1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 118 "Scalar Evolution Analysis", false, true) 119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 124 "Scalar Evolution Analysis", false, true) 125 char ScalarEvolution::ID = 0; 126 127 //===----------------------------------------------------------------------===// 128 // SCEV class definitions 129 //===----------------------------------------------------------------------===// 130 131 //===----------------------------------------------------------------------===// 132 // Implementation of the SCEV class. 133 // 134 135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 136 void SCEV::dump() const { 137 print(dbgs()); 138 dbgs() << '\n'; 139 } 140 #endif 141 142 void SCEV::print(raw_ostream &OS) const { 143 switch (static_cast<SCEVTypes>(getSCEVType())) { 144 case scConstant: 145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 146 return; 147 case scTruncate: { 148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 149 const SCEV *Op = Trunc->getOperand(); 150 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 151 << *Trunc->getType() << ")"; 152 return; 153 } 154 case scZeroExtend: { 155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 156 const SCEV *Op = ZExt->getOperand(); 157 OS << "(zext " << *Op->getType() << " " << *Op << " to " 158 << *ZExt->getType() << ")"; 159 return; 160 } 161 case scSignExtend: { 162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 163 const SCEV *Op = SExt->getOperand(); 164 OS << "(sext " << *Op->getType() << " " << *Op << " to " 165 << *SExt->getType() << ")"; 166 return; 167 } 168 case scAddRecExpr: { 169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 170 OS << "{" << *AR->getOperand(0); 171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 172 OS << ",+," << *AR->getOperand(i); 173 OS << "}<"; 174 if (AR->getNoWrapFlags(FlagNUW)) 175 OS << "nuw><"; 176 if (AR->getNoWrapFlags(FlagNSW)) 177 OS << "nsw><"; 178 if (AR->getNoWrapFlags(FlagNW) && 179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 180 OS << "nw><"; 181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 182 OS << ">"; 183 return; 184 } 185 case scAddExpr: 186 case scMulExpr: 187 case scUMaxExpr: 188 case scSMaxExpr: { 189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 190 const char *OpStr = nullptr; 191 switch (NAry->getSCEVType()) { 192 case scAddExpr: OpStr = " + "; break; 193 case scMulExpr: OpStr = " * "; break; 194 case scUMaxExpr: OpStr = " umax "; break; 195 case scSMaxExpr: OpStr = " smax "; break; 196 } 197 OS << "("; 198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 199 I != E; ++I) { 200 OS << **I; 201 if (std::next(I) != E) 202 OS << OpStr; 203 } 204 OS << ")"; 205 switch (NAry->getSCEVType()) { 206 case scAddExpr: 207 case scMulExpr: 208 if (NAry->getNoWrapFlags(FlagNUW)) 209 OS << "<nuw>"; 210 if (NAry->getNoWrapFlags(FlagNSW)) 211 OS << "<nsw>"; 212 } 213 return; 214 } 215 case scUDivExpr: { 216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 218 return; 219 } 220 case scUnknown: { 221 const SCEVUnknown *U = cast<SCEVUnknown>(this); 222 Type *AllocTy; 223 if (U->isSizeOf(AllocTy)) { 224 OS << "sizeof(" << *AllocTy << ")"; 225 return; 226 } 227 if (U->isAlignOf(AllocTy)) { 228 OS << "alignof(" << *AllocTy << ")"; 229 return; 230 } 231 232 Type *CTy; 233 Constant *FieldNo; 234 if (U->isOffsetOf(CTy, FieldNo)) { 235 OS << "offsetof(" << *CTy << ", "; 236 FieldNo->printAsOperand(OS, false); 237 OS << ")"; 238 return; 239 } 240 241 // Otherwise just print it normally. 242 U->getValue()->printAsOperand(OS, false); 243 return; 244 } 245 case scCouldNotCompute: 246 OS << "***COULDNOTCOMPUTE***"; 247 return; 248 } 249 llvm_unreachable("Unknown SCEV kind!"); 250 } 251 252 Type *SCEV::getType() const { 253 switch (static_cast<SCEVTypes>(getSCEVType())) { 254 case scConstant: 255 return cast<SCEVConstant>(this)->getType(); 256 case scTruncate: 257 case scZeroExtend: 258 case scSignExtend: 259 return cast<SCEVCastExpr>(this)->getType(); 260 case scAddRecExpr: 261 case scMulExpr: 262 case scUMaxExpr: 263 case scSMaxExpr: 264 return cast<SCEVNAryExpr>(this)->getType(); 265 case scAddExpr: 266 return cast<SCEVAddExpr>(this)->getType(); 267 case scUDivExpr: 268 return cast<SCEVUDivExpr>(this)->getType(); 269 case scUnknown: 270 return cast<SCEVUnknown>(this)->getType(); 271 case scCouldNotCompute: 272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 273 } 274 llvm_unreachable("Unknown SCEV kind!"); 275 } 276 277 bool SCEV::isZero() const { 278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 279 return SC->getValue()->isZero(); 280 return false; 281 } 282 283 bool SCEV::isOne() const { 284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 285 return SC->getValue()->isOne(); 286 return false; 287 } 288 289 bool SCEV::isAllOnesValue() const { 290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 291 return SC->getValue()->isAllOnesValue(); 292 return false; 293 } 294 295 /// isNonConstantNegative - Return true if the specified scev is negated, but 296 /// not a constant. 297 bool SCEV::isNonConstantNegative() const { 298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 299 if (!Mul) return false; 300 301 // If there is a constant factor, it will be first. 302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 303 if (!SC) return false; 304 305 // Return true if the value is negative, this matches things like (-42 * V). 306 return SC->getValue()->getValue().isNegative(); 307 } 308 309 SCEVCouldNotCompute::SCEVCouldNotCompute() : 310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 311 312 bool SCEVCouldNotCompute::classof(const SCEV *S) { 313 return S->getSCEVType() == scCouldNotCompute; 314 } 315 316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 317 FoldingSetNodeID ID; 318 ID.AddInteger(scConstant); 319 ID.AddPointer(V); 320 void *IP = nullptr; 321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 323 UniqueSCEVs.InsertNode(S, IP); 324 return S; 325 } 326 327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 328 return getConstant(ConstantInt::get(getContext(), Val)); 329 } 330 331 const SCEV * 332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 334 return getConstant(ConstantInt::get(ITy, V, isSigned)); 335 } 336 337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 338 unsigned SCEVTy, const SCEV *op, Type *ty) 339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 340 341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 342 const SCEV *op, Type *ty) 343 : SCEVCastExpr(ID, scTruncate, op, ty) { 344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 345 (Ty->isIntegerTy() || Ty->isPointerTy()) && 346 "Cannot truncate non-integer value!"); 347 } 348 349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 350 const SCEV *op, Type *ty) 351 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 353 (Ty->isIntegerTy() || Ty->isPointerTy()) && 354 "Cannot zero extend non-integer value!"); 355 } 356 357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 358 const SCEV *op, Type *ty) 359 : SCEVCastExpr(ID, scSignExtend, op, ty) { 360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 361 (Ty->isIntegerTy() || Ty->isPointerTy()) && 362 "Cannot sign extend non-integer value!"); 363 } 364 365 void SCEVUnknown::deleted() { 366 // Clear this SCEVUnknown from various maps. 367 SE->forgetMemoizedResults(this); 368 369 // Remove this SCEVUnknown from the uniquing map. 370 SE->UniqueSCEVs.RemoveNode(this); 371 372 // Release the value. 373 setValPtr(nullptr); 374 } 375 376 void SCEVUnknown::allUsesReplacedWith(Value *New) { 377 // Clear this SCEVUnknown from various maps. 378 SE->forgetMemoizedResults(this); 379 380 // Remove this SCEVUnknown from the uniquing map. 381 SE->UniqueSCEVs.RemoveNode(this); 382 383 // Update this SCEVUnknown to point to the new value. This is needed 384 // because there may still be outstanding SCEVs which still point to 385 // this SCEVUnknown. 386 setValPtr(New); 387 } 388 389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 391 if (VCE->getOpcode() == Instruction::PtrToInt) 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 393 if (CE->getOpcode() == Instruction::GetElementPtr && 394 CE->getOperand(0)->isNullValue() && 395 CE->getNumOperands() == 2) 396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 397 if (CI->isOne()) { 398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 399 ->getElementType(); 400 return true; 401 } 402 403 return false; 404 } 405 406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 408 if (VCE->getOpcode() == Instruction::PtrToInt) 409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 410 if (CE->getOpcode() == Instruction::GetElementPtr && 411 CE->getOperand(0)->isNullValue()) { 412 Type *Ty = 413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (!STy->isPacked() && 416 CE->getNumOperands() == 3 && 417 CE->getOperand(1)->isNullValue()) { 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 419 if (CI->isOne() && 420 STy->getNumElements() == 2 && 421 STy->getElementType(0)->isIntegerTy(1)) { 422 AllocTy = STy->getElementType(1); 423 return true; 424 } 425 } 426 } 427 428 return false; 429 } 430 431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 433 if (VCE->getOpcode() == Instruction::PtrToInt) 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 435 if (CE->getOpcode() == Instruction::GetElementPtr && 436 CE->getNumOperands() == 3 && 437 CE->getOperand(0)->isNullValue() && 438 CE->getOperand(1)->isNullValue()) { 439 Type *Ty = 440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 441 // Ignore vector types here so that ScalarEvolutionExpander doesn't 442 // emit getelementptrs that index into vectors. 443 if (Ty->isStructTy() || Ty->isArrayTy()) { 444 CTy = Ty; 445 FieldNo = CE->getOperand(2); 446 return true; 447 } 448 } 449 450 return false; 451 } 452 453 //===----------------------------------------------------------------------===// 454 // SCEV Utilities 455 //===----------------------------------------------------------------------===// 456 457 namespace { 458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 459 /// than the complexity of the RHS. This comparator is used to canonicalize 460 /// expressions. 461 class SCEVComplexityCompare { 462 const LoopInfo *const LI; 463 public: 464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 465 466 // Return true or false if LHS is less than, or at least RHS, respectively. 467 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 468 return compare(LHS, RHS) < 0; 469 } 470 471 // Return negative, zero, or positive, if LHS is less than, equal to, or 472 // greater than RHS, respectively. A three-way result allows recursive 473 // comparisons to be more efficient. 474 int compare(const SCEV *LHS, const SCEV *RHS) const { 475 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 476 if (LHS == RHS) 477 return 0; 478 479 // Primarily, sort the SCEVs by their getSCEVType(). 480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 481 if (LType != RType) 482 return (int)LType - (int)RType; 483 484 // Aside from the getSCEVType() ordering, the particular ordering 485 // isn't very important except that it's beneficial to be consistent, 486 // so that (a + b) and (b + a) don't end up as different expressions. 487 switch (static_cast<SCEVTypes>(LType)) { 488 case scUnknown: { 489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 491 492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 493 // not as complete as it could be. 494 const Value *LV = LU->getValue(), *RV = RU->getValue(); 495 496 // Order pointer values after integer values. This helps SCEVExpander 497 // form GEPs. 498 bool LIsPointer = LV->getType()->isPointerTy(), 499 RIsPointer = RV->getType()->isPointerTy(); 500 if (LIsPointer != RIsPointer) 501 return (int)LIsPointer - (int)RIsPointer; 502 503 // Compare getValueID values. 504 unsigned LID = LV->getValueID(), 505 RID = RV->getValueID(); 506 if (LID != RID) 507 return (int)LID - (int)RID; 508 509 // Sort arguments by their position. 510 if (const Argument *LA = dyn_cast<Argument>(LV)) { 511 const Argument *RA = cast<Argument>(RV); 512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 513 return (int)LArgNo - (int)RArgNo; 514 } 515 516 // For instructions, compare their loop depth, and their operand 517 // count. This is pretty loose. 518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 519 const Instruction *RInst = cast<Instruction>(RV); 520 521 // Compare loop depths. 522 const BasicBlock *LParent = LInst->getParent(), 523 *RParent = RInst->getParent(); 524 if (LParent != RParent) { 525 unsigned LDepth = LI->getLoopDepth(LParent), 526 RDepth = LI->getLoopDepth(RParent); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Compare the number of operands. 532 unsigned LNumOps = LInst->getNumOperands(), 533 RNumOps = RInst->getNumOperands(); 534 return (int)LNumOps - (int)RNumOps; 535 } 536 537 return 0; 538 } 539 540 case scConstant: { 541 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 542 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 543 544 // Compare constant values. 545 const APInt &LA = LC->getValue()->getValue(); 546 const APInt &RA = RC->getValue()->getValue(); 547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 548 if (LBitWidth != RBitWidth) 549 return (int)LBitWidth - (int)RBitWidth; 550 return LA.ult(RA) ? -1 : 1; 551 } 552 553 case scAddRecExpr: { 554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 556 557 // Compare addrec loop depths. 558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 559 if (LLoop != RLoop) { 560 unsigned LDepth = LLoop->getLoopDepth(), 561 RDepth = RLoop->getLoopDepth(); 562 if (LDepth != RDepth) 563 return (int)LDepth - (int)RDepth; 564 } 565 566 // Addrec complexity grows with operand count. 567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 568 if (LNumOps != RNumOps) 569 return (int)LNumOps - (int)RNumOps; 570 571 // Lexicographically compare. 572 for (unsigned i = 0; i != LNumOps; ++i) { 573 long X = compare(LA->getOperand(i), RA->getOperand(i)); 574 if (X != 0) 575 return X; 576 } 577 578 return 0; 579 } 580 581 case scAddExpr: 582 case scMulExpr: 583 case scSMaxExpr: 584 case scUMaxExpr: { 585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 587 588 // Lexicographically compare n-ary expressions. 589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 590 if (LNumOps != RNumOps) 591 return (int)LNumOps - (int)RNumOps; 592 593 for (unsigned i = 0; i != LNumOps; ++i) { 594 if (i >= RNumOps) 595 return 1; 596 long X = compare(LC->getOperand(i), RC->getOperand(i)); 597 if (X != 0) 598 return X; 599 } 600 return (int)LNumOps - (int)RNumOps; 601 } 602 603 case scUDivExpr: { 604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 606 607 // Lexicographically compare udiv expressions. 608 long X = compare(LC->getLHS(), RC->getLHS()); 609 if (X != 0) 610 return X; 611 return compare(LC->getRHS(), RC->getRHS()); 612 } 613 614 case scTruncate: 615 case scZeroExtend: 616 case scSignExtend: { 617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 619 620 // Compare cast expressions by operand. 621 return compare(LC->getOperand(), RC->getOperand()); 622 } 623 624 case scCouldNotCompute: 625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 626 } 627 llvm_unreachable("Unknown SCEV kind!"); 628 } 629 }; 630 } 631 632 /// GroupByComplexity - Given a list of SCEV objects, order them by their 633 /// complexity, and group objects of the same complexity together by value. 634 /// When this routine is finished, we know that any duplicates in the vector are 635 /// consecutive and that complexity is monotonically increasing. 636 /// 637 /// Note that we go take special precautions to ensure that we get deterministic 638 /// results from this routine. In other words, we don't want the results of 639 /// this to depend on where the addresses of various SCEV objects happened to 640 /// land in memory. 641 /// 642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 643 LoopInfo *LI) { 644 if (Ops.size() < 2) return; // Noop 645 if (Ops.size() == 2) { 646 // This is the common case, which also happens to be trivially simple. 647 // Special case it. 648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 649 if (SCEVComplexityCompare(LI)(RHS, LHS)) 650 std::swap(LHS, RHS); 651 return; 652 } 653 654 // Do the rough sort by complexity. 655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 656 657 // Now that we are sorted by complexity, group elements of the same 658 // complexity. Note that this is, at worst, N^2, but the vector is likely to 659 // be extremely short in practice. Note that we take this approach because we 660 // do not want to depend on the addresses of the objects we are grouping. 661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 662 const SCEV *S = Ops[i]; 663 unsigned Complexity = S->getSCEVType(); 664 665 // If there are any objects of the same complexity and same value as this 666 // one, group them. 667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 668 if (Ops[j] == S) { // Found a duplicate. 669 // Move it to immediately after i'th element. 670 std::swap(Ops[i+1], Ops[j]); 671 ++i; // no need to rescan it. 672 if (i == e-2) return; // Done! 673 } 674 } 675 } 676 } 677 678 namespace { 679 struct FindSCEVSize { 680 int Size; 681 FindSCEVSize() : Size(0) {} 682 683 bool follow(const SCEV *S) { 684 ++Size; 685 // Keep looking at all operands of S. 686 return true; 687 } 688 bool isDone() const { 689 return false; 690 } 691 }; 692 } 693 694 // Returns the size of the SCEV S. 695 static inline int sizeOfSCEV(const SCEV *S) { 696 FindSCEVSize F; 697 SCEVTraversal<FindSCEVSize> ST(F); 698 ST.visitAll(S); 699 return F.Size; 700 } 701 702 namespace { 703 704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 705 public: 706 // Computes the Quotient and Remainder of the division of Numerator by 707 // Denominator. 708 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 709 const SCEV *Denominator, const SCEV **Quotient, 710 const SCEV **Remainder) { 711 assert(Numerator && Denominator && "Uninitialized SCEV"); 712 713 SCEVDivision D(SE, Numerator, Denominator); 714 715 // Check for the trivial case here to avoid having to check for it in the 716 // rest of the code. 717 if (Numerator == Denominator) { 718 *Quotient = D.One; 719 *Remainder = D.Zero; 720 return; 721 } 722 723 if (Numerator->isZero()) { 724 *Quotient = D.Zero; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // A simple case when N/1. The quotient is N. 730 if (Denominator->isOne()) { 731 *Quotient = Numerator; 732 *Remainder = D.Zero; 733 return; 734 } 735 736 // Split the Denominator when it is a product. 737 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 738 const SCEV *Q, *R; 739 *Quotient = Numerator; 740 for (const SCEV *Op : T->operands()) { 741 divide(SE, *Quotient, Op, &Q, &R); 742 *Quotient = Q; 743 744 // Bail out when the Numerator is not divisible by one of the terms of 745 // the Denominator. 746 if (!R->isZero()) { 747 *Quotient = D.Zero; 748 *Remainder = Numerator; 749 return; 750 } 751 } 752 *Remainder = D.Zero; 753 return; 754 } 755 756 D.visit(Numerator); 757 *Quotient = D.Quotient; 758 *Remainder = D.Remainder; 759 } 760 761 // Except in the trivial case described above, we do not know how to divide 762 // Expr by Denominator for the following functions with empty implementation. 763 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 764 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 765 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 766 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 767 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 768 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 769 void visitUnknown(const SCEVUnknown *Numerator) {} 770 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 771 772 void visitConstant(const SCEVConstant *Numerator) { 773 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 774 APInt NumeratorVal = Numerator->getValue()->getValue(); 775 APInt DenominatorVal = D->getValue()->getValue(); 776 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 777 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 778 779 if (NumeratorBW > DenominatorBW) 780 DenominatorVal = DenominatorVal.sext(NumeratorBW); 781 else if (NumeratorBW < DenominatorBW) 782 NumeratorVal = NumeratorVal.sext(DenominatorBW); 783 784 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 785 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 786 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 787 Quotient = SE.getConstant(QuotientVal); 788 Remainder = SE.getConstant(RemainderVal); 789 return; 790 } 791 } 792 793 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 794 const SCEV *StartQ, *StartR, *StepQ, *StepR; 795 assert(Numerator->isAffine() && "Numerator should be affine"); 796 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 797 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 798 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 799 Numerator->getNoWrapFlags()); 800 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 801 Numerator->getNoWrapFlags()); 802 } 803 804 void visitAddExpr(const SCEVAddExpr *Numerator) { 805 SmallVector<const SCEV *, 2> Qs, Rs; 806 Type *Ty = Denominator->getType(); 807 808 for (const SCEV *Op : Numerator->operands()) { 809 const SCEV *Q, *R; 810 divide(SE, Op, Denominator, &Q, &R); 811 812 // Bail out if types do not match. 813 if (Ty != Q->getType() || Ty != R->getType()) { 814 Quotient = Zero; 815 Remainder = Numerator; 816 return; 817 } 818 819 Qs.push_back(Q); 820 Rs.push_back(R); 821 } 822 823 if (Qs.size() == 1) { 824 Quotient = Qs[0]; 825 Remainder = Rs[0]; 826 return; 827 } 828 829 Quotient = SE.getAddExpr(Qs); 830 Remainder = SE.getAddExpr(Rs); 831 } 832 833 void visitMulExpr(const SCEVMulExpr *Numerator) { 834 SmallVector<const SCEV *, 2> Qs; 835 Type *Ty = Denominator->getType(); 836 837 bool FoundDenominatorTerm = false; 838 for (const SCEV *Op : Numerator->operands()) { 839 // Bail out if types do not match. 840 if (Ty != Op->getType()) { 841 Quotient = Zero; 842 Remainder = Numerator; 843 return; 844 } 845 846 if (FoundDenominatorTerm) { 847 Qs.push_back(Op); 848 continue; 849 } 850 851 // Check whether Denominator divides one of the product operands. 852 const SCEV *Q, *R; 853 divide(SE, Op, Denominator, &Q, &R); 854 if (!R->isZero()) { 855 Qs.push_back(Op); 856 continue; 857 } 858 859 // Bail out if types do not match. 860 if (Ty != Q->getType()) { 861 Quotient = Zero; 862 Remainder = Numerator; 863 return; 864 } 865 866 FoundDenominatorTerm = true; 867 Qs.push_back(Q); 868 } 869 870 if (FoundDenominatorTerm) { 871 Remainder = Zero; 872 if (Qs.size() == 1) 873 Quotient = Qs[0]; 874 else 875 Quotient = SE.getMulExpr(Qs); 876 return; 877 } 878 879 if (!isa<SCEVUnknown>(Denominator)) { 880 Quotient = Zero; 881 Remainder = Numerator; 882 return; 883 } 884 885 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 886 ValueToValueMap RewriteMap; 887 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 888 cast<SCEVConstant>(Zero)->getValue(); 889 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 890 891 if (Remainder->isZero()) { 892 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 893 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 894 cast<SCEVConstant>(One)->getValue(); 895 Quotient = 896 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 897 return; 898 } 899 900 // Quotient is (Numerator - Remainder) divided by Denominator. 901 const SCEV *Q, *R; 902 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 903 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 904 // This SCEV does not seem to simplify: fail the division here. 905 Quotient = Zero; 906 Remainder = Numerator; 907 return; 908 } 909 divide(SE, Diff, Denominator, &Q, &R); 910 assert(R == Zero && 911 "(Numerator - Remainder) should evenly divide Denominator"); 912 Quotient = Q; 913 } 914 915 private: 916 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 917 const SCEV *Denominator) 918 : SE(S), Denominator(Denominator) { 919 Zero = SE.getConstant(Denominator->getType(), 0); 920 One = SE.getConstant(Denominator->getType(), 1); 921 922 // By default, we don't know how to divide Expr by Denominator. 923 // Providing the default here simplifies the rest of the code. 924 Quotient = Zero; 925 Remainder = Numerator; 926 } 927 928 ScalarEvolution &SE; 929 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 930 }; 931 932 } 933 934 //===----------------------------------------------------------------------===// 935 // Simple SCEV method implementations 936 //===----------------------------------------------------------------------===// 937 938 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 939 /// Assume, K > 0. 940 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 941 ScalarEvolution &SE, 942 Type *ResultTy) { 943 // Handle the simplest case efficiently. 944 if (K == 1) 945 return SE.getTruncateOrZeroExtend(It, ResultTy); 946 947 // We are using the following formula for BC(It, K): 948 // 949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 950 // 951 // Suppose, W is the bitwidth of the return value. We must be prepared for 952 // overflow. Hence, we must assure that the result of our computation is 953 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 954 // safe in modular arithmetic. 955 // 956 // However, this code doesn't use exactly that formula; the formula it uses 957 // is something like the following, where T is the number of factors of 2 in 958 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 959 // exponentiation: 960 // 961 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 962 // 963 // This formula is trivially equivalent to the previous formula. However, 964 // this formula can be implemented much more efficiently. The trick is that 965 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 966 // arithmetic. To do exact division in modular arithmetic, all we have 967 // to do is multiply by the inverse. Therefore, this step can be done at 968 // width W. 969 // 970 // The next issue is how to safely do the division by 2^T. The way this 971 // is done is by doing the multiplication step at a width of at least W + T 972 // bits. This way, the bottom W+T bits of the product are accurate. Then, 973 // when we perform the division by 2^T (which is equivalent to a right shift 974 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 975 // truncated out after the division by 2^T. 976 // 977 // In comparison to just directly using the first formula, this technique 978 // is much more efficient; using the first formula requires W * K bits, 979 // but this formula less than W + K bits. Also, the first formula requires 980 // a division step, whereas this formula only requires multiplies and shifts. 981 // 982 // It doesn't matter whether the subtraction step is done in the calculation 983 // width or the input iteration count's width; if the subtraction overflows, 984 // the result must be zero anyway. We prefer here to do it in the width of 985 // the induction variable because it helps a lot for certain cases; CodeGen 986 // isn't smart enough to ignore the overflow, which leads to much less 987 // efficient code if the width of the subtraction is wider than the native 988 // register width. 989 // 990 // (It's possible to not widen at all by pulling out factors of 2 before 991 // the multiplication; for example, K=2 can be calculated as 992 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 993 // extra arithmetic, so it's not an obvious win, and it gets 994 // much more complicated for K > 3.) 995 996 // Protection from insane SCEVs; this bound is conservative, 997 // but it probably doesn't matter. 998 if (K > 1000) 999 return SE.getCouldNotCompute(); 1000 1001 unsigned W = SE.getTypeSizeInBits(ResultTy); 1002 1003 // Calculate K! / 2^T and T; we divide out the factors of two before 1004 // multiplying for calculating K! / 2^T to avoid overflow. 1005 // Other overflow doesn't matter because we only care about the bottom 1006 // W bits of the result. 1007 APInt OddFactorial(W, 1); 1008 unsigned T = 1; 1009 for (unsigned i = 3; i <= K; ++i) { 1010 APInt Mult(W, i); 1011 unsigned TwoFactors = Mult.countTrailingZeros(); 1012 T += TwoFactors; 1013 Mult = Mult.lshr(TwoFactors); 1014 OddFactorial *= Mult; 1015 } 1016 1017 // We need at least W + T bits for the multiplication step 1018 unsigned CalculationBits = W + T; 1019 1020 // Calculate 2^T, at width T+W. 1021 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1022 1023 // Calculate the multiplicative inverse of K! / 2^T; 1024 // this multiplication factor will perform the exact division by 1025 // K! / 2^T. 1026 APInt Mod = APInt::getSignedMinValue(W+1); 1027 APInt MultiplyFactor = OddFactorial.zext(W+1); 1028 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1029 MultiplyFactor = MultiplyFactor.trunc(W); 1030 1031 // Calculate the product, at width T+W 1032 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1033 CalculationBits); 1034 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1035 for (unsigned i = 1; i != K; ++i) { 1036 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1037 Dividend = SE.getMulExpr(Dividend, 1038 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1039 } 1040 1041 // Divide by 2^T 1042 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1043 1044 // Truncate the result, and divide by K! / 2^T. 1045 1046 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1047 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1048 } 1049 1050 /// evaluateAtIteration - Return the value of this chain of recurrences at 1051 /// the specified iteration number. We can evaluate this recurrence by 1052 /// multiplying each element in the chain by the binomial coefficient 1053 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1054 /// 1055 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1056 /// 1057 /// where BC(It, k) stands for binomial coefficient. 