 GroupByComplexity(Ops); 1264 1265 // If there are any constants, fold them together. 1266 unsigned Idx = 0; 1267 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1268 ++Idx; 1269 assert(Idx < Ops.size()); 1270 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1271 // We found two constants, fold them together! 1272 ConstantInt *Fold = ConstantInt::get( 1273 APIntOps::umax(LHSC->getValue()->getValue(), 1274 RHSC->getValue()->getValue())); 1275 Ops[0] = getConstant(Fold); 1276 Ops.erase(Ops.begin()+1); // Erase the folded element 1277 if (Ops.size() == 1) return Ops[0]; 1278 LHSC = cast<SCEVConstant>(Ops[0]); 1279 } 1280 1281 // If we are left with a constant zero, strip it off. 1282 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1283 Ops.erase(Ops.begin()); 1284 --Idx; 1285 } 1286 } 1287 1288 if (Ops.size() == 1) return Ops[0]; 1289 1290 // Find the first UMax 1291 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1292 ++Idx; 1293 1294 // Check to see if one of the operands is a UMax. If so, expand its operands 1295 // onto our operand list, and recurse to simplify. 1296 if (Idx < Ops.size()) { 1297 bool DeletedUMax = false; 1298 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1299 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1300 Ops.erase(Ops.begin()+Idx); 1301 DeletedUMax = true; 1302 } 1303 1304 if (DeletedUMax) 1305 return getUMaxExpr(Ops); 1306 } 1307 1308 // Okay, check to see if the same value occurs in the operand list twice. If 1309 // so, delete one. Since we sorted the list, these values are required to 1310 // be adjacent. 1311 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1312 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1313 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1314 --i; --e; 1315 } 1316 1317 if (Ops.size() == 1) return Ops[0]; 1318 1319 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1320 1321 // Okay, it looks like we really DO need a umax expr. Check to see if we 1322 // already have one, otherwise create a new one. 1323 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1324 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1325 SCEVOps)]; 1326 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1327 return Result; 1328 } 1329 1330 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1331 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1332 return getConstant(CI); 1333 if (isa<ConstantPointerNull>(V)) 1334 return getIntegerSCEV(0, V->getType()); 1335 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1336 if (Result == 0) Result = new SCEVUnknown(V); 1337 return Result; 1338 } 1339 1340 1341 //===----------------------------------------------------------------------===// 1342 // ScalarEvolutionsImpl Definition and Implementation 1343 //===----------------------------------------------------------------------===// 1344 // 1345 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1346 /// evolution code. 1347 /// 1348 namespace { 1349 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1350 /// SE - A reference to the public ScalarEvolution object. 1351 ScalarEvolution &SE; 1352 1353 /// F - The function we are analyzing. 1354 /// 1355 Function &F; 1356 1357 /// LI - The loop information for the function we are currently analyzing. 1358 /// 1359 LoopInfo &LI; 1360 1361 /// TD - The target data information for the target we are targetting. 1362 /// 1363 TargetData &TD; 1364 1365 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1366 /// things. 1367 SCEVHandle UnknownValue; 1368 1369 /// Scalars - This is a cache of the scalars we have analyzed so far. 1370 /// 1371 std::map<Value*, SCEVHandle> Scalars; 1372 1373 /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for 1374 /// this function as they are computed. 1375 std::map<const Loop*, SCEVHandle> BackedgeTakenCounts; 1376 1377 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1378 /// the PHI instructions that we attempt to compute constant evolutions for. 1379 /// This allows us to avoid potentially expensive recomputation of these 1380 /// properties. An instruction maps to null if we are unable to compute its 1381 /// exit value. 1382 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1383 1384 public: 1385 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li, 1386 TargetData &td) 1387 : SE(se), F(f), LI(li), TD(td), UnknownValue(new SCEVCouldNotCompute()) {} 1388 1389 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1390 /// specified signed integer value and return a SCEV for the constant. 1391 SCEVHandle getIntegerSCEV(int Val, const Type *Ty); 1392 1393 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1394 /// 1395 SCEVHandle getNegativeSCEV(const SCEVHandle &V); 1396 1397 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1398 /// 1399 SCEVHandle getNotSCEV(const SCEVHandle &V); 1400 1401 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1402 /// 1403 SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS); 1404 1405 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 1406 /// of the input value to the specified type. If the type must be extended, 1407 /// it is zero extended. 1408 SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty); 1409 1410 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion 1411 /// of the input value to the specified type. If the type must be extended, 1412 /// it is sign extended. 1413 SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty); 1414 1415 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1416 /// expression and create a new one. 1417 SCEVHandle getSCEV(Value *V); 1418 1419 /// hasSCEV - Return true if the SCEV for this value has already been 1420 /// computed. 1421 bool hasSCEV(Value *V) const { 1422 return Scalars.count(V); 1423 } 1424 1425 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1426 /// the specified value. 1427 void setSCEV(Value *V, const SCEVHandle &H) { 1428 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1429 assert(isNew && "This entry already existed!"); 1430 isNew = false; 1431 } 1432 1433 1434 /// getSCEVAtScope - Compute the value of the specified expression within 1435 /// the indicated loop (which may be null to indicate in no loop). If the 1436 /// expression cannot be evaluated, return UnknownValue itself. 1437 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1438 1439 1440 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 1441 /// a conditional between LHS and RHS. 1442 bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 1443 SCEV *LHS, SCEV *RHS); 1444 1445 /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop 1446 /// has an analyzable loop-invariant backedge-taken count. 1447 bool hasLoopInvariantBackedgeTakenCount(const Loop *L); 1448 1449 /// forgetLoopBackedgeTakenCount - This method should be called by the 1450 /// client when it has changed a loop in a way that may effect 1451 /// ScalarEvolution's ability to compute a trip count, or if the loop 1452 /// is deleted. 1453 void forgetLoopBackedgeTakenCount(const Loop *L); 1454 1455 /// getBackedgeTakenCount - If the specified loop has a predictable 1456 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 1457 /// object. The backedge-taken count is the number of times the loop header 1458 /// will be branched to from within the loop. This is one less than the 1459 /// trip count of the loop, since it doesn't count the first iteration, 1460 /// when the header is branched to from outside the loop. 1461 /// 1462 /// Note that it is not valid to call this method on a loop without a 1463 /// loop-invariant backedge-taken count (see 1464 /// hasLoopInvariantBackedgeTakenCount). 1465 /// 1466 SCEVHandle getBackedgeTakenCount(const Loop *L); 1467 1468 /// deleteValueFromRecords - This method should be called by the 1469 /// client before it removes a value from the program, to make sure 1470 /// that no dangling references are left around. 1471 void deleteValueFromRecords(Value *V); 1472 1473 /// getTargetData - Return the TargetData. 1474 const TargetData &getTargetData() const; 1475 1476 private: 1477 /// createSCEV - We know that there is no SCEV for the specified value. 1478 /// Analyze the expression. 1479 SCEVHandle createSCEV(Value *V); 1480 1481 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1482 /// SCEVs. 1483 SCEVHandle createNodeForPHI(PHINode *PN); 1484 1485 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1486 /// for the specified instruction and replaces any references to the 1487 /// symbolic value SymName with the specified value. This is used during 1488 /// PHI resolution. 1489 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1490 const SCEVHandle &SymName, 1491 const SCEVHandle &NewVal); 1492 1493 /// ComputeBackedgeTakenCount - Compute the number of times the specified 1494 /// loop will iterate. 1495 SCEVHandle ComputeBackedgeTakenCount(const Loop *L); 1496 1497 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition 1498 /// of 'icmp op load X, cst', try to see if we can compute the trip count. 1499 SCEVHandle 1500 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, 1501 Constant *RHS, 1502 const Loop *L, 1503 ICmpInst::Predicate p); 1504 1505 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute 1506 /// a constant number of times (the condition evolves only from constants), 1507 /// try to evaluate a few iterations of the loop until we get the exit 1508 /// condition gets a value of ExitWhen (true or false). If we cannot 1509 /// evaluate the trip count of the loop, return UnknownValue. 1510 SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, 1511 bool ExitWhen); 1512 1513 /// HowFarToZero - Return the number of times a backedge comparing the 1514 /// specified value to zero will execute. If not computable, return 1515 /// UnknownValue. 1516 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1517 1518 /// HowFarToNonZero - Return the number of times a backedge checking the 1519 /// specified value for nonzero will execute. If not computable, return 1520 /// UnknownValue. 1521 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1522 1523 /// HowManyLessThans - Return the number of times a backedge containing the 1524 /// specified less-than comparison will execute. If not computable, return 1525 /// UnknownValue. isSigned specifies whether the less-than is signed. 