1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/ConstantFolding.h" 67 #include "llvm/Analysis/Dominators.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DerivedTypes.h" 76 #include "llvm/IR/GlobalAlias.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/ConstantRange.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/GetElementPtrTypeIterator.h" 86 #include "llvm/Support/InstIterator.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetLibraryInfo.h" 90 #include <algorithm> 91 using namespace llvm; 92 93 STATISTIC(NumArrayLenItCounts, 94 "Number of trip counts computed with array length"); 95 STATISTIC(NumTripCountsComputed, 96 "Number of loops with predictable loop counts"); 97 STATISTIC(NumTripCountsNotComputed, 98 "Number of loops without predictable loop counts"); 99 STATISTIC(NumBruteForceTripCountsComputed, 100 "Number of loops with trip counts computed by force"); 101 102 static cl::opt<unsigned> 103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 104 cl::desc("Maximum number of iterations SCEV will " 105 "symbolically execute a constant " 106 "derived loop"), 107 cl::init(100)); 108 109 // FIXME: Enable this with XDEBUG when the test suite is clean. 110 static cl::opt<bool> 111 VerifySCEV("verify-scev", 112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 113 114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 115 "Scalar Evolution Analysis", false, true) 116 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 120 "Scalar Evolution Analysis", false, true) 121 char ScalarEvolution::ID = 0; 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 #endif 137 138 void SCEV::print(raw_ostream &OS) const { 139 switch (getSCEVType()) { 140 case scConstant: 141 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 142 return; 143 case scTruncate: { 144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 145 const SCEV *Op = Trunc->getOperand(); 146 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 147 << *Trunc->getType() << ")"; 148 return; 149 } 150 case scZeroExtend: { 151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 152 const SCEV *Op = ZExt->getOperand(); 153 OS << "(zext " << *Op->getType() << " " << *Op << " to " 154 << *ZExt->getType() << ")"; 155 return; 156 } 157 case scSignExtend: { 158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 159 const SCEV *Op = SExt->getOperand(); 160 OS << "(sext " << *Op->getType() << " " << *Op << " to " 161 << *SExt->getType() << ")"; 162 return; 163 } 164 case scAddRecExpr: { 165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 166 OS << "{" << *AR->getOperand(0); 167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 168 OS << ",+," << *AR->getOperand(i); 169 OS << "}<"; 170 if (AR->getNoWrapFlags(FlagNUW)) 171 OS << "nuw><"; 172 if (AR->getNoWrapFlags(FlagNSW)) 173 OS << "nsw><"; 174 if (AR->getNoWrapFlags(FlagNW) && 175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 176 OS << "nw><"; 177 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 178 OS << ">"; 179 return; 180 } 181 case scAddExpr: 182 case scMulExpr: 183 case scUMaxExpr: 184 case scSMaxExpr: { 185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 186 const char *OpStr = 0; 187 switch (NAry->getSCEVType()) { 188 case scAddExpr: OpStr = " + "; break; 189 case scMulExpr: OpStr = " * "; break; 190 case scUMaxExpr: OpStr = " umax "; break; 191 case scSMaxExpr: OpStr = " smax "; break; 192 } 193 OS << "("; 194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 195 I != E; ++I) { 196 OS << **I; 197 if (llvm::next(I) != E) 198 OS << OpStr; 199 } 200 OS << ")"; 201 switch (NAry->getSCEVType()) { 202 case scAddExpr: 203 case scMulExpr: 204 if (NAry->getNoWrapFlags(FlagNUW)) 205 OS << "<nuw>"; 206 if (NAry->getNoWrapFlags(FlagNSW)) 207 OS << "<nsw>"; 208 } 209 return; 210 } 211 case scUDivExpr: { 212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 214 return; 215 } 216 case scUnknown: { 217 const SCEVUnknown *U = cast<SCEVUnknown>(this); 218 Type *AllocTy; 219 if (U->isSizeOf(AllocTy)) { 220 OS << "sizeof(" << *AllocTy << ")"; 221 return; 222 } 223 if (U->isAlignOf(AllocTy)) { 224 OS << "alignof(" << *AllocTy << ")"; 225 return; 226 } 227 228 Type *CTy; 229 Constant *FieldNo; 230 if (U->isOffsetOf(CTy, FieldNo)) { 231 OS << "offsetof(" << *CTy << ", "; 232 WriteAsOperand(OS, FieldNo, false); 233 OS << ")"; 234 return; 235 } 236 237 // Otherwise just print it normally. 238 WriteAsOperand(OS, U->getValue(), false); 239 return; 240 } 241 case scCouldNotCompute: 242 OS << "***COULDNOTCOMPUTE***"; 243 return; 244 default: break; 245 } 246 llvm_unreachable("Unknown SCEV kind!"); 247 } 248 249 Type *SCEV::getType() const { 250 switch (getSCEVType()) { 251 case scConstant: 252 return cast<SCEVConstant>(this)->getType(); 253 case scTruncate: 254 case scZeroExtend: 255 case scSignExtend: 256 return cast<SCEVCastExpr>(this)->getType(); 257 case scAddRecExpr: 258 case scMulExpr: 259 case scUMaxExpr: 260 case scSMaxExpr: 261 return cast<SCEVNAryExpr>(this)->getType(); 262 case scAddExpr: 263 return cast<SCEVAddExpr>(this)->getType(); 264 case scUDivExpr: 265 return cast<SCEVUDivExpr>(this)->getType(); 266 case scUnknown: 267 return cast<SCEVUnknown>(this)->getType(); 268 case scCouldNotCompute: 269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 270 default: 271 llvm_unreachable("Unknown SCEV kind!"); 272 } 273 } 274 275 bool SCEV::isZero() const { 276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 277 return SC->getValue()->isZero(); 278 return false; 279 } 280 281 bool SCEV::isOne() const { 282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 283 return SC->getValue()->isOne(); 284 return false; 285 } 286 287 bool SCEV::isAllOnesValue() const { 288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 289 return SC->getValue()->isAllOnesValue(); 290 return false; 291 } 292 293 /// isNonConstantNegative - Return true if the specified scev is negated, but 294 /// not a constant. 295 bool SCEV::isNonConstantNegative() const { 296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 297 if (!Mul) return false; 298 299 // If there is a constant factor, it will be first. 300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 301 if (!SC) return false; 302 303 // Return true if the value is negative, this matches things like (-42 * V). 304 return SC->getValue()->getValue().isNegative(); 305 } 306 307 SCEVCouldNotCompute::SCEVCouldNotCompute() : 308 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 309 310 bool SCEVCouldNotCompute::classof(const SCEV *S) { 311 return S->getSCEVType() == scCouldNotCompute; 312 } 313 314 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 315 FoldingSetNodeID ID; 316 ID.AddInteger(scConstant); 317 ID.AddPointer(V); 318 void *IP = 0; 319 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 320 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 321 UniqueSCEVs.InsertNode(S, IP); 322 return S; 323 } 324 325 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 326 return getConstant(ConstantInt::get(getContext(), Val)); 327 } 328 329 const SCEV * 330 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 331 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 332 return getConstant(ConstantInt::get(ITy, V, isSigned)); 333 } 334 335 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 336 unsigned SCEVTy, const SCEV *op, Type *ty) 337 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 338 339 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scTruncate, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot truncate non-integer value!"); 345 } 346 347 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot zero extend non-integer value!"); 353 } 354 355 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 356 const SCEV *op, Type *ty) 357 : SCEVCastExpr(ID, scSignExtend, op, ty) { 358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 359 (Ty->isIntegerTy() || Ty->isPointerTy()) && 360 "Cannot sign extend non-integer value!"); 361 } 362 363 void SCEVUnknown::deleted() { 364 // Clear this SCEVUnknown from various maps. 365 SE->forgetMemoizedResults(this); 366 367 // Remove this SCEVUnknown from the uniquing map. 368 SE->UniqueSCEVs.RemoveNode(this); 369 370 // Release the value. 371 setValPtr(0); 372 } 373 374 void SCEVUnknown::allUsesReplacedWith(Value *New) { 375 // Clear this SCEVUnknown from various maps. 376 SE->forgetMemoizedResults(this); 377 378 // Remove this SCEVUnknown from the uniquing map. 379 SE->UniqueSCEVs.RemoveNode(this); 380 381 // Update this SCEVUnknown to point to the new value. This is needed 382 // because there may still be outstanding SCEVs which still point to 383 // this SCEVUnknown. 384 setValPtr(New); 385 } 386 387 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 388 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 389 if (VCE->getOpcode() == Instruction::PtrToInt) 390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 391 if (CE->getOpcode() == Instruction::GetElementPtr && 392 CE->getOperand(0)->isNullValue() && 393 CE->getNumOperands() == 2) 394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 395 if (CI->isOne()) { 396 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 397 ->getElementType(); 398 return true; 399 } 400 401 return false; 402 } 403 404 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 406 if (VCE->getOpcode() == Instruction::PtrToInt) 407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 408 if (CE->getOpcode() == Instruction::GetElementPtr && 409 CE->getOperand(0)->isNullValue()) { 410 Type *Ty = 411 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 412 if (StructType *STy = dyn_cast<StructType>(Ty)) 413 if (!STy->isPacked() && 414 CE->getNumOperands() == 3 && 415 CE->getOperand(1)->isNullValue()) { 416 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 417 if (CI->isOne() && 418 STy->getNumElements() == 2 && 419 STy->getElementType(0)->isIntegerTy(1)) { 420 AllocTy = STy->getElementType(1); 421 return true; 422 } 423 } 424 } 425 426 return false; 427 } 428 429 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 430 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 431 if (VCE->getOpcode() == Instruction::PtrToInt) 432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 433 if (CE->getOpcode() == Instruction::GetElementPtr && 434 CE->getNumOperands() == 3 && 435 CE->getOperand(0)->isNullValue() && 436 CE->getOperand(1)->isNullValue()) { 437 Type *Ty = 438 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 439 // Ignore vector types here so that ScalarEvolutionExpander doesn't 440 // emit getelementptrs that index into vectors. 441 if (Ty->isStructTy() || Ty->isArrayTy()) { 442 CTy = Ty; 443 FieldNo = CE->getOperand(2); 444 return true; 445 } 446 } 447 448 return false; 449 } 450 451 //===----------------------------------------------------------------------===// 452 // SCEV Utilities 453 //===----------------------------------------------------------------------===// 454 455 namespace { 456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 457 /// than the complexity of the RHS. This comparator is used to canonicalize 458 /// expressions. 459 class SCEVComplexityCompare { 460 const LoopInfo *const LI; 461 public: 462 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 463 464 // Return true or false if LHS is less than, or at least RHS, respectively. 465 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 466 return compare(LHS, RHS) < 0; 467 } 468 469 // Return negative, zero, or positive, if LHS is less than, equal to, or 470 // greater than RHS, respectively. A three-way result allows recursive 471 // comparisons to be more efficient. 472 int compare(const SCEV *LHS, const SCEV *RHS) const { 473 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 474 if (LHS == RHS) 475 return 0; 476 477 // Primarily, sort the SCEVs by their getSCEVType(). 478 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 479 if (LType != RType) 480 return (int)LType - (int)RType; 481 482 // Aside from the getSCEVType() ordering, the particular ordering 483 // isn't very important except that it's beneficial to be consistent, 484 // so that (a + b) and (b + a) don't end up as different expressions. 485 switch (LType) { 486 case scUnknown: { 487 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 488 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 489 490 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 491 // not as complete as it could be. 492 const Value *LV = LU->getValue(), *RV = RU->getValue(); 493 494 // Order pointer values after integer values. This helps SCEVExpander 495 // form GEPs. 496 bool LIsPointer = LV->getType()->isPointerTy(), 497 RIsPointer = RV->getType()->isPointerTy(); 498 if (LIsPointer != RIsPointer) 499 return (int)LIsPointer - (int)RIsPointer; 500 501 // Compare getValueID values. 502 unsigned LID = LV->getValueID(), 503 RID = RV->getValueID(); 504 if (LID != RID) 505 return (int)LID - (int)RID; 506 507 // Sort arguments by their position. 508 if (const Argument *LA = dyn_cast<Argument>(LV)) { 509 const Argument *RA = cast<Argument>(RV); 510 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 511 return (int)LArgNo - (int)RArgNo; 512 } 513 514 // For instructions, compare their loop depth, and their operand 515 // count. This is pretty loose. 516 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 517 const Instruction *RInst = cast<Instruction>(RV); 518 519 // Compare loop depths. 520 const BasicBlock *LParent = LInst->getParent(), 521 *RParent = RInst->getParent(); 522 if (LParent != RParent) { 523 unsigned LDepth = LI->getLoopDepth(LParent), 524 RDepth = LI->getLoopDepth(RParent); 525 if (LDepth != RDepth) 526 return (int)LDepth - (int)RDepth; 527 } 528 529 // Compare the number of operands. 530 unsigned LNumOps = LInst->getNumOperands(), 531 RNumOps = RInst->getNumOperands(); 532 return (int)LNumOps - (int)RNumOps; 533 } 534 535 return 0; 536 } 537 538 case scConstant: { 539 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 540 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 541 542 // Compare constant values. 543 const APInt &LA = LC->getValue()->getValue(); 544 const APInt &RA = RC->getValue()->getValue(); 545 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 546 if (LBitWidth != RBitWidth) 547 return (int)LBitWidth - (int)RBitWidth; 548 return LA.ult(RA) ? -1 : 1; 549 } 550 551 case scAddRecExpr: { 552 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 553 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 554 555 // Compare addrec loop depths. 556 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 557 if (LLoop != RLoop) { 558 unsigned LDepth = LLoop->getLoopDepth(), 559 RDepth = RLoop->getLoopDepth(); 560 if (LDepth != RDepth) 561 return (int)LDepth - (int)RDepth; 562 } 563 564 // Addrec complexity grows with operand count. 565 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 566 if (LNumOps != RNumOps) 567 return (int)LNumOps - (int)RNumOps; 568 569 // Lexicographically compare. 570 for (unsigned i = 0; i != LNumOps; ++i) { 571 long X = compare(LA->getOperand(i), RA->getOperand(i)); 572 if (X != 0) 573 return X; 574 } 575 576 return 0; 577 } 578 579 case scAddExpr: 580 case scMulExpr: 581 case scSMaxExpr: 582 case scUMaxExpr: { 583 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 584 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 585 586 // Lexicographically compare n-ary expressions. 587 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 588 if (LNumOps != RNumOps) 589 return (int)LNumOps - (int)RNumOps; 590 591 for (unsigned i = 0; i != LNumOps; ++i) { 592 if (i >= RNumOps) 593 return 1; 594 long X = compare(LC->getOperand(i), RC->getOperand(i)); 595 if (X != 0) 596 return X; 597 } 598 return (int)LNumOps - (int)RNumOps; 599 } 600 601 case scUDivExpr: { 602 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 603 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 604 605 // Lexicographically compare udiv expressions. 606 long X = compare(LC->getLHS(), RC->getLHS()); 607 if (X != 0) 608 return X; 609 return compare(LC->getRHS(), RC->getRHS()); 610 } 611 612 case scTruncate: 613 case scZeroExtend: 614 case scSignExtend: { 615 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 616 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 617 618 // Compare cast expressions by operand. 619 return compare(LC->getOperand(), RC->getOperand()); 620 } 621 622 default: 623 llvm_unreachable("Unknown SCEV kind!"); 624 } 625 } 626 }; 627 } 628 629 /// GroupByComplexity - Given a list of SCEV objects, order them by their 630 /// complexity, and group objects of the same complexity together by value. 631 /// When this routine is finished, we know that any duplicates in the vector are 632 /// consecutive and that complexity is monotonically increasing. 633 /// 634 /// Note that we go take special precautions to ensure that we get deterministic 635 /// results from this routine. In other words, we don't want the results of 636 /// this to depend on where the addresses of various SCEV objects happened to 637 /// land in memory. 638 /// 639 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 640 LoopInfo *LI) { 641 if (Ops.size() < 2) return; // Noop 642 if (Ops.size() == 2) { 643 // This is the common case, which also happens to be trivially simple. 644 // Special case it. 645 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 646 if (SCEVComplexityCompare(LI)(RHS, LHS)) 647 std::swap(LHS, RHS); 648 return; 649 } 650 651 // Do the rough sort by complexity. 652 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 653 654 // Now that we are sorted by complexity, group elements of the same 655 // complexity. Note that this is, at worst, N^2, but the vector is likely to 656 // be extremely short in practice. Note that we take this approach because we 657 // do not want to depend on the addresses of the objects we are grouping. 658 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 659 const SCEV *S = Ops[i]; 660 unsigned Complexity = S->getSCEVType(); 661 662 // If there are any objects of the same complexity and same value as this 663 // one, group them. 664 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 665 if (Ops[j] == S) { // Found a duplicate. 666 // Move it to immediately after i'th element. 667 std::swap(Ops[i+1], Ops[j]); 668 ++i; // no need to rescan it. 669 if (i == e-2) return; // Done! 670 } 671 } 672 } 673 } 674 675 676 677 //===----------------------------------------------------------------------===// 678 // Simple SCEV method implementations 679 //===----------------------------------------------------------------------===// 680 681 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 682 /// Assume, K > 0. 683 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 684 ScalarEvolution &SE, 685 Type *ResultTy) { 686 // Handle the simplest case efficiently. 687 if (K == 1) 688 return SE.getTruncateOrZeroExtend(It, ResultTy); 689 690 // We are using the following formula for BC(It, K): 691 // 692 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 693 // 694 // Suppose, W is the bitwidth of the return value. We must be prepared for 695 // overflow. Hence, we must assure that the result of our computation is 696 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 697 // safe in modular arithmetic. 698 // 699 // However, this code doesn't use exactly that formula; the formula it uses 700 // is something like the following, where T is the number of factors of 2 in 701 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 702 // exponentiation: 703 // 704 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 705 // 706 // This formula is trivially equivalent to the previous formula. However, 707 // this formula can be implemented much more efficiently. The trick is that 708 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 709 // arithmetic. To do exact division in modular arithmetic, all we have 710 // to do is multiply by the inverse. Therefore, this step can be done at 711 // width W. 712 // 713 // The next issue is how to safely do the division by 2^T. The way this 714 // is done is by doing the multiplication step at a width of at least W + T 715 // bits. This way, the bottom W+T bits of the product are accurate. Then, 716 // when we perform the division by 2^T (which is equivalent to a right shift 717 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 718 // truncated out after the division by 2^T. 719 // 720 // In comparison to just directly using the first formula, this technique 721 // is much more efficient; using the first formula requires W * K bits, 722 // but this formula less than W + K bits. Also, the first formula requires 723 // a division step, whereas this formula only requires multiplies and shifts. 724 // 725 // It doesn't matter whether the subtraction step is done in the calculation 726 // width or the input iteration count's width; if the subtraction overflows, 727 // the result must be zero anyway. We prefer here to do it in the width of 728 // the induction variable because it helps a lot for certain cases; CodeGen 729 // isn't smart enough to ignore the overflow, which leads to much less 730 // efficient code if the width of the subtraction is wider than the native 731 // register width. 732 // 733 // (It's possible to not widen at all by pulling out factors of 2 before 734 // the multiplication; for example, K=2 can be calculated as 735 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 736 // extra arithmetic, so it's not an obvious win, and it gets 737 // much more complicated for K > 3.) 738 739 // Protection from insane SCEVs; this bound is conservative, 740 // but it probably doesn't matter. 741 if (K > 1000) 742 return SE.getCouldNotCompute(); 743 744 unsigned W = SE.getTypeSizeInBits(ResultTy); 745 746 // Calculate K! / 2^T and T; we divide out the factors of two before 747 // multiplying for calculating K! / 2^T to avoid overflow. 748 // Other overflow doesn't matter because we only care about the bottom 749 // W bits of the result. 750 APInt OddFactorial(W, 1); 751 unsigned T = 1; 752 for (unsigned i = 3; i <= K; ++i) { 753 APInt Mult(W, i); 754 unsigned TwoFactors = Mult.countTrailingZeros(); 755 T += TwoFactors; 756 Mult = Mult.lshr(TwoFactors); 757 OddFactorial *= Mult; 758 } 759 760 // We need at least W + T bits for the multiplication step 761 unsigned CalculationBits = W + T; 762 763 // Calculate 2^T, at width T+W. 764 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 765 766 // Calculate the multiplicative inverse of K! / 2^T; 767 // this multiplication factor will perform the exact division by 768 // K! / 2^T. 769 APInt Mod = APInt::getSignedMinValue(W+1); 770 APInt MultiplyFactor = OddFactorial.zext(W+1); 771 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 772 MultiplyFactor = MultiplyFactor.trunc(W); 773 774 // Calculate the product, at width T+W 775 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 776 CalculationBits); 777 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 778 for (unsigned i = 1; i != K; ++i) { 779 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 780 Dividend = SE.getMulExpr(Dividend, 781 SE.getTruncateOrZeroExtend(S, CalculationTy)); 782 } 783 784 // Divide by 2^T 785 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 786 787 // Truncate the result, and divide by K! / 2^T. 788 789 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 790 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 791 } 792 793 /// evaluateAtIteration - Return the value of this chain of recurrences at 794 /// the specified iteration number. We can evaluate this recurrence by 795 /// multiplying each element in the chain by the binomial coefficient 796 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 797 /// 798 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 799 /// 800 /// where BC(It, k) stands for binomial coefficient. 801 /// 802 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 803 ScalarEvolution &SE) const { 804 const SCEV *Result = getStart(); 805 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 806 // The computation is correct in the face of overflow provided that the 807 // multiplication is performed _after_ the evaluation of the binomial 808 // coefficient. 809 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 810 if (isa<SCEVCouldNotCompute>(Coeff)) 811 return Coeff; 812 813 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 814 } 815 return Result; 816 } 817 818 //===----------------------------------------------------------------------===// 819 // SCEV Expression folder implementations 820 //===----------------------------------------------------------------------===// 821 822 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 823 Type *Ty) { 824 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 825 "This is not a truncating conversion!"); 826 assert(isSCEVable(Ty) && 827 "This is not a conversion to a SCEVable type!"); 828 Ty = getEffectiveSCEVType(Ty); 829 830 FoldingSetNodeID ID; 831 ID.AddInteger(scTruncate); 832 ID.AddPointer(Op); 833 ID.AddPointer(Ty); 834 void *IP = 0; 835 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 836 837 // Fold if the operand is constant. 838 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 839 return getConstant( 840 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 841 842 // trunc(trunc(x)) --> trunc(x) 843 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 844 return getTruncateExpr(ST->getOperand(), Ty); 845 846 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 847 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 848 return getTruncateOrSignExtend(SS->getOperand(), Ty); 849 850 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 851 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 852 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 853 854 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 855 // eliminate all the truncates. 856 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 857 SmallVector<const SCEV *, 4> Operands; 858 bool hasTrunc = false; 859 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 860 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 861 hasTrunc = isa<SCEVTruncateExpr>(S); 862 Operands.push_back(S); 863 } 864 if (!hasTrunc) 865 return getAddExpr(Operands); 866 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 867 } 868 869 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 870 // eliminate all the truncates. 871 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 872 SmallVector<const SCEV *, 4> Operands; 873 bool hasTrunc = false; 874 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 875 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 876 hasTrunc = isa<SCEVTruncateExpr>(S); 877 Operands.push_back(S); 878 } 879 if (!hasTrunc) 880 return getMulExpr(Operands); 881 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 882 } 883 884 // If the input value is a chrec scev, truncate the chrec's operands. 885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 886 SmallVector<const SCEV *, 4> Operands; 887 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 888 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 889 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 890 } 891 892 // The cast wasn't folded; create an explicit cast node. We can reuse 893 // the existing insert position since if we get here, we won't have 894 // made any changes which would invalidate it. 895 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 896 Op, Ty); 897 UniqueSCEVs.InsertNode(S, IP); 898 return S; 899 } 900 901 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 902 Type *Ty) { 903 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 904 "This is not an extending conversion!"); 905 assert(isSCEVable(Ty) && 906 "This is not a conversion to a SCEVable type!"); 907 Ty = getEffectiveSCEVType(Ty); 908 909 // Fold if the operand is constant. 910 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 911 return getConstant( 912 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 913 914 // zext(zext(x)) --> zext(x) 915 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 916 return getZeroExtendExpr(SZ->getOperand(), Ty); 917 918 // Before doing any expensive analysis, check to see if we've already 919 // computed a SCEV for this Op and Ty. 920 FoldingSetNodeID ID; 921 ID.AddInteger(scZeroExtend); 922 ID.AddPointer(Op); 923 ID.AddPointer(Ty); 924 void *IP = 0; 925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 926 927 // zext(trunc(x)) --> zext(x) or x or trunc(x) 928 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 929 // It's possible the bits taken off by the truncate were all zero bits. If 930 // so, we should be able to simplify this further. 931 const SCEV *X = ST->getOperand(); 932 ConstantRange CR = getUnsignedRange(X); 933 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 934 unsigned NewBits = getTypeSizeInBits(Ty); 935 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 936 CR.zextOrTrunc(NewBits))) 937 return getTruncateOrZeroExtend(X, Ty); 938 } 939 940 // If the input value is a chrec scev, and we can prove that the value 941 // did not overflow the old, smaller, value, we can zero extend all of the 942 // operands (often constants). This allows analysis of something like 943 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 944 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 945 if (AR->isAffine()) { 946 const SCEV *Start = AR->getStart(); 947 const SCEV *Step = AR->getStepRecurrence(*this); 948 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 949 const Loop *L = AR->getLoop(); 950 951 // If we have special knowledge that this addrec won't overflow, 952 // we don't need to do any further analysis. 953 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 954 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 955 getZeroExtendExpr(Step, Ty), 956 L, AR->getNoWrapFlags()); 957 958 // Check whether the backedge-taken count is SCEVCouldNotCompute. 959 // Note that this serves two purposes: It filters out loops that are 960 // simply not analyzable, and it covers the case where this code is 961 // being called from within backedge-taken count analysis, such that 962 // attempting to ask for the backedge-taken count would likely result 963 // in infinite recursion. In the later case, the analysis code will 964 // cope with a conservative value, and it will take care to purge 965 // that value once it has finished. 966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 967 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 968 // Manually compute the final value for AR, checking for 969 // overflow. 970 971 // Check whether the backedge-taken count can be losslessly casted to 972 // the addrec's type. The count is always unsigned. 973 const SCEV *CastedMaxBECount = 974 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 975 const SCEV *RecastedMaxBECount = 976 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 977 if (MaxBECount == RecastedMaxBECount) { 978 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 979 // Check whether Start+Step*MaxBECount has no unsigned overflow. 980 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 981 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 982 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 983 const SCEV *WideMaxBECount = 984 getZeroExtendExpr(CastedMaxBECount, WideTy); 985 const SCEV *OperandExtendedAdd = 986 getAddExpr(WideStart, 987 getMulExpr(WideMaxBECount, 988 getZeroExtendExpr(Step, WideTy))); 989 if (ZAdd == OperandExtendedAdd) { 990 // Cache knowledge of AR NUW, which is propagated to this AddRec. 991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 992 // Return the expression with the addrec on the outside. 993 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 994 getZeroExtendExpr(Step, Ty), 995 L, AR->getNoWrapFlags()); 996 } 997 // Similar to above, only this time treat the step value as signed. 998 // This covers loops that count down. 999 OperandExtendedAdd = 1000 getAddExpr(WideStart, 1001 getMulExpr(WideMaxBECount, 1002 getSignExtendExpr(Step, WideTy))); 1003 if (ZAdd == OperandExtendedAdd) { 1004 // Cache knowledge of AR NW, which is propagated to this AddRec. 1005 // Negative step causes unsigned wrap, but it still can't self-wrap. 1006 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1007 // Return the expression with the addrec on the outside. 