1058 /// 1059 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1060 ScalarEvolution &SE) const { 1061 const SCEV *Result = getStart(); 1062 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1063 // The computation is correct in the face of overflow provided that the 1064 // multiplication is performed _after_ the evaluation of the binomial 1065 // coefficient. 1066 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1067 if (isa<SCEVCouldNotCompute>(Coeff)) 1068 return Coeff; 1069 1070 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1071 } 1072 return Result; 1073 } 1074 1075 //===----------------------------------------------------------------------===// 1076 // SCEV Expression folder implementations 1077 //===----------------------------------------------------------------------===// 1078 1079 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1080 Type *Ty) { 1081 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1082 "This is not a truncating conversion!"); 1083 assert(isSCEVable(Ty) && 1084 "This is not a conversion to a SCEVable type!"); 1085 Ty = getEffectiveSCEVType(Ty); 1086 1087 FoldingSetNodeID ID; 1088 ID.AddInteger(scTruncate); 1089 ID.AddPointer(Op); 1090 ID.AddPointer(Ty); 1091 void *IP = nullptr; 1092 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1093 1094 // Fold if the operand is constant. 1095 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1096 return getConstant( 1097 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1098 1099 // trunc(trunc(x)) --> trunc(x) 1100 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1101 return getTruncateExpr(ST->getOperand(), Ty); 1102 1103 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1104 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1105 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1106 1107 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1108 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1109 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1110 1111 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1112 // eliminate all the truncates, or we replace other casts with truncates. 1113 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1114 SmallVector<const SCEV *, 4> Operands; 1115 bool hasTrunc = false; 1116 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1117 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1118 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1119 hasTrunc = isa<SCEVTruncateExpr>(S); 1120 Operands.push_back(S); 1121 } 1122 if (!hasTrunc) 1123 return getAddExpr(Operands); 1124 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1125 } 1126 1127 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1128 // eliminate all the truncates, or we replace other casts with truncates. 1129 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1130 SmallVector<const SCEV *, 4> Operands; 1131 bool hasTrunc = false; 1132 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1133 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1134 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1135 hasTrunc = isa<SCEVTruncateExpr>(S); 1136 Operands.push_back(S); 1137 } 1138 if (!hasTrunc) 1139 return getMulExpr(Operands); 1140 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1141 } 1142 1143 // If the input value is a chrec scev, truncate the chrec's operands. 1144 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1145 SmallVector<const SCEV *, 4> Operands; 1146 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1147 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1148 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1149 } 1150 1151 // The cast wasn't folded; create an explicit cast node. We can reuse 1152 // the existing insert position since if we get here, we won't have 1153 // made any changes which would invalidate it. 1154 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1155 Op, Ty); 1156 UniqueSCEVs.InsertNode(S, IP); 1157 return S; 1158 } 1159 1160 // Get the limit of a recurrence such that incrementing by Step cannot cause 1161 // signed overflow as long as the value of the recurrence within the 1162 // loop does not exceed this limit before incrementing. 1163 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1164 ICmpInst::Predicate *Pred, 1165 ScalarEvolution *SE) { 1166 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1167 if (SE->isKnownPositive(Step)) { 1168 *Pred = ICmpInst::ICMP_SLT; 1169 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1170 SE->getSignedRange(Step).getSignedMax()); 1171 } 1172 if (SE->isKnownNegative(Step)) { 1173 *Pred = ICmpInst::ICMP_SGT; 1174 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1175 SE->getSignedRange(Step).getSignedMin()); 1176 } 1177 return nullptr; 1178 } 1179 1180 // Get the limit of a recurrence such that incrementing by Step cannot cause 1181 // unsigned overflow as long as the value of the recurrence within the loop does 1182 // not exceed this limit before incrementing. 1183 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1184 ICmpInst::Predicate *Pred, 1185 ScalarEvolution *SE) { 1186 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1187 *Pred = ICmpInst::ICMP_ULT; 1188 1189 return SE->getConstant(APInt::getMinValue(BitWidth) - 1190 SE->getUnsignedRange(Step).getUnsignedMax()); 1191 } 1192 1193 namespace { 1194 1195 struct ExtendOpTraitsBase { 1196 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1197 }; 1198 1199 // Used to make code generic over signed and unsigned overflow. 1200 template <typename ExtendOp> struct ExtendOpTraits { 1201 // Members present: 1202 // 1203 // static const SCEV::NoWrapFlags WrapType; 1204 // 1205 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1206 // 1207 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 // ICmpInst::Predicate *Pred, 1209 // ScalarEvolution *SE); 1210 }; 1211 1212 template <> 1213 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1214 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1215 1216 static const GetExtendExprTy GetExtendExpr; 1217 1218 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1219 ICmpInst::Predicate *Pred, 1220 ScalarEvolution *SE) { 1221 return getSignedOverflowLimitForStep(Step, Pred, SE); 1222 } 1223 }; 1224 1225 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1226 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1227 1228 template <> 1229 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1230 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1231 1232 static const GetExtendExprTy GetExtendExpr; 1233 1234 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1235 ICmpInst::Predicate *Pred, 1236 ScalarEvolution *SE) { 1237 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1238 } 1239 }; 1240 1241 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1242 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1243 } 1244 1245 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1246 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1247 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1248 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1249 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1250 // expression "Step + sext/zext(PreIncAR)" is congruent with 1251 // "sext/zext(PostIncAR)" 1252 template <typename ExtendOpTy> 1253 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1254 ScalarEvolution *SE) { 1255 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1256 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1257 1258 const Loop *L = AR->getLoop(); 1259 const SCEV *Start = AR->getStart(); 1260 const SCEV *Step = AR->getStepRecurrence(*SE); 1261 1262 // Check for a simple looking step prior to loop entry. 1263 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1264 if (!SA) 1265 return nullptr; 1266 1267 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1268 // subtraction is expensive. For this purpose, perform a quick and dirty 1269 // difference, by checking for Step in the operand list. 1270 SmallVector<const SCEV *, 4> DiffOps; 1271 for (const SCEV *Op : SA->operands()) 1272 if (Op != Step) 1273 DiffOps.push_back(Op); 1274 1275 if (DiffOps.size() == SA->getNumOperands()) 1276 return nullptr; 1277 1278 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1279 // `Step`: 1280 1281 // 1. NSW/NUW flags on the step increment. 1282 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1283 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1284 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1285 1286 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1287 // "S+X does not sign/unsign-overflow". 1288 // 1289 1290 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1291 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1292 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1293 return PreStart; 1294 1295 // 2. Direct overflow check on the step operation's expression. 1296 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1297 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1298 const SCEV *OperandExtendedStart = 1299 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1300 (SE->*GetExtendExpr)(Step, WideTy)); 1301 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1302 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1303 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1304 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1305 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1306 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1307 } 1308 return PreStart; 1309 } 1310 1311 // 3. Loop precondition. 1312 ICmpInst::Predicate Pred; 1313 const SCEV *OverflowLimit = 1314 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1315 1316 if (OverflowLimit && 1317 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1318 return PreStart; 1319 } 1320 return nullptr; 1321 } 1322 1323 // Get the normalized zero or sign extended expression for this AddRec's Start. 1324 template <typename ExtendOpTy> 1325 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1326 ScalarEvolution *SE) { 1327 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1328 1329 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1330 if (!PreStart) 1331 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1332 1333 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1334 (SE->*GetExtendExpr)(PreStart, Ty)); 1335 } 1336 1337 // Try to prove away overflow by looking at "nearby" add recurrences. A 1338 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1339 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1340 // 1341 // Formally: 1342 // 1343 // {S,+,X} == {S-T,+,X} + T 1344 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1345 // 1346 // If ({S-T,+,X} + T) does not overflow ... (1) 1347 // 1348 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1349 // 1350 // If {S-T,+,X} does not overflow ... (2) 1351 // 1352 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1353 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1354 // 1355 // If (S-T)+T does not overflow ... (3) 1356 // 1357 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1358 // == {Ext(S),+,Ext(X)} == LHS 1359 // 1360 // Thus, if (1), (2) and (3) are true for some T, then 1361 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1362 // 1363 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1364 // does not overflow" restricted to the 0th iteration. Therefore we only need 1365 // to check for (1) and (2). 1366 // 1367 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1368 // is `Delta` (defined below). 1369 // 1370 template <typename ExtendOpTy> 1371 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1372 const SCEV *Step, 1373 const Loop *L) { 1374 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1375 1376 // We restrict `Start` to a constant to prevent SCEV from spending too much 1377 // time here. It is correct (but more expensive) to continue with a 1378 // non-constant `Start` and do a general SCEV subtraction to compute 1379 // `PreStart` below. 1380 // 1381 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1382 if (!StartC) 1383 return false; 1384 1385 APInt StartAI = StartC->getValue()->getValue(); 1386 1387 for (unsigned Delta : {-2, -1, 1, 2}) { 1388 const SCEV *PreStart = getConstant(StartAI - Delta); 1389 1390 // Give up if we don't already have the add recurrence we need because 1391 // actually constructing an add recurrence is relatively expensive. 1392 const SCEVAddRecExpr *PreAR = [&]() { 1393 FoldingSetNodeID ID; 1394 ID.AddInteger(scAddRecExpr); 1395 ID.AddPointer(PreStart); 1396 ID.AddPointer(Step); 1397 ID.AddPointer(L); 1398 void *IP = nullptr; 1399 return static_cast<SCEVAddRecExpr *>( 1400 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1401 }(); 1402 1403 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1404 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1405 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1406 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1407 DeltaS, &Pred, this); 1408 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1409 return true; 1410 } 1411 } 1412 1413 return false; 1414 } 1415 1416 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1417 Type *Ty) { 1418 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1419 "This is not an extending conversion!"); 1420 assert(isSCEVable(Ty) && 1421 "This is not a conversion to a SCEVable type!"); 1422 Ty = getEffectiveSCEVType(Ty); 1423 1424 // Fold if the operand is constant. 1425 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1426 return getConstant( 1427 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1428 1429 // zext(zext(x)) --> zext(x) 1430 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1431 return getZeroExtendExpr(SZ->getOperand(), Ty); 1432 1433 // Before doing any expensive analysis, check to see if we've already 1434 // computed a SCEV for this Op and Ty. 1435 FoldingSetNodeID ID; 1436 ID.AddInteger(scZeroExtend); 1437 ID.AddPointer(Op); 1438 ID.AddPointer(Ty); 1439 void *IP = nullptr; 1440 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1441 1442 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1443 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1444 // It's possible the bits taken off by the truncate were all zero bits. If 1445 // so, we should be able to simplify this further. 1446 const SCEV *X = ST->getOperand(); 1447 ConstantRange CR = getUnsignedRange(X); 1448 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1449 unsigned NewBits = getTypeSizeInBits(Ty); 1450 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1451 CR.zextOrTrunc(NewBits))) 1452 return getTruncateOrZeroExtend(X, Ty); 1453 } 1454 1455 // If the input value is a chrec scev, and we can prove that the value 1456 // did not overflow the old, smaller, value, we can zero extend all of the 1457 // operands (often constants). This allows analysis of something like 1458 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1459 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1460 if (AR->isAffine()) { 1461 const SCEV *Start = AR->getStart(); 1462 const SCEV *Step = AR->getStepRecurrence(*this); 1463 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1464 const Loop *L = AR->getLoop(); 1465 1466 // If we have special knowledge that this addrec won't overflow, 1467 // we don't need to do any further analysis. 1468 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1469 return getAddRecExpr( 1470 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1471 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1472 1473 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1474 // Note that this serves two purposes: It filters out loops that are 1475 // simply not analyzable, and it covers the case where this code is 1476 // being called from within backedge-taken count analysis, such that 1477 // attempting to ask for the backedge-taken count would likely result 1478 // in infinite recursion. In the later case, the analysis code will 1479 // cope with a conservative value, and it will take care to purge 1480 // that value once it has finished. 1481 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1482 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1483 // Manually compute the final value for AR, checking for 1484 // overflow. 1485 1486 // Check whether the backedge-taken count can be losslessly casted to 1487 // the addrec's type. The count is always unsigned. 1488 const SCEV *CastedMaxBECount = 1489 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1490 const SCEV *RecastedMaxBECount = 1491 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1492 if (MaxBECount == RecastedMaxBECount) { 1493 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1494 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1495 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1496 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1497 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1498 const SCEV *WideMaxBECount = 1499 getZeroExtendExpr(CastedMaxBECount, WideTy); 1500 const SCEV *OperandExtendedAdd = 1501 getAddExpr(WideStart, 1502 getMulExpr(WideMaxBECount, 1503 getZeroExtendExpr(Step, WideTy))); 1504 if (ZAdd == OperandExtendedAdd) { 1505 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1506 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1507 // Return the expression with the addrec on the outside. 1508 return getAddRecExpr( 1509 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1510 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1511 } 1512 // Similar to above, only this time treat the step value as signed. 1513 // This covers loops that count down. 1514 OperandExtendedAdd = 1515 getAddExpr(WideStart, 1516 getMulExpr(WideMaxBECount, 1517 getSignExtendExpr(Step, WideTy))); 1518 if (ZAdd == OperandExtendedAdd) { 1519 // Cache knowledge of AR NW, which is propagated to this AddRec. 1520 // Negative step causes unsigned wrap, but it still can't self-wrap. 1521 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1522 // Return the expression with the addrec on the outside. 1523 return getAddRecExpr( 1524 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1525 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1526 } 1527 } 1528 1529 // If the backedge is guarded by a comparison with the pre-inc value 1530 // the addrec is safe. Also, if the entry is guarded by a comparison 1531 // with the start value and the backedge is guarded by a comparison 1532 // with the post-inc value, the addrec is safe. 1533 if (isKnownPositive(Step)) { 1534 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1535 getUnsignedRange(Step).getUnsignedMax()); 1536 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1537 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1538 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1539 AR->getPostIncExpr(*this), N))) { 1540 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1541 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1542 // Return the expression with the addrec on the outside. 1543 return getAddRecExpr( 1544 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1545 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1546 } 1547 } else if (isKnownNegative(Step)) { 1548 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1549 getSignedRange(Step).getSignedMin()); 1550 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1551 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1552 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1553 AR->getPostIncExpr(*this), N))) { 1554 // Cache knowledge of AR NW, which is propagated to this AddRec. 1555 // Negative step causes unsigned wrap, but it still can't self-wrap. 1556 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1557 // Return the expression with the addrec on the outside. 1558 return getAddRecExpr( 1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1560 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1561 } 1562 } 1563 } 1564 1565 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1566 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1567 return getAddRecExpr( 1568 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1569 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1570 } 1571 } 1572 1573 // The cast wasn't folded; create an explicit cast node. 1574 // Recompute the insert position, as it may have been invalidated. 1575 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1576 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1577 Op, Ty); 1578 UniqueSCEVs.InsertNode(S, IP); 1579 return S; 1580 } 1581 1582 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1583 Type *Ty) { 1584 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1585 "This is not an extending conversion!"); 1586 assert(isSCEVable(Ty) && 1587 "This is not a conversion to a SCEVable type!"); 1588 Ty = getEffectiveSCEVType(Ty); 1589 1590 // Fold if the operand is constant. 1591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1592 return getConstant( 1593 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1594 1595 // sext(sext(x)) --> sext(x) 1596 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1597 return getSignExtendExpr(SS->getOperand(), Ty); 1598 1599 // sext(zext(x)) --> zext(x) 1600 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1601 return getZeroExtendExpr(SZ->getOperand(), Ty); 1602 1603 // Before doing any expensive analysis, check to see if we've already 1604 // computed a SCEV for this Op and Ty. 1605 FoldingSetNodeID ID; 1606 ID.AddInteger(scSignExtend); 1607 ID.AddPointer(Op); 1608 ID.AddPointer(Ty); 1609 void *IP = nullptr; 1610 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1611 1612 // If the input value is provably positive, build a zext instead. 1613 if (isKnownNonNegative(Op)) 1614 return getZeroExtendExpr(Op, Ty); 1615 1616 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1617 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1618 // It's possible the bits taken off by the truncate were all sign bits. If 1619 // so, we should be able to simplify this further. 1620 const SCEV *X = ST->getOperand(); 1621 ConstantRange CR = getSignedRange(X); 1622 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1623 unsigned NewBits = getTypeSizeInBits(Ty); 1624 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1625 CR.sextOrTrunc(NewBits))) 1626 return getTruncateOrSignExtend(X, Ty); 1627 } 1628 1629 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1630 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1631 if (SA->getNumOperands() == 2) { 1632 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1633 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1634 if (SMul && SC1) { 1635 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1636 const APInt &C1 = SC1->getValue()->getValue(); 1637 const APInt &C2 = SC2->getValue()->getValue(); 1638 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1639 C2.ugt(C1) && C2.isPowerOf2()) 1640 return getAddExpr(getSignExtendExpr(SC1, Ty), 1641 getSignExtendExpr(SMul, Ty)); 1642 } 1643 } 1644 } 1645 } 1646 // If the input value is a chrec scev, and we can prove that the value 1647 // did not overflow the old, smaller, value, we can sign extend all of the 1648 // operands (often constants). This allows analysis of something like 1649 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1650 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1651 if (AR->isAffine()) { 1652 const SCEV *Start = AR->getStart(); 1653 const SCEV *Step = AR->getStepRecurrence(*this); 1654 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1655 const Loop *L = AR->getLoop(); 1656 1657 // If we have special knowledge that this addrec won't overflow, 1658 // we don't need to do any further analysis. 1659 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1660 return getAddRecExpr( 1661 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1662 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1663 1664 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1665 // Note that this serves two purposes: It filters out loops that are 1666 // simply not analyzable, and it covers the case where this code is 1667 // being called from within backedge-taken count analysis, such that 1668 // attempting to ask for the backedge-taken count would likely result 1669 // in infinite recursion. In the later case, the analysis code will 1670 // cope with a conservative value, and it will take care to purge 1671 // that value once it has finished. 1672 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1674 // Manually compute the final value for AR, checking for 1675 // overflow. 1676 1677 // Check whether the backedge-taken count can be losslessly casted to 1678 // the addrec's type. The count is always unsigned. 1679 const SCEV *CastedMaxBECount = 1680 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1681 const SCEV *RecastedMaxBECount = 1682 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1683 if (MaxBECount == RecastedMaxBECount) { 1684 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1685 // Check whether Start+Step*MaxBECount has no signed overflow. 1686 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1687 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1688 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1689 const SCEV *WideMaxBECount = 1690 getZeroExtendExpr(CastedMaxBECount, WideTy); 1691 const SCEV *OperandExtendedAdd = 1692 getAddExpr(WideStart, 1693 getMulExpr(WideMaxBECount, 1694 getSignExtendExpr(Step, WideTy))); 1695 if (SAdd == OperandExtendedAdd) { 1696 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1697 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1698 // Return the expression with the addrec on the outside. 1699 return getAddRecExpr( 1700 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1701 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1702 } 1703 // Similar to above, only this time treat the step value as unsigned. 1704 // This covers loops that count up with an unsigned step. 1705 OperandExtendedAdd = 1706 getAddExpr(WideStart, 1707 getMulExpr(WideMaxBECount, 1708 getZeroExtendExpr(Step, WideTy))); 1709 if (SAdd == OperandExtendedAdd) { 1710 // If AR wraps around then 1711 // 1712 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1713 // => SAdd != OperandExtendedAdd 1714 // 1715 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1716 // (SAdd == OperandExtendedAdd => AR is NW) 1717 1718 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1719 1720 // Return the expression with the addrec on the outside. 1721 return getAddRecExpr( 1722 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1723 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1724 } 1725 } 1726 1727 // If the backedge is guarded by a comparison with the pre-inc value 1728 // the addrec is safe. Also, if the entry is guarded by a comparison 1729 // with the start value and the backedge is guarded by a comparison 1730 // with the post-inc value, the addrec is safe. 1731 ICmpInst::Predicate Pred; 1732 const SCEV *OverflowLimit = 1733 getSignedOverflowLimitForStep(Step, &Pred, this); 1734 if (OverflowLimit && 1735 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1736 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1737 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1738 OverflowLimit)))) { 1739 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1740 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1741 return getAddRecExpr( 1742 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1743 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1744 } 1745 } 1746 // If Start and Step are constants, check if we can apply this 1747 // transformation: 1748 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1749 auto SC1 = dyn_cast<SCEVConstant>(Start); 1750 auto SC2 = dyn_cast<SCEVConstant>(Step); 1751 if (SC1 && SC2) { 1752 const APInt &C1 = SC1->getValue()->getValue(); 1753 const APInt &C2 = SC2->getValue()->getValue(); 1754 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1755 C2.isPowerOf2()) { 1756 Start = getSignExtendExpr(Start, Ty); 1757 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1758 L, AR->getNoWrapFlags()); 1759 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1760 } 1761 } 1762 1763 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1764 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1765 return getAddRecExpr( 1766 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1767 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1768 } 1769 } 1770 1771 // The cast wasn't folded; create an explicit cast node. 1772 // Recompute the insert position, as it may have been invalidated. 