1526 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1527 bool isSigned); 1528 1529 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 1530 /// (which may not be an immediate predecessor) which has exactly one 1531 /// successor from which BB is reachable, or null if no such block is 1532 /// found. 1533 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); 1534 1535 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1536 /// in the header of its containing loop, we know the loop executes a 1537 /// constant number of times, and the PHI node is just a recurrence 1538 /// involving constants, fold it. 1539 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, 1540 const Loop *L); 1541 }; 1542 } 1543 1544 //===----------------------------------------------------------------------===// 1545 // Basic SCEV Analysis and PHI Idiom Recognition Code 1546 // 1547 1548 /// deleteValueFromRecords - This method should be called by the 1549 /// client before it removes an instruction from the program, to make sure 1550 /// that no dangling references are left around. 1551 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1552 SmallVector<Value *, 16> Worklist; 1553 1554 if (Scalars.erase(V)) { 1555 if (PHINode *PN = dyn_cast<PHINode>(V)) 1556 ConstantEvolutionLoopExitValue.erase(PN); 1557 Worklist.push_back(V); 1558 } 1559 1560 while (!Worklist.empty()) { 1561 Value *VV = Worklist.back(); 1562 Worklist.pop_back(); 1563 1564 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1565 UI != UE; ++UI) { 1566 Instruction *Inst = cast<Instruction>(*UI); 1567 if (Scalars.erase(Inst)) { 1568 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1569 ConstantEvolutionLoopExitValue.erase(PN); 1570 Worklist.push_back(Inst); 1571 } 1572 } 1573 } 1574 } 1575 1576 const TargetData &ScalarEvolutionsImpl::getTargetData() const { 1577 return TD; 1578 } 1579 1580 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1581 /// expression and create a new one. 1582 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1583 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1584 1585 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1586 if (I != Scalars.end()) return I->second; 1587 SCEVHandle S = createSCEV(V); 1588 Scalars.insert(std::make_pair(V, S)); 1589 return S; 1590 } 1591 1592 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1593 /// specified signed integer value and return a SCEV for the constant. 1594 SCEVHandle ScalarEvolutionsImpl::getIntegerSCEV(int Val, const Type *Ty) { 1595 if (isa<PointerType>(Ty)) 1596 Ty = TD.getIntPtrType(); 1597 Constant *C; 1598 if (Val == 0) 1599 C = Constant::getNullValue(Ty); 1600 else if (Ty->isFloatingPoint()) 1601 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1602 APFloat::IEEEdouble, Val)); 1603 else 1604 C = ConstantInt::get(Ty, Val); 1605 return SE.getUnknown(C); 1606 } 1607 1608 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1609 /// 1610 SCEVHandle ScalarEvolutionsImpl::getNegativeSCEV(const SCEVHandle &V) { 1611 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1612 return SE.getUnknown(ConstantExpr::getNeg(VC->getValue())); 1613 1614 const Type *Ty = V->getType(); 1615 if (isa<PointerType>(Ty)) 1616 Ty = TD.getIntPtrType(); 1617 return SE.getMulExpr(V, SE.getConstant(ConstantInt::getAllOnesValue(Ty))); 1618 } 1619 1620 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1621 SCEVHandle ScalarEvolutionsImpl::getNotSCEV(const SCEVHandle &V) { 1622 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1623 return SE.getUnknown(ConstantExpr::getNot(VC->getValue())); 1624 1625 const Type *Ty = V->getType(); 1626 if (isa<PointerType>(Ty)) 1627 Ty = TD.getIntPtrType(); 1628 SCEVHandle AllOnes = SE.getConstant(ConstantInt::getAllOnesValue(Ty)); 1629 return getMinusSCEV(AllOnes, V); 1630 } 1631 1632 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1633 /// 1634 SCEVHandle ScalarEvolutionsImpl::getMinusSCEV(const SCEVHandle &LHS, 1635 const SCEVHandle &RHS) { 1636 // X - Y --> X + -Y 1637 return SE.getAddExpr(LHS, SE.getNegativeSCEV(RHS)); 1638 } 1639 1640 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1641 /// input value to the specified type. If the type must be extended, it is zero 1642 /// extended. 1643 SCEVHandle 1644 ScalarEvolutionsImpl::getTruncateOrZeroExtend(const SCEVHandle &V, 1645 const Type *Ty) { 1646 const Type *SrcTy = V->getType(); 1647 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 1648 (Ty->isInteger() || isa<PointerType>(Ty)) && 1649 "Cannot truncate or zero extend with non-integer arguments!"); 1650 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty)) 1651 return V; // No conversion 1652 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty)) 1653 return SE.getTruncateExpr(V, Ty); 1654 return SE.getZeroExtendExpr(V, Ty); 1655 } 1656 1657 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 1658 /// input value to the specified type. If the type must be extended, it is sign 1659 /// extended. 1660 SCEVHandle 1661 ScalarEvolutionsImpl::getTruncateOrSignExtend(const SCEVHandle &V, 1662 const Type *Ty) { 1663 const Type *SrcTy = V->getType(); 1664 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 1665 (Ty->isInteger() || isa<PointerType>(Ty)) && 1666 "Cannot truncate or zero extend with non-integer arguments!"); 1667 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty)) 1668 return V; // No conversion 1669 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty)) 1670 return SE.getTruncateExpr(V, Ty); 1671 return SE.getSignExtendExpr(V, Ty); 1672 } 1673 1674 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1675 /// the specified instruction and replaces any references to the symbolic value 1676 /// SymName with the specified value. This is used during PHI resolution. 1677 void ScalarEvolutionsImpl:: 1678 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1679 const SCEVHandle &NewVal) { 1680 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1681 if (SI == Scalars.end()) return; 1682 1683 SCEVHandle NV = 1684 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1685 if (NV == SI->second) return; // No change. 1686 1687 SI->second = NV; // Update the scalars map! 1688 1689 // Any instruction values that use this instruction might also need to be 1690 // updated! 1691 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1692 UI != E; ++UI) 1693 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1694 } 1695 1696 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1697 /// a loop header, making it a potential recurrence, or it doesn't. 1698 /// 1699 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1700 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1701 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1702 if (L->getHeader() == PN->getParent()) { 1703 // If it lives in the loop header, it has two incoming values, one 1704 // from outside the loop, and one from inside. 1705 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1706 unsigned BackEdge = IncomingEdge^1; 1707 1708 // While we are analyzing this PHI node, handle its value symbolically. 1709 SCEVHandle SymbolicName = SE.getUnknown(PN); 1710 assert(Scalars.find(PN) == Scalars.end() && 1711 "PHI node already processed?"); 1712 Scalars.insert(std::make_pair(PN, SymbolicName)); 1713 1714 // Using this symbolic name for the PHI, analyze the value coming around 1715 // the back-edge. 1716 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1717 1718 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1719 // has a special value for the first iteration of the loop. 1720 1721 // If the value coming around the backedge is an add with the symbolic 1722 // value we just inserted, then we found a simple induction variable! 1723 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1724 // If there is a single occurrence of the symbolic value, replace it 1725 // with a recurrence. 1726 unsigned FoundIndex = Add->getNumOperands(); 1727 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1728 if (Add->getOperand(i) == SymbolicName) 1729 if (FoundIndex == e) { 1730 FoundIndex = i; 1731 break; 1732 } 1733 1734 if (FoundIndex != Add->getNumOperands()) { 1735 // Create an add with everything but the specified operand. 1736 std::vector<SCEVHandle> Ops; 1737 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1738 if (i != FoundIndex) 1739 Ops.push_back(Add->getOperand(i)); 1740 SCEVHandle Accum = SE.getAddExpr(Ops); 1741 1742 // This is not a valid addrec if the step amount is varying each 1743 // loop iteration, but is not itself an addrec in this loop. 1744 if (Accum->isLoopInvariant(L) || 1745 (isa<SCEVAddRecExpr>(Accum) && 1746 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1747 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1748 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1749 1750 // Okay, for the entire analysis of this edge we assumed the PHI 1751 // to be symbolic. We now need to go back and update all of the 1752 // entries for the scalars that use the PHI (except for the PHI 1753 // itself) to use the new analyzed value instead of the "symbolic" 1754 // value. 1755 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1756 return PHISCEV; 1757 } 1758 } 1759 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1760 // Otherwise, this could be a loop like this: 1761 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1762 // In this case, j = {1,+,1} and BEValue is j. 1763 // Because the other in-value of i (0) fits the evolution of BEValue 1764 // i really is an addrec evolution. 1765 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1766 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1767 1768 // If StartVal = j.start - j.stride, we can use StartVal as the 1769 // initial step of the addrec evolution. 1770 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1771 AddRec->getOperand(1))) { 1772 SCEVHandle PHISCEV = 1773 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1774 1775 // Okay, for the entire analysis of this edge we assumed the PHI 1776 // to be symbolic. We now need to go back and update all of the 1777 // entries for the scalars that use the PHI (except for the PHI 1778 // itself) to use the new analyzed value instead of the "symbolic" 1779 // value. 