1008 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1009 getSignExtendExpr(Step, Ty), 1010 L, AR->getNoWrapFlags()); 1011 } 1012 } 1013 1014 // If the backedge is guarded by a comparison with the pre-inc value 1015 // the addrec is safe. Also, if the entry is guarded by a comparison 1016 // with the start value and the backedge is guarded by a comparison 1017 // with the post-inc value, the addrec is safe. 1018 if (isKnownPositive(Step)) { 1019 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1020 getUnsignedRange(Step).getUnsignedMax()); 1021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1024 AR->getPostIncExpr(*this), N))) { 1025 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1026 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1027 // Return the expression with the addrec on the outside. 1028 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1029 getZeroExtendExpr(Step, Ty), 1030 L, AR->getNoWrapFlags()); 1031 } 1032 } else if (isKnownNegative(Step)) { 1033 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1034 getSignedRange(Step).getSignedMin()); 1035 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1036 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1037 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1038 AR->getPostIncExpr(*this), N))) { 1039 // Cache knowledge of AR NW, which is propagated to this AddRec. 1040 // Negative step causes unsigned wrap, but it still can't self-wrap. 1041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1042 // Return the expression with the addrec on the outside. 1043 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1044 getSignExtendExpr(Step, Ty), 1045 L, AR->getNoWrapFlags()); 1046 } 1047 } 1048 } 1049 } 1050 1051 // The cast wasn't folded; create an explicit cast node. 1052 // Recompute the insert position, as it may have been invalidated. 1053 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1054 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1055 Op, Ty); 1056 UniqueSCEVs.InsertNode(S, IP); 1057 return S; 1058 } 1059 1060 // Get the limit of a recurrence such that incrementing by Step cannot cause 1061 // signed overflow as long as the value of the recurrence within the loop does 1062 // not exceed this limit before incrementing. 1063 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1064 ICmpInst::Predicate *Pred, 1065 ScalarEvolution *SE) { 1066 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1067 if (SE->isKnownPositive(Step)) { 1068 *Pred = ICmpInst::ICMP_SLT; 1069 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1070 SE->getSignedRange(Step).getSignedMax()); 1071 } 1072 if (SE->isKnownNegative(Step)) { 1073 *Pred = ICmpInst::ICMP_SGT; 1074 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1075 SE->getSignedRange(Step).getSignedMin()); 1076 } 1077 return 0; 1078 } 1079 1080 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1081 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1082 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1083 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1084 // result, the expression "Step + sext(PreIncAR)" is congruent with 1085 // "sext(PostIncAR)" 1086 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1087 Type *Ty, 1088 ScalarEvolution *SE) { 1089 const Loop *L = AR->getLoop(); 1090 const SCEV *Start = AR->getStart(); 1091 const SCEV *Step = AR->getStepRecurrence(*SE); 1092 1093 // Check for a simple looking step prior to loop entry. 1094 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1095 if (!SA) 1096 return 0; 1097 1098 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1099 // subtraction is expensive. For this purpose, perform a quick and dirty 1100 // difference, by checking for Step in the operand list. 1101 SmallVector<const SCEV *, 4> DiffOps; 1102 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1103 I != E; ++I) { 1104 if (*I != Step) 1105 DiffOps.push_back(*I); 1106 } 1107 if (DiffOps.size() == SA->getNumOperands()) 1108 return 0; 1109 1110 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1111 // same three conditions that getSignExtendedExpr checks. 1112 1113 // 1. NSW flags on the step increment. 1114 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1115 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1116 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1117 1118 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1119 return PreStart; 1120 1121 // 2. Direct overflow check on the step operation's expression. 1122 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1123 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1124 const SCEV *OperandExtendedStart = 1125 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1126 SE->getSignExtendExpr(Step, WideTy)); 1127 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1128 // Cache knowledge of PreAR NSW. 1129 if (PreAR) 1130 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1131 // FIXME: this optimization needs a unit test 1132 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1133 return PreStart; 1134 } 1135 1136 // 3. Loop precondition. 1137 ICmpInst::Predicate Pred; 1138 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1139 1140 if (OverflowLimit && 1141 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1142 return PreStart; 1143 } 1144 return 0; 1145 } 1146 1147 // Get the normalized sign-extended expression for this AddRec's Start. 1148 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1149 Type *Ty, 1150 ScalarEvolution *SE) { 1151 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1152 if (!PreStart) 1153 return SE->getSignExtendExpr(AR->getStart(), Ty); 1154 1155 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1156 SE->getSignExtendExpr(PreStart, Ty)); 1157 } 1158 1159 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1160 Type *Ty) { 1161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1162 "This is not an extending conversion!"); 1163 assert(isSCEVable(Ty) && 1164 "This is not a conversion to a SCEVable type!"); 1165 Ty = getEffectiveSCEVType(Ty); 1166 1167 // Fold if the operand is constant. 1168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1169 return getConstant( 1170 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1171 1172 // sext(sext(x)) --> sext(x) 1173 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1174 return getSignExtendExpr(SS->getOperand(), Ty); 1175 1176 // sext(zext(x)) --> zext(x) 1177 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1178 return getZeroExtendExpr(SZ->getOperand(), Ty); 1179 1180 // Before doing any expensive analysis, check to see if we've already 1181 // computed a SCEV for this Op and Ty. 1182 FoldingSetNodeID ID; 1183 ID.AddInteger(scSignExtend); 1184 ID.AddPointer(Op); 1185 ID.AddPointer(Ty); 1186 void *IP = 0; 1187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1188 1189 // If the input value is provably positive, build a zext instead. 1190 if (isKnownNonNegative(Op)) 1191 return getZeroExtendExpr(Op, Ty); 1192 1193 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1194 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1195 // It's possible the bits taken off by the truncate were all sign bits. If 1196 // so, we should be able to simplify this further. 1197 const SCEV *X = ST->getOperand(); 1198 ConstantRange CR = getSignedRange(X); 1199 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1200 unsigned NewBits = getTypeSizeInBits(Ty); 1201 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1202 CR.sextOrTrunc(NewBits))) 1203 return getTruncateOrSignExtend(X, Ty); 1204 } 1205 1206 // If the input value is a chrec scev, and we can prove that the value 1207 // did not overflow the old, smaller, value, we can sign extend all of the 1208 // operands (often constants). This allows analysis of something like 1209 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1210 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1211 if (AR->isAffine()) { 1212 const SCEV *Start = AR->getStart(); 1213 const SCEV *Step = AR->getStepRecurrence(*this); 1214 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1215 const Loop *L = AR->getLoop(); 1216 1217 // If we have special knowledge that this addrec won't overflow, 1218 // we don't need to do any further analysis. 1219 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1220 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1221 getSignExtendExpr(Step, Ty), 1222 L, SCEV::FlagNSW); 1223 1224 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1225 // Note that this serves two purposes: It filters out loops that are 1226 // simply not analyzable, and it covers the case where this code is 1227 // being called from within backedge-taken count analysis, such that 1228 // attempting to ask for the backedge-taken count would likely result 1229 // in infinite recursion. In the later case, the analysis code will 1230 // cope with a conservative value, and it will take care to purge 1231 // that value once it has finished. 1232 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1233 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1234 // Manually compute the final value for AR, checking for 1235 // overflow. 1236 1237 // Check whether the backedge-taken count can be losslessly casted to 1238 // the addrec's type. The count is always unsigned. 1239 const SCEV *CastedMaxBECount = 1240 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1241 const SCEV *RecastedMaxBECount = 1242 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1243 if (MaxBECount == RecastedMaxBECount) { 1244 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1245 // Check whether Start+Step*MaxBECount has no signed overflow. 1246 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1247 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1248 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1249 const SCEV *WideMaxBECount = 1250 getZeroExtendExpr(CastedMaxBECount, WideTy); 1251 const SCEV *OperandExtendedAdd = 1252 getAddExpr(WideStart, 1253 getMulExpr(WideMaxBECount, 1254 getSignExtendExpr(Step, WideTy))); 1255 if (SAdd == OperandExtendedAdd) { 1256 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1258 // Return the expression with the addrec on the outside. 1259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1260 getSignExtendExpr(Step, Ty), 1261 L, AR->getNoWrapFlags()); 1262 } 1263 // Similar to above, only this time treat the step value as unsigned. 1264 // This covers loops that count up with an unsigned step. 1265 OperandExtendedAdd = 1266 getAddExpr(WideStart, 1267 getMulExpr(WideMaxBECount, 1268 getZeroExtendExpr(Step, WideTy))); 1269 if (SAdd == OperandExtendedAdd) { 1270 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1271 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1272 // Return the expression with the addrec on the outside. 1273 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1274 getZeroExtendExpr(Step, Ty), 1275 L, AR->getNoWrapFlags()); 1276 } 1277 } 1278 1279 // If the backedge is guarded by a comparison with the pre-inc value 1280 // the addrec is safe. Also, if the entry is guarded by a comparison 1281 // with the start value and the backedge is guarded by a comparison 1282 // with the post-inc value, the addrec is safe. 1283 ICmpInst::Predicate Pred; 1284 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1285 if (OverflowLimit && 1286 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1287 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1288 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1289 OverflowLimit)))) { 1290 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1292 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1293 getSignExtendExpr(Step, Ty), 1294 L, AR->getNoWrapFlags()); 1295 } 1296 } 1297 } 1298 1299 // The cast wasn't folded; create an explicit cast node. 1300 // Recompute the insert position, as it may have been invalidated. 1301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1302 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1303 Op, Ty); 1304 UniqueSCEVs.InsertNode(S, IP); 1305 return S; 1306 } 1307 1308 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1309 /// unspecified bits out to the given type. 1310 /// 1311 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1312 Type *Ty) { 1313 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1314 "This is not an extending conversion!"); 1315 assert(isSCEVable(Ty) && 1316 "This is not a conversion to a SCEVable type!"); 1317 Ty = getEffectiveSCEVType(Ty); 1318 1319 // Sign-extend negative constants. 1320 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1321 if (SC->getValue()->getValue().isNegative()) 1322 return getSignExtendExpr(Op, Ty); 1323 1324 // Peel off a truncate cast. 1325 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1326 const SCEV *NewOp = T->getOperand(); 1327 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1328 return getAnyExtendExpr(NewOp, Ty); 1329 return getTruncateOrNoop(NewOp, Ty); 1330 } 1331 1332 // Next try a zext cast. If the cast is folded, use it. 1333 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1334 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1335 return ZExt; 1336 1337 // Next try a sext cast. If the cast is folded, use it. 1338 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1339 if (!isa<SCEVSignExtendExpr>(SExt)) 1340 return SExt; 1341 1342 // Force the cast to be folded into the operands of an addrec. 1343 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1344 SmallVector<const SCEV *, 4> Ops; 1345 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1346 I != E; ++I) 1347 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1348 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1349 } 1350 1351 // If the expression is obviously signed, use the sext cast value. 1352 if (isa<SCEVSMaxExpr>(Op)) 1353 return SExt; 1354 1355 // Absent any other information, use the zext cast value. 1356 return ZExt; 1357 } 1358 1359 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1360 /// a list of operands to be added under the given scale, update the given 1361 /// map. This is a helper function for getAddRecExpr. As an example of 1362 /// what it does, given a sequence of operands that would form an add 1363 /// expression like this: 1364 /// 1365 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1366 /// 1367 /// where A and B are constants, update the map with these values: 1368 /// 1369 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1370 /// 1371 /// and add 13 + A*B*29 to AccumulatedConstant. 1372 /// This will allow getAddRecExpr to produce this: 1373 /// 1374 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1375 /// 1376 /// This form often exposes folding opportunities that are hidden in 1377 /// the original operand list. 1378 /// 1379 /// Return true iff it appears that any interesting folding opportunities 1380 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1381 /// the common case where no interesting opportunities are present, and 1382 /// is also used as a check to avoid infinite recursion. 1383 /// 1384 static bool 1385 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1386 SmallVectorImpl<const SCEV *> &NewOps, 1387 APInt &AccumulatedConstant, 1388 const SCEV *const *Ops, size_t NumOperands, 1389 const APInt &Scale, 1390 ScalarEvolution &SE) { 1391 bool Interesting = false; 1392 1393 // Iterate over the add operands. They are sorted, with constants first. 1394 unsigned i = 0; 1395 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1396 ++i; 1397 // Pull a buried constant out to the outside. 1398 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1399 Interesting = true; 1400 AccumulatedConstant += Scale * C->getValue()->getValue(); 1401 } 1402 1403 // Next comes everything else. We're especially interested in multiplies 1404 // here, but they're in the middle, so just visit the rest with one loop. 1405 for (; i != NumOperands; ++i) { 1406 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1407 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1408 APInt NewScale = 1409 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1410 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1411 // A multiplication of a constant with another add; recurse. 1412 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1413 Interesting |= 1414 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1415 Add->op_begin(), Add->getNumOperands(), 1416 NewScale, SE); 1417 } else { 1418 // A multiplication of a constant with some other value. Update 1419 // the map. 1420 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1421 const SCEV *Key = SE.getMulExpr(MulOps); 1422 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1423 M.insert(std::make_pair(Key, NewScale)); 1424 if (Pair.second) { 1425 NewOps.push_back(Pair.first->first); 1426 } else { 1427 Pair.first->second += NewScale; 1428 // The map already had an entry for this value, which may indicate 1429 // a folding opportunity. 1430 Interesting = true; 1431 } 1432 } 1433 } else { 1434 // An ordinary operand. Update the map. 1435 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1436 M.insert(std::make_pair(Ops[i], Scale)); 1437 if (Pair.second) { 1438 NewOps.push_back(Pair.first->first); 1439 } else { 1440 Pair.first->second += Scale; 1441 // The map already had an entry for this value, which may indicate 1442 // a folding opportunity. 1443 Interesting = true; 1444 } 1445 } 1446 } 1447 1448 return Interesting; 1449 } 1450 1451 namespace { 1452 struct APIntCompare { 1453 bool operator()(const APInt &LHS, const APInt &RHS) const { 1454 return LHS.ult(RHS); 1455 } 1456 }; 1457 } 1458 1459 /// getAddExpr - Get a canonical add expression, or something simpler if 1460 /// possible. 1461 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1462 SCEV::NoWrapFlags Flags) { 1463 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1464 "only nuw or nsw allowed"); 1465 assert(!Ops.empty() && "Cannot get empty add!"); 1466 if (Ops.size() == 1) return Ops[0]; 1467 #ifndef NDEBUG 1468 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1469 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1470 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1471 "SCEVAddExpr operand types don't match!"); 1472 #endif 1473 1474 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1475 // And vice-versa. 1476 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1477 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1478 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1479 bool All = true; 1480 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1481 E = Ops.end(); I != E; ++I) 1482 if (!isKnownNonNegative(*I)) { 1483 All = false; 1484 break; 1485 } 1486 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1487 } 1488 1489 // Sort by complexity, this groups all similar expression types together. 1490 GroupByComplexity(Ops, LI); 1491 1492 // If there are any constants, fold them together. 1493 unsigned Idx = 0; 1494 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1495 ++Idx; 1496 assert(Idx < Ops.size()); 1497 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1498 // We found two constants, fold them together! 1499 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1500 RHSC->getValue()->getValue()); 1501 if (Ops.size() == 2) return Ops[0]; 1502 Ops.erase(Ops.begin()+1); // Erase the folded element 1503 LHSC = cast<SCEVConstant>(Ops[0]); 1504 } 1505 1506 // If we are left with a constant zero being added, strip it off. 1507 if (LHSC->getValue()->isZero()) { 1508 Ops.erase(Ops.begin()); 1509 --Idx; 1510 } 1511 1512 if (Ops.size() == 1) return Ops[0]; 1513 } 1514 1515 // Okay, check to see if the same value occurs in the operand list more than 1516 // once. If so, merge them together into an multiply expression. Since we 1517 // sorted the list, these values are required to be adjacent. 1518 Type *Ty = Ops[0]->getType(); 1519 bool FoundMatch = false; 1520 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1521 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1522 // Scan ahead to count how many equal operands there are. 1523 unsigned Count = 2; 1524 while (i+Count != e && Ops[i+Count] == Ops[i]) 1525 ++Count; 1526 // Merge the values into a multiply. 1527 const SCEV *Scale = getConstant(Ty, Count); 1528 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1529 if (Ops.size() == Count) 1530 return Mul; 1531 Ops[i] = Mul; 1532 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1533 --i; e -= Count - 1; 1534 FoundMatch = true; 1535 } 1536 if (FoundMatch) 1537 return getAddExpr(Ops, Flags); 1538 1539 // Check for truncates. If all the operands are truncated from the same 1540 // type, see if factoring out the truncate would permit the result to be 1541 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1542 // if the contents of the resulting outer trunc fold to something simple. 1543 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1544 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1545 Type *DstType = Trunc->getType(); 1546 Type *SrcType = Trunc->getOperand()->getType(); 1547 SmallVector<const SCEV *, 8> LargeOps; 1548 bool Ok = true; 1549 // Check all the operands to see if they can be represented in the 1550 // source type of the truncate. 1551 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1553 if (T->getOperand()->getType() != SrcType) { 1554 Ok = false; 1555 break; 1556 } 1557 LargeOps.push_back(T->getOperand()); 1558 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1559 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1560 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1561 SmallVector<const SCEV *, 8> LargeMulOps; 1562 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1563 if (const SCEVTruncateExpr *T = 1564 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1565 if (T->getOperand()->getType() != SrcType) { 1566 Ok = false; 1567 break; 1568 } 1569 LargeMulOps.push_back(T->getOperand()); 1570 } else if (const SCEVConstant *C = 1571 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1572 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1573 } else { 1574 Ok = false; 1575 break; 1576 } 1577 } 1578 if (Ok) 1579 LargeOps.push_back(getMulExpr(LargeMulOps)); 1580 } else { 1581 Ok = false; 1582 break; 1583 } 1584 } 1585 if (Ok) { 1586 // Evaluate the expression in the larger type. 1587 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1588 // If it folds to something simple, use it. Otherwise, don't. 1589 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1590 return getTruncateExpr(Fold, DstType); 1591 } 1592 } 1593 1594 // Skip past any other cast SCEVs. 1595 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1596 ++Idx; 1597 1598 // If there are add operands they would be next. 1599 if (Idx < Ops.size()) { 1600 bool DeletedAdd = false; 1601 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1602 // If we have an add, expand the add operands onto the end of the operands 1603 // list. 1604 Ops.erase(Ops.begin()+Idx); 1605 Ops.append(Add->op_begin(), Add->op_end()); 1606 DeletedAdd = true; 1607 } 1608 1609 // If we deleted at least one add, we added operands to the end of the list, 1610 // and they are not necessarily sorted. Recurse to resort and resimplify 1611 // any operands we just acquired. 1612 if (DeletedAdd) 1613 return getAddExpr(Ops); 1614 } 1615 1616 // Skip over the add expression until we get to a multiply. 1617 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1618 ++Idx; 1619 1620 // Check to see if there are any folding opportunities present with 1621 // operands multiplied by constant values. 1622 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1623 uint64_t BitWidth = getTypeSizeInBits(Ty); 1624 DenseMap<const SCEV *, APInt> M; 1625 SmallVector<const SCEV *, 8> NewOps; 1626 APInt AccumulatedConstant(BitWidth, 0); 1627 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1628 Ops.data(), Ops.size(), 1629 APInt(BitWidth, 1), *this)) { 1630 // Some interesting folding opportunity is present, so its worthwhile to 1631 // re-generate the operands list. Group the operands by constant scale, 1632 // to avoid multiplying by the same constant scale multiple times. 1633 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1634 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1635 E = NewOps.end(); I != E; ++I) 1636 MulOpLists[M.find(*I)->second].push_back(*I); 1637 // Re-generate the operands list. 1638 Ops.clear(); 1639 if (AccumulatedConstant != 0) 1640 Ops.push_back(getConstant(AccumulatedConstant)); 1641 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1642 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1643 if (I->first != 0) 1644 Ops.push_back(getMulExpr(getConstant(I->first), 1645 getAddExpr(I->second))); 1646 if (Ops.empty()) 1647 return getConstant(Ty, 0); 1648 if (Ops.size() == 1) 1649 return Ops[0]; 1650 return getAddExpr(Ops); 1651 } 1652 } 1653 1654 // If we are adding something to a multiply expression, make sure the 1655 // something is not already an operand of the multiply. If so, merge it into 1656 // the multiply. 1657 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1658 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1659 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1660 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1661 if (isa<SCEVConstant>(MulOpSCEV)) 1662 continue; 1663 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1664 if (MulOpSCEV == Ops[AddOp]) { 1665 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1666 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1667 if (Mul->getNumOperands() != 2) { 1668 // If the multiply has more than two operands, we must get the 1669 // Y*Z term. 1670 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1671 Mul->op_begin()+MulOp); 1672 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1673 InnerMul = getMulExpr(MulOps); 1674 } 1675 const SCEV *One = getConstant(Ty, 1); 1676 const SCEV *AddOne = getAddExpr(One, InnerMul); 1677 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1678 if (Ops.size() == 2) return OuterMul; 1679 if (AddOp < Idx) { 1680 Ops.erase(Ops.begin()+AddOp); 1681 Ops.erase(Ops.begin()+Idx-1); 1682 } else { 1683 Ops.erase(Ops.begin()+Idx); 1684 Ops.erase(Ops.begin()+AddOp-1); 1685 } 1686 Ops.push_back(OuterMul); 1687 return getAddExpr(Ops); 1688 } 1689 1690 // Check this multiply against other multiplies being added together. 1691 for (unsigned OtherMulIdx = Idx+1; 1692 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1693 ++OtherMulIdx) { 1694 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1695 // If MulOp occurs in OtherMul, we can fold the two multiplies 1696 // together. 1697 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1698 OMulOp != e; ++OMulOp) 1699 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1700 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1701 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1702 if (Mul->getNumOperands() != 2) { 1703 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1704 Mul->op_begin()+MulOp); 1705 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1706 InnerMul1 = getMulExpr(MulOps); 1707 } 1708 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1709 if (OtherMul->getNumOperands() != 2) { 1710 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1711 OtherMul->op_begin()+OMulOp); 1712 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1713 InnerMul2 = getMulExpr(MulOps); 1714 } 1715 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1716 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1717 if (Ops.size() == 2) return OuterMul; 1718 Ops.erase(Ops.begin()+Idx); 1719 Ops.erase(Ops.begin()+OtherMulIdx-1); 1720 Ops.push_back(OuterMul); 1721 return getAddExpr(Ops); 1722 } 1723 } 1724 } 1725 } 1726 1727 // If there are any add recurrences in the operands list, see if any other 1728 // added values are loop invariant. If so, we can fold them into the 1729 // recurrence. 1730 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1731 ++Idx; 1732 1733 // Scan over all recurrences, trying to fold loop invariants into them. 1734 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1735 // Scan all of the other operands to this add and add them to the vector if 1736 // they are loop invariant w.r.t. the recurrence. 1737 SmallVector<const SCEV *, 8> LIOps; 1738 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1739 const Loop *AddRecLoop = AddRec->getLoop(); 1740 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1741 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1742 LIOps.push_back(Ops[i]); 1743 Ops.erase(Ops.begin()+i); 1744 --i; --e; 1745 } 1746 1747 // If we found some loop invariants, fold them into the recurrence. 1748 if (!LIOps.empty()) { 1749 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1750 LIOps.push_back(AddRec->getStart()); 1751 1752 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1753 AddRec->op_end()); 1754 AddRecOps[0] = getAddExpr(LIOps); 1755 1756 // Build the new addrec. Propagate the NUW and NSW flags if both the 1757 // outer add and the inner addrec are guaranteed to have no overflow. 1758 // Always propagate NW. 1759 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1760 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1761 1762 // If all of the other operands were loop invariant, we are done. 1763 if (Ops.size() == 1) return NewRec; 1764 1765 // Otherwise, add the folded AddRec by the non-invariant parts. 1766 for (unsigned i = 0;; ++i) 1767 if (Ops[i] == AddRec) { 1768 Ops[i] = NewRec; 1769 break; 1770 } 1771 return getAddExpr(Ops); 1772 } 1773 1774 // Okay, if there weren't any loop invariants to be folded, check to see if 1775 // there are multiple AddRec's with the same loop induction variable being 1776 // added together. If so, we can fold them. 1777 for (unsigned OtherIdx = Idx+1; 1778 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1779 ++OtherIdx) 1780 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1781 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1783 AddRec->op_end()); 1784 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1785 ++OtherIdx) 1786 if (const SCEVAddRecExpr *OtherAddRec = 1787 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1788 if (OtherAddRec->getLoop() == AddRecLoop) { 1789 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1790 i != e; ++i) { 1791 if (i >= AddRecOps.size()) { 1792 AddRecOps.append(OtherAddRec->op_begin()+i, 1793 OtherAddRec->op_end()); 1794 break; 1795 } 1796 AddRecOps[i] = getAddExpr(AddRecOps[i], 1797 OtherAddRec->getOperand(i)); 1798 } 1799 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1800 } 1801 // Step size has changed, so we cannot guarantee no self-wraparound. 1802 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1803 return getAddExpr(Ops); 1804 } 1805 1806 // Otherwise couldn't fold anything into this recurrence. Move onto the 1807 // next one. 1808 } 1809 1810 // Okay, it looks like we really DO need an add expr. Check to see if we 1811 // already have one, otherwise create a new one. 1812 FoldingSetNodeID ID; 1813 ID.AddInteger(scAddExpr); 1814 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1815 ID.AddPointer(Ops[i]); 1816 void *IP = 0; 1817 SCEVAddExpr *S = 1818 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1819 if (!S) { 1820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1822 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1823 O, Ops.size()); 1824 UniqueSCEVs.InsertNode(S, IP); 1825 } 1826 S->setNoWrapFlags(Flags); 1827 return S; 1828 } 1829 1830 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1831 uint64_t k = i*j; 1832 if (j > 1 && k / j != i) Overflow = true; 1833 return k; 1834 } 1835 1836 /// Compute the result of "n choose k", the binomial coefficient. If an 1837 /// intermediate computation overflows, Overflow will be set and the return will 1838 /// be garbage. Overflow is not cleared on absence of overflow. 1839 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1840 // We use the multiplicative formula: 1841 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1842 // At each iteration, we take the n-th term of the numeral and divide by the 1843 // (k-n)th term of the denominator. This division will always produce an 1844 // integral result, and helps reduce the chance of overflow in the 1845 // intermediate computations. However, we can still overflow even when the 1846 // final result would fit. 1847 1848 if (n == 0 || n == k) return 1; 1849 if (k > n) return 0; 1850 1851 if (k > n/2) 1852 k = n-k; 1853 1854 uint64_t r = 1; 1855 for (uint64_t i = 1; i <= k; ++i) { 1856 r = umul_ov(r, n-(i-1), Overflow); 1857 r /= i; 1858 } 1859 return r; 1860 } 1861 1862 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1863 /// possible. 