1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 119 //===----------------------------------------------------------------------===// 120 // SCEV class definitions 121 //===----------------------------------------------------------------------===// 122 123 //===----------------------------------------------------------------------===// 124 // Implementation of the SCEV class. 125 // 126 127 LLVM_DUMP_METHOD 128 void SCEV::dump() const { 129 print(dbgs()); 130 dbgs() << '\n'; 131 } 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 auto PreStartFlags = 1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1276 1277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1278 // "S+X does not sign/unsign-overflow". 1279 // 1280 1281 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1284 return PreStart; 1285 1286 // 2. Direct overflow check on the step operation's expression. 1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1289 const SCEV *OperandExtendedStart = 1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1291 (SE->*GetExtendExpr)(Step, WideTy)); 1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1293 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1298 } 1299 return PreStart; 1300 } 1301 1302 // 3. Loop precondition. 1303 ICmpInst::Predicate Pred; 1304 const SCEV *OverflowLimit = 1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1306 1307 if (OverflowLimit && 1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1309 return PreStart; 1310 1311 return nullptr; 1312 } 1313 1314 // Get the normalized zero or sign extended expression for this AddRec's Start. 1315 template <typename ExtendOpTy> 1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1317 ScalarEvolution *SE) { 1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1319 1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1321 if (!PreStart) 1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1323 1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1325 (SE->*GetExtendExpr)(PreStart, Ty)); 1326 } 1327 1328 // Try to prove away overflow by looking at "nearby" add recurrences. A 1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1331 // 1332 // Formally: 1333 // 1334 // {S,+,X} == {S-T,+,X} + T 1335 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1336 // 1337 // If ({S-T,+,X} + T) does not overflow ... (1) 1338 // 1339 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1340 // 1341 // If {S-T,+,X} does not overflow ... (2) 1342 // 1343 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1344 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1345 // 1346 // If (S-T)+T does not overflow ... (3) 1347 // 1348 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1349 // == {Ext(S),+,Ext(X)} == LHS 1350 // 1351 // Thus, if (1), (2) and (3) are true for some T, then 1352 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1353 // 1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1355 // does not overflow" restricted to the 0th iteration. Therefore we only need 1356 // to check for (1) and (2). 1357 // 1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1359 // is `Delta` (defined below). 1360 // 1361 template <typename ExtendOpTy> 1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1363 const SCEV *Step, 1364 const Loop *L) { 1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1366 1367 // We restrict `Start` to a constant to prevent SCEV from spending too much 1368 // time here. It is correct (but more expensive) to continue with a 1369 // non-constant `Start` and do a general SCEV subtraction to compute 1370 // `PreStart` below. 1371 // 1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1373 if (!StartC) 1374 return false; 1375 1376 APInt StartAI = StartC->getValue()->getValue(); 1377 1378 for (unsigned Delta : {-2, -1, 1, 2}) { 1379 const SCEV *PreStart = getConstant(StartAI - Delta); 1380 1381 FoldingSetNodeID ID; 1382 ID.AddInteger(scAddRecExpr); 1383 ID.AddPointer(PreStart); 1384 ID.AddPointer(Step); 1385 ID.AddPointer(L); 1386 void *IP = nullptr; 1387 const auto *PreAR = 1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1389 1390 // Give up if we don't already have the add recurrence we need because 1391 // actually constructing an add recurrence is relatively expensive. 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1565 // If the addition does not unsign overflow then we can, by definition, 1566 // commute the zero extension with the addition operation. 1567 SmallVector<const SCEV *, 4> Ops; 1568 for (const auto *Op : SA->operands()) 1569 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1570 return getAddExpr(Ops, SCEV::FlagNUW); 1571 } 1572 } 1573 1574 // The cast wasn't folded; create an explicit cast node. 1575 // Recompute the insert position, as it may have been invalidated. 1576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1578 Op, Ty); 1579 UniqueSCEVs.InsertNode(S, IP); 1580 return S; 1581 } 1582 1583 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1584 Type *Ty) { 1585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1586 "This is not an extending conversion!"); 1587 assert(isSCEVable(Ty) && 1588 "This is not a conversion to a SCEVable type!"); 1589 Ty = getEffectiveSCEVType(Ty); 1590 1591 // Fold if the operand is constant. 1592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1593 return getConstant( 1594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1595 1596 // sext(sext(x)) --> sext(x) 1597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1598 return getSignExtendExpr(SS->getOperand(), Ty); 1599 1600 // sext(zext(x)) --> zext(x) 1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1602 return getZeroExtendExpr(SZ->getOperand(), Ty); 1603 1604 // Before doing any expensive analysis, check to see if we've already 1605 // computed a SCEV for this Op and Ty. 1606 FoldingSetNodeID ID; 1607 ID.AddInteger(scSignExtend); 1608 ID.AddPointer(Op); 1609 ID.AddPointer(Ty); 1610 void *IP = nullptr; 1611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1612 1613 // If the input value is provably positive, build a zext instead. 1614 if (isKnownNonNegative(Op)) 1615 return getZeroExtendExpr(Op, Ty); 1616 1617 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1619 // It's possible the bits taken off by the truncate were all sign bits. If 1620 // so, we should be able to simplify this further. 1621 const SCEV *X = ST->getOperand(); 1622 ConstantRange CR = getSignedRange(X); 1623 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1624 unsigned NewBits = getTypeSizeInBits(Ty); 1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1626 CR.sextOrTrunc(NewBits))) 1627 return getTruncateOrSignExtend(X, Ty); 1628 } 1629 1630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1632 if (SA->getNumOperands() == 2) { 1633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1635 if (SMul && SC1) { 1636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1637 const APInt &C1 = SC1->getValue()->getValue(); 1638 const APInt &C2 = SC2->getValue()->getValue(); 1639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1640 C2.ugt(C1) && C2.isPowerOf2()) 1641 return getAddExpr(getSignExtendExpr(SC1, Ty), 1642 getSignExtendExpr(SMul, Ty)); 1643 } 1644 } 1645 } 1646 1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1649 // If the addition does not sign overflow then we can, by definition, 1650 // commute the sign extension with the addition operation. 1651 SmallVector<const SCEV *, 4> Ops; 1652 for (const auto *Op : SA->operands()) 1653 Ops.push_back(getSignExtendExpr(Op, Ty)); 1654 return getAddExpr(Ops, SCEV::FlagNSW); 1655 } 1656 } 1657 // If the input value is a chrec scev, and we can prove that the value 1658 // did not overflow the old, smaller, value, we can sign extend all of the 1659 // operands (often constants). This allows analysis of something like 1660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1662 if (AR->isAffine()) { 1663 const SCEV *Start = AR->getStart(); 1664 const SCEV *Step = AR->getStepRecurrence(*this); 1665 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1666 const Loop *L = AR->getLoop(); 1667 1668 // If we have special knowledge that this addrec won't overflow, 1669 // we don't need to do any further analysis. 1670 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1671 return getAddRecExpr( 1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1674 1675 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1676 // Note that this serves two purposes: It filters out loops that are 1677 // simply not analyzable, and it covers the case where this code is 1678 // being called from within backedge-taken count analysis, such that 1679 // attempting to ask for the backedge-taken count would likely result 1680 // in infinite recursion. In the later case, the analysis code will 1681 // cope with a conservative value, and it will take care to purge 1682 // that value once it has finished. 1683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1685 // Manually compute the final value for AR, checking for 1686 // overflow. 1687 1688 // Check whether the backedge-taken count can be losslessly casted to 1689 // the addrec's type. The count is always unsigned. 1690 const SCEV *CastedMaxBECount = 1691 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1692 const SCEV *RecastedMaxBECount = 1693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1694 if (MaxBECount == RecastedMaxBECount) { 1695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1696 // Check whether Start+Step*MaxBECount has no signed overflow. 1697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1700 const SCEV *WideMaxBECount = 1701 getZeroExtendExpr(CastedMaxBECount, WideTy); 1702 const SCEV *OperandExtendedAdd = 1703 getAddExpr(WideStart, 1704 getMulExpr(WideMaxBECount, 1705 getSignExtendExpr(Step, WideTy))); 1706 if (SAdd == OperandExtendedAdd) { 1707 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 // Similar to above, only this time treat the step value as unsigned. 1715 // This covers loops that count up with an unsigned step. 1716 OperandExtendedAdd = 1717 getAddExpr(WideStart, 1718 getMulExpr(WideMaxBECount, 1719 getZeroExtendExpr(Step, WideTy))); 1720 if (SAdd == OperandExtendedAdd) { 1721 // If AR wraps around then 1722 // 1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1724 // => SAdd != OperandExtendedAdd 1725 // 1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1727 // (SAdd == OperandExtendedAdd => AR is NW) 1728 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1730 1731 // Return the expression with the addrec on the outside. 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 1738 // If the backedge is guarded by a comparison with the pre-inc value 1739 // the addrec is safe. Also, if the entry is guarded by a comparison 1740 // with the start value and the backedge is guarded by a comparison 1741 // with the post-inc value, the addrec is safe. 1742 ICmpInst::Predicate Pred; 1743 const SCEV *OverflowLimit = 1744 getSignedOverflowLimitForStep(Step, &Pred, this); 1745 if (OverflowLimit && 1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1749 OverflowLimit)))) { 1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1752 return getAddRecExpr( 1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1755 } 1756 } 1757 // If Start and Step are constants, check if we can apply this 1758 // transformation: 1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1760 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1761 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1762 if (SC1 && SC2) { 1763 const APInt &C1 = SC1->getValue()->getValue(); 1764 const APInt &C2 = SC2->getValue()->getValue(); 1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1766 C2.isPowerOf2()) { 1767 Start = getSignExtendExpr(Start, Ty); 1768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1769 AR->getNoWrapFlags()); 1770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // The cast wasn't folded; create an explicit cast node. 1783 // Recompute the insert position, as it may have been invalidated. 1784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1786 Op, Ty); 1787 UniqueSCEVs.InsertNode(S, IP); 1788 return S; 1789 } 1790 1791 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1792 /// unspecified bits out to the given type. 1793 /// 1794 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1795 Type *Ty) { 1796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1797 "This is not an extending conversion!"); 1798 assert(isSCEVable(Ty) && 1799 "This is not a conversion to a SCEVable type!"); 1800 Ty = getEffectiveSCEVType(Ty); 1801 1802 // Sign-extend negative constants. 1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1804 if (SC->getValue()->getValue().isNegative()) 1805 return getSignExtendExpr(Op, Ty); 1806 1807 // Peel off a truncate cast. 1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1809 const SCEV *NewOp = T->getOperand(); 1810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1811 return getAnyExtendExpr(NewOp, Ty); 1812 return getTruncateOrNoop(NewOp, Ty); 1813 } 1814 1815 // Next try a zext cast. If the cast is folded, use it. 1816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1817 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1818 return ZExt; 1819 1820 // Next try a sext cast. If the cast is folded, use it. 1821 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1822 if (!isa<SCEVSignExtendExpr>(SExt)) 1823 return SExt; 1824 1825 // Force the cast to be folded into the operands of an addrec. 1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1827 SmallVector<const SCEV *, 4> Ops; 1828 for (const SCEV *Op : AR->operands()) 1829 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1831 } 1832 1833 // If the expression is obviously signed, use the sext cast value. 1834 if (isa<SCEVSMaxExpr>(Op)) 1835 return SExt; 1836 1837 // Absent any other information, use the zext cast value. 1838 return ZExt; 1839 } 1840 1841 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1842 /// a list of operands to be added under the given scale, update the given 1843 /// map. This is a helper function for getAddRecExpr. As an example of 1844 /// what it does, given a sequence of operands that would form an add 1845 /// expression like this: 1846 /// 1847 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1848 /// 1849 /// where A and B are constants, update the map with these values: 1850 /// 1851 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1852 /// 1853 /// and add 13 + A*B*29 to AccumulatedConstant. 1854 /// This will allow getAddRecExpr to produce this: 1855 /// 1856 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1857 /// 1858 /// This form often exposes folding opportunities that are hidden in 1859 /// the original operand list. 1860 /// 1861 /// Return true iff it appears that any interesting folding opportunities 1862 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1863 /// the common case where no interesting opportunities are present, and 1864 /// is also used as a check to avoid infinite recursion. 1865 /// 1866 static bool 1867 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1868 SmallVectorImpl<const SCEV *> &NewOps, 1869 APInt &AccumulatedConstant, 1870 const SCEV *const *Ops, size_t NumOperands, 1871 const APInt &Scale, 1872 ScalarEvolution &SE) { 1873 bool Interesting = false; 1874 1875 // Iterate over the add operands. They are sorted, with constants first. 1876 unsigned i = 0; 1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1878 ++i; 1879 // Pull a buried constant out to the outside. 1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1881 Interesting = true; 1882 AccumulatedConstant += Scale * C->getValue()->getValue(); 1883 } 1884 1885 // Next comes everything else. We're especially interested in multiplies 1886 // here, but they're in the middle, so just visit the rest with one loop. 1887 for (; i != NumOperands; ++i) { 1888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1890 APInt NewScale = 1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1893 // A multiplication of a constant with another add; recurse. 1894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1895 Interesting |= 1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1897 Add->op_begin(), Add->getNumOperands(), 1898 NewScale, SE); 1899 } else { 1900 // A multiplication of a constant with some other value. Update 1901 // the map. 1902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1903 const SCEV *Key = SE.getMulExpr(MulOps); 1904 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1905 if (Pair.second) { 1906 NewOps.push_back(Pair.first->first); 1907 } else { 1908 Pair.first->second += NewScale; 1909 // The map already had an entry for this value, which may indicate 1910 // a folding opportunity. 1911 Interesting = true; 1912 } 1913 } 1914 } else { 1915 // An ordinary operand. Update the map. 1916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1917 M.insert(std::make_pair(Ops[i], Scale)); 1918 if (Pair.second) { 1919 NewOps.push_back(Pair.first->first); 1920 } else { 1921 Pair.first->second += Scale; 1922 // The map already had an entry for this value, which may indicate 1923 // a folding opportunity. 1924 Interesting = true; 1925 } 1926 } 1927 } 1928 1929 return Interesting; 1930 } 1931 1932 namespace { 1933 struct APIntCompare { 1934 bool operator()(const APInt &LHS, const APInt &RHS) const { 1935 return LHS.ult(RHS); 1936 } 1937 }; 1938 } 1939 1940 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1941 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1942 // can't-overflow flags for the operation if possible. 1943 static SCEV::NoWrapFlags 1944 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1945 const SmallVectorImpl<const SCEV *> &Ops, 1946 SCEV::NoWrapFlags Flags) { 1947 using namespace std::placeholders; 1948 typedef OverflowingBinaryOperator OBO; 1949 1950 bool CanAnalyze = 1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1952 (void)CanAnalyze; 1953 assert(CanAnalyze && "don't call from other places!"); 1954 1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1956 SCEV::NoWrapFlags SignOrUnsignWrap = 1957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1958 1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1960 auto IsKnownNonNegative = 1961 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1962 1963 if (SignOrUnsignWrap == SCEV::FlagNSW && 1964 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1965 Flags = 1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1967 1968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1969 1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1972 1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1975 1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1978 auto NSWRegion = 1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1982 } 1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1984 auto NUWRegion = 1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1986 OBO::NoUnsignedWrap); 1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1989 } 1990 } 1991 1992 return Flags; 1993 } 1994 1995 /// getAddExpr - Get a canonical add expression, or something simpler if 1996 /// possible. 1997 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1998 SCEV::NoWrapFlags Flags) { 1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2000 "only nuw or nsw allowed"); 2001 assert(!Ops.empty() && "Cannot get empty add!"); 2002 if (Ops.size() == 1) return Ops[0]; 2003 #ifndef NDEBUG 2004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2005 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2007 "SCEVAddExpr operand types don't match!"); 2008 #endif 2009 2010 // Sort by complexity, this groups all similar expression types together. 2011 GroupByComplexity(Ops, &LI); 2012 2013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2014 2015 // If there are any constants, fold them together. 2016 unsigned Idx = 0; 2017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2018 ++Idx; 2019 assert(Idx < Ops.size()); 2020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2021 // We found two constants, fold them together! 2022 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2023 RHSC->getValue()->getValue()); 2024 if (Ops.size() == 2) return Ops[0]; 2025 Ops.erase(Ops.begin()+1); // Erase the folded element 2026 LHSC = cast<SCEVConstant>(Ops[0]); 2027 } 2028 2029 // If we are left with a constant zero being added, strip it off. 2030 if (LHSC->getValue()->isZero()) { 2031 Ops.erase(Ops.begin()); 2032 --Idx; 2033 } 2034 2035 if (Ops.size() == 1) return Ops[0]; 2036 } 2037 2038 // Okay, check to see if the same value occurs in the operand list more than 2039 // once. If so, merge them together into an multiply expression. Since we 2040 // sorted the list, these values are required to be adjacent. 2041 Type *Ty = Ops[0]->getType(); 2042 bool FoundMatch = false; 2043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2045 // Scan ahead to count how many equal operands there are. 2046 unsigned Count = 2; 2047 while (i+Count != e && Ops[i+Count] == Ops[i]) 2048 ++Count; 2049 // Merge the values into a multiply. 2050 const SCEV *Scale = getConstant(Ty, Count); 2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2052 if (Ops.size() == Count) 2053 return Mul; 2054 Ops[i] = Mul; 2055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2056 --i; e -= Count - 1; 2057 FoundMatch = true; 2058 } 2059 if (FoundMatch) 2060 return getAddExpr(Ops, Flags); 2061 2062 // Check for truncates. If all the operands are truncated from the same 2063 // type, see if factoring out the truncate would permit the result to be 2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2065 // if the contents of the resulting outer trunc fold to something simple. 2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2068 Type *DstType = Trunc->getType(); 2069 Type *SrcType = Trunc->getOperand()->getType(); 2070 SmallVector<const SCEV *, 8> LargeOps; 2071 bool Ok = true; 2072 // Check all the operands to see if they can be represented in the 2073 // source type of the truncate. 2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2076 if (T->getOperand()->getType() != SrcType) { 2077 Ok = false; 2078 break; 2079 } 2080 LargeOps.push_back(T->getOperand()); 2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2082 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2084 SmallVector<const SCEV *, 8> LargeMulOps; 2085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2086 if (const SCEVTruncateExpr *T = 2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2088 if (T->getOperand()->getType() != SrcType) { 2089 Ok = false; 2090 break; 2091 } 2092 LargeMulOps.push_back(T->getOperand()); 2093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2095 } else { 2096 Ok = false; 2097 break; 2098 } 2099 } 2100 if (Ok) 2101 LargeOps.push_back(getMulExpr(LargeMulOps)); 2102 } else { 2103 Ok = false; 2104 break; 2105 } 2106 } 2107 if (Ok) { 2108 // Evaluate the expression in the larger type. 2109 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2110 // If it folds to something simple, use it. Otherwise, don't. 2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2112 return getTruncateExpr(Fold, DstType); 2113 } 2114 } 2115 2116 // Skip past any other cast SCEVs. 2117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2118 ++Idx; 2119 2120 // If there are add operands they would be next. 2121 if (Idx < Ops.size()) { 2122 bool DeletedAdd = false; 2123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2124 // If we have an add, expand the add operands onto the end of the operands 2125 // list. 2126 Ops.erase(Ops.begin()+Idx); 2127 Ops.append(Add->op_begin(), Add->op_end()); 2128 DeletedAdd = true; 2129 } 2130 2131 // If we deleted at least one add, we added operands to the end of the list, 2132 // and they are not necessarily sorted. Recurse to resort and resimplify 2133 // any operands we just acquired. 2134 if (DeletedAdd) 2135 return getAddExpr(Ops); 2136 } 2137 2138 // Skip over the add expression until we get to a multiply. 2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2140 ++Idx; 2141 2142 // Check to see if there are any folding opportunities present with 2143 // operands multiplied by constant values. 2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2145 uint64_t BitWidth = getTypeSizeInBits(Ty); 2146 DenseMap<const SCEV *, APInt> M; 2147 SmallVector<const SCEV *, 8> NewOps; 2148 APInt AccumulatedConstant(BitWidth, 0); 2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2150 Ops.data(), Ops.size(), 2151 APInt(BitWidth, 1), *this)) { 2152 // Some interesting folding opportunity is present, so its worthwhile to 2153 // re-generate the operands list. Group the operands by constant scale, 2154 // to avoid multiplying by the same constant scale multiple times. 2155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2156 for (const SCEV *NewOp : NewOps) 2157 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2158 // Re-generate the operands list. 2159 Ops.clear(); 2160 if (AccumulatedConstant != 0) 2161 Ops.push_back(getConstant(AccumulatedConstant)); 2162 for (auto &MulOp : MulOpLists) 2163 if (MulOp.first != 0) 2164 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2165 getAddExpr(MulOp.second))); 2166 if (Ops.empty()) 2167 return getZero(Ty); 2168 if (Ops.size() == 1) 2169 return Ops[0]; 2170 return getAddExpr(Ops); 2171 } 2172 } 2173 2174 // If we are adding something to a multiply expression, make sure the 2175 // something is not already an operand of the multiply. If so, merge it into 2176 // the multiply. 2177 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2178 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2179 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2180 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2181 if (isa<SCEVConstant>(MulOpSCEV)) 2182 continue; 2183 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2184 if (MulOpSCEV == Ops[AddOp]) { 2185 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2186 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2187 if (Mul->getNumOperands() != 2) { 2188 // If the multiply has more than two operands, we must get the 2189 // Y*Z term. 2190 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2191 Mul->op_begin()+MulOp); 2192 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2193 InnerMul = getMulExpr(MulOps); 2194 } 2195 const SCEV *One = getOne(Ty); 2196 const SCEV *AddOne = getAddExpr(One, InnerMul); 2197 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2198 if (Ops.size() == 2) return OuterMul; 2199 if (AddOp < Idx) { 2200 Ops.erase(Ops.begin()+AddOp); 2201 Ops.erase(Ops.begin()+Idx-1); 2202 } else { 2203 Ops.erase(Ops.begin()+Idx); 2204 Ops.erase(Ops.begin()+AddOp-1); 2205 } 2206 Ops.push_back(OuterMul); 2207 return getAddExpr(Ops); 2208 } 2209 2210 // Check this multiply against other multiplies being added together. 2211 for (unsigned OtherMulIdx = Idx+1; 2212 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2213 ++OtherMulIdx) { 2214 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2215 // If MulOp occurs in OtherMul, we can fold the two multiplies 2216 // together. 2217 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2218 OMulOp != e; ++OMulOp) 2219 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2220 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2221 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2222 if (Mul->getNumOperands() != 2) { 2223 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2224 Mul->op_begin()+MulOp); 2225 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2226 InnerMul1 = getMulExpr(MulOps); 2227 } 2228 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2229 if (OtherMul->getNumOperands() != 2) { 2230 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2231 OtherMul->op_begin()+OMulOp); 2232 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2233 InnerMul2 = getMulExpr(MulOps); 2234 } 2235 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2236 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2237 if (Ops.size() == 2) return OuterMul; 2238 Ops.erase(Ops.begin()+Idx); 2239 Ops.erase(Ops.begin()+OtherMulIdx-1); 2240 Ops.push_back(OuterMul); 2241 return getAddExpr(Ops); 2242 } 2243 } 2244 } 2245 } 2246 2247 // If there are any add recurrences in the operands list, see if any other 2248 // added values are loop invariant. If so, we can fold them into the 2249 // recurrence. 2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2251 ++Idx; 2252 2253 // Scan over all recurrences, trying to fold loop invariants into them. 2254 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2255 // Scan all of the other operands to this add and add them to the vector if 2256 // they are loop invariant w.r.t. the recurrence. 2257 SmallVector<const SCEV *, 8> LIOps; 2258 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2259 const Loop *AddRecLoop = AddRec->getLoop(); 2260 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2261 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2262 LIOps.push_back(Ops[i]); 2263 Ops.erase(Ops.begin()+i); 2264 --i; --e; 2265 } 2266 2267 // If we found some loop invariants, fold them into the recurrence. 2268 if (!LIOps.empty()) { 2269 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2270 LIOps.push_back(AddRec->getStart()); 2271 2272 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2273 AddRec->op_end()); 2274 AddRecOps[0] = getAddExpr(LIOps); 2275 2276 // Build the new addrec. Propagate the NUW and NSW flags if both the 2277 // outer add and the inner addrec are guaranteed to have no overflow. 2278 // Always propagate NW. 2279 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2280 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2281 2282 // If all of the other operands were loop invariant, we are done. 2283 if (Ops.size() == 1) return NewRec; 2284 2285 // Otherwise, add the folded AddRec by the non-invariant parts. 2286 for (unsigned i = 0;; ++i) 2287 if (Ops[i] == AddRec) { 2288 Ops[i] = NewRec; 2289 break; 2290 } 2291 return getAddExpr(Ops); 2292 } 2293 2294 // Okay, if there weren't any loop invariants to be folded, check to see if 2295 // there are multiple AddRec's with the same loop induction variable being 2296 // added together. If so, we can fold them. 2297 for (unsigned OtherIdx = Idx+1; 2298 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2299 ++OtherIdx) 2300 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2301 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2303 AddRec->op_end()); 2304 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2305 ++OtherIdx) 2306 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2307 if (OtherAddRec->getLoop() == AddRecLoop) { 2308 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2309 i != e; ++i) { 2310 if (i >= AddRecOps.size()) { 2311 AddRecOps.append(OtherAddRec->op_begin()+i, 2312 OtherAddRec->op_end()); 2313 break; 2314 } 2315 AddRecOps[i] = getAddExpr(AddRecOps[i], 2316 OtherAddRec->getOperand(i)); 2317 } 2318 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2319 } 2320 // Step size has changed, so we cannot guarantee no self-wraparound. 2321 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2322 return getAddExpr(Ops); 2323 } 2324 2325 // Otherwise couldn't fold anything into this recurrence. Move onto the 2326 // next one. 2327 } 2328 2329 // Okay, it looks like we really DO need an add expr. Check to see if we 2330 // already have one, otherwise create a new one. 2331 FoldingSetNodeID ID; 2332 ID.AddInteger(scAddExpr); 2333 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2334 ID.AddPointer(Ops[i]); 2335 void *IP = nullptr; 2336 SCEVAddExpr *S = 2337 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2338 if (!S) { 2339 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2340 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2341 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2342 O, Ops.size()); 2343 UniqueSCEVs.InsertNode(S, IP); 2344 } 2345 S->setNoWrapFlags(Flags); 2346 return S; 2347 } 2348 2349 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2350 uint64_t k = i*j; 2351 if (j > 1 && k / j != i) Overflow = true; 2352 return k; 2353 } 2354 2355 /// Compute the result of "n choose k", the binomial coefficient. If an 2356 /// intermediate computation overflows, Overflow will be set and the return will 2357 /// be garbage. Overflow is not cleared on absence of overflow. 2358 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2359 // We use the multiplicative formula: 2360 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2361 // At each iteration, we take the n-th term of the numeral and divide by the 2362 // (k-n)th term of the denominator. This division will always produce an 2363 // integral result, and helps reduce the chance of overflow in the 2364 // intermediate computations. However, we can still overflow even when the 2365 // final result would fit. 2366 2367 if (n == 0 || n == k) return 1; 2368 if (k > n) return 0; 2369 2370 if (k > n/2) 2371 k = n-k; 2372 2373 uint64_t r = 1; 2374 for (uint64_t i = 1; i <= k; ++i) { 2375 r = umul_ov(r, n-(i-1), Overflow); 2376 r /= i; 2377 } 2378 return r; 2379 } 2380 2381 /// Determine if any of the operands in this SCEV are a constant or if 2382 /// any of the add or multiply expressions in this SCEV contain a constant. 2383 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2384 SmallVector<const SCEV *, 4> Ops; 2385 Ops.push_back(StartExpr); 2386 while (!Ops.empty()) { 2387 const SCEV *CurrentExpr = Ops.pop_back_val(); 2388 if (isa<SCEVConstant>(*CurrentExpr)) 2389 return true; 2390 2391 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2392 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2393 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2394 } 2395 } 2396 return false; 2397 } 2398 2399 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2400 /// possible. 2401 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2402 SCEV::NoWrapFlags Flags) { 2403 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2404 "only nuw or nsw allowed"); 2405 assert(!Ops.empty() && "Cannot get empty mul!"); 2406 if (Ops.size() == 1) return Ops[0]; 2407 #ifndef NDEBUG 2408 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2409 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2410 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2411 "SCEVMulExpr operand types don't match!"); 2412 #endif 2413 2414 // Sort by complexity, this groups all similar expression types together. 2415 GroupByComplexity(Ops, &LI); 2416 2417 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2418 2419 // If there are any constants, fold them together. 2420 unsigned Idx = 0; 2421 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2422 2423 // C1*(C2+V) -> C1*C2 + C1*V 2424 if (Ops.size() == 2) 2425 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2426 // If any of Add's ops are Adds or Muls with a constant, 2427 // apply this transformation as well. 2428 if (Add->getNumOperands() == 2) 2429 if (containsConstantSomewhere(Add)) 2430 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2431 getMulExpr(LHSC, Add->getOperand(1))); 2432 2433 ++Idx; 2434 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2435 // We found two constants, fold them together! 2436 ConstantInt *Fold = ConstantInt::get(getContext(), 2437 LHSC->getValue()->getValue() * 2438 RHSC->getValue()->getValue()); 2439 Ops[0] = getConstant(Fold); 2440 Ops.erase(Ops.begin()+1); // Erase the folded element 2441 if (Ops.size() == 1) return Ops[0]; 2442 LHSC = cast<SCEVConstant>(Ops[0]); 2443 } 2444 2445 // If we are left with a constant one being multiplied, strip it off. 2446 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2447 Ops.erase(Ops.begin()); 2448 --Idx; 2449 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2450 // If we have a multiply of zero, it will always be zero. 2451 return Ops[0]; 2452 } else if (Ops[0]->isAllOnesValue()) { 2453 // If we have a mul by -1 of an add, try distributing the -1 among the 2454 // add operands. 2455 if (Ops.size() == 2) { 2456 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2457 SmallVector<const SCEV *, 4> NewOps; 2458 bool AnyFolded = false; 2459 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2460 E = Add->op_end(); I != E; ++I) { 2461 const SCEV *Mul = getMulExpr(Ops[0], *I); 2462 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2463 NewOps.push_back(Mul); 2464 } 2465 if (AnyFolded) 2466 return getAddExpr(NewOps); 2467 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2468 // Negation preserves a recurrence's no self-wrap property. 2469 SmallVector<const SCEV *, 4> Operands; 2470 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2471 E = AddRec->op_end(); I != E; ++I) { 2472 Operands.push_back(getMulExpr(Ops[0], *I)); 2473 } 2474 return getAddRecExpr(Operands, AddRec->getLoop(), 2475 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2476 } 2477 } 2478 } 2479 2480 if (Ops.size() == 1) 2481 return Ops[0]; 2482 } 2483 2484 // Skip over the add expression until we get to a multiply. 2485 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2486 ++Idx; 2487 2488 // If there are mul operands inline them all into this expression. 