1780 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1781 return PHISCEV; 1782 } 1783 } 1784 } 1785 1786 return SymbolicName; 1787 } 1788 1789 // If it's not a loop phi, we can't handle it yet. 1790 return SE.getUnknown(PN); 1791 } 1792 1793 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1794 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1795 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1796 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1797 static uint32_t GetMinTrailingZeros(SCEVHandle S, const TargetData &TD) { 1798 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1799 return C->getValue()->getValue().countTrailingZeros(); 1800 1801 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1802 return std::min(GetMinTrailingZeros(T->getOperand(), TD), 1803 (uint32_t)TD.getTypeSizeInBits(T->getType())); 1804 1805 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1806 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD); 1807 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ? 1808 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1809 } 1810 1811 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1812 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD); 1813 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ? 1814 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1815 } 1816 1817 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1818 // The result is the min of all operands results. 1819 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD); 1820 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1821 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD)); 1822 return MinOpRes; 1823 } 1824 1825 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1826 // The result is the sum of all operands results. 1827 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), TD); 1828 uint32_t BitWidth = TD.getTypeSizeInBits(M->getType()); 1829 for (unsigned i = 1, e = M->getNumOperands(); 1830 SumOpRes != BitWidth && i != e; ++i) 1831 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), TD), 1832 BitWidth); 1833 return SumOpRes; 1834 } 1835 1836 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1837 // The result is the min of all operands results. 1838 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD); 1839 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1840 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD)); 1841 return MinOpRes; 1842 } 1843 1844 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1845 // The result is the min of all operands results. 1846 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD); 1847 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1848 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD)); 1849 return MinOpRes; 1850 } 1851 1852 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1853 // The result is the min of all operands results. 1854 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD); 1855 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1856 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD)); 1857 return MinOpRes; 1858 } 1859 1860 // SCEVUDivExpr, SCEVUnknown 1861 return 0; 1862 } 1863 1864 /// createSCEV - We know that there is no SCEV for the specified value. 1865 /// Analyze the expression. 1866 /// 1867 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1868 if (!isa<IntegerType>(V->getType()) && 1869 !isa<PointerType>(V->getType())) 1870 return SE.getUnknown(V); 1871 1872 unsigned Opcode = Instruction::UserOp1; 1873 if (Instruction *I = dyn_cast<Instruction>(V)) 1874 Opcode = I->getOpcode(); 1875 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1876 Opcode = CE->getOpcode(); 1877 else 1878 return SE.getUnknown(V); 1879 1880 User *U = cast<User>(V); 1881 switch (Opcode) { 1882 case Instruction::Add: 1883 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1884 getSCEV(U->getOperand(1))); 1885 case Instruction::Mul: 1886 return SE.getMulExpr(getSCEV(U->getOperand(0)), 1887 getSCEV(U->getOperand(1))); 1888 case Instruction::UDiv: 1889 return SE.getUDivExpr(getSCEV(U->getOperand(0)), 1890 getSCEV(U->getOperand(1))); 1891 case Instruction::Sub: 1892 return SE.getMinusSCEV(getSCEV(U->getOperand(0)), 1893 getSCEV(U->getOperand(1))); 1894 case Instruction::Or: 1895 // If the RHS of the Or is a constant, we may have something like: 1896 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1897 // optimizations will transparently handle this case. 1898 // 1899 // In order for this transformation to be safe, the LHS must be of the 1900 // form X*(2^n) and the Or constant must be less than 2^n. 1901 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1902 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1903 const APInt &CIVal = CI->getValue(); 1904 if (GetMinTrailingZeros(LHS, TD) >= 1905 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1906 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1))); 1907 } 1908 break; 1909 case Instruction::Xor: 1910 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1911 // If the RHS of the xor is a signbit, then this is just an add. 1912 // Instcombine turns add of signbit into xor as a strength reduction step. 1913 if (CI->getValue().isSignBit()) 1914 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1915 getSCEV(U->getOperand(1))); 1916 1917 // If the RHS of xor is -1, then this is a not operation. 1918 else if (CI->isAllOnesValue()) 1919 return SE.getNotSCEV(getSCEV(U->getOperand(0))); 1920 } 1921 break; 1922 1923 case Instruction::Shl: 1924 // Turn shift left of a constant amount into a multiply. 1925 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1926 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1927 Constant *X = ConstantInt::get( 1928 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1929 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1930 } 1931 break; 1932 1933 case Instruction::LShr: 1934 // Turn logical shift right of a constant into a unsigned divide. 1935 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1936 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1937 Constant *X = ConstantInt::get( 1938 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1939 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1940 } 1941 break; 1942 1943 case Instruction::Trunc: 1944 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1945 1946 case Instruction::ZExt: 1947 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1948 1949 case Instruction::SExt: 1950 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1951 1952 case Instruction::BitCast: 1953 // BitCasts are no-op casts so we just eliminate the cast. 1954 if ((U->getType()->isInteger() || 1955 isa<PointerType>(U->getType())) && 1956 (U->getOperand(0)->getType()->isInteger() || 1957 isa<PointerType>(U->getOperand(0)->getType()))) 1958 return getSCEV(U->getOperand(0)); 1959 break; 1960 1961 case Instruction::IntToPtr: 1962 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1963 TD.getIntPtrType()); 1964 1965 case Instruction::PtrToInt: 1966 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1967 U->getType()); 1968 1969 case Instruction::GetElementPtr: { 1970 const Type *IntPtrTy = TD.getIntPtrType(); 1971 Value *Base = U->getOperand(0); 1972 SCEVHandle TotalOffset = SE.getIntegerSCEV(0, IntPtrTy); 1973 gep_type_iterator GTI = gep_type_begin(U); 1974 for (GetElementPtrInst::op_iterator I = next(U->op_begin()), 1975 E = U->op_end(); 1976 I != E; ++I) { 1977 Value *Index = *I; 1978 // Compute the (potentially symbolic) offset in bytes for this index. 1979 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 1980 // For a struct, add the member offset. 1981 const StructLayout &SL = *TD.getStructLayout(STy); 1982 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 1983 uint64_t Offset = SL.getElementOffset(FieldNo); 1984 TotalOffset = SE.getAddExpr(TotalOffset, 1985 SE.getIntegerSCEV(Offset, IntPtrTy)); 1986 } else { 1987 // For an array, add the element offset, explicitly scaled. 1988 SCEVHandle LocalOffset = getSCEV(Index); 1989 if (!isa<PointerType>(LocalOffset->getType())) 1990 // Getelementptr indicies are signed. 1991 LocalOffset = getTruncateOrSignExtend(LocalOffset, 1992 IntPtrTy); 1993 LocalOffset = 1994 SE.getMulExpr(LocalOffset, 1995 SE.getIntegerSCEV(TD.getTypePaddedSize(*GTI), 1996 IntPtrTy)); 1997 TotalOffset = SE.getAddExpr(TotalOffset, LocalOffset); 1998 } 1999 } 2000 return SE.getAddExpr(getSCEV(Base), TotalOffset); 2001 } 2002 2003 case Instruction::PHI: 2004 return createNodeForPHI(cast<PHINode>(U)); 2005 2006 case Instruction::Select: 2007 // This could be a smax or umax that was lowered earlier. 2008 // Try to recover it. 2009 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2010 Value *LHS = ICI->getOperand(0); 2011 Value *RHS = ICI->getOperand(1); 2012 switch (ICI->getPredicate()) { 2013 case ICmpInst::ICMP_SLT: 2014 case ICmpInst::ICMP_SLE: 2015 std::swap(LHS, RHS); 2016 // fall through 2017 case ICmpInst::ICMP_SGT: 2018 case ICmpInst::ICMP_SGE: 2019 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2020 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2021 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2022 // ~smax(~x, ~y) == smin(x, y). 2023 return SE.getNotSCEV(SE.getSMaxExpr( 2024 SE.getNotSCEV(getSCEV(LHS)), 2025 SE.getNotSCEV(getSCEV(RHS)))); 2026 break; 2027 case ICmpInst::ICMP_ULT: 2028 case ICmpInst::ICMP_ULE: 2029 std::swap(LHS, RHS); 2030 // fall through 2031 case ICmpInst::ICMP_UGT: 2032 case ICmpInst::ICMP_UGE: 2033 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2034 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2035 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2036 // ~umax(~x, ~y) == umin(x, y) 2037 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)), 2038 SE.getNotSCEV(getSCEV(RHS)))); 2039 break; 2040 default: 2041 break; 2042 } 2043 } 2044 2045 default: // We cannot analyze this expression. 