1864 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1865 SCEV::NoWrapFlags Flags) { 1866 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1867 "only nuw or nsw allowed"); 1868 assert(!Ops.empty() && "Cannot get empty mul!"); 1869 if (Ops.size() == 1) return Ops[0]; 1870 #ifndef NDEBUG 1871 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1872 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1873 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1874 "SCEVMulExpr operand types don't match!"); 1875 #endif 1876 1877 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1878 // And vice-versa. 1879 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1880 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1881 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1882 bool All = true; 1883 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1884 E = Ops.end(); I != E; ++I) 1885 if (!isKnownNonNegative(*I)) { 1886 All = false; 1887 break; 1888 } 1889 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1890 } 1891 1892 // Sort by complexity, this groups all similar expression types together. 1893 GroupByComplexity(Ops, LI); 1894 1895 // If there are any constants, fold them together. 1896 unsigned Idx = 0; 1897 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1898 1899 // C1*(C2+V) -> C1*C2 + C1*V 1900 if (Ops.size() == 2) 1901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1902 if (Add->getNumOperands() == 2 && 1903 isa<SCEVConstant>(Add->getOperand(0))) 1904 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1905 getMulExpr(LHSC, Add->getOperand(1))); 1906 1907 ++Idx; 1908 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1909 // We found two constants, fold them together! 1910 ConstantInt *Fold = ConstantInt::get(getContext(), 1911 LHSC->getValue()->getValue() * 1912 RHSC->getValue()->getValue()); 1913 Ops[0] = getConstant(Fold); 1914 Ops.erase(Ops.begin()+1); // Erase the folded element 1915 if (Ops.size() == 1) return Ops[0]; 1916 LHSC = cast<SCEVConstant>(Ops[0]); 1917 } 1918 1919 // If we are left with a constant one being multiplied, strip it off. 1920 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1921 Ops.erase(Ops.begin()); 1922 --Idx; 1923 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1924 // If we have a multiply of zero, it will always be zero. 1925 return Ops[0]; 1926 } else if (Ops[0]->isAllOnesValue()) { 1927 // If we have a mul by -1 of an add, try distributing the -1 among the 1928 // add operands. 1929 if (Ops.size() == 2) { 1930 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1931 SmallVector<const SCEV *, 4> NewOps; 1932 bool AnyFolded = false; 1933 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1934 E = Add->op_end(); I != E; ++I) { 1935 const SCEV *Mul = getMulExpr(Ops[0], *I); 1936 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1937 NewOps.push_back(Mul); 1938 } 1939 if (AnyFolded) 1940 return getAddExpr(NewOps); 1941 } 1942 else if (const SCEVAddRecExpr * 1943 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1944 // Negation preserves a recurrence's no self-wrap property. 1945 SmallVector<const SCEV *, 4> Operands; 1946 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1947 E = AddRec->op_end(); I != E; ++I) { 1948 Operands.push_back(getMulExpr(Ops[0], *I)); 1949 } 1950 return getAddRecExpr(Operands, AddRec->getLoop(), 1951 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1952 } 1953 } 1954 } 1955 1956 if (Ops.size() == 1) 1957 return Ops[0]; 1958 } 1959 1960 // Skip over the add expression until we get to a multiply. 1961 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1962 ++Idx; 1963 1964 // If there are mul operands inline them all into this expression. 1965 if (Idx < Ops.size()) { 1966 bool DeletedMul = false; 1967 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1968 // If we have an mul, expand the mul operands onto the end of the operands 1969 // list. 1970 Ops.erase(Ops.begin()+Idx); 1971 Ops.append(Mul->op_begin(), Mul->op_end()); 1972 DeletedMul = true; 1973 } 1974 1975 // If we deleted at least one mul, we added operands to the end of the list, 1976 // and they are not necessarily sorted. Recurse to resort and resimplify 1977 // any operands we just acquired. 1978 if (DeletedMul) 1979 return getMulExpr(Ops); 1980 } 1981 1982 // If there are any add recurrences in the operands list, see if any other 1983 // added values are loop invariant. If so, we can fold them into the 1984 // recurrence. 1985 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1986 ++Idx; 1987 1988 // Scan over all recurrences, trying to fold loop invariants into them. 1989 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1990 // Scan all of the other operands to this mul and add them to the vector if 1991 // they are loop invariant w.r.t. the recurrence. 1992 SmallVector<const SCEV *, 8> LIOps; 1993 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1994 const Loop *AddRecLoop = AddRec->getLoop(); 1995 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1996 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1997 LIOps.push_back(Ops[i]); 1998 Ops.erase(Ops.begin()+i); 1999 --i; --e; 2000 } 2001 2002 // If we found some loop invariants, fold them into the recurrence. 2003 if (!LIOps.empty()) { 2004 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2005 SmallVector<const SCEV *, 4> NewOps; 2006 NewOps.reserve(AddRec->getNumOperands()); 2007 const SCEV *Scale = getMulExpr(LIOps); 2008 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2009 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2010 2011 // Build the new addrec. Propagate the NUW and NSW flags if both the 2012 // outer mul and the inner addrec are guaranteed to have no overflow. 2013 // 2014 // No self-wrap cannot be guaranteed after changing the step size, but 2015 // will be inferred if either NUW or NSW is true. 2016 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2017 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2018 2019 // If all of the other operands were loop invariant, we are done. 2020 if (Ops.size() == 1) return NewRec; 2021 2022 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2023 for (unsigned i = 0;; ++i) 2024 if (Ops[i] == AddRec) { 2025 Ops[i] = NewRec; 2026 break; 2027 } 2028 return getMulExpr(Ops); 2029 } 2030 2031 // Okay, if there weren't any loop invariants to be folded, check to see if 2032 // there are multiple AddRec's with the same loop induction variable being 2033 // multiplied together. If so, we can fold them. 2034 for (unsigned OtherIdx = Idx+1; 2035 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2036 ++OtherIdx) { 2037 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2038 continue; 2039 2040 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2041 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2042 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2043 // ]]],+,...up to x=2n}. 2044 // Note that the arguments to choose() are always integers with values 2045 // known at compile time, never SCEV objects. 2046 // 2047 // The implementation avoids pointless extra computations when the two 2048 // addrec's are of different length (mathematically, it's equivalent to 2049 // an infinite stream of zeros on the right). 2050 bool OpsModified = false; 2051 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2052 ++OtherIdx) { 2053 const SCEVAddRecExpr *OtherAddRec = 2054 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2055 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2056 continue; 2057 2058 bool Overflow = false; 2059 Type *Ty = AddRec->getType(); 2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2061 SmallVector<const SCEV*, 7> AddRecOps; 2062 for (int x = 0, xe = AddRec->getNumOperands() + 2063 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2064 const SCEV *Term = getConstant(Ty, 0); 2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2069 z < ze && !Overflow; ++z) { 2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2071 uint64_t Coeff; 2072 if (LargerThan64Bits) 2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2074 else 2075 Coeff = Coeff1*Coeff2; 2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2077 const SCEV *Term1 = AddRec->getOperand(y-z); 2078 const SCEV *Term2 = OtherAddRec->getOperand(z); 2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2080 } 2081 } 2082 AddRecOps.push_back(Term); 2083 } 2084 if (!Overflow) { 2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2086 SCEV::FlagAnyWrap); 2087 if (Ops.size() == 2) return NewAddRec; 2088 Ops[Idx] = NewAddRec; 2089 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2090 OpsModified = true; 2091 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2092 if (!AddRec) 2093 break; 2094 } 2095 } 2096 if (OpsModified) 2097 return getMulExpr(Ops); 2098 } 2099 2100 // Otherwise couldn't fold anything into this recurrence. Move onto the 2101 // next one. 2102 } 2103 2104 // Okay, it looks like we really DO need an mul expr. Check to see if we 2105 // already have one, otherwise create a new one. 2106 FoldingSetNodeID ID; 2107 ID.AddInteger(scMulExpr); 2108 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2109 ID.AddPointer(Ops[i]); 2110 void *IP = 0; 2111 SCEVMulExpr *S = 2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2113 if (!S) { 2114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2117 O, Ops.size()); 2118 UniqueSCEVs.InsertNode(S, IP); 2119 } 2120 S->setNoWrapFlags(Flags); 2121 return S; 2122 } 2123 2124 /// getUDivExpr - Get a canonical unsigned division expression, or something 2125 /// simpler if possible. 2126 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2127 const SCEV *RHS) { 2128 assert(getEffectiveSCEVType(LHS->getType()) == 2129 getEffectiveSCEVType(RHS->getType()) && 2130 "SCEVUDivExpr operand types don't match!"); 2131 2132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2133 if (RHSC->getValue()->equalsInt(1)) 2134 return LHS; // X udiv 1 --> x 2135 // If the denominator is zero, the result of the udiv is undefined. Don't 2136 // try to analyze it, because the resolution chosen here may differ from 2137 // the resolution chosen in other parts of the compiler. 2138 if (!RHSC->getValue()->isZero()) { 2139 // Determine if the division can be folded into the operands of 2140 // its operands. 2141 // TODO: Generalize this to non-constants by using known-bits information. 2142 Type *Ty = LHS->getType(); 2143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2145 // For non-power-of-two values, effectively round the value up to the 2146 // nearest power of two. 2147 if (!RHSC->getValue()->getValue().isPowerOf2()) 2148 ++MaxShiftAmt; 2149 IntegerType *ExtTy = 2150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2152 if (const SCEVConstant *Step = 2153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2155 const APInt &StepInt = Step->getValue()->getValue(); 2156 const APInt &DivInt = RHSC->getValue()->getValue(); 2157 if (!StepInt.urem(DivInt) && 2158 getZeroExtendExpr(AR, ExtTy) == 2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2160 getZeroExtendExpr(Step, ExtTy), 2161 AR->getLoop(), SCEV::FlagAnyWrap)) { 2162 SmallVector<const SCEV *, 4> Operands; 2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2165 return getAddRecExpr(Operands, AR->getLoop(), 2166 SCEV::FlagNW); 2167 } 2168 /// Get a canonical UDivExpr for a recurrence. 2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2170 // We can currently only fold X%N if X is constant. 2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2172 if (StartC && !DivInt.urem(StepInt) && 2173 getZeroExtendExpr(AR, ExtTy) == 2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2175 getZeroExtendExpr(Step, ExtTy), 2176 AR->getLoop(), SCEV::FlagAnyWrap)) { 2177 const APInt &StartInt = StartC->getValue()->getValue(); 2178 const APInt &StartRem = StartInt.urem(StepInt); 2179 if (StartRem != 0) 2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2181 AR->getLoop(), SCEV::FlagNW); 2182 } 2183 } 2184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2186 SmallVector<const SCEV *, 4> Operands; 2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2190 // Find an operand that's safely divisible. 2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2192 const SCEV *Op = M->getOperand(i); 2193 const SCEV *Div = getUDivExpr(Op, RHSC); 2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2196 M->op_end()); 2197 Operands[i] = Div; 2198 return getMulExpr(Operands); 2199 } 2200 } 2201 } 2202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2204 SmallVector<const SCEV *, 4> Operands; 2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2208 Operands.clear(); 2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2211 if (isa<SCEVUDivExpr>(Op) || 2212 getMulExpr(Op, RHS) != A->getOperand(i)) 2213 break; 2214 Operands.push_back(Op); 2215 } 2216 if (Operands.size() == A->getNumOperands()) 2217 return getAddExpr(Operands); 2218 } 2219 } 2220 2221 // Fold if both operands are constant. 2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2223 Constant *LHSCV = LHSC->getValue(); 2224 Constant *RHSCV = RHSC->getValue(); 2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2226 RHSCV))); 2227 } 2228 } 2229 } 2230 2231 FoldingSetNodeID ID; 2232 ID.AddInteger(scUDivExpr); 2233 ID.AddPointer(LHS); 2234 ID.AddPointer(RHS); 2235 void *IP = 0; 2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2238 LHS, RHS); 2239 UniqueSCEVs.InsertNode(S, IP); 2240 return S; 2241 } 2242 2243 2244 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2245 /// Simplify the expression as much as possible. 2246 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2247 const Loop *L, 2248 SCEV::NoWrapFlags Flags) { 2249 SmallVector<const SCEV *, 4> Operands; 2250 Operands.push_back(Start); 2251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2252 if (StepChrec->getLoop() == L) { 2253 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2255 } 2256 2257 Operands.push_back(Step); 2258 return getAddRecExpr(Operands, L, Flags); 2259 } 2260 2261 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2262 /// Simplify the expression as much as possible. 2263 const SCEV * 2264 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2265 const Loop *L, SCEV::NoWrapFlags Flags) { 2266 if (Operands.size() == 1) return Operands[0]; 2267 #ifndef NDEBUG 2268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2269 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2271 "SCEVAddRecExpr operand types don't match!"); 2272 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2273 assert(isLoopInvariant(Operands[i], L) && 2274 "SCEVAddRecExpr operand is not loop-invariant!"); 2275 #endif 2276 2277 if (Operands.back()->isZero()) { 2278 Operands.pop_back(); 2279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2280 } 2281 2282 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2283 // use that information to infer NUW and NSW flags. However, computing a 2284 // BE count requires calling getAddRecExpr, so we may not yet have a 2285 // meaningful BE count at this point (and if we don't, we'd be stuck 2286 // with a SCEVCouldNotCompute as the cached BE count). 2287 2288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2289 // And vice-versa. 2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2293 bool All = true; 2294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2295 E = Operands.end(); I != E; ++I) 2296 if (!isKnownNonNegative(*I)) { 2297 All = false; 2298 break; 2299 } 2300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2301 } 2302 2303 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2305 const Loop *NestedLoop = NestedAR->getLoop(); 2306 if (L->contains(NestedLoop) ? 2307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2308 (!NestedLoop->contains(L) && 2309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2311 NestedAR->op_end()); 2312 Operands[0] = NestedAR->getStart(); 2313 // AddRecs require their operands be loop-invariant with respect to their 2314 // loops. Don't perform this transformation if it would break this 2315 // requirement. 2316 bool AllInvariant = true; 2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2318 if (!isLoopInvariant(Operands[i], L)) { 2319 AllInvariant = false; 2320 break; 2321 } 2322 if (AllInvariant) { 2323 // Create a recurrence for the outer loop with the same step size. 2324 // 2325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2326 // inner recurrence has the same property. 2327 SCEV::NoWrapFlags OuterFlags = 2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2329 2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2331 AllInvariant = true; 2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2334 AllInvariant = false; 2335 break; 2336 } 2337 if (AllInvariant) { 2338 // Ok, both add recurrences are valid after the transformation. 2339 // 2340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2341 // the outer recurrence has the same property. 2342 SCEV::NoWrapFlags InnerFlags = 2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2345 } 2346 } 2347 // Reset Operands to its original state. 2348 Operands[0] = NestedAR; 2349 } 2350 } 2351 2352 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2353 // already have one, otherwise create a new one. 2354 FoldingSetNodeID ID; 2355 ID.AddInteger(scAddRecExpr); 2356 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2357 ID.AddPointer(Operands[i]); 2358 ID.AddPointer(L); 2359 void *IP = 0; 2360 SCEVAddRecExpr *S = 2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2362 if (!S) { 2363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2366 O, Operands.size(), L); 2367 UniqueSCEVs.InsertNode(S, IP); 2368 } 2369 S->setNoWrapFlags(Flags); 2370 return S; 2371 } 2372 2373 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2374 const SCEV *RHS) { 2375 SmallVector<const SCEV *, 2> Ops; 2376 Ops.push_back(LHS); 2377 Ops.push_back(RHS); 2378 return getSMaxExpr(Ops); 2379 } 2380 2381 const SCEV * 2382 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2383 assert(!Ops.empty() && "Cannot get empty smax!"); 2384 if (Ops.size() == 1) return Ops[0]; 2385 #ifndef NDEBUG 2386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2387 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2389 "SCEVSMaxExpr operand types don't match!"); 2390 #endif 2391 2392 // Sort by complexity, this groups all similar expression types together. 2393 GroupByComplexity(Ops, LI); 2394 2395 // If there are any constants, fold them together. 2396 unsigned Idx = 0; 2397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2398 ++Idx; 2399 assert(Idx < Ops.size()); 2400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2401 // We found two constants, fold them together! 2402 ConstantInt *Fold = ConstantInt::get(getContext(), 2403 APIntOps::smax(LHSC->getValue()->getValue(), 2404 RHSC->getValue()->getValue())); 2405 Ops[0] = getConstant(Fold); 2406 Ops.erase(Ops.begin()+1); // Erase the folded element 2407 if (Ops.size() == 1) return Ops[0]; 2408 LHSC = cast<SCEVConstant>(Ops[0]); 2409 } 2410 2411 // If we are left with a constant minimum-int, strip it off. 2412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2413 Ops.erase(Ops.begin()); 2414 --Idx; 2415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2416 // If we have an smax with a constant maximum-int, it will always be 2417 // maximum-int. 2418 return Ops[0]; 2419 } 2420 2421 if (Ops.size() == 1) return Ops[0]; 2422 } 2423 2424 // Find the first SMax 2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2426 ++Idx; 2427 2428 // Check to see if one of the operands is an SMax. If so, expand its operands 2429 // onto our operand list, and recurse to simplify. 2430 if (Idx < Ops.size()) { 2431 bool DeletedSMax = false; 2432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2433 Ops.erase(Ops.begin()+Idx); 2434 Ops.append(SMax->op_begin(), SMax->op_end()); 2435 DeletedSMax = true; 2436 } 2437 2438 if (DeletedSMax) 2439 return getSMaxExpr(Ops); 2440 } 2441 2442 // Okay, check to see if the same value occurs in the operand list twice. If 2443 // so, delete one. Since we sorted the list, these values are required to 2444 // be adjacent. 2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2446 // X smax Y smax Y --> X smax Y 2447 // X smax Y --> X, if X is always greater than Y 2448 if (Ops[i] == Ops[i+1] || 2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2451 --i; --e; 2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2454 --i; --e; 2455 } 2456 2457 if (Ops.size() == 1) return Ops[0]; 2458 2459 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2460 2461 // Okay, it looks like we really DO need an smax expr. Check to see if we 2462 // already have one, otherwise create a new one. 2463 FoldingSetNodeID ID; 2464 ID.AddInteger(scSMaxExpr); 2465 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2466 ID.AddPointer(Ops[i]); 2467 void *IP = 0; 2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2472 O, Ops.size()); 2473 UniqueSCEVs.InsertNode(S, IP); 2474 return S; 2475 } 2476 2477 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2478 const SCEV *RHS) { 2479 SmallVector<const SCEV *, 2> Ops; 2480 Ops.push_back(LHS); 2481 Ops.push_back(RHS); 2482 return getUMaxExpr(Ops); 2483 } 2484 2485 const SCEV * 2486 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2487 assert(!Ops.empty() && "Cannot get empty umax!"); 2488 if (Ops.size() == 1) return Ops[0]; 2489 #ifndef NDEBUG 2490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2491 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2493 "SCEVUMaxExpr operand types don't match!"); 2494 #endif 2495 2496 // Sort by complexity, this groups all similar expression types together. 2497 GroupByComplexity(Ops, LI); 2498 2499 // If there are any constants, fold them together. 2500 unsigned Idx = 0; 2501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2502 ++Idx; 2503 assert(Idx < Ops.size()); 2504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2505 // We found two constants, fold them together! 2506 ConstantInt *Fold = ConstantInt::get(getContext(), 2507 APIntOps::umax(LHSC->getValue()->getValue(), 2508 RHSC->getValue()->getValue())); 2509 Ops[0] = getConstant(Fold); 2510 Ops.erase(Ops.begin()+1); // Erase the folded element 2511 if (Ops.size() == 1) return Ops[0]; 2512 LHSC = cast<SCEVConstant>(Ops[0]); 2513 } 2514 2515 // If we are left with a constant minimum-int, strip it off. 2516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2517 Ops.erase(Ops.begin()); 2518 --Idx; 2519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2520 // If we have an umax with a constant maximum-int, it will always be 2521 // maximum-int. 2522 return Ops[0]; 2523 } 2524 2525 if (Ops.size() == 1) return Ops[0]; 2526 } 2527 2528 // Find the first UMax 2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2530 ++Idx; 2531 2532 // Check to see if one of the operands is a UMax. If so, expand its operands 2533 // onto our operand list, and recurse to simplify. 2534 if (Idx < Ops.size()) { 2535 bool DeletedUMax = false; 2536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2537 Ops.erase(Ops.begin()+Idx); 2538 Ops.append(UMax->op_begin(), UMax->op_end()); 2539 DeletedUMax = true; 2540 } 2541 2542 if (DeletedUMax) 2543 return getUMaxExpr(Ops); 2544 } 2545 2546 // Okay, check to see if the same value occurs in the operand list twice. If 2547 // so, delete one. Since we sorted the list, these values are required to 2548 // be adjacent. 2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2550 // X umax Y umax Y --> X umax Y 2551 // X umax Y --> X, if X is always greater than Y 2552 if (Ops[i] == Ops[i+1] || 2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2555 --i; --e; 2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2558 --i; --e; 2559 } 2560 2561 if (Ops.size() == 1) return Ops[0]; 2562 2563 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2564 2565 // Okay, it looks like we really DO need a umax expr. Check to see if we 2566 // already have one, otherwise create a new one. 2567 FoldingSetNodeID ID; 2568 ID.AddInteger(scUMaxExpr); 2569 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2570 ID.AddPointer(Ops[i]); 2571 void *IP = 0; 2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2576 O, Ops.size()); 2577 UniqueSCEVs.InsertNode(S, IP); 2578 return S; 2579 } 2580 2581 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2582 const SCEV *RHS) { 2583 // ~smax(~x, ~y) == smin(x, y). 2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2585 } 2586 2587 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2588 const SCEV *RHS) { 2589 // ~umax(~x, ~y) == umin(x, y) 2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2591 } 2592 2593 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2594 // If we have DataLayout, we can bypass creating a target-independent 2595 // constant expression and then folding it back into a ConstantInt. 2596 // This is just a compile-time optimization. 2597 if (TD) 2598 return getConstant(IntTy, TD->getTypeAllocSize(AllocTy)); 2599 2600 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2603 C = Folded; 2604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2605 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2606 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2607 } 2608 2609 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2610 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2612 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2613 C = Folded; 2614 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2615 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2616 } 2617 2618 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2619 StructType *STy, 2620 unsigned FieldNo) { 2621 // If we have DataLayout, we can bypass creating a target-independent 2622 // constant expression and then folding it back into a ConstantInt. 2623 // This is just a compile-time optimization. 2624 if (TD) { 2625 return getConstant(IntTy, 2626 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2627 } 2628 2629 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2630 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2631 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2632 C = Folded; 2633 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2634 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2635 } 2636 2637 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2638 Type *CTy, 2639 Constant *FieldNo) { 2640 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2641 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2642 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2643 C = Folded; 2644 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2645 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2646 } 2647 2648 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2649 // Don't attempt to do anything other than create a SCEVUnknown object 2650 // here. createSCEV only calls getUnknown after checking for all other 2651 // interesting possibilities, and any other code that calls getUnknown 2652 // is doing so in order to hide a value from SCEV canonicalization. 2653 2654 FoldingSetNodeID ID; 2655 ID.AddInteger(scUnknown); 2656 ID.AddPointer(V); 2657 void *IP = 0; 2658 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2659 assert(cast<SCEVUnknown>(S)->getValue() == V && 2660 "Stale SCEVUnknown in uniquing map!"); 2661 return S; 2662 } 2663 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2664 FirstUnknown); 2665 FirstUnknown = cast<SCEVUnknown>(S); 2666 UniqueSCEVs.InsertNode(S, IP); 2667 return S; 2668 } 2669 2670 //===----------------------------------------------------------------------===// 2671 // Basic SCEV Analysis and PHI Idiom Recognition Code 2672 // 2673 2674 /// isSCEVable - Test if values of the given type are analyzable within 2675 /// the SCEV framework. This primarily includes integer types, and it 2676 /// can optionally include pointer types if the ScalarEvolution class 2677 /// has access to target-specific information. 2678 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2679 // Integers and pointers are always SCEVable. 2680 return Ty->isIntegerTy() || Ty->isPointerTy(); 2681 } 2682 2683 /// getTypeSizeInBits - Return the size in bits of the specified type, 2684 /// for which isSCEVable must return true. 2685 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2686 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2687 2688 // If we have a DataLayout, use it! 2689 if (TD) 2690 return TD->getTypeSizeInBits(Ty); 2691 2692 // Integer types have fixed sizes. 2693 if (Ty->isIntegerTy()) 2694 return Ty->getPrimitiveSizeInBits(); 2695 2696 // The only other support type is pointer. Without DataLayout, conservatively 2697 // assume pointers are 64-bit. 2698 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2699 return 64; 2700 } 2701 2702 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2703 /// the given type and which represents how SCEV will treat the given 2704 /// type, for which isSCEVable must return true. For pointer types, 2705 /// this is the pointer-sized integer type. 2706 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2707 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2708 2709 if (Ty->isIntegerTy()) { 2710 return Ty; 2711 } 2712 2713 // The only other support type is pointer. 2714 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2715 2716 if (TD) 2717 return TD->getIntPtrType(Ty); 2718 2719 // Without DataLayout, conservatively assume pointers are 64-bit. 2720 return Type::getInt64Ty(getContext()); 2721 } 2722 2723 const SCEV *ScalarEvolution::getCouldNotCompute() { 2724 return &CouldNotCompute; 2725 } 2726 2727 namespace { 2728 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2729 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2730 // is set iff if find such SCEVUnknown. 2731 // 2732 struct FindInvalidSCEVUnknown { 2733 bool FindOne; 2734 FindInvalidSCEVUnknown() { FindOne = false; } 2735 bool follow(const SCEV *S) { 2736 switch (S->getSCEVType()) { 2737 case scConstant: 2738 return false; 2739 case scUnknown: 2740 if (!cast<SCEVUnknown>(S)->getValue()) 2741 FindOne = true; 2742 return false; 2743 default: 2744 return true; 2745 } 2746 } 2747 bool isDone() const { return FindOne; } 2748 }; 2749 } 2750 2751 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2752 FindInvalidSCEVUnknown F; 2753 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2754 ST.visitAll(S); 2755 2756 return !F.FindOne; 2757 } 2758 2759 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2760 /// expression and create a new one. 2761 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2762 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2763 2764 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2765 if (I != ValueExprMap.end()) { 2766 const SCEV *S = I->second; 2767 if (checkValidity(S)) 2768 return S; 2769 else 2770 ValueExprMap.erase(I); 2771 } 2772 const SCEV *S = createSCEV(V); 2773 2774 // The process of creating a SCEV for V may have caused other SCEVs 2775 // to have been created, so it's necessary to insert the new entry 2776 // from scratch, rather than trying to remember the insert position 2777 // above. 2778 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2779 return S; 2780 } 2781 2782 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2783 /// 2784 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2785 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2786 return getConstant( 2787 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2788 2789 Type *Ty = V->getType(); 2790 Ty = getEffectiveSCEVType(Ty); 2791 return getMulExpr(V, 2792 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2793 } 2794 2795 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2796 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2797 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2798 return getConstant( 2799 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2800 2801 Type *Ty = V->getType(); 2802 Ty = getEffectiveSCEVType(Ty); 2803 const SCEV *AllOnes = 2804 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2805 return getMinusSCEV(AllOnes, V); 2806 } 2807 2808 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2809 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2810 SCEV::NoWrapFlags Flags) { 2811 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2812 2813 // Fast path: X - X --> 0. 2814 if (LHS == RHS) 2815 return getConstant(LHS->getType(), 0); 2816 2817 // X - Y --> X + -Y 2818 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2819 } 2820 2821 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2822 /// input value to the specified type. If the type must be extended, it is zero 2823 /// extended. 