1773 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1774 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1775 Op, Ty); 1776 UniqueSCEVs.InsertNode(S, IP); 1777 return S; 1778 } 1779 1780 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1781 /// unspecified bits out to the given type. 1782 /// 1783 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1784 Type *Ty) { 1785 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1786 "This is not an extending conversion!"); 1787 assert(isSCEVable(Ty) && 1788 "This is not a conversion to a SCEVable type!"); 1789 Ty = getEffectiveSCEVType(Ty); 1790 1791 // Sign-extend negative constants. 1792 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1793 if (SC->getValue()->getValue().isNegative()) 1794 return getSignExtendExpr(Op, Ty); 1795 1796 // Peel off a truncate cast. 1797 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1798 const SCEV *NewOp = T->getOperand(); 1799 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1800 return getAnyExtendExpr(NewOp, Ty); 1801 return getTruncateOrNoop(NewOp, Ty); 1802 } 1803 1804 // Next try a zext cast. If the cast is folded, use it. 1805 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1806 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1807 return ZExt; 1808 1809 // Next try a sext cast. If the cast is folded, use it. 1810 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1811 if (!isa<SCEVSignExtendExpr>(SExt)) 1812 return SExt; 1813 1814 // Force the cast to be folded into the operands of an addrec. 1815 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1816 SmallVector<const SCEV *, 4> Ops; 1817 for (const SCEV *Op : AR->operands()) 1818 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1819 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1820 } 1821 1822 // If the expression is obviously signed, use the sext cast value. 1823 if (isa<SCEVSMaxExpr>(Op)) 1824 return SExt; 1825 1826 // Absent any other information, use the zext cast value. 1827 return ZExt; 1828 } 1829 1830 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1831 /// a list of operands to be added under the given scale, update the given 1832 /// map. This is a helper function for getAddRecExpr. As an example of 1833 /// what it does, given a sequence of operands that would form an add 1834 /// expression like this: 1835 /// 1836 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1837 /// 1838 /// where A and B are constants, update the map with these values: 1839 /// 1840 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1841 /// 1842 /// and add 13 + A*B*29 to AccumulatedConstant. 1843 /// This will allow getAddRecExpr to produce this: 1844 /// 1845 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1846 /// 1847 /// This form often exposes folding opportunities that are hidden in 1848 /// the original operand list. 1849 /// 1850 /// Return true iff it appears that any interesting folding opportunities 1851 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1852 /// the common case where no interesting opportunities are present, and 1853 /// is also used as a check to avoid infinite recursion. 1854 /// 1855 static bool 1856 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1857 SmallVectorImpl<const SCEV *> &NewOps, 1858 APInt &AccumulatedConstant, 1859 const SCEV *const *Ops, size_t NumOperands, 1860 const APInt &Scale, 1861 ScalarEvolution &SE) { 1862 bool Interesting = false; 1863 1864 // Iterate over the add operands. They are sorted, with constants first. 1865 unsigned i = 0; 1866 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1867 ++i; 1868 // Pull a buried constant out to the outside. 1869 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1870 Interesting = true; 1871 AccumulatedConstant += Scale * C->getValue()->getValue(); 1872 } 1873 1874 // Next comes everything else. We're especially interested in multiplies 1875 // here, but they're in the middle, so just visit the rest with one loop. 1876 for (; i != NumOperands; ++i) { 1877 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1878 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1879 APInt NewScale = 1880 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1881 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1882 // A multiplication of a constant with another add; recurse. 1883 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1884 Interesting |= 1885 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1886 Add->op_begin(), Add->getNumOperands(), 1887 NewScale, SE); 1888 } else { 1889 // A multiplication of a constant with some other value. Update 1890 // the map. 1891 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1892 const SCEV *Key = SE.getMulExpr(MulOps); 1893 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1894 M.insert(std::make_pair(Key, NewScale)); 1895 if (Pair.second) { 1896 NewOps.push_back(Pair.first->first); 1897 } else { 1898 Pair.first->second += NewScale; 1899 // The map already had an entry for this value, which may indicate 1900 // a folding opportunity. 1901 Interesting = true; 1902 } 1903 } 1904 } else { 1905 // An ordinary operand. Update the map. 1906 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1907 M.insert(std::make_pair(Ops[i], Scale)); 1908 if (Pair.second) { 1909 NewOps.push_back(Pair.first->first); 1910 } else { 1911 Pair.first->second += Scale; 1912 // The map already had an entry for this value, which may indicate 1913 // a folding opportunity. 1914 Interesting = true; 1915 } 1916 } 1917 } 1918 1919 return Interesting; 1920 } 1921 1922 namespace { 1923 struct APIntCompare { 1924 bool operator()(const APInt &LHS, const APInt &RHS) const { 1925 return LHS.ult(RHS); 1926 } 1927 }; 1928 } 1929 1930 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1931 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1932 // can't-overflow flags for the operation if possible. 1933 static SCEV::NoWrapFlags 1934 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1935 const SmallVectorImpl<const SCEV *> &Ops, 1936 SCEV::NoWrapFlags OldFlags) { 1937 using namespace std::placeholders; 1938 1939 bool CanAnalyze = 1940 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1941 (void)CanAnalyze; 1942 assert(CanAnalyze && "don't call from other places!"); 1943 1944 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1945 SCEV::NoWrapFlags SignOrUnsignWrap = 1946 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1947 1948 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1949 auto IsKnownNonNegative = 1950 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1951 1952 if (SignOrUnsignWrap == SCEV::FlagNSW && 1953 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1954 return ScalarEvolution::setFlags(OldFlags, 1955 (SCEV::NoWrapFlags)SignOrUnsignMask); 1956 1957 return OldFlags; 1958 } 1959 1960 /// getAddExpr - Get a canonical add expression, or something simpler if 1961 /// possible. 1962 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1963 SCEV::NoWrapFlags Flags) { 1964 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1965 "only nuw or nsw allowed"); 1966 assert(!Ops.empty() && "Cannot get empty add!"); 1967 if (Ops.size() == 1) return Ops[0]; 1968 #ifndef NDEBUG 1969 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1970 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1971 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1972 "SCEVAddExpr operand types don't match!"); 1973 #endif 1974 1975 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1976 1977 // Sort by complexity, this groups all similar expression types together. 1978 GroupByComplexity(Ops, LI); 1979 1980 // If there are any constants, fold them together. 1981 unsigned Idx = 0; 1982 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1983 ++Idx; 1984 assert(Idx < Ops.size()); 1985 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1986 // We found two constants, fold them together! 1987 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1988 RHSC->getValue()->getValue()); 1989 if (Ops.size() == 2) return Ops[0]; 1990 Ops.erase(Ops.begin()+1); // Erase the folded element 1991 LHSC = cast<SCEVConstant>(Ops[0]); 1992 } 1993 1994 // If we are left with a constant zero being added, strip it off. 1995 if (LHSC->getValue()->isZero()) { 1996 Ops.erase(Ops.begin()); 1997 --Idx; 1998 } 1999 2000 if (Ops.size() == 1) return Ops[0]; 2001 } 2002 2003 // Okay, check to see if the same value occurs in the operand list more than 2004 // once. If so, merge them together into an multiply expression. Since we 2005 // sorted the list, these values are required to be adjacent. 2006 Type *Ty = Ops[0]->getType(); 2007 bool FoundMatch = false; 2008 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2009 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2010 // Scan ahead to count how many equal operands there are. 2011 unsigned Count = 2; 2012 while (i+Count != e && Ops[i+Count] == Ops[i]) 2013 ++Count; 2014 // Merge the values into a multiply. 2015 const SCEV *Scale = getConstant(Ty, Count); 2016 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2017 if (Ops.size() == Count) 2018 return Mul; 2019 Ops[i] = Mul; 2020 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2021 --i; e -= Count - 1; 2022 FoundMatch = true; 2023 } 2024 if (FoundMatch) 2025 return getAddExpr(Ops, Flags); 2026 2027 // Check for truncates. If all the operands are truncated from the same 2028 // type, see if factoring out the truncate would permit the result to be 2029 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2030 // if the contents of the resulting outer trunc fold to something simple. 2031 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2032 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2033 Type *DstType = Trunc->getType(); 2034 Type *SrcType = Trunc->getOperand()->getType(); 2035 SmallVector<const SCEV *, 8> LargeOps; 2036 bool Ok = true; 2037 // Check all the operands to see if they can be represented in the 2038 // source type of the truncate. 2039 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2040 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeOps.push_back(T->getOperand()); 2046 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2047 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2048 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2049 SmallVector<const SCEV *, 8> LargeMulOps; 2050 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2051 if (const SCEVTruncateExpr *T = 2052 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2053 if (T->getOperand()->getType() != SrcType) { 2054 Ok = false; 2055 break; 2056 } 2057 LargeMulOps.push_back(T->getOperand()); 2058 } else if (const SCEVConstant *C = 2059 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2060 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2061 } else { 2062 Ok = false; 2063 break; 2064 } 2065 } 2066 if (Ok) 2067 LargeOps.push_back(getMulExpr(LargeMulOps)); 2068 } else { 2069 Ok = false; 2070 break; 2071 } 2072 } 2073 if (Ok) { 2074 // Evaluate the expression in the larger type. 2075 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2076 // If it folds to something simple, use it. Otherwise, don't. 2077 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2078 return getTruncateExpr(Fold, DstType); 2079 } 2080 } 2081 2082 // Skip past any other cast SCEVs. 2083 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2084 ++Idx; 2085 2086 // If there are add operands they would be next. 2087 if (Idx < Ops.size()) { 2088 bool DeletedAdd = false; 2089 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2090 // If we have an add, expand the add operands onto the end of the operands 2091 // list. 2092 Ops.erase(Ops.begin()+Idx); 2093 Ops.append(Add->op_begin(), Add->op_end()); 2094 DeletedAdd = true; 2095 } 2096 2097 // If we deleted at least one add, we added operands to the end of the list, 2098 // and they are not necessarily sorted. Recurse to resort and resimplify 2099 // any operands we just acquired. 2100 if (DeletedAdd) 2101 return getAddExpr(Ops); 2102 } 2103 2104 // Skip over the add expression until we get to a multiply. 2105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2106 ++Idx; 2107 2108 // Check to see if there are any folding opportunities present with 2109 // operands multiplied by constant values. 2110 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2111 uint64_t BitWidth = getTypeSizeInBits(Ty); 2112 DenseMap<const SCEV *, APInt> M; 2113 SmallVector<const SCEV *, 8> NewOps; 2114 APInt AccumulatedConstant(BitWidth, 0); 2115 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2116 Ops.data(), Ops.size(), 2117 APInt(BitWidth, 1), *this)) { 2118 // Some interesting folding opportunity is present, so its worthwhile to 2119 // re-generate the operands list. Group the operands by constant scale, 2120 // to avoid multiplying by the same constant scale multiple times. 2121 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2122 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2123 E = NewOps.end(); I != E; ++I) 2124 MulOpLists[M.find(*I)->second].push_back(*I); 2125 // Re-generate the operands list. 2126 Ops.clear(); 2127 if (AccumulatedConstant != 0) 2128 Ops.push_back(getConstant(AccumulatedConstant)); 2129 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2130 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2131 if (I->first != 0) 2132 Ops.push_back(getMulExpr(getConstant(I->first), 2133 getAddExpr(I->second))); 2134 if (Ops.empty()) 2135 return getConstant(Ty, 0); 2136 if (Ops.size() == 1) 2137 return Ops[0]; 2138 return getAddExpr(Ops); 2139 } 2140 } 2141 2142 // If we are adding something to a multiply expression, make sure the 2143 // something is not already an operand of the multiply. If so, merge it into 2144 // the multiply. 2145 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2146 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2147 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2148 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2149 if (isa<SCEVConstant>(MulOpSCEV)) 2150 continue; 2151 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2152 if (MulOpSCEV == Ops[AddOp]) { 2153 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2154 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2155 if (Mul->getNumOperands() != 2) { 2156 // If the multiply has more than two operands, we must get the 2157 // Y*Z term. 2158 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2159 Mul->op_begin()+MulOp); 2160 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2161 InnerMul = getMulExpr(MulOps); 2162 } 2163 const SCEV *One = getConstant(Ty, 1); 2164 const SCEV *AddOne = getAddExpr(One, InnerMul); 2165 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2166 if (Ops.size() == 2) return OuterMul; 2167 if (AddOp < Idx) { 2168 Ops.erase(Ops.begin()+AddOp); 2169 Ops.erase(Ops.begin()+Idx-1); 2170 } else { 2171 Ops.erase(Ops.begin()+Idx); 2172 Ops.erase(Ops.begin()+AddOp-1); 2173 } 2174 Ops.push_back(OuterMul); 2175 return getAddExpr(Ops); 2176 } 2177 2178 // Check this multiply against other multiplies being added together. 2179 for (unsigned OtherMulIdx = Idx+1; 2180 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2181 ++OtherMulIdx) { 2182 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2183 // If MulOp occurs in OtherMul, we can fold the two multiplies 2184 // together. 2185 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2186 OMulOp != e; ++OMulOp) 2187 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2188 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2189 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2190 if (Mul->getNumOperands() != 2) { 2191 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2192 Mul->op_begin()+MulOp); 2193 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2194 InnerMul1 = getMulExpr(MulOps); 2195 } 2196 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2197 if (OtherMul->getNumOperands() != 2) { 2198 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2199 OtherMul->op_begin()+OMulOp); 2200 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2201 InnerMul2 = getMulExpr(MulOps); 2202 } 2203 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2204 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2205 if (Ops.size() == 2) return OuterMul; 2206 Ops.erase(Ops.begin()+Idx); 2207 Ops.erase(Ops.begin()+OtherMulIdx-1); 2208 Ops.push_back(OuterMul); 2209 return getAddExpr(Ops); 2210 } 2211 } 2212 } 2213 } 2214 2215 // If there are any add recurrences in the operands list, see if any other 2216 // added values are loop invariant. If so, we can fold them into the 2217 // recurrence. 2218 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2219 ++Idx; 2220 2221 // Scan over all recurrences, trying to fold loop invariants into them. 2222 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2223 // Scan all of the other operands to this add and add them to the vector if 2224 // they are loop invariant w.r.t. the recurrence. 2225 SmallVector<const SCEV *, 8> LIOps; 2226 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2227 const Loop *AddRecLoop = AddRec->getLoop(); 2228 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2229 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2230 LIOps.push_back(Ops[i]); 2231 Ops.erase(Ops.begin()+i); 2232 --i; --e; 2233 } 2234 2235 // If we found some loop invariants, fold them into the recurrence. 2236 if (!LIOps.empty()) { 2237 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2238 LIOps.push_back(AddRec->getStart()); 2239 2240 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2241 AddRec->op_end()); 2242 AddRecOps[0] = getAddExpr(LIOps); 2243 2244 // Build the new addrec. Propagate the NUW and NSW flags if both the 2245 // outer add and the inner addrec are guaranteed to have no overflow. 2246 // Always propagate NW. 2247 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2248 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2249 2250 // If all of the other operands were loop invariant, we are done. 2251 if (Ops.size() == 1) return NewRec; 2252 2253 // Otherwise, add the folded AddRec by the non-invariant parts. 2254 for (unsigned i = 0;; ++i) 2255 if (Ops[i] == AddRec) { 2256 Ops[i] = NewRec; 2257 break; 2258 } 2259 return getAddExpr(Ops); 2260 } 2261 2262 // Okay, if there weren't any loop invariants to be folded, check to see if 2263 // there are multiple AddRec's with the same loop induction variable being 2264 // added together. If so, we can fold them. 2265 for (unsigned OtherIdx = Idx+1; 2266 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2267 ++OtherIdx) 2268 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2269 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2270 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2271 AddRec->op_end()); 2272 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2273 ++OtherIdx) 2274 if (const SCEVAddRecExpr *OtherAddRec = 2275 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2276 if (OtherAddRec->getLoop() == AddRecLoop) { 2277 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2278 i != e; ++i) { 2279 if (i >= AddRecOps.size()) { 2280 AddRecOps.append(OtherAddRec->op_begin()+i, 2281 OtherAddRec->op_end()); 2282 break; 2283 } 2284 AddRecOps[i] = getAddExpr(AddRecOps[i], 2285 OtherAddRec->getOperand(i)); 2286 } 2287 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2288 } 2289 // Step size has changed, so we cannot guarantee no self-wraparound. 2290 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2291 return getAddExpr(Ops); 2292 } 2293 2294 // Otherwise couldn't fold anything into this recurrence. Move onto the 2295 // next one. 2296 } 2297 2298 // Okay, it looks like we really DO need an add expr. Check to see if we 2299 // already have one, otherwise create a new one. 2300 FoldingSetNodeID ID; 2301 ID.AddInteger(scAddExpr); 2302 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2303 ID.AddPointer(Ops[i]); 2304 void *IP = nullptr; 2305 SCEVAddExpr *S = 2306 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2307 if (!S) { 2308 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2309 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2310 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2311 O, Ops.size()); 2312 UniqueSCEVs.InsertNode(S, IP); 2313 } 2314 S->setNoWrapFlags(Flags); 2315 return S; 2316 } 2317 2318 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2319 uint64_t k = i*j; 2320 if (j > 1 && k / j != i) Overflow = true; 2321 return k; 2322 } 2323 2324 /// Compute the result of "n choose k", the binomial coefficient. If an 2325 /// intermediate computation overflows, Overflow will be set and the return will 2326 /// be garbage. Overflow is not cleared on absence of overflow. 2327 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2328 // We use the multiplicative formula: 2329 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2330 // At each iteration, we take the n-th term of the numeral and divide by the 2331 // (k-n)th term of the denominator. This division will always produce an 2332 // integral result, and helps reduce the chance of overflow in the 2333 // intermediate computations. However, we can still overflow even when the 2334 // final result would fit. 2335 2336 if (n == 0 || n == k) return 1; 2337 if (k > n) return 0; 2338 2339 if (k > n/2) 2340 k = n-k; 2341 2342 uint64_t r = 1; 2343 for (uint64_t i = 1; i <= k; ++i) { 2344 r = umul_ov(r, n-(i-1), Overflow); 2345 r /= i; 2346 } 2347 return r; 2348 } 2349 2350 /// Determine if any of the operands in this SCEV are a constant or if 2351 /// any of the add or multiply expressions in this SCEV contain a constant. 2352 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2353 SmallVector<const SCEV *, 4> Ops; 2354 Ops.push_back(StartExpr); 2355 while (!Ops.empty()) { 2356 const SCEV *CurrentExpr = Ops.pop_back_val(); 2357 if (isa<SCEVConstant>(*CurrentExpr)) 2358 return true; 2359 2360 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2361 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2362 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2363 } 2364 } 2365 return false; 2366 } 2367 2368 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2369 /// possible. 2370 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2371 SCEV::NoWrapFlags Flags) { 2372 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2373 "only nuw or nsw allowed"); 2374 assert(!Ops.empty() && "Cannot get empty mul!"); 2375 if (Ops.size() == 1) return Ops[0]; 2376 #ifndef NDEBUG 2377 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2378 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2379 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2380 "SCEVMulExpr operand types don't match!"); 2381 #endif 2382 2383 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2384 2385 // Sort by complexity, this groups all similar expression types together. 2386 GroupByComplexity(Ops, LI); 2387 2388 // If there are any constants, fold them together. 2389 unsigned Idx = 0; 2390 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2391 2392 // C1*(C2+V) -> C1*C2 + C1*V 2393 if (Ops.size() == 2) 2394 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2395 // If any of Add's ops are Adds or Muls with a constant, 2396 // apply this transformation as well. 2397 if (Add->getNumOperands() == 2) 2398 if (containsConstantSomewhere(Add)) 2399 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2400 getMulExpr(LHSC, Add->getOperand(1))); 2401 2402 ++Idx; 2403 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2404 // We found two constants, fold them together! 2405 ConstantInt *Fold = ConstantInt::get(getContext(), 2406 LHSC->getValue()->getValue() * 2407 RHSC->getValue()->getValue()); 2408 Ops[0] = getConstant(Fold); 2409 Ops.erase(Ops.begin()+1); // Erase the folded element 2410 if (Ops.size() == 1) return Ops[0]; 2411 LHSC = cast<SCEVConstant>(Ops[0]); 2412 } 2413 2414 // If we are left with a constant one being multiplied, strip it off. 2415 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2416 Ops.erase(Ops.begin()); 2417 --Idx; 2418 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2419 // If we have a multiply of zero, it will always be zero. 2420 return Ops[0]; 2421 } else if (Ops[0]->isAllOnesValue()) { 2422 // If we have a mul by -1 of an add, try distributing the -1 among the 2423 // add operands. 2424 if (Ops.size() == 2) { 2425 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2426 SmallVector<const SCEV *, 4> NewOps; 2427 bool AnyFolded = false; 2428 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2429 E = Add->op_end(); I != E; ++I) { 2430 const SCEV *Mul = getMulExpr(Ops[0], *I); 2431 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2432 NewOps.push_back(Mul); 2433 } 2434 if (AnyFolded) 2435 return getAddExpr(NewOps); 2436 } 2437 else if (const SCEVAddRecExpr * 2438 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2439 // Negation preserves a recurrence's no self-wrap property. 2440 SmallVector<const SCEV *, 4> Operands; 2441 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2442 E = AddRec->op_end(); I != E; ++I) { 2443 Operands.push_back(getMulExpr(Ops[0], *I)); 2444 } 2445 return getAddRecExpr(Operands, AddRec->getLoop(), 2446 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2447 } 2448 } 2449 } 2450 2451 if (Ops.size() == 1) 2452 return Ops[0]; 2453 } 2454 2455 // Skip over the add expression until we get to a multiply. 2456 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2457 ++Idx; 2458 2459 // If there are mul operands inline them all into this expression. 2460 if (Idx < Ops.size()) { 2461 bool DeletedMul = false; 2462 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2463 // If we have an mul, expand the mul operands onto the end of the operands 2464 // list. 2465 Ops.erase(Ops.begin()+Idx); 2466 Ops.append(Mul->op_begin(), Mul->op_end()); 2467 DeletedMul = true; 2468 } 2469 2470 // If we deleted at least one mul, we added operands to the end of the list, 2471 // and they are not necessarily sorted. Recurse to resort and resimplify 2472 // any operands we just acquired. 2473 if (DeletedMul) 2474 return getMulExpr(Ops); 2475 } 2476 2477 // If there are any add recurrences in the operands list, see if any other 2478 // added values are loop invariant. If so, we can fold them into the 2479 // recurrence. 2480 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2481 ++Idx; 2482 2483 // Scan over all recurrences, trying to fold loop invariants into them. 2484 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2485 // Scan all of the other operands to this mul and add them to the vector if 2486 // they are loop invariant w.r.t. the recurrence. 2487 SmallVector<const SCEV *, 8> LIOps; 2488 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2489 const Loop *AddRecLoop = AddRec->getLoop(); 2490 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2491 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2492 LIOps.push_back(Ops[i]); 2493 Ops.erase(Ops.begin()+i); 2494 --i; --e; 2495 } 2496 2497 // If we found some loop invariants, fold them into the recurrence. 2498 if (!LIOps.empty()) { 2499 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2500 SmallVector<const SCEV *, 4> NewOps; 2501 NewOps.reserve(AddRec->getNumOperands()); 2502 const SCEV *Scale = getMulExpr(LIOps); 2503 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2504 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2505 2506 // Build the new addrec. Propagate the NUW and NSW flags if both the 2507 // outer mul and the inner addrec are guaranteed to have no overflow. 2508 // 2509 // No self-wrap cannot be guaranteed after changing the step size, but 2510 // will be inferred if either NUW or NSW is true. 2511 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2512 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2513 2514 // If all of the other operands were loop invariant, we are done. 2515 if (Ops.size() == 1) return NewRec; 2516 2517 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2518 for (unsigned i = 0;; ++i) 2519 if (Ops[i] == AddRec) { 2520 Ops[i] = NewRec; 2521 break; 2522 } 2523 return getMulExpr(Ops); 2524 } 2525 2526 // Okay, if there weren't any loop invariants to be folded, check to see if 2527 // there are multiple AddRec's with the same loop induction variable being 2528 // multiplied together. If so, we can fold them. 2529 2530 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2531 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2532 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2533 // ]]],+,...up to x=2n}. 2534 // Note that the arguments to choose() are always integers with values 2535 // known at compile time, never SCEV objects. 2536 // 2537 // The implementation avoids pointless extra computations when the two 2538 // addrec's are of different length (mathematically, it's equivalent to 2539 // an infinite stream of zeros on the right). 