2046 break; 2047 } 2048 2049 return SE.getUnknown(V); 2050 } 2051 2052 2053 2054 //===----------------------------------------------------------------------===// 2055 // Iteration Count Computation Code 2056 // 2057 2058 /// getBackedgeTakenCount - If the specified loop has a predictable 2059 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2060 /// object. The backedge-taken count is the number of times the loop header 2061 /// will be branched to from within the loop. This is one less than the 2062 /// trip count of the loop, since it doesn't count the first iteration, 2063 /// when the header is branched to from outside the loop. 2064 /// 2065 /// Note that it is not valid to call this method on a loop without a 2066 /// loop-invariant backedge-taken count (see 2067 /// hasLoopInvariantBackedgeTakenCount). 2068 /// 2069 SCEVHandle ScalarEvolutionsImpl::getBackedgeTakenCount(const Loop *L) { 2070 std::map<const Loop*, SCEVHandle>::iterator I = BackedgeTakenCounts.find(L); 2071 if (I == BackedgeTakenCounts.end()) { 2072 SCEVHandle ItCount = ComputeBackedgeTakenCount(L); 2073 I = BackedgeTakenCounts.insert(std::make_pair(L, ItCount)).first; 2074 if (ItCount != UnknownValue) { 2075 assert(ItCount->isLoopInvariant(L) && 2076 "Computed trip count isn't loop invariant for loop!"); 2077 ++NumTripCountsComputed; 2078 } else if (isa<PHINode>(L->getHeader()->begin())) { 2079 // Only count loops that have phi nodes as not being computable. 2080 ++NumTripCountsNotComputed; 2081 } 2082 } 2083 return I->second; 2084 } 2085 2086 /// forgetLoopBackedgeTakenCount - This method should be called by the 2087 /// client when it has changed a loop in a way that may effect 2088 /// ScalarEvolution's ability to compute a trip count, or if the loop 2089 /// is deleted. 2090 void ScalarEvolutionsImpl::forgetLoopBackedgeTakenCount(const Loop *L) { 2091 BackedgeTakenCounts.erase(L); 2092 } 2093 2094 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2095 /// of the specified loop will execute. 2096 SCEVHandle ScalarEvolutionsImpl::ComputeBackedgeTakenCount(const Loop *L) { 2097 // If the loop has a non-one exit block count, we can't analyze it. 2098 SmallVector<BasicBlock*, 8> ExitBlocks; 2099 L->getExitBlocks(ExitBlocks); 2100 if (ExitBlocks.size() != 1) return UnknownValue; 2101 2102 // Okay, there is one exit block. Try to find the condition that causes the 2103 // loop to be exited. 2104 BasicBlock *ExitBlock = ExitBlocks[0]; 2105 2106 BasicBlock *ExitingBlock = 0; 2107 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 2108 PI != E; ++PI) 2109 if (L->contains(*PI)) { 2110 if (ExitingBlock == 0) 2111 ExitingBlock = *PI; 2112 else 2113 return UnknownValue; // More than one block exiting! 2114 } 2115 assert(ExitingBlock && "No exits from loop, something is broken!"); 2116 2117 // Okay, we've computed the exiting block. See what condition causes us to 2118 // exit. 2119 // 2120 // FIXME: we should be able to handle switch instructions (with a single exit) 2121 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2122 if (ExitBr == 0) return UnknownValue; 2123 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2124 2125 // At this point, we know we have a conditional branch that determines whether 2126 // the loop is exited. However, we don't know if the branch is executed each 2127 // time through the loop. If not, then the execution count of the branch will 2128 // not be equal to the trip count of the loop. 2129 // 2130 // Currently we check for this by checking to see if the Exit branch goes to 2131 // the loop header. If so, we know it will always execute the same number of 2132 // times as the loop. We also handle the case where the exit block *is* the 2133 // loop header. This is common for un-rotated loops. More extensive analysis 2134 // could be done to handle more cases here. 2135 if (ExitBr->getSuccessor(0) != L->getHeader() && 2136 ExitBr->getSuccessor(1) != L->getHeader() && 2137 ExitBr->getParent() != L->getHeader()) 2138 return UnknownValue; 2139 2140 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2141 2142 // If it's not an integer comparison then compute it the hard way. 2143 // Note that ICmpInst deals with pointer comparisons too so we must check 2144 // the type of the operand. 2145 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2146 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2147 ExitBr->getSuccessor(0) == ExitBlock); 2148 2149 // If the condition was exit on true, convert the condition to exit on false 2150 ICmpInst::Predicate Cond; 2151 if (ExitBr->getSuccessor(1) == ExitBlock) 2152 Cond = ExitCond->getPredicate(); 2153 else 2154 Cond = ExitCond->getInversePredicate(); 2155 2156 // Handle common loops like: for (X = "string"; *X; ++X) 2157 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2158 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2159 SCEVHandle ItCnt = 2160 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2161 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2162 } 2163 2164 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2165 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2166 2167 // Try to evaluate any dependencies out of the loop. 2168 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2169 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2170 Tmp = getSCEVAtScope(RHS, L); 2171 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2172 2173 // At this point, we would like to compute how many iterations of the 2174 // loop the predicate will return true for these inputs. 2175 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2176 // If there is a loop-invariant, force it into the RHS. 2177 std::swap(LHS, RHS); 2178 Cond = ICmpInst::getSwappedPredicate(Cond); 2179 } 2180 2181 // FIXME: think about handling pointer comparisons! i.e.: 2182 // while (P != P+100) ++P; 2183 2184 // If we have a comparison of a chrec against a constant, try to use value 2185 // ranges to answer this query. 2186 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2187 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2188 if (AddRec->getLoop() == L) { 2189 // Form the comparison range using the constant of the correct type so 2190 // that the ConstantRange class knows to do a signed or unsigned 2191 // comparison. 2192 ConstantInt *CompVal = RHSC->getValue(); 2193 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2194 CompVal = dyn_cast<ConstantInt>( 2195 ConstantExpr::getBitCast(CompVal, RealTy)); 2196 if (CompVal) { 2197 // Form the constant range. 2198 ConstantRange CompRange( 2199 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2200 2201 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 2202 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2203 } 2204 } 2205 2206 switch (Cond) { 2207 case ICmpInst::ICMP_NE: { // while (X != Y) 2208 // Convert to: while (X-Y != 0) 2209 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 2210 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2211 break; 2212 } 2213 case ICmpInst::ICMP_EQ: { 2214 // Convert to: while (X-Y == 0) // while (X == Y) 2215 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 2216 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2217 break; 2218 } 2219 case ICmpInst::ICMP_SLT: { 2220 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 2221 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2222 break; 2223 } 2224 case ICmpInst::ICMP_SGT: { 2225 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2226 SE.getNotSCEV(RHS), L, true); 2227 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2228 break; 2229 } 2230 case ICmpInst::ICMP_ULT: { 2231 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 2232 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2233 break; 2234 } 2235 case ICmpInst::ICMP_UGT: { 2236 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2237 SE.getNotSCEV(RHS), L, false); 2238 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2239 break; 2240 } 2241 default: 2242 #if 0 2243 cerr << "ComputeBackedgeTakenCount "; 2244 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2245 cerr << "[unsigned] "; 2246 cerr << *LHS << " " 2247 << Instruction::getOpcodeName(Instruction::ICmp) 2248 << " " << *RHS << "\n"; 2249 #endif 2250 break; 2251 } 2252 return 2253 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2254 ExitBr->getSuccessor(0) == ExitBlock); 2255 } 2256 2257 static ConstantInt * 2258 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2259 ScalarEvolution &SE) { 2260 SCEVHandle InVal = SE.getConstant(C); 2261 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2262 assert(isa<SCEVConstant>(Val) && 2263 "Evaluation of SCEV at constant didn't fold correctly?"); 2264 return cast<SCEVConstant>(Val)->getValue(); 2265 } 2266 2267 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2268 /// and a GEP expression (missing the pointer index) indexing into it, return 2269 /// the addressed element of the initializer or null if the index expression is 2270 /// invalid. 2271 static Constant * 2272 GetAddressedElementFromGlobal(GlobalVariable *GV, 2273 const std::vector<ConstantInt*> &Indices) { 2274 Constant *Init = GV->getInitializer(); 2275 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2276 uint64_t Idx = Indices[i]->getZExtValue(); 2277 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2278 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2279 Init = cast<Constant>(CS->getOperand(Idx)); 2280 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2281 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2282 Init = cast<Constant>(CA->getOperand(Idx)); 2283 } else if (isa<ConstantAggregateZero>(Init)) { 2284 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2285 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2286 Init = Constant::getNullValue(STy->getElementType(Idx)); 2287 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2288 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2289 Init = Constant::getNullValue(ATy->getElementType()); 2290 } else { 2291 assert(0 && "Unknown constant aggregate type!"); 2292 } 2293 return 0; 2294 } else { 2295 return 0; // Unknown initializer type 2296 } 2297 } 2298 return Init; 2299 } 2300 2301 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2302 /// 'icmp op load X, cst', try to see if we can compute the backedge 2303 /// execution count. 