2824 const SCEV * 2825 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2826 Type *SrcTy = V->getType(); 2827 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2828 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2829 "Cannot truncate or zero extend with non-integer arguments!"); 2830 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2831 return V; // No conversion 2832 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2833 return getTruncateExpr(V, Ty); 2834 return getZeroExtendExpr(V, Ty); 2835 } 2836 2837 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2838 /// input value to the specified type. If the type must be extended, it is sign 2839 /// extended. 2840 const SCEV * 2841 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2842 Type *Ty) { 2843 Type *SrcTy = V->getType(); 2844 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2845 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2846 "Cannot truncate or zero extend with non-integer arguments!"); 2847 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2848 return V; // No conversion 2849 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2850 return getTruncateExpr(V, Ty); 2851 return getSignExtendExpr(V, Ty); 2852 } 2853 2854 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2855 /// input value to the specified type. If the type must be extended, it is zero 2856 /// extended. The conversion must not be narrowing. 2857 const SCEV * 2858 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2859 Type *SrcTy = V->getType(); 2860 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2861 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2862 "Cannot noop or zero extend with non-integer arguments!"); 2863 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2864 "getNoopOrZeroExtend cannot truncate!"); 2865 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2866 return V; // No conversion 2867 return getZeroExtendExpr(V, Ty); 2868 } 2869 2870 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2871 /// input value to the specified type. If the type must be extended, it is sign 2872 /// extended. The conversion must not be narrowing. 2873 const SCEV * 2874 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2875 Type *SrcTy = V->getType(); 2876 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2877 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2878 "Cannot noop or sign extend with non-integer arguments!"); 2879 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2880 "getNoopOrSignExtend cannot truncate!"); 2881 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2882 return V; // No conversion 2883 return getSignExtendExpr(V, Ty); 2884 } 2885 2886 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2887 /// the input value to the specified type. If the type must be extended, 2888 /// it is extended with unspecified bits. The conversion must not be 2889 /// narrowing. 2890 const SCEV * 2891 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2892 Type *SrcTy = V->getType(); 2893 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2894 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2895 "Cannot noop or any extend with non-integer arguments!"); 2896 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2897 "getNoopOrAnyExtend cannot truncate!"); 2898 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2899 return V; // No conversion 2900 return getAnyExtendExpr(V, Ty); 2901 } 2902 2903 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2904 /// input value to the specified type. The conversion must not be widening. 2905 const SCEV * 2906 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2907 Type *SrcTy = V->getType(); 2908 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2909 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2910 "Cannot truncate or noop with non-integer arguments!"); 2911 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2912 "getTruncateOrNoop cannot extend!"); 2913 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2914 return V; // No conversion 2915 return getTruncateExpr(V, Ty); 2916 } 2917 2918 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2919 /// the types using zero-extension, and then perform a umax operation 2920 /// with them. 2921 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2922 const SCEV *RHS) { 2923 const SCEV *PromotedLHS = LHS; 2924 const SCEV *PromotedRHS = RHS; 2925 2926 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2927 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2928 else 2929 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2930 2931 return getUMaxExpr(PromotedLHS, PromotedRHS); 2932 } 2933 2934 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2935 /// the types using zero-extension, and then perform a umin operation 2936 /// with them. 2937 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2938 const SCEV *RHS) { 2939 const SCEV *PromotedLHS = LHS; 2940 const SCEV *PromotedRHS = RHS; 2941 2942 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2943 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2944 else 2945 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2946 2947 return getUMinExpr(PromotedLHS, PromotedRHS); 2948 } 2949 2950 /// getPointerBase - Transitively follow the chain of pointer-type operands 2951 /// until reaching a SCEV that does not have a single pointer operand. This 2952 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2953 /// but corner cases do exist. 2954 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2955 // A pointer operand may evaluate to a nonpointer expression, such as null. 2956 if (!V->getType()->isPointerTy()) 2957 return V; 2958 2959 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2960 return getPointerBase(Cast->getOperand()); 2961 } 2962 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2963 const SCEV *PtrOp = 0; 2964 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2965 I != E; ++I) { 2966 if ((*I)->getType()->isPointerTy()) { 2967 // Cannot find the base of an expression with multiple pointer operands. 2968 if (PtrOp) 2969 return V; 2970 PtrOp = *I; 2971 } 2972 } 2973 if (!PtrOp) 2974 return V; 2975 return getPointerBase(PtrOp); 2976 } 2977 return V; 2978 } 2979 2980 /// PushDefUseChildren - Push users of the given Instruction 2981 /// onto the given Worklist. 2982 static void 2983 PushDefUseChildren(Instruction *I, 2984 SmallVectorImpl<Instruction *> &Worklist) { 2985 // Push the def-use children onto the Worklist stack. 2986 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2987 UI != UE; ++UI) 2988 Worklist.push_back(cast<Instruction>(*UI)); 2989 } 2990 2991 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2992 /// instructions that depend on the given instruction and removes them from 2993 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2994 /// resolution. 2995 void 2996 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2997 SmallVector<Instruction *, 16> Worklist; 2998 PushDefUseChildren(PN, Worklist); 2999 3000 SmallPtrSet<Instruction *, 8> Visited; 3001 Visited.insert(PN); 3002 while (!Worklist.empty()) { 3003 Instruction *I = Worklist.pop_back_val(); 3004 if (!Visited.insert(I)) continue; 3005 3006 ValueExprMapType::iterator It = 3007 ValueExprMap.find_as(static_cast<Value *>(I)); 3008 if (It != ValueExprMap.end()) { 3009 const SCEV *Old = It->second; 3010 3011 // Short-circuit the def-use traversal if the symbolic name 3012 // ceases to appear in expressions. 3013 if (Old != SymName && !hasOperand(Old, SymName)) 3014 continue; 3015 3016 // SCEVUnknown for a PHI either means that it has an unrecognized 3017 // structure, it's a PHI that's in the progress of being computed 3018 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3019 // additional loop trip count information isn't going to change anything. 3020 // In the second case, createNodeForPHI will perform the necessary 3021 // updates on its own when it gets to that point. In the third, we do 3022 // want to forget the SCEVUnknown. 3023 if (!isa<PHINode>(I) || 3024 !isa<SCEVUnknown>(Old) || 3025 (I != PN && Old == SymName)) { 3026 forgetMemoizedResults(Old); 3027 ValueExprMap.erase(It); 3028 } 3029 } 3030 3031 PushDefUseChildren(I, Worklist); 3032 } 3033 } 3034 3035 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3036 /// a loop header, making it a potential recurrence, or it doesn't. 3037 /// 3038 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3039 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3040 if (L->getHeader() == PN->getParent()) { 3041 // The loop may have multiple entrances or multiple exits; we can analyze 3042 // this phi as an addrec if it has a unique entry value and a unique 3043 // backedge value. 3044 Value *BEValueV = 0, *StartValueV = 0; 3045 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3046 Value *V = PN->getIncomingValue(i); 3047 if (L->contains(PN->getIncomingBlock(i))) { 3048 if (!BEValueV) { 3049 BEValueV = V; 3050 } else if (BEValueV != V) { 3051 BEValueV = 0; 3052 break; 3053 } 3054 } else if (!StartValueV) { 3055 StartValueV = V; 3056 } else if (StartValueV != V) { 3057 StartValueV = 0; 3058 break; 3059 } 3060 } 3061 if (BEValueV && StartValueV) { 3062 // While we are analyzing this PHI node, handle its value symbolically. 3063 const SCEV *SymbolicName = getUnknown(PN); 3064 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3065 "PHI node already processed?"); 3066 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3067 3068 // Using this symbolic name for the PHI, analyze the value coming around 3069 // the back-edge. 3070 const SCEV *BEValue = getSCEV(BEValueV); 3071 3072 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3073 // has a special value for the first iteration of the loop. 3074 3075 // If the value coming around the backedge is an add with the symbolic 3076 // value we just inserted, then we found a simple induction variable! 3077 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3078 // If there is a single occurrence of the symbolic value, replace it 3079 // with a recurrence. 3080 unsigned FoundIndex = Add->getNumOperands(); 3081 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3082 if (Add->getOperand(i) == SymbolicName) 3083 if (FoundIndex == e) { 3084 FoundIndex = i; 3085 break; 3086 } 3087 3088 if (FoundIndex != Add->getNumOperands()) { 3089 // Create an add with everything but the specified operand. 3090 SmallVector<const SCEV *, 8> Ops; 3091 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3092 if (i != FoundIndex) 3093 Ops.push_back(Add->getOperand(i)); 3094 const SCEV *Accum = getAddExpr(Ops); 3095 3096 // This is not a valid addrec if the step amount is varying each 3097 // loop iteration, but is not itself an addrec in this loop. 3098 if (isLoopInvariant(Accum, L) || 3099 (isa<SCEVAddRecExpr>(Accum) && 3100 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3101 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3102 3103 // If the increment doesn't overflow, then neither the addrec nor 3104 // the post-increment will overflow. 3105 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3106 if (OBO->hasNoUnsignedWrap()) 3107 Flags = setFlags(Flags, SCEV::FlagNUW); 3108 if (OBO->hasNoSignedWrap()) 3109 Flags = setFlags(Flags, SCEV::FlagNSW); 3110 } else if (const GEPOperator *GEP = 3111 dyn_cast<GEPOperator>(BEValueV)) { 3112 // If the increment is an inbounds GEP, then we know the address 3113 // space cannot be wrapped around. We cannot make any guarantee 3114 // about signed or unsigned overflow because pointers are 3115 // unsigned but we may have a negative index from the base 3116 // pointer. 3117 if (GEP->isInBounds()) 3118 Flags = setFlags(Flags, SCEV::FlagNW); 3119 } 3120 3121 const SCEV *StartVal = getSCEV(StartValueV); 3122 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3123 3124 // Since the no-wrap flags are on the increment, they apply to the 3125 // post-incremented value as well. 3126 if (isLoopInvariant(Accum, L)) 3127 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3128 Accum, L, Flags); 3129 3130 // Okay, for the entire analysis of this edge we assumed the PHI 3131 // to be symbolic. We now need to go back and purge all of the 3132 // entries for the scalars that use the symbolic expression. 3133 ForgetSymbolicName(PN, SymbolicName); 3134 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3135 return PHISCEV; 3136 } 3137 } 3138 } else if (const SCEVAddRecExpr *AddRec = 3139 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3140 // Otherwise, this could be a loop like this: 3141 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3142 // In this case, j = {1,+,1} and BEValue is j. 3143 // Because the other in-value of i (0) fits the evolution of BEValue 3144 // i really is an addrec evolution. 3145 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3146 const SCEV *StartVal = getSCEV(StartValueV); 3147 3148 // If StartVal = j.start - j.stride, we can use StartVal as the 3149 // initial step of the addrec evolution. 3150 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3151 AddRec->getOperand(1))) { 3152 // FIXME: For constant StartVal, we should be able to infer 3153 // no-wrap flags. 3154 const SCEV *PHISCEV = 3155 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3156 SCEV::FlagAnyWrap); 3157 3158 // Okay, for the entire analysis of this edge we assumed the PHI 3159 // to be symbolic. We now need to go back and purge all of the 3160 // entries for the scalars that use the symbolic expression. 3161 ForgetSymbolicName(PN, SymbolicName); 3162 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3163 return PHISCEV; 3164 } 3165 } 3166 } 3167 } 3168 } 3169 3170 // If the PHI has a single incoming value, follow that value, unless the 3171 // PHI's incoming blocks are in a different loop, in which case doing so 3172 // risks breaking LCSSA form. Instcombine would normally zap these, but 3173 // it doesn't have DominatorTree information, so it may miss cases. 3174 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3175 if (LI->replacementPreservesLCSSAForm(PN, V)) 3176 return getSCEV(V); 3177 3178 // If it's not a loop phi, we can't handle it yet. 3179 return getUnknown(PN); 3180 } 3181 3182 /// createNodeForGEP - Expand GEP instructions into add and multiply 3183 /// operations. This allows them to be analyzed by regular SCEV code. 3184 /// 3185 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3186 3187 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3188 // Add expression, because the Instruction may be guarded by control flow 3189 // and the no-overflow bits may not be valid for the expression in any 3190 // context. 3191 bool isInBounds = GEP->isInBounds(); 3192 3193 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3194 Value *Base = GEP->getOperand(0); 3195 // Don't attempt to analyze GEPs over unsized objects. 3196 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3197 return getUnknown(GEP); 3198 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3199 gep_type_iterator GTI = gep_type_begin(GEP); 3200 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3201 E = GEP->op_end(); 3202 I != E; ++I) { 3203 Value *Index = *I; 3204 // Compute the (potentially symbolic) offset in bytes for this index. 3205 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3206 // For a struct, add the member offset. 3207 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3208 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3209 3210 // Add the field offset to the running total offset. 3211 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3212 } else { 3213 // For an array, add the element offset, explicitly scaled. 3214 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3215 const SCEV *IndexS = getSCEV(Index); 3216 // Getelementptr indices are signed. 3217 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3218 3219 // Multiply the index by the element size to compute the element offset. 3220 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3221 isInBounds ? SCEV::FlagNSW : 3222 SCEV::FlagAnyWrap); 3223 3224 // Add the element offset to the running total offset. 3225 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3226 } 3227 } 3228 3229 // Get the SCEV for the GEP base. 3230 const SCEV *BaseS = getSCEV(Base); 3231 3232 // Add the total offset from all the GEP indices to the base. 3233 return getAddExpr(BaseS, TotalOffset, 3234 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3235 } 3236 3237 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3238 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3239 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3240 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3241 uint32_t 3242 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3243 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3244 return C->getValue()->getValue().countTrailingZeros(); 3245 3246 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3247 return std::min(GetMinTrailingZeros(T->getOperand()), 3248 (uint32_t)getTypeSizeInBits(T->getType())); 3249 3250 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3251 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3252 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3253 getTypeSizeInBits(E->getType()) : OpRes; 3254 } 3255 3256 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3257 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3258 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3259 getTypeSizeInBits(E->getType()) : OpRes; 3260 } 3261 3262 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3263 // The result is the min of all operands results. 3264 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3265 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3266 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3267 return MinOpRes; 3268 } 3269 3270 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3271 // The result is the sum of all operands results. 3272 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3273 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3274 for (unsigned i = 1, e = M->getNumOperands(); 3275 SumOpRes != BitWidth && i != e; ++i) 3276 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3277 BitWidth); 3278 return SumOpRes; 3279 } 3280 3281 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3282 // The result is the min of all operands results. 3283 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3284 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3285 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3286 return MinOpRes; 3287 } 3288 3289 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3290 // The result is the min of all operands results. 3291 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3292 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3293 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3294 return MinOpRes; 3295 } 3296 3297 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3298 // The result is the min of all operands results. 3299 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3300 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3301 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3302 return MinOpRes; 3303 } 3304 3305 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3306 // For a SCEVUnknown, ask ValueTracking. 3307 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3308 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3309 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3310 return Zeros.countTrailingOnes(); 3311 } 3312 3313 // SCEVUDivExpr 3314 return 0; 3315 } 3316 3317 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3318 /// 3319 ConstantRange 3320 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3321 // See if we've computed this range already. 3322 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3323 if (I != UnsignedRanges.end()) 3324 return I->second; 3325 3326 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3327 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3328 3329 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3330 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3331 3332 // If the value has known zeros, the maximum unsigned value will have those 3333 // known zeros as well. 3334 uint32_t TZ = GetMinTrailingZeros(S); 3335 if (TZ != 0) 3336 ConservativeResult = 3337 ConstantRange(APInt::getMinValue(BitWidth), 3338 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3339 3340 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3341 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3342 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3343 X = X.add(getUnsignedRange(Add->getOperand(i))); 3344 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3345 } 3346 3347 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3348 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3349 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3350 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3351 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3352 } 3353 3354 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3355 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3356 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3357 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3358 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3359 } 3360 3361 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3362 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3363 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3364 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3365 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3366 } 3367 3368 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3369 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3370 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3371 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3372 } 3373 3374 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3375 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3376 return setUnsignedRange(ZExt, 3377 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3378 } 3379 3380 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3381 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3382 return setUnsignedRange(SExt, 3383 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3384 } 3385 3386 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3387 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3388 return setUnsignedRange(Trunc, 3389 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3390 } 3391 3392 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3393 // If there's no unsigned wrap, the value will never be less than its 3394 // initial value. 3395 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3396 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3397 if (!C->getValue()->isZero()) 3398 ConservativeResult = 3399 ConservativeResult.intersectWith( 3400 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3401 3402 // TODO: non-affine addrec 3403 if (AddRec->isAffine()) { 3404 Type *Ty = AddRec->getType(); 3405 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3406 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3407 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3408 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3409 3410 const SCEV *Start = AddRec->getStart(); 3411 const SCEV *Step = AddRec->getStepRecurrence(*this); 3412 3413 ConstantRange StartRange = getUnsignedRange(Start); 3414 ConstantRange StepRange = getSignedRange(Step); 3415 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3416 ConstantRange EndRange = 3417 StartRange.add(MaxBECountRange.multiply(StepRange)); 3418 3419 // Check for overflow. This must be done with ConstantRange arithmetic 3420 // because we could be called from within the ScalarEvolution overflow 3421 // checking code. 3422 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3423 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3424 ConstantRange ExtMaxBECountRange = 3425 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3426 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3427 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3428 ExtEndRange) 3429 return setUnsignedRange(AddRec, ConservativeResult); 3430 3431 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3432 EndRange.getUnsignedMin()); 3433 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3434 EndRange.getUnsignedMax()); 3435 if (Min.isMinValue() && Max.isMaxValue()) 3436 return setUnsignedRange(AddRec, ConservativeResult); 3437 return setUnsignedRange(AddRec, 3438 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3439 } 3440 } 3441 3442 return setUnsignedRange(AddRec, ConservativeResult); 3443 } 3444 3445 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3446 // For a SCEVUnknown, ask ValueTracking. 3447 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3448 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3449 if (Ones == ~Zeros + 1) 3450 return setUnsignedRange(U, ConservativeResult); 3451 return setUnsignedRange(U, 3452 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3453 } 3454 3455 return setUnsignedRange(S, ConservativeResult); 3456 } 3457 3458 /// getSignedRange - Determine the signed range for a particular SCEV. 3459 /// 3460 ConstantRange 3461 ScalarEvolution::getSignedRange(const SCEV *S) { 3462 // See if we've computed this range already. 3463 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3464 if (I != SignedRanges.end()) 3465 return I->second; 3466 3467 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3468 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3469 3470 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3471 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3472 3473 // If the value has known zeros, the maximum signed value will have those 3474 // known zeros as well. 3475 uint32_t TZ = GetMinTrailingZeros(S); 3476 if (TZ != 0) 3477 ConservativeResult = 3478 ConstantRange(APInt::getSignedMinValue(BitWidth), 3479 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3480 3481 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3482 ConstantRange X = getSignedRange(Add->getOperand(0)); 3483 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3484 X = X.add(getSignedRange(Add->getOperand(i))); 3485 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3486 } 3487 3488 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3489 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3490 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3491 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3492 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3493 } 3494 3495 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3496 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3497 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3498 X = X.smax(getSignedRange(SMax->getOperand(i))); 3499 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3500 } 3501 3502 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3503 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3504 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3505 X = X.umax(getSignedRange(UMax->getOperand(i))); 3506 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3507 } 3508 3509 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3510 ConstantRange X = getSignedRange(UDiv->getLHS()); 3511 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3512 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3513 } 3514 3515 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3516 ConstantRange X = getSignedRange(ZExt->getOperand()); 3517 return setSignedRange(ZExt, 3518 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3519 } 3520 3521 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3522 ConstantRange X = getSignedRange(SExt->getOperand()); 3523 return setSignedRange(SExt, 3524 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3525 } 3526 3527 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3528 ConstantRange X = getSignedRange(Trunc->getOperand()); 3529 return setSignedRange(Trunc, 3530 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3531 } 3532 3533 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3534 // If there's no signed wrap, and all the operands have the same sign or 3535 // zero, the value won't ever change sign. 3536 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3537 bool AllNonNeg = true; 3538 bool AllNonPos = true; 3539 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3540 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3541 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3542 } 3543 if (AllNonNeg) 3544 ConservativeResult = ConservativeResult.intersectWith( 3545 ConstantRange(APInt(BitWidth, 0), 3546 APInt::getSignedMinValue(BitWidth))); 3547 else if (AllNonPos) 3548 ConservativeResult = ConservativeResult.intersectWith( 3549 ConstantRange(APInt::getSignedMinValue(BitWidth), 3550 APInt(BitWidth, 1))); 3551 } 3552 3553 // TODO: non-affine addrec 3554 if (AddRec->isAffine()) { 3555 Type *Ty = AddRec->getType(); 3556 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3557 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3558 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3559 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3560 3561 const SCEV *Start = AddRec->getStart(); 3562 const SCEV *Step = AddRec->getStepRecurrence(*this); 3563 3564 ConstantRange StartRange = getSignedRange(Start); 3565 ConstantRange StepRange = getSignedRange(Step); 3566 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3567 ConstantRange EndRange = 3568 StartRange.add(MaxBECountRange.multiply(StepRange)); 3569 3570 // Check for overflow. This must be done with ConstantRange arithmetic 3571 // because we could be called from within the ScalarEvolution overflow 3572 // checking code. 3573 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3574 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3575 ConstantRange ExtMaxBECountRange = 3576 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3577 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3578 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3579 ExtEndRange) 3580 return setSignedRange(AddRec, ConservativeResult); 3581 3582 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3583 EndRange.getSignedMin()); 3584 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3585 EndRange.getSignedMax()); 3586 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3587 return setSignedRange(AddRec, ConservativeResult); 3588 return setSignedRange(AddRec, 3589 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3590 } 3591 } 3592 3593 return setSignedRange(AddRec, ConservativeResult); 3594 } 3595 3596 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3597 // For a SCEVUnknown, ask ValueTracking. 3598 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3599 return setSignedRange(U, ConservativeResult); 3600 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3601 if (NS <= 1) 3602 return setSignedRange(U, ConservativeResult); 3603 return setSignedRange(U, ConservativeResult.intersectWith( 3604 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3605 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3606 } 3607 3608 return setSignedRange(S, ConservativeResult); 3609 } 3610 3611 /// createSCEV - We know that there is no SCEV for the specified value. 3612 /// Analyze the expression. 3613 /// 3614 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3615 if (!isSCEVable(V->getType())) 3616 return getUnknown(V); 3617 3618 unsigned Opcode = Instruction::UserOp1; 3619 if (Instruction *I = dyn_cast<Instruction>(V)) { 3620 Opcode = I->getOpcode(); 3621 3622 // Don't attempt to analyze instructions in blocks that aren't 3623 // reachable. Such instructions don't matter, and they aren't required 3624 // to obey basic rules for definitions dominating uses which this 3625 // analysis depends on. 3626 if (!DT->isReachableFromEntry(I->getParent())) 3627 return getUnknown(V); 3628 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3629 Opcode = CE->getOpcode(); 3630 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3631 return getConstant(CI); 3632 else if (isa<ConstantPointerNull>(V)) 3633 return getConstant(V->getType(), 0); 3634 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3635 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3636 else 3637 return getUnknown(V); 3638 3639 Operator *U = cast<Operator>(V); 3640 switch (Opcode) { 3641 case Instruction::Add: { 3642 // The simple thing to do would be to just call getSCEV on both operands 3643 // and call getAddExpr with the result. However if we're looking at a 3644 // bunch of things all added together, this can be quite inefficient, 3645 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3646 // Instead, gather up all the operands and make a single getAddExpr call. 3647 // LLVM IR canonical form means we need only traverse the left operands. 