2540 bool OpsModified = false; 2541 for (unsigned OtherIdx = Idx+1; 2542 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2543 ++OtherIdx) { 2544 const SCEVAddRecExpr *OtherAddRec = 2545 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2546 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2547 continue; 2548 2549 bool Overflow = false; 2550 Type *Ty = AddRec->getType(); 2551 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2552 SmallVector<const SCEV*, 7> AddRecOps; 2553 for (int x = 0, xe = AddRec->getNumOperands() + 2554 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2555 const SCEV *Term = getConstant(Ty, 0); 2556 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2557 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2558 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2559 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2560 z < ze && !Overflow; ++z) { 2561 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2562 uint64_t Coeff; 2563 if (LargerThan64Bits) 2564 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2565 else 2566 Coeff = Coeff1*Coeff2; 2567 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2568 const SCEV *Term1 = AddRec->getOperand(y-z); 2569 const SCEV *Term2 = OtherAddRec->getOperand(z); 2570 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2571 } 2572 } 2573 AddRecOps.push_back(Term); 2574 } 2575 if (!Overflow) { 2576 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2577 SCEV::FlagAnyWrap); 2578 if (Ops.size() == 2) return NewAddRec; 2579 Ops[Idx] = NewAddRec; 2580 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2581 OpsModified = true; 2582 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2583 if (!AddRec) 2584 break; 2585 } 2586 } 2587 if (OpsModified) 2588 return getMulExpr(Ops); 2589 2590 // Otherwise couldn't fold anything into this recurrence. Move onto the 2591 // next one. 2592 } 2593 2594 // Okay, it looks like we really DO need an mul expr. Check to see if we 2595 // already have one, otherwise create a new one. 2596 FoldingSetNodeID ID; 2597 ID.AddInteger(scMulExpr); 2598 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2599 ID.AddPointer(Ops[i]); 2600 void *IP = nullptr; 2601 SCEVMulExpr *S = 2602 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2603 if (!S) { 2604 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2605 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2606 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2607 O, Ops.size()); 2608 UniqueSCEVs.InsertNode(S, IP); 2609 } 2610 S->setNoWrapFlags(Flags); 2611 return S; 2612 } 2613 2614 /// getUDivExpr - Get a canonical unsigned division expression, or something 2615 /// simpler if possible. 2616 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2617 const SCEV *RHS) { 2618 assert(getEffectiveSCEVType(LHS->getType()) == 2619 getEffectiveSCEVType(RHS->getType()) && 2620 "SCEVUDivExpr operand types don't match!"); 2621 2622 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2623 if (RHSC->getValue()->equalsInt(1)) 2624 return LHS; // X udiv 1 --> x 2625 // If the denominator is zero, the result of the udiv is undefined. Don't 2626 // try to analyze it, because the resolution chosen here may differ from 2627 // the resolution chosen in other parts of the compiler. 2628 if (!RHSC->getValue()->isZero()) { 2629 // Determine if the division can be folded into the operands of 2630 // its operands. 2631 // TODO: Generalize this to non-constants by using known-bits information. 2632 Type *Ty = LHS->getType(); 2633 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2634 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2635 // For non-power-of-two values, effectively round the value up to the 2636 // nearest power of two. 2637 if (!RHSC->getValue()->getValue().isPowerOf2()) 2638 ++MaxShiftAmt; 2639 IntegerType *ExtTy = 2640 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2642 if (const SCEVConstant *Step = 2643 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2644 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2645 const APInt &StepInt = Step->getValue()->getValue(); 2646 const APInt &DivInt = RHSC->getValue()->getValue(); 2647 if (!StepInt.urem(DivInt) && 2648 getZeroExtendExpr(AR, ExtTy) == 2649 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2650 getZeroExtendExpr(Step, ExtTy), 2651 AR->getLoop(), SCEV::FlagAnyWrap)) { 2652 SmallVector<const SCEV *, 4> Operands; 2653 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2654 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2655 return getAddRecExpr(Operands, AR->getLoop(), 2656 SCEV::FlagNW); 2657 } 2658 /// Get a canonical UDivExpr for a recurrence. 2659 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2660 // We can currently only fold X%N if X is constant. 2661 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2662 if (StartC && !DivInt.urem(StepInt) && 2663 getZeroExtendExpr(AR, ExtTy) == 2664 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2665 getZeroExtendExpr(Step, ExtTy), 2666 AR->getLoop(), SCEV::FlagAnyWrap)) { 2667 const APInt &StartInt = StartC->getValue()->getValue(); 2668 const APInt &StartRem = StartInt.urem(StepInt); 2669 if (StartRem != 0) 2670 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2671 AR->getLoop(), SCEV::FlagNW); 2672 } 2673 } 2674 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2675 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2676 SmallVector<const SCEV *, 4> Operands; 2677 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2678 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2679 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2680 // Find an operand that's safely divisible. 2681 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2682 const SCEV *Op = M->getOperand(i); 2683 const SCEV *Div = getUDivExpr(Op, RHSC); 2684 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2685 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2686 M->op_end()); 2687 Operands[i] = Div; 2688 return getMulExpr(Operands); 2689 } 2690 } 2691 } 2692 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2693 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2694 SmallVector<const SCEV *, 4> Operands; 2695 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2696 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2697 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2698 Operands.clear(); 2699 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2700 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2701 if (isa<SCEVUDivExpr>(Op) || 2702 getMulExpr(Op, RHS) != A->getOperand(i)) 2703 break; 2704 Operands.push_back(Op); 2705 } 2706 if (Operands.size() == A->getNumOperands()) 2707 return getAddExpr(Operands); 2708 } 2709 } 2710 2711 // Fold if both operands are constant. 2712 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2713 Constant *LHSCV = LHSC->getValue(); 2714 Constant *RHSCV = RHSC->getValue(); 2715 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2716 RHSCV))); 2717 } 2718 } 2719 } 2720 2721 FoldingSetNodeID ID; 2722 ID.AddInteger(scUDivExpr); 2723 ID.AddPointer(LHS); 2724 ID.AddPointer(RHS); 2725 void *IP = nullptr; 2726 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2727 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2728 LHS, RHS); 2729 UniqueSCEVs.InsertNode(S, IP); 2730 return S; 2731 } 2732 2733 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2734 APInt A = C1->getValue()->getValue().abs(); 2735 APInt B = C2->getValue()->getValue().abs(); 2736 uint32_t ABW = A.getBitWidth(); 2737 uint32_t BBW = B.getBitWidth(); 2738 2739 if (ABW > BBW) 2740 B = B.zext(ABW); 2741 else if (ABW < BBW) 2742 A = A.zext(BBW); 2743 2744 return APIntOps::GreatestCommonDivisor(A, B); 2745 } 2746 2747 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2748 /// something simpler if possible. There is no representation for an exact udiv 2749 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2750 /// We can't do this when it's not exact because the udiv may be clearing bits. 2751 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2752 const SCEV *RHS) { 2753 // TODO: we could try to find factors in all sorts of things, but for now we 2754 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2755 // end of this file for inspiration. 2756 2757 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2758 if (!Mul) 2759 return getUDivExpr(LHS, RHS); 2760 2761 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2762 // If the mulexpr multiplies by a constant, then that constant must be the 2763 // first element of the mulexpr. 2764 if (const SCEVConstant *LHSCst = 2765 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2766 if (LHSCst == RHSCst) { 2767 SmallVector<const SCEV *, 2> Operands; 2768 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2769 return getMulExpr(Operands); 2770 } 2771 2772 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2773 // that there's a factor provided by one of the other terms. We need to 2774 // check. 2775 APInt Factor = gcd(LHSCst, RHSCst); 2776 if (!Factor.isIntN(1)) { 2777 LHSCst = cast<SCEVConstant>( 2778 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2779 RHSCst = cast<SCEVConstant>( 2780 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2781 SmallVector<const SCEV *, 2> Operands; 2782 Operands.push_back(LHSCst); 2783 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2784 LHS = getMulExpr(Operands); 2785 RHS = RHSCst; 2786 Mul = dyn_cast<SCEVMulExpr>(LHS); 2787 if (!Mul) 2788 return getUDivExactExpr(LHS, RHS); 2789 } 2790 } 2791 } 2792 2793 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2794 if (Mul->getOperand(i) == RHS) { 2795 SmallVector<const SCEV *, 2> Operands; 2796 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2797 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2798 return getMulExpr(Operands); 2799 } 2800 } 2801 2802 return getUDivExpr(LHS, RHS); 2803 } 2804 2805 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2806 /// Simplify the expression as much as possible. 2807 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2808 const Loop *L, 2809 SCEV::NoWrapFlags Flags) { 2810 SmallVector<const SCEV *, 4> Operands; 2811 Operands.push_back(Start); 2812 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2813 if (StepChrec->getLoop() == L) { 2814 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2815 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2816 } 2817 2818 Operands.push_back(Step); 2819 return getAddRecExpr(Operands, L, Flags); 2820 } 2821 2822 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2823 /// Simplify the expression as much as possible. 2824 const SCEV * 2825 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2826 const Loop *L, SCEV::NoWrapFlags Flags) { 2827 if (Operands.size() == 1) return Operands[0]; 2828 #ifndef NDEBUG 2829 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2830 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2831 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2832 "SCEVAddRecExpr operand types don't match!"); 2833 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2834 assert(isLoopInvariant(Operands[i], L) && 2835 "SCEVAddRecExpr operand is not loop-invariant!"); 2836 #endif 2837 2838 if (Operands.back()->isZero()) { 2839 Operands.pop_back(); 2840 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2841 } 2842 2843 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2844 // use that information to infer NUW and NSW flags. However, computing a 2845 // BE count requires calling getAddRecExpr, so we may not yet have a 2846 // meaningful BE count at this point (and if we don't, we'd be stuck 2847 // with a SCEVCouldNotCompute as the cached BE count). 2848 2849 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2850 2851 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2852 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2853 const Loop *NestedLoop = NestedAR->getLoop(); 2854 if (L->contains(NestedLoop) ? 2855 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2856 (!NestedLoop->contains(L) && 2857 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2858 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2859 NestedAR->op_end()); 2860 Operands[0] = NestedAR->getStart(); 2861 // AddRecs require their operands be loop-invariant with respect to their 2862 // loops. Don't perform this transformation if it would break this 2863 // requirement. 2864 bool AllInvariant = true; 2865 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2866 if (!isLoopInvariant(Operands[i], L)) { 2867 AllInvariant = false; 2868 break; 2869 } 2870 if (AllInvariant) { 2871 // Create a recurrence for the outer loop with the same step size. 2872 // 2873 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2874 // inner recurrence has the same property. 2875 SCEV::NoWrapFlags OuterFlags = 2876 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2877 2878 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2879 AllInvariant = true; 2880 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2881 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2882 AllInvariant = false; 2883 break; 2884 } 2885 if (AllInvariant) { 2886 // Ok, both add recurrences are valid after the transformation. 2887 // 2888 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2889 // the outer recurrence has the same property. 2890 SCEV::NoWrapFlags InnerFlags = 2891 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2892 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2893 } 2894 } 2895 // Reset Operands to its original state. 2896 Operands[0] = NestedAR; 2897 } 2898 } 2899 2900 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2901 // already have one, otherwise create a new one. 2902 FoldingSetNodeID ID; 2903 ID.AddInteger(scAddRecExpr); 2904 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2905 ID.AddPointer(Operands[i]); 2906 ID.AddPointer(L); 2907 void *IP = nullptr; 2908 SCEVAddRecExpr *S = 2909 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2910 if (!S) { 2911 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2912 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2913 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2914 O, Operands.size(), L); 2915 UniqueSCEVs.InsertNode(S, IP); 2916 } 2917 S->setNoWrapFlags(Flags); 2918 return S; 2919 } 2920 2921 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2922 const SCEV *RHS) { 2923 SmallVector<const SCEV *, 2> Ops; 2924 Ops.push_back(LHS); 2925 Ops.push_back(RHS); 2926 return getSMaxExpr(Ops); 2927 } 2928 2929 const SCEV * 2930 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2931 assert(!Ops.empty() && "Cannot get empty smax!"); 2932 if (Ops.size() == 1) return Ops[0]; 2933 #ifndef NDEBUG 2934 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2935 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2936 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2937 "SCEVSMaxExpr operand types don't match!"); 2938 #endif 2939 2940 // Sort by complexity, this groups all similar expression types together. 2941 GroupByComplexity(Ops, LI); 2942 2943 // If there are any constants, fold them together. 2944 unsigned Idx = 0; 2945 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2946 ++Idx; 2947 assert(Idx < Ops.size()); 2948 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2949 // We found two constants, fold them together! 2950 ConstantInt *Fold = ConstantInt::get(getContext(), 2951 APIntOps::smax(LHSC->getValue()->getValue(), 2952 RHSC->getValue()->getValue())); 2953 Ops[0] = getConstant(Fold); 2954 Ops.erase(Ops.begin()+1); // Erase the folded element 2955 if (Ops.size() == 1) return Ops[0]; 2956 LHSC = cast<SCEVConstant>(Ops[0]); 2957 } 2958 2959 // If we are left with a constant minimum-int, strip it off. 2960 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2961 Ops.erase(Ops.begin()); 2962 --Idx; 2963 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2964 // If we have an smax with a constant maximum-int, it will always be 2965 // maximum-int. 2966 return Ops[0]; 2967 } 2968 2969 if (Ops.size() == 1) return Ops[0]; 2970 } 2971 2972 // Find the first SMax 2973 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2974 ++Idx; 2975 2976 // Check to see if one of the operands is an SMax. If so, expand its operands 2977 // onto our operand list, and recurse to simplify. 2978 if (Idx < Ops.size()) { 2979 bool DeletedSMax = false; 2980 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2981 Ops.erase(Ops.begin()+Idx); 2982 Ops.append(SMax->op_begin(), SMax->op_end()); 2983 DeletedSMax = true; 2984 } 2985 2986 if (DeletedSMax) 2987 return getSMaxExpr(Ops); 2988 } 2989 2990 // Okay, check to see if the same value occurs in the operand list twice. If 2991 // so, delete one. Since we sorted the list, these values are required to 2992 // be adjacent. 2993 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2994 // X smax Y smax Y --> X smax Y 2995 // X smax Y --> X, if X is always greater than Y 2996 if (Ops[i] == Ops[i+1] || 2997 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2998 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2999 --i; --e; 3000 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3001 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3002 --i; --e; 3003 } 3004 3005 if (Ops.size() == 1) return Ops[0]; 3006 3007 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3008 3009 // Okay, it looks like we really DO need an smax expr. Check to see if we 3010 // already have one, otherwise create a new one. 3011 FoldingSetNodeID ID; 3012 ID.AddInteger(scSMaxExpr); 3013 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3014 ID.AddPointer(Ops[i]); 3015 void *IP = nullptr; 3016 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3017 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3018 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3019 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3020 O, Ops.size()); 3021 UniqueSCEVs.InsertNode(S, IP); 3022 return S; 3023 } 3024 3025 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3026 const SCEV *RHS) { 3027 SmallVector<const SCEV *, 2> Ops; 3028 Ops.push_back(LHS); 3029 Ops.push_back(RHS); 3030 return getUMaxExpr(Ops); 3031 } 3032 3033 const SCEV * 3034 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3035 assert(!Ops.empty() && "Cannot get empty umax!"); 3036 if (Ops.size() == 1) return Ops[0]; 3037 #ifndef NDEBUG 3038 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3039 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3040 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3041 "SCEVUMaxExpr operand types don't match!"); 3042 #endif 3043 3044 // Sort by complexity, this groups all similar expression types together. 3045 GroupByComplexity(Ops, LI); 3046 3047 // If there are any constants, fold them together. 3048 unsigned Idx = 0; 3049 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3050 ++Idx; 3051 assert(Idx < Ops.size()); 3052 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3053 // We found two constants, fold them together! 3054 ConstantInt *Fold = ConstantInt::get(getContext(), 3055 APIntOps::umax(LHSC->getValue()->getValue(), 3056 RHSC->getValue()->getValue())); 3057 Ops[0] = getConstant(Fold); 3058 Ops.erase(Ops.begin()+1); // Erase the folded element 3059 if (Ops.size() == 1) return Ops[0]; 3060 LHSC = cast<SCEVConstant>(Ops[0]); 3061 } 3062 3063 // If we are left with a constant minimum-int, strip it off. 3064 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3065 Ops.erase(Ops.begin()); 3066 --Idx; 3067 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3068 // If we have an umax with a constant maximum-int, it will always be 3069 // maximum-int. 3070 return Ops[0]; 3071 } 3072 3073 if (Ops.size() == 1) return Ops[0]; 3074 } 3075 3076 // Find the first UMax 3077 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3078 ++Idx; 3079 3080 // Check to see if one of the operands is a UMax. If so, expand its operands 3081 // onto our operand list, and recurse to simplify. 3082 if (Idx < Ops.size()) { 3083 bool DeletedUMax = false; 3084 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3085 Ops.erase(Ops.begin()+Idx); 3086 Ops.append(UMax->op_begin(), UMax->op_end()); 3087 DeletedUMax = true; 3088 } 3089 3090 if (DeletedUMax) 3091 return getUMaxExpr(Ops); 3092 } 3093 3094 // Okay, check to see if the same value occurs in the operand list twice. If 3095 // so, delete one. Since we sorted the list, these values are required to 3096 // be adjacent. 3097 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3098 // X umax Y umax Y --> X umax Y 3099 // X umax Y --> X, if X is always greater than Y 3100 if (Ops[i] == Ops[i+1] || 3101 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3102 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3103 --i; --e; 3104 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3105 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3106 --i; --e; 3107 } 3108 3109 if (Ops.size() == 1) return Ops[0]; 3110 3111 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3112 3113 // Okay, it looks like we really DO need a umax expr. Check to see if we 3114 // already have one, otherwise create a new one. 3115 FoldingSetNodeID ID; 3116 ID.AddInteger(scUMaxExpr); 3117 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3118 ID.AddPointer(Ops[i]); 3119 void *IP = nullptr; 3120 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3121 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3122 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3123 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3124 O, Ops.size()); 3125 UniqueSCEVs.InsertNode(S, IP); 3126 return S; 3127 } 3128 3129 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3130 const SCEV *RHS) { 3131 // ~smax(~x, ~y) == smin(x, y). 3132 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3133 } 3134 3135 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3136 const SCEV *RHS) { 3137 // ~umax(~x, ~y) == umin(x, y) 3138 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3139 } 3140 3141 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3142 // We can bypass creating a target-independent 3143 // constant expression and then folding it back into a ConstantInt. 3144 // This is just a compile-time optimization. 3145 return getConstant(IntTy, 3146 F->getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3147 } 3148 3149 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3150 StructType *STy, 3151 unsigned FieldNo) { 3152 // We can bypass creating a target-independent 3153 // constant expression and then folding it back into a ConstantInt. 3154 // This is just a compile-time optimization. 3155 return getConstant( 3156 IntTy, 3157 F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3158 FieldNo)); 3159 } 3160 3161 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3162 // Don't attempt to do anything other than create a SCEVUnknown object 3163 // here. createSCEV only calls getUnknown after checking for all other 3164 // interesting possibilities, and any other code that calls getUnknown 3165 // is doing so in order to hide a value from SCEV canonicalization. 3166 3167 FoldingSetNodeID ID; 3168 ID.AddInteger(scUnknown); 3169 ID.AddPointer(V); 3170 void *IP = nullptr; 3171 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3172 assert(cast<SCEVUnknown>(S)->getValue() == V && 3173 "Stale SCEVUnknown in uniquing map!"); 3174 return S; 3175 } 3176 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3177 FirstUnknown); 3178 FirstUnknown = cast<SCEVUnknown>(S); 3179 UniqueSCEVs.InsertNode(S, IP); 3180 return S; 3181 } 3182 3183 //===----------------------------------------------------------------------===// 3184 // Basic SCEV Analysis and PHI Idiom Recognition Code 3185 // 3186 3187 /// isSCEVable - Test if values of the given type are analyzable within 3188 /// the SCEV framework. This primarily includes integer types, and it 3189 /// can optionally include pointer types if the ScalarEvolution class 3190 /// has access to target-specific information. 3191 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3192 // Integers and pointers are always SCEVable. 3193 return Ty->isIntegerTy() || Ty->isPointerTy(); 3194 } 3195 3196 /// getTypeSizeInBits - Return the size in bits of the specified type, 3197 /// for which isSCEVable must return true. 3198 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3199 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3200 return F->getParent()->getDataLayout().getTypeSizeInBits(Ty); 3201 } 3202 3203 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3204 /// the given type and which represents how SCEV will treat the given 3205 /// type, for which isSCEVable must return true. For pointer types, 3206 /// this is the pointer-sized integer type. 3207 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3208 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3209 3210 if (Ty->isIntegerTy()) { 3211 return Ty; 3212 } 3213 3214 // The only other support type is pointer. 3215 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3216 return F->getParent()->getDataLayout().getIntPtrType(Ty); 3217 } 3218 3219 const SCEV *ScalarEvolution::getCouldNotCompute() { 3220 return &CouldNotCompute; 3221 } 3222 3223 namespace { 3224 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3225 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3226 // is set iff if find such SCEVUnknown. 3227 // 3228 struct FindInvalidSCEVUnknown { 3229 bool FindOne; 3230 FindInvalidSCEVUnknown() { FindOne = false; } 3231 bool follow(const SCEV *S) { 3232 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3233 case scConstant: 3234 return false; 3235 case scUnknown: 3236 if (!cast<SCEVUnknown>(S)->getValue()) 3237 FindOne = true; 3238 return false; 3239 default: 3240 return true; 3241 } 3242 } 3243 bool isDone() const { return FindOne; } 3244 }; 3245 } 3246 3247 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3248 FindInvalidSCEVUnknown F; 3249 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3250 ST.visitAll(S); 3251 3252 return !F.FindOne; 3253 } 3254 3255 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3256 /// expression and create a new one. 3257 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3258 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3259 3260 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3261 if (I != ValueExprMap.end()) { 3262 const SCEV *S = I->second; 3263 if (checkValidity(S)) 3264 return S; 3265 else 3266 ValueExprMap.erase(I); 3267 } 3268 const SCEV *S = createSCEV(V); 3269 3270 // The process of creating a SCEV for V may have caused other SCEVs 3271 // to have been created, so it's necessary to insert the new entry 3272 // from scratch, rather than trying to remember the insert position 3273 // above. 3274 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3275 return S; 3276 } 3277 3278 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3279 /// 3280 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 3281 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3282 return getConstant( 3283 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3284 3285 Type *Ty = V->getType(); 3286 Ty = getEffectiveSCEVType(Ty); 3287 return getMulExpr(V, 3288 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 3289 } 3290 3291 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3292 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3293 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3294 return getConstant( 3295 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3296 3297 Type *Ty = V->getType(); 3298 Ty = getEffectiveSCEVType(Ty); 3299 const SCEV *AllOnes = 3300 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3301 return getMinusSCEV(AllOnes, V); 3302 } 3303 3304 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3305 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3306 SCEV::NoWrapFlags Flags) { 3307 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 3308 3309 // Fast path: X - X --> 0. 3310 if (LHS == RHS) 3311 return getConstant(LHS->getType(), 0); 3312 3313 // X - Y --> X + -Y. 3314 // X -(nsw || nuw) Y --> X + -Y. 3315 return getAddExpr(LHS, getNegativeSCEV(RHS)); 3316 } 3317 3318 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3319 /// input value to the specified type. If the type must be extended, it is zero 3320 /// extended. 3321 const SCEV * 3322 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3323 Type *SrcTy = V->getType(); 3324 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3325 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3326 "Cannot truncate or zero extend with non-integer arguments!"); 3327 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3328 return V; // No conversion 3329 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3330 return getTruncateExpr(V, Ty); 3331 return getZeroExtendExpr(V, Ty); 3332 } 3333 3334 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3335 /// input value to the specified type. If the type must be extended, it is sign 3336 /// extended. 3337 const SCEV * 3338 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3339 Type *Ty) { 3340 Type *SrcTy = V->getType(); 3341 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3342 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3343 "Cannot truncate or zero extend with non-integer arguments!"); 3344 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3345 return V; // No conversion 3346 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3347 return getTruncateExpr(V, Ty); 3348 return getSignExtendExpr(V, Ty); 3349 } 3350 3351 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3352 /// input value to the specified type. If the type must be extended, it is zero 3353 /// extended. The conversion must not be narrowing. 3354 const SCEV * 3355 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3356 Type *SrcTy = V->getType(); 3357 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3358 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3359 "Cannot noop or zero extend with non-integer arguments!"); 3360 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3361 "getNoopOrZeroExtend cannot truncate!"); 3362 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3363 return V; // No conversion 3364 return getZeroExtendExpr(V, Ty); 3365 } 3366 3367 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3368 /// input value to the specified type. If the type must be extended, it is sign 3369 /// extended. The conversion must not be narrowing. 