2304 SCEVHandle ScalarEvolutionsImpl:: 2305 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2306 const Loop *L, 2307 ICmpInst::Predicate predicate) { 2308 if (LI->isVolatile()) return UnknownValue; 2309 2310 // Check to see if the loaded pointer is a getelementptr of a global. 2311 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2312 if (!GEP) return UnknownValue; 2313 2314 // Make sure that it is really a constant global we are gepping, with an 2315 // initializer, and make sure the first IDX is really 0. 2316 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2317 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2318 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2319 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2320 return UnknownValue; 2321 2322 // Okay, we allow one non-constant index into the GEP instruction. 2323 Value *VarIdx = 0; 2324 std::vector<ConstantInt*> Indexes; 2325 unsigned VarIdxNum = 0; 2326 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2327 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2328 Indexes.push_back(CI); 2329 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2330 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2331 VarIdx = GEP->getOperand(i); 2332 VarIdxNum = i-2; 2333 Indexes.push_back(0); 2334 } 2335 2336 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2337 // Check to see if X is a loop variant variable value now. 2338 SCEVHandle Idx = getSCEV(VarIdx); 2339 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2340 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2341 2342 // We can only recognize very limited forms of loop index expressions, in 2343 // particular, only affine AddRec's like {C1,+,C2}. 2344 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2345 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2346 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2347 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2348 return UnknownValue; 2349 2350 unsigned MaxSteps = MaxBruteForceIterations; 2351 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2352 ConstantInt *ItCst = 2353 ConstantInt::get(IdxExpr->getType(), IterationNum); 2354 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 2355 2356 // Form the GEP offset. 2357 Indexes[VarIdxNum] = Val; 2358 2359 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2360 if (Result == 0) break; // Cannot compute! 2361 2362 // Evaluate the condition for this iteration. 2363 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2364 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2365 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2366 #if 0 2367 cerr << "\n***\n*** Computed loop count " << *ItCst 2368 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2369 << "***\n"; 2370 #endif 2371 ++NumArrayLenItCounts; 2372 return SE.getConstant(ItCst); // Found terminating iteration! 2373 } 2374 } 2375 return UnknownValue; 2376 } 2377 2378 2379 /// CanConstantFold - Return true if we can constant fold an instruction of the 2380 /// specified type, assuming that all operands were constants. 2381 static bool CanConstantFold(const Instruction *I) { 2382 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2383 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2384 return true; 2385 2386 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2387 if (const Function *F = CI->getCalledFunction()) 2388 return canConstantFoldCallTo(F); 2389 return false; 2390 } 2391 2392 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2393 /// in the loop that V is derived from. We allow arbitrary operations along the 2394 /// way, but the operands of an operation must either be constants or a value 2395 /// derived from a constant PHI. If this expression does not fit with these 2396 /// constraints, return null. 2397 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2398 // If this is not an instruction, or if this is an instruction outside of the 2399 // loop, it can't be derived from a loop PHI. 2400 Instruction *I = dyn_cast<Instruction>(V); 2401 if (I == 0 || !L->contains(I->getParent())) return 0; 2402 2403 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2404 if (L->getHeader() == I->getParent()) 2405 return PN; 2406 else 2407 // We don't currently keep track of the control flow needed to evaluate 2408 // PHIs, so we cannot handle PHIs inside of loops. 2409 return 0; 2410 } 2411 2412 // If we won't be able to constant fold this expression even if the operands 2413 // are constants, return early. 2414 if (!CanConstantFold(I)) return 0; 2415 2416 // Otherwise, we can evaluate this instruction if all of its operands are 2417 // constant or derived from a PHI node themselves. 2418 PHINode *PHI = 0; 2419 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2420 if (!(isa<Constant>(I->getOperand(Op)) || 2421 isa<GlobalValue>(I->getOperand(Op)))) { 2422 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2423 if (P == 0) return 0; // Not evolving from PHI 2424 if (PHI == 0) 2425 PHI = P; 2426 else if (PHI != P) 2427 return 0; // Evolving from multiple different PHIs. 2428 } 2429 2430 // This is a expression evolving from a constant PHI! 2431 return PHI; 2432 } 2433 2434 /// EvaluateExpression - Given an expression that passes the 2435 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2436 /// in the loop has the value PHIVal. If we can't fold this expression for some 2437 /// reason, return null. 2438 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2439 if (isa<PHINode>(V)) return PHIVal; 2440 if (Constant *C = dyn_cast<Constant>(V)) return C; 2441 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2442 Instruction *I = cast<Instruction>(V); 2443 2444 std::vector<Constant*> Operands; 2445 Operands.resize(I->getNumOperands()); 2446 2447 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2448 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2449 if (Operands[i] == 0) return 0; 2450 } 2451 2452 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2453 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2454 &Operands[0], Operands.size()); 2455 else 2456 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2457 &Operands[0], Operands.size()); 2458 } 2459 2460 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2461 /// in the header of its containing loop, we know the loop executes a 2462 /// constant number of times, and the PHI node is just a recurrence 2463 /// involving constants, fold it. 2464 Constant *ScalarEvolutionsImpl:: 2465 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 2466 std::map<PHINode*, Constant*>::iterator I = 2467 ConstantEvolutionLoopExitValue.find(PN); 2468 if (I != ConstantEvolutionLoopExitValue.end()) 2469 return I->second; 2470 2471 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 2472 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2473 2474 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2475 2476 // Since the loop is canonicalized, the PHI node must have two entries. One 2477 // entry must be a constant (coming in from outside of the loop), and the 2478 // second must be derived from the same PHI. 2479 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2480 Constant *StartCST = 2481 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2482 if (StartCST == 0) 2483 return RetVal = 0; // Must be a constant. 2484 2485 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2486 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2487 if (PN2 != PN) 2488 return RetVal = 0; // Not derived from same PHI. 2489 2490 // Execute the loop symbolically to determine the exit value. 2491 if (BEs.getActiveBits() >= 32) 2492 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2493 2494 unsigned NumIterations = BEs.getZExtValue(); // must be in range 2495 unsigned IterationNum = 0; 2496 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2497 if (IterationNum == NumIterations) 2498 return RetVal = PHIVal; // Got exit value! 2499 2500 // Compute the value of the PHI node for the next iteration. 2501 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2502 if (NextPHI == PHIVal) 2503 return RetVal = NextPHI; // Stopped evolving! 2504 if (NextPHI == 0) 2505 return 0; // Couldn't evaluate! 2506 PHIVal = NextPHI; 2507 } 2508 } 2509 2510 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 2511 /// constant number of times (the condition evolves only from constants), 2512 /// try to evaluate a few iterations of the loop until we get the exit 2513 /// condition gets a value of ExitWhen (true or false). If we cannot 2514 /// evaluate the trip count of the loop, return UnknownValue. 2515 SCEVHandle ScalarEvolutionsImpl:: 2516 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2517 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2518 if (PN == 0) return UnknownValue; 2519 2520 // Since the loop is canonicalized, the PHI node must have two entries. One 2521 // entry must be a constant (coming in from outside of the loop), and the 2522 // second must be derived from the same PHI. 2523 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2524 Constant *StartCST = 2525 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2526 if (StartCST == 0) return UnknownValue; // Must be a constant. 2527 2528 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2529 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2530 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2531 2532 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2533 // the loop symbolically to determine when the condition gets a value of 2534 // "ExitWhen". 2535 unsigned IterationNum = 0; 2536 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2537 for (Constant *PHIVal = StartCST; 2538 IterationNum != MaxIterations; ++IterationNum) { 2539 ConstantInt *CondVal = 2540 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2541 2542 // Couldn't symbolically evaluate. 2543 if (!CondVal) return UnknownValue; 2544 2545 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2546 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2547 ++NumBruteForceTripCountsComputed; 2548 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2549 } 2550 2551 // Compute the value of the PHI node for the next iteration. 