3648 // 3649 // Don't apply this instruction's NSW or NUW flags to the new 3650 // expression. The instruction may be guarded by control flow that the 3651 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3652 // mapped to the same SCEV expression, and it would be incorrect to transfer 3653 // NSW/NUW semantics to those operations. 3654 SmallVector<const SCEV *, 4> AddOps; 3655 AddOps.push_back(getSCEV(U->getOperand(1))); 3656 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3657 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3658 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3659 break; 3660 U = cast<Operator>(Op); 3661 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3662 if (Opcode == Instruction::Sub) 3663 AddOps.push_back(getNegativeSCEV(Op1)); 3664 else 3665 AddOps.push_back(Op1); 3666 } 3667 AddOps.push_back(getSCEV(U->getOperand(0))); 3668 return getAddExpr(AddOps); 3669 } 3670 case Instruction::Mul: { 3671 // Don't transfer NSW/NUW for the same reason as AddExpr. 3672 SmallVector<const SCEV *, 4> MulOps; 3673 MulOps.push_back(getSCEV(U->getOperand(1))); 3674 for (Value *Op = U->getOperand(0); 3675 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3676 Op = U->getOperand(0)) { 3677 U = cast<Operator>(Op); 3678 MulOps.push_back(getSCEV(U->getOperand(1))); 3679 } 3680 MulOps.push_back(getSCEV(U->getOperand(0))); 3681 return getMulExpr(MulOps); 3682 } 3683 case Instruction::UDiv: 3684 return getUDivExpr(getSCEV(U->getOperand(0)), 3685 getSCEV(U->getOperand(1))); 3686 case Instruction::Sub: 3687 return getMinusSCEV(getSCEV(U->getOperand(0)), 3688 getSCEV(U->getOperand(1))); 3689 case Instruction::And: 3690 // For an expression like x&255 that merely masks off the high bits, 3691 // use zext(trunc(x)) as the SCEV expression. 3692 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3693 if (CI->isNullValue()) 3694 return getSCEV(U->getOperand(1)); 3695 if (CI->isAllOnesValue()) 3696 return getSCEV(U->getOperand(0)); 3697 const APInt &A = CI->getValue(); 3698 3699 // Instcombine's ShrinkDemandedConstant may strip bits out of 3700 // constants, obscuring what would otherwise be a low-bits mask. 3701 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3702 // knew about to reconstruct a low-bits mask value. 3703 unsigned LZ = A.countLeadingZeros(); 3704 unsigned BitWidth = A.getBitWidth(); 3705 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3706 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3707 3708 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3709 3710 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3711 return 3712 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3713 IntegerType::get(getContext(), BitWidth - LZ)), 3714 U->getType()); 3715 } 3716 break; 3717 3718 case Instruction::Or: 3719 // If the RHS of the Or is a constant, we may have something like: 3720 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3721 // optimizations will transparently handle this case. 3722 // 3723 // In order for this transformation to be safe, the LHS must be of the 3724 // form X*(2^n) and the Or constant must be less than 2^n. 3725 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3726 const SCEV *LHS = getSCEV(U->getOperand(0)); 3727 const APInt &CIVal = CI->getValue(); 3728 if (GetMinTrailingZeros(LHS) >= 3729 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3730 // Build a plain add SCEV. 3731 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3732 // If the LHS of the add was an addrec and it has no-wrap flags, 3733 // transfer the no-wrap flags, since an or won't introduce a wrap. 3734 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3735 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3736 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3737 OldAR->getNoWrapFlags()); 3738 } 3739 return S; 3740 } 3741 } 3742 break; 3743 case Instruction::Xor: 3744 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3745 // If the RHS of the xor is a signbit, then this is just an add. 3746 // Instcombine turns add of signbit into xor as a strength reduction step. 3747 if (CI->getValue().isSignBit()) 3748 return getAddExpr(getSCEV(U->getOperand(0)), 3749 getSCEV(U->getOperand(1))); 3750 3751 // If the RHS of xor is -1, then this is a not operation. 3752 if (CI->isAllOnesValue()) 3753 return getNotSCEV(getSCEV(U->getOperand(0))); 3754 3755 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3756 // This is a variant of the check for xor with -1, and it handles 3757 // the case where instcombine has trimmed non-demanded bits out 3758 // of an xor with -1. 3759 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3760 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3761 if (BO->getOpcode() == Instruction::And && 3762 LCI->getValue() == CI->getValue()) 3763 if (const SCEVZeroExtendExpr *Z = 3764 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3765 Type *UTy = U->getType(); 3766 const SCEV *Z0 = Z->getOperand(); 3767 Type *Z0Ty = Z0->getType(); 3768 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3769 3770 // If C is a low-bits mask, the zero extend is serving to 3771 // mask off the high bits. Complement the operand and 3772 // re-apply the zext. 3773 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3774 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3775 3776 // If C is a single bit, it may be in the sign-bit position 3777 // before the zero-extend. In this case, represent the xor 3778 // using an add, which is equivalent, and re-apply the zext. 3779 APInt Trunc = CI->getValue().trunc(Z0TySize); 3780 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3781 Trunc.isSignBit()) 3782 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3783 UTy); 3784 } 3785 } 3786 break; 3787 3788 case Instruction::Shl: 3789 // Turn shift left of a constant amount into a multiply. 3790 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3791 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3792 3793 // If the shift count is not less than the bitwidth, the result of 3794 // the shift is undefined. Don't try to analyze it, because the 3795 // resolution chosen here may differ from the resolution chosen in 3796 // other parts of the compiler. 3797 if (SA->getValue().uge(BitWidth)) 3798 break; 3799 3800 Constant *X = ConstantInt::get(getContext(), 3801 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3802 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3803 } 3804 break; 3805 3806 case Instruction::LShr: 3807 // Turn logical shift right of a constant into a unsigned divide. 3808 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3809 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3810 3811 // If the shift count is not less than the bitwidth, the result of 3812 // the shift is undefined. Don't try to analyze it, because the 3813 // resolution chosen here may differ from the resolution chosen in 3814 // other parts of the compiler. 3815 if (SA->getValue().uge(BitWidth)) 3816 break; 3817 3818 Constant *X = ConstantInt::get(getContext(), 3819 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3820 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3821 } 3822 break; 3823 3824 case Instruction::AShr: 3825 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3826 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3827 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3828 if (L->getOpcode() == Instruction::Shl && 3829 L->getOperand(1) == U->getOperand(1)) { 3830 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3831 3832 // If the shift count is not less than the bitwidth, the result of 3833 // the shift is undefined. Don't try to analyze it, because the 3834 // resolution chosen here may differ from the resolution chosen in 3835 // other parts of the compiler. 3836 if (CI->getValue().uge(BitWidth)) 3837 break; 3838 3839 uint64_t Amt = BitWidth - CI->getZExtValue(); 3840 if (Amt == BitWidth) 3841 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3842 return 3843 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3844 IntegerType::get(getContext(), 3845 Amt)), 3846 U->getType()); 3847 } 3848 break; 3849 3850 case Instruction::Trunc: 3851 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3852 3853 case Instruction::ZExt: 3854 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3855 3856 case Instruction::SExt: 3857 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3858 3859 case Instruction::BitCast: 3860 // BitCasts are no-op casts so we just eliminate the cast. 3861 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3862 return getSCEV(U->getOperand(0)); 3863 break; 3864 3865 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3866 // lead to pointer expressions which cannot safely be expanded to GEPs, 3867 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3868 // simplifying integer expressions. 3869 3870 case Instruction::GetElementPtr: 3871 return createNodeForGEP(cast<GEPOperator>(U)); 3872 3873 case Instruction::PHI: 3874 return createNodeForPHI(cast<PHINode>(U)); 3875 3876 case Instruction::Select: 3877 // This could be a smax or umax that was lowered earlier. 3878 // Try to recover it. 3879 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3880 Value *LHS = ICI->getOperand(0); 3881 Value *RHS = ICI->getOperand(1); 3882 switch (ICI->getPredicate()) { 3883 case ICmpInst::ICMP_SLT: 3884 case ICmpInst::ICMP_SLE: 3885 std::swap(LHS, RHS); 3886 // fall through 3887 case ICmpInst::ICMP_SGT: 3888 case ICmpInst::ICMP_SGE: 3889 // a >s b ? a+x : b+x -> smax(a, b)+x 3890 // a >s b ? b+x : a+x -> smin(a, b)+x 3891 if (LHS->getType() == U->getType()) { 3892 const SCEV *LS = getSCEV(LHS); 3893 const SCEV *RS = getSCEV(RHS); 3894 const SCEV *LA = getSCEV(U->getOperand(1)); 3895 const SCEV *RA = getSCEV(U->getOperand(2)); 3896 const SCEV *LDiff = getMinusSCEV(LA, LS); 3897 const SCEV *RDiff = getMinusSCEV(RA, RS); 3898 if (LDiff == RDiff) 3899 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3900 LDiff = getMinusSCEV(LA, RS); 3901 RDiff = getMinusSCEV(RA, LS); 3902 if (LDiff == RDiff) 3903 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3904 } 3905 break; 3906 case ICmpInst::ICMP_ULT: 3907 case ICmpInst::ICMP_ULE: 3908 std::swap(LHS, RHS); 3909 // fall through 3910 case ICmpInst::ICMP_UGT: 3911 case ICmpInst::ICMP_UGE: 3912 // a >u b ? a+x : b+x -> umax(a, b)+x 3913 // a >u b ? b+x : a+x -> umin(a, b)+x 3914 if (LHS->getType() == U->getType()) { 3915 const SCEV *LS = getSCEV(LHS); 3916 const SCEV *RS = getSCEV(RHS); 3917 const SCEV *LA = getSCEV(U->getOperand(1)); 3918 const SCEV *RA = getSCEV(U->getOperand(2)); 3919 const SCEV *LDiff = getMinusSCEV(LA, LS); 3920 const SCEV *RDiff = getMinusSCEV(RA, RS); 3921 if (LDiff == RDiff) 3922 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3923 LDiff = getMinusSCEV(LA, RS); 3924 RDiff = getMinusSCEV(RA, LS); 3925 if (LDiff == RDiff) 3926 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3927 } 3928 break; 3929 case ICmpInst::ICMP_NE: 3930 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3931 if (LHS->getType() == U->getType() && 3932 isa<ConstantInt>(RHS) && 3933 cast<ConstantInt>(RHS)->isZero()) { 3934 const SCEV *One = getConstant(LHS->getType(), 1); 3935 const SCEV *LS = getSCEV(LHS); 3936 const SCEV *LA = getSCEV(U->getOperand(1)); 3937 const SCEV *RA = getSCEV(U->getOperand(2)); 3938 const SCEV *LDiff = getMinusSCEV(LA, LS); 3939 const SCEV *RDiff = getMinusSCEV(RA, One); 3940 if (LDiff == RDiff) 3941 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3942 } 3943 break; 3944 case ICmpInst::ICMP_EQ: 3945 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3946 if (LHS->getType() == U->getType() && 3947 isa<ConstantInt>(RHS) && 3948 cast<ConstantInt>(RHS)->isZero()) { 3949 const SCEV *One = getConstant(LHS->getType(), 1); 3950 const SCEV *LS = getSCEV(LHS); 3951 const SCEV *LA = getSCEV(U->getOperand(1)); 3952 const SCEV *RA = getSCEV(U->getOperand(2)); 3953 const SCEV *LDiff = getMinusSCEV(LA, One); 3954 const SCEV *RDiff = getMinusSCEV(RA, LS); 3955 if (LDiff == RDiff) 3956 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3957 } 3958 break; 3959 default: 3960 break; 3961 } 3962 } 3963 3964 default: // We cannot analyze this expression. 3965 break; 3966 } 3967 3968 return getUnknown(V); 3969 } 3970 3971 3972 3973 //===----------------------------------------------------------------------===// 3974 // Iteration Count Computation Code 3975 // 3976 3977 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3978 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3979 /// constant. Will also return 0 if the maximum trip count is very large (>= 3980 /// 2^32). 3981 /// 3982 /// This "trip count" assumes that control exits via ExitingBlock. More 3983 /// precisely, it is the number of times that control may reach ExitingBlock 3984 /// before taking the branch. For loops with multiple exits, it may not be the 3985 /// number times that the loop header executes because the loop may exit 3986 /// prematurely via another branch. 3987 /// 3988 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 3989 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 3990 /// loop exits. getExitCount() may return an exact count for this branch 3991 /// assuming no-signed-wrap. The number of well-defined iterations may actually 3992 /// be higher than this trip count if this exit test is skipped and the loop 3993 /// exits via a different branch. Ideally, getExitCount() would know whether it 3994 /// depends on a NSW assumption, and we would only fall back to a conservative 3995 /// trip count in that case. 3996 unsigned ScalarEvolution:: 3997 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 3998 const SCEVConstant *ExitCount = 3999 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 4000 if (!ExitCount) 4001 return 0; 4002 4003 ConstantInt *ExitConst = ExitCount->getValue(); 4004 4005 // Guard against huge trip counts. 4006 if (ExitConst->getValue().getActiveBits() > 32) 4007 return 0; 4008 4009 // In case of integer overflow, this returns 0, which is correct. 4010 return ((unsigned)ExitConst->getZExtValue()) + 1; 4011 } 4012 4013 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4014 /// trip count of this loop as a normal unsigned value, if possible. This 4015 /// means that the actual trip count is always a multiple of the returned 4016 /// value (don't forget the trip count could very well be zero as well!). 4017 /// 4018 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4019 /// multiple of a constant (which is also the case if the trip count is simply 4020 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4021 /// if the trip count is very large (>= 2^32). 4022 /// 4023 /// As explained in the comments for getSmallConstantTripCount, this assumes 4024 /// that control exits the loop via ExitingBlock. 4025 unsigned ScalarEvolution:: 4026 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4027 const SCEV *ExitCount = getBackedgeTakenCount(L); 4028 if (ExitCount == getCouldNotCompute()) 4029 return 1; 4030 4031 // Get the trip count from the BE count by adding 1. 4032 const SCEV *TCMul = getAddExpr(ExitCount, 4033 getConstant(ExitCount->getType(), 1)); 4034 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4035 // to factor simple cases. 4036 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4037 TCMul = Mul->getOperand(0); 4038 4039 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4040 if (!MulC) 4041 return 1; 4042 4043 ConstantInt *Result = MulC->getValue(); 4044 4045 // Guard against huge trip counts (this requires checking 4046 // for zero to handle the case where the trip count == -1 and the 4047 // addition wraps). 4048 if (!Result || Result->getValue().getActiveBits() > 32 || 4049 Result->getValue().getActiveBits() == 0) 4050 return 1; 4051 4052 return (unsigned)Result->getZExtValue(); 4053 } 4054 4055 // getExitCount - Get the expression for the number of loop iterations for which 4056 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4057 // SCEVCouldNotCompute. 4058 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4059 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4060 } 4061 4062 /// getBackedgeTakenCount - If the specified loop has a predictable 4063 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4064 /// object. The backedge-taken count is the number of times the loop header 4065 /// will be branched to from within the loop. This is one less than the 4066 /// trip count of the loop, since it doesn't count the first iteration, 4067 /// when the header is branched to from outside the loop. 4068 /// 4069 /// Note that it is not valid to call this method on a loop without a 4070 /// loop-invariant backedge-taken count (see 4071 /// hasLoopInvariantBackedgeTakenCount). 4072 /// 4073 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4074 return getBackedgeTakenInfo(L).getExact(this); 4075 } 4076 4077 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4078 /// return the least SCEV value that is known never to be less than the 4079 /// actual backedge taken count. 4080 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4081 return getBackedgeTakenInfo(L).getMax(this); 4082 } 4083 4084 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4085 /// onto the given Worklist. 4086 static void 4087 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4088 BasicBlock *Header = L->getHeader(); 4089 4090 // Push all Loop-header PHIs onto the Worklist stack. 4091 for (BasicBlock::iterator I = Header->begin(); 4092 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4093 Worklist.push_back(PN); 4094 } 4095 4096 const ScalarEvolution::BackedgeTakenInfo & 4097 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4098 // Initially insert an invalid entry for this loop. If the insertion 4099 // succeeds, proceed to actually compute a backedge-taken count and 4100 // update the value. The temporary CouldNotCompute value tells SCEV 4101 // code elsewhere that it shouldn't attempt to request a new 4102 // backedge-taken count, which could result in infinite recursion. 4103 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4104 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4105 if (!Pair.second) 4106 return Pair.first->second; 4107 4108 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4109 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4110 // must be cleared in this scope. 4111 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4112 4113 if (Result.getExact(this) != getCouldNotCompute()) { 4114 assert(isLoopInvariant(Result.getExact(this), L) && 4115 isLoopInvariant(Result.getMax(this), L) && 4116 "Computed backedge-taken count isn't loop invariant for loop!"); 4117 ++NumTripCountsComputed; 4118 } 4119 else if (Result.getMax(this) == getCouldNotCompute() && 4120 isa<PHINode>(L->getHeader()->begin())) { 4121 // Only count loops that have phi nodes as not being computable. 4122 ++NumTripCountsNotComputed; 4123 } 4124 4125 // Now that we know more about the trip count for this loop, forget any 4126 // existing SCEV values for PHI nodes in this loop since they are only 4127 // conservative estimates made without the benefit of trip count 4128 // information. This is similar to the code in forgetLoop, except that 4129 // it handles SCEVUnknown PHI nodes specially. 4130 if (Result.hasAnyInfo()) { 4131 SmallVector<Instruction *, 16> Worklist; 4132 PushLoopPHIs(L, Worklist); 4133 4134 SmallPtrSet<Instruction *, 8> Visited; 4135 while (!Worklist.empty()) { 4136 Instruction *I = Worklist.pop_back_val(); 4137 if (!Visited.insert(I)) continue; 4138 4139 ValueExprMapType::iterator It = 4140 ValueExprMap.find_as(static_cast<Value *>(I)); 4141 if (It != ValueExprMap.end()) { 4142 const SCEV *Old = It->second; 4143 4144 // SCEVUnknown for a PHI either means that it has an unrecognized 4145 // structure, or it's a PHI that's in the progress of being computed 4146 // by createNodeForPHI. In the former case, additional loop trip 4147 // count information isn't going to change anything. In the later 4148 // case, createNodeForPHI will perform the necessary updates on its 4149 // own when it gets to that point. 4150 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4151 forgetMemoizedResults(Old); 4152 ValueExprMap.erase(It); 4153 } 4154 if (PHINode *PN = dyn_cast<PHINode>(I)) 4155 ConstantEvolutionLoopExitValue.erase(PN); 4156 } 4157 4158 PushDefUseChildren(I, Worklist); 4159 } 4160 } 4161 4162 // Re-lookup the insert position, since the call to 4163 // ComputeBackedgeTakenCount above could result in a 4164 // recusive call to getBackedgeTakenInfo (on a different 4165 // loop), which would invalidate the iterator computed 4166 // earlier. 4167 return BackedgeTakenCounts.find(L)->second = Result; 4168 } 4169 4170 /// forgetLoop - This method should be called by the client when it has 4171 /// changed a loop in a way that may effect ScalarEvolution's ability to 4172 /// compute a trip count, or if the loop is deleted. 4173 void ScalarEvolution::forgetLoop(const Loop *L) { 4174 // Drop any stored trip count value. 4175 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4176 BackedgeTakenCounts.find(L); 4177 if (BTCPos != BackedgeTakenCounts.end()) { 4178 BTCPos->second.clear(); 4179 BackedgeTakenCounts.erase(BTCPos); 4180 } 4181 4182 // Drop information about expressions based on loop-header PHIs. 4183 SmallVector<Instruction *, 16> Worklist; 4184 PushLoopPHIs(L, Worklist); 4185 4186 SmallPtrSet<Instruction *, 8> Visited; 4187 while (!Worklist.empty()) { 4188 Instruction *I = Worklist.pop_back_val(); 4189 if (!Visited.insert(I)) continue; 4190 4191 ValueExprMapType::iterator It = 4192 ValueExprMap.find_as(static_cast<Value *>(I)); 4193 if (It != ValueExprMap.end()) { 4194 forgetMemoizedResults(It->second); 4195 ValueExprMap.erase(It); 4196 if (PHINode *PN = dyn_cast<PHINode>(I)) 4197 ConstantEvolutionLoopExitValue.erase(PN); 4198 } 4199 4200 PushDefUseChildren(I, Worklist); 4201 } 4202 4203 // Forget all contained loops too, to avoid dangling entries in the 4204 // ValuesAtScopes map. 4205 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4206 forgetLoop(*I); 4207 } 4208 4209 /// forgetValue - This method should be called by the client when it has 4210 /// changed a value in a way that may effect its value, or which may 4211 /// disconnect it from a def-use chain linking it to a loop. 4212 void ScalarEvolution::forgetValue(Value *V) { 4213 Instruction *I = dyn_cast<Instruction>(V); 4214 if (!I) return; 4215 4216 // Drop information about expressions based on loop-header PHIs. 4217 SmallVector<Instruction *, 16> Worklist; 4218 Worklist.push_back(I); 4219 4220 SmallPtrSet<Instruction *, 8> Visited; 4221 while (!Worklist.empty()) { 4222 I = Worklist.pop_back_val(); 4223 if (!Visited.insert(I)) continue; 4224 4225 ValueExprMapType::iterator It = 4226 ValueExprMap.find_as(static_cast<Value *>(I)); 4227 if (It != ValueExprMap.end()) { 4228 forgetMemoizedResults(It->second); 4229 ValueExprMap.erase(It); 4230 if (PHINode *PN = dyn_cast<PHINode>(I)) 4231 ConstantEvolutionLoopExitValue.erase(PN); 4232 } 4233 4234 PushDefUseChildren(I, Worklist); 4235 } 4236 } 4237 4238 /// getExact - Get the exact loop backedge taken count considering all loop 4239 /// exits. A computable result can only be return for loops with a single exit. 4240 /// Returning the minimum taken count among all exits is incorrect because one 4241 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4242 /// the limit of each loop test is never skipped. This is a valid assumption as 4243 /// long as the loop exits via that test. For precise results, it is the 4244 /// caller's responsibility to specify the relevant loop exit using 4245 /// getExact(ExitingBlock, SE). 4246 const SCEV * 4247 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4248 // If any exits were not computable, the loop is not computable. 4249 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4250 4251 // We need exactly one computable exit. 4252 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4253 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4254 4255 const SCEV *BECount = 0; 4256 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4257 ENT != 0; ENT = ENT->getNextExit()) { 4258 4259 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4260 4261 if (!BECount) 4262 BECount = ENT->ExactNotTaken; 4263 else if (BECount != ENT->ExactNotTaken) 4264 return SE->getCouldNotCompute(); 4265 } 4266 assert(BECount && "Invalid not taken count for loop exit"); 4267 return BECount; 4268 } 4269 4270 /// getExact - Get the exact not taken count for this loop exit. 4271 const SCEV * 4272 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4273 ScalarEvolution *SE) const { 4274 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4275 ENT != 0; ENT = ENT->getNextExit()) { 4276 4277 if (ENT->ExitingBlock == ExitingBlock) 4278 return ENT->ExactNotTaken; 4279 } 4280 return SE->getCouldNotCompute(); 4281 } 4282 4283 /// getMax - Get the max backedge taken count for the loop. 4284 const SCEV * 4285 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4286 return Max ? Max : SE->getCouldNotCompute(); 4287 } 4288 4289 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4290 ScalarEvolution *SE) const { 4291 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4292 return true; 4293 4294 if (!ExitNotTaken.ExitingBlock) 4295 return false; 4296 4297 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4298 ENT != 0; ENT = ENT->getNextExit()) { 4299 4300 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4301 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4302 return true; 4303 } 4304 } 4305 return false; 4306 } 4307 4308 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4309 /// computable exit into a persistent ExitNotTakenInfo array. 4310 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4311 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4312 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4313 4314 if (!Complete) 4315 ExitNotTaken.setIncomplete(); 4316 4317 unsigned NumExits = ExitCounts.size(); 4318 if (NumExits == 0) return; 4319 4320 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4321 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4322 if (NumExits == 1) return; 4323 4324 // Handle the rare case of multiple computable exits. 4325 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4326 4327 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4328 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4329 PrevENT->setNextExit(ENT); 4330 ENT->ExitingBlock = ExitCounts[i].first; 4331 ENT->ExactNotTaken = ExitCounts[i].second; 4332 } 4333 } 4334 4335 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4336 void ScalarEvolution::BackedgeTakenInfo::clear() { 4337 ExitNotTaken.ExitingBlock = 0; 4338 ExitNotTaken.ExactNotTaken = 0; 4339 delete[] ExitNotTaken.getNextExit(); 4340 } 4341 4342 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4343 /// of the specified loop will execute. 4344 ScalarEvolution::BackedgeTakenInfo 4345 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4346 SmallVector<BasicBlock *, 8> ExitingBlocks; 4347 L->getExitingBlocks(ExitingBlocks); 4348 4349 // Examine all exits and pick the most conservative values. 4350 const SCEV *MaxBECount = getCouldNotCompute(); 4351 bool CouldComputeBECount = true; 4352 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4353 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4354 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4355 if (EL.Exact == getCouldNotCompute()) 4356 // We couldn't compute an exact value for this exit, so 4357 // we won't be able to compute an exact value for the loop. 4358 CouldComputeBECount = false; 4359 else 4360 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4361 4362 if (MaxBECount == getCouldNotCompute()) 4363 MaxBECount = EL.Max; 4364 else if (EL.Max != getCouldNotCompute()) { 4365 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4366 // skip some loop tests. Taking the max over the exits is sufficiently 4367 // conservative. TODO: We could do better taking into consideration 4368 // that (1) the loop has unit stride (2) the last loop test is 4369 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4370 // falls-through some constant times less then the other tests. 4371 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4372 } 4373 } 4374 4375 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4376 } 4377 4378 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4379 /// loop will execute if it exits via the specified block. 4380 ScalarEvolution::ExitLimit 4381 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4382 4383 // Okay, we've chosen an exiting block. See what condition causes us to 4384 // exit at this block. 4385 // 4386 // FIXME: we should be able to handle switch instructions (with a single exit) 4387 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4388 if (ExitBr == 0) return getCouldNotCompute(); 4389 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4390 4391 // At this point, we know we have a conditional branch that determines whether 4392 // the loop is exited. However, we don't know if the branch is executed each 4393 // time through the loop. If not, then the execution count of the branch will 4394 // not be equal to the trip count of the loop. 4395 // 4396 // Currently we check for this by checking to see if the Exit branch goes to 4397 // the loop header. If so, we know it will always execute the same number of 4398 // times as the loop. We also handle the case where the exit block *is* the 4399 // loop header. This is common for un-rotated loops. 4400 // 4401 // If both of those tests fail, walk up the unique predecessor chain to the 4402 // header, stopping if there is an edge that doesn't exit the loop. If the 4403 // header is reached, the execution count of the branch will be equal to the 4404 // trip count of the loop. 4405 // 4406 // More extensive analysis could be done to handle more cases here. 4407 // 4408 if (ExitBr->getSuccessor(0) != L->getHeader() && 4409 ExitBr->getSuccessor(1) != L->getHeader() && 4410 ExitBr->getParent() != L->getHeader()) { 4411 // The simple checks failed, try climbing the unique predecessor chain 4412 // up to the header. 4413 bool Ok = false; 4414 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4415 BasicBlock *Pred = BB->getUniquePredecessor(); 4416 if (!Pred) 4417 return getCouldNotCompute(); 4418 TerminatorInst *PredTerm = Pred->getTerminator(); 4419 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4420 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4421 if (PredSucc == BB) 4422 continue; 4423 // If the predecessor has a successor that isn't BB and isn't 4424 // outside the loop, assume the worst. 4425 if (L->contains(PredSucc)) 4426 return getCouldNotCompute(); 4427 } 4428 if (Pred == L->getHeader()) { 4429 Ok = true; 4430 break; 4431 } 4432 BB = Pred; 4433 } 4434 if (!Ok) 4435 return getCouldNotCompute(); 4436 } 4437 4438 // Proceed to the next level to examine the exit condition expression. 4439 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4440 ExitBr->getSuccessor(0), 4441 ExitBr->getSuccessor(1), 4442 /*IsSubExpr=*/false); 4443 } 4444 4445 /// ComputeExitLimitFromCond - Compute the number of times the 4446 /// backedge of the specified loop will execute if its exit condition 4447 /// were a conditional branch of ExitCond, TBB, and FBB. 4448 /// 4449 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4450 /// branch. In this case, we cannot assume that the loop only exits when the 4451 /// condition is true and cannot infer that failing to meet the condition prior 4452 /// to integer wraparound results in undefined behavior. 4453 ScalarEvolution::ExitLimit 4454 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4455 Value *ExitCond, 4456 BasicBlock *TBB, 4457 BasicBlock *FBB, 4458 bool IsSubExpr) { 4459 // Check if the controlling expression for this loop is an And or Or. 4460 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4461 if (BO->getOpcode() == Instruction::And) { 4462 // Recurse on the operands of the and. 4463 bool EitherMayExit = L->contains(TBB); 4464 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4465 IsSubExpr || EitherMayExit); 4466 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4467 IsSubExpr || EitherMayExit); 4468 const SCEV *BECount = getCouldNotCompute(); 4469 const SCEV *MaxBECount = getCouldNotCompute(); 4470 if (EitherMayExit) { 4471 // Both conditions must be true for the loop to continue executing. 