3370 const SCEV * 3371 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3372 Type *SrcTy = V->getType(); 3373 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3374 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3375 "Cannot noop or sign extend with non-integer arguments!"); 3376 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3377 "getNoopOrSignExtend cannot truncate!"); 3378 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3379 return V; // No conversion 3380 return getSignExtendExpr(V, Ty); 3381 } 3382 3383 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3384 /// the input value to the specified type. If the type must be extended, 3385 /// it is extended with unspecified bits. The conversion must not be 3386 /// narrowing. 3387 const SCEV * 3388 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3389 Type *SrcTy = V->getType(); 3390 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3391 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3392 "Cannot noop or any extend with non-integer arguments!"); 3393 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3394 "getNoopOrAnyExtend cannot truncate!"); 3395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3396 return V; // No conversion 3397 return getAnyExtendExpr(V, Ty); 3398 } 3399 3400 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3401 /// input value to the specified type. The conversion must not be widening. 3402 const SCEV * 3403 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3404 Type *SrcTy = V->getType(); 3405 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3406 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3407 "Cannot truncate or noop with non-integer arguments!"); 3408 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3409 "getTruncateOrNoop cannot extend!"); 3410 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3411 return V; // No conversion 3412 return getTruncateExpr(V, Ty); 3413 } 3414 3415 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3416 /// the types using zero-extension, and then perform a umax operation 3417 /// with them. 3418 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3419 const SCEV *RHS) { 3420 const SCEV *PromotedLHS = LHS; 3421 const SCEV *PromotedRHS = RHS; 3422 3423 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3424 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3425 else 3426 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3427 3428 return getUMaxExpr(PromotedLHS, PromotedRHS); 3429 } 3430 3431 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3432 /// the types using zero-extension, and then perform a umin operation 3433 /// with them. 3434 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3435 const SCEV *RHS) { 3436 const SCEV *PromotedLHS = LHS; 3437 const SCEV *PromotedRHS = RHS; 3438 3439 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3440 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3441 else 3442 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3443 3444 return getUMinExpr(PromotedLHS, PromotedRHS); 3445 } 3446 3447 /// getPointerBase - Transitively follow the chain of pointer-type operands 3448 /// until reaching a SCEV that does not have a single pointer operand. This 3449 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3450 /// but corner cases do exist. 3451 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3452 // A pointer operand may evaluate to a nonpointer expression, such as null. 3453 if (!V->getType()->isPointerTy()) 3454 return V; 3455 3456 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3457 return getPointerBase(Cast->getOperand()); 3458 } 3459 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3460 const SCEV *PtrOp = nullptr; 3461 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3462 I != E; ++I) { 3463 if ((*I)->getType()->isPointerTy()) { 3464 // Cannot find the base of an expression with multiple pointer operands. 3465 if (PtrOp) 3466 return V; 3467 PtrOp = *I; 3468 } 3469 } 3470 if (!PtrOp) 3471 return V; 3472 return getPointerBase(PtrOp); 3473 } 3474 return V; 3475 } 3476 3477 /// PushDefUseChildren - Push users of the given Instruction 3478 /// onto the given Worklist. 3479 static void 3480 PushDefUseChildren(Instruction *I, 3481 SmallVectorImpl<Instruction *> &Worklist) { 3482 // Push the def-use children onto the Worklist stack. 3483 for (User *U : I->users()) 3484 Worklist.push_back(cast<Instruction>(U)); 3485 } 3486 3487 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3488 /// instructions that depend on the given instruction and removes them from 3489 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3490 /// resolution. 3491 void 3492 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3493 SmallVector<Instruction *, 16> Worklist; 3494 PushDefUseChildren(PN, Worklist); 3495 3496 SmallPtrSet<Instruction *, 8> Visited; 3497 Visited.insert(PN); 3498 while (!Worklist.empty()) { 3499 Instruction *I = Worklist.pop_back_val(); 3500 if (!Visited.insert(I).second) 3501 continue; 3502 3503 ValueExprMapType::iterator It = 3504 ValueExprMap.find_as(static_cast<Value *>(I)); 3505 if (It != ValueExprMap.end()) { 3506 const SCEV *Old = It->second; 3507 3508 // Short-circuit the def-use traversal if the symbolic name 3509 // ceases to appear in expressions. 3510 if (Old != SymName && !hasOperand(Old, SymName)) 3511 continue; 3512 3513 // SCEVUnknown for a PHI either means that it has an unrecognized 3514 // structure, it's a PHI that's in the progress of being computed 3515 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3516 // additional loop trip count information isn't going to change anything. 3517 // In the second case, createNodeForPHI will perform the necessary 3518 // updates on its own when it gets to that point. In the third, we do 3519 // want to forget the SCEVUnknown. 3520 if (!isa<PHINode>(I) || 3521 !isa<SCEVUnknown>(Old) || 3522 (I != PN && Old == SymName)) { 3523 forgetMemoizedResults(Old); 3524 ValueExprMap.erase(It); 3525 } 3526 } 3527 3528 PushDefUseChildren(I, Worklist); 3529 } 3530 } 3531 3532 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3533 /// a loop header, making it a potential recurrence, or it doesn't. 3534 /// 3535 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3536 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3537 if (L->getHeader() == PN->getParent()) { 3538 // The loop may have multiple entrances or multiple exits; we can analyze 3539 // this phi as an addrec if it has a unique entry value and a unique 3540 // backedge value. 3541 Value *BEValueV = nullptr, *StartValueV = nullptr; 3542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3543 Value *V = PN->getIncomingValue(i); 3544 if (L->contains(PN->getIncomingBlock(i))) { 3545 if (!BEValueV) { 3546 BEValueV = V; 3547 } else if (BEValueV != V) { 3548 BEValueV = nullptr; 3549 break; 3550 } 3551 } else if (!StartValueV) { 3552 StartValueV = V; 3553 } else if (StartValueV != V) { 3554 StartValueV = nullptr; 3555 break; 3556 } 3557 } 3558 if (BEValueV && StartValueV) { 3559 // While we are analyzing this PHI node, handle its value symbolically. 3560 const SCEV *SymbolicName = getUnknown(PN); 3561 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3562 "PHI node already processed?"); 3563 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3564 3565 // Using this symbolic name for the PHI, analyze the value coming around 3566 // the back-edge. 3567 const SCEV *BEValue = getSCEV(BEValueV); 3568 3569 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3570 // has a special value for the first iteration of the loop. 3571 3572 // If the value coming around the backedge is an add with the symbolic 3573 // value we just inserted, then we found a simple induction variable! 3574 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3575 // If there is a single occurrence of the symbolic value, replace it 3576 // with a recurrence. 3577 unsigned FoundIndex = Add->getNumOperands(); 3578 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3579 if (Add->getOperand(i) == SymbolicName) 3580 if (FoundIndex == e) { 3581 FoundIndex = i; 3582 break; 3583 } 3584 3585 if (FoundIndex != Add->getNumOperands()) { 3586 // Create an add with everything but the specified operand. 3587 SmallVector<const SCEV *, 8> Ops; 3588 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3589 if (i != FoundIndex) 3590 Ops.push_back(Add->getOperand(i)); 3591 const SCEV *Accum = getAddExpr(Ops); 3592 3593 // This is not a valid addrec if the step amount is varying each 3594 // loop iteration, but is not itself an addrec in this loop. 3595 if (isLoopInvariant(Accum, L) || 3596 (isa<SCEVAddRecExpr>(Accum) && 3597 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3598 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3599 3600 // If the increment doesn't overflow, then neither the addrec nor 3601 // the post-increment will overflow. 3602 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3603 if (OBO->getOperand(0) == PN) { 3604 if (OBO->hasNoUnsignedWrap()) 3605 Flags = setFlags(Flags, SCEV::FlagNUW); 3606 if (OBO->hasNoSignedWrap()) 3607 Flags = setFlags(Flags, SCEV::FlagNSW); 3608 } 3609 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3610 // If the increment is an inbounds GEP, then we know the address 3611 // space cannot be wrapped around. We cannot make any guarantee 3612 // about signed or unsigned overflow because pointers are 3613 // unsigned but we may have a negative index from the base 3614 // pointer. We can guarantee that no unsigned wrap occurs if the 3615 // indices form a positive value. 3616 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3617 Flags = setFlags(Flags, SCEV::FlagNW); 3618 3619 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3620 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3621 Flags = setFlags(Flags, SCEV::FlagNUW); 3622 } 3623 3624 // We cannot transfer nuw and nsw flags from subtraction 3625 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3626 // for instance. 3627 } 3628 3629 const SCEV *StartVal = getSCEV(StartValueV); 3630 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3631 3632 // Since the no-wrap flags are on the increment, they apply to the 3633 // post-incremented value as well. 3634 if (isLoopInvariant(Accum, L)) 3635 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3636 Accum, L, Flags); 3637 3638 // Okay, for the entire analysis of this edge we assumed the PHI 3639 // to be symbolic. We now need to go back and purge all of the 3640 // entries for the scalars that use the symbolic expression. 3641 ForgetSymbolicName(PN, SymbolicName); 3642 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3643 return PHISCEV; 3644 } 3645 } 3646 } else if (const SCEVAddRecExpr *AddRec = 3647 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3648 // Otherwise, this could be a loop like this: 3649 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3650 // In this case, j = {1,+,1} and BEValue is j. 3651 // Because the other in-value of i (0) fits the evolution of BEValue 3652 // i really is an addrec evolution. 3653 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3654 const SCEV *StartVal = getSCEV(StartValueV); 3655 3656 // If StartVal = j.start - j.stride, we can use StartVal as the 3657 // initial step of the addrec evolution. 3658 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3659 AddRec->getOperand(1))) { 3660 // FIXME: For constant StartVal, we should be able to infer 3661 // no-wrap flags. 3662 const SCEV *PHISCEV = 3663 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3664 SCEV::FlagAnyWrap); 3665 3666 // Okay, for the entire analysis of this edge we assumed the PHI 3667 // to be symbolic. We now need to go back and purge all of the 3668 // entries for the scalars that use the symbolic expression. 3669 ForgetSymbolicName(PN, SymbolicName); 3670 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3671 return PHISCEV; 3672 } 3673 } 3674 } 3675 } 3676 } 3677 3678 // If the PHI has a single incoming value, follow that value, unless the 3679 // PHI's incoming blocks are in a different loop, in which case doing so 3680 // risks breaking LCSSA form. Instcombine would normally zap these, but 3681 // it doesn't have DominatorTree information, so it may miss cases. 3682 if (Value *V = 3683 SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC)) 3684 if (LI->replacementPreservesLCSSAForm(PN, V)) 3685 return getSCEV(V); 3686 3687 // If it's not a loop phi, we can't handle it yet. 3688 return getUnknown(PN); 3689 } 3690 3691 /// createNodeForGEP - Expand GEP instructions into add and multiply 3692 /// operations. This allows them to be analyzed by regular SCEV code. 3693 /// 3694 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3695 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3696 Value *Base = GEP->getOperand(0); 3697 // Don't attempt to analyze GEPs over unsized objects. 3698 if (!Base->getType()->getPointerElementType()->isSized()) 3699 return getUnknown(GEP); 3700 3701 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3702 // Add expression, because the Instruction may be guarded by control flow 3703 // and the no-overflow bits may not be valid for the expression in any 3704 // context. 3705 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3706 3707 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3708 gep_type_iterator GTI = gep_type_begin(GEP); 3709 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3710 E = GEP->op_end(); 3711 I != E; ++I) { 3712 Value *Index = *I; 3713 // Compute the (potentially symbolic) offset in bytes for this index. 3714 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3715 // For a struct, add the member offset. 3716 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3717 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3718 3719 // Add the field offset to the running total offset. 3720 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3721 } else { 3722 // For an array, add the element offset, explicitly scaled. 3723 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3724 const SCEV *IndexS = getSCEV(Index); 3725 // Getelementptr indices are signed. 3726 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3727 3728 // Multiply the index by the element size to compute the element offset. 3729 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3730 3731 // Add the element offset to the running total offset. 3732 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3733 } 3734 } 3735 3736 // Get the SCEV for the GEP base. 3737 const SCEV *BaseS = getSCEV(Base); 3738 3739 // Add the total offset from all the GEP indices to the base. 3740 return getAddExpr(BaseS, TotalOffset, Wrap); 3741 } 3742 3743 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3744 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3745 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3746 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3747 uint32_t 3748 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3749 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3750 return C->getValue()->getValue().countTrailingZeros(); 3751 3752 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3753 return std::min(GetMinTrailingZeros(T->getOperand()), 3754 (uint32_t)getTypeSizeInBits(T->getType())); 3755 3756 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3757 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3758 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3759 getTypeSizeInBits(E->getType()) : OpRes; 3760 } 3761 3762 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3763 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3764 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3765 getTypeSizeInBits(E->getType()) : OpRes; 3766 } 3767 3768 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3769 // The result is the min of all operands results. 3770 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3771 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3772 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3773 return MinOpRes; 3774 } 3775 3776 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3777 // The result is the sum of all operands results. 3778 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3779 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3780 for (unsigned i = 1, e = M->getNumOperands(); 3781 SumOpRes != BitWidth && i != e; ++i) 3782 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3783 BitWidth); 3784 return SumOpRes; 3785 } 3786 3787 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3788 // The result is the min of all operands results. 3789 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3790 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3791 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3792 return MinOpRes; 3793 } 3794 3795 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3796 // The result is the min of all operands results. 3797 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3798 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3799 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3800 return MinOpRes; 3801 } 3802 3803 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3804 // The result is the min of all operands results. 3805 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3806 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3807 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3808 return MinOpRes; 3809 } 3810 3811 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3812 // For a SCEVUnknown, ask ValueTracking. 3813 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3814 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3815 computeKnownBits(U->getValue(), Zeros, Ones, 3816 F->getParent()->getDataLayout(), 0, AC, nullptr, DT); 3817 return Zeros.countTrailingOnes(); 3818 } 3819 3820 // SCEVUDivExpr 3821 return 0; 3822 } 3823 3824 /// GetRangeFromMetadata - Helper method to assign a range to V from 3825 /// metadata present in the IR. 3826 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3827 if (Instruction *I = dyn_cast<Instruction>(V)) { 3828 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3829 ConstantRange TotalRange( 3830 cast<IntegerType>(I->getType())->getBitWidth(), false); 3831 3832 unsigned NumRanges = MD->getNumOperands() / 2; 3833 assert(NumRanges >= 1); 3834 3835 for (unsigned i = 0; i < NumRanges; ++i) { 3836 ConstantInt *Lower = 3837 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3838 ConstantInt *Upper = 3839 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3840 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3841 TotalRange = TotalRange.unionWith(Range); 3842 } 3843 3844 return TotalRange; 3845 } 3846 } 3847 3848 return None; 3849 } 3850 3851 /// getRange - Determine the range for a particular SCEV. If SignHint is 3852 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3853 /// with a "cleaner" unsigned (resp. signed) representation. 3854 /// 3855 ConstantRange 3856 ScalarEvolution::getRange(const SCEV *S, 3857 ScalarEvolution::RangeSignHint SignHint) { 3858 DenseMap<const SCEV *, ConstantRange> &Cache = 3859 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3860 : SignedRanges; 3861 3862 // See if we've computed this range already. 3863 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3864 if (I != Cache.end()) 3865 return I->second; 3866 3867 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3868 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3869 3870 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3871 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3872 3873 // If the value has known zeros, the maximum value will have those known zeros 3874 // as well. 3875 uint32_t TZ = GetMinTrailingZeros(S); 3876 if (TZ != 0) { 3877 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3878 ConservativeResult = 3879 ConstantRange(APInt::getMinValue(BitWidth), 3880 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3881 else 3882 ConservativeResult = ConstantRange( 3883 APInt::getSignedMinValue(BitWidth), 3884 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3885 } 3886 3887 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3888 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3889 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3890 X = X.add(getRange(Add->getOperand(i), SignHint)); 3891 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3892 } 3893 3894 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3895 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3896 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3897 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3898 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3899 } 3900 3901 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3902 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3903 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3904 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3905 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3906 } 3907 3908 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3909 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3910 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3911 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3912 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3913 } 3914 3915 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3916 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3917 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3918 return setRange(UDiv, SignHint, 3919 ConservativeResult.intersectWith(X.udiv(Y))); 3920 } 3921 3922 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3923 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3924 return setRange(ZExt, SignHint, 3925 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3926 } 3927 3928 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3929 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3930 return setRange(SExt, SignHint, 3931 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3932 } 3933 3934 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3935 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3936 return setRange(Trunc, SignHint, 3937 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3938 } 3939 3940 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3941 // If there's no unsigned wrap, the value will never be less than its 3942 // initial value. 3943 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3944 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3945 if (!C->getValue()->isZero()) 3946 ConservativeResult = 3947 ConservativeResult.intersectWith( 3948 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3949 3950 // If there's no signed wrap, and all the operands have the same sign or 3951 // zero, the value won't ever change sign. 3952 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3953 bool AllNonNeg = true; 3954 bool AllNonPos = true; 3955 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3956 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3957 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3958 } 3959 if (AllNonNeg) 3960 ConservativeResult = ConservativeResult.intersectWith( 3961 ConstantRange(APInt(BitWidth, 0), 3962 APInt::getSignedMinValue(BitWidth))); 3963 else if (AllNonPos) 3964 ConservativeResult = ConservativeResult.intersectWith( 3965 ConstantRange(APInt::getSignedMinValue(BitWidth), 3966 APInt(BitWidth, 1))); 3967 } 3968 3969 // TODO: non-affine addrec 3970 if (AddRec->isAffine()) { 3971 Type *Ty = AddRec->getType(); 3972 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3973 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3974 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3975 3976 // Check for overflow. This must be done with ConstantRange arithmetic 3977 // because we could be called from within the ScalarEvolution overflow 3978 // checking code. 3979 3980 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3981 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3982 ConstantRange ZExtMaxBECountRange = 3983 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 3984 3985 const SCEV *Start = AddRec->getStart(); 3986 const SCEV *Step = AddRec->getStepRecurrence(*this); 3987 ConstantRange StepSRange = getSignedRange(Step); 3988 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 3989 3990 ConstantRange StartURange = getUnsignedRange(Start); 3991 ConstantRange EndURange = 3992 StartURange.add(MaxBECountRange.multiply(StepSRange)); 3993 3994 // Check for unsigned overflow. 3995 ConstantRange ZExtStartURange = 3996 StartURange.zextOrTrunc(BitWidth * 2 + 1); 3997 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 3998 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 3999 ZExtEndURange) { 4000 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4001 EndURange.getUnsignedMin()); 4002 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4003 EndURange.getUnsignedMax()); 4004 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4005 if (!IsFullRange) 4006 ConservativeResult = 4007 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4008 } 4009 4010 ConstantRange StartSRange = getSignedRange(Start); 4011 ConstantRange EndSRange = 4012 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4013 4014 // Check for signed overflow. This must be done with ConstantRange 4015 // arithmetic because we could be called from within the ScalarEvolution 4016 // overflow checking code. 4017 ConstantRange SExtStartSRange = 4018 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4019 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4020 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4021 SExtEndSRange) { 4022 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4023 EndSRange.getSignedMin()); 4024 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4025 EndSRange.getSignedMax()); 4026 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4027 if (!IsFullRange) 4028 ConservativeResult = 4029 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4030 } 4031 } 4032 } 4033 4034 return setRange(AddRec, SignHint, ConservativeResult); 4035 } 4036 4037 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4038 // Check if the IR explicitly contains !range metadata. 4039 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4040 if (MDRange.hasValue()) 4041 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4042 4043 // Split here to avoid paying the compile-time cost of calling both 4044 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4045 // if needed. 4046 const DataLayout &DL = F->getParent()->getDataLayout(); 4047 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4048 // For a SCEVUnknown, ask ValueTracking. 4049 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4050 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 4051 if (Ones != ~Zeros + 1) 4052 ConservativeResult = 4053 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4054 } else { 4055 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4056 "generalize as needed!"); 4057 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT); 4058 if (NS > 1) 4059 ConservativeResult = ConservativeResult.intersectWith( 4060 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4061 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4062 } 4063 4064 return setRange(U, SignHint, ConservativeResult); 4065 } 4066 4067 return setRange(S, SignHint, ConservativeResult); 4068 } 4069 4070 /// createSCEV - We know that there is no SCEV for the specified value. 4071 /// Analyze the expression. 4072 /// 4073 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4074 if (!isSCEVable(V->getType())) 4075 return getUnknown(V); 4076 4077 unsigned Opcode = Instruction::UserOp1; 4078 if (Instruction *I = dyn_cast<Instruction>(V)) { 4079 Opcode = I->getOpcode(); 4080 4081 // Don't attempt to analyze instructions in blocks that aren't 4082 // reachable. Such instructions don't matter, and they aren't required 4083 // to obey basic rules for definitions dominating uses which this 4084 // analysis depends on. 4085 if (!DT->isReachableFromEntry(I->getParent())) 4086 return getUnknown(V); 4087 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4088 Opcode = CE->getOpcode(); 4089 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4090 return getConstant(CI); 4091 else if (isa<ConstantPointerNull>(V)) 4092 return getConstant(V->getType(), 0); 4093 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4094 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4095 else 4096 return getUnknown(V); 4097 4098 Operator *U = cast<Operator>(V); 4099 switch (Opcode) { 4100 case Instruction::Add: { 4101 // The simple thing to do would be to just call getSCEV on both operands 4102 // and call getAddExpr with the result. However if we're looking at a 4103 // bunch of things all added together, this can be quite inefficient, 4104 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4105 // Instead, gather up all the operands and make a single getAddExpr call. 4106 // LLVM IR canonical form means we need only traverse the left operands. 