2489 if (Idx < Ops.size()) { 2490 bool DeletedMul = false; 2491 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2492 // If we have an mul, expand the mul operands onto the end of the operands 2493 // list. 2494 Ops.erase(Ops.begin()+Idx); 2495 Ops.append(Mul->op_begin(), Mul->op_end()); 2496 DeletedMul = true; 2497 } 2498 2499 // If we deleted at least one mul, we added operands to the end of the list, 2500 // and they are not necessarily sorted. Recurse to resort and resimplify 2501 // any operands we just acquired. 2502 if (DeletedMul) 2503 return getMulExpr(Ops); 2504 } 2505 2506 // If there are any add recurrences in the operands list, see if any other 2507 // added values are loop invariant. If so, we can fold them into the 2508 // recurrence. 2509 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2510 ++Idx; 2511 2512 // Scan over all recurrences, trying to fold loop invariants into them. 2513 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2514 // Scan all of the other operands to this mul and add them to the vector if 2515 // they are loop invariant w.r.t. the recurrence. 2516 SmallVector<const SCEV *, 8> LIOps; 2517 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2518 const Loop *AddRecLoop = AddRec->getLoop(); 2519 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2520 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2521 LIOps.push_back(Ops[i]); 2522 Ops.erase(Ops.begin()+i); 2523 --i; --e; 2524 } 2525 2526 // If we found some loop invariants, fold them into the recurrence. 2527 if (!LIOps.empty()) { 2528 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2529 SmallVector<const SCEV *, 4> NewOps; 2530 NewOps.reserve(AddRec->getNumOperands()); 2531 const SCEV *Scale = getMulExpr(LIOps); 2532 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2533 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2534 2535 // Build the new addrec. Propagate the NUW and NSW flags if both the 2536 // outer mul and the inner addrec are guaranteed to have no overflow. 2537 // 2538 // No self-wrap cannot be guaranteed after changing the step size, but 2539 // will be inferred if either NUW or NSW is true. 2540 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2541 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2542 2543 // If all of the other operands were loop invariant, we are done. 2544 if (Ops.size() == 1) return NewRec; 2545 2546 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2547 for (unsigned i = 0;; ++i) 2548 if (Ops[i] == AddRec) { 2549 Ops[i] = NewRec; 2550 break; 2551 } 2552 return getMulExpr(Ops); 2553 } 2554 2555 // Okay, if there weren't any loop invariants to be folded, check to see if 2556 // there are multiple AddRec's with the same loop induction variable being 2557 // multiplied together. If so, we can fold them. 2558 2559 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2560 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2561 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2562 // ]]],+,...up to x=2n}. 2563 // Note that the arguments to choose() are always integers with values 2564 // known at compile time, never SCEV objects. 2565 // 2566 // The implementation avoids pointless extra computations when the two 2567 // addrec's are of different length (mathematically, it's equivalent to 2568 // an infinite stream of zeros on the right). 2569 bool OpsModified = false; 2570 for (unsigned OtherIdx = Idx+1; 2571 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2572 ++OtherIdx) { 2573 const SCEVAddRecExpr *OtherAddRec = 2574 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2575 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2576 continue; 2577 2578 bool Overflow = false; 2579 Type *Ty = AddRec->getType(); 2580 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2581 SmallVector<const SCEV*, 7> AddRecOps; 2582 for (int x = 0, xe = AddRec->getNumOperands() + 2583 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2584 const SCEV *Term = getZero(Ty); 2585 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2586 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2587 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2588 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2589 z < ze && !Overflow; ++z) { 2590 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2591 uint64_t Coeff; 2592 if (LargerThan64Bits) 2593 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2594 else 2595 Coeff = Coeff1*Coeff2; 2596 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2597 const SCEV *Term1 = AddRec->getOperand(y-z); 2598 const SCEV *Term2 = OtherAddRec->getOperand(z); 2599 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2600 } 2601 } 2602 AddRecOps.push_back(Term); 2603 } 2604 if (!Overflow) { 2605 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2606 SCEV::FlagAnyWrap); 2607 if (Ops.size() == 2) return NewAddRec; 2608 Ops[Idx] = NewAddRec; 2609 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2610 OpsModified = true; 2611 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2612 if (!AddRec) 2613 break; 2614 } 2615 } 2616 if (OpsModified) 2617 return getMulExpr(Ops); 2618 2619 // Otherwise couldn't fold anything into this recurrence. Move onto the 2620 // next one. 2621 } 2622 2623 // Okay, it looks like we really DO need an mul expr. Check to see if we 2624 // already have one, otherwise create a new one. 2625 FoldingSetNodeID ID; 2626 ID.AddInteger(scMulExpr); 2627 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2628 ID.AddPointer(Ops[i]); 2629 void *IP = nullptr; 2630 SCEVMulExpr *S = 2631 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2632 if (!S) { 2633 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2634 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2635 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2636 O, Ops.size()); 2637 UniqueSCEVs.InsertNode(S, IP); 2638 } 2639 S->setNoWrapFlags(Flags); 2640 return S; 2641 } 2642 2643 /// getUDivExpr - Get a canonical unsigned division expression, or something 2644 /// simpler if possible. 2645 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2646 const SCEV *RHS) { 2647 assert(getEffectiveSCEVType(LHS->getType()) == 2648 getEffectiveSCEVType(RHS->getType()) && 2649 "SCEVUDivExpr operand types don't match!"); 2650 2651 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2652 if (RHSC->getValue()->equalsInt(1)) 2653 return LHS; // X udiv 1 --> x 2654 // If the denominator is zero, the result of the udiv is undefined. Don't 2655 // try to analyze it, because the resolution chosen here may differ from 2656 // the resolution chosen in other parts of the compiler. 2657 if (!RHSC->getValue()->isZero()) { 2658 // Determine if the division can be folded into the operands of 2659 // its operands. 2660 // TODO: Generalize this to non-constants by using known-bits information. 2661 Type *Ty = LHS->getType(); 2662 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2663 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2664 // For non-power-of-two values, effectively round the value up to the 2665 // nearest power of two. 2666 if (!RHSC->getValue()->getValue().isPowerOf2()) 2667 ++MaxShiftAmt; 2668 IntegerType *ExtTy = 2669 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2670 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2671 if (const SCEVConstant *Step = 2672 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2673 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2674 const APInt &StepInt = Step->getValue()->getValue(); 2675 const APInt &DivInt = RHSC->getValue()->getValue(); 2676 if (!StepInt.urem(DivInt) && 2677 getZeroExtendExpr(AR, ExtTy) == 2678 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2679 getZeroExtendExpr(Step, ExtTy), 2680 AR->getLoop(), SCEV::FlagAnyWrap)) { 2681 SmallVector<const SCEV *, 4> Operands; 2682 for (const SCEV *Op : AR->operands()) 2683 Operands.push_back(getUDivExpr(Op, RHS)); 2684 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2685 } 2686 /// Get a canonical UDivExpr for a recurrence. 2687 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2688 // We can currently only fold X%N if X is constant. 2689 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2690 if (StartC && !DivInt.urem(StepInt) && 2691 getZeroExtendExpr(AR, ExtTy) == 2692 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2693 getZeroExtendExpr(Step, ExtTy), 2694 AR->getLoop(), SCEV::FlagAnyWrap)) { 2695 const APInt &StartInt = StartC->getValue()->getValue(); 2696 const APInt &StartRem = StartInt.urem(StepInt); 2697 if (StartRem != 0) 2698 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2699 AR->getLoop(), SCEV::FlagNW); 2700 } 2701 } 2702 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2703 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2704 SmallVector<const SCEV *, 4> Operands; 2705 for (const SCEV *Op : M->operands()) 2706 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2707 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2708 // Find an operand that's safely divisible. 2709 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2710 const SCEV *Op = M->getOperand(i); 2711 const SCEV *Div = getUDivExpr(Op, RHSC); 2712 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2713 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2714 M->op_end()); 2715 Operands[i] = Div; 2716 return getMulExpr(Operands); 2717 } 2718 } 2719 } 2720 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2721 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2722 SmallVector<const SCEV *, 4> Operands; 2723 for (const SCEV *Op : A->operands()) 2724 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2725 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2726 Operands.clear(); 2727 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2728 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2729 if (isa<SCEVUDivExpr>(Op) || 2730 getMulExpr(Op, RHS) != A->getOperand(i)) 2731 break; 2732 Operands.push_back(Op); 2733 } 2734 if (Operands.size() == A->getNumOperands()) 2735 return getAddExpr(Operands); 2736 } 2737 } 2738 2739 // Fold if both operands are constant. 2740 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2741 Constant *LHSCV = LHSC->getValue(); 2742 Constant *RHSCV = RHSC->getValue(); 2743 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2744 RHSCV))); 2745 } 2746 } 2747 } 2748 2749 FoldingSetNodeID ID; 2750 ID.AddInteger(scUDivExpr); 2751 ID.AddPointer(LHS); 2752 ID.AddPointer(RHS); 2753 void *IP = nullptr; 2754 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2755 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2756 LHS, RHS); 2757 UniqueSCEVs.InsertNode(S, IP); 2758 return S; 2759 } 2760 2761 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2762 APInt A = C1->getValue()->getValue().abs(); 2763 APInt B = C2->getValue()->getValue().abs(); 2764 uint32_t ABW = A.getBitWidth(); 2765 uint32_t BBW = B.getBitWidth(); 2766 2767 if (ABW > BBW) 2768 B = B.zext(ABW); 2769 else if (ABW < BBW) 2770 A = A.zext(BBW); 2771 2772 return APIntOps::GreatestCommonDivisor(A, B); 2773 } 2774 2775 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2776 /// something simpler if possible. There is no representation for an exact udiv 2777 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2778 /// We can't do this when it's not exact because the udiv may be clearing bits. 2779 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2780 const SCEV *RHS) { 2781 // TODO: we could try to find factors in all sorts of things, but for now we 2782 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2783 // end of this file for inspiration. 2784 2785 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2786 if (!Mul) 2787 return getUDivExpr(LHS, RHS); 2788 2789 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2790 // If the mulexpr multiplies by a constant, then that constant must be the 2791 // first element of the mulexpr. 2792 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2793 if (LHSCst == RHSCst) { 2794 SmallVector<const SCEV *, 2> Operands; 2795 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2796 return getMulExpr(Operands); 2797 } 2798 2799 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2800 // that there's a factor provided by one of the other terms. We need to 2801 // check. 2802 APInt Factor = gcd(LHSCst, RHSCst); 2803 if (!Factor.isIntN(1)) { 2804 LHSCst = cast<SCEVConstant>( 2805 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2806 RHSCst = cast<SCEVConstant>( 2807 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2808 SmallVector<const SCEV *, 2> Operands; 2809 Operands.push_back(LHSCst); 2810 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2811 LHS = getMulExpr(Operands); 2812 RHS = RHSCst; 2813 Mul = dyn_cast<SCEVMulExpr>(LHS); 2814 if (!Mul) 2815 return getUDivExactExpr(LHS, RHS); 2816 } 2817 } 2818 } 2819 2820 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2821 if (Mul->getOperand(i) == RHS) { 2822 SmallVector<const SCEV *, 2> Operands; 2823 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2824 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2825 return getMulExpr(Operands); 2826 } 2827 } 2828 2829 return getUDivExpr(LHS, RHS); 2830 } 2831 2832 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2833 /// Simplify the expression as much as possible. 2834 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2835 const Loop *L, 2836 SCEV::NoWrapFlags Flags) { 2837 SmallVector<const SCEV *, 4> Operands; 2838 Operands.push_back(Start); 2839 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2840 if (StepChrec->getLoop() == L) { 2841 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2842 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2843 } 2844 2845 Operands.push_back(Step); 2846 return getAddRecExpr(Operands, L, Flags); 2847 } 2848 2849 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2850 /// Simplify the expression as much as possible. 2851 const SCEV * 2852 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2853 const Loop *L, SCEV::NoWrapFlags Flags) { 2854 if (Operands.size() == 1) return Operands[0]; 2855 #ifndef NDEBUG 2856 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2857 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2858 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2859 "SCEVAddRecExpr operand types don't match!"); 2860 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2861 assert(isLoopInvariant(Operands[i], L) && 2862 "SCEVAddRecExpr operand is not loop-invariant!"); 2863 #endif 2864 2865 if (Operands.back()->isZero()) { 2866 Operands.pop_back(); 2867 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2868 } 2869 2870 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2871 // use that information to infer NUW and NSW flags. However, computing a 2872 // BE count requires calling getAddRecExpr, so we may not yet have a 2873 // meaningful BE count at this point (and if we don't, we'd be stuck 2874 // with a SCEVCouldNotCompute as the cached BE count). 2875 2876 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2877 2878 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2879 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2880 const Loop *NestedLoop = NestedAR->getLoop(); 2881 if (L->contains(NestedLoop) 2882 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2883 : (!NestedLoop->contains(L) && 2884 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2885 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2886 NestedAR->op_end()); 2887 Operands[0] = NestedAR->getStart(); 2888 // AddRecs require their operands be loop-invariant with respect to their 2889 // loops. Don't perform this transformation if it would break this 2890 // requirement. 2891 bool AllInvariant = 2892 std::all_of(Operands.begin(), Operands.end(), 2893 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2894 2895 if (AllInvariant) { 2896 // Create a recurrence for the outer loop with the same step size. 2897 // 2898 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2899 // inner recurrence has the same property. 2900 SCEV::NoWrapFlags OuterFlags = 2901 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2902 2903 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2904 AllInvariant = std::all_of( 2905 NestedOperands.begin(), NestedOperands.end(), 2906 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2907 2908 if (AllInvariant) { 2909 // Ok, both add recurrences are valid after the transformation. 2910 // 2911 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2912 // the outer recurrence has the same property. 2913 SCEV::NoWrapFlags InnerFlags = 2914 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2915 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2916 } 2917 } 2918 // Reset Operands to its original state. 2919 Operands[0] = NestedAR; 2920 } 2921 } 2922 2923 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2924 // already have one, otherwise create a new one. 2925 FoldingSetNodeID ID; 2926 ID.AddInteger(scAddRecExpr); 2927 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2928 ID.AddPointer(Operands[i]); 2929 ID.AddPointer(L); 2930 void *IP = nullptr; 2931 SCEVAddRecExpr *S = 2932 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2933 if (!S) { 2934 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2935 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2936 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2937 O, Operands.size(), L); 2938 UniqueSCEVs.InsertNode(S, IP); 2939 } 2940 S->setNoWrapFlags(Flags); 2941 return S; 2942 } 2943 2944 const SCEV * 2945 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2946 const SmallVectorImpl<const SCEV *> &IndexExprs, 2947 bool InBounds) { 2948 // getSCEV(Base)->getType() has the same address space as Base->getType() 2949 // because SCEV::getType() preserves the address space. 2950 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2951 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2952 // instruction to its SCEV, because the Instruction may be guarded by control 2953 // flow and the no-overflow bits may not be valid for the expression in any 2954 // context. This can be fixed similarly to how these flags are handled for 2955 // adds. 2956 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2957 2958 const SCEV *TotalOffset = getZero(IntPtrTy); 2959 // The address space is unimportant. The first thing we do on CurTy is getting 2960 // its element type. 2961 Type *CurTy = PointerType::getUnqual(PointeeType); 2962 for (const SCEV *IndexExpr : IndexExprs) { 2963 // Compute the (potentially symbolic) offset in bytes for this index. 2964 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2965 // For a struct, add the member offset. 2966 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2967 unsigned FieldNo = Index->getZExtValue(); 2968 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2969 2970 // Add the field offset to the running total offset. 2971 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2972 2973 // Update CurTy to the type of the field at Index. 2974 CurTy = STy->getTypeAtIndex(Index); 2975 } else { 2976 // Update CurTy to its element type. 2977 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2978 // For an array, add the element offset, explicitly scaled. 2979 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2980 // Getelementptr indices are signed. 2981 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2982 2983 // Multiply the index by the element size to compute the element offset. 2984 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2985 2986 // Add the element offset to the running total offset. 2987 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2988 } 2989 } 2990 2991 // Add the total offset from all the GEP indices to the base. 2992 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2993 } 2994 2995 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2996 const SCEV *RHS) { 2997 SmallVector<const SCEV *, 2> Ops; 2998 Ops.push_back(LHS); 2999 Ops.push_back(RHS); 3000 return getSMaxExpr(Ops); 3001 } 3002 3003 const SCEV * 3004 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3005 assert(!Ops.empty() && "Cannot get empty smax!"); 3006 if (Ops.size() == 1) return Ops[0]; 3007 #ifndef NDEBUG 3008 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3009 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3010 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3011 "SCEVSMaxExpr operand types don't match!"); 3012 #endif 3013 3014 // Sort by complexity, this groups all similar expression types together. 3015 GroupByComplexity(Ops, &LI); 3016 3017 // If there are any constants, fold them together. 3018 unsigned Idx = 0; 3019 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3020 ++Idx; 3021 assert(Idx < Ops.size()); 3022 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3023 // We found two constants, fold them together! 3024 ConstantInt *Fold = ConstantInt::get(getContext(), 3025 APIntOps::smax(LHSC->getValue()->getValue(), 3026 RHSC->getValue()->getValue())); 3027 Ops[0] = getConstant(Fold); 3028 Ops.erase(Ops.begin()+1); // Erase the folded element 3029 if (Ops.size() == 1) return Ops[0]; 3030 LHSC = cast<SCEVConstant>(Ops[0]); 3031 } 3032 3033 // If we are left with a constant minimum-int, strip it off. 3034 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3035 Ops.erase(Ops.begin()); 3036 --Idx; 3037 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3038 // If we have an smax with a constant maximum-int, it will always be 3039 // maximum-int. 3040 return Ops[0]; 3041 } 3042 3043 if (Ops.size() == 1) return Ops[0]; 3044 } 3045 3046 // Find the first SMax 3047 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3048 ++Idx; 3049 3050 // Check to see if one of the operands is an SMax. If so, expand its operands 3051 // onto our operand list, and recurse to simplify. 3052 if (Idx < Ops.size()) { 3053 bool DeletedSMax = false; 3054 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3055 Ops.erase(Ops.begin()+Idx); 3056 Ops.append(SMax->op_begin(), SMax->op_end()); 3057 DeletedSMax = true; 3058 } 3059 3060 if (DeletedSMax) 3061 return getSMaxExpr(Ops); 3062 } 3063 3064 // Okay, check to see if the same value occurs in the operand list twice. If 3065 // so, delete one. Since we sorted the list, these values are required to 3066 // be adjacent. 3067 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3068 // X smax Y smax Y --> X smax Y 3069 // X smax Y --> X, if X is always greater than Y 3070 if (Ops[i] == Ops[i+1] || 3071 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3072 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3073 --i; --e; 3074 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3075 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3076 --i; --e; 3077 } 3078 3079 if (Ops.size() == 1) return Ops[0]; 3080 3081 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3082 3083 // Okay, it looks like we really DO need an smax expr. Check to see if we 3084 // already have one, otherwise create a new one. 3085 FoldingSetNodeID ID; 3086 ID.AddInteger(scSMaxExpr); 3087 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3088 ID.AddPointer(Ops[i]); 3089 void *IP = nullptr; 3090 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3091 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3092 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3093 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3094 O, Ops.size()); 3095 UniqueSCEVs.InsertNode(S, IP); 3096 return S; 3097 } 3098 3099 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3100 const SCEV *RHS) { 3101 SmallVector<const SCEV *, 2> Ops; 3102 Ops.push_back(LHS); 3103 Ops.push_back(RHS); 3104 return getUMaxExpr(Ops); 3105 } 3106 3107 const SCEV * 3108 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3109 assert(!Ops.empty() && "Cannot get empty umax!"); 3110 if (Ops.size() == 1) return Ops[0]; 3111 #ifndef NDEBUG 3112 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3113 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3114 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3115 "SCEVUMaxExpr operand types don't match!"); 3116 #endif 3117 3118 // Sort by complexity, this groups all similar expression types together. 3119 GroupByComplexity(Ops, &LI); 3120 3121 // If there are any constants, fold them together. 3122 unsigned Idx = 0; 3123 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3124 ++Idx; 3125 assert(Idx < Ops.size()); 3126 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3127 // We found two constants, fold them together! 3128 ConstantInt *Fold = ConstantInt::get(getContext(), 3129 APIntOps::umax(LHSC->getValue()->getValue(), 3130 RHSC->getValue()->getValue())); 3131 Ops[0] = getConstant(Fold); 3132 Ops.erase(Ops.begin()+1); // Erase the folded element 3133 if (Ops.size() == 1) return Ops[0]; 3134 LHSC = cast<SCEVConstant>(Ops[0]); 3135 } 3136 3137 // If we are left with a constant minimum-int, strip it off. 3138 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3139 Ops.erase(Ops.begin()); 3140 --Idx; 3141 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3142 // If we have an umax with a constant maximum-int, it will always be 3143 // maximum-int. 3144 return Ops[0]; 3145 } 3146 3147 if (Ops.size() == 1) return Ops[0]; 3148 } 3149 3150 // Find the first UMax 3151 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3152 ++Idx; 3153 3154 // Check to see if one of the operands is a UMax. If so, expand its operands 3155 // onto our operand list, and recurse to simplify. 3156 if (Idx < Ops.size()) { 3157 bool DeletedUMax = false; 3158 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3159 Ops.erase(Ops.begin()+Idx); 3160 Ops.append(UMax->op_begin(), UMax->op_end()); 3161 DeletedUMax = true; 3162 } 3163 3164 if (DeletedUMax) 3165 return getUMaxExpr(Ops); 3166 } 3167 3168 // Okay, check to see if the same value occurs in the operand list twice. If 3169 // so, delete one. Since we sorted the list, these values are required to 3170 // be adjacent. 3171 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3172 // X umax Y umax Y --> X umax Y 3173 // X umax Y --> X, if X is always greater than Y 3174 if (Ops[i] == Ops[i+1] || 3175 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3176 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3177 --i; --e; 3178 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3179 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3180 --i; --e; 3181 } 3182 3183 if (Ops.size() == 1) return Ops[0]; 3184 3185 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3186 3187 // Okay, it looks like we really DO need a umax expr. Check to see if we 3188 // already have one, otherwise create a new one. 3189 FoldingSetNodeID ID; 3190 ID.AddInteger(scUMaxExpr); 3191 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3192 ID.AddPointer(Ops[i]); 3193 void *IP = nullptr; 3194 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3195 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3196 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3197 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3198 O, Ops.size()); 3199 UniqueSCEVs.InsertNode(S, IP); 3200 return S; 3201 } 3202 3203 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3204 const SCEV *RHS) { 3205 // ~smax(~x, ~y) == smin(x, y). 3206 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3207 } 3208 3209 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3210 const SCEV *RHS) { 3211 // ~umax(~x, ~y) == umin(x, y) 3212 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3213 } 3214 3215 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3216 // We can bypass creating a target-independent 3217 // constant expression and then folding it back into a ConstantInt. 3218 // This is just a compile-time optimization. 3219 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3220 } 3221 3222 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3223 StructType *STy, 3224 unsigned FieldNo) { 3225 // We can bypass creating a target-independent 3226 // constant expression and then folding it back into a ConstantInt. 3227 // This is just a compile-time optimization. 3228 return getConstant( 3229 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3230 } 3231 3232 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3233 // Don't attempt to do anything other than create a SCEVUnknown object 3234 // here. createSCEV only calls getUnknown after checking for all other 3235 // interesting possibilities, and any other code that calls getUnknown 3236 // is doing so in order to hide a value from SCEV canonicalization. 3237 3238 FoldingSetNodeID ID; 3239 ID.AddInteger(scUnknown); 3240 ID.AddPointer(V); 3241 void *IP = nullptr; 3242 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3243 assert(cast<SCEVUnknown>(S)->getValue() == V && 3244 "Stale SCEVUnknown in uniquing map!"); 3245 return S; 3246 } 3247 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3248 FirstUnknown); 3249 FirstUnknown = cast<SCEVUnknown>(S); 3250 UniqueSCEVs.InsertNode(S, IP); 3251 return S; 3252 } 3253 3254 //===----------------------------------------------------------------------===// 3255 // Basic SCEV Analysis and PHI Idiom Recognition Code 3256 // 3257 3258 /// isSCEVable - Test if values of the given type are analyzable within 3259 /// the SCEV framework. This primarily includes integer types, and it 3260 /// can optionally include pointer types if the ScalarEvolution class 3261 /// has access to target-specific information. 3262 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3263 // Integers and pointers are always SCEVable. 3264 return Ty->isIntegerTy() || Ty->isPointerTy(); 3265 } 3266 3267 /// getTypeSizeInBits - Return the size in bits of the specified type, 3268 /// for which isSCEVable must return true. 3269 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3270 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3271 return getDataLayout().getTypeSizeInBits(Ty); 3272 } 3273 3274 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3275 /// the given type and which represents how SCEV will treat the given 3276 /// type, for which isSCEVable must return true. For pointer types, 3277 /// this is the pointer-sized integer type. 3278 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3279 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3280 3281 if (Ty->isIntegerTy()) 3282 return Ty; 3283 3284 // The only other support type is pointer. 3285 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3286 return getDataLayout().getIntPtrType(Ty); 3287 } 3288 3289 const SCEV *ScalarEvolution::getCouldNotCompute() { 3290 return CouldNotCompute.get(); 3291 } 3292 3293 namespace { 3294 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3295 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3296 // is set iff if find such SCEVUnknown. 3297 // 3298 struct FindInvalidSCEVUnknown { 3299 bool FindOne; 3300 FindInvalidSCEVUnknown() { FindOne = false; } 3301 bool follow(const SCEV *S) { 3302 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3303 case scConstant: 3304 return false; 3305 case scUnknown: 3306 if (!cast<SCEVUnknown>(S)->getValue()) 3307 FindOne = true; 3308 return false; 3309 default: 3310 return true; 3311 } 3312 } 3313 bool isDone() const { return FindOne; } 3314 }; 3315 } 3316 3317 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3318 FindInvalidSCEVUnknown F; 3319 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3320 ST.visitAll(S); 3321 3322 return !F.FindOne; 3323 } 3324 3325 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3326 /// expression and create a new one. 3327 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3328 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3329 3330 const SCEV *S = getExistingSCEV(V); 3331 if (S == nullptr) { 3332 S = createSCEV(V); 3333 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3334 } 3335 return S; 3336 } 3337 3338 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3339 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3340 3341 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3342 if (I != ValueExprMap.end()) { 3343 const SCEV *S = I->second; 3344 if (checkValidity(S)) 3345 return S; 3346 ValueExprMap.erase(I); 3347 } 3348 return nullptr; 3349 } 3350 3351 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3352 /// 3353 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3354 SCEV::NoWrapFlags Flags) { 3355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3356 return getConstant( 3357 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3358 3359 Type *Ty = V->getType(); 3360 Ty = getEffectiveSCEVType(Ty); 3361 return getMulExpr( 3362 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3363 } 3364 3365 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3366 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3367 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3368 return getConstant( 3369 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3370 3371 Type *Ty = V->getType(); 3372 Ty = getEffectiveSCEVType(Ty); 3373 const SCEV *AllOnes = 3374 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3375 return getMinusSCEV(AllOnes, V); 3376 } 3377 3378 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3379 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3380 SCEV::NoWrapFlags Flags) { 3381 // Fast path: X - X --> 0. 3382 if (LHS == RHS) 3383 return getZero(LHS->getType()); 3384 3385 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3386 // makes it so that we cannot make much use of NUW. 3387 auto AddFlags = SCEV::FlagAnyWrap; 3388 const bool RHSIsNotMinSigned = 3389 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3390 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3391 // Let M be the minimum representable signed value. Then (-1)*RHS 3392 // signed-wraps if and only if RHS is M. That can happen even for 3393 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3394 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3395 // (-1)*RHS, we need to prove that RHS != M. 3396 // 3397 // If LHS is non-negative and we know that LHS - RHS does not 3398 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3399 // either by proving that RHS > M or that LHS >= 0. 3400 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3401 AddFlags = SCEV::FlagNSW; 3402 } 3403 } 3404 3405 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3406 // RHS is NSW and LHS >= 0. 3407 // 3408 // The difficulty here is that the NSW flag may have been proven 3409 // relative to a loop that is to be found in a recurrence in LHS and 3410 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3411 // larger scope than intended. 3412 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3413 3414 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3415 } 3416 3417 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3418 /// input value to the specified type. If the type must be extended, it is zero 3419 /// extended. 3420 const SCEV * 3421 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3422 Type *SrcTy = V->getType(); 3423 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3424 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3425 "Cannot truncate or zero extend with non-integer arguments!"); 3426 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3427 return V; // No conversion 3428 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3429 return getTruncateExpr(V, Ty); 3430 return getZeroExtendExpr(V, Ty); 3431 } 3432 3433 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3434 /// input value to the specified type. If the type must be extended, it is sign 3435 /// extended. 3436 const SCEV * 3437 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3438 Type *Ty) { 3439 Type *SrcTy = V->getType(); 3440 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3441 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3442 "Cannot truncate or zero extend with non-integer arguments!"); 3443 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3444 return V; // No conversion 3445 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3446 return getTruncateExpr(V, Ty); 3447 return getSignExtendExpr(V, Ty); 3448 } 3449 3450 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3451 /// input value to the specified type. If the type must be extended, it is zero 3452 /// extended. The conversion must not be narrowing. 3453 const SCEV * 3454 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3455 Type *SrcTy = V->getType(); 3456 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3457 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3458 "Cannot noop or zero extend with non-integer arguments!"); 3459 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3460 "getNoopOrZeroExtend cannot truncate!"); 3461 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3462 return V; // No conversion 3463 return getZeroExtendExpr(V, Ty); 3464 } 3465 3466 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3467 /// input value to the specified type. If the type must be extended, it is sign 3468 /// extended. The conversion must not be narrowing. 