4472 // Choose the less conservative count. 4473 if (EL0.Exact == getCouldNotCompute() || 4474 EL1.Exact == getCouldNotCompute()) 4475 BECount = getCouldNotCompute(); 4476 else 4477 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4478 if (EL0.Max == getCouldNotCompute()) 4479 MaxBECount = EL1.Max; 4480 else if (EL1.Max == getCouldNotCompute()) 4481 MaxBECount = EL0.Max; 4482 else 4483 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4484 } else { 4485 // Both conditions must be true at the same time for the loop to exit. 4486 // For now, be conservative. 4487 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4488 if (EL0.Max == EL1.Max) 4489 MaxBECount = EL0.Max; 4490 if (EL0.Exact == EL1.Exact) 4491 BECount = EL0.Exact; 4492 } 4493 4494 return ExitLimit(BECount, MaxBECount); 4495 } 4496 if (BO->getOpcode() == Instruction::Or) { 4497 // Recurse on the operands of the or. 4498 bool EitherMayExit = L->contains(FBB); 4499 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4500 IsSubExpr || EitherMayExit); 4501 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4502 IsSubExpr || EitherMayExit); 4503 const SCEV *BECount = getCouldNotCompute(); 4504 const SCEV *MaxBECount = getCouldNotCompute(); 4505 if (EitherMayExit) { 4506 // Both conditions must be false for the loop to continue executing. 4507 // Choose the less conservative count. 4508 if (EL0.Exact == getCouldNotCompute() || 4509 EL1.Exact == getCouldNotCompute()) 4510 BECount = getCouldNotCompute(); 4511 else 4512 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4513 if (EL0.Max == getCouldNotCompute()) 4514 MaxBECount = EL1.Max; 4515 else if (EL1.Max == getCouldNotCompute()) 4516 MaxBECount = EL0.Max; 4517 else 4518 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4519 } else { 4520 // Both conditions must be false at the same time for the loop to exit. 4521 // For now, be conservative. 4522 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4523 if (EL0.Max == EL1.Max) 4524 MaxBECount = EL0.Max; 4525 if (EL0.Exact == EL1.Exact) 4526 BECount = EL0.Exact; 4527 } 4528 4529 return ExitLimit(BECount, MaxBECount); 4530 } 4531 } 4532 4533 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4534 // Proceed to the next level to examine the icmp. 4535 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4536 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4537 4538 // Check for a constant condition. These are normally stripped out by 4539 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4540 // preserve the CFG and is temporarily leaving constant conditions 4541 // in place. 4542 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4543 if (L->contains(FBB) == !CI->getZExtValue()) 4544 // The backedge is always taken. 4545 return getCouldNotCompute(); 4546 else 4547 // The backedge is never taken. 4548 return getConstant(CI->getType(), 0); 4549 } 4550 4551 // If it's not an integer or pointer comparison then compute it the hard way. 4552 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4553 } 4554 4555 /// ComputeExitLimitFromICmp - Compute the number of times the 4556 /// backedge of the specified loop will execute if its exit condition 4557 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4558 ScalarEvolution::ExitLimit 4559 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4560 ICmpInst *ExitCond, 4561 BasicBlock *TBB, 4562 BasicBlock *FBB, 4563 bool IsSubExpr) { 4564 4565 // If the condition was exit on true, convert the condition to exit on false 4566 ICmpInst::Predicate Cond; 4567 if (!L->contains(FBB)) 4568 Cond = ExitCond->getPredicate(); 4569 else 4570 Cond = ExitCond->getInversePredicate(); 4571 4572 // Handle common loops like: for (X = "string"; *X; ++X) 4573 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4574 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4575 ExitLimit ItCnt = 4576 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4577 if (ItCnt.hasAnyInfo()) 4578 return ItCnt; 4579 } 4580 4581 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4582 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4583 4584 // Try to evaluate any dependencies out of the loop. 4585 LHS = getSCEVAtScope(LHS, L); 4586 RHS = getSCEVAtScope(RHS, L); 4587 4588 // At this point, we would like to compute how many iterations of the 4589 // loop the predicate will return true for these inputs. 4590 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4591 // If there is a loop-invariant, force it into the RHS. 4592 std::swap(LHS, RHS); 4593 Cond = ICmpInst::getSwappedPredicate(Cond); 4594 } 4595 4596 // Simplify the operands before analyzing them. 4597 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4598 4599 // If we have a comparison of a chrec against a constant, try to use value 4600 // ranges to answer this query. 4601 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4602 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4603 if (AddRec->getLoop() == L) { 4604 // Form the constant range. 4605 ConstantRange CompRange( 4606 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4607 4608 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4609 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4610 } 4611 4612 switch (Cond) { 4613 case ICmpInst::ICMP_NE: { // while (X != Y) 4614 // Convert to: while (X-Y != 0) 4615 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4616 if (EL.hasAnyInfo()) return EL; 4617 break; 4618 } 4619 case ICmpInst::ICMP_EQ: { // while (X == Y) 4620 // Convert to: while (X-Y == 0) 4621 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4622 if (EL.hasAnyInfo()) return EL; 4623 break; 4624 } 4625 case ICmpInst::ICMP_SLT: { 4626 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true, IsSubExpr); 4627 if (EL.hasAnyInfo()) return EL; 4628 break; 4629 } 4630 case ICmpInst::ICMP_SGT: { 4631 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4632 getNotSCEV(RHS), L, true, IsSubExpr); 4633 if (EL.hasAnyInfo()) return EL; 4634 break; 4635 } 4636 case ICmpInst::ICMP_ULT: { 4637 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false, IsSubExpr); 4638 if (EL.hasAnyInfo()) return EL; 4639 break; 4640 } 4641 case ICmpInst::ICMP_UGT: { 4642 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4643 getNotSCEV(RHS), L, false, IsSubExpr); 4644 if (EL.hasAnyInfo()) return EL; 4645 break; 4646 } 4647 default: 4648 #if 0 4649 dbgs() << "ComputeBackedgeTakenCount "; 4650 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4651 dbgs() << "[unsigned] "; 4652 dbgs() << *LHS << " " 4653 << Instruction::getOpcodeName(Instruction::ICmp) 4654 << " " << *RHS << "\n"; 4655 #endif 4656 break; 4657 } 4658 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4659 } 4660 4661 static ConstantInt * 4662 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4663 ScalarEvolution &SE) { 4664 const SCEV *InVal = SE.getConstant(C); 4665 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4666 assert(isa<SCEVConstant>(Val) && 4667 "Evaluation of SCEV at constant didn't fold correctly?"); 4668 return cast<SCEVConstant>(Val)->getValue(); 4669 } 4670 4671 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4672 /// 'icmp op load X, cst', try to see if we can compute the backedge 4673 /// execution count. 4674 ScalarEvolution::ExitLimit 4675 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4676 LoadInst *LI, 4677 Constant *RHS, 4678 const Loop *L, 4679 ICmpInst::Predicate predicate) { 4680 4681 if (LI->isVolatile()) return getCouldNotCompute(); 4682 4683 // Check to see if the loaded pointer is a getelementptr of a global. 4684 // TODO: Use SCEV instead of manually grubbing with GEPs. 4685 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4686 if (!GEP) return getCouldNotCompute(); 4687 4688 // Make sure that it is really a constant global we are gepping, with an 4689 // initializer, and make sure the first IDX is really 0. 4690 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4691 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4692 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4693 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4694 return getCouldNotCompute(); 4695 4696 // Okay, we allow one non-constant index into the GEP instruction. 4697 Value *VarIdx = 0; 4698 std::vector<Constant*> Indexes; 4699 unsigned VarIdxNum = 0; 4700 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4701 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4702 Indexes.push_back(CI); 4703 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4704 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4705 VarIdx = GEP->getOperand(i); 4706 VarIdxNum = i-2; 4707 Indexes.push_back(0); 4708 } 4709 4710 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4711 if (!VarIdx) 4712 return getCouldNotCompute(); 4713 4714 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4715 // Check to see if X is a loop variant variable value now. 4716 const SCEV *Idx = getSCEV(VarIdx); 4717 Idx = getSCEVAtScope(Idx, L); 4718 4719 // We can only recognize very limited forms of loop index expressions, in 4720 // particular, only affine AddRec's like {C1,+,C2}. 4721 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4722 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4723 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4724 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4725 return getCouldNotCompute(); 4726 4727 unsigned MaxSteps = MaxBruteForceIterations; 4728 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4729 ConstantInt *ItCst = ConstantInt::get( 4730 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4731 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4732 4733 // Form the GEP offset. 4734 Indexes[VarIdxNum] = Val; 4735 4736 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4737 Indexes); 4738 if (Result == 0) break; // Cannot compute! 4739 4740 // Evaluate the condition for this iteration. 4741 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4742 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4743 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4744 #if 0 4745 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4746 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4747 << "***\n"; 4748 #endif 4749 ++NumArrayLenItCounts; 4750 return getConstant(ItCst); // Found terminating iteration! 4751 } 4752 } 4753 return getCouldNotCompute(); 4754 } 4755 4756 4757 /// CanConstantFold - Return true if we can constant fold an instruction of the 4758 /// specified type, assuming that all operands were constants. 4759 static bool CanConstantFold(const Instruction *I) { 4760 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4761 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4762 isa<LoadInst>(I)) 4763 return true; 4764 4765 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4766 if (const Function *F = CI->getCalledFunction()) 4767 return canConstantFoldCallTo(F); 4768 return false; 4769 } 4770 4771 /// Determine whether this instruction can constant evolve within this loop 4772 /// assuming its operands can all constant evolve. 4773 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4774 // An instruction outside of the loop can't be derived from a loop PHI. 4775 if (!L->contains(I)) return false; 4776 4777 if (isa<PHINode>(I)) { 4778 if (L->getHeader() == I->getParent()) 4779 return true; 4780 else 4781 // We don't currently keep track of the control flow needed to evaluate 4782 // PHIs, so we cannot handle PHIs inside of loops. 4783 return false; 4784 } 4785 4786 // If we won't be able to constant fold this expression even if the operands 4787 // are constants, bail early. 4788 return CanConstantFold(I); 4789 } 4790 4791 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4792 /// recursing through each instruction operand until reaching a loop header phi. 4793 static PHINode * 4794 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4795 DenseMap<Instruction *, PHINode *> &PHIMap) { 4796 4797 // Otherwise, we can evaluate this instruction if all of its operands are 4798 // constant or derived from a PHI node themselves. 4799 PHINode *PHI = 0; 4800 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4801 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4802 4803 if (isa<Constant>(*OpI)) continue; 4804 4805 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4806 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4807 4808 PHINode *P = dyn_cast<PHINode>(OpInst); 4809 if (!P) 4810 // If this operand is already visited, reuse the prior result. 4811 // We may have P != PHI if this is the deepest point at which the 4812 // inconsistent paths meet. 4813 P = PHIMap.lookup(OpInst); 4814 if (!P) { 4815 // Recurse and memoize the results, whether a phi is found or not. 4816 // This recursive call invalidates pointers into PHIMap. 4817 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4818 PHIMap[OpInst] = P; 4819 } 4820 if (P == 0) return 0; // Not evolving from PHI 4821 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4822 PHI = P; 4823 } 4824 // This is a expression evolving from a constant PHI! 4825 return PHI; 4826 } 4827 4828 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4829 /// in the loop that V is derived from. We allow arbitrary operations along the 4830 /// way, but the operands of an operation must either be constants or a value 4831 /// derived from a constant PHI. If this expression does not fit with these 4832 /// constraints, return null. 4833 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4834 Instruction *I = dyn_cast<Instruction>(V); 4835 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4836 4837 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4838 return PN; 4839 } 4840 4841 // Record non-constant instructions contained by the loop. 4842 DenseMap<Instruction *, PHINode *> PHIMap; 4843 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4844 } 4845 4846 /// EvaluateExpression - Given an expression that passes the 4847 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4848 /// in the loop has the value PHIVal. If we can't fold this expression for some 4849 /// reason, return null. 4850 static Constant *EvaluateExpression(Value *V, const Loop *L, 4851 DenseMap<Instruction *, Constant *> &Vals, 4852 const DataLayout *TD, 4853 const TargetLibraryInfo *TLI) { 4854 // Convenient constant check, but redundant for recursive calls. 4855 if (Constant *C = dyn_cast<Constant>(V)) return C; 4856 Instruction *I = dyn_cast<Instruction>(V); 4857 if (!I) return 0; 4858 4859 if (Constant *C = Vals.lookup(I)) return C; 4860 4861 // An instruction inside the loop depends on a value outside the loop that we 4862 // weren't given a mapping for, or a value such as a call inside the loop. 4863 if (!canConstantEvolve(I, L)) return 0; 4864 4865 // An unmapped PHI can be due to a branch or another loop inside this loop, 4866 // or due to this not being the initial iteration through a loop where we 4867 // couldn't compute the evolution of this particular PHI last time. 4868 if (isa<PHINode>(I)) return 0; 4869 4870 std::vector<Constant*> Operands(I->getNumOperands()); 4871 4872 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4873 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4874 if (!Operand) { 4875 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4876 if (!Operands[i]) return 0; 4877 continue; 4878 } 4879 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4880 Vals[Operand] = C; 4881 if (!C) return 0; 4882 Operands[i] = C; 4883 } 4884 4885 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4886 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4887 Operands[1], TD, TLI); 4888 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4889 if (!LI->isVolatile()) 4890 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4891 } 4892 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4893 TLI); 4894 } 4895 4896 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4897 /// in the header of its containing loop, we know the loop executes a 4898 /// constant number of times, and the PHI node is just a recurrence 4899 /// involving constants, fold it. 4900 Constant * 4901 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4902 const APInt &BEs, 4903 const Loop *L) { 4904 DenseMap<PHINode*, Constant*>::const_iterator I = 4905 ConstantEvolutionLoopExitValue.find(PN); 4906 if (I != ConstantEvolutionLoopExitValue.end()) 4907 return I->second; 4908 4909 if (BEs.ugt(MaxBruteForceIterations)) 4910 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4911 4912 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4913 4914 DenseMap<Instruction *, Constant *> CurrentIterVals; 4915 BasicBlock *Header = L->getHeader(); 4916 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4917 4918 // Since the loop is canonicalized, the PHI node must have two entries. One 4919 // entry must be a constant (coming in from outside of the loop), and the 4920 // second must be derived from the same PHI. 4921 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4922 PHINode *PHI = 0; 4923 for (BasicBlock::iterator I = Header->begin(); 4924 (PHI = dyn_cast<PHINode>(I)); ++I) { 4925 Constant *StartCST = 4926 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4927 if (StartCST == 0) continue; 4928 CurrentIterVals[PHI] = StartCST; 4929 } 4930 if (!CurrentIterVals.count(PN)) 4931 return RetVal = 0; 4932 4933 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4934 4935 // Execute the loop symbolically to determine the exit value. 4936 if (BEs.getActiveBits() >= 32) 4937 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4938 4939 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4940 unsigned IterationNum = 0; 4941 for (; ; ++IterationNum) { 4942 if (IterationNum == NumIterations) 4943 return RetVal = CurrentIterVals[PN]; // Got exit value! 4944 4945 // Compute the value of the PHIs for the next iteration. 4946 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4947 DenseMap<Instruction *, Constant *> NextIterVals; 4948 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4949 TLI); 4950 if (NextPHI == 0) 4951 return 0; // Couldn't evaluate! 4952 NextIterVals[PN] = NextPHI; 4953 4954 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4955 4956 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4957 // cease to be able to evaluate one of them or if they stop evolving, 4958 // because that doesn't necessarily prevent us from computing PN. 4959 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4960 for (DenseMap<Instruction *, Constant *>::const_iterator 4961 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4962 PHINode *PHI = dyn_cast<PHINode>(I->first); 4963 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4964 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4965 } 4966 // We use two distinct loops because EvaluateExpression may invalidate any 4967 // iterators into CurrentIterVals. 4968 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4969 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4970 PHINode *PHI = I->first; 4971 Constant *&NextPHI = NextIterVals[PHI]; 4972 if (!NextPHI) { // Not already computed. 4973 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4974 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4975 } 4976 if (NextPHI != I->second) 4977 StoppedEvolving = false; 4978 } 4979 4980 // If all entries in CurrentIterVals == NextIterVals then we can stop 4981 // iterating, the loop can't continue to change. 4982 if (StoppedEvolving) 4983 return RetVal = CurrentIterVals[PN]; 4984 4985 CurrentIterVals.swap(NextIterVals); 4986 } 4987 } 4988 4989 /// ComputeExitCountExhaustively - If the loop is known to execute a 4990 /// constant number of times (the condition evolves only from constants), 4991 /// try to evaluate a few iterations of the loop until we get the exit 4992 /// condition gets a value of ExitWhen (true or false). If we cannot 4993 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4994 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4995 Value *Cond, 4996 bool ExitWhen) { 4997 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4998 if (PN == 0) return getCouldNotCompute(); 4999 5000 // If the loop is canonicalized, the PHI will have exactly two entries. 5001 // That's the only form we support here. 5002 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5003 5004 DenseMap<Instruction *, Constant *> CurrentIterVals; 5005 BasicBlock *Header = L->getHeader(); 5006 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5007 5008 // One entry must be a constant (coming in from outside of the loop), and the 5009 // second must be derived from the same PHI. 5010 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5011 PHINode *PHI = 0; 5012 for (BasicBlock::iterator I = Header->begin(); 5013 (PHI = dyn_cast<PHINode>(I)); ++I) { 5014 Constant *StartCST = 5015 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5016 if (StartCST == 0) continue; 5017 CurrentIterVals[PHI] = StartCST; 5018 } 5019 if (!CurrentIterVals.count(PN)) 5020 return getCouldNotCompute(); 5021 5022 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5023 // the loop symbolically to determine when the condition gets a value of 5024 // "ExitWhen". 5025 5026 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5027 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5028 ConstantInt *CondVal = 5029 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5030 TD, TLI)); 5031 5032 // Couldn't symbolically evaluate. 5033 if (!CondVal) return getCouldNotCompute(); 5034 5035 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5036 ++NumBruteForceTripCountsComputed; 5037 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5038 } 5039 5040 // Update all the PHI nodes for the next iteration. 5041 DenseMap<Instruction *, Constant *> NextIterVals; 5042 5043 // Create a list of which PHIs we need to compute. We want to do this before 5044 // calling EvaluateExpression on them because that may invalidate iterators 5045 // into CurrentIterVals. 5046 SmallVector<PHINode *, 8> PHIsToCompute; 5047 for (DenseMap<Instruction *, Constant *>::const_iterator 5048 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5049 PHINode *PHI = dyn_cast<PHINode>(I->first); 5050 if (!PHI || PHI->getParent() != Header) continue; 5051 PHIsToCompute.push_back(PHI); 5052 } 5053 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5054 E = PHIsToCompute.end(); I != E; ++I) { 5055 PHINode *PHI = *I; 5056 Constant *&NextPHI = NextIterVals[PHI]; 5057 if (NextPHI) continue; // Already computed! 5058 5059 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5060 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 5061 } 5062 CurrentIterVals.swap(NextIterVals); 5063 } 5064 5065 // Too many iterations were needed to evaluate. 5066 return getCouldNotCompute(); 5067 } 5068 5069 /// getSCEVAtScope - Return a SCEV expression for the specified value 5070 /// at the specified scope in the program. The L value specifies a loop 5071 /// nest to evaluate the expression at, where null is the top-level or a 5072 /// specified loop is immediately inside of the loop. 5073 /// 5074 /// This method can be used to compute the exit value for a variable defined 5075 /// in a loop by querying what the value will hold in the parent loop. 5076 /// 5077 /// In the case that a relevant loop exit value cannot be computed, the 5078 /// original value V is returned. 5079 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5080 // Check to see if we've folded this expression at this loop before. 5081 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 5082 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 5083 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 5084 if (!Pair.second) 5085 return Pair.first->second ? Pair.first->second : V; 5086 5087 // Otherwise compute it. 5088 const SCEV *C = computeSCEVAtScope(V, L); 5089 ValuesAtScopes[V][L] = C; 5090 return C; 5091 } 5092 5093 /// This builds up a Constant using the ConstantExpr interface. That way, we 5094 /// will return Constants for objects which aren't represented by a 5095 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5096 /// Returns NULL if the SCEV isn't representable as a Constant. 5097 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5098 switch (V->getSCEVType()) { 5099 default: // TODO: smax, umax. 5100 case scCouldNotCompute: 5101 case scAddRecExpr: 5102 break; 5103 case scConstant: 5104 return cast<SCEVConstant>(V)->getValue(); 5105 case scUnknown: 5106 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5107 case scSignExtend: { 5108 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5109 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5110 return ConstantExpr::getSExt(CastOp, SS->getType()); 5111 break; 5112 } 5113 case scZeroExtend: { 5114 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5115 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5116 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5117 break; 5118 } 5119 case scTruncate: { 5120 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5121 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5122 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5123 break; 5124 } 5125 case scAddExpr: { 5126 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5127 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5128 if (C->getType()->isPointerTy()) 5129 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5130 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5131 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5132 if (!C2) return 0; 5133 5134 // First pointer! 5135 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5136 std::swap(C, C2); 5137 // The offsets have been converted to bytes. We can add bytes to an 5138 // i8* by GEP with the byte count in the first index. 5139 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5140 } 5141 5142 // Don't bother trying to sum two pointers. We probably can't 5143 // statically compute a load that results from it anyway. 5144 if (C2->getType()->isPointerTy()) 5145 return 0; 5146 5147 if (C->getType()->isPointerTy()) { 5148 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5149 C2 = ConstantExpr::getIntegerCast( 5150 C2, Type::getInt32Ty(C->getContext()), true); 5151 C = ConstantExpr::getGetElementPtr(C, C2); 5152 } else 5153 C = ConstantExpr::getAdd(C, C2); 5154 } 5155 return C; 5156 } 5157 break; 5158 } 5159 case scMulExpr: { 5160 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5161 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5162 // Don't bother with pointers at all. 5163 if (C->getType()->isPointerTy()) return 0; 5164 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5165 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5166 if (!C2 || C2->getType()->isPointerTy()) return 0; 5167 C = ConstantExpr::getMul(C, C2); 5168 } 5169 return C; 5170 } 5171 break; 5172 } 5173 case scUDivExpr: { 5174 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5175 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5176 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5177 if (LHS->getType() == RHS->getType()) 5178 return ConstantExpr::getUDiv(LHS, RHS); 5179 break; 5180 } 5181 } 5182 return 0; 5183 } 5184 5185 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5186 if (isa<SCEVConstant>(V)) return V; 5187 5188 // If this instruction is evolved from a constant-evolving PHI, compute the 5189 // exit value from the loop without using SCEVs. 5190 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5191 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5192 const Loop *LI = (*this->LI)[I->getParent()]; 5193 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5194 if (PHINode *PN = dyn_cast<PHINode>(I)) 5195 if (PN->getParent() == LI->getHeader()) { 5196 // Okay, there is no closed form solution for the PHI node. Check 5197 // to see if the loop that contains it has a known backedge-taken 5198 // count. If so, we may be able to force computation of the exit 5199 // value. 5200 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5201 if (const SCEVConstant *BTCC = 5202 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5203 // Okay, we know how many times the containing loop executes. If 5204 // this is a constant evolving PHI node, get the final value at 5205 // the specified iteration number. 5206 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5207 BTCC->getValue()->getValue(), 5208 LI); 5209 if (RV) return getSCEV(RV); 5210 } 5211 } 5212 5213 // Okay, this is an expression that we cannot symbolically evaluate 5214 // into a SCEV. Check to see if it's possible to symbolically evaluate 5215 // the arguments into constants, and if so, try to constant propagate the 5216 // result. This is particularly useful for computing loop exit values. 5217 if (CanConstantFold(I)) { 5218 SmallVector<Constant *, 4> Operands; 5219 bool MadeImprovement = false; 5220 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5221 Value *Op = I->getOperand(i); 5222 if (Constant *C = dyn_cast<Constant>(Op)) { 5223 Operands.push_back(C); 5224 continue; 5225 } 5226 5227 // If any of the operands is non-constant and if they are 5228 // non-integer and non-pointer, don't even try to analyze them 5229 // with scev techniques. 5230 if (!isSCEVable(Op->getType())) 5231 return V; 5232 5233 const SCEV *OrigV = getSCEV(Op); 5234 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5235 MadeImprovement |= OrigV != OpV; 5236 5237 Constant *C = BuildConstantFromSCEV(OpV); 5238 if (!C) return V; 5239 if (C->getType() != Op->getType()) 5240 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5241 Op->getType(), 5242 false), 5243 C, Op->getType()); 5244 Operands.push_back(C); 5245 } 5246 5247 // Check to see if getSCEVAtScope actually made an improvement. 5248 if (MadeImprovement) { 5249 Constant *C = 0; 5250 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5251 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5252 Operands[0], Operands[1], TD, 5253 TLI); 5254 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5255 if (!LI->isVolatile()) 5256 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5257 } else 5258 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5259 Operands, TD, TLI); 5260 if (!C) return V; 5261 return getSCEV(C); 5262 } 5263 } 5264 } 5265 5266 // This is some other type of SCEVUnknown, just return it. 5267 return V; 5268 } 5269 5270 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5271 // Avoid performing the look-up in the common case where the specified 5272 // expression has no loop-variant portions. 5273 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5274 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5275 if (OpAtScope != Comm->getOperand(i)) { 5276 // Okay, at least one of these operands is loop variant but might be 5277 // foldable. Build a new instance of the folded commutative expression. 5278 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5279 Comm->op_begin()+i); 5280 NewOps.push_back(OpAtScope); 5281 5282 for (++i; i != e; ++i) { 5283 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5284 NewOps.push_back(OpAtScope); 5285 } 5286 if (isa<SCEVAddExpr>(Comm)) 5287 return getAddExpr(NewOps); 5288 if (isa<SCEVMulExpr>(Comm)) 5289 return getMulExpr(NewOps); 5290 if (isa<SCEVSMaxExpr>(Comm)) 5291 return getSMaxExpr(NewOps); 5292 if (isa<SCEVUMaxExpr>(Comm)) 5293 return getUMaxExpr(NewOps); 5294 llvm_unreachable("Unknown commutative SCEV type!"); 5295 } 5296 } 5297 // If we got here, all operands are loop invariant. 5298 return Comm; 5299 } 5300 5301 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5302 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5303 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5304 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5305 return Div; // must be loop invariant 5306 return getUDivExpr(LHS, RHS); 5307 } 5308 5309 // If this is a loop recurrence for a loop that does not contain L, then we 5310 // are dealing with the final value computed by the loop. 5311 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5312 // First, attempt to evaluate each operand. 5313 // Avoid performing the look-up in the common case where the specified 5314 // expression has no loop-variant portions. 