4107 // 4108 // Don't apply this instruction's NSW or NUW flags to the new 4109 // expression. The instruction may be guarded by control flow that the 4110 // no-wrap behavior depends on. Non-control-equivalent instructions can be 4111 // mapped to the same SCEV expression, and it would be incorrect to transfer 4112 // NSW/NUW semantics to those operations. 4113 SmallVector<const SCEV *, 4> AddOps; 4114 AddOps.push_back(getSCEV(U->getOperand(1))); 4115 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 4116 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 4117 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 4118 break; 4119 U = cast<Operator>(Op); 4120 const SCEV *Op1 = getSCEV(U->getOperand(1)); 4121 if (Opcode == Instruction::Sub) 4122 AddOps.push_back(getNegativeSCEV(Op1)); 4123 else 4124 AddOps.push_back(Op1); 4125 } 4126 AddOps.push_back(getSCEV(U->getOperand(0))); 4127 return getAddExpr(AddOps); 4128 } 4129 case Instruction::Mul: { 4130 // Don't transfer NSW/NUW for the same reason as AddExpr. 4131 SmallVector<const SCEV *, 4> MulOps; 4132 MulOps.push_back(getSCEV(U->getOperand(1))); 4133 for (Value *Op = U->getOperand(0); 4134 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 4135 Op = U->getOperand(0)) { 4136 U = cast<Operator>(Op); 4137 MulOps.push_back(getSCEV(U->getOperand(1))); 4138 } 4139 MulOps.push_back(getSCEV(U->getOperand(0))); 4140 return getMulExpr(MulOps); 4141 } 4142 case Instruction::UDiv: 4143 return getUDivExpr(getSCEV(U->getOperand(0)), 4144 getSCEV(U->getOperand(1))); 4145 case Instruction::Sub: 4146 return getMinusSCEV(getSCEV(U->getOperand(0)), 4147 getSCEV(U->getOperand(1))); 4148 case Instruction::And: 4149 // For an expression like x&255 that merely masks off the high bits, 4150 // use zext(trunc(x)) as the SCEV expression. 4151 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4152 if (CI->isNullValue()) 4153 return getSCEV(U->getOperand(1)); 4154 if (CI->isAllOnesValue()) 4155 return getSCEV(U->getOperand(0)); 4156 const APInt &A = CI->getValue(); 4157 4158 // Instcombine's ShrinkDemandedConstant may strip bits out of 4159 // constants, obscuring what would otherwise be a low-bits mask. 4160 // Use computeKnownBits to compute what ShrinkDemandedConstant 4161 // knew about to reconstruct a low-bits mask value. 4162 unsigned LZ = A.countLeadingZeros(); 4163 unsigned TZ = A.countTrailingZeros(); 4164 unsigned BitWidth = A.getBitWidth(); 4165 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4166 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4167 F->getParent()->getDataLayout(), 0, AC, nullptr, DT); 4168 4169 APInt EffectiveMask = 4170 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4171 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4172 const SCEV *MulCount = getConstant( 4173 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4174 return getMulExpr( 4175 getZeroExtendExpr( 4176 getTruncateExpr( 4177 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4178 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4179 U->getType()), 4180 MulCount); 4181 } 4182 } 4183 break; 4184 4185 case Instruction::Or: 4186 // If the RHS of the Or is a constant, we may have something like: 4187 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4188 // optimizations will transparently handle this case. 4189 // 4190 // In order for this transformation to be safe, the LHS must be of the 4191 // form X*(2^n) and the Or constant must be less than 2^n. 4192 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4193 const SCEV *LHS = getSCEV(U->getOperand(0)); 4194 const APInt &CIVal = CI->getValue(); 4195 if (GetMinTrailingZeros(LHS) >= 4196 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4197 // Build a plain add SCEV. 4198 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4199 // If the LHS of the add was an addrec and it has no-wrap flags, 4200 // transfer the no-wrap flags, since an or won't introduce a wrap. 4201 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4202 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4203 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4204 OldAR->getNoWrapFlags()); 4205 } 4206 return S; 4207 } 4208 } 4209 break; 4210 case Instruction::Xor: 4211 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4212 // If the RHS of the xor is a signbit, then this is just an add. 4213 // Instcombine turns add of signbit into xor as a strength reduction step. 4214 if (CI->getValue().isSignBit()) 4215 return getAddExpr(getSCEV(U->getOperand(0)), 4216 getSCEV(U->getOperand(1))); 4217 4218 // If the RHS of xor is -1, then this is a not operation. 4219 if (CI->isAllOnesValue()) 4220 return getNotSCEV(getSCEV(U->getOperand(0))); 4221 4222 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4223 // This is a variant of the check for xor with -1, and it handles 4224 // the case where instcombine has trimmed non-demanded bits out 4225 // of an xor with -1. 4226 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4227 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4228 if (BO->getOpcode() == Instruction::And && 4229 LCI->getValue() == CI->getValue()) 4230 if (const SCEVZeroExtendExpr *Z = 4231 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4232 Type *UTy = U->getType(); 4233 const SCEV *Z0 = Z->getOperand(); 4234 Type *Z0Ty = Z0->getType(); 4235 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4236 4237 // If C is a low-bits mask, the zero extend is serving to 4238 // mask off the high bits. Complement the operand and 4239 // re-apply the zext. 4240 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4241 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4242 4243 // If C is a single bit, it may be in the sign-bit position 4244 // before the zero-extend. In this case, represent the xor 4245 // using an add, which is equivalent, and re-apply the zext. 4246 APInt Trunc = CI->getValue().trunc(Z0TySize); 4247 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4248 Trunc.isSignBit()) 4249 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4250 UTy); 4251 } 4252 } 4253 break; 4254 4255 case Instruction::Shl: 4256 // Turn shift left of a constant amount into a multiply. 4257 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4258 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4259 4260 // If the shift count is not less than the bitwidth, the result of 4261 // the shift is undefined. Don't try to analyze it, because the 4262 // resolution chosen here may differ from the resolution chosen in 4263 // other parts of the compiler. 4264 if (SA->getValue().uge(BitWidth)) 4265 break; 4266 4267 Constant *X = ConstantInt::get(getContext(), 4268 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4269 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4270 } 4271 break; 4272 4273 case Instruction::LShr: 4274 // Turn logical shift right of a constant into a unsigned divide. 4275 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4276 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4277 4278 // If the shift count is not less than the bitwidth, the result of 4279 // the shift is undefined. Don't try to analyze it, because the 4280 // resolution chosen here may differ from the resolution chosen in 4281 // other parts of the compiler. 4282 if (SA->getValue().uge(BitWidth)) 4283 break; 4284 4285 Constant *X = ConstantInt::get(getContext(), 4286 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4287 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4288 } 4289 break; 4290 4291 case Instruction::AShr: 4292 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4293 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4294 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4295 if (L->getOpcode() == Instruction::Shl && 4296 L->getOperand(1) == U->getOperand(1)) { 4297 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4298 4299 // If the shift count is not less than the bitwidth, the result of 4300 // the shift is undefined. Don't try to analyze it, because the 4301 // resolution chosen here may differ from the resolution chosen in 4302 // other parts of the compiler. 4303 if (CI->getValue().uge(BitWidth)) 4304 break; 4305 4306 uint64_t Amt = BitWidth - CI->getZExtValue(); 4307 if (Amt == BitWidth) 4308 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4309 return 4310 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4311 IntegerType::get(getContext(), 4312 Amt)), 4313 U->getType()); 4314 } 4315 break; 4316 4317 case Instruction::Trunc: 4318 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4319 4320 case Instruction::ZExt: 4321 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4322 4323 case Instruction::SExt: 4324 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4325 4326 case Instruction::BitCast: 4327 // BitCasts are no-op casts so we just eliminate the cast. 4328 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4329 return getSCEV(U->getOperand(0)); 4330 break; 4331 4332 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4333 // lead to pointer expressions which cannot safely be expanded to GEPs, 4334 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4335 // simplifying integer expressions. 4336 4337 case Instruction::GetElementPtr: 4338 return createNodeForGEP(cast<GEPOperator>(U)); 4339 4340 case Instruction::PHI: 4341 return createNodeForPHI(cast<PHINode>(U)); 4342 4343 case Instruction::Select: 4344 // This could be a smax or umax that was lowered earlier. 4345 // Try to recover it. 4346 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4347 Value *LHS = ICI->getOperand(0); 4348 Value *RHS = ICI->getOperand(1); 4349 switch (ICI->getPredicate()) { 4350 case ICmpInst::ICMP_SLT: 4351 case ICmpInst::ICMP_SLE: 4352 std::swap(LHS, RHS); 4353 // fall through 4354 case ICmpInst::ICMP_SGT: 4355 case ICmpInst::ICMP_SGE: 4356 // a >s b ? a+x : b+x -> smax(a, b)+x 4357 // a >s b ? b+x : a+x -> smin(a, b)+x 4358 if (getTypeSizeInBits(LHS->getType()) <= 4359 getTypeSizeInBits(U->getType())) { 4360 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4361 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4362 const SCEV *LA = getSCEV(U->getOperand(1)); 4363 const SCEV *RA = getSCEV(U->getOperand(2)); 4364 const SCEV *LDiff = getMinusSCEV(LA, LS); 4365 const SCEV *RDiff = getMinusSCEV(RA, RS); 4366 if (LDiff == RDiff) 4367 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4368 LDiff = getMinusSCEV(LA, RS); 4369 RDiff = getMinusSCEV(RA, LS); 4370 if (LDiff == RDiff) 4371 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4372 } 4373 break; 4374 case ICmpInst::ICMP_ULT: 4375 case ICmpInst::ICMP_ULE: 4376 std::swap(LHS, RHS); 4377 // fall through 4378 case ICmpInst::ICMP_UGT: 4379 case ICmpInst::ICMP_UGE: 4380 // a >u b ? a+x : b+x -> umax(a, b)+x 4381 // a >u b ? b+x : a+x -> umin(a, b)+x 4382 if (getTypeSizeInBits(LHS->getType()) <= 4383 getTypeSizeInBits(U->getType())) { 4384 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4385 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4386 const SCEV *LA = getSCEV(U->getOperand(1)); 4387 const SCEV *RA = getSCEV(U->getOperand(2)); 4388 const SCEV *LDiff = getMinusSCEV(LA, LS); 4389 const SCEV *RDiff = getMinusSCEV(RA, RS); 4390 if (LDiff == RDiff) 4391 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4392 LDiff = getMinusSCEV(LA, RS); 4393 RDiff = getMinusSCEV(RA, LS); 4394 if (LDiff == RDiff) 4395 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4396 } 4397 break; 4398 case ICmpInst::ICMP_NE: 4399 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4400 if (getTypeSizeInBits(LHS->getType()) <= 4401 getTypeSizeInBits(U->getType()) && 4402 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4403 const SCEV *One = getConstant(U->getType(), 1); 4404 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4405 const SCEV *LA = getSCEV(U->getOperand(1)); 4406 const SCEV *RA = getSCEV(U->getOperand(2)); 4407 const SCEV *LDiff = getMinusSCEV(LA, LS); 4408 const SCEV *RDiff = getMinusSCEV(RA, One); 4409 if (LDiff == RDiff) 4410 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4411 } 4412 break; 4413 case ICmpInst::ICMP_EQ: 4414 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4415 if (getTypeSizeInBits(LHS->getType()) <= 4416 getTypeSizeInBits(U->getType()) && 4417 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4418 const SCEV *One = getConstant(U->getType(), 1); 4419 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4420 const SCEV *LA = getSCEV(U->getOperand(1)); 4421 const SCEV *RA = getSCEV(U->getOperand(2)); 4422 const SCEV *LDiff = getMinusSCEV(LA, One); 4423 const SCEV *RDiff = getMinusSCEV(RA, LS); 4424 if (LDiff == RDiff) 4425 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4426 } 4427 break; 4428 default: 4429 break; 4430 } 4431 } 4432 4433 default: // We cannot analyze this expression. 4434 break; 4435 } 4436 4437 return getUnknown(V); 4438 } 4439 4440 4441 4442 //===----------------------------------------------------------------------===// 4443 // Iteration Count Computation Code 4444 // 4445 4446 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4447 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4448 return getSmallConstantTripCount(L, ExitingBB); 4449 4450 // No trip count information for multiple exits. 4451 return 0; 4452 } 4453 4454 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4455 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4456 /// constant. Will also return 0 if the maximum trip count is very large (>= 4457 /// 2^32). 4458 /// 4459 /// This "trip count" assumes that control exits via ExitingBlock. More 4460 /// precisely, it is the number of times that control may reach ExitingBlock 4461 /// before taking the branch. For loops with multiple exits, it may not be the 4462 /// number times that the loop header executes because the loop may exit 4463 /// prematurely via another branch. 4464 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4465 BasicBlock *ExitingBlock) { 4466 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4467 assert(L->isLoopExiting(ExitingBlock) && 4468 "Exiting block must actually branch out of the loop!"); 4469 const SCEVConstant *ExitCount = 4470 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4471 if (!ExitCount) 4472 return 0; 4473 4474 ConstantInt *ExitConst = ExitCount->getValue(); 4475 4476 // Guard against huge trip counts. 4477 if (ExitConst->getValue().getActiveBits() > 32) 4478 return 0; 4479 4480 // In case of integer overflow, this returns 0, which is correct. 4481 return ((unsigned)ExitConst->getZExtValue()) + 1; 4482 } 4483 4484 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4485 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4486 return getSmallConstantTripMultiple(L, ExitingBB); 4487 4488 // No trip multiple information for multiple exits. 4489 return 0; 4490 } 4491 4492 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4493 /// trip count of this loop as a normal unsigned value, if possible. This 4494 /// means that the actual trip count is always a multiple of the returned 4495 /// value (don't forget the trip count could very well be zero as well!). 4496 /// 4497 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4498 /// multiple of a constant (which is also the case if the trip count is simply 4499 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4500 /// if the trip count is very large (>= 2^32). 4501 /// 4502 /// As explained in the comments for getSmallConstantTripCount, this assumes 4503 /// that control exits the loop via ExitingBlock. 4504 unsigned 4505 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4506 BasicBlock *ExitingBlock) { 4507 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4508 assert(L->isLoopExiting(ExitingBlock) && 4509 "Exiting block must actually branch out of the loop!"); 4510 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4511 if (ExitCount == getCouldNotCompute()) 4512 return 1; 4513 4514 // Get the trip count from the BE count by adding 1. 4515 const SCEV *TCMul = getAddExpr(ExitCount, 4516 getConstant(ExitCount->getType(), 1)); 4517 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4518 // to factor simple cases. 4519 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4520 TCMul = Mul->getOperand(0); 4521 4522 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4523 if (!MulC) 4524 return 1; 4525 4526 ConstantInt *Result = MulC->getValue(); 4527 4528 // Guard against huge trip counts (this requires checking 4529 // for zero to handle the case where the trip count == -1 and the 4530 // addition wraps). 4531 if (!Result || Result->getValue().getActiveBits() > 32 || 4532 Result->getValue().getActiveBits() == 0) 4533 return 1; 4534 4535 return (unsigned)Result->getZExtValue(); 4536 } 4537 4538 // getExitCount - Get the expression for the number of loop iterations for which 4539 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4540 // SCEVCouldNotCompute. 4541 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4542 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4543 } 4544 4545 /// getBackedgeTakenCount - If the specified loop has a predictable 4546 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4547 /// object. The backedge-taken count is the number of times the loop header 4548 /// will be branched to from within the loop. This is one less than the 4549 /// trip count of the loop, since it doesn't count the first iteration, 4550 /// when the header is branched to from outside the loop. 4551 /// 4552 /// Note that it is not valid to call this method on a loop without a 4553 /// loop-invariant backedge-taken count (see 4554 /// hasLoopInvariantBackedgeTakenCount). 4555 /// 4556 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4557 return getBackedgeTakenInfo(L).getExact(this); 4558 } 4559 4560 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4561 /// return the least SCEV value that is known never to be less than the 4562 /// actual backedge taken count. 4563 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4564 return getBackedgeTakenInfo(L).getMax(this); 4565 } 4566 4567 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4568 /// onto the given Worklist. 4569 static void 4570 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4571 BasicBlock *Header = L->getHeader(); 4572 4573 // Push all Loop-header PHIs onto the Worklist stack. 4574 for (BasicBlock::iterator I = Header->begin(); 4575 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4576 Worklist.push_back(PN); 4577 } 4578 4579 const ScalarEvolution::BackedgeTakenInfo & 4580 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4581 // Initially insert an invalid entry for this loop. If the insertion 4582 // succeeds, proceed to actually compute a backedge-taken count and 4583 // update the value. The temporary CouldNotCompute value tells SCEV 4584 // code elsewhere that it shouldn't attempt to request a new 4585 // backedge-taken count, which could result in infinite recursion. 4586 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4587 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4588 if (!Pair.second) 4589 return Pair.first->second; 4590 4591 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4592 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4593 // must be cleared in this scope. 4594 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4595 4596 if (Result.getExact(this) != getCouldNotCompute()) { 4597 assert(isLoopInvariant(Result.getExact(this), L) && 4598 isLoopInvariant(Result.getMax(this), L) && 4599 "Computed backedge-taken count isn't loop invariant for loop!"); 4600 ++NumTripCountsComputed; 4601 } 4602 else if (Result.getMax(this) == getCouldNotCompute() && 4603 isa<PHINode>(L->getHeader()->begin())) { 4604 // Only count loops that have phi nodes as not being computable. 4605 ++NumTripCountsNotComputed; 4606 } 4607 4608 // Now that we know more about the trip count for this loop, forget any 4609 // existing SCEV values for PHI nodes in this loop since they are only 4610 // conservative estimates made without the benefit of trip count 4611 // information. This is similar to the code in forgetLoop, except that 4612 // it handles SCEVUnknown PHI nodes specially. 4613 if (Result.hasAnyInfo()) { 4614 SmallVector<Instruction *, 16> Worklist; 4615 PushLoopPHIs(L, Worklist); 4616 4617 SmallPtrSet<Instruction *, 8> Visited; 4618 while (!Worklist.empty()) { 4619 Instruction *I = Worklist.pop_back_val(); 4620 if (!Visited.insert(I).second) 4621 continue; 4622 4623 ValueExprMapType::iterator It = 4624 ValueExprMap.find_as(static_cast<Value *>(I)); 4625 if (It != ValueExprMap.end()) { 4626 const SCEV *Old = It->second; 4627 4628 // SCEVUnknown for a PHI either means that it has an unrecognized 4629 // structure, or it's a PHI that's in the progress of being computed 4630 // by createNodeForPHI. In the former case, additional loop trip 4631 // count information isn't going to change anything. In the later 4632 // case, createNodeForPHI will perform the necessary updates on its 4633 // own when it gets to that point. 4634 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4635 forgetMemoizedResults(Old); 4636 ValueExprMap.erase(It); 4637 } 4638 if (PHINode *PN = dyn_cast<PHINode>(I)) 4639 ConstantEvolutionLoopExitValue.erase(PN); 4640 } 4641 4642 PushDefUseChildren(I, Worklist); 4643 } 4644 } 4645 4646 // Re-lookup the insert position, since the call to 4647 // ComputeBackedgeTakenCount above could result in a 4648 // recusive call to getBackedgeTakenInfo (on a different 4649 // loop), which would invalidate the iterator computed 4650 // earlier. 4651 return BackedgeTakenCounts.find(L)->second = Result; 4652 } 4653 4654 /// forgetLoop - This method should be called by the client when it has 4655 /// changed a loop in a way that may effect ScalarEvolution's ability to 4656 /// compute a trip count, or if the loop is deleted. 4657 void ScalarEvolution::forgetLoop(const Loop *L) { 4658 // Drop any stored trip count value. 4659 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4660 BackedgeTakenCounts.find(L); 4661 if (BTCPos != BackedgeTakenCounts.end()) { 4662 BTCPos->second.clear(); 4663 BackedgeTakenCounts.erase(BTCPos); 4664 } 4665 4666 // Drop information about expressions based on loop-header PHIs. 4667 SmallVector<Instruction *, 16> Worklist; 4668 PushLoopPHIs(L, Worklist); 4669 4670 SmallPtrSet<Instruction *, 8> Visited; 4671 while (!Worklist.empty()) { 4672 Instruction *I = Worklist.pop_back_val(); 4673 if (!Visited.insert(I).second) 4674 continue; 4675 4676 ValueExprMapType::iterator It = 4677 ValueExprMap.find_as(static_cast<Value *>(I)); 4678 if (It != ValueExprMap.end()) { 4679 forgetMemoizedResults(It->second); 4680 ValueExprMap.erase(It); 4681 if (PHINode *PN = dyn_cast<PHINode>(I)) 4682 ConstantEvolutionLoopExitValue.erase(PN); 4683 } 4684 4685 PushDefUseChildren(I, Worklist); 4686 } 4687 4688 // Forget all contained loops too, to avoid dangling entries in the 4689 // ValuesAtScopes map. 4690 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4691 forgetLoop(*I); 4692 } 4693 4694 /// forgetValue - This method should be called by the client when it has 4695 /// changed a value in a way that may effect its value, or which may 4696 /// disconnect it from a def-use chain linking it to a loop. 4697 void ScalarEvolution::forgetValue(Value *V) { 4698 Instruction *I = dyn_cast<Instruction>(V); 4699 if (!I) return; 4700 4701 // Drop information about expressions based on loop-header PHIs. 4702 SmallVector<Instruction *, 16> Worklist; 4703 Worklist.push_back(I); 4704 4705 SmallPtrSet<Instruction *, 8> Visited; 4706 while (!Worklist.empty()) { 4707 I = Worklist.pop_back_val(); 4708 if (!Visited.insert(I).second) 4709 continue; 4710 4711 ValueExprMapType::iterator It = 4712 ValueExprMap.find_as(static_cast<Value *>(I)); 4713 if (It != ValueExprMap.end()) { 4714 forgetMemoizedResults(It->second); 4715 ValueExprMap.erase(It); 4716 if (PHINode *PN = dyn_cast<PHINode>(I)) 4717 ConstantEvolutionLoopExitValue.erase(PN); 4718 } 4719 4720 PushDefUseChildren(I, Worklist); 4721 } 4722 } 4723 4724 /// getExact - Get the exact loop backedge taken count considering all loop 4725 /// exits. A computable result can only be return for loops with a single exit. 4726 /// Returning the minimum taken count among all exits is incorrect because one 4727 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4728 /// the limit of each loop test is never skipped. This is a valid assumption as 4729 /// long as the loop exits via that test. For precise results, it is the 4730 /// caller's responsibility to specify the relevant loop exit using 4731 /// getExact(ExitingBlock, SE). 4732 const SCEV * 4733 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4734 // If any exits were not computable, the loop is not computable. 4735 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4736 4737 // We need exactly one computable exit. 4738 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4739 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4740 4741 const SCEV *BECount = nullptr; 4742 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4743 ENT != nullptr; ENT = ENT->getNextExit()) { 4744 4745 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4746 4747 if (!BECount) 4748 BECount = ENT->ExactNotTaken; 4749 else if (BECount != ENT->ExactNotTaken) 4750 return SE->getCouldNotCompute(); 4751 } 4752 assert(BECount && "Invalid not taken count for loop exit"); 4753 return BECount; 4754 } 4755 4756 /// getExact - Get the exact not taken count for this loop exit. 4757 const SCEV * 4758 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4759 ScalarEvolution *SE) const { 4760 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4761 ENT != nullptr; ENT = ENT->getNextExit()) { 4762 4763 if (ENT->ExitingBlock == ExitingBlock) 4764 return ENT->ExactNotTaken; 4765 } 4766 return SE->getCouldNotCompute(); 4767 } 4768 4769 /// getMax - Get the max backedge taken count for the loop. 4770 const SCEV * 4771 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4772 return Max ? Max : SE->getCouldNotCompute(); 4773 } 4774 4775 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4776 ScalarEvolution *SE) const { 4777 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4778 return true; 4779 4780 if (!ExitNotTaken.ExitingBlock) 4781 return false; 4782 4783 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4784 ENT != nullptr; ENT = ENT->getNextExit()) { 4785 4786 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4787 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4788 return true; 4789 } 4790 } 4791 return false; 4792 } 4793 4794 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4795 /// computable exit into a persistent ExitNotTakenInfo array. 4796 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4797 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4798 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4799 4800 if (!Complete) 4801 ExitNotTaken.setIncomplete(); 4802 4803 unsigned NumExits = ExitCounts.size(); 4804 if (NumExits == 0) return; 4805 4806 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4807 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4808 if (NumExits == 1) return; 4809 4810 // Handle the rare case of multiple computable exits. 4811 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4812 4813 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4814 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4815 PrevENT->setNextExit(ENT); 4816 ENT->ExitingBlock = ExitCounts[i].first; 4817 ENT->ExactNotTaken = ExitCounts[i].second; 4818 } 4819 } 4820 4821 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4822 void ScalarEvolution::BackedgeTakenInfo::clear() { 4823 ExitNotTaken.ExitingBlock = nullptr; 4824 ExitNotTaken.ExactNotTaken = nullptr; 4825 delete[] ExitNotTaken.getNextExit(); 4826 } 4827 4828 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4829 /// of the specified loop will execute. 4830 ScalarEvolution::BackedgeTakenInfo 4831 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4832 SmallVector<BasicBlock *, 8> ExitingBlocks; 4833 L->getExitingBlocks(ExitingBlocks); 4834 4835 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4836 bool CouldComputeBECount = true; 4837 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4838 const SCEV *MustExitMaxBECount = nullptr; 4839 const SCEV *MayExitMaxBECount = nullptr; 4840 4841 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4842 // and compute maxBECount. 4843 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4844 BasicBlock *ExitBB = ExitingBlocks[i]; 4845 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4846 4847 // 1. For each exit that can be computed, add an entry to ExitCounts. 4848 // CouldComputeBECount is true only if all exits can be computed. 4849 if (EL.Exact == getCouldNotCompute()) 4850 // We couldn't compute an exact value for this exit, so 4851 // we won't be able to compute an exact value for the loop. 4852 CouldComputeBECount = false; 4853 else 4854 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4855 4856 // 2. Derive the loop's MaxBECount from each exit's max number of 4857 // non-exiting iterations. Partition the loop exits into two kinds: 4858 // LoopMustExits and LoopMayExits. 