3469 const SCEV * 3470 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3471 Type *SrcTy = V->getType(); 3472 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3473 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3474 "Cannot noop or sign extend with non-integer arguments!"); 3475 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3476 "getNoopOrSignExtend cannot truncate!"); 3477 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3478 return V; // No conversion 3479 return getSignExtendExpr(V, Ty); 3480 } 3481 3482 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3483 /// the input value to the specified type. If the type must be extended, 3484 /// it is extended with unspecified bits. The conversion must not be 3485 /// narrowing. 3486 const SCEV * 3487 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3488 Type *SrcTy = V->getType(); 3489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3490 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3491 "Cannot noop or any extend with non-integer arguments!"); 3492 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3493 "getNoopOrAnyExtend cannot truncate!"); 3494 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3495 return V; // No conversion 3496 return getAnyExtendExpr(V, Ty); 3497 } 3498 3499 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3500 /// input value to the specified type. The conversion must not be widening. 3501 const SCEV * 3502 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3503 Type *SrcTy = V->getType(); 3504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3505 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3506 "Cannot truncate or noop with non-integer arguments!"); 3507 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3508 "getTruncateOrNoop cannot extend!"); 3509 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3510 return V; // No conversion 3511 return getTruncateExpr(V, Ty); 3512 } 3513 3514 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3515 /// the types using zero-extension, and then perform a umax operation 3516 /// with them. 3517 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3518 const SCEV *RHS) { 3519 const SCEV *PromotedLHS = LHS; 3520 const SCEV *PromotedRHS = RHS; 3521 3522 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3523 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3524 else 3525 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3526 3527 return getUMaxExpr(PromotedLHS, PromotedRHS); 3528 } 3529 3530 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3531 /// the types using zero-extension, and then perform a umin operation 3532 /// with them. 3533 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3534 const SCEV *RHS) { 3535 const SCEV *PromotedLHS = LHS; 3536 const SCEV *PromotedRHS = RHS; 3537 3538 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3539 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3540 else 3541 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3542 3543 return getUMinExpr(PromotedLHS, PromotedRHS); 3544 } 3545 3546 /// getPointerBase - Transitively follow the chain of pointer-type operands 3547 /// until reaching a SCEV that does not have a single pointer operand. This 3548 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3549 /// but corner cases do exist. 3550 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3551 // A pointer operand may evaluate to a nonpointer expression, such as null. 3552 if (!V->getType()->isPointerTy()) 3553 return V; 3554 3555 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3556 return getPointerBase(Cast->getOperand()); 3557 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3558 const SCEV *PtrOp = nullptr; 3559 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3560 I != E; ++I) { 3561 if ((*I)->getType()->isPointerTy()) { 3562 // Cannot find the base of an expression with multiple pointer operands. 3563 if (PtrOp) 3564 return V; 3565 PtrOp = *I; 3566 } 3567 } 3568 if (!PtrOp) 3569 return V; 3570 return getPointerBase(PtrOp); 3571 } 3572 return V; 3573 } 3574 3575 /// PushDefUseChildren - Push users of the given Instruction 3576 /// onto the given Worklist. 3577 static void 3578 PushDefUseChildren(Instruction *I, 3579 SmallVectorImpl<Instruction *> &Worklist) { 3580 // Push the def-use children onto the Worklist stack. 3581 for (User *U : I->users()) 3582 Worklist.push_back(cast<Instruction>(U)); 3583 } 3584 3585 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3586 /// instructions that depend on the given instruction and removes them from 3587 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3588 /// resolution. 3589 void 3590 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3591 SmallVector<Instruction *, 16> Worklist; 3592 PushDefUseChildren(PN, Worklist); 3593 3594 SmallPtrSet<Instruction *, 8> Visited; 3595 Visited.insert(PN); 3596 while (!Worklist.empty()) { 3597 Instruction *I = Worklist.pop_back_val(); 3598 if (!Visited.insert(I).second) 3599 continue; 3600 3601 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3602 if (It != ValueExprMap.end()) { 3603 const SCEV *Old = It->second; 3604 3605 // Short-circuit the def-use traversal if the symbolic name 3606 // ceases to appear in expressions. 3607 if (Old != SymName && !hasOperand(Old, SymName)) 3608 continue; 3609 3610 // SCEVUnknown for a PHI either means that it has an unrecognized 3611 // structure, it's a PHI that's in the progress of being computed 3612 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3613 // additional loop trip count information isn't going to change anything. 3614 // In the second case, createNodeForPHI will perform the necessary 3615 // updates on its own when it gets to that point. In the third, we do 3616 // want to forget the SCEVUnknown. 3617 if (!isa<PHINode>(I) || 3618 !isa<SCEVUnknown>(Old) || 3619 (I != PN && Old == SymName)) { 3620 forgetMemoizedResults(Old); 3621 ValueExprMap.erase(It); 3622 } 3623 } 3624 3625 PushDefUseChildren(I, Worklist); 3626 } 3627 } 3628 3629 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3630 public: 3631 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3632 ScalarEvolution &SE) { 3633 SCEVInitRewriter Rewriter(L, SE); 3634 const SCEV *Result = Rewriter.visit(Scev); 3635 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3636 } 3637 3638 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3639 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3640 3641 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3642 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3643 Valid = false; 3644 return Expr; 3645 } 3646 3647 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3648 // Only allow AddRecExprs for this loop. 3649 if (Expr->getLoop() == L) 3650 return Expr->getStart(); 3651 Valid = false; 3652 return Expr; 3653 } 3654 3655 bool isValid() { return Valid; } 3656 3657 private: 3658 const Loop *L; 3659 bool Valid; 3660 }; 3661 3662 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3663 public: 3664 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3665 ScalarEvolution &SE) { 3666 SCEVShiftRewriter Rewriter(L, SE); 3667 const SCEV *Result = Rewriter.visit(Scev); 3668 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3669 } 3670 3671 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3672 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3673 3674 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3675 // Only allow AddRecExprs for this loop. 3676 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3677 Valid = false; 3678 return Expr; 3679 } 3680 3681 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3682 if (Expr->getLoop() == L && Expr->isAffine()) 3683 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3684 Valid = false; 3685 return Expr; 3686 } 3687 bool isValid() { return Valid; } 3688 3689 private: 3690 const Loop *L; 3691 bool Valid; 3692 }; 3693 3694 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3695 const Loop *L = LI.getLoopFor(PN->getParent()); 3696 if (!L || L->getHeader() != PN->getParent()) 3697 return nullptr; 3698 3699 // The loop may have multiple entrances or multiple exits; we can analyze 3700 // this phi as an addrec if it has a unique entry value and a unique 3701 // backedge value. 3702 Value *BEValueV = nullptr, *StartValueV = nullptr; 3703 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3704 Value *V = PN->getIncomingValue(i); 3705 if (L->contains(PN->getIncomingBlock(i))) { 3706 if (!BEValueV) { 3707 BEValueV = V; 3708 } else if (BEValueV != V) { 3709 BEValueV = nullptr; 3710 break; 3711 } 3712 } else if (!StartValueV) { 3713 StartValueV = V; 3714 } else if (StartValueV != V) { 3715 StartValueV = nullptr; 3716 break; 3717 } 3718 } 3719 if (BEValueV && StartValueV) { 3720 // While we are analyzing this PHI node, handle its value symbolically. 3721 const SCEV *SymbolicName = getUnknown(PN); 3722 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3723 "PHI node already processed?"); 3724 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3725 3726 // Using this symbolic name for the PHI, analyze the value coming around 3727 // the back-edge. 3728 const SCEV *BEValue = getSCEV(BEValueV); 3729 3730 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3731 // has a special value for the first iteration of the loop. 3732 3733 // If the value coming around the backedge is an add with the symbolic 3734 // value we just inserted, then we found a simple induction variable! 3735 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3736 // If there is a single occurrence of the symbolic value, replace it 3737 // with a recurrence. 3738 unsigned FoundIndex = Add->getNumOperands(); 3739 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3740 if (Add->getOperand(i) == SymbolicName) 3741 if (FoundIndex == e) { 3742 FoundIndex = i; 3743 break; 3744 } 3745 3746 if (FoundIndex != Add->getNumOperands()) { 3747 // Create an add with everything but the specified operand. 3748 SmallVector<const SCEV *, 8> Ops; 3749 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3750 if (i != FoundIndex) 3751 Ops.push_back(Add->getOperand(i)); 3752 const SCEV *Accum = getAddExpr(Ops); 3753 3754 // This is not a valid addrec if the step amount is varying each 3755 // loop iteration, but is not itself an addrec in this loop. 3756 if (isLoopInvariant(Accum, L) || 3757 (isa<SCEVAddRecExpr>(Accum) && 3758 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3759 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3760 3761 // If the increment doesn't overflow, then neither the addrec nor 3762 // the post-increment will overflow. 3763 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3764 if (OBO->getOperand(0) == PN) { 3765 if (OBO->hasNoUnsignedWrap()) 3766 Flags = setFlags(Flags, SCEV::FlagNUW); 3767 if (OBO->hasNoSignedWrap()) 3768 Flags = setFlags(Flags, SCEV::FlagNSW); 3769 } 3770 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3771 // If the increment is an inbounds GEP, then we know the address 3772 // space cannot be wrapped around. We cannot make any guarantee 3773 // about signed or unsigned overflow because pointers are 3774 // unsigned but we may have a negative index from the base 3775 // pointer. We can guarantee that no unsigned wrap occurs if the 3776 // indices form a positive value. 3777 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3778 Flags = setFlags(Flags, SCEV::FlagNW); 3779 3780 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3781 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3782 Flags = setFlags(Flags, SCEV::FlagNUW); 3783 } 3784 3785 // We cannot transfer nuw and nsw flags from subtraction 3786 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3787 // for instance. 3788 } 3789 3790 const SCEV *StartVal = getSCEV(StartValueV); 3791 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3792 3793 // Since the no-wrap flags are on the increment, they apply to the 3794 // post-incremented value as well. 3795 if (isLoopInvariant(Accum, L)) 3796 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3797 3798 // Okay, for the entire analysis of this edge we assumed the PHI 3799 // to be symbolic. We now need to go back and purge all of the 3800 // entries for the scalars that use the symbolic expression. 3801 ForgetSymbolicName(PN, SymbolicName); 3802 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3803 return PHISCEV; 3804 } 3805 } 3806 } else { 3807 // Otherwise, this could be a loop like this: 3808 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3809 // In this case, j = {1,+,1} and BEValue is j. 3810 // Because the other in-value of i (0) fits the evolution of BEValue 3811 // i really is an addrec evolution. 3812 // 3813 // We can generalize this saying that i is the shifted value of BEValue 3814 // by one iteration: 3815 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3816 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3817 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3818 if (Shifted != getCouldNotCompute() && 3819 Start != getCouldNotCompute()) { 3820 const SCEV *StartVal = getSCEV(StartValueV); 3821 if (Start == StartVal) { 3822 // Okay, for the entire analysis of this edge we assumed the PHI 3823 // to be symbolic. We now need to go back and purge all of the 3824 // entries for the scalars that use the symbolic expression. 3825 ForgetSymbolicName(PN, SymbolicName); 3826 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3827 return Shifted; 3828 } 3829 } 3830 } 3831 } 3832 3833 return nullptr; 3834 } 3835 3836 // Checks if the SCEV S is available at BB. S is considered available at BB 3837 // if S can be materialized at BB without introducing a fault. 3838 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3839 BasicBlock *BB) { 3840 struct CheckAvailable { 3841 bool TraversalDone = false; 3842 bool Available = true; 3843 3844 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3845 BasicBlock *BB = nullptr; 3846 DominatorTree &DT; 3847 3848 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3849 : L(L), BB(BB), DT(DT) {} 3850 3851 bool setUnavailable() { 3852 TraversalDone = true; 3853 Available = false; 3854 return false; 3855 } 3856 3857 bool follow(const SCEV *S) { 3858 switch (S->getSCEVType()) { 3859 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3860 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3861 // These expressions are available if their operand(s) is/are. 3862 return true; 3863 3864 case scAddRecExpr: { 3865 // We allow add recurrences that are on the loop BB is in, or some 3866 // outer loop. This guarantees availability because the value of the 3867 // add recurrence at BB is simply the "current" value of the induction 3868 // variable. We can relax this in the future; for instance an add 3869 // recurrence on a sibling dominating loop is also available at BB. 3870 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3871 if (L && (ARLoop == L || ARLoop->contains(L))) 3872 return true; 3873 3874 return setUnavailable(); 3875 } 3876 3877 case scUnknown: { 3878 // For SCEVUnknown, we check for simple dominance. 3879 const auto *SU = cast<SCEVUnknown>(S); 3880 Value *V = SU->getValue(); 3881 3882 if (isa<Argument>(V)) 3883 return false; 3884 3885 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3886 return false; 3887 3888 return setUnavailable(); 3889 } 3890 3891 case scUDivExpr: 3892 case scCouldNotCompute: 3893 // We do not try to smart about these at all. 3894 return setUnavailable(); 3895 } 3896 llvm_unreachable("switch should be fully covered!"); 3897 } 3898 3899 bool isDone() { return TraversalDone; } 3900 }; 3901 3902 CheckAvailable CA(L, BB, DT); 3903 SCEVTraversal<CheckAvailable> ST(CA); 3904 3905 ST.visitAll(S); 3906 return CA.Available; 3907 } 3908 3909 // Try to match a control flow sequence that branches out at BI and merges back 3910 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3911 // match. 3912 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3913 Value *&C, Value *&LHS, Value *&RHS) { 3914 C = BI->getCondition(); 3915 3916 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3917 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3918 3919 if (!LeftEdge.isSingleEdge()) 3920 return false; 3921 3922 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3923 3924 Use &LeftUse = Merge->getOperandUse(0); 3925 Use &RightUse = Merge->getOperandUse(1); 3926 3927 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3928 LHS = LeftUse; 3929 RHS = RightUse; 3930 return true; 3931 } 3932 3933 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3934 LHS = RightUse; 3935 RHS = LeftUse; 3936 return true; 3937 } 3938 3939 return false; 3940 } 3941 3942 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3943 if (PN->getNumIncomingValues() == 2) { 3944 const Loop *L = LI.getLoopFor(PN->getParent()); 3945 3946 // We don't want to break LCSSA, even in a SCEV expression tree. 3947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3948 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 3949 return nullptr; 3950 3951 // Try to match 3952 // 3953 // br %cond, label %left, label %right 3954 // left: 3955 // br label %merge 3956 // right: 3957 // br label %merge 3958 // merge: 3959 // V = phi [ %x, %left ], [ %y, %right ] 3960 // 3961 // as "select %cond, %x, %y" 3962 3963 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3964 assert(IDom && "At least the entry block should dominate PN"); 3965 3966 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3967 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3968 3969 if (BI && BI->isConditional() && 3970 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3971 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3972 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3973 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3974 } 3975 3976 return nullptr; 3977 } 3978 3979 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3980 if (const SCEV *S = createAddRecFromPHI(PN)) 3981 return S; 3982 3983 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3984 return S; 3985 3986 // If the PHI has a single incoming value, follow that value, unless the 3987 // PHI's incoming blocks are in a different loop, in which case doing so 3988 // risks breaking LCSSA form. Instcombine would normally zap these, but 3989 // it doesn't have DominatorTree information, so it may miss cases. 3990 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 3991 if (LI.replacementPreservesLCSSAForm(PN, V)) 3992 return getSCEV(V); 3993 3994 // If it's not a loop phi, we can't handle it yet. 3995 return getUnknown(PN); 3996 } 3997 3998 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3999 Value *Cond, 4000 Value *TrueVal, 4001 Value *FalseVal) { 4002 // Handle "constant" branch or select. This can occur for instance when a 4003 // loop pass transforms an inner loop and moves on to process the outer loop. 4004 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4005 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4006 4007 // Try to match some simple smax or umax patterns. 4008 auto *ICI = dyn_cast<ICmpInst>(Cond); 4009 if (!ICI) 4010 return getUnknown(I); 4011 4012 Value *LHS = ICI->getOperand(0); 4013 Value *RHS = ICI->getOperand(1); 4014 4015 switch (ICI->getPredicate()) { 4016 case ICmpInst::ICMP_SLT: 4017 case ICmpInst::ICMP_SLE: 4018 std::swap(LHS, RHS); 4019 // fall through 4020 case ICmpInst::ICMP_SGT: 4021 case ICmpInst::ICMP_SGE: 4022 // a >s b ? a+x : b+x -> smax(a, b)+x 4023 // a >s b ? b+x : a+x -> smin(a, b)+x 4024 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4025 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4026 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4027 const SCEV *LA = getSCEV(TrueVal); 4028 const SCEV *RA = getSCEV(FalseVal); 4029 const SCEV *LDiff = getMinusSCEV(LA, LS); 4030 const SCEV *RDiff = getMinusSCEV(RA, RS); 4031 if (LDiff == RDiff) 4032 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4033 LDiff = getMinusSCEV(LA, RS); 4034 RDiff = getMinusSCEV(RA, LS); 4035 if (LDiff == RDiff) 4036 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4037 } 4038 break; 4039 case ICmpInst::ICMP_ULT: 4040 case ICmpInst::ICMP_ULE: 4041 std::swap(LHS, RHS); 4042 // fall through 4043 case ICmpInst::ICMP_UGT: 4044 case ICmpInst::ICMP_UGE: 4045 // a >u b ? a+x : b+x -> umax(a, b)+x 4046 // a >u b ? b+x : a+x -> umin(a, b)+x 4047 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4048 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4049 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4050 const SCEV *LA = getSCEV(TrueVal); 4051 const SCEV *RA = getSCEV(FalseVal); 4052 const SCEV *LDiff = getMinusSCEV(LA, LS); 4053 const SCEV *RDiff = getMinusSCEV(RA, RS); 4054 if (LDiff == RDiff) 4055 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4056 LDiff = getMinusSCEV(LA, RS); 4057 RDiff = getMinusSCEV(RA, LS); 4058 if (LDiff == RDiff) 4059 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4060 } 4061 break; 4062 case ICmpInst::ICMP_NE: 4063 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4064 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4065 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4066 const SCEV *One = getOne(I->getType()); 4067 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4068 const SCEV *LA = getSCEV(TrueVal); 4069 const SCEV *RA = getSCEV(FalseVal); 4070 const SCEV *LDiff = getMinusSCEV(LA, LS); 4071 const SCEV *RDiff = getMinusSCEV(RA, One); 4072 if (LDiff == RDiff) 4073 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4074 } 4075 break; 4076 case ICmpInst::ICMP_EQ: 4077 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4078 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4079 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4080 const SCEV *One = getOne(I->getType()); 4081 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4082 const SCEV *LA = getSCEV(TrueVal); 4083 const SCEV *RA = getSCEV(FalseVal); 4084 const SCEV *LDiff = getMinusSCEV(LA, One); 4085 const SCEV *RDiff = getMinusSCEV(RA, LS); 4086 if (LDiff == RDiff) 4087 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4088 } 4089 break; 4090 default: 4091 break; 4092 } 4093 4094 return getUnknown(I); 4095 } 4096 4097 /// createNodeForGEP - Expand GEP instructions into add and multiply 4098 /// operations. This allows them to be analyzed by regular SCEV code. 4099 /// 4100 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4101 Value *Base = GEP->getOperand(0); 4102 // Don't attempt to analyze GEPs over unsized objects. 4103 if (!Base->getType()->getPointerElementType()->isSized()) 4104 return getUnknown(GEP); 4105 4106 SmallVector<const SCEV *, 4> IndexExprs; 4107 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4108 IndexExprs.push_back(getSCEV(*Index)); 4109 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4110 GEP->isInBounds()); 4111 } 4112 4113 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4114 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4115 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4116 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4117 uint32_t 4118 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4119 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4120 return C->getValue()->getValue().countTrailingZeros(); 4121 4122 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4123 return std::min(GetMinTrailingZeros(T->getOperand()), 4124 (uint32_t)getTypeSizeInBits(T->getType())); 4125 4126 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4127 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4128 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4129 getTypeSizeInBits(E->getType()) : OpRes; 4130 } 4131 4132 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4133 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4134 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4135 getTypeSizeInBits(E->getType()) : OpRes; 4136 } 4137 4138 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4139 // The result is the min of all operands results. 4140 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4141 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4142 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4143 return MinOpRes; 4144 } 4145 4146 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4147 // The result is the sum of all operands results. 4148 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4149 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4150 for (unsigned i = 1, e = M->getNumOperands(); 4151 SumOpRes != BitWidth && i != e; ++i) 4152 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4153 BitWidth); 4154 return SumOpRes; 4155 } 4156 4157 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4158 // The result is the min of all operands results. 4159 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4160 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4161 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4162 return MinOpRes; 4163 } 4164 4165 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4166 // The result is the min of all operands results. 4167 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4168 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4169 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4170 return MinOpRes; 4171 } 4172 4173 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4174 // The result is the min of all operands results. 4175 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4176 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4177 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4178 return MinOpRes; 4179 } 4180 4181 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4182 // For a SCEVUnknown, ask ValueTracking. 4183 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4184 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4185 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4186 nullptr, &DT); 4187 return Zeros.countTrailingOnes(); 4188 } 4189 4190 // SCEVUDivExpr 4191 return 0; 4192 } 4193 4194 /// GetRangeFromMetadata - Helper method to assign a range to V from 4195 /// metadata present in the IR. 4196 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4197 if (Instruction *I = dyn_cast<Instruction>(V)) 4198 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4199 return getConstantRangeFromMetadata(*MD); 4200 4201 return None; 4202 } 4203 4204 /// getRange - Determine the range for a particular SCEV. If SignHint is 4205 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4206 /// with a "cleaner" unsigned (resp. signed) representation. 4207 /// 4208 ConstantRange 4209 ScalarEvolution::getRange(const SCEV *S, 4210 ScalarEvolution::RangeSignHint SignHint) { 4211 DenseMap<const SCEV *, ConstantRange> &Cache = 4212 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4213 : SignedRanges; 4214 4215 // See if we've computed this range already. 4216 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4217 if (I != Cache.end()) 4218 return I->second; 4219 4220 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4221 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4222 4223 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4224 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4225 4226 // If the value has known zeros, the maximum value will have those known zeros 4227 // as well. 4228 uint32_t TZ = GetMinTrailingZeros(S); 4229 if (TZ != 0) { 4230 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4231 ConservativeResult = 4232 ConstantRange(APInt::getMinValue(BitWidth), 4233 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4234 else 4235 ConservativeResult = ConstantRange( 4236 APInt::getSignedMinValue(BitWidth), 4237 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4238 } 4239 4240 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4241 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4242 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4243 X = X.add(getRange(Add->getOperand(i), SignHint)); 4244 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4245 } 4246 4247 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4248 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4249 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4250 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4251 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4252 } 4253 4254 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4255 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4256 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4257 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4258 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4259 } 4260 4261 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4262 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4263 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4264 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4265 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4266 } 4267 4268 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4269 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4270 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4271 return setRange(UDiv, SignHint, 4272 ConservativeResult.intersectWith(X.udiv(Y))); 4273 } 4274 4275 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4276 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4277 return setRange(ZExt, SignHint, 4278 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4279 } 4280 4281 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4282 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4283 return setRange(SExt, SignHint, 4284 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4285 } 4286 4287 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4288 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4289 return setRange(Trunc, SignHint, 4290 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4291 } 4292 4293 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4294 // If there's no unsigned wrap, the value will never be less than its 4295 // initial value. 4296 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4297 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4298 if (!C->getValue()->isZero()) 4299 ConservativeResult = 4300 ConservativeResult.intersectWith( 4301 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4302 4303 // If there's no signed wrap, and all the operands have the same sign or 4304 // zero, the value won't ever change sign. 4305 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4306 bool AllNonNeg = true; 4307 bool AllNonPos = true; 4308 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4309 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4310 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4311 } 4312 if (AllNonNeg) 4313 ConservativeResult = ConservativeResult.intersectWith( 4314 ConstantRange(APInt(BitWidth, 0), 4315 APInt::getSignedMinValue(BitWidth))); 4316 else if (AllNonPos) 4317 ConservativeResult = ConservativeResult.intersectWith( 4318 ConstantRange(APInt::getSignedMinValue(BitWidth), 4319 APInt(BitWidth, 1))); 4320 } 4321 4322 // TODO: non-affine addrec 4323 if (AddRec->isAffine()) { 4324 Type *Ty = AddRec->getType(); 4325 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4326 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4327 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4328 4329 // Check for overflow. This must be done with ConstantRange arithmetic 4330 // because we could be called from within the ScalarEvolution overflow 4331 // checking code. 4332 4333 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4334 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4335 ConstantRange ZExtMaxBECountRange = 4336 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4337 4338 const SCEV *Start = AddRec->getStart(); 4339 const SCEV *Step = AddRec->getStepRecurrence(*this); 4340 ConstantRange StepSRange = getSignedRange(Step); 4341 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4342 4343 ConstantRange StartURange = getUnsignedRange(Start); 4344 ConstantRange EndURange = 4345 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4346 4347 // Check for unsigned overflow. 4348 ConstantRange ZExtStartURange = 4349 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4350 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4351 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4352 ZExtEndURange) { 4353 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4354 EndURange.getUnsignedMin()); 4355 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4356 EndURange.getUnsignedMax()); 4357 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4358 if (!IsFullRange) 4359 ConservativeResult = 4360 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4361 } 4362 4363 ConstantRange StartSRange = getSignedRange(Start); 4364 ConstantRange EndSRange = 4365 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4366 4367 // Check for signed overflow. This must be done with ConstantRange 4368 // arithmetic because we could be called from within the ScalarEvolution 4369 // overflow checking code. 4370 ConstantRange SExtStartSRange = 4371 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4372 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4373 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4374 SExtEndSRange) { 4375 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4376 EndSRange.getSignedMin()); 4377 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4378 EndSRange.getSignedMax()); 4379 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4380 if (!IsFullRange) 4381 ConservativeResult = 4382 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4383 } 4384 } 4385 } 4386 4387 return setRange(AddRec, SignHint, ConservativeResult); 4388 } 4389 4390 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4391 // Check if the IR explicitly contains !range metadata. 4392 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4393 if (MDRange.hasValue()) 4394 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4395 4396 // Split here to avoid paying the compile-time cost of calling both 4397 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4398 // if needed. 4399 const DataLayout &DL = getDataLayout(); 4400 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4401 // For a SCEVUnknown, ask ValueTracking. 4402 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4403 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4404 if (Ones != ~Zeros + 1) 4405 ConservativeResult = 4406 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4407 } else { 4408 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4409 "generalize as needed!"); 4410 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4411 if (NS > 1) 4412 ConservativeResult = ConservativeResult.intersectWith( 4413 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4414 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4415 } 4416 4417 return setRange(U, SignHint, ConservativeResult); 4418 } 4419 4420 return setRange(S, SignHint, ConservativeResult); 4421 } 4422 4423 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4424 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4425 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4426 4427 // Return early if there are no flags to propagate to the SCEV. 4428 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4429 if (BinOp->hasNoUnsignedWrap()) 4430 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4431 if (BinOp->hasNoSignedWrap()) 4432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4433 if (Flags == SCEV::FlagAnyWrap) { 4434 return SCEV::FlagAnyWrap; 4435 } 4436 4437 // Here we check that BinOp is in the header of the innermost loop 4438 // containing BinOp, since we only deal with instructions in the loop 4439 // header. The actual loop we need to check later will come from an add 4440 // recurrence, but getting that requires computing the SCEV of the operands, 4441 // which can be expensive. This check we can do cheaply to rule out some 4442 // cases early. 4443 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4444 if (innermostContainingLoop == nullptr || 4445 innermostContainingLoop->getHeader() != BinOp->getParent()) 4446 return SCEV::FlagAnyWrap; 4447 4448 // Only proceed if we can prove that BinOp does not yield poison. 4449 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4450 4451 // At this point we know that if V is executed, then it does not wrap 4452 // according to at least one of NSW or NUW. If V is not executed, then we do 4453 // not know if the calculation that V represents would wrap. Multiple 4454 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4455 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4456 // derived from other instructions that map to the same SCEV. We cannot make 4457 // that guarantee for cases where V is not executed. So we need to find the 4458 // loop that V is considered in relation to and prove that V is executed for 4459 // every iteration of that loop. That implies that the value that V 4460 // calculates does not wrap anywhere in the loop, so then we can apply the 4461 // flags to the SCEV. 4462 // 4463 // We check isLoopInvariant to disambiguate in case we are adding two 4464 // recurrences from different loops, so that we know which loop to prove 4465 // that V is executed in. 4466 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4467 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4468 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4469 const int OtherOpIndex = 1 - OpIndex; 4470 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4471 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4472 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4473 return Flags; 4474 } 4475 } 4476 return SCEV::FlagAnyWrap; 4477 } 4478 4479 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4480 /// the expression. 