2552 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2553 if (NextPHI == 0 || NextPHI == PHIVal) 2554 return UnknownValue; // Couldn't evaluate or not making progress... 2555 PHIVal = NextPHI; 2556 } 2557 2558 // Too many iterations were needed to evaluate. 2559 return UnknownValue; 2560 } 2561 2562 /// getSCEVAtScope - Compute the value of the specified expression within the 2563 /// indicated loop (which may be null to indicate in no loop). If the 2564 /// expression cannot be evaluated, return UnknownValue. 2565 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2566 // FIXME: this should be turned into a virtual method on SCEV! 2567 2568 if (isa<SCEVConstant>(V)) return V; 2569 2570 // If this instruction is evolved from a constant-evolving PHI, compute the 2571 // exit value from the loop without using SCEVs. 2572 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2573 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2574 const Loop *LI = this->LI[I->getParent()]; 2575 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2576 if (PHINode *PN = dyn_cast<PHINode>(I)) 2577 if (PN->getParent() == LI->getHeader()) { 2578 // Okay, there is no closed form solution for the PHI node. Check 2579 // to see if the loop that contains it has a known backedge-taken 2580 // count. If so, we may be able to force computation of the exit 2581 // value. 2582 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 2583 if (SCEVConstant *BTCC = 2584 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 2585 // Okay, we know how many times the containing loop executes. If 2586 // this is a constant evolving PHI node, get the final value at 2587 // the specified iteration number. 2588 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2589 BTCC->getValue()->getValue(), 2590 LI); 2591 if (RV) return SE.getUnknown(RV); 2592 } 2593 } 2594 2595 // Okay, this is an expression that we cannot symbolically evaluate 2596 // into a SCEV. Check to see if it's possible to symbolically evaluate 2597 // the arguments into constants, and if so, try to constant propagate the 2598 // result. This is particularly useful for computing loop exit values. 2599 if (CanConstantFold(I)) { 2600 std::vector<Constant*> Operands; 2601 Operands.reserve(I->getNumOperands()); 2602 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2603 Value *Op = I->getOperand(i); 2604 if (Constant *C = dyn_cast<Constant>(Op)) { 2605 Operands.push_back(C); 2606 } else { 2607 // If any of the operands is non-constant and if they are 2608 // non-integer and non-pointer, don't even try to analyze them 2609 // with scev techniques. 2610 if (!isa<IntegerType>(Op->getType()) && 2611 !isa<PointerType>(Op->getType())) 2612 return V; 2613 2614 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2615 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2616 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2617 Op->getType(), 2618 false)); 2619 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2620 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2621 Operands.push_back(ConstantExpr::getIntegerCast(C, 2622 Op->getType(), 2623 false)); 2624 else 2625 return V; 2626 } else { 2627 return V; 2628 } 2629 } 2630 } 2631 2632 Constant *C; 2633 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2634 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2635 &Operands[0], Operands.size()); 2636 else 2637 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2638 &Operands[0], Operands.size()); 2639 return SE.getUnknown(C); 2640 } 2641 } 2642 2643 // This is some other type of SCEVUnknown, just return it. 2644 return V; 2645 } 2646 2647 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2648 // Avoid performing the look-up in the common case where the specified 2649 // expression has no loop-variant portions. 2650 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2651 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2652 if (OpAtScope != Comm->getOperand(i)) { 2653 if (OpAtScope == UnknownValue) return UnknownValue; 2654 // Okay, at least one of these operands is loop variant but might be 2655 // foldable. Build a new instance of the folded commutative expression. 2656 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2657 NewOps.push_back(OpAtScope); 2658 2659 for (++i; i != e; ++i) { 2660 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2661 if (OpAtScope == UnknownValue) return UnknownValue; 2662 NewOps.push_back(OpAtScope); 2663 } 2664 if (isa<SCEVAddExpr>(Comm)) 2665 return SE.getAddExpr(NewOps); 2666 if (isa<SCEVMulExpr>(Comm)) 2667 return SE.getMulExpr(NewOps); 2668 if (isa<SCEVSMaxExpr>(Comm)) 2669 return SE.getSMaxExpr(NewOps); 2670 if (isa<SCEVUMaxExpr>(Comm)) 2671 return SE.getUMaxExpr(NewOps); 2672 assert(0 && "Unknown commutative SCEV type!"); 2673 } 2674 } 2675 // If we got here, all operands are loop invariant. 2676 return Comm; 2677 } 2678 2679 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2680 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2681 if (LHS == UnknownValue) return LHS; 2682 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2683 if (RHS == UnknownValue) return RHS; 2684 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2685 return Div; // must be loop invariant 2686 return SE.getUDivExpr(LHS, RHS); 2687 } 2688 2689 // If this is a loop recurrence for a loop that does not contain L, then we 2690 // are dealing with the final value computed by the loop. 2691 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2692 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2693 // To evaluate this recurrence, we need to know how many times the AddRec 2694 // loop iterates. Compute this now. 2695 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 2696 if (BackedgeTakenCount == UnknownValue) return UnknownValue; 2697 2698 // Then, evaluate the AddRec. 2699 return AddRec->evaluateAtIteration(BackedgeTakenCount, SE); 2700 } 2701 return UnknownValue; 2702 } 2703 2704 //assert(0 && "Unknown SCEV type!"); 2705 return UnknownValue; 2706 } 2707 2708 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2709 /// following equation: 2710 /// 2711 /// A * X = B (mod N) 2712 /// 2713 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2714 /// A and B isn't important. 2715 /// 2716 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2717 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2718 ScalarEvolution &SE) { 2719 uint32_t BW = A.getBitWidth(); 2720 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2721 assert(A != 0 && "A must be non-zero."); 2722 2723 // 1. D = gcd(A, N) 2724 // 2725 // The gcd of A and N may have only one prime factor: 2. The number of 2726 // trailing zeros in A is its multiplicity 2727 uint32_t Mult2 = A.countTrailingZeros(); 2728 // D = 2^Mult2 2729 2730 // 2. Check if B is divisible by D. 2731 // 2732 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2733 // is not less than multiplicity of this prime factor for D. 2734 if (B.countTrailingZeros() < Mult2) 2735 return new SCEVCouldNotCompute(); 2736 2737 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2738 // modulo (N / D). 2739 // 2740 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2741 // bit width during computations. 2742 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2743 APInt Mod(BW + 1, 0); 2744 Mod.set(BW - Mult2); // Mod = N / D 2745 APInt I = AD.multiplicativeInverse(Mod); 2746 2747 // 4. Compute the minimum unsigned root of the equation: 2748 // I * (B / D) mod (N / D) 2749 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2750 2751 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2752 // bits. 2753 return SE.getConstant(Result.trunc(BW)); 2754 } 2755 2756 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2757 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2758 /// might be the same) or two SCEVCouldNotCompute objects. 2759 /// 2760 static std::pair<SCEVHandle,SCEVHandle> 2761 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2762 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2763 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2764 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2765 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2766 2767 // We currently can only solve this if the coefficients are constants. 2768 if (!LC || !MC || !NC) { 2769 SCEV *CNC = new SCEVCouldNotCompute(); 2770 return std::make_pair(CNC, CNC); 2771 } 2772 2773 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2774 const APInt &L = LC->getValue()->getValue(); 2775 const APInt &M = MC->getValue()->getValue(); 2776 const APInt &N = NC->getValue()->getValue(); 2777 APInt Two(BitWidth, 2); 2778 APInt Four(BitWidth, 4); 2779 2780 { 2781 using namespace APIntOps; 2782 const APInt& C = L; 2783 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2784 // The B coefficient is M-N/2 2785 APInt B(M); 2786 B -= sdiv(N,Two); 2787 2788 // The A coefficient is N/2 2789 APInt A(N.sdiv(Two)); 2790 2791 // Compute the B^2-4ac term. 2792 APInt SqrtTerm(B); 2793 SqrtTerm *= B; 2794 SqrtTerm -= Four * (A * C); 2795 2796 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2797 // integer value or else APInt::sqrt() will assert. 2798 APInt SqrtVal(SqrtTerm.sqrt()); 2799 2800 // Compute the two solutions for the quadratic formula. 2801 // The divisions must be performed as signed divisions. 2802 APInt NegB(-B); 2803 APInt TwoA( A << 1 ); 2804 if (TwoA.isMinValue()) { 2805 SCEV *CNC = new SCEVCouldNotCompute(); 2806 return std::make_pair(CNC, CNC); 2807 } 2808 2809 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2810 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2811 2812 return std::make_pair(SE.getConstant(Solution1), 2813 SE.getConstant(Solution2)); 2814 } // end APIntOps namespace 2815 } 2816 2817 /// HowFarToZero - Return the number of times a backedge comparing the specified 2818 /// value to zero will execute. If not computable, return UnknownValue 2819 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2820 // If the value is a constant 2821 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2822 // If the value is already zero, the branch will execute zero times. 2823 if (C->getValue()->isZero()) return C; 2824 return UnknownValue; // Otherwise it will loop infinitely. 