4859 // 4860 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4861 // is a LoopMayExit. If any computable LoopMustExit is found, then 4862 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4863 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4864 // considered greater than any computable EL.Max. 4865 if (EL.Max != getCouldNotCompute() && Latch && 4866 DT->dominates(ExitBB, Latch)) { 4867 if (!MustExitMaxBECount) 4868 MustExitMaxBECount = EL.Max; 4869 else { 4870 MustExitMaxBECount = 4871 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4872 } 4873 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4874 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4875 MayExitMaxBECount = EL.Max; 4876 else { 4877 MayExitMaxBECount = 4878 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4879 } 4880 } 4881 } 4882 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4883 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4884 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4885 } 4886 4887 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4888 /// loop will execute if it exits via the specified block. 4889 ScalarEvolution::ExitLimit 4890 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4891 4892 // Okay, we've chosen an exiting block. See what condition causes us to 4893 // exit at this block and remember the exit block and whether all other targets 4894 // lead to the loop header. 4895 bool MustExecuteLoopHeader = true; 4896 BasicBlock *Exit = nullptr; 4897 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4898 SI != SE; ++SI) 4899 if (!L->contains(*SI)) { 4900 if (Exit) // Multiple exit successors. 4901 return getCouldNotCompute(); 4902 Exit = *SI; 4903 } else if (*SI != L->getHeader()) { 4904 MustExecuteLoopHeader = false; 4905 } 4906 4907 // At this point, we know we have a conditional branch that determines whether 4908 // the loop is exited. However, we don't know if the branch is executed each 4909 // time through the loop. If not, then the execution count of the branch will 4910 // not be equal to the trip count of the loop. 4911 // 4912 // Currently we check for this by checking to see if the Exit branch goes to 4913 // the loop header. If so, we know it will always execute the same number of 4914 // times as the loop. We also handle the case where the exit block *is* the 4915 // loop header. This is common for un-rotated loops. 4916 // 4917 // If both of those tests fail, walk up the unique predecessor chain to the 4918 // header, stopping if there is an edge that doesn't exit the loop. If the 4919 // header is reached, the execution count of the branch will be equal to the 4920 // trip count of the loop. 4921 // 4922 // More extensive analysis could be done to handle more cases here. 4923 // 4924 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4925 // The simple checks failed, try climbing the unique predecessor chain 4926 // up to the header. 4927 bool Ok = false; 4928 for (BasicBlock *BB = ExitingBlock; BB; ) { 4929 BasicBlock *Pred = BB->getUniquePredecessor(); 4930 if (!Pred) 4931 return getCouldNotCompute(); 4932 TerminatorInst *PredTerm = Pred->getTerminator(); 4933 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4934 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4935 if (PredSucc == BB) 4936 continue; 4937 // If the predecessor has a successor that isn't BB and isn't 4938 // outside the loop, assume the worst. 4939 if (L->contains(PredSucc)) 4940 return getCouldNotCompute(); 4941 } 4942 if (Pred == L->getHeader()) { 4943 Ok = true; 4944 break; 4945 } 4946 BB = Pred; 4947 } 4948 if (!Ok) 4949 return getCouldNotCompute(); 4950 } 4951 4952 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 4953 TerminatorInst *Term = ExitingBlock->getTerminator(); 4954 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4955 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4956 // Proceed to the next level to examine the exit condition expression. 4957 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4958 BI->getSuccessor(1), 4959 /*ControlsExit=*/IsOnlyExit); 4960 } 4961 4962 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4963 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4964 /*ControlsExit=*/IsOnlyExit); 4965 4966 return getCouldNotCompute(); 4967 } 4968 4969 /// ComputeExitLimitFromCond - Compute the number of times the 4970 /// backedge of the specified loop will execute if its exit condition 4971 /// were a conditional branch of ExitCond, TBB, and FBB. 4972 /// 4973 /// @param ControlsExit is true if ExitCond directly controls the exit 4974 /// branch. In this case, we can assume that the loop exits only if the 4975 /// condition is true and can infer that failing to meet the condition prior to 4976 /// integer wraparound results in undefined behavior. 4977 ScalarEvolution::ExitLimit 4978 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4979 Value *ExitCond, 4980 BasicBlock *TBB, 4981 BasicBlock *FBB, 4982 bool ControlsExit) { 4983 // Check if the controlling expression for this loop is an And or Or. 4984 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4985 if (BO->getOpcode() == Instruction::And) { 4986 // Recurse on the operands of the and. 4987 bool EitherMayExit = L->contains(TBB); 4988 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4989 ControlsExit && !EitherMayExit); 4990 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4991 ControlsExit && !EitherMayExit); 4992 const SCEV *BECount = getCouldNotCompute(); 4993 const SCEV *MaxBECount = getCouldNotCompute(); 4994 if (EitherMayExit) { 4995 // Both conditions must be true for the loop to continue executing. 4996 // Choose the less conservative count. 4997 if (EL0.Exact == getCouldNotCompute() || 4998 EL1.Exact == getCouldNotCompute()) 4999 BECount = getCouldNotCompute(); 5000 else 5001 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5002 if (EL0.Max == getCouldNotCompute()) 5003 MaxBECount = EL1.Max; 5004 else if (EL1.Max == getCouldNotCompute()) 5005 MaxBECount = EL0.Max; 5006 else 5007 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5008 } else { 5009 // Both conditions must be true at the same time for the loop to exit. 5010 // For now, be conservative. 5011 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5012 if (EL0.Max == EL1.Max) 5013 MaxBECount = EL0.Max; 5014 if (EL0.Exact == EL1.Exact) 5015 BECount = EL0.Exact; 5016 } 5017 5018 return ExitLimit(BECount, MaxBECount); 5019 } 5020 if (BO->getOpcode() == Instruction::Or) { 5021 // Recurse on the operands of the or. 5022 bool EitherMayExit = L->contains(FBB); 5023 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5024 ControlsExit && !EitherMayExit); 5025 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5026 ControlsExit && !EitherMayExit); 5027 const SCEV *BECount = getCouldNotCompute(); 5028 const SCEV *MaxBECount = getCouldNotCompute(); 5029 if (EitherMayExit) { 5030 // Both conditions must be false for the loop to continue executing. 5031 // Choose the less conservative count. 5032 if (EL0.Exact == getCouldNotCompute() || 5033 EL1.Exact == getCouldNotCompute()) 5034 BECount = getCouldNotCompute(); 5035 else 5036 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5037 if (EL0.Max == getCouldNotCompute()) 5038 MaxBECount = EL1.Max; 5039 else if (EL1.Max == getCouldNotCompute()) 5040 MaxBECount = EL0.Max; 5041 else 5042 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5043 } else { 5044 // Both conditions must be false at the same time for the loop to exit. 5045 // For now, be conservative. 5046 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5047 if (EL0.Max == EL1.Max) 5048 MaxBECount = EL0.Max; 5049 if (EL0.Exact == EL1.Exact) 5050 BECount = EL0.Exact; 5051 } 5052 5053 return ExitLimit(BECount, MaxBECount); 5054 } 5055 } 5056 5057 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5058 // Proceed to the next level to examine the icmp. 5059 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5060 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5061 5062 // Check for a constant condition. These are normally stripped out by 5063 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5064 // preserve the CFG and is temporarily leaving constant conditions 5065 // in place. 5066 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5067 if (L->contains(FBB) == !CI->getZExtValue()) 5068 // The backedge is always taken. 5069 return getCouldNotCompute(); 5070 else 5071 // The backedge is never taken. 5072 return getConstant(CI->getType(), 0); 5073 } 5074 5075 // If it's not an integer or pointer comparison then compute it the hard way. 5076 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5077 } 5078 5079 /// ComputeExitLimitFromICmp - Compute the number of times the 5080 /// backedge of the specified loop will execute if its exit condition 5081 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5082 ScalarEvolution::ExitLimit 5083 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5084 ICmpInst *ExitCond, 5085 BasicBlock *TBB, 5086 BasicBlock *FBB, 5087 bool ControlsExit) { 5088 5089 // If the condition was exit on true, convert the condition to exit on false 5090 ICmpInst::Predicate Cond; 5091 if (!L->contains(FBB)) 5092 Cond = ExitCond->getPredicate(); 5093 else 5094 Cond = ExitCond->getInversePredicate(); 5095 5096 // Handle common loops like: for (X = "string"; *X; ++X) 5097 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5098 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5099 ExitLimit ItCnt = 5100 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5101 if (ItCnt.hasAnyInfo()) 5102 return ItCnt; 5103 } 5104 5105 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5106 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5107 5108 // Try to evaluate any dependencies out of the loop. 5109 LHS = getSCEVAtScope(LHS, L); 5110 RHS = getSCEVAtScope(RHS, L); 5111 5112 // At this point, we would like to compute how many iterations of the 5113 // loop the predicate will return true for these inputs. 5114 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5115 // If there is a loop-invariant, force it into the RHS. 5116 std::swap(LHS, RHS); 5117 Cond = ICmpInst::getSwappedPredicate(Cond); 5118 } 5119 5120 // Simplify the operands before analyzing them. 5121 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5122 5123 // If we have a comparison of a chrec against a constant, try to use value 5124 // ranges to answer this query. 5125 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5126 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5127 if (AddRec->getLoop() == L) { 5128 // Form the constant range. 5129 ConstantRange CompRange( 5130 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5131 5132 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5133 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5134 } 5135 5136 switch (Cond) { 5137 case ICmpInst::ICMP_NE: { // while (X != Y) 5138 // Convert to: while (X-Y != 0) 5139 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5140 if (EL.hasAnyInfo()) return EL; 5141 break; 5142 } 5143 case ICmpInst::ICMP_EQ: { // while (X == Y) 5144 // Convert to: while (X-Y == 0) 5145 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5146 if (EL.hasAnyInfo()) return EL; 5147 break; 5148 } 5149 case ICmpInst::ICMP_SLT: 5150 case ICmpInst::ICMP_ULT: { // while (X < Y) 5151 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5152 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5153 if (EL.hasAnyInfo()) return EL; 5154 break; 5155 } 5156 case ICmpInst::ICMP_SGT: 5157 case ICmpInst::ICMP_UGT: { // while (X > Y) 5158 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5159 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5160 if (EL.hasAnyInfo()) return EL; 5161 break; 5162 } 5163 default: 5164 #if 0 5165 dbgs() << "ComputeBackedgeTakenCount "; 5166 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5167 dbgs() << "[unsigned] "; 5168 dbgs() << *LHS << " " 5169 << Instruction::getOpcodeName(Instruction::ICmp) 5170 << " " << *RHS << "\n"; 5171 #endif 5172 break; 5173 } 5174 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5175 } 5176 5177 ScalarEvolution::ExitLimit 5178 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5179 SwitchInst *Switch, 5180 BasicBlock *ExitingBlock, 5181 bool ControlsExit) { 5182 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5183 5184 // Give up if the exit is the default dest of a switch. 5185 if (Switch->getDefaultDest() == ExitingBlock) 5186 return getCouldNotCompute(); 5187 5188 assert(L->contains(Switch->getDefaultDest()) && 5189 "Default case must not exit the loop!"); 5190 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5191 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5192 5193 // while (X != Y) --> while (X-Y != 0) 5194 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5195 if (EL.hasAnyInfo()) 5196 return EL; 5197 5198 return getCouldNotCompute(); 5199 } 5200 5201 static ConstantInt * 5202 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5203 ScalarEvolution &SE) { 5204 const SCEV *InVal = SE.getConstant(C); 5205 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5206 assert(isa<SCEVConstant>(Val) && 5207 "Evaluation of SCEV at constant didn't fold correctly?"); 5208 return cast<SCEVConstant>(Val)->getValue(); 5209 } 5210 5211 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5212 /// 'icmp op load X, cst', try to see if we can compute the backedge 5213 /// execution count. 5214 ScalarEvolution::ExitLimit 5215 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5216 LoadInst *LI, 5217 Constant *RHS, 5218 const Loop *L, 5219 ICmpInst::Predicate predicate) { 5220 5221 if (LI->isVolatile()) return getCouldNotCompute(); 5222 5223 // Check to see if the loaded pointer is a getelementptr of a global. 5224 // TODO: Use SCEV instead of manually grubbing with GEPs. 5225 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5226 if (!GEP) return getCouldNotCompute(); 5227 5228 // Make sure that it is really a constant global we are gepping, with an 5229 // initializer, and make sure the first IDX is really 0. 5230 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5231 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5232 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5233 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5234 return getCouldNotCompute(); 5235 5236 // Okay, we allow one non-constant index into the GEP instruction. 5237 Value *VarIdx = nullptr; 5238 std::vector<Constant*> Indexes; 5239 unsigned VarIdxNum = 0; 5240 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5241 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5242 Indexes.push_back(CI); 5243 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5244 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5245 VarIdx = GEP->getOperand(i); 5246 VarIdxNum = i-2; 5247 Indexes.push_back(nullptr); 5248 } 5249 5250 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5251 if (!VarIdx) 5252 return getCouldNotCompute(); 5253 5254 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5255 // Check to see if X is a loop variant variable value now. 5256 const SCEV *Idx = getSCEV(VarIdx); 5257 Idx = getSCEVAtScope(Idx, L); 5258 5259 // We can only recognize very limited forms of loop index expressions, in 5260 // particular, only affine AddRec's like {C1,+,C2}. 5261 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5262 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5263 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5264 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5265 return getCouldNotCompute(); 5266 5267 unsigned MaxSteps = MaxBruteForceIterations; 5268 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5269 ConstantInt *ItCst = ConstantInt::get( 5270 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5271 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5272 5273 // Form the GEP offset. 5274 Indexes[VarIdxNum] = Val; 5275 5276 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5277 Indexes); 5278 if (!Result) break; // Cannot compute! 5279 5280 // Evaluate the condition for this iteration. 5281 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5282 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5283 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5284 #if 0 5285 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5286 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5287 << "***\n"; 5288 #endif 5289 ++NumArrayLenItCounts; 5290 return getConstant(ItCst); // Found terminating iteration! 5291 } 5292 } 5293 return getCouldNotCompute(); 5294 } 5295 5296 5297 /// CanConstantFold - Return true if we can constant fold an instruction of the 5298 /// specified type, assuming that all operands were constants. 5299 static bool CanConstantFold(const Instruction *I) { 5300 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5301 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5302 isa<LoadInst>(I)) 5303 return true; 5304 5305 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5306 if (const Function *F = CI->getCalledFunction()) 5307 return canConstantFoldCallTo(F); 5308 return false; 5309 } 5310 5311 /// Determine whether this instruction can constant evolve within this loop 5312 /// assuming its operands can all constant evolve. 5313 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5314 // An instruction outside of the loop can't be derived from a loop PHI. 5315 if (!L->contains(I)) return false; 5316 5317 if (isa<PHINode>(I)) { 5318 // We don't currently keep track of the control flow needed to evaluate 5319 // PHIs, so we cannot handle PHIs inside of loops. 5320 return L->getHeader() == I->getParent(); 5321 } 5322 5323 // If we won't be able to constant fold this expression even if the operands 5324 // are constants, bail early. 5325 return CanConstantFold(I); 5326 } 5327 5328 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5329 /// recursing through each instruction operand until reaching a loop header phi. 5330 static PHINode * 5331 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5332 DenseMap<Instruction *, PHINode *> &PHIMap) { 5333 5334 // Otherwise, we can evaluate this instruction if all of its operands are 5335 // constant or derived from a PHI node themselves. 5336 PHINode *PHI = nullptr; 5337 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5338 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5339 5340 if (isa<Constant>(*OpI)) continue; 5341 5342 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5343 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5344 5345 PHINode *P = dyn_cast<PHINode>(OpInst); 5346 if (!P) 5347 // If this operand is already visited, reuse the prior result. 5348 // We may have P != PHI if this is the deepest point at which the 5349 // inconsistent paths meet. 5350 P = PHIMap.lookup(OpInst); 5351 if (!P) { 5352 // Recurse and memoize the results, whether a phi is found or not. 5353 // This recursive call invalidates pointers into PHIMap. 5354 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5355 PHIMap[OpInst] = P; 5356 } 5357 if (!P) 5358 return nullptr; // Not evolving from PHI 5359 if (PHI && PHI != P) 5360 return nullptr; // Evolving from multiple different PHIs. 5361 PHI = P; 5362 } 5363 // This is a expression evolving from a constant PHI! 5364 return PHI; 5365 } 5366 5367 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5368 /// in the loop that V is derived from. We allow arbitrary operations along the 5369 /// way, but the operands of an operation must either be constants or a value 5370 /// derived from a constant PHI. If this expression does not fit with these 5371 /// constraints, return null. 5372 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5373 Instruction *I = dyn_cast<Instruction>(V); 5374 if (!I || !canConstantEvolve(I, L)) return nullptr; 5375 5376 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5377 return PN; 5378 } 5379 5380 // Record non-constant instructions contained by the loop. 5381 DenseMap<Instruction *, PHINode *> PHIMap; 5382 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5383 } 5384 5385 /// EvaluateExpression - Given an expression that passes the 5386 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5387 /// in the loop has the value PHIVal. If we can't fold this expression for some 5388 /// reason, return null. 5389 static Constant *EvaluateExpression(Value *V, const Loop *L, 5390 DenseMap<Instruction *, Constant *> &Vals, 5391 const DataLayout &DL, 5392 const TargetLibraryInfo *TLI) { 5393 // Convenient constant check, but redundant for recursive calls. 5394 if (Constant *C = dyn_cast<Constant>(V)) return C; 5395 Instruction *I = dyn_cast<Instruction>(V); 5396 if (!I) return nullptr; 5397 5398 if (Constant *C = Vals.lookup(I)) return C; 5399 5400 // An instruction inside the loop depends on a value outside the loop that we 5401 // weren't given a mapping for, or a value such as a call inside the loop. 5402 if (!canConstantEvolve(I, L)) return nullptr; 5403 5404 // An unmapped PHI can be due to a branch or another loop inside this loop, 5405 // or due to this not being the initial iteration through a loop where we 5406 // couldn't compute the evolution of this particular PHI last time. 5407 if (isa<PHINode>(I)) return nullptr; 5408 5409 std::vector<Constant*> Operands(I->getNumOperands()); 5410 5411 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5412 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5413 if (!Operand) { 5414 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5415 if (!Operands[i]) return nullptr; 5416 continue; 5417 } 5418 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5419 Vals[Operand] = C; 5420 if (!C) return nullptr; 5421 Operands[i] = C; 5422 } 5423 5424 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5425 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5426 Operands[1], DL, TLI); 5427 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5428 if (!LI->isVolatile()) 5429 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5430 } 5431 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5432 TLI); 5433 } 5434 5435 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5436 /// in the header of its containing loop, we know the loop executes a 5437 /// constant number of times, and the PHI node is just a recurrence 5438 /// involving constants, fold it. 5439 Constant * 5440 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5441 const APInt &BEs, 5442 const Loop *L) { 5443 DenseMap<PHINode*, Constant*>::const_iterator I = 5444 ConstantEvolutionLoopExitValue.find(PN); 5445 if (I != ConstantEvolutionLoopExitValue.end()) 5446 return I->second; 5447 5448 if (BEs.ugt(MaxBruteForceIterations)) 5449 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5450 5451 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5452 5453 DenseMap<Instruction *, Constant *> CurrentIterVals; 5454 BasicBlock *Header = L->getHeader(); 5455 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5456 5457 // Since the loop is canonicalized, the PHI node must have two entries. One 5458 // entry must be a constant (coming in from outside of the loop), and the 5459 // second must be derived from the same PHI. 5460 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5461 PHINode *PHI = nullptr; 5462 for (BasicBlock::iterator I = Header->begin(); 5463 (PHI = dyn_cast<PHINode>(I)); ++I) { 5464 Constant *StartCST = 5465 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5466 if (!StartCST) continue; 5467 CurrentIterVals[PHI] = StartCST; 5468 } 5469 if (!CurrentIterVals.count(PN)) 5470 return RetVal = nullptr; 5471 5472 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5473 5474 // Execute the loop symbolically to determine the exit value. 5475 if (BEs.getActiveBits() >= 32) 5476 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5477 5478 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5479 unsigned IterationNum = 0; 5480 const DataLayout &DL = F->getParent()->getDataLayout(); 5481 for (; ; ++IterationNum) { 5482 if (IterationNum == NumIterations) 5483 return RetVal = CurrentIterVals[PN]; // Got exit value! 5484 5485 // Compute the value of the PHIs for the next iteration. 5486 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5487 DenseMap<Instruction *, Constant *> NextIterVals; 5488 Constant *NextPHI = 5489 EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5490 if (!NextPHI) 5491 return nullptr; // Couldn't evaluate! 5492 NextIterVals[PN] = NextPHI; 5493 5494 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5495 5496 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5497 // cease to be able to evaluate one of them or if they stop evolving, 5498 // because that doesn't necessarily prevent us from computing PN. 5499 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5500 for (DenseMap<Instruction *, Constant *>::const_iterator 5501 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5502 PHINode *PHI = dyn_cast<PHINode>(I->first); 5503 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5504 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5505 } 5506 // We use two distinct loops because EvaluateExpression may invalidate any 5507 // iterators into CurrentIterVals. 5508 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5509 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5510 PHINode *PHI = I->first; 5511 Constant *&NextPHI = NextIterVals[PHI]; 5512 if (!NextPHI) { // Not already computed. 5513 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5514 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5515 } 5516 if (NextPHI != I->second) 5517 StoppedEvolving = false; 5518 } 5519 5520 // If all entries in CurrentIterVals == NextIterVals then we can stop 5521 // iterating, the loop can't continue to change. 5522 if (StoppedEvolving) 5523 return RetVal = CurrentIterVals[PN]; 5524 5525 CurrentIterVals.swap(NextIterVals); 5526 } 5527 } 5528 5529 /// ComputeExitCountExhaustively - If the loop is known to execute a 5530 /// constant number of times (the condition evolves only from constants), 5531 /// try to evaluate a few iterations of the loop until we get the exit 5532 /// condition gets a value of ExitWhen (true or false). If we cannot 5533 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5534 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5535 Value *Cond, 5536 bool ExitWhen) { 5537 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5538 if (!PN) return getCouldNotCompute(); 5539 5540 // If the loop is canonicalized, the PHI will have exactly two entries. 5541 // That's the only form we support here. 5542 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5543 5544 DenseMap<Instruction *, Constant *> CurrentIterVals; 5545 BasicBlock *Header = L->getHeader(); 5546 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5547 5548 // One entry must be a constant (coming in from outside of the loop), and the 5549 // second must be derived from the same PHI. 5550 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5551 PHINode *PHI = nullptr; 5552 for (BasicBlock::iterator I = Header->begin(); 5553 (PHI = dyn_cast<PHINode>(I)); ++I) { 5554 Constant *StartCST = 5555 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5556 if (!StartCST) continue; 5557 CurrentIterVals[PHI] = StartCST; 5558 } 5559 if (!CurrentIterVals.count(PN)) 5560 return getCouldNotCompute(); 5561 5562 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5563 // the loop symbolically to determine when the condition gets a value of 5564 // "ExitWhen". 5565 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5566 const DataLayout &DL = F->getParent()->getDataLayout(); 5567 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5568 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5569 EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI)); 5570 5571 // Couldn't symbolically evaluate. 5572 if (!CondVal) return getCouldNotCompute(); 5573 5574 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5575 ++NumBruteForceTripCountsComputed; 5576 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5577 } 5578 5579 // Update all the PHI nodes for the next iteration. 5580 DenseMap<Instruction *, Constant *> NextIterVals; 5581 5582 // Create a list of which PHIs we need to compute. We want to do this before 5583 // calling EvaluateExpression on them because that may invalidate iterators 5584 // into CurrentIterVals. 5585 SmallVector<PHINode *, 8> PHIsToCompute; 5586 for (DenseMap<Instruction *, Constant *>::const_iterator 5587 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5588 PHINode *PHI = dyn_cast<PHINode>(I->first); 5589 if (!PHI || PHI->getParent() != Header) continue; 5590 PHIsToCompute.push_back(PHI); 5591 } 5592 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5593 E = PHIsToCompute.end(); I != E; ++I) { 5594 PHINode *PHI = *I; 5595 Constant *&NextPHI = NextIterVals[PHI]; 5596 if (NextPHI) continue; // Already computed! 5597 5598 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5599 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5600 } 5601 CurrentIterVals.swap(NextIterVals); 5602 } 5603 5604 // Too many iterations were needed to evaluate. 5605 return getCouldNotCompute(); 5606 } 5607 5608 /// getSCEVAtScope - Return a SCEV expression for the specified value 5609 /// at the specified scope in the program. The L value specifies a loop 5610 /// nest to evaluate the expression at, where null is the top-level or a 5611 /// specified loop is immediately inside of the loop. 5612 /// 5613 /// This method can be used to compute the exit value for a variable defined 5614 /// in a loop by querying what the value will hold in the parent loop. 5615 /// 5616 /// In the case that a relevant loop exit value cannot be computed, the 5617 /// original value V is returned. 5618 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5619 // Check to see if we've folded this expression at this loop before. 