4481 /// 4482 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4483 if (!isSCEVable(V->getType())) 4484 return getUnknown(V); 4485 4486 unsigned Opcode = Instruction::UserOp1; 4487 if (Instruction *I = dyn_cast<Instruction>(V)) { 4488 Opcode = I->getOpcode(); 4489 4490 // Don't attempt to analyze instructions in blocks that aren't 4491 // reachable. Such instructions don't matter, and they aren't required 4492 // to obey basic rules for definitions dominating uses which this 4493 // analysis depends on. 4494 if (!DT.isReachableFromEntry(I->getParent())) 4495 return getUnknown(V); 4496 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4497 Opcode = CE->getOpcode(); 4498 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4499 return getConstant(CI); 4500 else if (isa<ConstantPointerNull>(V)) 4501 return getZero(V->getType()); 4502 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4503 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4504 else 4505 return getUnknown(V); 4506 4507 Operator *U = cast<Operator>(V); 4508 switch (Opcode) { 4509 case Instruction::Add: { 4510 // The simple thing to do would be to just call getSCEV on both operands 4511 // and call getAddExpr with the result. However if we're looking at a 4512 // bunch of things all added together, this can be quite inefficient, 4513 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4514 // Instead, gather up all the operands and make a single getAddExpr call. 4515 // LLVM IR canonical form means we need only traverse the left operands. 4516 SmallVector<const SCEV *, 4> AddOps; 4517 for (Value *Op = U;; Op = U->getOperand(0)) { 4518 U = dyn_cast<Operator>(Op); 4519 unsigned Opcode = U ? U->getOpcode() : 0; 4520 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4521 assert(Op != V && "V should be an add"); 4522 AddOps.push_back(getSCEV(Op)); 4523 break; 4524 } 4525 4526 if (auto *OpSCEV = getExistingSCEV(U)) { 4527 AddOps.push_back(OpSCEV); 4528 break; 4529 } 4530 4531 // If a NUW or NSW flag can be applied to the SCEV for this 4532 // addition, then compute the SCEV for this addition by itself 4533 // with a separate call to getAddExpr. We need to do that 4534 // instead of pushing the operands of the addition onto AddOps, 4535 // since the flags are only known to apply to this particular 4536 // addition - they may not apply to other additions that can be 4537 // formed with operands from AddOps. 4538 const SCEV *RHS = getSCEV(U->getOperand(1)); 4539 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4540 if (Flags != SCEV::FlagAnyWrap) { 4541 const SCEV *LHS = getSCEV(U->getOperand(0)); 4542 if (Opcode == Instruction::Sub) 4543 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4544 else 4545 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4546 break; 4547 } 4548 4549 if (Opcode == Instruction::Sub) 4550 AddOps.push_back(getNegativeSCEV(RHS)); 4551 else 4552 AddOps.push_back(RHS); 4553 } 4554 return getAddExpr(AddOps); 4555 } 4556 4557 case Instruction::Mul: { 4558 SmallVector<const SCEV *, 4> MulOps; 4559 for (Value *Op = U;; Op = U->getOperand(0)) { 4560 U = dyn_cast<Operator>(Op); 4561 if (!U || U->getOpcode() != Instruction::Mul) { 4562 assert(Op != V && "V should be a mul"); 4563 MulOps.push_back(getSCEV(Op)); 4564 break; 4565 } 4566 4567 if (auto *OpSCEV = getExistingSCEV(U)) { 4568 MulOps.push_back(OpSCEV); 4569 break; 4570 } 4571 4572 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4573 if (Flags != SCEV::FlagAnyWrap) { 4574 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4575 getSCEV(U->getOperand(1)), Flags)); 4576 break; 4577 } 4578 4579 MulOps.push_back(getSCEV(U->getOperand(1))); 4580 } 4581 return getMulExpr(MulOps); 4582 } 4583 case Instruction::UDiv: 4584 return getUDivExpr(getSCEV(U->getOperand(0)), 4585 getSCEV(U->getOperand(1))); 4586 case Instruction::Sub: 4587 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4588 getNoWrapFlagsFromUB(U)); 4589 case Instruction::And: 4590 // For an expression like x&255 that merely masks off the high bits, 4591 // use zext(trunc(x)) as the SCEV expression. 4592 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4593 if (CI->isNullValue()) 4594 return getSCEV(U->getOperand(1)); 4595 if (CI->isAllOnesValue()) 4596 return getSCEV(U->getOperand(0)); 4597 const APInt &A = CI->getValue(); 4598 4599 // Instcombine's ShrinkDemandedConstant may strip bits out of 4600 // constants, obscuring what would otherwise be a low-bits mask. 4601 // Use computeKnownBits to compute what ShrinkDemandedConstant 4602 // knew about to reconstruct a low-bits mask value. 4603 unsigned LZ = A.countLeadingZeros(); 4604 unsigned TZ = A.countTrailingZeros(); 4605 unsigned BitWidth = A.getBitWidth(); 4606 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4607 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4608 0, &AC, nullptr, &DT); 4609 4610 APInt EffectiveMask = 4611 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4612 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4613 const SCEV *MulCount = getConstant( 4614 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4615 return getMulExpr( 4616 getZeroExtendExpr( 4617 getTruncateExpr( 4618 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4619 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4620 U->getType()), 4621 MulCount); 4622 } 4623 } 4624 break; 4625 4626 case Instruction::Or: 4627 // If the RHS of the Or is a constant, we may have something like: 4628 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4629 // optimizations will transparently handle this case. 4630 // 4631 // In order for this transformation to be safe, the LHS must be of the 4632 // form X*(2^n) and the Or constant must be less than 2^n. 4633 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4634 const SCEV *LHS = getSCEV(U->getOperand(0)); 4635 const APInt &CIVal = CI->getValue(); 4636 if (GetMinTrailingZeros(LHS) >= 4637 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4638 // Build a plain add SCEV. 4639 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4640 // If the LHS of the add was an addrec and it has no-wrap flags, 4641 // transfer the no-wrap flags, since an or won't introduce a wrap. 4642 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4643 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4644 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4645 OldAR->getNoWrapFlags()); 4646 } 4647 return S; 4648 } 4649 } 4650 break; 4651 case Instruction::Xor: 4652 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4653 // If the RHS of the xor is a signbit, then this is just an add. 4654 // Instcombine turns add of signbit into xor as a strength reduction step. 4655 if (CI->getValue().isSignBit()) 4656 return getAddExpr(getSCEV(U->getOperand(0)), 4657 getSCEV(U->getOperand(1))); 4658 4659 // If the RHS of xor is -1, then this is a not operation. 4660 if (CI->isAllOnesValue()) 4661 return getNotSCEV(getSCEV(U->getOperand(0))); 4662 4663 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4664 // This is a variant of the check for xor with -1, and it handles 4665 // the case where instcombine has trimmed non-demanded bits out 4666 // of an xor with -1. 4667 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4668 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4669 if (BO->getOpcode() == Instruction::And && 4670 LCI->getValue() == CI->getValue()) 4671 if (const SCEVZeroExtendExpr *Z = 4672 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4673 Type *UTy = U->getType(); 4674 const SCEV *Z0 = Z->getOperand(); 4675 Type *Z0Ty = Z0->getType(); 4676 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4677 4678 // If C is a low-bits mask, the zero extend is serving to 4679 // mask off the high bits. Complement the operand and 4680 // re-apply the zext. 4681 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4682 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4683 4684 // If C is a single bit, it may be in the sign-bit position 4685 // before the zero-extend. In this case, represent the xor 4686 // using an add, which is equivalent, and re-apply the zext. 4687 APInt Trunc = CI->getValue().trunc(Z0TySize); 4688 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4689 Trunc.isSignBit()) 4690 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4691 UTy); 4692 } 4693 } 4694 break; 4695 4696 case Instruction::Shl: 4697 // Turn shift left of a constant amount into a multiply. 4698 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4699 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4700 4701 // If the shift count is not less than the bitwidth, the result of 4702 // the shift is undefined. Don't try to analyze it, because the 4703 // resolution chosen here may differ from the resolution chosen in 4704 // other parts of the compiler. 4705 if (SA->getValue().uge(BitWidth)) 4706 break; 4707 4708 // It is currently not resolved how to interpret NSW for left 4709 // shift by BitWidth - 1, so we avoid applying flags in that 4710 // case. Remove this check (or this comment) once the situation 4711 // is resolved. See 4712 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4713 // and http://reviews.llvm.org/D8890 . 4714 auto Flags = SCEV::FlagAnyWrap; 4715 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4716 4717 Constant *X = ConstantInt::get(getContext(), 4718 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4719 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4720 } 4721 break; 4722 4723 case Instruction::LShr: 4724 // Turn logical shift right of a constant into a unsigned divide. 4725 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4726 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4727 4728 // If the shift count is not less than the bitwidth, the result of 4729 // the shift is undefined. Don't try to analyze it, because the 4730 // resolution chosen here may differ from the resolution chosen in 4731 // other parts of the compiler. 4732 if (SA->getValue().uge(BitWidth)) 4733 break; 4734 4735 Constant *X = ConstantInt::get(getContext(), 4736 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4737 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4738 } 4739 break; 4740 4741 case Instruction::AShr: 4742 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4743 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4744 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4745 if (L->getOpcode() == Instruction::Shl && 4746 L->getOperand(1) == U->getOperand(1)) { 4747 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4748 4749 // If the shift count is not less than the bitwidth, the result of 4750 // the shift is undefined. Don't try to analyze it, because the 4751 // resolution chosen here may differ from the resolution chosen in 4752 // other parts of the compiler. 4753 if (CI->getValue().uge(BitWidth)) 4754 break; 4755 4756 uint64_t Amt = BitWidth - CI->getZExtValue(); 4757 if (Amt == BitWidth) 4758 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4759 return 4760 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4761 IntegerType::get(getContext(), 4762 Amt)), 4763 U->getType()); 4764 } 4765 break; 4766 4767 case Instruction::Trunc: 4768 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4769 4770 case Instruction::ZExt: 4771 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4772 4773 case Instruction::SExt: 4774 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4775 4776 case Instruction::BitCast: 4777 // BitCasts are no-op casts so we just eliminate the cast. 4778 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4779 return getSCEV(U->getOperand(0)); 4780 break; 4781 4782 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4783 // lead to pointer expressions which cannot safely be expanded to GEPs, 4784 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4785 // simplifying integer expressions. 4786 4787 case Instruction::GetElementPtr: 4788 return createNodeForGEP(cast<GEPOperator>(U)); 4789 4790 case Instruction::PHI: 4791 return createNodeForPHI(cast<PHINode>(U)); 4792 4793 case Instruction::Select: 4794 // U can also be a select constant expr, which let fall through. Since 4795 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4796 // constant expressions cannot have instructions as operands, we'd have 4797 // returned getUnknown for a select constant expressions anyway. 4798 if (isa<Instruction>(U)) 4799 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4800 U->getOperand(1), U->getOperand(2)); 4801 4802 default: // We cannot analyze this expression. 4803 break; 4804 } 4805 4806 return getUnknown(V); 4807 } 4808 4809 4810 4811 //===----------------------------------------------------------------------===// 4812 // Iteration Count Computation Code 4813 // 4814 4815 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4816 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4817 return getSmallConstantTripCount(L, ExitingBB); 4818 4819 // No trip count information for multiple exits. 4820 return 0; 4821 } 4822 4823 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4824 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4825 /// constant. Will also return 0 if the maximum trip count is very large (>= 4826 /// 2^32). 4827 /// 4828 /// This "trip count" assumes that control exits via ExitingBlock. More 4829 /// precisely, it is the number of times that control may reach ExitingBlock 4830 /// before taking the branch. For loops with multiple exits, it may not be the 4831 /// number times that the loop header executes because the loop may exit 4832 /// prematurely via another branch. 4833 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4834 BasicBlock *ExitingBlock) { 4835 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4836 assert(L->isLoopExiting(ExitingBlock) && 4837 "Exiting block must actually branch out of the loop!"); 4838 const SCEVConstant *ExitCount = 4839 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4840 if (!ExitCount) 4841 return 0; 4842 4843 ConstantInt *ExitConst = ExitCount->getValue(); 4844 4845 // Guard against huge trip counts. 4846 if (ExitConst->getValue().getActiveBits() > 32) 4847 return 0; 4848 4849 // In case of integer overflow, this returns 0, which is correct. 4850 return ((unsigned)ExitConst->getZExtValue()) + 1; 4851 } 4852 4853 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4854 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4855 return getSmallConstantTripMultiple(L, ExitingBB); 4856 4857 // No trip multiple information for multiple exits. 4858 return 0; 4859 } 4860 4861 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4862 /// trip count of this loop as a normal unsigned value, if possible. This 4863 /// means that the actual trip count is always a multiple of the returned 4864 /// value (don't forget the trip count could very well be zero as well!). 4865 /// 4866 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4867 /// multiple of a constant (which is also the case if the trip count is simply 4868 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4869 /// if the trip count is very large (>= 2^32). 4870 /// 4871 /// As explained in the comments for getSmallConstantTripCount, this assumes 4872 /// that control exits the loop via ExitingBlock. 4873 unsigned 4874 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4875 BasicBlock *ExitingBlock) { 4876 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4877 assert(L->isLoopExiting(ExitingBlock) && 4878 "Exiting block must actually branch out of the loop!"); 4879 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4880 if (ExitCount == getCouldNotCompute()) 4881 return 1; 4882 4883 // Get the trip count from the BE count by adding 1. 4884 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4885 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4886 // to factor simple cases. 4887 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4888 TCMul = Mul->getOperand(0); 4889 4890 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4891 if (!MulC) 4892 return 1; 4893 4894 ConstantInt *Result = MulC->getValue(); 4895 4896 // Guard against huge trip counts (this requires checking 4897 // for zero to handle the case where the trip count == -1 and the 4898 // addition wraps). 4899 if (!Result || Result->getValue().getActiveBits() > 32 || 4900 Result->getValue().getActiveBits() == 0) 4901 return 1; 4902 4903 return (unsigned)Result->getZExtValue(); 4904 } 4905 4906 // getExitCount - Get the expression for the number of loop iterations for which 4907 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4908 // SCEVCouldNotCompute. 4909 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4910 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4911 } 4912 4913 /// getBackedgeTakenCount - If the specified loop has a predictable 4914 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4915 /// object. The backedge-taken count is the number of times the loop header 4916 /// will be branched to from within the loop. This is one less than the 4917 /// trip count of the loop, since it doesn't count the first iteration, 4918 /// when the header is branched to from outside the loop. 4919 /// 4920 /// Note that it is not valid to call this method on a loop without a 4921 /// loop-invariant backedge-taken count (see 4922 /// hasLoopInvariantBackedgeTakenCount). 4923 /// 4924 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4925 return getBackedgeTakenInfo(L).getExact(this); 4926 } 4927 4928 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4929 /// return the least SCEV value that is known never to be less than the 4930 /// actual backedge taken count. 4931 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4932 return getBackedgeTakenInfo(L).getMax(this); 4933 } 4934 4935 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4936 /// onto the given Worklist. 4937 static void 4938 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4939 BasicBlock *Header = L->getHeader(); 4940 4941 // Push all Loop-header PHIs onto the Worklist stack. 4942 for (BasicBlock::iterator I = Header->begin(); 4943 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4944 Worklist.push_back(PN); 4945 } 4946 4947 const ScalarEvolution::BackedgeTakenInfo & 4948 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4949 // Initially insert an invalid entry for this loop. If the insertion 4950 // succeeds, proceed to actually compute a backedge-taken count and 4951 // update the value. The temporary CouldNotCompute value tells SCEV 4952 // code elsewhere that it shouldn't attempt to request a new 4953 // backedge-taken count, which could result in infinite recursion. 4954 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4955 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4956 if (!Pair.second) 4957 return Pair.first->second; 4958 4959 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4960 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4961 // must be cleared in this scope. 4962 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4963 4964 if (Result.getExact(this) != getCouldNotCompute()) { 4965 assert(isLoopInvariant(Result.getExact(this), L) && 4966 isLoopInvariant(Result.getMax(this), L) && 4967 "Computed backedge-taken count isn't loop invariant for loop!"); 4968 ++NumTripCountsComputed; 4969 } 4970 else if (Result.getMax(this) == getCouldNotCompute() && 4971 isa<PHINode>(L->getHeader()->begin())) { 4972 // Only count loops that have phi nodes as not being computable. 4973 ++NumTripCountsNotComputed; 4974 } 4975 4976 // Now that we know more about the trip count for this loop, forget any 4977 // existing SCEV values for PHI nodes in this loop since they are only 4978 // conservative estimates made without the benefit of trip count 4979 // information. This is similar to the code in forgetLoop, except that 4980 // it handles SCEVUnknown PHI nodes specially. 4981 if (Result.hasAnyInfo()) { 4982 SmallVector<Instruction *, 16> Worklist; 4983 PushLoopPHIs(L, Worklist); 4984 4985 SmallPtrSet<Instruction *, 8> Visited; 4986 while (!Worklist.empty()) { 4987 Instruction *I = Worklist.pop_back_val(); 4988 if (!Visited.insert(I).second) 4989 continue; 4990 4991 ValueExprMapType::iterator It = 4992 ValueExprMap.find_as(static_cast<Value *>(I)); 4993 if (It != ValueExprMap.end()) { 4994 const SCEV *Old = It->second; 4995 4996 // SCEVUnknown for a PHI either means that it has an unrecognized 4997 // structure, or it's a PHI that's in the progress of being computed 4998 // by createNodeForPHI. In the former case, additional loop trip 4999 // count information isn't going to change anything. In the later 5000 // case, createNodeForPHI will perform the necessary updates on its 5001 // own when it gets to that point. 5002 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5003 forgetMemoizedResults(Old); 5004 ValueExprMap.erase(It); 5005 } 5006 if (PHINode *PN = dyn_cast<PHINode>(I)) 5007 ConstantEvolutionLoopExitValue.erase(PN); 5008 } 5009 5010 PushDefUseChildren(I, Worklist); 5011 } 5012 } 5013 5014 // Re-lookup the insert position, since the call to 5015 // computeBackedgeTakenCount above could result in a 5016 // recusive call to getBackedgeTakenInfo (on a different 5017 // loop), which would invalidate the iterator computed 5018 // earlier. 5019 return BackedgeTakenCounts.find(L)->second = Result; 5020 } 5021 5022 /// forgetLoop - This method should be called by the client when it has 5023 /// changed a loop in a way that may effect ScalarEvolution's ability to 5024 /// compute a trip count, or if the loop is deleted. 5025 void ScalarEvolution::forgetLoop(const Loop *L) { 5026 // Drop any stored trip count value. 5027 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5028 BackedgeTakenCounts.find(L); 5029 if (BTCPos != BackedgeTakenCounts.end()) { 5030 BTCPos->second.clear(); 5031 BackedgeTakenCounts.erase(BTCPos); 5032 } 5033 5034 // Drop information about expressions based on loop-header PHIs. 5035 SmallVector<Instruction *, 16> Worklist; 5036 PushLoopPHIs(L, Worklist); 5037 5038 SmallPtrSet<Instruction *, 8> Visited; 5039 while (!Worklist.empty()) { 5040 Instruction *I = Worklist.pop_back_val(); 5041 if (!Visited.insert(I).second) 5042 continue; 5043 5044 ValueExprMapType::iterator It = 5045 ValueExprMap.find_as(static_cast<Value *>(I)); 5046 if (It != ValueExprMap.end()) { 5047 forgetMemoizedResults(It->second); 5048 ValueExprMap.erase(It); 5049 if (PHINode *PN = dyn_cast<PHINode>(I)) 5050 ConstantEvolutionLoopExitValue.erase(PN); 5051 } 5052 5053 PushDefUseChildren(I, Worklist); 5054 } 5055 5056 // Forget all contained loops too, to avoid dangling entries in the 5057 // ValuesAtScopes map. 5058 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5059 forgetLoop(*I); 5060 } 5061 5062 /// forgetValue - This method should be called by the client when it has 5063 /// changed a value in a way that may effect its value, or which may 5064 /// disconnect it from a def-use chain linking it to a loop. 5065 void ScalarEvolution::forgetValue(Value *V) { 5066 Instruction *I = dyn_cast<Instruction>(V); 5067 if (!I) return; 5068 5069 // Drop information about expressions based on loop-header PHIs. 5070 SmallVector<Instruction *, 16> Worklist; 5071 Worklist.push_back(I); 5072 5073 SmallPtrSet<Instruction *, 8> Visited; 5074 while (!Worklist.empty()) { 5075 I = Worklist.pop_back_val(); 5076 if (!Visited.insert(I).second) 5077 continue; 5078 5079 ValueExprMapType::iterator It = 5080 ValueExprMap.find_as(static_cast<Value *>(I)); 5081 if (It != ValueExprMap.end()) { 5082 forgetMemoizedResults(It->second); 5083 ValueExprMap.erase(It); 5084 if (PHINode *PN = dyn_cast<PHINode>(I)) 5085 ConstantEvolutionLoopExitValue.erase(PN); 5086 } 5087 5088 PushDefUseChildren(I, Worklist); 5089 } 5090 } 5091 5092 /// getExact - Get the exact loop backedge taken count considering all loop 5093 /// exits. A computable result can only be returned for loops with a single 5094 /// exit. Returning the minimum taken count among all exits is incorrect 5095 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5096 /// assumes that the limit of each loop test is never skipped. This is a valid 5097 /// assumption as long as the loop exits via that test. For precise results, it 5098 /// is the caller's responsibility to specify the relevant loop exit using 5099 /// getExact(ExitingBlock, SE). 5100 const SCEV * 5101 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5102 // If any exits were not computable, the loop is not computable. 5103 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5104 5105 // We need exactly one computable exit. 5106 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5107 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5108 5109 const SCEV *BECount = nullptr; 5110 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5111 ENT != nullptr; ENT = ENT->getNextExit()) { 5112 5113 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5114 5115 if (!BECount) 5116 BECount = ENT->ExactNotTaken; 5117 else if (BECount != ENT->ExactNotTaken) 5118 return SE->getCouldNotCompute(); 5119 } 5120 assert(BECount && "Invalid not taken count for loop exit"); 5121 return BECount; 5122 } 5123 5124 /// getExact - Get the exact not taken count for this loop exit. 5125 const SCEV * 5126 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5127 ScalarEvolution *SE) const { 5128 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5129 ENT != nullptr; ENT = ENT->getNextExit()) { 5130 5131 if (ENT->ExitingBlock == ExitingBlock) 5132 return ENT->ExactNotTaken; 5133 } 5134 return SE->getCouldNotCompute(); 5135 } 5136 5137 /// getMax - Get the max backedge taken count for the loop. 5138 const SCEV * 5139 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5140 return Max ? Max : SE->getCouldNotCompute(); 5141 } 5142 5143 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5144 ScalarEvolution *SE) const { 5145 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5146 return true; 5147 5148 if (!ExitNotTaken.ExitingBlock) 5149 return false; 5150 5151 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5152 ENT != nullptr; ENT = ENT->getNextExit()) { 5153 5154 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5155 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5156 return true; 5157 } 5158 } 5159 return false; 5160 } 5161 5162 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5163 /// computable exit into a persistent ExitNotTakenInfo array. 5164 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5165 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5166 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5167 5168 if (!Complete) 5169 ExitNotTaken.setIncomplete(); 5170 5171 unsigned NumExits = ExitCounts.size(); 5172 if (NumExits == 0) return; 5173 5174 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5175 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5176 if (NumExits == 1) return; 5177 5178 // Handle the rare case of multiple computable exits. 5179 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5180 5181 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5182 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5183 PrevENT->setNextExit(ENT); 5184 ENT->ExitingBlock = ExitCounts[i].first; 5185 ENT->ExactNotTaken = ExitCounts[i].second; 5186 } 5187 } 5188 5189 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5190 void ScalarEvolution::BackedgeTakenInfo::clear() { 5191 ExitNotTaken.ExitingBlock = nullptr; 5192 ExitNotTaken.ExactNotTaken = nullptr; 5193 delete[] ExitNotTaken.getNextExit(); 5194 } 5195 5196 /// computeBackedgeTakenCount - Compute the number of times the backedge 5197 /// of the specified loop will execute. 5198 ScalarEvolution::BackedgeTakenInfo 5199 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5200 SmallVector<BasicBlock *, 8> ExitingBlocks; 5201 L->getExitingBlocks(ExitingBlocks); 5202 5203 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5204 bool CouldComputeBECount = true; 5205 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5206 const SCEV *MustExitMaxBECount = nullptr; 5207 const SCEV *MayExitMaxBECount = nullptr; 5208 5209 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5210 // and compute maxBECount. 5211 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5212 BasicBlock *ExitBB = ExitingBlocks[i]; 5213 ExitLimit EL = computeExitLimit(L, ExitBB); 5214 5215 // 1. For each exit that can be computed, add an entry to ExitCounts. 5216 // CouldComputeBECount is true only if all exits can be computed. 5217 if (EL.Exact == getCouldNotCompute()) 5218 // We couldn't compute an exact value for this exit, so 5219 // we won't be able to compute an exact value for the loop. 5220 CouldComputeBECount = false; 5221 else 5222 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5223 5224 // 2. Derive the loop's MaxBECount from each exit's max number of 5225 // non-exiting iterations. Partition the loop exits into two kinds: 5226 // LoopMustExits and LoopMayExits. 5227 // 5228 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5229 // is a LoopMayExit. If any computable LoopMustExit is found, then 5230 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5231 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5232 // considered greater than any computable EL.Max. 5233 if (EL.Max != getCouldNotCompute() && Latch && 5234 DT.dominates(ExitBB, Latch)) { 5235 if (!MustExitMaxBECount) 5236 MustExitMaxBECount = EL.Max; 5237 else { 5238 MustExitMaxBECount = 5239 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5240 } 5241 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5242 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5243 MayExitMaxBECount = EL.Max; 5244 else { 5245 MayExitMaxBECount = 5246 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5247 } 5248 } 5249 } 5250 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5251 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5252 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5253 } 5254 5255 ScalarEvolution::ExitLimit 5256 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5257 5258 // Okay, we've chosen an exiting block. See what condition causes us to exit 5259 // at this block and remember the exit block and whether all other targets 5260 // lead to the loop header. 5261 bool MustExecuteLoopHeader = true; 5262 BasicBlock *Exit = nullptr; 5263 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5264 SI != SE; ++SI) 5265 if (!L->contains(*SI)) { 5266 if (Exit) // Multiple exit successors. 5267 return getCouldNotCompute(); 5268 Exit = *SI; 5269 } else if (*SI != L->getHeader()) { 5270 MustExecuteLoopHeader = false; 5271 } 5272 5273 // At this point, we know we have a conditional branch that determines whether 5274 // the loop is exited. However, we don't know if the branch is executed each 5275 // time through the loop. If not, then the execution count of the branch will 5276 // not be equal to the trip count of the loop. 5277 // 5278 // Currently we check for this by checking to see if the Exit branch goes to 5279 // the loop header. If so, we know it will always execute the same number of 5280 // times as the loop. We also handle the case where the exit block *is* the 5281 // loop header. This is common for un-rotated loops. 5282 // 5283 // If both of those tests fail, walk up the unique predecessor chain to the 5284 // header, stopping if there is an edge that doesn't exit the loop. If the 5285 // header is reached, the execution count of the branch will be equal to the 5286 // trip count of the loop. 5287 // 5288 // More extensive analysis could be done to handle more cases here. 5289 // 5290 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5291 // The simple checks failed, try climbing the unique predecessor chain 5292 // up to the header. 5293 bool Ok = false; 5294 for (BasicBlock *BB = ExitingBlock; BB; ) { 5295 BasicBlock *Pred = BB->getUniquePredecessor(); 5296 if (!Pred) 5297 return getCouldNotCompute(); 5298 TerminatorInst *PredTerm = Pred->getTerminator(); 5299 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5300 if (PredSucc == BB) 5301 continue; 5302 // If the predecessor has a successor that isn't BB and isn't 5303 // outside the loop, assume the worst. 5304 if (L->contains(PredSucc)) 5305 return getCouldNotCompute(); 5306 } 5307 if (Pred == L->getHeader()) { 5308 Ok = true; 5309 break; 5310 } 5311 BB = Pred; 5312 } 5313 if (!Ok) 5314 return getCouldNotCompute(); 5315 } 5316 5317 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5318 TerminatorInst *Term = ExitingBlock->getTerminator(); 5319 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5320 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5321 // Proceed to the next level to examine the exit condition expression. 5322 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5323 BI->getSuccessor(1), 5324 /*ControlsExit=*/IsOnlyExit); 5325 } 5326 5327 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5328 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5329 /*ControlsExit=*/IsOnlyExit); 5330 5331 return getCouldNotCompute(); 5332 } 5333 5334 /// computeExitLimitFromCond - Compute the number of times the 5335 /// backedge of the specified loop will execute if its exit condition 5336 /// were a conditional branch of ExitCond, TBB, and FBB. 5337 /// 5338 /// @param ControlsExit is true if ExitCond directly controls the exit 5339 /// branch. In this case, we can assume that the loop exits only if the 5340 /// condition is true and can infer that failing to meet the condition prior to 5341 /// integer wraparound results in undefined behavior. 5342 ScalarEvolution::ExitLimit 5343 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5344 Value *ExitCond, 5345 BasicBlock *TBB, 5346 BasicBlock *FBB, 5347 bool ControlsExit) { 5348 // Check if the controlling expression for this loop is an And or Or. 5349 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5350 if (BO->getOpcode() == Instruction::And) { 5351 // Recurse on the operands of the and. 5352 bool EitherMayExit = L->contains(TBB); 5353 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5354 ControlsExit && !EitherMayExit); 5355 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5356 ControlsExit && !EitherMayExit); 5357 const SCEV *BECount = getCouldNotCompute(); 5358 const SCEV *MaxBECount = getCouldNotCompute(); 5359 if (EitherMayExit) { 5360 // Both conditions must be true for the loop to continue executing. 5361 // Choose the less conservative count. 5362 if (EL0.Exact == getCouldNotCompute() || 5363 EL1.Exact == getCouldNotCompute()) 5364 BECount = getCouldNotCompute(); 5365 else 5366 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5367 if (EL0.Max == getCouldNotCompute()) 5368 MaxBECount = EL1.Max; 5369 else if (EL1.Max == getCouldNotCompute()) 5370 MaxBECount = EL0.Max; 5371 else 5372 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5373 } else { 5374 // Both conditions must be true at the same time for the loop to exit. 5375 // For now, be conservative. 5376 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5377 if (EL0.Max == EL1.Max) 5378 MaxBECount = EL0.Max; 5379 if (EL0.Exact == EL1.Exact) 5380 BECount = EL0.Exact; 5381 } 5382 5383 return ExitLimit(BECount, MaxBECount); 5384 } 5385 if (BO->getOpcode() == Instruction::Or) { 5386 // Recurse on the operands of the or. 5387 bool EitherMayExit = L->contains(FBB); 5388 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5389 ControlsExit && !EitherMayExit); 5390 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5391 ControlsExit && !EitherMayExit); 5392 const SCEV *BECount = getCouldNotCompute(); 5393 const SCEV *MaxBECount = getCouldNotCompute(); 5394 if (EitherMayExit) { 5395 // Both conditions must be false for the loop to continue executing. 5396 // Choose the less conservative count. 5397 if (EL0.Exact == getCouldNotCompute() || 5398 EL1.Exact == getCouldNotCompute()) 5399 BECount = getCouldNotCompute(); 5400 else 5401 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5402 if (EL0.Max == getCouldNotCompute()) 5403 MaxBECount = EL1.Max; 5404 else if (EL1.Max == getCouldNotCompute()) 5405 MaxBECount = EL0.Max; 5406 else 5407 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5408 } else { 5409 // Both conditions must be false at the same time for the loop to exit. 5410 // For now, be conservative. 5411 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5412 if (EL0.Max == EL1.Max) 5413 MaxBECount = EL0.Max; 5414 if (EL0.Exact == EL1.Exact) 5415 BECount = EL0.Exact; 5416 } 5417 5418 return ExitLimit(BECount, MaxBECount); 5419 } 5420 } 5421 5422 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5423 // Proceed to the next level to examine the icmp. 5424 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5425 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5426 5427 // Check for a constant condition. These are normally stripped out by 5428 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5429 // preserve the CFG and is temporarily leaving constant conditions 5430 // in place. 