2825 } 2826 2827 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2828 if (!AddRec || AddRec->getLoop() != L) 2829 return UnknownValue; 2830 2831 if (AddRec->isAffine()) { 2832 // If this is an affine expression, the execution count of this branch is 2833 // the minimum unsigned root of the following equation: 2834 // 2835 // Start + Step*N = 0 (mod 2^BW) 2836 // 2837 // equivalent to: 2838 // 2839 // Step*N = -Start (mod 2^BW) 2840 // 2841 // where BW is the common bit width of Start and Step. 2842 2843 // Get the initial value for the loop. 2844 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2845 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2846 2847 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2848 2849 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2850 // For now we handle only constant steps. 2851 2852 // First, handle unitary steps. 2853 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2854 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned) 2855 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2856 return Start; // N = Start (as unsigned) 2857 2858 // Then, try to solve the above equation provided that Start is constant. 2859 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2860 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2861 -StartC->getValue()->getValue(),SE); 2862 } 2863 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2864 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2865 // the quadratic equation to solve it. 2866 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2867 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2868 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2869 if (R1) { 2870 #if 0 2871 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2872 << " sol#2: " << *R2 << "\n"; 2873 #endif 2874 // Pick the smallest positive root value. 2875 if (ConstantInt *CB = 2876 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2877 R1->getValue(), R2->getValue()))) { 2878 if (CB->getZExtValue() == false) 2879 std::swap(R1, R2); // R1 is the minimum root now. 2880 2881 // We can only use this value if the chrec ends up with an exact zero 2882 // value at this index. When solving for "X*X != 5", for example, we 2883 // should not accept a root of 2. 2884 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2885 if (Val->isZero()) 2886 return R1; // We found a quadratic root! 2887 } 2888 } 2889 } 2890 2891 return UnknownValue; 2892 } 2893 2894 /// HowFarToNonZero - Return the number of times a backedge checking the 2895 /// specified value for nonzero will execute. If not computable, return 2896 /// UnknownValue 2897 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2898 // Loops that look like: while (X == 0) are very strange indeed. We don't 2899 // handle them yet except for the trivial case. This could be expanded in the 2900 // future as needed. 2901 2902 // If the value is a constant, check to see if it is known to be non-zero 2903 // already. If so, the backedge will execute zero times. 2904 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2905 if (!C->getValue()->isNullValue()) 2906 return SE.getIntegerSCEV(0, C->getType()); 2907 return UnknownValue; // Otherwise it will loop infinitely. 2908 } 2909 2910 // We could implement others, but I really doubt anyone writes loops like 2911 // this, and if they did, they would already be constant folded. 2912 return UnknownValue; 2913 } 2914 2915 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2916 /// (which may not be an immediate predecessor) which has exactly one 2917 /// successor from which BB is reachable, or null if no such block is 2918 /// found. 2919 /// 2920 BasicBlock * 2921 ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 2922 // If the block has a unique predecessor, the predecessor must have 2923 // no other successors from which BB is reachable. 2924 if (BasicBlock *Pred = BB->getSinglePredecessor()) 2925 return Pred; 2926 2927 // A loop's header is defined to be a block that dominates the loop. 2928 // If the loop has a preheader, it must be a block that has exactly 2929 // one successor that can reach BB. This is slightly more strict 2930 // than necessary, but works if critical edges are split. 2931 if (Loop *L = LI.getLoopFor(BB)) 2932 return L->getLoopPreheader(); 2933 2934 return 0; 2935 } 2936 2937 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 2938 /// a conditional between LHS and RHS. 2939 bool ScalarEvolutionsImpl::isLoopGuardedByCond(const Loop *L, 2940 ICmpInst::Predicate Pred, 2941 SCEV *LHS, SCEV *RHS) { 2942 BasicBlock *Preheader = L->getLoopPreheader(); 2943 BasicBlock *PreheaderDest = L->getHeader(); 2944 2945 // Starting at the preheader, climb up the predecessor chain, as long as 2946 // there are predecessors that can be found that have unique successors 2947 // leading to the original header. 2948 for (; Preheader; 2949 PreheaderDest = Preheader, 2950 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 2951 2952 BranchInst *LoopEntryPredicate = 2953 dyn_cast<BranchInst>(Preheader->getTerminator()); 2954 if (!LoopEntryPredicate || 2955 LoopEntryPredicate->isUnconditional()) 2956 continue; 2957 2958 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 2959 if (!ICI) continue; 2960 2961 // Now that we found a conditional branch that dominates the loop, check to 2962 // see if it is the comparison we are looking for. 2963 Value *PreCondLHS = ICI->getOperand(0); 2964 Value *PreCondRHS = ICI->getOperand(1); 2965 ICmpInst::Predicate Cond; 2966 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2967 Cond = ICI->getPredicate(); 2968 else 2969 Cond = ICI->getInversePredicate(); 2970 2971 if (Cond == Pred) 2972 ; // An exact match. 2973 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 2974 ; // The actual condition is beyond sufficient. 2975 else 2976 // Check a few special cases. 2977 switch (Cond) { 2978 case ICmpInst::ICMP_UGT: 2979 if (Pred == ICmpInst::ICMP_ULT) { 2980 std::swap(PreCondLHS, PreCondRHS); 2981 Cond = ICmpInst::ICMP_ULT; 2982 break; 2983 } 2984 continue; 2985 case ICmpInst::ICMP_SGT: 2986 if (Pred == ICmpInst::ICMP_SLT) { 2987 std::swap(PreCondLHS, PreCondRHS); 2988 Cond = ICmpInst::ICMP_SLT; 2989 break; 2990 } 2991 continue; 2992 case ICmpInst::ICMP_NE: 2993 // Expressions like (x >u 0) are often canonicalized to (x != 0), 2994 // so check for this case by checking if the NE is comparing against 2995 // a minimum or maximum constant. 2996 if (!ICmpInst::isTrueWhenEqual(Pred)) 2997 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 2998 const APInt &A = CI->getValue(); 2999 switch (Pred) { 3000 case ICmpInst::ICMP_SLT: 3001 if (A.isMaxSignedValue()) break; 3002 continue; 3003 case ICmpInst::ICMP_SGT: 3004 if (A.isMinSignedValue()) break; 3005 continue; 3006 case ICmpInst::ICMP_ULT: 3007 if (A.isMaxValue()) break; 3008 continue; 3009 case ICmpInst::ICMP_UGT: 3010 if (A.isMinValue()) break; 3011 continue; 3012 default: 3013 continue; 3014 } 3015 Cond = ICmpInst::ICMP_NE; 3016 // NE is symmetric but the original comparison may not be. Swap 3017 // the operands if necessary so that they match below. 3018 if (isa<SCEVConstant>(LHS)) 3019 std::swap(PreCondLHS, PreCondRHS); 3020 break; 3021 } 3022 continue; 3023 default: 3024 // We weren't able to reconcile the condition. 3025 continue; 3026 } 3027 3028 if (!PreCondLHS->getType()->isInteger()) continue; 3029 3030 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3031 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3032 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3033 (LHS == SE.getNotSCEV(PreCondRHSSCEV) && 3034 RHS == SE.getNotSCEV(PreCondLHSSCEV))) 3035 return true; 3036 } 3037 3038 return false; 3039 } 3040 3041 /// HowManyLessThans - Return the number of times a backedge containing the 3042 /// specified less-than comparison will execute. If not computable, return 3043 /// UnknownValue. 3044 SCEVHandle ScalarEvolutionsImpl:: 3045 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 3046 // Only handle: "ADDREC < LoopInvariant". 3047 if (!RHS->isLoopInvariant(L)) return UnknownValue; 3048 3049 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3050 if (!AddRec || AddRec->getLoop() != L) 3051 return UnknownValue; 3052 3053 if (AddRec->isAffine()) { 3054 // FORNOW: We only support unit strides. 3055 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 3056 if (AddRec->getOperand(1) != One) 3057 return UnknownValue; 3058 3059 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant 3060 // m. So, we count the number of iterations in which {n,+,1} < m is true. 3061 // Note that we cannot simply return max(m-n,0) because it's not safe to 3062 // treat m-n as signed nor unsigned due to overflow possibility. 3063 3064 // First, we get the value of the LHS in the first iteration: n 3065 SCEVHandle Start = AddRec->getOperand(0); 3066 3067 if (isLoopGuardedByCond(L, 3068 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3069 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) { 3070 // Since we know that the condition is true in order to enter the loop, 3071 // we know that it will run exactly m-n times. 3072 return SE.getMinusSCEV(RHS, Start); 3073 } else { 3074 // Then, we get the value of the LHS in the first iteration in which the 3075 // above condition doesn't hold. This equals to max(m,n). 3076 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start) 3077 : SE.getUMaxExpr(RHS, Start); 3078 3079 // Finally, we subtract these two values to get the number of times the 3080 // backedge is executed: max(m,n)-n. 3081 return SE.getMinusSCEV(End, Start); 3082 } 3083 } 3084 3085 return UnknownValue; 3086 } 3087 3088 /// getNumIterationsInRange - Return the number of iterations of this loop that 3089 /// produce values in the specified constant range. Another way of looking at 3090 /// this is that it returns the first iteration number where the value is not in 3091 /// the condition, thus computing the exit count. If the iteration count can't 3092 /// be computed, an instance of SCEVCouldNotCompute is returned. 3093 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3094 ScalarEvolution &SE) const { 3095 if (Range.isFullSet()) // Infinite loop. 3096 return new SCEVCouldNotCompute(); 3097 3098 // If the start is a non-zero constant, shift the range to simplify things. 