5315 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5316 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5317 if (OpAtScope == AddRec->getOperand(i)) 5318 continue; 5319 5320 // Okay, at least one of these operands is loop variant but might be 5321 // foldable. Build a new instance of the folded commutative expression. 5322 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5323 AddRec->op_begin()+i); 5324 NewOps.push_back(OpAtScope); 5325 for (++i; i != e; ++i) 5326 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5327 5328 const SCEV *FoldedRec = 5329 getAddRecExpr(NewOps, AddRec->getLoop(), 5330 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5331 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5332 // The addrec may be folded to a nonrecurrence, for example, if the 5333 // induction variable is multiplied by zero after constant folding. Go 5334 // ahead and return the folded value. 5335 if (!AddRec) 5336 return FoldedRec; 5337 break; 5338 } 5339 5340 // If the scope is outside the addrec's loop, evaluate it by using the 5341 // loop exit value of the addrec. 5342 if (!AddRec->getLoop()->contains(L)) { 5343 // To evaluate this recurrence, we need to know how many times the AddRec 5344 // loop iterates. Compute this now. 5345 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5346 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5347 5348 // Then, evaluate the AddRec. 5349 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5350 } 5351 5352 return AddRec; 5353 } 5354 5355 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5356 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5357 if (Op == Cast->getOperand()) 5358 return Cast; // must be loop invariant 5359 return getZeroExtendExpr(Op, Cast->getType()); 5360 } 5361 5362 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5363 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5364 if (Op == Cast->getOperand()) 5365 return Cast; // must be loop invariant 5366 return getSignExtendExpr(Op, Cast->getType()); 5367 } 5368 5369 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5370 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5371 if (Op == Cast->getOperand()) 5372 return Cast; // must be loop invariant 5373 return getTruncateExpr(Op, Cast->getType()); 5374 } 5375 5376 llvm_unreachable("Unknown SCEV type!"); 5377 } 5378 5379 /// getSCEVAtScope - This is a convenience function which does 5380 /// getSCEVAtScope(getSCEV(V), L). 5381 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5382 return getSCEVAtScope(getSCEV(V), L); 5383 } 5384 5385 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5386 /// following equation: 5387 /// 5388 /// A * X = B (mod N) 5389 /// 5390 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5391 /// A and B isn't important. 5392 /// 5393 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5394 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5395 ScalarEvolution &SE) { 5396 uint32_t BW = A.getBitWidth(); 5397 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5398 assert(A != 0 && "A must be non-zero."); 5399 5400 // 1. D = gcd(A, N) 5401 // 5402 // The gcd of A and N may have only one prime factor: 2. The number of 5403 // trailing zeros in A is its multiplicity 5404 uint32_t Mult2 = A.countTrailingZeros(); 5405 // D = 2^Mult2 5406 5407 // 2. Check if B is divisible by D. 5408 // 5409 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5410 // is not less than multiplicity of this prime factor for D. 5411 if (B.countTrailingZeros() < Mult2) 5412 return SE.getCouldNotCompute(); 5413 5414 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5415 // modulo (N / D). 5416 // 5417 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5418 // bit width during computations. 5419 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5420 APInt Mod(BW + 1, 0); 5421 Mod.setBit(BW - Mult2); // Mod = N / D 5422 APInt I = AD.multiplicativeInverse(Mod); 5423 5424 // 4. Compute the minimum unsigned root of the equation: 5425 // I * (B / D) mod (N / D) 5426 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5427 5428 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5429 // bits. 5430 return SE.getConstant(Result.trunc(BW)); 5431 } 5432 5433 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5434 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5435 /// might be the same) or two SCEVCouldNotCompute objects. 5436 /// 5437 static std::pair<const SCEV *,const SCEV *> 5438 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5439 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5440 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5441 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5442 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5443 5444 // We currently can only solve this if the coefficients are constants. 5445 if (!LC || !MC || !NC) { 5446 const SCEV *CNC = SE.getCouldNotCompute(); 5447 return std::make_pair(CNC, CNC); 5448 } 5449 5450 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5451 const APInt &L = LC->getValue()->getValue(); 5452 const APInt &M = MC->getValue()->getValue(); 5453 const APInt &N = NC->getValue()->getValue(); 5454 APInt Two(BitWidth, 2); 5455 APInt Four(BitWidth, 4); 5456 5457 { 5458 using namespace APIntOps; 5459 const APInt& C = L; 5460 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5461 // The B coefficient is M-N/2 5462 APInt B(M); 5463 B -= sdiv(N,Two); 5464 5465 // The A coefficient is N/2 5466 APInt A(N.sdiv(Two)); 5467 5468 // Compute the B^2-4ac term. 5469 APInt SqrtTerm(B); 5470 SqrtTerm *= B; 5471 SqrtTerm -= Four * (A * C); 5472 5473 if (SqrtTerm.isNegative()) { 5474 // The loop is provably infinite. 5475 const SCEV *CNC = SE.getCouldNotCompute(); 5476 return std::make_pair(CNC, CNC); 5477 } 5478 5479 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5480 // integer value or else APInt::sqrt() will assert. 5481 APInt SqrtVal(SqrtTerm.sqrt()); 5482 5483 // Compute the two solutions for the quadratic formula. 5484 // The divisions must be performed as signed divisions. 5485 APInt NegB(-B); 5486 APInt TwoA(A << 1); 5487 if (TwoA.isMinValue()) { 5488 const SCEV *CNC = SE.getCouldNotCompute(); 5489 return std::make_pair(CNC, CNC); 5490 } 5491 5492 LLVMContext &Context = SE.getContext(); 5493 5494 ConstantInt *Solution1 = 5495 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5496 ConstantInt *Solution2 = 5497 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5498 5499 return std::make_pair(SE.getConstant(Solution1), 5500 SE.getConstant(Solution2)); 5501 } // end APIntOps namespace 5502 } 5503 5504 /// HowFarToZero - Return the number of times a backedge comparing the specified 5505 /// value to zero will execute. If not computable, return CouldNotCompute. 5506 /// 5507 /// This is only used for loops with a "x != y" exit test. The exit condition is 5508 /// now expressed as a single expression, V = x-y. So the exit test is 5509 /// effectively V != 0. We know and take advantage of the fact that this 5510 /// expression only being used in a comparison by zero context. 5511 ScalarEvolution::ExitLimit 5512 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5513 // If the value is a constant 5514 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5515 // If the value is already zero, the branch will execute zero times. 5516 if (C->getValue()->isZero()) return C; 5517 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5518 } 5519 5520 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5521 if (!AddRec || AddRec->getLoop() != L) 5522 return getCouldNotCompute(); 5523 5524 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5525 // the quadratic equation to solve it. 5526 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5527 std::pair<const SCEV *,const SCEV *> Roots = 5528 SolveQuadraticEquation(AddRec, *this); 5529 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5530 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5531 if (R1 && R2) { 5532 #if 0 5533 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5534 << " sol#2: " << *R2 << "\n"; 5535 #endif 5536 // Pick the smallest positive root value. 5537 if (ConstantInt *CB = 5538 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5539 R1->getValue(), 5540 R2->getValue()))) { 5541 if (CB->getZExtValue() == false) 5542 std::swap(R1, R2); // R1 is the minimum root now. 5543 5544 // We can only use this value if the chrec ends up with an exact zero 5545 // value at this index. When solving for "X*X != 5", for example, we 5546 // should not accept a root of 2. 5547 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5548 if (Val->isZero()) 5549 return R1; // We found a quadratic root! 5550 } 5551 } 5552 return getCouldNotCompute(); 5553 } 5554 5555 // Otherwise we can only handle this if it is affine. 5556 if (!AddRec->isAffine()) 5557 return getCouldNotCompute(); 5558 5559 // If this is an affine expression, the execution count of this branch is 5560 // the minimum unsigned root of the following equation: 5561 // 5562 // Start + Step*N = 0 (mod 2^BW) 5563 // 5564 // equivalent to: 5565 // 5566 // Step*N = -Start (mod 2^BW) 5567 // 5568 // where BW is the common bit width of Start and Step. 5569 5570 // Get the initial value for the loop. 5571 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5572 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5573 5574 // For now we handle only constant steps. 5575 // 5576 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5577 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5578 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5579 // We have not yet seen any such cases. 5580 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5581 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5582 return getCouldNotCompute(); 5583 5584 // For positive steps (counting up until unsigned overflow): 5585 // N = -Start/Step (as unsigned) 5586 // For negative steps (counting down to zero): 5587 // N = Start/-Step 5588 // First compute the unsigned distance from zero in the direction of Step. 5589 bool CountDown = StepC->getValue()->getValue().isNegative(); 5590 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5591 5592 // Handle unitary steps, which cannot wraparound. 5593 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5594 // N = Distance (as unsigned) 5595 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5596 ConstantRange CR = getUnsignedRange(Start); 5597 const SCEV *MaxBECount; 5598 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5599 // When counting up, the worst starting value is 1, not 0. 5600 MaxBECount = CR.getUnsignedMax().isMinValue() 5601 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5602 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5603 else 5604 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5605 : -CR.getUnsignedMin()); 5606 return ExitLimit(Distance, MaxBECount); 5607 } 5608 5609 // If the recurrence is known not to wraparound, unsigned divide computes the 5610 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5611 // that the value will either become zero (and thus the loop terminates), that 5612 // the loop will terminate through some other exit condition first, or that 5613 // the loop has undefined behavior. This means we can't "miss" the exit 5614 // value, even with nonunit stride. 5615 // 5616 // This is only valid for expressions that directly compute the loop exit. It 5617 // is invalid for subexpressions in which the loop may exit through this 5618 // branch even if this subexpression is false. In that case, the trip count 5619 // computed by this udiv could be smaller than the number of well-defined 5620 // iterations. 5621 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) 5622 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5623 5624 // Then, try to solve the above equation provided that Start is constant. 5625 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5626 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5627 -StartC->getValue()->getValue(), 5628 *this); 5629 return getCouldNotCompute(); 5630 } 5631 5632 /// HowFarToNonZero - Return the number of times a backedge checking the 5633 /// specified value for nonzero will execute. If not computable, return 5634 /// CouldNotCompute 5635 ScalarEvolution::ExitLimit 5636 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5637 // Loops that look like: while (X == 0) are very strange indeed. We don't 5638 // handle them yet except for the trivial case. This could be expanded in the 5639 // future as needed. 5640 5641 // If the value is a constant, check to see if it is known to be non-zero 5642 // already. If so, the backedge will execute zero times. 5643 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5644 if (!C->getValue()->isNullValue()) 5645 return getConstant(C->getType(), 0); 5646 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5647 } 5648 5649 // We could implement others, but I really doubt anyone writes loops like 5650 // this, and if they did, they would already be constant folded. 5651 return getCouldNotCompute(); 5652 } 5653 5654 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5655 /// (which may not be an immediate predecessor) which has exactly one 5656 /// successor from which BB is reachable, or null if no such block is 5657 /// found. 5658 /// 5659 std::pair<BasicBlock *, BasicBlock *> 5660 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5661 // If the block has a unique predecessor, then there is no path from the 5662 // predecessor to the block that does not go through the direct edge 5663 // from the predecessor to the block. 5664 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5665 return std::make_pair(Pred, BB); 5666 5667 // A loop's header is defined to be a block that dominates the loop. 5668 // If the header has a unique predecessor outside the loop, it must be 5669 // a block that has exactly one successor that can reach the loop. 5670 if (Loop *L = LI->getLoopFor(BB)) 5671 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5672 5673 return std::pair<BasicBlock *, BasicBlock *>(); 5674 } 5675 5676 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5677 /// testing whether two expressions are equal, however for the purposes of 5678 /// looking for a condition guarding a loop, it can be useful to be a little 5679 /// more general, since a front-end may have replicated the controlling 5680 /// expression. 5681 /// 5682 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5683 // Quick check to see if they are the same SCEV. 5684 if (A == B) return true; 5685 5686 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5687 // two different instructions with the same value. Check for this case. 5688 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5689 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5690 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5691 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5692 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5693 return true; 5694 5695 // Otherwise assume they may have a different value. 5696 return false; 5697 } 5698 5699 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5700 /// predicate Pred. Return true iff any changes were made. 5701 /// 5702 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5703 const SCEV *&LHS, const SCEV *&RHS, 5704 unsigned Depth) { 5705 bool Changed = false; 5706 5707 // If we hit the max recursion limit bail out. 5708 if (Depth >= 3) 5709 return false; 5710 5711 // Canonicalize a constant to the right side. 5712 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5713 // Check for both operands constant. 5714 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5715 if (ConstantExpr::getICmp(Pred, 5716 LHSC->getValue(), 5717 RHSC->getValue())->isNullValue()) 5718 goto trivially_false; 5719 else 5720 goto trivially_true; 5721 } 5722 // Otherwise swap the operands to put the constant on the right. 5723 std::swap(LHS, RHS); 5724 Pred = ICmpInst::getSwappedPredicate(Pred); 5725 Changed = true; 5726 } 5727 5728 // If we're comparing an addrec with a value which is loop-invariant in the 5729 // addrec's loop, put the addrec on the left. Also make a dominance check, 5730 // as both operands could be addrecs loop-invariant in each other's loop. 5731 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5732 const Loop *L = AR->getLoop(); 5733 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5734 std::swap(LHS, RHS); 5735 Pred = ICmpInst::getSwappedPredicate(Pred); 5736 Changed = true; 5737 } 5738 } 5739 5740 // If there's a constant operand, canonicalize comparisons with boundary 5741 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5742 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5743 const APInt &RA = RC->getValue()->getValue(); 5744 switch (Pred) { 5745 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5746 case ICmpInst::ICMP_EQ: 5747 case ICmpInst::ICMP_NE: 5748 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5749 if (!RA) 5750 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5751 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5752 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5753 ME->getOperand(0)->isAllOnesValue()) { 5754 RHS = AE->getOperand(1); 5755 LHS = ME->getOperand(1); 5756 Changed = true; 5757 } 5758 break; 5759 case ICmpInst::ICMP_UGE: 5760 if ((RA - 1).isMinValue()) { 5761 Pred = ICmpInst::ICMP_NE; 5762 RHS = getConstant(RA - 1); 5763 Changed = true; 5764 break; 5765 } 5766 if (RA.isMaxValue()) { 5767 Pred = ICmpInst::ICMP_EQ; 5768 Changed = true; 5769 break; 5770 } 5771 if (RA.isMinValue()) goto trivially_true; 5772 5773 Pred = ICmpInst::ICMP_UGT; 5774 RHS = getConstant(RA - 1); 5775 Changed = true; 5776 break; 5777 case ICmpInst::ICMP_ULE: 5778 if ((RA + 1).isMaxValue()) { 5779 Pred = ICmpInst::ICMP_NE; 5780 RHS = getConstant(RA + 1); 5781 Changed = true; 5782 break; 5783 } 5784 if (RA.isMinValue()) { 5785 Pred = ICmpInst::ICMP_EQ; 5786 Changed = true; 5787 break; 5788 } 5789 if (RA.isMaxValue()) goto trivially_true; 5790 5791 Pred = ICmpInst::ICMP_ULT; 5792 RHS = getConstant(RA + 1); 5793 Changed = true; 5794 break; 5795 case ICmpInst::ICMP_SGE: 5796 if ((RA - 1).isMinSignedValue()) { 5797 Pred = ICmpInst::ICMP_NE; 5798 RHS = getConstant(RA - 1); 5799 Changed = true; 5800 break; 5801 } 5802 if (RA.isMaxSignedValue()) { 5803 Pred = ICmpInst::ICMP_EQ; 5804 Changed = true; 5805 break; 5806 } 5807 if (RA.isMinSignedValue()) goto trivially_true; 5808 5809 Pred = ICmpInst::ICMP_SGT; 5810 RHS = getConstant(RA - 1); 5811 Changed = true; 5812 break; 5813 case ICmpInst::ICMP_SLE: 5814 if ((RA + 1).isMaxSignedValue()) { 5815 Pred = ICmpInst::ICMP_NE; 5816 RHS = getConstant(RA + 1); 5817 Changed = true; 5818 break; 5819 } 5820 if (RA.isMinSignedValue()) { 5821 Pred = ICmpInst::ICMP_EQ; 5822 Changed = true; 5823 break; 5824 } 5825 if (RA.isMaxSignedValue()) goto trivially_true; 5826 5827 Pred = ICmpInst::ICMP_SLT; 5828 RHS = getConstant(RA + 1); 5829 Changed = true; 5830 break; 5831 case ICmpInst::ICMP_UGT: 5832 if (RA.isMinValue()) { 5833 Pred = ICmpInst::ICMP_NE; 5834 Changed = true; 5835 break; 5836 } 5837 if ((RA + 1).isMaxValue()) { 5838 Pred = ICmpInst::ICMP_EQ; 5839 RHS = getConstant(RA + 1); 5840 Changed = true; 5841 break; 5842 } 5843 if (RA.isMaxValue()) goto trivially_false; 5844 break; 5845 case ICmpInst::ICMP_ULT: 5846 if (RA.isMaxValue()) { 5847 Pred = ICmpInst::ICMP_NE; 5848 Changed = true; 5849 break; 5850 } 5851 if ((RA - 1).isMinValue()) { 5852 Pred = ICmpInst::ICMP_EQ; 5853 RHS = getConstant(RA - 1); 5854 Changed = true; 5855 break; 5856 } 5857 if (RA.isMinValue()) goto trivially_false; 5858 break; 5859 case ICmpInst::ICMP_SGT: 5860 if (RA.isMinSignedValue()) { 5861 Pred = ICmpInst::ICMP_NE; 5862 Changed = true; 5863 break; 5864 } 5865 if ((RA + 1).isMaxSignedValue()) { 5866 Pred = ICmpInst::ICMP_EQ; 5867 RHS = getConstant(RA + 1); 5868 Changed = true; 5869 break; 5870 } 5871 if (RA.isMaxSignedValue()) goto trivially_false; 5872 break; 5873 case ICmpInst::ICMP_SLT: 5874 if (RA.isMaxSignedValue()) { 5875 Pred = ICmpInst::ICMP_NE; 5876 Changed = true; 5877 break; 5878 } 5879 if ((RA - 1).isMinSignedValue()) { 5880 Pred = ICmpInst::ICMP_EQ; 5881 RHS = getConstant(RA - 1); 5882 Changed = true; 5883 break; 5884 } 5885 if (RA.isMinSignedValue()) goto trivially_false; 5886 break; 5887 } 5888 } 5889 5890 // Check for obvious equality. 5891 if (HasSameValue(LHS, RHS)) { 5892 if (ICmpInst::isTrueWhenEqual(Pred)) 5893 goto trivially_true; 5894 if (ICmpInst::isFalseWhenEqual(Pred)) 5895 goto trivially_false; 5896 } 5897 5898 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5899 // adding or subtracting 1 from one of the operands. 5900 switch (Pred) { 5901 case ICmpInst::ICMP_SLE: 5902 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5903 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5904 SCEV::FlagNSW); 5905 Pred = ICmpInst::ICMP_SLT; 5906 Changed = true; 5907 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5908 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5909 SCEV::FlagNSW); 5910 Pred = ICmpInst::ICMP_SLT; 5911 Changed = true; 5912 } 5913 break; 5914 case ICmpInst::ICMP_SGE: 5915 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5916 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5917 SCEV::FlagNSW); 5918 Pred = ICmpInst::ICMP_SGT; 5919 Changed = true; 5920 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5921 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5922 SCEV::FlagNSW); 5923 Pred = ICmpInst::ICMP_SGT; 5924 Changed = true; 5925 } 5926 break; 5927 case ICmpInst::ICMP_ULE: 5928 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5929 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5930 SCEV::FlagNUW); 5931 Pred = ICmpInst::ICMP_ULT; 5932 Changed = true; 5933 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5934 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5935 SCEV::FlagNUW); 5936 Pred = ICmpInst::ICMP_ULT; 5937 Changed = true; 5938 } 5939 break; 5940 case ICmpInst::ICMP_UGE: 5941 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5942 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5943 SCEV::FlagNUW); 5944 Pred = ICmpInst::ICMP_UGT; 5945 Changed = true; 5946 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5947 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5948 SCEV::FlagNUW); 5949 Pred = ICmpInst::ICMP_UGT; 5950 Changed = true; 5951 } 5952 break; 5953 default: 5954 break; 5955 } 5956 5957 // TODO: More simplifications are possible here. 5958 5959 // Recursively simplify until we either hit a recursion limit or nothing 5960 // changes. 5961 if (Changed) 5962 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 5963 5964 return Changed; 5965 5966 trivially_true: 5967 // Return 0 == 0. 5968 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5969 Pred = ICmpInst::ICMP_EQ; 5970 return true; 5971 5972 trivially_false: 5973 // Return 0 != 0. 5974 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5975 Pred = ICmpInst::ICMP_NE; 5976 return true; 5977 } 5978 5979 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5980 return getSignedRange(S).getSignedMax().isNegative(); 5981 } 5982 5983 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5984 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5985 } 5986 5987 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5988 return !getSignedRange(S).getSignedMin().isNegative(); 5989 } 5990 5991 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5992 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5993 } 5994 5995 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5996 return isKnownNegative(S) || isKnownPositive(S); 5997 } 5998 5999 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6000 const SCEV *LHS, const SCEV *RHS) { 6001 // Canonicalize the inputs first. 6002 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6003 6004 // If LHS or RHS is an addrec, check to see if the condition is true in 6005 // every iteration of the loop. 6006 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 6007 if (isLoopEntryGuardedByCond( 6008 AR->getLoop(), Pred, AR->getStart(), RHS) && 6009 isLoopBackedgeGuardedByCond( 6010 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 6011 return true; 6012 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 6013 if (isLoopEntryGuardedByCond( 6014 AR->getLoop(), Pred, LHS, AR->getStart()) && 6015 isLoopBackedgeGuardedByCond( 6016 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 6017 return true; 6018 6019 // Otherwise see what can be done with known constant ranges. 6020 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6021 } 6022 6023 bool 6024 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6025 const SCEV *LHS, const SCEV *RHS) { 6026 if (HasSameValue(LHS, RHS)) 6027 return ICmpInst::isTrueWhenEqual(Pred); 6028 6029 // This code is split out from isKnownPredicate because it is called from 6030 // within isLoopEntryGuardedByCond. 6031 switch (Pred) { 6032 default: 6033 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6034 case ICmpInst::ICMP_SGT: 6035 Pred = ICmpInst::ICMP_SLT; 6036 std::swap(LHS, RHS); 6037 case ICmpInst::ICMP_SLT: { 6038 ConstantRange LHSRange = getSignedRange(LHS); 6039 ConstantRange RHSRange = getSignedRange(RHS); 6040 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6041 return true; 6042 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6043 return false; 6044 break; 6045 } 6046 case ICmpInst::ICMP_SGE: 6047 Pred = ICmpInst::ICMP_SLE; 6048 std::swap(LHS, RHS); 6049 case ICmpInst::ICMP_SLE: { 6050 ConstantRange LHSRange = getSignedRange(LHS); 6051 ConstantRange RHSRange = getSignedRange(RHS); 6052 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6053 return true; 6054 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6055 return false; 6056 break; 6057 } 6058 case ICmpInst::ICMP_UGT: 6059 Pred = ICmpInst::ICMP_ULT; 6060 std::swap(LHS, RHS); 6061 case ICmpInst::ICMP_ULT: { 6062 ConstantRange LHSRange = getUnsignedRange(LHS); 6063 ConstantRange RHSRange = getUnsignedRange(RHS); 6064 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6065 return true; 6066 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6067 return false; 6068 break; 6069 } 6070 case ICmpInst::ICMP_UGE: 6071 Pred = ICmpInst::ICMP_ULE; 6072 std::swap(LHS, RHS); 6073 case ICmpInst::ICMP_ULE: { 6074 ConstantRange LHSRange = getUnsignedRange(LHS); 6075 ConstantRange RHSRange = getUnsignedRange(RHS); 6076 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6077 return true; 6078 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6079 return false; 6080 break; 6081 } 6082 case ICmpInst::ICMP_NE: { 6083 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6084 return true; 6085 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6086 return true; 6087 6088 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6089 if (isKnownNonZero(Diff)) 6090 return true; 6091 break; 6092 } 6093 case ICmpInst::ICMP_EQ: 6094 // The check at the top of the function catches the case where 6095 // the values are known to be equal. 6096 break; 6097 } 6098 return false; 6099 } 6100 6101 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6102 /// protected by a conditional between LHS and RHS. This is used to 6103 /// to eliminate casts. 6104 bool 6105 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6106 ICmpInst::Predicate Pred, 6107 const SCEV *LHS, const SCEV *RHS) { 6108 // Interpret a null as meaning no loop, where there is obviously no guard 6109 // (interprocedural conditions notwithstanding). 6110 if (!L) return true; 6111 6112 BasicBlock *Latch = L->getLoopLatch(); 6113 if (!Latch) 6114 return false; 6115 6116 BranchInst *LoopContinuePredicate = 6117 dyn_cast<BranchInst>(Latch->getTerminator()); 6118 if (!LoopContinuePredicate || 6119 LoopContinuePredicate->isUnconditional()) 6120 return false; 6121 6122 return isImpliedCond(Pred, LHS, RHS, 6123 LoopContinuePredicate->getCondition(), 6124 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6125 } 6126 6127 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6128 /// by a conditional between LHS and RHS. This is used to help avoid max 6129 /// expressions in loop trip counts, and to eliminate casts. 6130 bool 6131 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6132 ICmpInst::Predicate Pred, 6133 const SCEV *LHS, const SCEV *RHS) { 6134 // Interpret a null as meaning no loop, where there is obviously no guard 6135 // (interprocedural conditions notwithstanding). 6136 if (!L) return false; 6137 6138 // Starting at the loop predecessor, climb up the predecessor chain, as long 6139 // as there are predecessors that can be found that have unique successors 6140 // leading to the original header. 6141 for (std::pair<BasicBlock *, BasicBlock *> 6142 Pair(L->getLoopPredecessor(), L->getHeader()); 6143 Pair.first; 6144 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6145 6146 BranchInst *LoopEntryPredicate = 6147 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6148 if (!LoopEntryPredicate || 6149 LoopEntryPredicate->isUnconditional()) 6150 continue; 6151 6152 if (isImpliedCond(Pred, LHS, RHS, 6153 LoopEntryPredicate->getCondition(), 6154 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6155 return true; 6156 } 6157 6158 return false; 6159 } 6160 6161 /// RAII wrapper to prevent recursive application of isImpliedCond. 6162 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6163 /// currently evaluating isImpliedCond. 6164 struct MarkPendingLoopPredicate { 6165 Value *Cond; 6166 DenseSet<Value*> &LoopPreds; 6167 bool Pending; 6168 6169 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6170 : Cond(C), LoopPreds(LP) { 6171 Pending = !LoopPreds.insert(Cond).second; 6172 } 6173 ~MarkPendingLoopPredicate() { 6174 if (!Pending) 6175 LoopPreds.erase(Cond); 6176 } 6177 }; 6178 6179 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6180 /// and RHS is true whenever the given Cond value evaluates to true. 6181 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6182 const SCEV *LHS, const SCEV *RHS, 6183 Value *FoundCondValue, 6184 bool Inverse) { 6185 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6186 if (Mark.Pending) 6187 return false; 6188 6189 // Recursively handle And and Or conditions. 6190 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6191 if (BO->getOpcode() == Instruction::And) { 6192 if (!Inverse) 6193 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6194 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6195 } else if (BO->getOpcode() == Instruction::Or) { 6196 if (Inverse) 6197 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6198 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6199 } 6200 } 6201 6202 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6203 if (!ICI) return false; 6204 6205 // Bail if the ICmp's operands' types are wider than the needed type 6206 // before attempting to call getSCEV on them. This avoids infinite 6207 // recursion, since the analysis of widening casts can require loop 6208 // exit condition information for overflow checking, which would 6209 // lead back here. 6210 if (getTypeSizeInBits(LHS->getType()) < 6211 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6212 return false; 6213 6214 // Now that we found a conditional branch that dominates the loop or controls 6215 // the loop latch. Check to see if it is the comparison we are looking for. 6216 ICmpInst::Predicate FoundPred; 6217 if (Inverse) 6218 FoundPred = ICI->getInversePredicate(); 6219 else 6220 FoundPred = ICI->getPredicate(); 6221 6222 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6223 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6224 6225 // Balance the types. The case where FoundLHS' type is wider than 6226 // LHS' type is checked for above. 6227 if (getTypeSizeInBits(LHS->getType()) > 6228 getTypeSizeInBits(FoundLHS->getType())) { 6229 if (CmpInst::isSigned(Pred)) { 6230 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6231 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6232 } else { 6233 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6234 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6235 } 6236 } 6237 6238 // Canonicalize the query to match the way instcombine will have 6239 // canonicalized the comparison. 6240 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6241 if (LHS == RHS) 6242 return CmpInst::isTrueWhenEqual(Pred); 6243 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6244 if (FoundLHS == FoundRHS) 6245 return CmpInst::isFalseWhenEqual(FoundPred); 6246 6247 // Check to see if we can make the LHS or RHS match. 