5431 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5432 if (L->contains(FBB) == !CI->getZExtValue()) 5433 // The backedge is always taken. 5434 return getCouldNotCompute(); 5435 else 5436 // The backedge is never taken. 5437 return getZero(CI->getType()); 5438 } 5439 5440 // If it's not an integer or pointer comparison then compute it the hard way. 5441 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5442 } 5443 5444 ScalarEvolution::ExitLimit 5445 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5446 ICmpInst *ExitCond, 5447 BasicBlock *TBB, 5448 BasicBlock *FBB, 5449 bool ControlsExit) { 5450 5451 // If the condition was exit on true, convert the condition to exit on false 5452 ICmpInst::Predicate Cond; 5453 if (!L->contains(FBB)) 5454 Cond = ExitCond->getPredicate(); 5455 else 5456 Cond = ExitCond->getInversePredicate(); 5457 5458 // Handle common loops like: for (X = "string"; *X; ++X) 5459 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5460 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5461 ExitLimit ItCnt = 5462 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5463 if (ItCnt.hasAnyInfo()) 5464 return ItCnt; 5465 } 5466 5467 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5468 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5469 if (ShiftEL.hasAnyInfo()) 5470 return ShiftEL; 5471 5472 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5473 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5474 5475 // Try to evaluate any dependencies out of the loop. 5476 LHS = getSCEVAtScope(LHS, L); 5477 RHS = getSCEVAtScope(RHS, L); 5478 5479 // At this point, we would like to compute how many iterations of the 5480 // loop the predicate will return true for these inputs. 5481 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5482 // If there is a loop-invariant, force it into the RHS. 5483 std::swap(LHS, RHS); 5484 Cond = ICmpInst::getSwappedPredicate(Cond); 5485 } 5486 5487 // Simplify the operands before analyzing them. 5488 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5489 5490 // If we have a comparison of a chrec against a constant, try to use value 5491 // ranges to answer this query. 5492 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5493 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5494 if (AddRec->getLoop() == L) { 5495 // Form the constant range. 5496 ConstantRange CompRange( 5497 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5498 5499 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5500 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5501 } 5502 5503 switch (Cond) { 5504 case ICmpInst::ICMP_NE: { // while (X != Y) 5505 // Convert to: while (X-Y != 0) 5506 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5507 if (EL.hasAnyInfo()) return EL; 5508 break; 5509 } 5510 case ICmpInst::ICMP_EQ: { // while (X == Y) 5511 // Convert to: while (X-Y == 0) 5512 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5513 if (EL.hasAnyInfo()) return EL; 5514 break; 5515 } 5516 case ICmpInst::ICMP_SLT: 5517 case ICmpInst::ICMP_ULT: { // while (X < Y) 5518 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5519 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5520 if (EL.hasAnyInfo()) return EL; 5521 break; 5522 } 5523 case ICmpInst::ICMP_SGT: 5524 case ICmpInst::ICMP_UGT: { // while (X > Y) 5525 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5526 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5527 if (EL.hasAnyInfo()) return EL; 5528 break; 5529 } 5530 default: 5531 break; 5532 } 5533 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5534 } 5535 5536 ScalarEvolution::ExitLimit 5537 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5538 SwitchInst *Switch, 5539 BasicBlock *ExitingBlock, 5540 bool ControlsExit) { 5541 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5542 5543 // Give up if the exit is the default dest of a switch. 5544 if (Switch->getDefaultDest() == ExitingBlock) 5545 return getCouldNotCompute(); 5546 5547 assert(L->contains(Switch->getDefaultDest()) && 5548 "Default case must not exit the loop!"); 5549 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5550 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5551 5552 // while (X != Y) --> while (X-Y != 0) 5553 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5554 if (EL.hasAnyInfo()) 5555 return EL; 5556 5557 return getCouldNotCompute(); 5558 } 5559 5560 static ConstantInt * 5561 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5562 ScalarEvolution &SE) { 5563 const SCEV *InVal = SE.getConstant(C); 5564 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5565 assert(isa<SCEVConstant>(Val) && 5566 "Evaluation of SCEV at constant didn't fold correctly?"); 5567 return cast<SCEVConstant>(Val)->getValue(); 5568 } 5569 5570 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5571 /// 'icmp op load X, cst', try to see if we can compute the backedge 5572 /// execution count. 5573 ScalarEvolution::ExitLimit 5574 ScalarEvolution::computeLoadConstantCompareExitLimit( 5575 LoadInst *LI, 5576 Constant *RHS, 5577 const Loop *L, 5578 ICmpInst::Predicate predicate) { 5579 5580 if (LI->isVolatile()) return getCouldNotCompute(); 5581 5582 // Check to see if the loaded pointer is a getelementptr of a global. 5583 // TODO: Use SCEV instead of manually grubbing with GEPs. 5584 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5585 if (!GEP) return getCouldNotCompute(); 5586 5587 // Make sure that it is really a constant global we are gepping, with an 5588 // initializer, and make sure the first IDX is really 0. 5589 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5590 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5591 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5592 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5593 return getCouldNotCompute(); 5594 5595 // Okay, we allow one non-constant index into the GEP instruction. 5596 Value *VarIdx = nullptr; 5597 std::vector<Constant*> Indexes; 5598 unsigned VarIdxNum = 0; 5599 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5600 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5601 Indexes.push_back(CI); 5602 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5603 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5604 VarIdx = GEP->getOperand(i); 5605 VarIdxNum = i-2; 5606 Indexes.push_back(nullptr); 5607 } 5608 5609 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5610 if (!VarIdx) 5611 return getCouldNotCompute(); 5612 5613 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5614 // Check to see if X is a loop variant variable value now. 5615 const SCEV *Idx = getSCEV(VarIdx); 5616 Idx = getSCEVAtScope(Idx, L); 5617 5618 // We can only recognize very limited forms of loop index expressions, in 5619 // particular, only affine AddRec's like {C1,+,C2}. 5620 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5621 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5622 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5623 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5624 return getCouldNotCompute(); 5625 5626 unsigned MaxSteps = MaxBruteForceIterations; 5627 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5628 ConstantInt *ItCst = ConstantInt::get( 5629 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5630 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5631 5632 // Form the GEP offset. 5633 Indexes[VarIdxNum] = Val; 5634 5635 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5636 Indexes); 5637 if (!Result) break; // Cannot compute! 5638 5639 // Evaluate the condition for this iteration. 5640 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5641 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5642 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5643 ++NumArrayLenItCounts; 5644 return getConstant(ItCst); // Found terminating iteration! 5645 } 5646 } 5647 return getCouldNotCompute(); 5648 } 5649 5650 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5651 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5652 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5653 if (!RHS) 5654 return getCouldNotCompute(); 5655 5656 const BasicBlock *Latch = L->getLoopLatch(); 5657 if (!Latch) 5658 return getCouldNotCompute(); 5659 5660 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5661 if (!Predecessor) 5662 return getCouldNotCompute(); 5663 5664 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5665 // Return LHS in OutLHS and shift_opt in OutOpCode. 5666 auto MatchPositiveShift = 5667 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5668 5669 using namespace PatternMatch; 5670 5671 ConstantInt *ShiftAmt; 5672 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5673 OutOpCode = Instruction::LShr; 5674 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5675 OutOpCode = Instruction::AShr; 5676 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5677 OutOpCode = Instruction::Shl; 5678 else 5679 return false; 5680 5681 return ShiftAmt->getValue().isStrictlyPositive(); 5682 }; 5683 5684 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5685 // 5686 // loop: 5687 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5688 // %iv.shifted = lshr i32 %iv, <positive constant> 5689 // 5690 // Return true on a succesful match. Return the corresponding PHI node (%iv 5691 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5692 auto MatchShiftRecurrence = 5693 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5694 Optional<Instruction::BinaryOps> PostShiftOpCode; 5695 5696 { 5697 Instruction::BinaryOps OpC; 5698 Value *V; 5699 5700 // If we encounter a shift instruction, "peel off" the shift operation, 5701 // and remember that we did so. Later when we inspect %iv's backedge 5702 // value, we will make sure that the backedge value uses the same 5703 // operation. 5704 // 5705 // Note: the peeled shift operation does not have to be the same 5706 // instruction as the one feeding into the PHI's backedge value. We only 5707 // really care about it being the same *kind* of shift instruction -- 5708 // that's all that is required for our later inferences to hold. 5709 if (MatchPositiveShift(LHS, V, OpC)) { 5710 PostShiftOpCode = OpC; 5711 LHS = V; 5712 } 5713 } 5714 5715 PNOut = dyn_cast<PHINode>(LHS); 5716 if (!PNOut || PNOut->getParent() != L->getHeader()) 5717 return false; 5718 5719 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5720 Value *OpLHS; 5721 5722 return 5723 // The backedge value for the PHI node must be a shift by a positive 5724 // amount 5725 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5726 5727 // of the PHI node itself 5728 OpLHS == PNOut && 5729 5730 // and the kind of shift should be match the kind of shift we peeled 5731 // off, if any. 5732 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5733 }; 5734 5735 PHINode *PN; 5736 Instruction::BinaryOps OpCode; 5737 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5738 return getCouldNotCompute(); 5739 5740 const DataLayout &DL = getDataLayout(); 5741 5742 // The key rationale for this optimization is that for some kinds of shift 5743 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5744 // within a finite number of iterations. If the condition guarding the 5745 // backedge (in the sense that the backedge is taken if the condition is true) 5746 // is false for the value the shift recurrence stabilizes to, then we know 5747 // that the backedge is taken only a finite number of times. 5748 5749 ConstantInt *StableValue = nullptr; 5750 switch (OpCode) { 5751 default: 5752 llvm_unreachable("Impossible case!"); 5753 5754 case Instruction::AShr: { 5755 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5756 // bitwidth(K) iterations. 5757 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5758 bool KnownZero, KnownOne; 5759 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5760 Predecessor->getTerminator(), &DT); 5761 auto *Ty = cast<IntegerType>(RHS->getType()); 5762 if (KnownZero) 5763 StableValue = ConstantInt::get(Ty, 0); 5764 else if (KnownOne) 5765 StableValue = ConstantInt::get(Ty, -1, true); 5766 else 5767 return getCouldNotCompute(); 5768 5769 break; 5770 } 5771 case Instruction::LShr: 5772 case Instruction::Shl: 5773 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5774 // stabilize to 0 in at most bitwidth(K) iterations. 5775 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5776 break; 5777 } 5778 5779 auto *Result = 5780 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5781 assert(Result->getType()->isIntegerTy(1) && 5782 "Otherwise cannot be an operand to a branch instruction"); 5783 5784 if (Result->isZeroValue()) { 5785 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5786 const SCEV *UpperBound = 5787 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5788 return ExitLimit(getCouldNotCompute(), UpperBound); 5789 } 5790 5791 return getCouldNotCompute(); 5792 } 5793 5794 /// CanConstantFold - Return true if we can constant fold an instruction of the 5795 /// specified type, assuming that all operands were constants. 5796 static bool CanConstantFold(const Instruction *I) { 5797 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5798 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5799 isa<LoadInst>(I)) 5800 return true; 5801 5802 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5803 if (const Function *F = CI->getCalledFunction()) 5804 return canConstantFoldCallTo(F); 5805 return false; 5806 } 5807 5808 /// Determine whether this instruction can constant evolve within this loop 5809 /// assuming its operands can all constant evolve. 5810 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5811 // An instruction outside of the loop can't be derived from a loop PHI. 5812 if (!L->contains(I)) return false; 5813 5814 if (isa<PHINode>(I)) { 5815 // We don't currently keep track of the control flow needed to evaluate 5816 // PHIs, so we cannot handle PHIs inside of loops. 5817 return L->getHeader() == I->getParent(); 5818 } 5819 5820 // If we won't be able to constant fold this expression even if the operands 5821 // are constants, bail early. 5822 return CanConstantFold(I); 5823 } 5824 5825 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5826 /// recursing through each instruction operand until reaching a loop header phi. 5827 static PHINode * 5828 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5829 DenseMap<Instruction *, PHINode *> &PHIMap) { 5830 5831 // Otherwise, we can evaluate this instruction if all of its operands are 5832 // constant or derived from a PHI node themselves. 5833 PHINode *PHI = nullptr; 5834 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5835 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5836 5837 if (isa<Constant>(*OpI)) continue; 5838 5839 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5840 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5841 5842 PHINode *P = dyn_cast<PHINode>(OpInst); 5843 if (!P) 5844 // If this operand is already visited, reuse the prior result. 5845 // We may have P != PHI if this is the deepest point at which the 5846 // inconsistent paths meet. 5847 P = PHIMap.lookup(OpInst); 5848 if (!P) { 5849 // Recurse and memoize the results, whether a phi is found or not. 5850 // This recursive call invalidates pointers into PHIMap. 5851 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5852 PHIMap[OpInst] = P; 5853 } 5854 if (!P) 5855 return nullptr; // Not evolving from PHI 5856 if (PHI && PHI != P) 5857 return nullptr; // Evolving from multiple different PHIs. 5858 PHI = P; 5859 } 5860 // This is a expression evolving from a constant PHI! 5861 return PHI; 5862 } 5863 5864 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5865 /// in the loop that V is derived from. We allow arbitrary operations along the 5866 /// way, but the operands of an operation must either be constants or a value 5867 /// derived from a constant PHI. If this expression does not fit with these 5868 /// constraints, return null. 5869 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5870 Instruction *I = dyn_cast<Instruction>(V); 5871 if (!I || !canConstantEvolve(I, L)) return nullptr; 5872 5873 if (PHINode *PN = dyn_cast<PHINode>(I)) 5874 return PN; 5875 5876 // Record non-constant instructions contained by the loop. 5877 DenseMap<Instruction *, PHINode *> PHIMap; 5878 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5879 } 5880 5881 /// EvaluateExpression - Given an expression that passes the 5882 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5883 /// in the loop has the value PHIVal. If we can't fold this expression for some 5884 /// reason, return null. 5885 static Constant *EvaluateExpression(Value *V, const Loop *L, 5886 DenseMap<Instruction *, Constant *> &Vals, 5887 const DataLayout &DL, 5888 const TargetLibraryInfo *TLI) { 5889 // Convenient constant check, but redundant for recursive calls. 5890 if (Constant *C = dyn_cast<Constant>(V)) return C; 5891 Instruction *I = dyn_cast<Instruction>(V); 5892 if (!I) return nullptr; 5893 5894 if (Constant *C = Vals.lookup(I)) return C; 5895 5896 // An instruction inside the loop depends on a value outside the loop that we 5897 // weren't given a mapping for, or a value such as a call inside the loop. 5898 if (!canConstantEvolve(I, L)) return nullptr; 5899 5900 // An unmapped PHI can be due to a branch or another loop inside this loop, 5901 // or due to this not being the initial iteration through a loop where we 5902 // couldn't compute the evolution of this particular PHI last time. 5903 if (isa<PHINode>(I)) return nullptr; 5904 5905 std::vector<Constant*> Operands(I->getNumOperands()); 5906 5907 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5908 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5909 if (!Operand) { 5910 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5911 if (!Operands[i]) return nullptr; 5912 continue; 5913 } 5914 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5915 Vals[Operand] = C; 5916 if (!C) return nullptr; 5917 Operands[i] = C; 5918 } 5919 5920 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5921 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5922 Operands[1], DL, TLI); 5923 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5924 if (!LI->isVolatile()) 5925 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5926 } 5927 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5928 TLI); 5929 } 5930 5931 5932 // If every incoming value to PN except the one for BB is a specific Constant, 5933 // return that, else return nullptr. 5934 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 5935 Constant *IncomingVal = nullptr; 5936 5937 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5938 if (PN->getIncomingBlock(i) == BB) 5939 continue; 5940 5941 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 5942 if (!CurrentVal) 5943 return nullptr; 5944 5945 if (IncomingVal != CurrentVal) { 5946 if (IncomingVal) 5947 return nullptr; 5948 IncomingVal = CurrentVal; 5949 } 5950 } 5951 5952 return IncomingVal; 5953 } 5954 5955 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5956 /// in the header of its containing loop, we know the loop executes a 5957 /// constant number of times, and the PHI node is just a recurrence 5958 /// involving constants, fold it. 5959 Constant * 5960 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5961 const APInt &BEs, 5962 const Loop *L) { 5963 auto I = ConstantEvolutionLoopExitValue.find(PN); 5964 if (I != ConstantEvolutionLoopExitValue.end()) 5965 return I->second; 5966 5967 if (BEs.ugt(MaxBruteForceIterations)) 5968 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5969 5970 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5971 5972 DenseMap<Instruction *, Constant *> CurrentIterVals; 5973 BasicBlock *Header = L->getHeader(); 5974 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5975 5976 BasicBlock *Latch = L->getLoopLatch(); 5977 if (!Latch) 5978 return nullptr; 5979 5980 for (auto &I : *Header) { 5981 PHINode *PHI = dyn_cast<PHINode>(&I); 5982 if (!PHI) break; 5983 auto *StartCST = getOtherIncomingValue(PHI, Latch); 5984 if (!StartCST) continue; 5985 CurrentIterVals[PHI] = StartCST; 5986 } 5987 if (!CurrentIterVals.count(PN)) 5988 return RetVal = nullptr; 5989 5990 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5991 5992 // Execute the loop symbolically to determine the exit value. 5993 if (BEs.getActiveBits() >= 32) 5994 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5995 5996 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5997 unsigned IterationNum = 0; 5998 const DataLayout &DL = getDataLayout(); 5999 for (; ; ++IterationNum) { 6000 if (IterationNum == NumIterations) 6001 return RetVal = CurrentIterVals[PN]; // Got exit value! 6002 6003 // Compute the value of the PHIs for the next iteration. 6004 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6005 DenseMap<Instruction *, Constant *> NextIterVals; 6006 Constant *NextPHI = 6007 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6008 if (!NextPHI) 6009 return nullptr; // Couldn't evaluate! 6010 NextIterVals[PN] = NextPHI; 6011 6012 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6013 6014 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6015 // cease to be able to evaluate one of them or if they stop evolving, 6016 // because that doesn't necessarily prevent us from computing PN. 6017 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6018 for (const auto &I : CurrentIterVals) { 6019 PHINode *PHI = dyn_cast<PHINode>(I.first); 6020 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6021 PHIsToCompute.emplace_back(PHI, I.second); 6022 } 6023 // We use two distinct loops because EvaluateExpression may invalidate any 6024 // iterators into CurrentIterVals. 6025 for (const auto &I : PHIsToCompute) { 6026 PHINode *PHI = I.first; 6027 Constant *&NextPHI = NextIterVals[PHI]; 6028 if (!NextPHI) { // Not already computed. 6029 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6030 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6031 } 6032 if (NextPHI != I.second) 6033 StoppedEvolving = false; 6034 } 6035 6036 // If all entries in CurrentIterVals == NextIterVals then we can stop 6037 // iterating, the loop can't continue to change. 6038 if (StoppedEvolving) 6039 return RetVal = CurrentIterVals[PN]; 6040 6041 CurrentIterVals.swap(NextIterVals); 6042 } 6043 } 6044 6045 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6046 Value *Cond, 6047 bool ExitWhen) { 6048 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6049 if (!PN) return getCouldNotCompute(); 6050 6051 // If the loop is canonicalized, the PHI will have exactly two entries. 6052 // That's the only form we support here. 6053 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6054 6055 DenseMap<Instruction *, Constant *> CurrentIterVals; 6056 BasicBlock *Header = L->getHeader(); 6057 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6058 6059 BasicBlock *Latch = L->getLoopLatch(); 6060 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6061 6062 for (auto &I : *Header) { 6063 PHINode *PHI = dyn_cast<PHINode>(&I); 6064 if (!PHI) 6065 break; 6066 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6067 if (!StartCST) continue; 6068 CurrentIterVals[PHI] = StartCST; 6069 } 6070 if (!CurrentIterVals.count(PN)) 6071 return getCouldNotCompute(); 6072 6073 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6074 // the loop symbolically to determine when the condition gets a value of 6075 // "ExitWhen". 6076 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6077 const DataLayout &DL = getDataLayout(); 6078 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6079 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6080 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6081 6082 // Couldn't symbolically evaluate. 6083 if (!CondVal) return getCouldNotCompute(); 6084 6085 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6086 ++NumBruteForceTripCountsComputed; 6087 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6088 } 6089 6090 // Update all the PHI nodes for the next iteration. 6091 DenseMap<Instruction *, Constant *> NextIterVals; 6092 6093 // Create a list of which PHIs we need to compute. We want to do this before 6094 // calling EvaluateExpression on them because that may invalidate iterators 6095 // into CurrentIterVals. 6096 SmallVector<PHINode *, 8> PHIsToCompute; 6097 for (const auto &I : CurrentIterVals) { 6098 PHINode *PHI = dyn_cast<PHINode>(I.first); 6099 if (!PHI || PHI->getParent() != Header) continue; 6100 PHIsToCompute.push_back(PHI); 6101 } 6102 for (PHINode *PHI : PHIsToCompute) { 6103 Constant *&NextPHI = NextIterVals[PHI]; 6104 if (NextPHI) continue; // Already computed! 6105 6106 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6107 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6108 } 6109 CurrentIterVals.swap(NextIterVals); 6110 } 6111 6112 // Too many iterations were needed to evaluate. 6113 return getCouldNotCompute(); 6114 } 6115 6116 /// getSCEVAtScope - Return a SCEV expression for the specified value 6117 /// at the specified scope in the program. The L value specifies a loop 6118 /// nest to evaluate the expression at, where null is the top-level or a 6119 /// specified loop is immediately inside of the loop. 6120 /// 6121 /// This method can be used to compute the exit value for a variable defined 6122 /// in a loop by querying what the value will hold in the parent loop. 6123 /// 6124 /// In the case that a relevant loop exit value cannot be computed, the 6125 /// original value V is returned. 6126 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6127 // Check to see if we've folded this expression at this loop before. 6128 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 6129 for (unsigned u = 0; u < Values.size(); u++) { 6130 if (Values[u].first == L) 6131 return Values[u].second ? Values[u].second : V; 6132 } 6133 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 6134 // Otherwise compute it. 6135 const SCEV *C = computeSCEVAtScope(V, L); 6136 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 6137 for (unsigned u = Values2.size(); u > 0; u--) { 6138 if (Values2[u - 1].first == L) { 6139 Values2[u - 1].second = C; 6140 break; 6141 } 6142 } 6143 return C; 6144 } 6145 6146 /// This builds up a Constant using the ConstantExpr interface. That way, we 6147 /// will return Constants for objects which aren't represented by a 6148 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6149 /// Returns NULL if the SCEV isn't representable as a Constant. 6150 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6151 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6152 case scCouldNotCompute: 6153 case scAddRecExpr: 6154 break; 6155 case scConstant: 6156 return cast<SCEVConstant>(V)->getValue(); 6157 case scUnknown: 6158 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6159 case scSignExtend: { 6160 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6161 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6162 return ConstantExpr::getSExt(CastOp, SS->getType()); 6163 break; 6164 } 6165 case scZeroExtend: { 6166 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6167 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6168 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6169 break; 6170 } 6171 case scTruncate: { 6172 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6173 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6174 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6175 break; 6176 } 6177 case scAddExpr: { 6178 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6179 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6180 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6181 unsigned AS = PTy->getAddressSpace(); 6182 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6183 C = ConstantExpr::getBitCast(C, DestPtrTy); 6184 } 6185 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6186 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6187 if (!C2) return nullptr; 6188 6189 // First pointer! 6190 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6191 unsigned AS = C2->getType()->getPointerAddressSpace(); 6192 std::swap(C, C2); 6193 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6194 // The offsets have been converted to bytes. We can add bytes to an 6195 // i8* by GEP with the byte count in the first index. 6196 C = ConstantExpr::getBitCast(C, DestPtrTy); 6197 } 6198 6199 // Don't bother trying to sum two pointers. We probably can't 6200 // statically compute a load that results from it anyway. 6201 if (C2->getType()->isPointerTy()) 6202 return nullptr; 6203 6204 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6205 if (PTy->getElementType()->isStructTy()) 6206 C2 = ConstantExpr::getIntegerCast( 6207 C2, Type::getInt32Ty(C->getContext()), true); 6208 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6209 } else 6210 C = ConstantExpr::getAdd(C, C2); 6211 } 6212 return C; 6213 } 6214 break; 6215 } 6216 case scMulExpr: { 6217 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6218 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6219 // Don't bother with pointers at all. 6220 if (C->getType()->isPointerTy()) return nullptr; 6221 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6222 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6223 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6224 C = ConstantExpr::getMul(C, C2); 6225 } 6226 return C; 6227 } 6228 break; 6229 } 6230 case scUDivExpr: { 6231 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6232 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6233 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6234 if (LHS->getType() == RHS->getType()) 6235 return ConstantExpr::getUDiv(LHS, RHS); 6236 break; 6237 } 6238 case scSMaxExpr: 6239 case scUMaxExpr: 6240 break; // TODO: smax, umax. 6241 } 6242 return nullptr; 6243 } 6244 6245 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6246 if (isa<SCEVConstant>(V)) return V; 6247 6248 // If this instruction is evolved from a constant-evolving PHI, compute the 6249 // exit value from the loop without using SCEVs. 6250 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6251 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6252 const Loop *LI = this->LI[I->getParent()]; 6253 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6254 if (PHINode *PN = dyn_cast<PHINode>(I)) 6255 if (PN->getParent() == LI->getHeader()) { 6256 // Okay, there is no closed form solution for the PHI node. Check 6257 // to see if the loop that contains it has a known backedge-taken 6258 // count. If so, we may be able to force computation of the exit 6259 // value. 6260 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6261 if (const SCEVConstant *BTCC = 6262 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6263 // Okay, we know how many times the containing loop executes. If 6264 // this is a constant evolving PHI node, get the final value at 6265 // the specified iteration number. 6266 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6267 BTCC->getValue()->getValue(), 6268 LI); 6269 if (RV) return getSCEV(RV); 6270 } 6271 } 6272 6273 // Okay, this is an expression that we cannot symbolically evaluate 6274 // into a SCEV. Check to see if it's possible to symbolically evaluate 6275 // the arguments into constants, and if so, try to constant propagate the 6276 // result. This is particularly useful for computing loop exit values. 6277 if (CanConstantFold(I)) { 6278 SmallVector<Constant *, 4> Operands; 6279 bool MadeImprovement = false; 6280 for (Value *Op : I->operands()) { 6281 if (Constant *C = dyn_cast<Constant>(Op)) { 6282 Operands.push_back(C); 6283 continue; 6284 } 6285 6286 // If any of the operands is non-constant and if they are 6287 // non-integer and non-pointer, don't even try to analyze them 6288 // with scev techniques. 6289 if (!isSCEVable(Op->getType())) 6290 return V; 6291 6292 const SCEV *OrigV = getSCEV(Op); 6293 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6294 MadeImprovement |= OrigV != OpV; 6295 6296 Constant *C = BuildConstantFromSCEV(OpV); 6297 if (!C) return V; 6298 if (C->getType() != Op->getType()) 6299 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6300 Op->getType(), 6301 false), 6302 C, Op->getType()); 6303 Operands.push_back(C); 6304 } 6305 6306 // Check to see if getSCEVAtScope actually made an improvement. 6307 if (MadeImprovement) { 6308 Constant *C = nullptr; 6309 const DataLayout &DL = getDataLayout(); 6310 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6311 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6312 Operands[1], DL, &TLI); 6313 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6314 if (!LI->isVolatile()) 6315 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6316 } else 6317 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6318 DL, &TLI); 6319 if (!C) return V; 6320 return getSCEV(C); 6321 } 6322 } 6323 } 6324 6325 // This is some other type of SCEVUnknown, just return it. 6326 return V; 6327 } 6328 6329 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6330 // Avoid performing the look-up in the common case where the specified 6331 // expression has no loop-variant portions. 6332 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6333 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6334 if (OpAtScope != Comm->getOperand(i)) { 6335 // Okay, at least one of these operands is loop variant but might be 6336 // foldable. Build a new instance of the folded commutative expression. 6337 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6338 Comm->op_begin()+i); 6339 NewOps.push_back(OpAtScope); 6340 6341 for (++i; i != e; ++i) { 6342 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6343 NewOps.push_back(OpAtScope); 6344 } 6345 if (isa<SCEVAddExpr>(Comm)) 6346 return getAddExpr(NewOps); 6347 if (isa<SCEVMulExpr>(Comm)) 6348 return getMulExpr(NewOps); 6349 if (isa<SCEVSMaxExpr>(Comm)) 6350 return getSMaxExpr(NewOps); 6351 if (isa<SCEVUMaxExpr>(Comm)) 6352 return getUMaxExpr(NewOps); 6353 llvm_unreachable("Unknown commutative SCEV type!"); 6354 } 6355 } 6356 // If we got here, all operands are loop invariant. 6357 return Comm; 6358 } 6359 6360 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6361 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6362 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6363 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6364 return Div; // must be loop invariant 6365 return getUDivExpr(LHS, RHS); 6366 } 6367 6368 // If this is a loop recurrence for a loop that does not contain L, then we 6369 // are dealing with the final value computed by the loop. 6370 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6371 // First, attempt to evaluate each operand. 6372 // Avoid performing the look-up in the common case where the specified 6373 // expression has no loop-variant portions. 6374 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6375 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6376 if (OpAtScope == AddRec->getOperand(i)) 6377 continue; 6378 6379 // Okay, at least one of these operands is loop variant but might be 6380 // foldable. Build a new instance of the folded commutative expression. 6381 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6382 AddRec->op_begin()+i); 6383 NewOps.push_back(OpAtScope); 6384 for (++i; i != e; ++i) 6385 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6386 6387 const SCEV *FoldedRec = 6388 getAddRecExpr(NewOps, AddRec->getLoop(), 6389 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6390 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6391 // The addrec may be folded to a nonrecurrence, for example, if the 6392 // induction variable is multiplied by zero after constant folding. Go 6393 // ahead and return the folded value. 6394 if (!AddRec) 6395 return FoldedRec; 6396 break; 6397 } 6398 6399 // If the scope is outside the addrec's loop, evaluate it by using the 6400 // loop exit value of the addrec. 6401 if (!AddRec->getLoop()->contains(L)) { 6402 // To evaluate this recurrence, we need to know how many times the AddRec 6403 // loop iterates. Compute this now. 6404 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6405 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6406 6407 // Then, evaluate the AddRec. 6408 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6409 } 6410 6411 return AddRec; 6412 } 6413 6414 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6415 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6416 if (Op == Cast->getOperand()) 6417 return Cast; // must be loop invariant 6418 return getZeroExtendExpr(Op, Cast->getType()); 6419 } 6420 6421 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6422 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6423 if (Op == Cast->getOperand()) 6424 return Cast; // must be loop invariant 6425 return getSignExtendExpr(Op, Cast->getType()); 6426 } 6427 6428 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6429 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6430 if (Op == Cast->getOperand()) 6431 return Cast; // must be loop invariant 6432 return getTruncateExpr(Op, Cast->getType()); 6433 } 6434 6435 llvm_unreachable("Unknown SCEV type!"); 6436 } 6437 6438 /// getSCEVAtScope - This is a convenience function which does 6439 /// getSCEVAtScope(getSCEV(V), L). 