3099 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3100 if (!SC->getValue()->isZero()) { 3101 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3102 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3103 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3104 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 3105 return ShiftedAddRec->getNumIterationsInRange( 3106 Range.subtract(SC->getValue()->getValue()), SE); 3107 // This is strange and shouldn't happen. 3108 return new SCEVCouldNotCompute(); 3109 } 3110 3111 // The only time we can solve this is when we have all constant indices. 3112 // Otherwise, we cannot determine the overflow conditions. 3113 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3114 if (!isa<SCEVConstant>(getOperand(i))) 3115 return new SCEVCouldNotCompute(); 3116 3117 3118 // Okay at this point we know that all elements of the chrec are constants and 3119 // that the start element is zero. 3120 3121 // First check to see if the range contains zero. If not, the first 3122 // iteration exits. 3123 unsigned BitWidth = SE.getTargetData().getTypeSizeInBits(getType()); 3124 if (!Range.contains(APInt(BitWidth, 0))) 3125 return SE.getConstant(ConstantInt::get(getType(),0)); 3126 3127 if (isAffine()) { 3128 // If this is an affine expression then we have this situation: 3129 // Solve {0,+,A} in Range === Ax in Range 3130 3131 // We know that zero is in the range. If A is positive then we know that 3132 // the upper value of the range must be the first possible exit value. 3133 // If A is negative then the lower of the range is the last possible loop 3134 // value. Also note that we already checked for a full range. 3135 APInt One(BitWidth,1); 3136 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3137 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3138 3139 // The exit value should be (End+A)/A. 3140 APInt ExitVal = (End + A).udiv(A); 3141 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3142 3143 // Evaluate at the exit value. If we really did fall out of the valid 3144 // range, then we computed our trip count, otherwise wrap around or other 3145 // things must have happened. 3146 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3147 if (Range.contains(Val->getValue())) 3148 return new SCEVCouldNotCompute(); // Something strange happened 3149 3150 // Ensure that the previous value is in the range. This is a sanity check. 3151 assert(Range.contains( 3152 EvaluateConstantChrecAtConstant(this, 3153 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3154 "Linear scev computation is off in a bad way!"); 3155 return SE.getConstant(ExitValue); 3156 } else if (isQuadratic()) { 3157 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3158 // quadratic equation to solve it. To do this, we must frame our problem in 3159 // terms of figuring out when zero is crossed, instead of when 3160 // Range.getUpper() is crossed. 3161 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3162 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3163 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3164 3165 // Next, solve the constructed addrec 3166 std::pair<SCEVHandle,SCEVHandle> Roots = 3167 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3168 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3169 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3170 if (R1) { 3171 // Pick the smallest positive root value. 3172 if (ConstantInt *CB = 3173 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3174 R1->getValue(), R2->getValue()))) { 3175 if (CB->getZExtValue() == false) 3176 std::swap(R1, R2); // R1 is the minimum root now. 3177 3178 // Make sure the root is not off by one. The returned iteration should 3179 // not be in the range, but the previous one should be. When solving 3180 // for "X*X < 5", for example, we should not return a root of 2. 3181 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3182 R1->getValue(), 3183 SE); 3184 if (Range.contains(R1Val->getValue())) { 3185 // The next iteration must be out of the range... 3186 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3187 3188 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3189 if (!Range.contains(R1Val->getValue())) 3190 return SE.getConstant(NextVal); 3191 return new SCEVCouldNotCompute(); // Something strange happened 3192 } 3193 3194 // If R1 was not in the range, then it is a good return value. Make 3195 // sure that R1-1 WAS in the range though, just in case. 3196 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3197 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3198 if (Range.contains(R1Val->getValue())) 3199 return R1; 3200 return new SCEVCouldNotCompute(); // Something strange happened 3201 } 3202 } 3203 } 3204 3205 return new SCEVCouldNotCompute(); 3206 } 3207 3208 3209 3210 //===----------------------------------------------------------------------===// 3211 // ScalarEvolution Class Implementation 3212 //===----------------------------------------------------------------------===// 3213 3214 bool ScalarEvolution::runOnFunction(Function &F) { 3215 Impl = new ScalarEvolutionsImpl(*this, F, 3216 getAnalysis<LoopInfo>(), 3217 getAnalysis<TargetData>()); 3218 return false; 3219 } 3220 3221 void ScalarEvolution::releaseMemory() { 3222 delete (ScalarEvolutionsImpl*)Impl; 3223 Impl = 0; 3224 } 3225 3226 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3227 AU.setPreservesAll(); 3228 AU.addRequiredTransitive<LoopInfo>(); 3229 AU.addRequiredTransitive<TargetData>(); 3230 } 3231 3232 const TargetData &ScalarEvolution::getTargetData() const { 3233 return ((ScalarEvolutionsImpl*)Impl)->getTargetData(); 3234 } 3235 3236 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 3237 return ((ScalarEvolutionsImpl*)Impl)->getIntegerSCEV(Val, Ty); 3238 } 3239 3240 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 3241 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 3242 } 3243 3244 /// hasSCEV - Return true if the SCEV for this value has already been 3245 /// computed. 3246 bool ScalarEvolution::hasSCEV(Value *V) const { 3247 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 3248 } 3249 3250 3251 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 3252 /// the specified value. 3253 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 3254 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 3255 } 3256 3257 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3258 /// 3259 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 3260 return ((ScalarEvolutionsImpl*)Impl)->getNegativeSCEV(V); 3261 } 3262 3263 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3264 /// 3265 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 3266 return ((ScalarEvolutionsImpl*)Impl)->getNotSCEV(V); 3267 } 3268 3269 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 3270 /// 3271 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 3272 const SCEVHandle &RHS) { 3273 return ((ScalarEvolutionsImpl*)Impl)->getMinusSCEV(LHS, RHS); 3274 } 3275 3276 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 3277 /// of the input value to the specified type. If the type must be 3278 /// extended, it is zero extended. 3279 SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 3280 const Type *Ty) { 3281 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrZeroExtend(V, Ty); 3282 } 3283 3284 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion 3285 /// of the input value to the specified type. If the type must be 3286 /// extended, it is sign extended. 3287 SCEVHandle ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 3288 const Type *Ty) { 3289 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrSignExtend(V, Ty); 3290 } 3291 3292 3293 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3294 ICmpInst::Predicate Pred, 3295 SCEV *LHS, SCEV *RHS) { 3296 return ((ScalarEvolutionsImpl*)Impl)->isLoopGuardedByCond(L, Pred, 3297 LHS, RHS); 3298 } 3299 3300 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) const { 3301 return ((ScalarEvolutionsImpl*)Impl)->getBackedgeTakenCount(L); 3302 } 3303 3304 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) const { 3305 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3306 } 3307 3308 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 3309 return ((ScalarEvolutionsImpl*)Impl)->forgetLoopBackedgeTakenCount(L); 3310 } 3311 3312 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 3313 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 3314 } 3315 3316 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 3317 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 3318 } 3319 3320 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 3321 const Loop *L) { 3322 // Print all inner loops first 3323 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3324 PrintLoopInfo(OS, SE, *I); 3325 3326 OS << "Loop " << L->getHeader()->getName() << ": "; 3327 3328 SmallVector<BasicBlock*, 8> ExitBlocks; 3329 L->getExitBlocks(ExitBlocks); 3330 if (ExitBlocks.size() != 1) 3331 OS << "<multiple exits> "; 3332 3333 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3334 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3335 } else { 3336 OS << "Unpredictable backedge-taken count. "; 3337 } 3338 3339 OS << "\n"; 3340 } 3341 3342 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 3343 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 3344 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 3345 3346 OS << "Classifying expressions for: " << F.getName() << "\n"; 3347 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3348 if (I->getType()->isInteger()) { 3349 OS << *I; 3350 OS << " --> "; 3351 SCEVHandle SV = getSCEV(&*I); 3352 SV->print(OS); 3353 OS << "\t\t"; 3354 3355 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 3356 OS << "Exits: "; 3357 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 3358 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3359 OS << "<<Unknown>>"; 3360 } else { 3361 OS << *ExitValue; 3362 } 3363 } 3364 3365 3366 OS << "\n"; 3367 } 3368 3369 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 3370 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 3371 PrintLoopInfo(OS, this, *I); 3372 } 3373