6248 if (LHS == FoundRHS || RHS == FoundLHS) { 6249 if (isa<SCEVConstant>(RHS)) { 6250 std::swap(FoundLHS, FoundRHS); 6251 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6252 } else { 6253 std::swap(LHS, RHS); 6254 Pred = ICmpInst::getSwappedPredicate(Pred); 6255 } 6256 } 6257 6258 // Check whether the found predicate is the same as the desired predicate. 6259 if (FoundPred == Pred) 6260 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6261 6262 // Check whether swapping the found predicate makes it the same as the 6263 // desired predicate. 6264 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6265 if (isa<SCEVConstant>(RHS)) 6266 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6267 else 6268 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6269 RHS, LHS, FoundLHS, FoundRHS); 6270 } 6271 6272 // Check whether the actual condition is beyond sufficient. 6273 if (FoundPred == ICmpInst::ICMP_EQ) 6274 if (ICmpInst::isTrueWhenEqual(Pred)) 6275 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6276 return true; 6277 if (Pred == ICmpInst::ICMP_NE) 6278 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6279 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6280 return true; 6281 6282 // Otherwise assume the worst. 6283 return false; 6284 } 6285 6286 /// isImpliedCondOperands - Test whether the condition described by Pred, 6287 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6288 /// and FoundRHS is true. 6289 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6290 const SCEV *LHS, const SCEV *RHS, 6291 const SCEV *FoundLHS, 6292 const SCEV *FoundRHS) { 6293 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6294 FoundLHS, FoundRHS) || 6295 // ~x < ~y --> x > y 6296 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6297 getNotSCEV(FoundRHS), 6298 getNotSCEV(FoundLHS)); 6299 } 6300 6301 /// isImpliedCondOperandsHelper - Test whether the condition described by 6302 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6303 /// FoundLHS, and FoundRHS is true. 6304 bool 6305 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6306 const SCEV *LHS, const SCEV *RHS, 6307 const SCEV *FoundLHS, 6308 const SCEV *FoundRHS) { 6309 switch (Pred) { 6310 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6311 case ICmpInst::ICMP_EQ: 6312 case ICmpInst::ICMP_NE: 6313 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6314 return true; 6315 break; 6316 case ICmpInst::ICMP_SLT: 6317 case ICmpInst::ICMP_SLE: 6318 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6319 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6320 return true; 6321 break; 6322 case ICmpInst::ICMP_SGT: 6323 case ICmpInst::ICMP_SGE: 6324 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6325 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6326 return true; 6327 break; 6328 case ICmpInst::ICMP_ULT: 6329 case ICmpInst::ICMP_ULE: 6330 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6331 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6332 return true; 6333 break; 6334 case ICmpInst::ICMP_UGT: 6335 case ICmpInst::ICMP_UGE: 6336 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6337 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6338 return true; 6339 break; 6340 } 6341 6342 return false; 6343 } 6344 6345 /// getBECount - Subtract the end and start values and divide by the step, 6346 /// rounding up, to get the number of times the backedge is executed. Return 6347 /// CouldNotCompute if an intermediate computation overflows. 6348 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6349 const SCEV *End, 6350 const SCEV *Step, 6351 bool NoWrap) { 6352 assert(!isKnownNegative(Step) && 6353 "This code doesn't handle negative strides yet!"); 6354 6355 Type *Ty = Start->getType(); 6356 6357 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6358 // here because SCEV may not be able to determine that the unsigned division 6359 // after rounding is zero. 6360 if (Start == End) 6361 return getConstant(Ty, 0); 6362 6363 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6364 const SCEV *Diff = getMinusSCEV(End, Start); 6365 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6366 6367 // Add an adjustment to the difference between End and Start so that 6368 // the division will effectively round up. 6369 const SCEV *Add = getAddExpr(Diff, RoundUp); 6370 6371 if (!NoWrap) { 6372 // Check Add for unsigned overflow. 6373 // TODO: More sophisticated things could be done here. 6374 Type *WideTy = IntegerType::get(getContext(), 6375 getTypeSizeInBits(Ty) + 1); 6376 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6377 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6378 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6379 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6380 return getCouldNotCompute(); 6381 } 6382 6383 return getUDivExpr(Add, Step); 6384 } 6385 6386 /// HowManyLessThans - Return the number of times a backedge containing the 6387 /// specified less-than comparison will execute. If not computable, return 6388 /// CouldNotCompute. 6389 /// 6390 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6391 /// control the branch. In this case, we can only compute an iteration count for 6392 /// a subexpression that cannot overflow before evaluating true. 6393 ScalarEvolution::ExitLimit 6394 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6395 const Loop *L, bool isSigned, 6396 bool IsSubExpr) { 6397 // Only handle: "ADDREC < LoopInvariant". 6398 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6399 6400 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6401 if (!AddRec || AddRec->getLoop() != L) 6402 return getCouldNotCompute(); 6403 6404 // Check to see if we have a flag which makes analysis easy. 6405 bool NoWrap = false; 6406 if (!IsSubExpr) { 6407 NoWrap = AddRec->getNoWrapFlags( 6408 (SCEV::NoWrapFlags)(((isSigned ? SCEV::FlagNSW : SCEV::FlagNUW)) 6409 | SCEV::FlagNW)); 6410 } 6411 if (AddRec->isAffine()) { 6412 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6413 const SCEV *Step = AddRec->getStepRecurrence(*this); 6414 6415 if (Step->isZero()) 6416 return getCouldNotCompute(); 6417 if (Step->isOne()) { 6418 // With unit stride, the iteration never steps past the limit value. 6419 } else if (isKnownPositive(Step)) { 6420 // Test whether a positive iteration can step past the limit 6421 // value and past the maximum value for its type in a single step. 6422 // Note that it's not sufficient to check NoWrap here, because even 6423 // though the value after a wrap is undefined, it's not undefined 6424 // behavior, so if wrap does occur, the loop could either terminate or 6425 // loop infinitely, but in either case, the loop is guaranteed to 6426 // iterate at least until the iteration where the wrapping occurs. 6427 const SCEV *One = getConstant(Step->getType(), 1); 6428 if (isSigned) { 6429 APInt Max = APInt::getSignedMaxValue(BitWidth); 6430 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6431 .slt(getSignedRange(RHS).getSignedMax())) 6432 return getCouldNotCompute(); 6433 } else { 6434 APInt Max = APInt::getMaxValue(BitWidth); 6435 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6436 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6437 return getCouldNotCompute(); 6438 } 6439 } else 6440 // TODO: Handle negative strides here and below. 6441 return getCouldNotCompute(); 6442 6443 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6444 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6445 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6446 // treat m-n as signed nor unsigned due to overflow possibility. 6447 6448 // First, we get the value of the LHS in the first iteration: n 6449 const SCEV *Start = AddRec->getOperand(0); 6450 6451 // Determine the minimum constant start value. 6452 const SCEV *MinStart = getConstant(isSigned ? 6453 getSignedRange(Start).getSignedMin() : 6454 getUnsignedRange(Start).getUnsignedMin()); 6455 6456 // If we know that the condition is true in order to enter the loop, 6457 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6458 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6459 // the division must round up. 6460 const SCEV *End = RHS; 6461 if (!isLoopEntryGuardedByCond(L, 6462 isSigned ? ICmpInst::ICMP_SLT : 6463 ICmpInst::ICMP_ULT, 6464 getMinusSCEV(Start, Step), RHS)) 6465 End = isSigned ? getSMaxExpr(RHS, Start) 6466 : getUMaxExpr(RHS, Start); 6467 6468 // Determine the maximum constant end value. 6469 const SCEV *MaxEnd = getConstant(isSigned ? 6470 getSignedRange(End).getSignedMax() : 6471 getUnsignedRange(End).getUnsignedMax()); 6472 6473 // If MaxEnd is within a step of the maximum integer value in its type, 6474 // adjust it down to the minimum value which would produce the same effect. 6475 // This allows the subsequent ceiling division of (N+(step-1))/step to 6476 // compute the correct value. 6477 const SCEV *StepMinusOne = getMinusSCEV(Step, 6478 getConstant(Step->getType(), 1)); 6479 MaxEnd = isSigned ? 6480 getSMinExpr(MaxEnd, 6481 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6482 StepMinusOne)) : 6483 getUMinExpr(MaxEnd, 6484 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6485 StepMinusOne)); 6486 6487 // Finally, we subtract these two values and divide, rounding up, to get 6488 // the number of times the backedge is executed. 6489 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6490 6491 // The maximum backedge count is similar, except using the minimum start 6492 // value and the maximum end value. 6493 // If we already have an exact constant BECount, use it instead. 6494 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6495 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6496 6497 // If the stride is nonconstant, and NoWrap == true, then 6498 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6499 // exact BECount and invalid MaxBECount, which should be avoided to catch 6500 // more optimization opportunities. 6501 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6502 MaxBECount = BECount; 6503 6504 return ExitLimit(BECount, MaxBECount); 6505 } 6506 6507 return getCouldNotCompute(); 6508 } 6509 6510 /// getNumIterationsInRange - Return the number of iterations of this loop that 6511 /// produce values in the specified constant range. Another way of looking at 6512 /// this is that it returns the first iteration number where the value is not in 6513 /// the condition, thus computing the exit count. If the iteration count can't 6514 /// be computed, an instance of SCEVCouldNotCompute is returned. 6515 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6516 ScalarEvolution &SE) const { 6517 if (Range.isFullSet()) // Infinite loop. 6518 return SE.getCouldNotCompute(); 6519 6520 // If the start is a non-zero constant, shift the range to simplify things. 6521 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6522 if (!SC->getValue()->isZero()) { 6523 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6524 Operands[0] = SE.getConstant(SC->getType(), 0); 6525 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6526 getNoWrapFlags(FlagNW)); 6527 if (const SCEVAddRecExpr *ShiftedAddRec = 6528 dyn_cast<SCEVAddRecExpr>(Shifted)) 6529 return ShiftedAddRec->getNumIterationsInRange( 6530 Range.subtract(SC->getValue()->getValue()), SE); 6531 // This is strange and shouldn't happen. 6532 return SE.getCouldNotCompute(); 6533 } 6534 6535 // The only time we can solve this is when we have all constant indices. 6536 // Otherwise, we cannot determine the overflow conditions. 6537 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6538 if (!isa<SCEVConstant>(getOperand(i))) 6539 return SE.getCouldNotCompute(); 6540 6541 6542 // Okay at this point we know that all elements of the chrec are constants and 6543 // that the start element is zero. 6544 6545 // First check to see if the range contains zero. If not, the first 6546 // iteration exits. 6547 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6548 if (!Range.contains(APInt(BitWidth, 0))) 6549 return SE.getConstant(getType(), 0); 6550 6551 if (isAffine()) { 6552 // If this is an affine expression then we have this situation: 6553 // Solve {0,+,A} in Range === Ax in Range 6554 6555 // We know that zero is in the range. If A is positive then we know that 6556 // the upper value of the range must be the first possible exit value. 6557 // If A is negative then the lower of the range is the last possible loop 6558 // value. Also note that we already checked for a full range. 6559 APInt One(BitWidth,1); 6560 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6561 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6562 6563 // The exit value should be (End+A)/A. 6564 APInt ExitVal = (End + A).udiv(A); 6565 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6566 6567 // Evaluate at the exit value. If we really did fall out of the valid 6568 // range, then we computed our trip count, otherwise wrap around or other 6569 // things must have happened. 6570 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6571 if (Range.contains(Val->getValue())) 6572 return SE.getCouldNotCompute(); // Something strange happened 6573 6574 // Ensure that the previous value is in the range. This is a sanity check. 6575 assert(Range.contains( 6576 EvaluateConstantChrecAtConstant(this, 6577 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6578 "Linear scev computation is off in a bad way!"); 6579 return SE.getConstant(ExitValue); 6580 } else if (isQuadratic()) { 6581 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6582 // quadratic equation to solve it. To do this, we must frame our problem in 6583 // terms of figuring out when zero is crossed, instead of when 6584 // Range.getUpper() is crossed. 6585 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6586 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6587 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6588 // getNoWrapFlags(FlagNW) 6589 FlagAnyWrap); 6590 6591 // Next, solve the constructed addrec 6592 std::pair<const SCEV *,const SCEV *> Roots = 6593 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6594 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6595 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6596 if (R1) { 6597 // Pick the smallest positive root value. 6598 if (ConstantInt *CB = 6599 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6600 R1->getValue(), R2->getValue()))) { 6601 if (CB->getZExtValue() == false) 6602 std::swap(R1, R2); // R1 is the minimum root now. 6603 6604 // Make sure the root is not off by one. The returned iteration should 6605 // not be in the range, but the previous one should be. When solving 6606 // for "X*X < 5", for example, we should not return a root of 2. 6607 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6608 R1->getValue(), 6609 SE); 6610 if (Range.contains(R1Val->getValue())) { 6611 // The next iteration must be out of the range... 6612 ConstantInt *NextVal = 6613 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6614 6615 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6616 if (!Range.contains(R1Val->getValue())) 6617 return SE.getConstant(NextVal); 6618 return SE.getCouldNotCompute(); // Something strange happened 6619 } 6620 6621 // If R1 was not in the range, then it is a good return value. Make 6622 // sure that R1-1 WAS in the range though, just in case. 6623 ConstantInt *NextVal = 6624 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6625 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6626 if (Range.contains(R1Val->getValue())) 6627 return R1; 6628 return SE.getCouldNotCompute(); // Something strange happened 6629 } 6630 } 6631 } 6632 6633 return SE.getCouldNotCompute(); 6634 } 6635 6636 6637 6638 //===----------------------------------------------------------------------===// 6639 // SCEVCallbackVH Class Implementation 6640 //===----------------------------------------------------------------------===// 6641 6642 void ScalarEvolution::SCEVCallbackVH::deleted() { 6643 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6644 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6645 SE->ConstantEvolutionLoopExitValue.erase(PN); 6646 SE->ValueExprMap.erase(getValPtr()); 6647 // this now dangles! 6648 } 6649 6650 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6651 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6652 6653 // Forget all the expressions associated with users of the old value, 6654 // so that future queries will recompute the expressions using the new 6655 // value. 6656 Value *Old = getValPtr(); 6657 SmallVector<User *, 16> Worklist; 6658 SmallPtrSet<User *, 8> Visited; 6659 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6660 UI != UE; ++UI) 6661 Worklist.push_back(*UI); 6662 while (!Worklist.empty()) { 6663 User *U = Worklist.pop_back_val(); 6664 // Deleting the Old value will cause this to dangle. Postpone 6665 // that until everything else is done. 6666 if (U == Old) 6667 continue; 6668 if (!Visited.insert(U)) 6669 continue; 6670 if (PHINode *PN = dyn_cast<PHINode>(U)) 6671 SE->ConstantEvolutionLoopExitValue.erase(PN); 6672 SE->ValueExprMap.erase(U); 6673 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6674 UI != UE; ++UI) 6675 Worklist.push_back(*UI); 6676 } 6677 // Delete the Old value. 6678 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6679 SE->ConstantEvolutionLoopExitValue.erase(PN); 6680 SE->ValueExprMap.erase(Old); 6681 // this now dangles! 6682 } 6683 6684 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6685 : CallbackVH(V), SE(se) {} 6686 6687 //===----------------------------------------------------------------------===// 6688 // ScalarEvolution Class Implementation 6689 //===----------------------------------------------------------------------===// 6690 6691 ScalarEvolution::ScalarEvolution() 6692 : FunctionPass(ID), FirstUnknown(0) { 6693 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6694 } 6695 6696 bool ScalarEvolution::runOnFunction(Function &F) { 6697 this->F = &F; 6698 LI = &getAnalysis<LoopInfo>(); 6699 TD = getAnalysisIfAvailable<DataLayout>(); 6700 TLI = &getAnalysis<TargetLibraryInfo>(); 6701 DT = &getAnalysis<DominatorTree>(); 6702 return false; 6703 } 6704 6705 void ScalarEvolution::releaseMemory() { 6706 // Iterate through all the SCEVUnknown instances and call their 6707 // destructors, so that they release their references to their values. 6708 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6709 U->~SCEVUnknown(); 6710 FirstUnknown = 0; 6711 6712 ValueExprMap.clear(); 6713 6714 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6715 // that a loop had multiple computable exits. 6716 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6717 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6718 I != E; ++I) { 6719 I->second.clear(); 6720 } 6721 6722 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 6723 6724 BackedgeTakenCounts.clear(); 6725 ConstantEvolutionLoopExitValue.clear(); 6726 ValuesAtScopes.clear(); 6727 LoopDispositions.clear(); 6728 BlockDispositions.clear(); 6729 UnsignedRanges.clear(); 6730 SignedRanges.clear(); 6731 UniqueSCEVs.clear(); 6732 SCEVAllocator.Reset(); 6733 } 6734 6735 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6736 AU.setPreservesAll(); 6737 AU.addRequiredTransitive<LoopInfo>(); 6738 AU.addRequiredTransitive<DominatorTree>(); 6739 AU.addRequired<TargetLibraryInfo>(); 6740 } 6741 6742 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6743 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6744 } 6745 6746 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6747 const Loop *L) { 6748 // Print all inner loops first 6749 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6750 PrintLoopInfo(OS, SE, *I); 6751 6752 OS << "Loop "; 6753 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6754 OS << ": "; 6755 6756 SmallVector<BasicBlock *, 8> ExitBlocks; 6757 L->getExitBlocks(ExitBlocks); 6758 if (ExitBlocks.size() != 1) 6759 OS << "<multiple exits> "; 6760 6761 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6762 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6763 } else { 6764 OS << "Unpredictable backedge-taken count. "; 6765 } 6766 6767 OS << "\n" 6768 "Loop "; 6769 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6770 OS << ": "; 6771 6772 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6773 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6774 } else { 6775 OS << "Unpredictable max backedge-taken count. "; 6776 } 6777 6778 OS << "\n"; 6779 } 6780 6781 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6782 // ScalarEvolution's implementation of the print method is to print 6783 // out SCEV values of all instructions that are interesting. Doing 6784 // this potentially causes it to create new SCEV objects though, 6785 // which technically conflicts with the const qualifier. This isn't 6786 // observable from outside the class though, so casting away the 6787 // const isn't dangerous. 6788 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6789 6790 OS << "Classifying expressions for: "; 6791 WriteAsOperand(OS, F, /*PrintType=*/false); 6792 OS << "\n"; 6793 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6794 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6795 OS << *I << '\n'; 6796 OS << " --> "; 6797 const SCEV *SV = SE.getSCEV(&*I); 6798 SV->print(OS); 6799 6800 const Loop *L = LI->getLoopFor((*I).getParent()); 6801 6802 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6803 if (AtUse != SV) { 6804 OS << " --> "; 6805 AtUse->print(OS); 6806 } 6807 6808 if (L) { 6809 OS << "\t\t" "Exits: "; 6810 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6811 if (!SE.isLoopInvariant(ExitValue, L)) { 6812 OS << "<<Unknown>>"; 6813 } else { 6814 OS << *ExitValue; 6815 } 6816 } 6817 6818 OS << "\n"; 6819 } 6820 6821 OS << "Determining loop execution counts for: "; 6822 WriteAsOperand(OS, F, /*PrintType=*/false); 6823 OS << "\n"; 6824 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6825 PrintLoopInfo(OS, &SE, *I); 6826 } 6827 6828 ScalarEvolution::LoopDisposition 6829 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6830 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6831 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6832 Values.insert(std::make_pair(L, LoopVariant)); 6833 if (!Pair.second) 6834 return Pair.first->second; 6835 6836 LoopDisposition D = computeLoopDisposition(S, L); 6837 return LoopDispositions[S][L] = D; 6838 } 6839 6840 ScalarEvolution::LoopDisposition 6841 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6842 switch (S->getSCEVType()) { 6843 case scConstant: 6844 return LoopInvariant; 6845 case scTruncate: 6846 case scZeroExtend: 6847 case scSignExtend: 6848 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6849 case scAddRecExpr: { 6850 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6851 6852 // If L is the addrec's loop, it's computable. 6853 if (AR->getLoop() == L) 6854 return LoopComputable; 6855 6856 // Add recurrences are never invariant in the function-body (null loop). 6857 if (!L) 6858 return LoopVariant; 6859 6860 // This recurrence is variant w.r.t. L if L contains AR's loop. 6861 if (L->contains(AR->getLoop())) 6862 return LoopVariant; 6863 6864 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6865 if (AR->getLoop()->contains(L)) 6866 return LoopInvariant; 6867 6868 // This recurrence is variant w.r.t. L if any of its operands 6869 // are variant. 6870 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6871 I != E; ++I) 6872 if (!isLoopInvariant(*I, L)) 6873 return LoopVariant; 6874 6875 // Otherwise it's loop-invariant. 6876 return LoopInvariant; 6877 } 6878 case scAddExpr: 6879 case scMulExpr: 6880 case scUMaxExpr: 6881 case scSMaxExpr: { 6882 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6883 bool HasVarying = false; 6884 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6885 I != E; ++I) { 6886 LoopDisposition D = getLoopDisposition(*I, L); 6887 if (D == LoopVariant) 6888 return LoopVariant; 6889 if (D == LoopComputable) 6890 HasVarying = true; 6891 } 6892 return HasVarying ? LoopComputable : LoopInvariant; 6893 } 6894 case scUDivExpr: { 6895 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6896 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6897 if (LD == LoopVariant) 6898 return LoopVariant; 6899 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6900 if (RD == LoopVariant) 6901 return LoopVariant; 6902 return (LD == LoopInvariant && RD == LoopInvariant) ? 6903 LoopInvariant : LoopComputable; 6904 } 6905 case scUnknown: 6906 // All non-instruction values are loop invariant. All instructions are loop 6907 // invariant if they are not contained in the specified loop. 6908 // Instructions are never considered invariant in the function body 6909 // (null loop) because they are defined within the "loop". 6910 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6911 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6912 return LoopInvariant; 6913 case scCouldNotCompute: 6914 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6915 default: llvm_unreachable("Unknown SCEV kind!"); 6916 } 6917 } 6918 6919 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6920 return getLoopDisposition(S, L) == LoopInvariant; 6921 } 6922 6923 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6924 return getLoopDisposition(S, L) == LoopComputable; 6925 } 6926 6927 ScalarEvolution::BlockDisposition 6928 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6929 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6930 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6931 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6932 if (!Pair.second) 6933 return Pair.first->second; 6934 6935 BlockDisposition D = computeBlockDisposition(S, BB); 6936 return BlockDispositions[S][BB] = D; 6937 } 6938 6939 ScalarEvolution::BlockDisposition 6940 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6941 switch (S->getSCEVType()) { 6942 case scConstant: 6943 return ProperlyDominatesBlock; 6944 case scTruncate: 6945 case scZeroExtend: 6946 case scSignExtend: 6947 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6948 case scAddRecExpr: { 6949 // This uses a "dominates" query instead of "properly dominates" query 6950 // to test for proper dominance too, because the instruction which 6951 // produces the addrec's value is a PHI, and a PHI effectively properly 6952 // dominates its entire containing block. 6953 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6954 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6955 return DoesNotDominateBlock; 6956 } 6957 // FALL THROUGH into SCEVNAryExpr handling. 6958 case scAddExpr: 6959 case scMulExpr: 6960 case scUMaxExpr: 6961 case scSMaxExpr: { 6962 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6963 bool Proper = true; 6964 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6965 I != E; ++I) { 6966 BlockDisposition D = getBlockDisposition(*I, BB); 6967 if (D == DoesNotDominateBlock) 6968 return DoesNotDominateBlock; 6969 if (D == DominatesBlock) 6970 Proper = false; 6971 } 6972 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6973 } 6974 case scUDivExpr: { 6975 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6976 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6977 BlockDisposition LD = getBlockDisposition(LHS, BB); 6978 if (LD == DoesNotDominateBlock) 6979 return DoesNotDominateBlock; 6980 BlockDisposition RD = getBlockDisposition(RHS, BB); 6981 if (RD == DoesNotDominateBlock) 6982 return DoesNotDominateBlock; 6983 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6984 ProperlyDominatesBlock : DominatesBlock; 6985 } 6986 case scUnknown: 6987 if (Instruction *I = 6988 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6989 if (I->getParent() == BB) 6990 return DominatesBlock; 6991 if (DT->properlyDominates(I->getParent(), BB)) 6992 return ProperlyDominatesBlock; 6993 return DoesNotDominateBlock; 6994 } 6995 return ProperlyDominatesBlock; 6996 case scCouldNotCompute: 6997 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6998 default: 6999 llvm_unreachable("Unknown SCEV kind!"); 7000 } 7001 } 7002 7003 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7004 return getBlockDisposition(S, BB) >= DominatesBlock; 7005 } 7006 7007 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7008 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7009 } 7010 7011 namespace { 7012 // Search for a SCEV expression node within an expression tree. 7013 // Implements SCEVTraversal::Visitor. 7014 struct SCEVSearch { 7015 const SCEV *Node; 7016 bool IsFound; 7017 7018 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7019 7020 bool follow(const SCEV *S) { 7021 IsFound |= (S == Node); 7022 return !IsFound; 7023 } 7024 bool isDone() const { return IsFound; } 7025 }; 7026 } 7027 7028 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7029 SCEVSearch Search(Op); 7030 visitAll(S, Search); 7031 return Search.IsFound; 7032 } 7033 7034 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7035 ValuesAtScopes.erase(S); 7036 LoopDispositions.erase(S); 7037 BlockDispositions.erase(S); 7038 UnsignedRanges.erase(S); 7039 SignedRanges.erase(S); 7040 7041 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7042 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7043 BackedgeTakenInfo &BEInfo = I->second; 7044 if (BEInfo.hasOperand(S, this)) { 7045 BEInfo.clear(); 7046 BackedgeTakenCounts.erase(I++); 7047 } 7048 else 7049 ++I; 7050 } 7051 } 7052 7053 typedef DenseMap<const Loop *, std::string> VerifyMap; 7054 7055 /// replaceSubString - Replaces all occurences of From in Str with To. 7056 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7057 size_t Pos = 0; 7058 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7059 Str.replace(Pos, From.size(), To.data(), To.size()); 7060 Pos += To.size(); 7061 } 7062 } 7063 7064 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7065 static void 7066 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7067 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7068 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7069 7070 std::string &S = Map[L]; 7071 if (S.empty()) { 7072 raw_string_ostream OS(S); 7073 SE.getBackedgeTakenCount(L)->print(OS); 7074 7075 // false and 0 are semantically equivalent. This can happen in dead loops. 7076 replaceSubString(OS.str(), "false", "0"); 7077 // Remove wrap flags, their use in SCEV is highly fragile. 7078 // FIXME: Remove this when SCEV gets smarter about them. 7079 replaceSubString(OS.str(), "<nw>", ""); 7080 replaceSubString(OS.str(), "<nsw>", ""); 7081 replaceSubString(OS.str(), "<nuw>", ""); 7082 } 7083 } 7084 } 7085 7086 void ScalarEvolution::verifyAnalysis() const { 7087 if (!VerifySCEV) 7088 return; 7089 7090 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7091 7092 // Gather stringified backedge taken counts for all loops using SCEV's caches. 7093 // FIXME: It would be much better to store actual values instead of strings, 7094 // but SCEV pointers will change if we drop the caches. 7095 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 7096 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7097 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 7098 7099 // Gather stringified backedge taken counts for all loops without using 7100 // SCEV's caches. 7101 SE.releaseMemory(); 7102 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7103 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 7104 7105 // Now compare whether they're the same with and without caches. This allows 7106 // verifying that no pass changed the cache. 7107 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7108 "New loops suddenly appeared!"); 7109 7110 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7111 OldE = BackedgeDumpsOld.end(), 7112 NewI = BackedgeDumpsNew.begin(); 7113 OldI != OldE; ++OldI, ++NewI) { 7114 assert(OldI->first == NewI->first && "Loop order changed!"); 7115 7116 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7117 // changes. 7118 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7119 // means that a pass is buggy or SCEV has to learn a new pattern but is 7120 // usually not harmful. 7121 if (OldI->second != NewI->second && 7122 OldI->second.find("undef") == std::string::npos && 7123 NewI->second.find("undef") == std::string::npos && 7124 OldI->second != "***COULDNOTCOMPUTE***" && 7125 NewI->second != "***COULDNOTCOMPUTE***") { 7126 dbgs() << "SCEVValidator: SCEV for loop '" 7127 << OldI->first->getHeader()->getName() 7128 << "' changed from '" << OldI->second 7129 << "' to '" << NewI->second << "'!\n"; 7130 std::abort(); 7131 } 7132 } 7133 7134 // TODO: Verify more things. 7135 } 7136