6440 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6441 return getSCEVAtScope(getSCEV(V), L); 6442 } 6443 6444 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6445 /// following equation: 6446 /// 6447 /// A * X = B (mod N) 6448 /// 6449 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6450 /// A and B isn't important. 6451 /// 6452 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6453 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6454 ScalarEvolution &SE) { 6455 uint32_t BW = A.getBitWidth(); 6456 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6457 assert(A != 0 && "A must be non-zero."); 6458 6459 // 1. D = gcd(A, N) 6460 // 6461 // The gcd of A and N may have only one prime factor: 2. The number of 6462 // trailing zeros in A is its multiplicity 6463 uint32_t Mult2 = A.countTrailingZeros(); 6464 // D = 2^Mult2 6465 6466 // 2. Check if B is divisible by D. 6467 // 6468 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6469 // is not less than multiplicity of this prime factor for D. 6470 if (B.countTrailingZeros() < Mult2) 6471 return SE.getCouldNotCompute(); 6472 6473 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6474 // modulo (N / D). 6475 // 6476 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6477 // bit width during computations. 6478 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6479 APInt Mod(BW + 1, 0); 6480 Mod.setBit(BW - Mult2); // Mod = N / D 6481 APInt I = AD.multiplicativeInverse(Mod); 6482 6483 // 4. Compute the minimum unsigned root of the equation: 6484 // I * (B / D) mod (N / D) 6485 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6486 6487 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6488 // bits. 6489 return SE.getConstant(Result.trunc(BW)); 6490 } 6491 6492 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6493 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6494 /// might be the same) or two SCEVCouldNotCompute objects. 6495 /// 6496 static std::pair<const SCEV *,const SCEV *> 6497 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6498 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6499 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6500 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6501 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6502 6503 // We currently can only solve this if the coefficients are constants. 6504 if (!LC || !MC || !NC) { 6505 const SCEV *CNC = SE.getCouldNotCompute(); 6506 return std::make_pair(CNC, CNC); 6507 } 6508 6509 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6510 const APInt &L = LC->getValue()->getValue(); 6511 const APInt &M = MC->getValue()->getValue(); 6512 const APInt &N = NC->getValue()->getValue(); 6513 APInt Two(BitWidth, 2); 6514 APInt Four(BitWidth, 4); 6515 6516 { 6517 using namespace APIntOps; 6518 const APInt& C = L; 6519 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6520 // The B coefficient is M-N/2 6521 APInt B(M); 6522 B -= sdiv(N,Two); 6523 6524 // The A coefficient is N/2 6525 APInt A(N.sdiv(Two)); 6526 6527 // Compute the B^2-4ac term. 6528 APInt SqrtTerm(B); 6529 SqrtTerm *= B; 6530 SqrtTerm -= Four * (A * C); 6531 6532 if (SqrtTerm.isNegative()) { 6533 // The loop is provably infinite. 6534 const SCEV *CNC = SE.getCouldNotCompute(); 6535 return std::make_pair(CNC, CNC); 6536 } 6537 6538 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6539 // integer value or else APInt::sqrt() will assert. 6540 APInt SqrtVal(SqrtTerm.sqrt()); 6541 6542 // Compute the two solutions for the quadratic formula. 6543 // The divisions must be performed as signed divisions. 6544 APInt NegB(-B); 6545 APInt TwoA(A << 1); 6546 if (TwoA.isMinValue()) { 6547 const SCEV *CNC = SE.getCouldNotCompute(); 6548 return std::make_pair(CNC, CNC); 6549 } 6550 6551 LLVMContext &Context = SE.getContext(); 6552 6553 ConstantInt *Solution1 = 6554 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6555 ConstantInt *Solution2 = 6556 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6557 6558 return std::make_pair(SE.getConstant(Solution1), 6559 SE.getConstant(Solution2)); 6560 } // end APIntOps namespace 6561 } 6562 6563 /// HowFarToZero - Return the number of times a backedge comparing the specified 6564 /// value to zero will execute. If not computable, return CouldNotCompute. 6565 /// 6566 /// This is only used for loops with a "x != y" exit test. The exit condition is 6567 /// now expressed as a single expression, V = x-y. So the exit test is 6568 /// effectively V != 0. We know and take advantage of the fact that this 6569 /// expression only being used in a comparison by zero context. 6570 ScalarEvolution::ExitLimit 6571 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6572 // If the value is a constant 6573 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6574 // If the value is already zero, the branch will execute zero times. 6575 if (C->getValue()->isZero()) return C; 6576 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6577 } 6578 6579 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6580 if (!AddRec || AddRec->getLoop() != L) 6581 return getCouldNotCompute(); 6582 6583 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6584 // the quadratic equation to solve it. 6585 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6586 std::pair<const SCEV *,const SCEV *> Roots = 6587 SolveQuadraticEquation(AddRec, *this); 6588 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6589 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6590 if (R1 && R2) { 6591 // Pick the smallest positive root value. 6592 if (ConstantInt *CB = 6593 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6594 R1->getValue(), 6595 R2->getValue()))) { 6596 if (!CB->getZExtValue()) 6597 std::swap(R1, R2); // R1 is the minimum root now. 6598 6599 // We can only use this value if the chrec ends up with an exact zero 6600 // value at this index. When solving for "X*X != 5", for example, we 6601 // should not accept a root of 2. 6602 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6603 if (Val->isZero()) 6604 return R1; // We found a quadratic root! 6605 } 6606 } 6607 return getCouldNotCompute(); 6608 } 6609 6610 // Otherwise we can only handle this if it is affine. 6611 if (!AddRec->isAffine()) 6612 return getCouldNotCompute(); 6613 6614 // If this is an affine expression, the execution count of this branch is 6615 // the minimum unsigned root of the following equation: 6616 // 6617 // Start + Step*N = 0 (mod 2^BW) 6618 // 6619 // equivalent to: 6620 // 6621 // Step*N = -Start (mod 2^BW) 6622 // 6623 // where BW is the common bit width of Start and Step. 6624 6625 // Get the initial value for the loop. 6626 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6627 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6628 6629 // For now we handle only constant steps. 6630 // 6631 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6632 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6633 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6634 // We have not yet seen any such cases. 6635 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6636 if (!StepC || StepC->getValue()->equalsInt(0)) 6637 return getCouldNotCompute(); 6638 6639 // For positive steps (counting up until unsigned overflow): 6640 // N = -Start/Step (as unsigned) 6641 // For negative steps (counting down to zero): 6642 // N = Start/-Step 6643 // First compute the unsigned distance from zero in the direction of Step. 6644 bool CountDown = StepC->getValue()->getValue().isNegative(); 6645 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6646 6647 // Handle unitary steps, which cannot wraparound. 6648 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6649 // N = Distance (as unsigned) 6650 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6651 ConstantRange CR = getUnsignedRange(Start); 6652 const SCEV *MaxBECount; 6653 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6654 // When counting up, the worst starting value is 1, not 0. 6655 MaxBECount = CR.getUnsignedMax().isMinValue() 6656 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6657 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6658 else 6659 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6660 : -CR.getUnsignedMin()); 6661 return ExitLimit(Distance, MaxBECount); 6662 } 6663 6664 // As a special case, handle the instance where Step is a positive power of 6665 // two. In this case, determining whether Step divides Distance evenly can be 6666 // done by counting and comparing the number of trailing zeros of Step and 6667 // Distance. 6668 if (!CountDown) { 6669 const APInt &StepV = StepC->getValue()->getValue(); 6670 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6671 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6672 // case is not handled as this code is guarded by !CountDown. 6673 if (StepV.isPowerOf2() && 6674 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6675 // Here we've constrained the equation to be of the form 6676 // 6677 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6678 // 6679 // where we're operating on a W bit wide integer domain and k is 6680 // non-negative. The smallest unsigned solution for X is the trip count. 6681 // 6682 // (0) is equivalent to: 6683 // 6684 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6685 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6686 // <=> 2^k * Distance' - X = L * 2^(W - N) 6687 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6688 // 6689 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6690 // by 2^(W - N). 6691 // 6692 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6693 // 6694 // E.g. say we're solving 6695 // 6696 // 2 * Val = 2 * X (in i8) ... (3) 6697 // 6698 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6699 // 6700 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6701 // necessarily the smallest unsigned value of X that satisfies (3). 6702 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6703 // is i8 1, not i8 -127 6704 6705 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6706 6707 // Since SCEV does not have a URem node, we construct one using a truncate 6708 // and a zero extend. 6709 6710 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6711 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6712 auto *WideTy = Distance->getType(); 6713 6714 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6715 } 6716 } 6717 6718 // If the condition controls loop exit (the loop exits only if the expression 6719 // is true) and the addition is no-wrap we can use unsigned divide to 6720 // compute the backedge count. In this case, the step may not divide the 6721 // distance, but we don't care because if the condition is "missed" the loop 6722 // will have undefined behavior due to wrapping. 6723 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6724 const SCEV *Exact = 6725 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6726 return ExitLimit(Exact, Exact); 6727 } 6728 6729 // Then, try to solve the above equation provided that Start is constant. 6730 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6731 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6732 -StartC->getValue()->getValue(), 6733 *this); 6734 return getCouldNotCompute(); 6735 } 6736 6737 /// HowFarToNonZero - Return the number of times a backedge checking the 6738 /// specified value for nonzero will execute. If not computable, return 6739 /// CouldNotCompute 6740 ScalarEvolution::ExitLimit 6741 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6742 // Loops that look like: while (X == 0) are very strange indeed. We don't 6743 // handle them yet except for the trivial case. This could be expanded in the 6744 // future as needed. 6745 6746 // If the value is a constant, check to see if it is known to be non-zero 6747 // already. If so, the backedge will execute zero times. 6748 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6749 if (!C->getValue()->isNullValue()) 6750 return getZero(C->getType()); 6751 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6752 } 6753 6754 // We could implement others, but I really doubt anyone writes loops like 6755 // this, and if they did, they would already be constant folded. 6756 return getCouldNotCompute(); 6757 } 6758 6759 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6760 /// (which may not be an immediate predecessor) which has exactly one 6761 /// successor from which BB is reachable, or null if no such block is 6762 /// found. 6763 /// 6764 std::pair<BasicBlock *, BasicBlock *> 6765 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6766 // If the block has a unique predecessor, then there is no path from the 6767 // predecessor to the block that does not go through the direct edge 6768 // from the predecessor to the block. 6769 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6770 return std::make_pair(Pred, BB); 6771 6772 // A loop's header is defined to be a block that dominates the loop. 6773 // If the header has a unique predecessor outside the loop, it must be 6774 // a block that has exactly one successor that can reach the loop. 6775 if (Loop *L = LI.getLoopFor(BB)) 6776 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6777 6778 return std::pair<BasicBlock *, BasicBlock *>(); 6779 } 6780 6781 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6782 /// testing whether two expressions are equal, however for the purposes of 6783 /// looking for a condition guarding a loop, it can be useful to be a little 6784 /// more general, since a front-end may have replicated the controlling 6785 /// expression. 6786 /// 6787 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6788 // Quick check to see if they are the same SCEV. 6789 if (A == B) return true; 6790 6791 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6792 // Not all instructions that are "identical" compute the same value. For 6793 // instance, two distinct alloca instructions allocating the same type are 6794 // identical and do not read memory; but compute distinct values. 6795 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6796 }; 6797 6798 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6799 // two different instructions with the same value. Check for this case. 6800 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6801 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6802 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6803 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6804 if (ComputesEqualValues(AI, BI)) 6805 return true; 6806 6807 // Otherwise assume they may have a different value. 6808 return false; 6809 } 6810 6811 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6812 /// predicate Pred. Return true iff any changes were made. 6813 /// 6814 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6815 const SCEV *&LHS, const SCEV *&RHS, 6816 unsigned Depth) { 6817 bool Changed = false; 6818 6819 // If we hit the max recursion limit bail out. 6820 if (Depth >= 3) 6821 return false; 6822 6823 // Canonicalize a constant to the right side. 6824 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6825 // Check for both operands constant. 6826 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6827 if (ConstantExpr::getICmp(Pred, 6828 LHSC->getValue(), 6829 RHSC->getValue())->isNullValue()) 6830 goto trivially_false; 6831 else 6832 goto trivially_true; 6833 } 6834 // Otherwise swap the operands to put the constant on the right. 6835 std::swap(LHS, RHS); 6836 Pred = ICmpInst::getSwappedPredicate(Pred); 6837 Changed = true; 6838 } 6839 6840 // If we're comparing an addrec with a value which is loop-invariant in the 6841 // addrec's loop, put the addrec on the left. Also make a dominance check, 6842 // as both operands could be addrecs loop-invariant in each other's loop. 6843 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6844 const Loop *L = AR->getLoop(); 6845 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6846 std::swap(LHS, RHS); 6847 Pred = ICmpInst::getSwappedPredicate(Pred); 6848 Changed = true; 6849 } 6850 } 6851 6852 // If there's a constant operand, canonicalize comparisons with boundary 6853 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6854 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6855 const APInt &RA = RC->getValue()->getValue(); 6856 switch (Pred) { 6857 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6858 case ICmpInst::ICMP_EQ: 6859 case ICmpInst::ICMP_NE: 6860 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6861 if (!RA) 6862 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6863 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6864 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6865 ME->getOperand(0)->isAllOnesValue()) { 6866 RHS = AE->getOperand(1); 6867 LHS = ME->getOperand(1); 6868 Changed = true; 6869 } 6870 break; 6871 case ICmpInst::ICMP_UGE: 6872 if ((RA - 1).isMinValue()) { 6873 Pred = ICmpInst::ICMP_NE; 6874 RHS = getConstant(RA - 1); 6875 Changed = true; 6876 break; 6877 } 6878 if (RA.isMaxValue()) { 6879 Pred = ICmpInst::ICMP_EQ; 6880 Changed = true; 6881 break; 6882 } 6883 if (RA.isMinValue()) goto trivially_true; 6884 6885 Pred = ICmpInst::ICMP_UGT; 6886 RHS = getConstant(RA - 1); 6887 Changed = true; 6888 break; 6889 case ICmpInst::ICMP_ULE: 6890 if ((RA + 1).isMaxValue()) { 6891 Pred = ICmpInst::ICMP_NE; 6892 RHS = getConstant(RA + 1); 6893 Changed = true; 6894 break; 6895 } 6896 if (RA.isMinValue()) { 6897 Pred = ICmpInst::ICMP_EQ; 6898 Changed = true; 6899 break; 6900 } 6901 if (RA.isMaxValue()) goto trivially_true; 6902 6903 Pred = ICmpInst::ICMP_ULT; 6904 RHS = getConstant(RA + 1); 6905 Changed = true; 6906 break; 6907 case ICmpInst::ICMP_SGE: 6908 if ((RA - 1).isMinSignedValue()) { 6909 Pred = ICmpInst::ICMP_NE; 6910 RHS = getConstant(RA - 1); 6911 Changed = true; 6912 break; 6913 } 6914 if (RA.isMaxSignedValue()) { 6915 Pred = ICmpInst::ICMP_EQ; 6916 Changed = true; 6917 break; 6918 } 6919 if (RA.isMinSignedValue()) goto trivially_true; 6920 6921 Pred = ICmpInst::ICMP_SGT; 6922 RHS = getConstant(RA - 1); 6923 Changed = true; 6924 break; 6925 case ICmpInst::ICMP_SLE: 6926 if ((RA + 1).isMaxSignedValue()) { 6927 Pred = ICmpInst::ICMP_NE; 6928 RHS = getConstant(RA + 1); 6929 Changed = true; 6930 break; 6931 } 6932 if (RA.isMinSignedValue()) { 6933 Pred = ICmpInst::ICMP_EQ; 6934 Changed = true; 6935 break; 6936 } 6937 if (RA.isMaxSignedValue()) goto trivially_true; 6938 6939 Pred = ICmpInst::ICMP_SLT; 6940 RHS = getConstant(RA + 1); 6941 Changed = true; 6942 break; 6943 case ICmpInst::ICMP_UGT: 6944 if (RA.isMinValue()) { 6945 Pred = ICmpInst::ICMP_NE; 6946 Changed = true; 6947 break; 6948 } 6949 if ((RA + 1).isMaxValue()) { 6950 Pred = ICmpInst::ICMP_EQ; 6951 RHS = getConstant(RA + 1); 6952 Changed = true; 6953 break; 6954 } 6955 if (RA.isMaxValue()) goto trivially_false; 6956 break; 6957 case ICmpInst::ICMP_ULT: 6958 if (RA.isMaxValue()) { 6959 Pred = ICmpInst::ICMP_NE; 6960 Changed = true; 6961 break; 6962 } 6963 if ((RA - 1).isMinValue()) { 6964 Pred = ICmpInst::ICMP_EQ; 6965 RHS = getConstant(RA - 1); 6966 Changed = true; 6967 break; 6968 } 6969 if (RA.isMinValue()) goto trivially_false; 6970 break; 6971 case ICmpInst::ICMP_SGT: 6972 if (RA.isMinSignedValue()) { 6973 Pred = ICmpInst::ICMP_NE; 6974 Changed = true; 6975 break; 6976 } 6977 if ((RA + 1).isMaxSignedValue()) { 6978 Pred = ICmpInst::ICMP_EQ; 6979 RHS = getConstant(RA + 1); 6980 Changed = true; 6981 break; 6982 } 6983 if (RA.isMaxSignedValue()) goto trivially_false; 6984 break; 6985 case ICmpInst::ICMP_SLT: 6986 if (RA.isMaxSignedValue()) { 6987 Pred = ICmpInst::ICMP_NE; 6988 Changed = true; 6989 break; 6990 } 6991 if ((RA - 1).isMinSignedValue()) { 6992 Pred = ICmpInst::ICMP_EQ; 6993 RHS = getConstant(RA - 1); 6994 Changed = true; 6995 break; 6996 } 6997 if (RA.isMinSignedValue()) goto trivially_false; 6998 break; 6999 } 7000 } 7001 7002 // Check for obvious equality. 7003 if (HasSameValue(LHS, RHS)) { 7004 if (ICmpInst::isTrueWhenEqual(Pred)) 7005 goto trivially_true; 7006 if (ICmpInst::isFalseWhenEqual(Pred)) 7007 goto trivially_false; 7008 } 7009 7010 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7011 // adding or subtracting 1 from one of the operands. 7012 switch (Pred) { 7013 case ICmpInst::ICMP_SLE: 7014 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7015 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7016 SCEV::FlagNSW); 7017 Pred = ICmpInst::ICMP_SLT; 7018 Changed = true; 7019 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7020 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7021 SCEV::FlagNSW); 7022 Pred = ICmpInst::ICMP_SLT; 7023 Changed = true; 7024 } 7025 break; 7026 case ICmpInst::ICMP_SGE: 7027 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7028 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7029 SCEV::FlagNSW); 7030 Pred = ICmpInst::ICMP_SGT; 7031 Changed = true; 7032 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7033 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7034 SCEV::FlagNSW); 7035 Pred = ICmpInst::ICMP_SGT; 7036 Changed = true; 7037 } 7038 break; 7039 case ICmpInst::ICMP_ULE: 7040 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7041 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7042 SCEV::FlagNUW); 7043 Pred = ICmpInst::ICMP_ULT; 7044 Changed = true; 7045 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7046 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7047 SCEV::FlagNUW); 7048 Pred = ICmpInst::ICMP_ULT; 7049 Changed = true; 7050 } 7051 break; 7052 case ICmpInst::ICMP_UGE: 7053 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7054 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7055 SCEV::FlagNUW); 7056 Pred = ICmpInst::ICMP_UGT; 7057 Changed = true; 7058 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7059 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7060 SCEV::FlagNUW); 7061 Pred = ICmpInst::ICMP_UGT; 7062 Changed = true; 7063 } 7064 break; 7065 default: 7066 break; 7067 } 7068 7069 // TODO: More simplifications are possible here. 7070 7071 // Recursively simplify until we either hit a recursion limit or nothing 7072 // changes. 7073 if (Changed) 7074 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7075 7076 return Changed; 7077 7078 trivially_true: 7079 // Return 0 == 0. 7080 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7081 Pred = ICmpInst::ICMP_EQ; 7082 return true; 7083 7084 trivially_false: 7085 // Return 0 != 0. 7086 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7087 Pred = ICmpInst::ICMP_NE; 7088 return true; 7089 } 7090 7091 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7092 return getSignedRange(S).getSignedMax().isNegative(); 7093 } 7094 7095 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7096 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7097 } 7098 7099 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7100 return !getSignedRange(S).getSignedMin().isNegative(); 7101 } 7102 7103 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7104 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7105 } 7106 7107 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7108 return isKnownNegative(S) || isKnownPositive(S); 7109 } 7110 7111 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7112 const SCEV *LHS, const SCEV *RHS) { 7113 // Canonicalize the inputs first. 7114 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7115 7116 // If LHS or RHS is an addrec, check to see if the condition is true in 7117 // every iteration of the loop. 7118 // If LHS and RHS are both addrec, both conditions must be true in 7119 // every iteration of the loop. 7120 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7121 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7122 bool LeftGuarded = false; 7123 bool RightGuarded = false; 7124 if (LAR) { 7125 const Loop *L = LAR->getLoop(); 7126 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7127 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7128 if (!RAR) return true; 7129 LeftGuarded = true; 7130 } 7131 } 7132 if (RAR) { 7133 const Loop *L = RAR->getLoop(); 7134 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7135 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7136 if (!LAR) return true; 7137 RightGuarded = true; 7138 } 7139 } 7140 if (LeftGuarded && RightGuarded) 7141 return true; 7142 7143 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7144 return true; 7145 7146 // Otherwise see what can be done with known constant ranges. 7147 return isKnownPredicateWithRanges(Pred, LHS, RHS); 7148 } 7149 7150 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7151 ICmpInst::Predicate Pred, 7152 bool &Increasing) { 7153 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7154 7155 #ifndef NDEBUG 7156 // Verify an invariant: inverting the predicate should turn a monotonically 7157 // increasing change to a monotonically decreasing one, and vice versa. 7158 bool IncreasingSwapped; 7159 bool ResultSwapped = isMonotonicPredicateImpl( 7160 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7161 7162 assert(Result == ResultSwapped && "should be able to analyze both!"); 7163 if (ResultSwapped) 7164 assert(Increasing == !IncreasingSwapped && 7165 "monotonicity should flip as we flip the predicate"); 7166 #endif 7167 7168 return Result; 7169 } 7170 7171 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7172 ICmpInst::Predicate Pred, 7173 bool &Increasing) { 7174 7175 // A zero step value for LHS means the induction variable is essentially a 7176 // loop invariant value. We don't really depend on the predicate actually 7177 // flipping from false to true (for increasing predicates, and the other way 7178 // around for decreasing predicates), all we care about is that *if* the 7179 // predicate changes then it only changes from false to true. 7180 // 7181 // A zero step value in itself is not very useful, but there may be places 7182 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7183 // as general as possible. 7184 7185 switch (Pred) { 7186 default: 7187 return false; // Conservative answer 7188 7189 case ICmpInst::ICMP_UGT: 7190 case ICmpInst::ICMP_UGE: 7191 case ICmpInst::ICMP_ULT: 7192 case ICmpInst::ICMP_ULE: 7193 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7194 return false; 7195 7196 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7197 return true; 7198 7199 case ICmpInst::ICMP_SGT: 7200 case ICmpInst::ICMP_SGE: 7201 case ICmpInst::ICMP_SLT: 7202 case ICmpInst::ICMP_SLE: { 7203 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7204 return false; 7205 7206 const SCEV *Step = LHS->getStepRecurrence(*this); 7207 7208 if (isKnownNonNegative(Step)) { 7209 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7210 return true; 7211 } 7212 7213 if (isKnownNonPositive(Step)) { 7214 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7215 return true; 7216 } 7217 7218 return false; 7219 } 7220 7221 } 7222 7223 llvm_unreachable("switch has default clause!"); 7224 } 7225 7226 bool ScalarEvolution::isLoopInvariantPredicate( 7227 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7228 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7229 const SCEV *&InvariantRHS) { 7230 7231 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7232 if (!isLoopInvariant(RHS, L)) { 7233 if (!isLoopInvariant(LHS, L)) 7234 return false; 7235 7236 std::swap(LHS, RHS); 7237 Pred = ICmpInst::getSwappedPredicate(Pred); 7238 } 7239 7240 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7241 if (!ArLHS || ArLHS->getLoop() != L) 7242 return false; 7243 7244 bool Increasing; 7245 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7246 return false; 7247 7248 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7249 // true as the loop iterates, and the backedge is control dependent on 7250 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7251 // 7252 // * if the predicate was false in the first iteration then the predicate 7253 // is never evaluated again, since the loop exits without taking the 7254 // backedge. 7255 // * if the predicate was true in the first iteration then it will 7256 // continue to be true for all future iterations since it is 7257 // monotonically increasing. 7258 // 7259 // For both the above possibilities, we can replace the loop varying 7260 // predicate with its value on the first iteration of the loop (which is 7261 // loop invariant). 7262 // 7263 // A similar reasoning applies for a monotonically decreasing predicate, by 7264 // replacing true with false and false with true in the above two bullets. 7265 7266 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7267 7268 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7269 return false; 7270 7271 InvariantPred = Pred; 7272 InvariantLHS = ArLHS->getStart(); 7273 InvariantRHS = RHS; 7274 return true; 7275 } 7276 7277 bool 7278 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7279 const SCEV *LHS, const SCEV *RHS) { 7280 if (HasSameValue(LHS, RHS)) 7281 return ICmpInst::isTrueWhenEqual(Pred); 7282 7283 // This code is split out from isKnownPredicate because it is called from 7284 // within isLoopEntryGuardedByCond. 7285 switch (Pred) { 7286 default: 7287 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7288 case ICmpInst::ICMP_SGT: 7289 std::swap(LHS, RHS); 7290 case ICmpInst::ICMP_SLT: { 7291 ConstantRange LHSRange = getSignedRange(LHS); 7292 ConstantRange RHSRange = getSignedRange(RHS); 7293 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7294 return true; 7295 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7296 return false; 7297 break; 7298 } 7299 case ICmpInst::ICMP_SGE: 7300 std::swap(LHS, RHS); 7301 case ICmpInst::ICMP_SLE: { 7302 ConstantRange LHSRange = getSignedRange(LHS); 7303 ConstantRange RHSRange = getSignedRange(RHS); 7304 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7305 return true; 7306 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7307 return false; 7308 break; 7309 } 7310 case ICmpInst::ICMP_UGT: 7311 std::swap(LHS, RHS); 7312 case ICmpInst::ICMP_ULT: { 7313 ConstantRange LHSRange = getUnsignedRange(LHS); 7314 ConstantRange RHSRange = getUnsignedRange(RHS); 7315 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7316 return true; 7317 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7318 return false; 7319 break; 7320 } 7321 case ICmpInst::ICMP_UGE: 7322 std::swap(LHS, RHS); 7323 case ICmpInst::ICMP_ULE: { 7324 ConstantRange LHSRange = getUnsignedRange(LHS); 7325 ConstantRange RHSRange = getUnsignedRange(RHS); 7326 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7327 return true; 7328 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7329 return false; 7330 break; 7331 } 7332 case ICmpInst::ICMP_NE: { 7333 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7334 return true; 7335 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7336 return true; 7337 7338 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7339 if (isKnownNonZero(Diff)) 7340 return true; 7341 break; 7342 } 7343 case ICmpInst::ICMP_EQ: 7344 // The check at the top of the function catches the case where 7345 // the values are known to be equal. 7346 break; 7347 } 7348 return false; 7349 } 7350 7351 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7352 const SCEV *LHS, 7353 const SCEV *RHS) { 7354 7355 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7356 // Return Y via OutY. 7357 auto MatchBinaryAddToConst = 7358 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7359 SCEV::NoWrapFlags ExpectedFlags) { 7360 const SCEV *NonConstOp, *ConstOp; 7361 SCEV::NoWrapFlags FlagsPresent; 7362 7363 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7364 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7365 return false; 7366 7367 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7368 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7369 }; 7370 7371 APInt C; 7372 7373 switch (Pred) { 7374 default: 7375 break; 7376 7377 case ICmpInst::ICMP_SGE: 7378 std::swap(LHS, RHS); 7379 case ICmpInst::ICMP_SLE: 7380 // X s<= (X + C)<nsw> if C >= 0 7381 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7382 return true; 7383 7384 // (X + C)<nsw> s<= X if C <= 0 7385 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7386 !C.isStrictlyPositive()) 7387 return true; 7388 break; 7389 7390 case ICmpInst::ICMP_SGT: 7391 std::swap(LHS, RHS); 7392 case ICmpInst::ICMP_SLT: 7393 // X s< (X + C)<nsw> if C > 0 7394 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7395 C.isStrictlyPositive()) 7396 return true; 7397 7398 // (X + C)<nsw> s< X if C < 0 7399 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7400 return true; 7401 break; 7402 } 7403 7404 return false; 7405 } 7406 7407 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7408 const SCEV *LHS, 7409 const SCEV *RHS) { 7410 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7411 return false; 7412 7413 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7414 // the stack can result in exponential time complexity. 7415 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7416 7417 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7418 // 7419 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7420 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7421 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7422 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7423 // use isKnownPredicate later if needed. 7424 return isKnownNonNegative(RHS) && 7425 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7426 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7427 } 7428 7429 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7430 /// protected by a conditional between LHS and RHS. This is used to 7431 /// to eliminate casts. 7432 bool 7433 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7434 ICmpInst::Predicate Pred, 7435 const SCEV *LHS, const SCEV *RHS) { 7436 // Interpret a null as meaning no loop, where there is obviously no guard 7437 // (interprocedural conditions notwithstanding). 7438 if (!L) return true; 7439 7440 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7441 7442 BasicBlock *Latch = L->getLoopLatch(); 7443 if (!Latch) 7444 return false; 7445 7446 BranchInst *LoopContinuePredicate = 7447 dyn_cast<BranchInst>(Latch->getTerminator()); 7448 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7449 isImpliedCond(Pred, LHS, RHS, 7450 LoopContinuePredicate->getCondition(), 7451 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7452 return true; 7453 7454 // We don't want more than one activation of the following loops on the stack 7455 // -- that can lead to O(n!) time complexity. 7456 if (WalkingBEDominatingConds) 7457 return false; 7458 7459 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7460 7461 // See if we can exploit a trip count to prove the predicate. 7462 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7463 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7464 if (LatchBECount != getCouldNotCompute()) { 7465 // We know that Latch branches back to the loop header exactly 7466 // LatchBECount times. This means the backdege condition at Latch is 7467 // equivalent to "{0,+,1} u< LatchBECount". 7468 Type *Ty = LatchBECount->getType(); 7469 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7470 const SCEV *LoopCounter = 7471 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7472 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7473 LatchBECount)) 7474 return true; 7475 } 7476 7477 // Check conditions due to any @llvm.assume intrinsics. 7478 for (auto &AssumeVH : AC.assumptions()) { 7479 if (!AssumeVH) 7480 continue; 7481 auto *CI = cast<CallInst>(AssumeVH); 7482 if (!DT.dominates(CI, Latch->getTerminator())) 7483 continue; 7484 7485 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7486 return true; 7487 } 7488 7489 // If the loop is not reachable from the entry block, we risk running into an 7490 // infinite loop as we walk up into the dom tree. These loops do not matter 7491 // anyway, so we just return a conservative answer when we see them. 7492 if (!DT.isReachableFromEntry(L->getHeader())) 7493 return false; 7494 7495 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7496 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7497 7498 assert(DTN && "should reach the loop header before reaching the root!"); 7499 7500 BasicBlock *BB = DTN->getBlock(); 7501 BasicBlock *PBB = BB->getSinglePredecessor(); 7502 if (!PBB) 7503 continue; 7504 7505 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7506 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7507 continue; 7508 7509 Value *Condition = ContinuePredicate->getCondition(); 7510 7511 // If we have an edge `E` within the loop body that dominates the only 7512 // latch, the condition guarding `E` also guards the backedge. This 7513 // reasoning works only for loops with a single latch. 7514 7515 BasicBlockEdge DominatingEdge(PBB, BB); 7516 if (DominatingEdge.isSingleEdge()) { 7517 // We're constructively (and conservatively) enumerating edges within the 7518 // loop body that dominate the latch. The dominator tree better agree 7519 // with us on this: 7520 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7521 7522 if (isImpliedCond(Pred, LHS, RHS, Condition, 7523 BB != ContinuePredicate->getSuccessor(0))) 7524 return true; 7525 } 7526 } 7527 7528 return false; 7529 } 7530 7531 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7532 /// by a conditional between LHS and RHS. This is used to help avoid max 7533 /// expressions in loop trip counts, and to eliminate casts. 7534 bool 7535 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7536 ICmpInst::Predicate Pred, 7537 const SCEV *LHS, const SCEV *RHS) { 7538 // Interpret a null as meaning no loop, where there is obviously no guard 7539 // (interprocedural conditions notwithstanding). 7540 if (!L) return false; 7541 7542 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7543 7544 // Starting at the loop predecessor, climb up the predecessor chain, as long 7545 // as there are predecessors that can be found that have unique successors 7546 // leading to the original header. 7547 for (std::pair<BasicBlock *, BasicBlock *> 7548 Pair(L->getLoopPredecessor(), L->getHeader()); 7549 Pair.first; 7550 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7551 7552 BranchInst *LoopEntryPredicate = 7553 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7554 if (!LoopEntryPredicate || 7555 LoopEntryPredicate->isUnconditional()) 7556 continue; 7557 7558 if (isImpliedCond(Pred, LHS, RHS, 7559 LoopEntryPredicate->getCondition(), 7560 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7561 return true; 7562 } 7563 7564 // Check conditions due to any @llvm.assume intrinsics. 7565 for (auto &AssumeVH : AC.assumptions()) { 7566 if (!AssumeVH) 7567 continue; 7568 auto *CI = cast<CallInst>(AssumeVH); 7569 if (!DT.dominates(CI, L->getHeader())) 7570 continue; 7571 7572 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7573 return true; 7574 } 7575 7576 return false; 7577 } 7578 7579 namespace { 7580 /// RAII wrapper to prevent recursive application of isImpliedCond. 7581 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7582 /// currently evaluating isImpliedCond. 7583 struct MarkPendingLoopPredicate { 7584 Value *Cond; 7585 DenseSet<Value*> &LoopPreds; 7586 bool Pending; 7587 7588 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7589 : Cond(C), LoopPreds(LP) { 7590 Pending = !LoopPreds.insert(Cond).second; 7591 } 7592 ~MarkPendingLoopPredicate() { 7593 if (!Pending) 7594 LoopPreds.erase(Cond); 7595 } 7596 }; 7597 } // end anonymous namespace 7598 7599 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7600 /// and RHS is true whenever the given Cond value evaluates to true. 7601 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7602 const SCEV *LHS, const SCEV *RHS, 7603 Value *FoundCondValue, 7604 bool Inverse) { 7605 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7606 if (Mark.Pending) 7607 return false; 7608 7609 // Recursively handle And and Or conditions. 7610 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7611 if (BO->getOpcode() == Instruction::And) { 7612 if (!Inverse) 7613 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7614 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7615 } else if (BO->getOpcode() == Instruction::Or) { 7616 if (Inverse) 7617 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7618 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7619 } 7620 } 7621 7622 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7623 if (!ICI) return false; 7624 7625 // Now that we found a conditional branch that dominates the loop or controls 7626 // the loop latch. Check to see if it is the comparison we are looking for. 7627 ICmpInst::Predicate FoundPred; 7628 if (Inverse) 7629 FoundPred = ICI->getInversePredicate(); 7630 else 7631 FoundPred = ICI->getPredicate(); 7632 7633 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7634 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7635 7636 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7637 } 7638 7639 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7640 const SCEV *RHS, 7641 ICmpInst::Predicate FoundPred, 7642 const SCEV *FoundLHS, 7643 const SCEV *FoundRHS) { 7644 // Balance the types. 7645 if (getTypeSizeInBits(LHS->getType()) < 7646 getTypeSizeInBits(FoundLHS->getType())) { 7647 if (CmpInst::isSigned(Pred)) { 7648 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7649 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7650 } else { 7651 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7652 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7653 } 7654 } else if (getTypeSizeInBits(LHS->getType()) > 7655 getTypeSizeInBits(FoundLHS->getType())) { 7656 if (CmpInst::isSigned(FoundPred)) { 7657 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7658 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7659 } else { 7660 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7661 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7662 } 7663 } 7664 7665 // Canonicalize the query to match the way instcombine will have 7666 // canonicalized the comparison. 7667 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7668 if (LHS == RHS) 7669 return CmpInst::isTrueWhenEqual(Pred); 7670 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7671 if (FoundLHS == FoundRHS) 7672 return CmpInst::isFalseWhenEqual(FoundPred); 7673 7674 // Check to see if we can make the LHS or RHS match. 7675 if (LHS == FoundRHS || RHS == FoundLHS) { 7676 if (isa<SCEVConstant>(RHS)) { 7677 std::swap(FoundLHS, FoundRHS); 7678 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7679 } else { 7680 std::swap(LHS, RHS); 7681 Pred = ICmpInst::getSwappedPredicate(Pred); 7682 } 7683 } 7684 7685 // Check whether the found predicate is the same as the desired predicate. 7686 if (FoundPred == Pred) 7687 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7688 7689 // Check whether swapping the found predicate makes it the same as the 7690 // desired predicate. 7691 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7692 if (isa<SCEVConstant>(RHS)) 7693 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7694 else 7695 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7696 RHS, LHS, FoundLHS, FoundRHS); 7697 } 7698 7699 // Unsigned comparison is the same as signed comparison when both the operands 7700 // are non-negative. 7701 if (CmpInst::isUnsigned(FoundPred) && 7702 CmpInst::getSignedPredicate(FoundPred) == Pred && 7703 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7704 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7705 7706 // Check if we can make progress by sharpening ranges. 7707 if (FoundPred == ICmpInst::ICMP_NE && 7708 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7709 7710 const SCEVConstant *C = nullptr; 7711 const SCEV *V = nullptr; 7712 7713 if (isa<SCEVConstant>(FoundLHS)) { 7714 C = cast<SCEVConstant>(FoundLHS); 7715 V = FoundRHS; 7716 } else { 7717 C = cast<SCEVConstant>(FoundRHS); 7718 V = FoundLHS; 7719 } 7720 7721 // The guarding predicate tells us that C != V. If the known range 7722 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7723 // range we consider has to correspond to same signedness as the 7724 // predicate we're interested in folding. 7725 7726 APInt Min = ICmpInst::isSigned(Pred) ? 7727 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7728 7729 if (Min == C->getValue()->getValue()) { 7730 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7731 // This is true even if (Min + 1) wraps around -- in case of 7732 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7733 7734 APInt SharperMin = Min + 1; 7735 7736 switch (Pred) { 7737 case ICmpInst::ICMP_SGE: 7738 case ICmpInst::ICMP_UGE: 7739 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7740 // RHS, we're done. 7741 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7742 getConstant(SharperMin))) 7743 return true; 7744 7745 case ICmpInst::ICMP_SGT: 7746 case ICmpInst::ICMP_UGT: 7747 // We know from the range information that (V `Pred` Min || 7748 // V == Min). We know from the guarding condition that !(V 7749 // == Min). This gives us 7750 // 7751 // V `Pred` Min || V == Min && !(V == Min) 7752 // => V `Pred` Min 7753 // 7754 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7755 7756 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7757 return true; 7758 7759 default: 7760 // No change 7761 break; 7762 } 7763 } 7764 } 7765 7766 // Check whether the actual condition is beyond sufficient. 7767 if (FoundPred == ICmpInst::ICMP_EQ) 7768 if (ICmpInst::isTrueWhenEqual(Pred)) 7769 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7770 return true; 7771 if (Pred == ICmpInst::ICMP_NE) 7772 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7773 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7774 return true; 7775 7776 // Otherwise assume the worst. 7777 return false; 7778 } 7779 7780 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7781 const SCEV *&L, const SCEV *&R, 7782 SCEV::NoWrapFlags &Flags) { 7783 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7784 if (!AE || AE->getNumOperands() != 2) 7785 return false; 7786 7787 L = AE->getOperand(0); 7788 R = AE->getOperand(1); 7789 Flags = AE->getNoWrapFlags(); 7790 return true; 7791 } 7792 7793 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7794 const SCEV *More, 7795 APInt &C) { 7796 // We avoid subtracting expressions here because this function is usually 7797 // fairly deep in the call stack (i.e. is called many times). 7798 7799 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7800 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7801 const auto *MAR = cast<SCEVAddRecExpr>(More); 7802 7803 if (LAR->getLoop() != MAR->getLoop()) 7804 return false; 7805 7806 // We look at affine expressions only; not for correctness but to keep 7807 // getStepRecurrence cheap. 7808 if (!LAR->isAffine() || !MAR->isAffine()) 7809 return false; 7810 7811 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7812 return false; 7813 7814 Less = LAR->getStart(); 7815 More = MAR->getStart(); 7816 7817 // fall through 7818 } 7819 7820 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7821 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7822 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7823 C = M - L; 7824 return true; 7825 } 7826 7827 const SCEV *L, *R; 7828 SCEV::NoWrapFlags Flags; 7829 if (splitBinaryAdd(Less, L, R, Flags)) 7830 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7831 if (R == More) { 7832 C = -(LC->getValue()->getValue()); 7833 return true; 7834 } 7835 7836 if (splitBinaryAdd(More, L, R, Flags)) 7837 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7838 if (R == Less) { 7839 C = LC->getValue()->getValue(); 7840 return true; 7841 } 7842 7843 return false; 7844 } 7845 7846 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7847 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7848 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7849 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7850 return false; 7851 7852 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7853 if (!AddRecLHS) 7854 return false; 7855 7856 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7857 if (!AddRecFoundLHS) 7858 return false; 7859 7860 // We'd like to let SCEV reason about control dependencies, so we constrain 7861 // both the inequalities to be about add recurrences on the same loop. This 7862 // way we can use isLoopEntryGuardedByCond later. 7863 7864 const Loop *L = AddRecFoundLHS->getLoop(); 7865 if (L != AddRecLHS->getLoop()) 7866 return false; 7867 7868 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7869 // 7870 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7871 // ... (2) 7872 // 7873 // Informal proof for (2), assuming (1) [*]: 7874 // 7875 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7876 // 7877 // Then 7878 // 7879 // FoundLHS s< FoundRHS s< INT_MIN - C 7880 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7881 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7882 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7883 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7884 // <=> FoundLHS + C s< FoundRHS + C 7885 // 7886 // [*]: (1) can be proved by ruling out overflow. 7887 // 7888 // [**]: This can be proved by analyzing all the four possibilities: 7889 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7890 // (A s>= 0, B s>= 0). 7891 // 7892 // Note: 7893 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7894 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7895 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7896 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7897 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7898 // C)". 7899 7900 APInt LDiff, RDiff; 7901 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7902 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7903 LDiff != RDiff) 7904 return false; 7905 7906 if (LDiff == 0) 7907 return true; 7908 7909 APInt FoundRHSLimit; 7910 7911 if (Pred == CmpInst::ICMP_ULT) { 7912 FoundRHSLimit = -RDiff; 7913 } else { 7914 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7915 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7916 } 7917 7918 // Try to prove (1) or (2), as needed. 7919 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7920 getConstant(FoundRHSLimit)); 7921 } 7922 7923 /// isImpliedCondOperands - Test whether the condition described by Pred, 7924 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7925 /// and FoundRHS is true. 7926 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7927 const SCEV *LHS, const SCEV *RHS, 7928 const SCEV *FoundLHS, 7929 const SCEV *FoundRHS) { 7930 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7931 return true; 7932 7933 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7934 return true; 7935 7936 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7937 FoundLHS, FoundRHS) || 7938 // ~x < ~y --> x > y 7939 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7940 getNotSCEV(FoundRHS), 7941 getNotSCEV(FoundLHS)); 7942 } 7943 7944 7945 /// If Expr computes ~A, return A else return nullptr 7946 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7947 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7948 if (!Add || Add->getNumOperands() != 2 || 7949 !Add->getOperand(0)->isAllOnesValue()) 7950 return nullptr; 7951 7952 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7953 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7954 !AddRHS->getOperand(0)->isAllOnesValue()) 7955 return nullptr; 7956 7957 return AddRHS->getOperand(1); 7958 } 7959 7960 7961 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7962 template<typename MaxExprType> 7963 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7964 const SCEV *Candidate) { 7965 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7966 if (!MaxExpr) return false; 7967 7968 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7969 return It != MaxExpr->op_end(); 7970 } 7971 7972 7973 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7974 template<typename MaxExprType> 7975 static bool IsMinConsistingOf(ScalarEvolution &SE, 7976 const SCEV *MaybeMinExpr, 7977 const SCEV *Candidate) { 7978 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7979 if (!MaybeMaxExpr) 7980 return false; 7981 7982 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7983 } 7984 7985 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7986 ICmpInst::Predicate Pred, 7987 const SCEV *LHS, const SCEV *RHS) { 7988 7989 // If both sides are affine addrecs for the same loop, with equal 7990 // steps, and we know the recurrences don't wrap, then we only 7991 // need to check the predicate on the starting values. 7992 7993 if (!ICmpInst::isRelational(Pred)) 7994 return false; 7995 7996 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7997 if (!LAR) 7998 return false; 7999 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8000 if (!RAR) 8001 return false; 8002 if (LAR->getLoop() != RAR->getLoop()) 8003 return false; 8004 if (!LAR->isAffine() || !RAR->isAffine()) 8005 return false; 8006 8007 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8008 return false; 8009 8010 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8011 SCEV::FlagNSW : SCEV::FlagNUW; 8012 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8013 return false; 8014 8015 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8016 } 8017 8018 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8019 /// expression? 8020 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8021 ICmpInst::Predicate Pred, 8022 const SCEV *LHS, const SCEV *RHS) { 8023 switch (Pred) { 8024 default: 8025 return false; 8026 8027 case ICmpInst::ICMP_SGE: 8028 std::swap(LHS, RHS); 8029 // fall through 8030 case ICmpInst::ICMP_SLE: 8031 return 8032 // min(A, ...) <= A 8033 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8034 // A <= max(A, ...) 8035 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8036 8037 case ICmpInst::ICMP_UGE: 8038 std::swap(LHS, RHS); 8039 // fall through 8040 case ICmpInst::ICMP_ULE: 8041 return 8042 // min(A, ...) <= A 8043 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8044 // A <= max(A, ...) 8045 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8046 } 8047 8048 llvm_unreachable("covered switch fell through?!"); 8049 } 8050 8051 /// isImpliedCondOperandsHelper - Test whether the condition described by 8052 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8053 /// FoundLHS, and FoundRHS is true. 8054 bool 8055 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8056 const SCEV *LHS, const SCEV *RHS, 8057 const SCEV *FoundLHS, 8058 const SCEV *FoundRHS) { 8059 auto IsKnownPredicateFull = 8060 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8061 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 8062 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8063 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8064 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8065 }; 8066 8067 switch (Pred) { 8068 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8069 case ICmpInst::ICMP_EQ: 8070 case ICmpInst::ICMP_NE: 8071 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8072 return true; 8073 break; 8074 case ICmpInst::ICMP_SLT: 8075 case ICmpInst::ICMP_SLE: 8076 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8077 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8078 return true; 8079 break; 8080 case ICmpInst::ICMP_SGT: 8081 case ICmpInst::ICMP_SGE: 8082 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8083 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8084 return true; 8085 break; 8086 case ICmpInst::ICMP_ULT: 8087 case ICmpInst::ICMP_ULE: 8088 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8089 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8090 return true; 8091 break; 8092 case ICmpInst::ICMP_UGT: 8093 case ICmpInst::ICMP_UGE: 8094 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8095 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8096 return true; 8097 break; 8098 } 8099 8100 return false; 8101 } 8102 8103 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8104 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8105 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8106 const SCEV *LHS, 8107 const SCEV *RHS, 8108 const SCEV *FoundLHS, 8109 const SCEV *FoundRHS) { 8110 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8111 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8112 // reduce the compile time impact of this optimization. 8113 return false; 8114 8115 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8116 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8117 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8118 return false; 8119 8120 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 8121 8122 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8123 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8124 ConstantRange FoundLHSRange = 8125 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8126 8127 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8128 // for `LHS`: 8129 APInt Addend = 8130 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 8131 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8132 8133 // We can also compute the range of values for `LHS` that satisfy the 8134 // consequent, "`LHS` `Pred` `RHS`": 8135 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 8136 ConstantRange SatisfyingLHSRange = 8137 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8138 8139 // The antecedent implies the consequent if every value of `LHS` that 8140 // satisfies the antecedent also satisfies the consequent. 8141 return SatisfyingLHSRange.contains(LHSRange); 8142 } 8143 8144 // Verify if an linear IV with positive stride can overflow when in a 8145 // less-than comparison, knowing the invariant term of the comparison, the 8146 // stride and the knowledge of NSW/NUW flags on the recurrence. 8147 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8148 bool IsSigned, bool NoWrap) { 8149 if (NoWrap) return false; 8150 8151 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8152 const SCEV *One = getOne(Stride->getType()); 8153 8154 if (IsSigned) { 8155 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8156 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8157 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8158 .getSignedMax(); 8159 8160 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8161 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8162 } 8163 8164 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8165 APInt MaxValue = APInt::getMaxValue(BitWidth); 8166 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8167 .getUnsignedMax(); 8168 8169 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8170 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8171 } 8172 8173 // Verify if an linear IV with negative stride can overflow when in a 8174 // greater-than comparison, knowing the invariant term of the comparison, 8175 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8176 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8177 bool IsSigned, bool NoWrap) { 8178 if (NoWrap) return false; 8179 8180 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8181 const SCEV *One = getOne(Stride->getType()); 8182 8183 if (IsSigned) { 8184 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8185 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8186 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8187 .getSignedMax(); 8188 8189 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8190 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8191 } 8192 8193 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8194 APInt MinValue = APInt::getMinValue(BitWidth); 8195 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8196 .getUnsignedMax(); 8197 8198 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8199 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8200 } 8201 8202 // Compute the backedge taken count knowing the interval difference, the 8203 // stride and presence of the equality in the comparison. 8204 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8205 bool Equality) { 8206 const SCEV *One = getOne(Step->getType()); 8207 Delta = Equality ? getAddExpr(Delta, Step) 8208 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8209 return getUDivExpr(Delta, Step); 8210 } 8211 8212 /// HowManyLessThans - Return the number of times a backedge containing the 8213 /// specified less-than comparison will execute. If not computable, return 8214 /// CouldNotCompute. 8215 /// 8216 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8217 /// the branch (loops exits only if condition is true). In this case, we can use 8218 /// NoWrapFlags to skip overflow checks. 8219 ScalarEvolution::ExitLimit 8220 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8221 const Loop *L, bool IsSigned, 8222 bool ControlsExit) { 8223 // We handle only IV < Invariant 8224 if (!isLoopInvariant(RHS, L)) 8225 return getCouldNotCompute(); 8226 8227 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8228 8229 // Avoid weird loops 8230 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8231 return getCouldNotCompute(); 8232 8233 bool NoWrap = ControlsExit && 8234 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8235 8236 const SCEV *Stride = IV->getStepRecurrence(*this); 8237 8238 // Avoid negative or zero stride values 8239 if (!isKnownPositive(Stride)) 8240 return getCouldNotCompute(); 8241 8242 // Avoid proven overflow cases: this will ensure that the backedge taken count 8243 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8244 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8245 // behaviors like the case of C language. 8246 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8247 return getCouldNotCompute(); 8248 8249 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8250 : ICmpInst::ICMP_ULT; 8251 const SCEV *Start = IV->getStart(); 8252 const SCEV *End = RHS; 8253 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8254 const SCEV *Diff = getMinusSCEV(RHS, Start); 8255 // If we have NoWrap set, then we can assume that the increment won't 8256 // overflow, in which case if RHS - Start is a constant, we don't need to 8257 // do a max operation since we can just figure it out statically 8258 if (NoWrap && isa<SCEVConstant>(Diff)) { 8259 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8260 if (D.isNegative()) 8261 End = Start; 8262 } else 8263 End = IsSigned ? getSMaxExpr(RHS, Start) 8264 : getUMaxExpr(RHS, Start); 8265 } 8266 8267 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8268 8269 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8270 : getUnsignedRange(Start).getUnsignedMin(); 8271 8272 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8273 : getUnsignedRange(Stride).getUnsignedMin(); 8274 8275 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8276 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8277 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8278 8279 // Although End can be a MAX expression we estimate MaxEnd considering only 8280 // the case End = RHS. This is safe because in the other case (End - Start) 8281 // is zero, leading to a zero maximum backedge taken count. 8282 APInt MaxEnd = 8283 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8284 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8285 8286 const SCEV *MaxBECount; 8287 if (isa<SCEVConstant>(BECount)) 8288 MaxBECount = BECount; 8289 else 8290 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8291 getConstant(MinStride), false); 8292 8293 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8294 MaxBECount = BECount; 8295 8296 return ExitLimit(BECount, MaxBECount); 8297 } 8298 8299 ScalarEvolution::ExitLimit 8300 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8301 const Loop *L, bool IsSigned, 8302 bool ControlsExit) { 8303 // We handle only IV > Invariant 8304 if (!isLoopInvariant(RHS, L)) 8305 return getCouldNotCompute(); 8306 8307 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8308 8309 // Avoid weird loops 8310 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8311 return getCouldNotCompute(); 8312 8313 bool NoWrap = ControlsExit && 8314 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8315 8316 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8317 8318 // Avoid negative or zero stride values 8319 if (!isKnownPositive(Stride)) 8320 return getCouldNotCompute(); 8321 8322 // Avoid proven overflow cases: this will ensure that the backedge taken count 8323 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8324 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8325 // behaviors like the case of C language. 8326 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8327 return getCouldNotCompute(); 8328 8329 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8330 : ICmpInst::ICMP_UGT; 8331 8332 const SCEV *Start = IV->getStart(); 8333 const SCEV *End = RHS; 8334 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8335 const SCEV *Diff = getMinusSCEV(RHS, Start); 8336 // If we have NoWrap set, then we can assume that the increment won't 8337 // overflow, in which case if RHS - Start is a constant, we don't need to 8338 // do a max operation since we can just figure it out statically 8339 if (NoWrap && isa<SCEVConstant>(Diff)) { 8340 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8341 if (!D.isNegative()) 8342 End = Start; 8343 } else 8344 End = IsSigned ? getSMinExpr(RHS, Start) 8345 : getUMinExpr(RHS, Start); 8346 } 8347 8348 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8349 8350 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8351 : getUnsignedRange(Start).getUnsignedMax(); 8352 8353 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8354 : getUnsignedRange(Stride).getUnsignedMin(); 8355 8356 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8357 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8358 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8359 8360 // Although End can be a MIN expression we estimate MinEnd considering only 8361 // the case End = RHS. This is safe because in the other case (Start - End) 8362 // is zero, leading to a zero maximum backedge taken count. 8363 APInt MinEnd = 8364 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8365 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8366 8367 8368 const SCEV *MaxBECount = getCouldNotCompute(); 8369 if (isa<SCEVConstant>(BECount)) 8370 MaxBECount = BECount; 8371 else 8372 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8373 getConstant(MinStride), false); 8374 8375 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8376 MaxBECount = BECount; 8377 8378 return ExitLimit(BECount, MaxBECount); 8379 } 8380 8381 /// getNumIterationsInRange - Return the number of iterations of this loop that 8382 /// produce values in the specified constant range. Another way of looking at 8383 /// this is that it returns the first iteration number where the value is not in 8384 /// the condition, thus computing the exit count. If the iteration count can't 8385 /// be computed, an instance of SCEVCouldNotCompute is returned. 8386 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8387 ScalarEvolution &SE) const { 8388 if (Range.isFullSet()) // Infinite loop. 8389 return SE.getCouldNotCompute(); 8390 8391 // If the start is a non-zero constant, shift the range to simplify things. 8392 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8393 if (!SC->getValue()->isZero()) { 8394 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8395 Operands[0] = SE.getZero(SC->getType()); 8396 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8397 getNoWrapFlags(FlagNW)); 8398 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8399 return ShiftedAddRec->getNumIterationsInRange( 8400 Range.subtract(SC->getValue()->getValue()), SE); 8401 // This is strange and shouldn't happen. 8402 return SE.getCouldNotCompute(); 8403 } 8404 8405 // The only time we can solve this is when we have all constant indices. 8406 // Otherwise, we cannot determine the overflow conditions. 8407 if (std::any_of(op_begin(), op_end(), 8408 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8409 return SE.getCouldNotCompute(); 8410 8411 // Okay at this point we know that all elements of the chrec are constants and 8412 // that the start element is zero. 8413 8414 // First check to see if the range contains zero. If not, the first 8415 // iteration exits. 8416 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8417 if (!Range.contains(APInt(BitWidth, 0))) 8418 return SE.getZero(getType()); 8419 8420 if (isAffine()) { 8421 // If this is an affine expression then we have this situation: 8422 // Solve {0,+,A} in Range === Ax in Range 8423 8424 // We know that zero is in the range. If A is positive then we know that 8425 // the upper value of the range must be the first possible exit value. 8426 // If A is negative then the lower of the range is the last possible loop 8427 // value. Also note that we already checked for a full range. 8428 APInt One(BitWidth,1); 8429 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8430 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8431 8432 // The exit value should be (End+A)/A. 8433 APInt ExitVal = (End + A).udiv(A); 8434 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8435 8436 // Evaluate at the exit value. If we really did fall out of the valid 8437 // range, then we computed our trip count, otherwise wrap around or other 8438 // things must have happened. 8439 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8440 if (Range.contains(Val->getValue())) 8441 return SE.getCouldNotCompute(); // Something strange happened 8442 8443 // Ensure that the previous value is in the range. This is a sanity check. 8444 assert(Range.contains( 8445 EvaluateConstantChrecAtConstant(this, 8446 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8447 "Linear scev computation is off in a bad way!"); 8448 return SE.getConstant(ExitValue); 8449 } else if (isQuadratic()) { 8450 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8451 // quadratic equation to solve it. To do this, we must frame our problem in 8452 // terms of figuring out when zero is crossed, instead of when 8453 // Range.getUpper() is crossed. 8454 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8455 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8456 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8457 // getNoWrapFlags(FlagNW) 8458 FlagAnyWrap); 8459 8460 // Next, solve the constructed addrec 8461 std::pair<const SCEV *,const SCEV *> Roots = 8462 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8463 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8464 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8465 if (R1) { 8466 // Pick the smallest positive root value. 8467 if (ConstantInt *CB = 8468 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8469 R1->getValue(), R2->getValue()))) { 8470 if (!CB->getZExtValue()) 8471 std::swap(R1, R2); // R1 is the minimum root now. 8472 8473 // Make sure the root is not off by one. The returned iteration should 8474 // not be in the range, but the previous one should be. When solving 8475 // for "X*X < 5", for example, we should not return a root of 2. 8476 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8477 R1->getValue(), 8478 SE); 8479 if (Range.contains(R1Val->getValue())) { 8480 // The next iteration must be out of the range... 8481 ConstantInt *NextVal = 8482 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8483 8484 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8485 if (!Range.contains(R1Val->getValue())) 8486 return SE.getConstant(NextVal); 8487 return SE.getCouldNotCompute(); // Something strange happened 8488 } 8489 8490 // If R1 was not in the range, then it is a good return value. Make 8491 // sure that R1-1 WAS in the range though, just in case. 8492 ConstantInt *NextVal = 8493 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8494 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8495 if (Range.contains(R1Val->getValue())) 8496 return R1; 8497 return SE.getCouldNotCompute(); // Something strange happened 8498 } 8499 } 8500 } 8501 8502 return SE.getCouldNotCompute(); 8503 } 8504 8505 namespace { 8506 struct FindUndefs { 8507 bool Found; 8508 FindUndefs() : Found(false) {} 8509 8510 bool follow(const SCEV *S) { 8511 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8512 if (isa<UndefValue>(C->getValue())) 8513 Found = true; 8514 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8515 if (isa<UndefValue>(C->getValue())) 8516 Found = true; 8517 } 8518 8519 // Keep looking if we haven't found it yet. 8520 return !Found; 8521 } 8522 bool isDone() const { 8523 // Stop recursion if we have found an undef. 8524 return Found; 8525 } 8526 }; 8527 } 8528 8529 // Return true when S contains at least an undef value. 8530 static inline bool 8531 containsUndefs(const SCEV *S) { 8532 FindUndefs F; 8533 SCEVTraversal<FindUndefs> ST(F); 8534 ST.visitAll(S); 8535 8536 return F.Found; 8537 } 8538 8539 namespace { 8540 // Collect all steps of SCEV expressions. 8541 struct SCEVCollectStrides { 8542 ScalarEvolution &SE; 8543 SmallVectorImpl<const SCEV *> &Strides; 8544 8545 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8546 : SE(SE), Strides(S) {} 8547 8548 bool follow(const SCEV *S) { 8549 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8550 Strides.push_back(AR->getStepRecurrence(SE)); 8551 return true; 8552 } 8553 bool isDone() const { return false; } 8554 }; 8555 8556 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8557 struct SCEVCollectTerms { 8558 SmallVectorImpl<const SCEV *> &Terms; 8559 8560 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8561 : Terms(T) {} 8562 8563 bool follow(const SCEV *S) { 8564 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8565 if (!containsUndefs(S)) 8566 Terms.push_back(S); 8567 8568 // Stop recursion: once we collected a term, do not walk its operands. 8569 return false; 8570 } 8571 8572 // Keep looking. 8573 return true; 8574 } 8575 bool isDone() const { return false; } 8576 }; 8577 8578 // Check if a SCEV contains an AddRecExpr. 8579 struct SCEVHasAddRec { 8580 bool &ContainsAddRec; 8581 8582 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8583 ContainsAddRec = false; 8584 } 8585 8586 bool follow(const SCEV *S) { 8587 if (isa<SCEVAddRecExpr>(S)) { 8588 ContainsAddRec = true; 8589 8590 // Stop recursion: once we collected a term, do not walk its operands. 8591 return false; 8592 } 8593 8594 // Keep looking. 8595 return true; 8596 } 8597 bool isDone() const { return false; } 8598 }; 8599 8600 // Find factors that are multiplied with an expression that (possibly as a 8601 // subexpression) contains an AddRecExpr. In the expression: 8602 // 8603 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8604 // 8605 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8606 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8607 // parameters as they form a product with an induction variable. 8608 // 8609 // This collector expects all array size parameters to be in the same MulExpr. 8610 // It might be necessary to later add support for collecting parameters that are 8611 // spread over different nested MulExpr. 8612 struct SCEVCollectAddRecMultiplies { 8613 SmallVectorImpl<const SCEV *> &Terms; 8614 ScalarEvolution &SE; 8615 8616 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8617 : Terms(T), SE(SE) {} 8618 8619 bool follow(const SCEV *S) { 8620 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8621 bool HasAddRec = false; 8622 SmallVector<const SCEV *, 0> Operands; 8623 for (auto Op : Mul->operands()) { 8624 if (isa<SCEVUnknown>(Op)) { 8625 Operands.push_back(Op); 8626 } else { 8627 bool ContainsAddRec; 8628 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8629 visitAll(Op, ContiansAddRec); 8630 HasAddRec |= ContainsAddRec; 8631 } 8632 } 8633 if (Operands.size() == 0) 8634 return true; 8635 8636 if (!HasAddRec) 8637 return false; 8638 8639 Terms.push_back(SE.getMulExpr(Operands)); 8640 // Stop recursion: once we collected a term, do not walk its operands. 8641 return false; 8642 } 8643 8644 // Keep looking. 8645 return true; 8646 } 8647 bool isDone() const { return false; } 8648 }; 8649 } 8650 8651 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8652 /// two places: 8653 /// 1) The strides of AddRec expressions. 8654 /// 2) Unknowns that are multiplied with AddRec expressions. 8655 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8656 SmallVectorImpl<const SCEV *> &Terms) { 8657 SmallVector<const SCEV *, 4> Strides; 8658 SCEVCollectStrides StrideCollector(*this, Strides); 8659 visitAll(Expr, StrideCollector); 8660 8661 DEBUG({ 8662 dbgs() << "Strides:\n"; 8663 for (const SCEV *S : Strides) 8664 dbgs() << *S << "\n"; 8665 }); 8666 8667 for (const SCEV *S : Strides) { 8668 SCEVCollectTerms TermCollector(Terms); 8669 visitAll(S, TermCollector); 8670 } 8671 8672 DEBUG({ 8673 dbgs() << "Terms:\n"; 8674 for (const SCEV *T : Terms) 8675 dbgs() << *T << "\n"; 8676 }); 8677 8678 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8679 visitAll(Expr, MulCollector); 8680 } 8681 8682 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8683 SmallVectorImpl<const SCEV *> &Terms, 8684 SmallVectorImpl<const SCEV *> &Sizes) { 8685 int Last = Terms.size() - 1; 8686 const SCEV *Step = Terms[Last]; 8687 8688 // End of recursion. 8689 if (Last == 0) { 8690 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8691 SmallVector<const SCEV *, 2> Qs; 8692 for (const SCEV *Op : M->operands()) 8693 if (!isa<SCEVConstant>(Op)) 8694 Qs.push_back(Op); 8695 8696 Step = SE.getMulExpr(Qs); 8697 } 8698 8699 Sizes.push_back(Step); 8700 return true; 8701 } 8702 8703 for (const SCEV *&Term : Terms) { 8704 // Normalize the terms before the next call to findArrayDimensionsRec. 8705 const SCEV *Q, *R; 8706 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8707 8708 // Bail out when GCD does not evenly divide one of the terms. 8709 if (!R->isZero()) 8710 return false; 8711 8712 Term = Q; 8713 } 8714 8715 // Remove all SCEVConstants. 8716 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8717 return isa<SCEVConstant>(E); 8718 }), 8719 Terms.end()); 8720 8721 if (Terms.size() > 0) 8722 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8723 return false; 8724 8725 Sizes.push_back(Step); 8726 return true; 8727 } 8728 8729 namespace { 8730 struct FindParameter { 8731 bool FoundParameter; 8732 FindParameter() : FoundParameter(false) {} 8733 8734 bool follow(const SCEV *S) { 8735 if (isa<SCEVUnknown>(S)) { 8736 FoundParameter = true; 8737 // Stop recursion: we found a parameter. 8738 return false; 8739 } 8740 // Keep looking. 8741 return true; 8742 } 8743 bool isDone() const { 8744 // Stop recursion if we have found a parameter. 8745 return FoundParameter; 8746 } 8747 }; 8748 } 8749 8750 // Returns true when S contains at least a SCEVUnknown parameter. 8751 static inline bool 8752 containsParameters(const SCEV *S) { 8753 FindParameter F; 8754 SCEVTraversal<FindParameter> ST(F); 8755 ST.visitAll(S); 8756 8757 return F.FoundParameter; 8758 } 8759 8760 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8761 static inline bool 8762 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8763 for (const SCEV *T : Terms) 8764 if (containsParameters(T)) 8765 return true; 8766 return false; 8767 } 8768 8769 // Return the number of product terms in S. 8770 static inline int numberOfTerms(const SCEV *S) { 8771 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8772 return Expr->getNumOperands(); 8773 return 1; 8774 } 8775 8776 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8777 if (isa<SCEVConstant>(T)) 8778 return nullptr; 8779 8780 if (isa<SCEVUnknown>(T)) 8781 return T; 8782 8783 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8784 SmallVector<const SCEV *, 2> Factors; 8785 for (const SCEV *Op : M->operands()) 8786 if (!isa<SCEVConstant>(Op)) 8787 Factors.push_back(Op); 8788 8789 return SE.getMulExpr(Factors); 8790 } 8791 8792 return T; 8793 } 8794 8795 /// Return the size of an element read or written by Inst. 8796 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8797 Type *Ty; 8798 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8799 Ty = Store->getValueOperand()->getType(); 8800 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8801 Ty = Load->getType(); 8802 else 8803 return nullptr; 8804 8805 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8806 return getSizeOfExpr(ETy, Ty); 8807 } 8808 8809 /// Second step of delinearization: compute the array dimensions Sizes from the 8810 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8811 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8812 SmallVectorImpl<const SCEV *> &Sizes, 8813 const SCEV *ElementSize) const { 8814 8815 if (Terms.size() < 1 || !ElementSize) 8816 return; 8817 8818 // Early return when Terms do not contain parameters: we do not delinearize 8819 // non parametric SCEVs. 8820 if (!containsParameters(Terms)) 8821 return; 8822 8823 DEBUG({ 8824 dbgs() << "Terms:\n"; 8825 for (const SCEV *T : Terms) 8826 dbgs() << *T << "\n"; 8827 }); 8828 8829 // Remove duplicates. 8830 std::sort(Terms.begin(), Terms.end()); 8831 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8832 8833 // Put larger terms first. 8834 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8835 return numberOfTerms(LHS) > numberOfTerms(RHS); 8836 }); 8837 8838 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8839 8840 // Try to divide all terms by the element size. If term is not divisible by 8841 // element size, proceed with the original term. 8842 for (const SCEV *&Term : Terms) { 8843 const SCEV *Q, *R; 8844 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8845 if (!Q->isZero()) 8846 Term = Q; 8847 } 8848 8849 SmallVector<const SCEV *, 4> NewTerms; 8850 8851 // Remove constant factors. 8852 for (const SCEV *T : Terms) 8853 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8854 NewTerms.push_back(NewT); 8855 8856 DEBUG({ 8857 dbgs() << "Terms after sorting:\n"; 8858 for (const SCEV *T : NewTerms) 8859 dbgs() << *T << "\n"; 8860 }); 8861 8862 if (NewTerms.empty() || 8863 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8864 Sizes.clear(); 8865 return; 8866 } 8867 8868 // The last element to be pushed into Sizes is the size of an element. 8869 Sizes.push_back(ElementSize); 8870 8871 DEBUG({ 8872 dbgs() << "Sizes:\n"; 8873 for (const SCEV *S : Sizes) 8874 dbgs() << *S << "\n"; 8875 }); 8876 } 8877 8878 /// Third step of delinearization: compute the access functions for the 8879 /// Subscripts based on the dimensions in Sizes. 8880 void ScalarEvolution::computeAccessFunctions( 8881 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8882 SmallVectorImpl<const SCEV *> &Sizes) { 8883 8884 // Early exit in case this SCEV is not an affine multivariate function. 8885 if (Sizes.empty()) 8886 return; 8887 8888 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8889 if (!AR->isAffine()) 8890 return; 8891 8892 const SCEV *Res = Expr; 8893 int Last = Sizes.size() - 1; 8894 for (int i = Last; i >= 0; i--) { 8895 const SCEV *Q, *R; 8896 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8897 8898 DEBUG({ 8899 dbgs() << "Res: " << *Res << "\n"; 8900 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8901 dbgs() << "Res divided by Sizes[i]:\n"; 8902 dbgs() << "Quotient: " << *Q << "\n"; 8903 dbgs() << "Remainder: " << *R << "\n"; 8904 }); 8905 8906 Res = Q; 8907 8908 // Do not record the last subscript corresponding to the size of elements in 8909 // the array. 8910 if (i == Last) { 8911 8912 // Bail out if the remainder is too complex. 8913 if (isa<SCEVAddRecExpr>(R)) { 8914 Subscripts.clear(); 8915 Sizes.clear(); 8916 return; 8917 } 8918 8919 continue; 8920 } 8921 8922 // Record the access function for the current subscript. 8923 Subscripts.push_back(R); 8924 } 8925 8926 // Also push in last position the remainder of the last division: it will be 8927 // the access function of the innermost dimension. 8928 Subscripts.push_back(Res); 8929 8930 std::reverse(Subscripts.begin(), Subscripts.end()); 8931 8932 DEBUG({ 8933 dbgs() << "Subscripts:\n"; 8934 for (const SCEV *S : Subscripts) 8935 dbgs() << *S << "\n"; 8936 }); 8937 } 8938 8939 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8940 /// sizes of an array access. Returns the remainder of the delinearization that 8941 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8942 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8943 /// expressions in the stride and base of a SCEV corresponding to the 8944 /// computation of a GCD (greatest common divisor) of base and stride. When 8945 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8946 /// 8947 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8948 /// 8949 /// void foo(long n, long m, long o, double A[n][m][o]) { 8950 /// 8951 /// for (long i = 0; i < n; i++) 8952 /// for (long j = 0; j < m; j++) 8953 /// for (long k = 0; k < o; k++) 8954 /// A[i][j][k] = 1.0; 8955 /// } 8956 /// 8957 /// the delinearization input is the following AddRec SCEV: 8958 /// 8959 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8960 /// 8961 /// From this SCEV, we are able to say that the base offset of the access is %A 8962 /// because it appears as an offset that does not divide any of the strides in 8963 /// the loops: 8964 /// 8965 /// CHECK: Base offset: %A 8966 /// 8967 /// and then SCEV->delinearize determines the size of some of the dimensions of 8968 /// the array as these are the multiples by which the strides are happening: 8969 /// 8970 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8971 /// 8972 /// Note that the outermost dimension remains of UnknownSize because there are 8973 /// no strides that would help identifying the size of the last dimension: when 8974 /// the array has been statically allocated, one could compute the size of that 8975 /// dimension by dividing the overall size of the array by the size of the known 8976 /// dimensions: %m * %o * 8. 8977 /// 8978 /// Finally delinearize provides the access functions for the array reference 8979 /// that does correspond to A[i][j][k] of the above C testcase: 8980 /// 8981 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8982 /// 8983 /// The testcases are checking the output of a function pass: 8984 /// DelinearizationPass that walks through all loads and stores of a function 8985 /// asking for the SCEV of the memory access with respect to all enclosing 8986 /// loops, calling SCEV->delinearize on that and printing the results. 8987 8988 void ScalarEvolution::delinearize(const SCEV *Expr, 8989 SmallVectorImpl<const SCEV *> &Subscripts, 8990 SmallVectorImpl<const SCEV *> &Sizes, 8991 const SCEV *ElementSize) { 8992 // First step: collect parametric terms. 8993 SmallVector<const SCEV *, 4> Terms; 8994 collectParametricTerms(Expr, Terms); 8995 8996 if (Terms.empty()) 8997 return; 8998 8999 // Second step: find subscript sizes. 9000 findArrayDimensions(Terms, Sizes, ElementSize); 9001 9002 if (Sizes.empty()) 9003 return; 9004 9005 // Third step: compute the access functions for each subscript. 9006 computeAccessFunctions(Expr, Subscripts, Sizes); 9007 9008 if (Subscripts.empty()) 9009 return; 9010 9011 DEBUG({ 9012 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9013 dbgs() << "ArrayDecl[UnknownSize]"; 9014 for (const SCEV *S : Sizes) 9015 dbgs() << "[" << *S << "]"; 9016 9017 dbgs() << "\nArrayRef"; 9018 for (const SCEV *S : Subscripts) 9019 dbgs() << "[" << *S << "]"; 9020 dbgs() << "\n"; 9021 }); 9022 } 9023 9024 //===----------------------------------------------------------------------===// 9025 // SCEVCallbackVH Class Implementation 9026 //===----------------------------------------------------------------------===// 9027 9028 void ScalarEvolution::SCEVCallbackVH::deleted() { 9029 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9030 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9031 SE->ConstantEvolutionLoopExitValue.erase(PN); 9032 SE->ValueExprMap.erase(getValPtr()); 9033 // this now dangles! 9034 } 9035 9036 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9037 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9038 9039 // Forget all the expressions associated with users of the old value, 9040 // so that future queries will recompute the expressions using the new 9041 // value. 9042 Value *Old = getValPtr(); 9043 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9044 SmallPtrSet<User *, 8> Visited; 9045 while (!Worklist.empty()) { 9046 User *U = Worklist.pop_back_val(); 9047 // Deleting the Old value will cause this to dangle. Postpone 9048 // that until everything else is done. 9049 if (U == Old) 9050 continue; 9051 if (!Visited.insert(U).second) 9052 continue; 9053 if (PHINode *PN = dyn_cast<PHINode>(U)) 9054 SE->ConstantEvolutionLoopExitValue.erase(PN); 9055 SE->ValueExprMap.erase(U); 9056 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9057 } 9058 // Delete the Old value. 9059 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9060 SE->ConstantEvolutionLoopExitValue.erase(PN); 9061 SE->ValueExprMap.erase(Old); 9062 // this now dangles! 9063 } 9064 9065 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9066 : CallbackVH(V), SE(se) {} 9067 9068 //===----------------------------------------------------------------------===// 9069 // ScalarEvolution Class Implementation 9070 //===----------------------------------------------------------------------===// 9071 9072 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9073 AssumptionCache &AC, DominatorTree &DT, 9074 LoopInfo &LI) 9075 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9076 CouldNotCompute(new SCEVCouldNotCompute()), 9077 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9078 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9079 FirstUnknown(nullptr) {} 9080 9081 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9082 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9083 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9084 ValueExprMap(std::move(Arg.ValueExprMap)), 9085 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9086 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9087 ConstantEvolutionLoopExitValue( 9088 std::move(Arg.ConstantEvolutionLoopExitValue)), 9089 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9090 LoopDispositions(std::move(Arg.LoopDispositions)), 9091 BlockDispositions(std::move(Arg.BlockDispositions)), 9092 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9093 SignedRanges(std::move(Arg.SignedRanges)), 9094 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9095 UniquePreds(std::move(Arg.UniquePreds)), 9096 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9097 FirstUnknown(Arg.FirstUnknown) { 9098 Arg.FirstUnknown = nullptr; 9099 } 9100 9101 ScalarEvolution::~ScalarEvolution() { 9102 // Iterate through all the SCEVUnknown instances and call their 9103 // destructors, so that they release their references to their values. 9104 for (SCEVUnknown *U = FirstUnknown; U;) { 9105 SCEVUnknown *Tmp = U; 9106 U = U->Next; 9107 Tmp->~SCEVUnknown(); 9108 } 9109 FirstUnknown = nullptr; 9110 9111 ValueExprMap.clear(); 9112 9113 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9114 // that a loop had multiple computable exits. 9115 for (auto &BTCI : BackedgeTakenCounts) 9116 BTCI.second.clear(); 9117 9118 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9119 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9120 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9121 } 9122 9123 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9124 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9125 } 9126 9127 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9128 const Loop *L) { 9129 // Print all inner loops first 9130 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9131 PrintLoopInfo(OS, SE, *I); 9132 9133 OS << "Loop "; 9134 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9135 OS << ": "; 9136 9137 SmallVector<BasicBlock *, 8> ExitBlocks; 9138 L->getExitBlocks(ExitBlocks); 9139 if (ExitBlocks.size() != 1) 9140 OS << "<multiple exits> "; 9141 9142 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9143 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9144 } else { 9145 OS << "Unpredictable backedge-taken count. "; 9146 } 9147 9148 OS << "\n" 9149 "Loop "; 9150 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9151 OS << ": "; 9152 9153 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9154 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9155 } else { 9156 OS << "Unpredictable max backedge-taken count. "; 9157 } 9158 9159 OS << "\n"; 9160 } 9161 9162 void ScalarEvolution::print(raw_ostream &OS) const { 9163 // ScalarEvolution's implementation of the print method is to print 9164 // out SCEV values of all instructions that are interesting. Doing 9165 // this potentially causes it to create new SCEV objects though, 9166 // which technically conflicts with the const qualifier. This isn't 9167 // observable from outside the class though, so casting away the 9168 // const isn't dangerous. 9169 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9170 9171 OS << "Classifying expressions for: "; 9172 F.printAsOperand(OS, /*PrintType=*/false); 9173 OS << "\n"; 9174 for (Instruction &I : instructions(F)) 9175 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9176 OS << I << '\n'; 9177 OS << " --> "; 9178 const SCEV *SV = SE.getSCEV(&I); 9179 SV->print(OS); 9180 if (!isa<SCEVCouldNotCompute>(SV)) { 9181 OS << " U: "; 9182 SE.getUnsignedRange(SV).print(OS); 9183 OS << " S: "; 9184 SE.getSignedRange(SV).print(OS); 9185 } 9186 9187 const Loop *L = LI.getLoopFor(I.getParent()); 9188 9189 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9190 if (AtUse != SV) { 9191 OS << " --> "; 9192 AtUse->print(OS); 9193 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9194 OS << " U: "; 9195 SE.getUnsignedRange(AtUse).print(OS); 9196 OS << " S: "; 9197 SE.getSignedRange(AtUse).print(OS); 9198 } 9199 } 9200 9201 if (L) { 9202 OS << "\t\t" "Exits: "; 9203 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9204 if (!SE.isLoopInvariant(ExitValue, L)) { 9205 OS << "<<Unknown>>"; 9206 } else { 9207 OS << *ExitValue; 9208 } 9209 } 9210 9211 OS << "\n"; 9212 } 9213 9214 OS << "Determining loop execution counts for: "; 9215 F.printAsOperand(OS, /*PrintType=*/false); 9216 OS << "\n"; 9217 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9218 PrintLoopInfo(OS, &SE, *I); 9219 } 9220 9221 ScalarEvolution::LoopDisposition 9222 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9223 auto &Values = LoopDispositions[S]; 9224 for (auto &V : Values) { 9225 if (V.getPointer() == L) 9226 return V.getInt(); 9227 } 9228 Values.emplace_back(L, LoopVariant); 9229 LoopDisposition D = computeLoopDisposition(S, L); 9230 auto &Values2 = LoopDispositions[S]; 9231 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9232 if (V.getPointer() == L) { 9233 V.setInt(D); 9234 break; 9235 } 9236 } 9237 return D; 9238 } 9239 9240 ScalarEvolution::LoopDisposition 9241 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9242 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9243 case scConstant: 9244 return LoopInvariant; 9245 case scTruncate: 9246 case scZeroExtend: 9247 case scSignExtend: 9248 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9249 case scAddRecExpr: { 9250 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9251 9252 // If L is the addrec's loop, it's computable. 9253 if (AR->getLoop() == L) 9254 return LoopComputable; 9255 9256 // Add recurrences are never invariant in the function-body (null loop). 9257 if (!L) 9258 return LoopVariant; 9259 9260 // This recurrence is variant w.r.t. L if L contains AR's loop. 9261 if (L->contains(AR->getLoop())) 9262 return LoopVariant; 9263 9264 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9265 if (AR->getLoop()->contains(L)) 9266 return LoopInvariant; 9267 9268 // This recurrence is variant w.r.t. L if any of its operands 9269 // are variant. 9270 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9271 I != E; ++I) 9272 if (!isLoopInvariant(*I, L)) 9273 return LoopVariant; 9274 9275 // Otherwise it's loop-invariant. 9276 return LoopInvariant; 9277 } 9278 case scAddExpr: 9279 case scMulExpr: 9280 case scUMaxExpr: 9281 case scSMaxExpr: { 9282 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9283 bool HasVarying = false; 9284 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9285 I != E; ++I) { 9286 LoopDisposition D = getLoopDisposition(*I, L); 9287 if (D == LoopVariant) 9288 return LoopVariant; 9289 if (D == LoopComputable) 9290 HasVarying = true; 9291 } 9292 return HasVarying ? LoopComputable : LoopInvariant; 9293 } 9294 case scUDivExpr: { 9295 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9296 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9297 if (LD == LoopVariant) 9298 return LoopVariant; 9299 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9300 if (RD == LoopVariant) 9301 return LoopVariant; 9302 return (LD == LoopInvariant && RD == LoopInvariant) ? 9303 LoopInvariant : LoopComputable; 9304 } 9305 case scUnknown: 9306 // All non-instruction values are loop invariant. All instructions are loop 9307 // invariant if they are not contained in the specified loop. 9308 // Instructions are never considered invariant in the function body 9309 // (null loop) because they are defined within the "loop". 9310 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9311 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9312 return LoopInvariant; 9313 case scCouldNotCompute: 9314 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9315 } 9316 llvm_unreachable("Unknown SCEV kind!"); 9317 } 9318 9319 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9320 return getLoopDisposition(S, L) == LoopInvariant; 9321 } 9322 9323 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9324 return getLoopDisposition(S, L) == LoopComputable; 9325 } 9326 9327 ScalarEvolution::BlockDisposition 9328 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9329 auto &Values = BlockDispositions[S]; 9330 for (auto &V : Values) { 9331 if (V.getPointer() == BB) 9332 return V.getInt(); 9333 } 9334 Values.emplace_back(BB, DoesNotDominateBlock); 9335 BlockDisposition D = computeBlockDisposition(S, BB); 9336 auto &Values2 = BlockDispositions[S]; 9337 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9338 if (V.getPointer() == BB) { 9339 V.setInt(D); 9340 break; 9341 } 9342 } 9343 return D; 9344 } 9345 9346 ScalarEvolution::BlockDisposition 9347 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9348 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9349 case scConstant: 9350 return ProperlyDominatesBlock; 9351 case scTruncate: 9352 case scZeroExtend: 9353 case scSignExtend: 9354 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9355 case scAddRecExpr: { 9356 // This uses a "dominates" query instead of "properly dominates" query 9357 // to test for proper dominance too, because the instruction which 9358 // produces the addrec's value is a PHI, and a PHI effectively properly 9359 // dominates its entire containing block. 9360 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9361 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9362 return DoesNotDominateBlock; 9363 } 9364 // FALL THROUGH into SCEVNAryExpr handling. 9365 case scAddExpr: 9366 case scMulExpr: 9367 case scUMaxExpr: 9368 case scSMaxExpr: { 9369 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9370 bool Proper = true; 9371 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9372 I != E; ++I) { 9373 BlockDisposition D = getBlockDisposition(*I, BB); 9374 if (D == DoesNotDominateBlock) 9375 return DoesNotDominateBlock; 9376 if (D == DominatesBlock) 9377 Proper = false; 9378 } 9379 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9380 } 9381 case scUDivExpr: { 9382 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9383 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9384 BlockDisposition LD = getBlockDisposition(LHS, BB); 9385 if (LD == DoesNotDominateBlock) 9386 return DoesNotDominateBlock; 9387 BlockDisposition RD = getBlockDisposition(RHS, BB); 9388 if (RD == DoesNotDominateBlock) 9389 return DoesNotDominateBlock; 9390 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9391 ProperlyDominatesBlock : DominatesBlock; 9392 } 9393 case scUnknown: 9394 if (Instruction *I = 9395 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9396 if (I->getParent() == BB) 9397 return DominatesBlock; 9398 if (DT.properlyDominates(I->getParent(), BB)) 9399 return ProperlyDominatesBlock; 9400 return DoesNotDominateBlock; 9401 } 9402 return ProperlyDominatesBlock; 9403 case scCouldNotCompute: 9404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9405 } 9406 llvm_unreachable("Unknown SCEV kind!"); 9407 } 9408 9409 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9410 return getBlockDisposition(S, BB) >= DominatesBlock; 9411 } 9412 9413 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9414 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9415 } 9416 9417 namespace { 9418 // Search for a SCEV expression node within an expression tree. 9419 // Implements SCEVTraversal::Visitor. 9420 struct SCEVSearch { 9421 const SCEV *Node; 9422 bool IsFound; 9423 9424 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9425 9426 bool follow(const SCEV *S) { 9427 IsFound |= (S == Node); 9428 return !IsFound; 9429 } 9430 bool isDone() const { return IsFound; } 9431 }; 9432 } 9433 9434 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9435 SCEVSearch Search(Op); 9436 visitAll(S, Search); 9437 return Search.IsFound; 9438 } 9439 9440 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9441 ValuesAtScopes.erase(S); 9442 LoopDispositions.erase(S); 9443 BlockDispositions.erase(S); 9444 UnsignedRanges.erase(S); 9445 SignedRanges.erase(S); 9446 9447 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9448 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9449 BackedgeTakenInfo &BEInfo = I->second; 9450 if (BEInfo.hasOperand(S, this)) { 9451 BEInfo.clear(); 9452 BackedgeTakenCounts.erase(I++); 9453 } 9454 else 9455 ++I; 9456 } 9457 } 9458 9459 typedef DenseMap<const Loop *, std::string> VerifyMap; 9460 9461 /// replaceSubString - Replaces all occurrences of From in Str with To. 9462 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9463 size_t Pos = 0; 9464 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9465 Str.replace(Pos, From.size(), To.data(), To.size()); 9466 Pos += To.size(); 9467 } 9468 } 9469 9470 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9471 static void 9472 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9473 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9474 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9475 9476 std::string &S = Map[L]; 9477 if (S.empty()) { 9478 raw_string_ostream OS(S); 9479 SE.getBackedgeTakenCount(L)->print(OS); 9480 9481 // false and 0 are semantically equivalent. This can happen in dead loops. 9482 replaceSubString(OS.str(), "false", "0"); 9483 // Remove wrap flags, their use in SCEV is highly fragile. 9484 // FIXME: Remove this when SCEV gets smarter about them. 9485 replaceSubString(OS.str(), "<nw>", ""); 9486 replaceSubString(OS.str(), "<nsw>", ""); 9487 replaceSubString(OS.str(), "<nuw>", ""); 9488 } 9489 } 9490 } 9491 9492 void ScalarEvolution::verify() const { 9493 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9494 9495 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9496 // FIXME: It would be much better to store actual values instead of strings, 9497 // but SCEV pointers will change if we drop the caches. 9498 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9499 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9500 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9501 9502 // Gather stringified backedge taken counts for all loops using a fresh 9503 // ScalarEvolution object. 9504 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9505 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9506 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9507 9508 // Now compare whether they're the same with and without caches. This allows 9509 // verifying that no pass changed the cache. 9510 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9511 "New loops suddenly appeared!"); 9512 9513 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9514 OldE = BackedgeDumpsOld.end(), 9515 NewI = BackedgeDumpsNew.begin(); 9516 OldI != OldE; ++OldI, ++NewI) { 9517 assert(OldI->first == NewI->first && "Loop order changed!"); 9518 9519 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9520 // changes. 9521 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9522 // means that a pass is buggy or SCEV has to learn a new pattern but is 9523 // usually not harmful. 9524 if (OldI->second != NewI->second && 9525 OldI->second.find("undef") == std::string::npos && 9526 NewI->second.find("undef") == std::string::npos && 9527 OldI->second != "***COULDNOTCOMPUTE***" && 9528 NewI->second != "***COULDNOTCOMPUTE***") { 9529 dbgs() << "SCEVValidator: SCEV for loop '" 9530 << OldI->first->getHeader()->getName() 9531 << "' changed from '" << OldI->second 9532 << "' to '" << NewI->second << "'!\n"; 9533 std::abort(); 9534 } 9535 } 9536 9537 // TODO: Verify more things. 9538 } 9539 9540 char ScalarEvolutionAnalysis::PassID; 9541 9542 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9543 AnalysisManager<Function> *AM) { 9544 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9545 AM->getResult<AssumptionAnalysis>(F), 9546 AM->getResult<DominatorTreeAnalysis>(F), 9547 AM->getResult<LoopAnalysis>(F)); 9548 } 9549 9550 PreservedAnalyses 9551 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9552 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9553 return PreservedAnalyses::all(); 9554 } 9555 9556 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9557 "Scalar Evolution Analysis", false, true) 9558 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9559 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9560 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9561 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9562 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9563 "Scalar Evolution Analysis", false, true) 9564 char ScalarEvolutionWrapperPass::ID = 0; 9565 9566 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9567 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9568 } 9569 9570 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9571 SE.reset(new ScalarEvolution( 9572 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9573 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9574 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9575 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9576 return false; 9577 } 9578 9579 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9580 9581 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9582 SE->print(OS); 9583 } 9584 9585 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9586 if (!VerifySCEV) 9587 return; 9588 9589 SE->verify(); 9590 } 9591 9592 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9593 AU.setPreservesAll(); 9594 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9595 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9596 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9597 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9598 } 9599 9600 const SCEVPredicate * 9601 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9602 const SCEVConstant *RHS) { 9603 FoldingSetNodeID ID; 9604 // Unique this node based on the arguments 9605 ID.AddInteger(SCEVPredicate::P_Equal); 9606 ID.AddPointer(LHS); 9607 ID.AddPointer(RHS); 9608 void *IP = nullptr; 9609 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9610 return S; 9611 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9612 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9613 UniquePreds.InsertNode(Eq, IP); 9614 return Eq; 9615 } 9616 9617 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9618 public: 9619 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, 9620 SCEVUnionPredicate &A) { 9621 SCEVPredicateRewriter Rewriter(SE, A); 9622 return Rewriter.visit(Scev); 9623 } 9624 9625 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P) 9626 : SCEVRewriteVisitor(SE), P(P) {} 9627 9628 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9629 auto ExprPreds = P.getPredicatesForExpr(Expr); 9630 for (auto *Pred : ExprPreds) 9631 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9632 if (IPred->getLHS() == Expr) 9633 return IPred->getRHS(); 9634 9635 return Expr; 9636 } 9637 9638 private: 9639 SCEVUnionPredicate &P; 9640 }; 9641 9642 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev, 9643 SCEVUnionPredicate &Preds) { 9644 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds); 9645 } 9646 9647 /// SCEV predicates 9648 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9649 SCEVPredicateKind Kind) 9650 : FastID(ID), Kind(Kind) {} 9651 9652 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9653 const SCEVUnknown *LHS, 9654 const SCEVConstant *RHS) 9655 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9656 9657 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9658 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9659 9660 if (!Op) 9661 return false; 9662 9663 return Op->LHS == LHS && Op->RHS == RHS; 9664 } 9665 9666 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9667 9668 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9669 9670 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9671 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9672 } 9673 9674 /// Union predicates don't get cached so create a dummy set ID for it. 9675 SCEVUnionPredicate::SCEVUnionPredicate() 9676 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9677 9678 bool SCEVUnionPredicate::isAlwaysTrue() const { 9679 return std::all_of(Preds.begin(), Preds.end(), 9680 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9681 } 9682 9683 ArrayRef<const SCEVPredicate *> 9684 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9685 auto I = SCEVToPreds.find(Expr); 9686 if (I == SCEVToPreds.end()) 9687 return ArrayRef<const SCEVPredicate *>(); 9688 return I->second; 9689 } 9690 9691 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9692 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9693 return std::all_of( 9694 Set->Preds.begin(), Set->Preds.end(), 9695 [this](const SCEVPredicate *I) { return this->implies(I); }); 9696 9697 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9698 if (ScevPredsIt == SCEVToPreds.end()) 9699 return false; 9700 auto &SCEVPreds = ScevPredsIt->second; 9701 9702 return std::any_of(SCEVPreds.begin(), SCEVPreds.end(), 9703 [N](const SCEVPredicate *I) { return I->implies(N); }); 9704 } 9705 9706 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9707 9708 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9709 for (auto Pred : Preds) 9710 Pred->print(OS, Depth); 9711 } 9712 9713 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9714 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9715 for (auto Pred : Set->Preds) 9716 add(Pred); 9717 return; 9718 } 9719 9720 if (implies(N)) 9721 return; 9722 9723 const SCEV *Key = N->getExpr(); 9724 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9725 " associated expression!"); 9726 9727 SCEVToPreds[Key].push_back(N); 9728 Preds.push_back(N); 9729 } 9730