5620 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5621 for (unsigned u = 0; u < Values.size(); u++) { 5622 if (Values[u].first == L) 5623 return Values[u].second ? Values[u].second : V; 5624 } 5625 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5626 // Otherwise compute it. 5627 const SCEV *C = computeSCEVAtScope(V, L); 5628 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5629 for (unsigned u = Values2.size(); u > 0; u--) { 5630 if (Values2[u - 1].first == L) { 5631 Values2[u - 1].second = C; 5632 break; 5633 } 5634 } 5635 return C; 5636 } 5637 5638 /// This builds up a Constant using the ConstantExpr interface. That way, we 5639 /// will return Constants for objects which aren't represented by a 5640 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5641 /// Returns NULL if the SCEV isn't representable as a Constant. 5642 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5643 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5644 case scCouldNotCompute: 5645 case scAddRecExpr: 5646 break; 5647 case scConstant: 5648 return cast<SCEVConstant>(V)->getValue(); 5649 case scUnknown: 5650 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5651 case scSignExtend: { 5652 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5653 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5654 return ConstantExpr::getSExt(CastOp, SS->getType()); 5655 break; 5656 } 5657 case scZeroExtend: { 5658 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5659 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5660 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5661 break; 5662 } 5663 case scTruncate: { 5664 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5665 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5666 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5667 break; 5668 } 5669 case scAddExpr: { 5670 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5671 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5672 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5673 unsigned AS = PTy->getAddressSpace(); 5674 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5675 C = ConstantExpr::getBitCast(C, DestPtrTy); 5676 } 5677 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5678 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5679 if (!C2) return nullptr; 5680 5681 // First pointer! 5682 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5683 unsigned AS = C2->getType()->getPointerAddressSpace(); 5684 std::swap(C, C2); 5685 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5686 // The offsets have been converted to bytes. We can add bytes to an 5687 // i8* by GEP with the byte count in the first index. 5688 C = ConstantExpr::getBitCast(C, DestPtrTy); 5689 } 5690 5691 // Don't bother trying to sum two pointers. We probably can't 5692 // statically compute a load that results from it anyway. 5693 if (C2->getType()->isPointerTy()) 5694 return nullptr; 5695 5696 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5697 if (PTy->getElementType()->isStructTy()) 5698 C2 = ConstantExpr::getIntegerCast( 5699 C2, Type::getInt32Ty(C->getContext()), true); 5700 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5701 } else 5702 C = ConstantExpr::getAdd(C, C2); 5703 } 5704 return C; 5705 } 5706 break; 5707 } 5708 case scMulExpr: { 5709 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5710 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5711 // Don't bother with pointers at all. 5712 if (C->getType()->isPointerTy()) return nullptr; 5713 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5714 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5715 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5716 C = ConstantExpr::getMul(C, C2); 5717 } 5718 return C; 5719 } 5720 break; 5721 } 5722 case scUDivExpr: { 5723 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5724 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5725 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5726 if (LHS->getType() == RHS->getType()) 5727 return ConstantExpr::getUDiv(LHS, RHS); 5728 break; 5729 } 5730 case scSMaxExpr: 5731 case scUMaxExpr: 5732 break; // TODO: smax, umax. 5733 } 5734 return nullptr; 5735 } 5736 5737 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5738 if (isa<SCEVConstant>(V)) return V; 5739 5740 // If this instruction is evolved from a constant-evolving PHI, compute the 5741 // exit value from the loop without using SCEVs. 5742 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5743 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5744 const Loop *LI = (*this->LI)[I->getParent()]; 5745 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5746 if (PHINode *PN = dyn_cast<PHINode>(I)) 5747 if (PN->getParent() == LI->getHeader()) { 5748 // Okay, there is no closed form solution for the PHI node. Check 5749 // to see if the loop that contains it has a known backedge-taken 5750 // count. If so, we may be able to force computation of the exit 5751 // value. 5752 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5753 if (const SCEVConstant *BTCC = 5754 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5755 // Okay, we know how many times the containing loop executes. If 5756 // this is a constant evolving PHI node, get the final value at 5757 // the specified iteration number. 5758 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5759 BTCC->getValue()->getValue(), 5760 LI); 5761 if (RV) return getSCEV(RV); 5762 } 5763 } 5764 5765 // Okay, this is an expression that we cannot symbolically evaluate 5766 // into a SCEV. Check to see if it's possible to symbolically evaluate 5767 // the arguments into constants, and if so, try to constant propagate the 5768 // result. This is particularly useful for computing loop exit values. 5769 if (CanConstantFold(I)) { 5770 SmallVector<Constant *, 4> Operands; 5771 bool MadeImprovement = false; 5772 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5773 Value *Op = I->getOperand(i); 5774 if (Constant *C = dyn_cast<Constant>(Op)) { 5775 Operands.push_back(C); 5776 continue; 5777 } 5778 5779 // If any of the operands is non-constant and if they are 5780 // non-integer and non-pointer, don't even try to analyze them 5781 // with scev techniques. 5782 if (!isSCEVable(Op->getType())) 5783 return V; 5784 5785 const SCEV *OrigV = getSCEV(Op); 5786 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5787 MadeImprovement |= OrigV != OpV; 5788 5789 Constant *C = BuildConstantFromSCEV(OpV); 5790 if (!C) return V; 5791 if (C->getType() != Op->getType()) 5792 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5793 Op->getType(), 5794 false), 5795 C, Op->getType()); 5796 Operands.push_back(C); 5797 } 5798 5799 // Check to see if getSCEVAtScope actually made an improvement. 5800 if (MadeImprovement) { 5801 Constant *C = nullptr; 5802 const DataLayout &DL = F->getParent()->getDataLayout(); 5803 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5804 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5805 Operands[1], DL, TLI); 5806 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5807 if (!LI->isVolatile()) 5808 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5809 } else 5810 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5811 DL, TLI); 5812 if (!C) return V; 5813 return getSCEV(C); 5814 } 5815 } 5816 } 5817 5818 // This is some other type of SCEVUnknown, just return it. 5819 return V; 5820 } 5821 5822 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5823 // Avoid performing the look-up in the common case where the specified 5824 // expression has no loop-variant portions. 5825 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5826 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5827 if (OpAtScope != Comm->getOperand(i)) { 5828 // Okay, at least one of these operands is loop variant but might be 5829 // foldable. Build a new instance of the folded commutative expression. 5830 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5831 Comm->op_begin()+i); 5832 NewOps.push_back(OpAtScope); 5833 5834 for (++i; i != e; ++i) { 5835 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5836 NewOps.push_back(OpAtScope); 5837 } 5838 if (isa<SCEVAddExpr>(Comm)) 5839 return getAddExpr(NewOps); 5840 if (isa<SCEVMulExpr>(Comm)) 5841 return getMulExpr(NewOps); 5842 if (isa<SCEVSMaxExpr>(Comm)) 5843 return getSMaxExpr(NewOps); 5844 if (isa<SCEVUMaxExpr>(Comm)) 5845 return getUMaxExpr(NewOps); 5846 llvm_unreachable("Unknown commutative SCEV type!"); 5847 } 5848 } 5849 // If we got here, all operands are loop invariant. 5850 return Comm; 5851 } 5852 5853 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5854 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5855 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5856 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5857 return Div; // must be loop invariant 5858 return getUDivExpr(LHS, RHS); 5859 } 5860 5861 // If this is a loop recurrence for a loop that does not contain L, then we 5862 // are dealing with the final value computed by the loop. 5863 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5864 // First, attempt to evaluate each operand. 5865 // Avoid performing the look-up in the common case where the specified 5866 // expression has no loop-variant portions. 5867 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5868 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5869 if (OpAtScope == AddRec->getOperand(i)) 5870 continue; 5871 5872 // Okay, at least one of these operands is loop variant but might be 5873 // foldable. Build a new instance of the folded commutative expression. 5874 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5875 AddRec->op_begin()+i); 5876 NewOps.push_back(OpAtScope); 5877 for (++i; i != e; ++i) 5878 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5879 5880 const SCEV *FoldedRec = 5881 getAddRecExpr(NewOps, AddRec->getLoop(), 5882 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5883 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5884 // The addrec may be folded to a nonrecurrence, for example, if the 5885 // induction variable is multiplied by zero after constant folding. Go 5886 // ahead and return the folded value. 5887 if (!AddRec) 5888 return FoldedRec; 5889 break; 5890 } 5891 5892 // If the scope is outside the addrec's loop, evaluate it by using the 5893 // loop exit value of the addrec. 5894 if (!AddRec->getLoop()->contains(L)) { 5895 // To evaluate this recurrence, we need to know how many times the AddRec 5896 // loop iterates. Compute this now. 5897 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5898 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5899 5900 // Then, evaluate the AddRec. 5901 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5902 } 5903 5904 return AddRec; 5905 } 5906 5907 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5908 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5909 if (Op == Cast->getOperand()) 5910 return Cast; // must be loop invariant 5911 return getZeroExtendExpr(Op, Cast->getType()); 5912 } 5913 5914 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5915 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5916 if (Op == Cast->getOperand()) 5917 return Cast; // must be loop invariant 5918 return getSignExtendExpr(Op, Cast->getType()); 5919 } 5920 5921 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5922 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5923 if (Op == Cast->getOperand()) 5924 return Cast; // must be loop invariant 5925 return getTruncateExpr(Op, Cast->getType()); 5926 } 5927 5928 llvm_unreachable("Unknown SCEV type!"); 5929 } 5930 5931 /// getSCEVAtScope - This is a convenience function which does 5932 /// getSCEVAtScope(getSCEV(V), L). 5933 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5934 return getSCEVAtScope(getSCEV(V), L); 5935 } 5936 5937 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5938 /// following equation: 5939 /// 5940 /// A * X = B (mod N) 5941 /// 5942 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5943 /// A and B isn't important. 5944 /// 5945 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5946 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5947 ScalarEvolution &SE) { 5948 uint32_t BW = A.getBitWidth(); 5949 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5950 assert(A != 0 && "A must be non-zero."); 5951 5952 // 1. D = gcd(A, N) 5953 // 5954 // The gcd of A and N may have only one prime factor: 2. The number of 5955 // trailing zeros in A is its multiplicity 5956 uint32_t Mult2 = A.countTrailingZeros(); 5957 // D = 2^Mult2 5958 5959 // 2. Check if B is divisible by D. 5960 // 5961 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5962 // is not less than multiplicity of this prime factor for D. 5963 if (B.countTrailingZeros() < Mult2) 5964 return SE.getCouldNotCompute(); 5965 5966 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5967 // modulo (N / D). 5968 // 5969 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5970 // bit width during computations. 5971 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5972 APInt Mod(BW + 1, 0); 5973 Mod.setBit(BW - Mult2); // Mod = N / D 5974 APInt I = AD.multiplicativeInverse(Mod); 5975 5976 // 4. Compute the minimum unsigned root of the equation: 5977 // I * (B / D) mod (N / D) 5978 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5979 5980 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5981 // bits. 5982 return SE.getConstant(Result.trunc(BW)); 5983 } 5984 5985 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5986 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5987 /// might be the same) or two SCEVCouldNotCompute objects. 5988 /// 5989 static std::pair<const SCEV *,const SCEV *> 5990 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5991 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5992 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5993 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5994 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5995 5996 // We currently can only solve this if the coefficients are constants. 5997 if (!LC || !MC || !NC) { 5998 const SCEV *CNC = SE.getCouldNotCompute(); 5999 return std::make_pair(CNC, CNC); 6000 } 6001 6002 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6003 const APInt &L = LC->getValue()->getValue(); 6004 const APInt &M = MC->getValue()->getValue(); 6005 const APInt &N = NC->getValue()->getValue(); 6006 APInt Two(BitWidth, 2); 6007 APInt Four(BitWidth, 4); 6008 6009 { 6010 using namespace APIntOps; 6011 const APInt& C = L; 6012 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6013 // The B coefficient is M-N/2 6014 APInt B(M); 6015 B -= sdiv(N,Two); 6016 6017 // The A coefficient is N/2 6018 APInt A(N.sdiv(Two)); 6019 6020 // Compute the B^2-4ac term. 6021 APInt SqrtTerm(B); 6022 SqrtTerm *= B; 6023 SqrtTerm -= Four * (A * C); 6024 6025 if (SqrtTerm.isNegative()) { 6026 // The loop is provably infinite. 6027 const SCEV *CNC = SE.getCouldNotCompute(); 6028 return std::make_pair(CNC, CNC); 6029 } 6030 6031 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6032 // integer value or else APInt::sqrt() will assert. 6033 APInt SqrtVal(SqrtTerm.sqrt()); 6034 6035 // Compute the two solutions for the quadratic formula. 6036 // The divisions must be performed as signed divisions. 6037 APInt NegB(-B); 6038 APInt TwoA(A << 1); 6039 if (TwoA.isMinValue()) { 6040 const SCEV *CNC = SE.getCouldNotCompute(); 6041 return std::make_pair(CNC, CNC); 6042 } 6043 6044 LLVMContext &Context = SE.getContext(); 6045 6046 ConstantInt *Solution1 = 6047 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6048 ConstantInt *Solution2 = 6049 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6050 6051 return std::make_pair(SE.getConstant(Solution1), 6052 SE.getConstant(Solution2)); 6053 } // end APIntOps namespace 6054 } 6055 6056 /// HowFarToZero - Return the number of times a backedge comparing the specified 6057 /// value to zero will execute. If not computable, return CouldNotCompute. 6058 /// 6059 /// This is only used for loops with a "x != y" exit test. The exit condition is 6060 /// now expressed as a single expression, V = x-y. So the exit test is 6061 /// effectively V != 0. We know and take advantage of the fact that this 6062 /// expression only being used in a comparison by zero context. 6063 ScalarEvolution::ExitLimit 6064 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6065 // If the value is a constant 6066 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6067 // If the value is already zero, the branch will execute zero times. 6068 if (C->getValue()->isZero()) return C; 6069 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6070 } 6071 6072 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6073 if (!AddRec || AddRec->getLoop() != L) 6074 return getCouldNotCompute(); 6075 6076 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6077 // the quadratic equation to solve it. 6078 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6079 std::pair<const SCEV *,const SCEV *> Roots = 6080 SolveQuadraticEquation(AddRec, *this); 6081 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6082 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6083 if (R1 && R2) { 6084 #if 0 6085 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6086 << " sol#2: " << *R2 << "\n"; 6087 #endif 6088 // Pick the smallest positive root value. 6089 if (ConstantInt *CB = 6090 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6091 R1->getValue(), 6092 R2->getValue()))) { 6093 if (!CB->getZExtValue()) 6094 std::swap(R1, R2); // R1 is the minimum root now. 6095 6096 // We can only use this value if the chrec ends up with an exact zero 6097 // value at this index. When solving for "X*X != 5", for example, we 6098 // should not accept a root of 2. 6099 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6100 if (Val->isZero()) 6101 return R1; // We found a quadratic root! 6102 } 6103 } 6104 return getCouldNotCompute(); 6105 } 6106 6107 // Otherwise we can only handle this if it is affine. 6108 if (!AddRec->isAffine()) 6109 return getCouldNotCompute(); 6110 6111 // If this is an affine expression, the execution count of this branch is 6112 // the minimum unsigned root of the following equation: 6113 // 6114 // Start + Step*N = 0 (mod 2^BW) 6115 // 6116 // equivalent to: 6117 // 6118 // Step*N = -Start (mod 2^BW) 6119 // 6120 // where BW is the common bit width of Start and Step. 6121 6122 // Get the initial value for the loop. 6123 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6124 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6125 6126 // For now we handle only constant steps. 6127 // 6128 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6129 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6130 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6131 // We have not yet seen any such cases. 6132 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6133 if (!StepC || StepC->getValue()->equalsInt(0)) 6134 return getCouldNotCompute(); 6135 6136 // For positive steps (counting up until unsigned overflow): 6137 // N = -Start/Step (as unsigned) 6138 // For negative steps (counting down to zero): 6139 // N = Start/-Step 6140 // First compute the unsigned distance from zero in the direction of Step. 6141 bool CountDown = StepC->getValue()->getValue().isNegative(); 6142 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6143 6144 // Handle unitary steps, which cannot wraparound. 6145 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6146 // N = Distance (as unsigned) 6147 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6148 ConstantRange CR = getUnsignedRange(Start); 6149 const SCEV *MaxBECount; 6150 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6151 // When counting up, the worst starting value is 1, not 0. 6152 MaxBECount = CR.getUnsignedMax().isMinValue() 6153 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6154 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6155 else 6156 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6157 : -CR.getUnsignedMin()); 6158 return ExitLimit(Distance, MaxBECount); 6159 } 6160 6161 // As a special case, handle the instance where Step is a positive power of 6162 // two. In this case, determining whether Step divides Distance evenly can be 6163 // done by counting and comparing the number of trailing zeros of Step and 6164 // Distance. 6165 if (!CountDown) { 6166 const APInt &StepV = StepC->getValue()->getValue(); 6167 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6168 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6169 // case is not handled as this code is guarded by !CountDown. 6170 if (StepV.isPowerOf2() && 6171 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) 6172 return getUDivExactExpr(Distance, Step); 6173 } 6174 6175 // If the condition controls loop exit (the loop exits only if the expression 6176 // is true) and the addition is no-wrap we can use unsigned divide to 6177 // compute the backedge count. In this case, the step may not divide the 6178 // distance, but we don't care because if the condition is "missed" the loop 6179 // will have undefined behavior due to wrapping. 6180 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6181 const SCEV *Exact = 6182 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6183 return ExitLimit(Exact, Exact); 6184 } 6185 6186 // Then, try to solve the above equation provided that Start is constant. 6187 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6188 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6189 -StartC->getValue()->getValue(), 6190 *this); 6191 return getCouldNotCompute(); 6192 } 6193 6194 /// HowFarToNonZero - Return the number of times a backedge checking the 6195 /// specified value for nonzero will execute. If not computable, return 6196 /// CouldNotCompute 6197 ScalarEvolution::ExitLimit 6198 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6199 // Loops that look like: while (X == 0) are very strange indeed. We don't 6200 // handle them yet except for the trivial case. This could be expanded in the 6201 // future as needed. 6202 6203 // If the value is a constant, check to see if it is known to be non-zero 6204 // already. If so, the backedge will execute zero times. 6205 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6206 if (!C->getValue()->isNullValue()) 6207 return getConstant(C->getType(), 0); 6208 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6209 } 6210 6211 // We could implement others, but I really doubt anyone writes loops like 6212 // this, and if they did, they would already be constant folded. 6213 return getCouldNotCompute(); 6214 } 6215 6216 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6217 /// (which may not be an immediate predecessor) which has exactly one 6218 /// successor from which BB is reachable, or null if no such block is 6219 /// found. 6220 /// 6221 std::pair<BasicBlock *, BasicBlock *> 6222 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6223 // If the block has a unique predecessor, then there is no path from the 6224 // predecessor to the block that does not go through the direct edge 6225 // from the predecessor to the block. 6226 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6227 return std::make_pair(Pred, BB); 6228 6229 // A loop's header is defined to be a block that dominates the loop. 6230 // If the header has a unique predecessor outside the loop, it must be 6231 // a block that has exactly one successor that can reach the loop. 6232 if (Loop *L = LI->getLoopFor(BB)) 6233 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6234 6235 return std::pair<BasicBlock *, BasicBlock *>(); 6236 } 6237 6238 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6239 /// testing whether two expressions are equal, however for the purposes of 6240 /// looking for a condition guarding a loop, it can be useful to be a little 6241 /// more general, since a front-end may have replicated the controlling 6242 /// expression. 6243 /// 6244 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6245 // Quick check to see if they are the same SCEV. 6246 if (A == B) return true; 6247 6248 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6249 // two different instructions with the same value. Check for this case. 6250 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6251 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6252 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6253 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6254 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6255 return true; 6256 6257 // Otherwise assume they may have a different value. 6258 return false; 6259 } 6260 6261 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6262 /// predicate Pred. Return true iff any changes were made. 6263 /// 6264 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6265 const SCEV *&LHS, const SCEV *&RHS, 6266 unsigned Depth) { 6267 bool Changed = false; 6268 6269 // If we hit the max recursion limit bail out. 6270 if (Depth >= 3) 6271 return false; 6272 6273 // Canonicalize a constant to the right side. 6274 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6275 // Check for both operands constant. 6276 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6277 if (ConstantExpr::getICmp(Pred, 6278 LHSC->getValue(), 6279 RHSC->getValue())->isNullValue()) 6280 goto trivially_false; 6281 else 6282 goto trivially_true; 6283 } 6284 // Otherwise swap the operands to put the constant on the right. 6285 std::swap(LHS, RHS); 6286 Pred = ICmpInst::getSwappedPredicate(Pred); 6287 Changed = true; 6288 } 6289 6290 // If we're comparing an addrec with a value which is loop-invariant in the 6291 // addrec's loop, put the addrec on the left. Also make a dominance check, 6292 // as both operands could be addrecs loop-invariant in each other's loop. 6293 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6294 const Loop *L = AR->getLoop(); 6295 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6296 std::swap(LHS, RHS); 6297 Pred = ICmpInst::getSwappedPredicate(Pred); 6298 Changed = true; 6299 } 6300 } 6301 6302 // If there's a constant operand, canonicalize comparisons with boundary 6303 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6304 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6305 const APInt &RA = RC->getValue()->getValue(); 6306 switch (Pred) { 6307 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6308 case ICmpInst::ICMP_EQ: 6309 case ICmpInst::ICMP_NE: 6310 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6311 if (!RA) 6312 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6313 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6314 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6315 ME->getOperand(0)->isAllOnesValue()) { 6316 RHS = AE->getOperand(1); 6317 LHS = ME->getOperand(1); 6318 Changed = true; 6319 } 6320 break; 6321 case ICmpInst::ICMP_UGE: 6322 if ((RA - 1).isMinValue()) { 6323 Pred = ICmpInst::ICMP_NE; 6324 RHS = getConstant(RA - 1); 6325 Changed = true; 6326 break; 6327 } 6328 if (RA.isMaxValue()) { 6329 Pred = ICmpInst::ICMP_EQ; 6330 Changed = true; 6331 break; 6332 } 6333 if (RA.isMinValue()) goto trivially_true; 6334 6335 Pred = ICmpInst::ICMP_UGT; 6336 RHS = getConstant(RA - 1); 6337 Changed = true; 6338 break; 6339 case ICmpInst::ICMP_ULE: 6340 if ((RA + 1).isMaxValue()) { 6341 Pred = ICmpInst::ICMP_NE; 6342 RHS = getConstant(RA + 1); 6343 Changed = true; 6344 break; 6345 } 6346 if (RA.isMinValue()) { 6347 Pred = ICmpInst::ICMP_EQ; 6348 Changed = true; 6349 break; 6350 } 6351 if (RA.isMaxValue()) goto trivially_true; 6352 6353 Pred = ICmpInst::ICMP_ULT; 6354 RHS = getConstant(RA + 1); 6355 Changed = true; 6356 break; 6357 case ICmpInst::ICMP_SGE: 6358 if ((RA - 1).isMinSignedValue()) { 6359 Pred = ICmpInst::ICMP_NE; 6360 RHS = getConstant(RA - 1); 6361 Changed = true; 6362 break; 6363 } 6364 if (RA.isMaxSignedValue()) { 6365 Pred = ICmpInst::ICMP_EQ; 6366 Changed = true; 6367 break; 6368 } 6369 if (RA.isMinSignedValue()) goto trivially_true; 6370 6371 Pred = ICmpInst::ICMP_SGT; 6372 RHS = getConstant(RA - 1); 6373 Changed = true; 6374 break; 6375 case ICmpInst::ICMP_SLE: 6376 if ((RA + 1).isMaxSignedValue()) { 6377 Pred = ICmpInst::ICMP_NE; 6378 RHS = getConstant(RA + 1); 6379 Changed = true; 6380 break; 6381 } 6382 if (RA.isMinSignedValue()) { 6383 Pred = ICmpInst::ICMP_EQ; 6384 Changed = true; 6385 break; 6386 } 6387 if (RA.isMaxSignedValue()) goto trivially_true; 6388 6389 Pred = ICmpInst::ICMP_SLT; 6390 RHS = getConstant(RA + 1); 6391 Changed = true; 6392 break; 6393 case ICmpInst::ICMP_UGT: 6394 if (RA.isMinValue()) { 6395 Pred = ICmpInst::ICMP_NE; 6396 Changed = true; 6397 break; 6398 } 6399 if ((RA + 1).isMaxValue()) { 6400 Pred = ICmpInst::ICMP_EQ; 6401 RHS = getConstant(RA + 1); 6402 Changed = true; 6403 break; 6404 } 6405 if (RA.isMaxValue()) goto trivially_false; 6406 break; 6407 case ICmpInst::ICMP_ULT: 6408 if (RA.isMaxValue()) { 6409 Pred = ICmpInst::ICMP_NE; 6410 Changed = true; 6411 break; 6412 } 6413 if ((RA - 1).isMinValue()) { 6414 Pred = ICmpInst::ICMP_EQ; 6415 RHS = getConstant(RA - 1); 6416 Changed = true; 6417 break; 6418 } 6419 if (RA.isMinValue()) goto trivially_false; 6420 break; 6421 case ICmpInst::ICMP_SGT: 6422 if (RA.isMinSignedValue()) { 6423 Pred = ICmpInst::ICMP_NE; 6424 Changed = true; 6425 break; 6426 } 6427 if ((RA + 1).isMaxSignedValue()) { 6428 Pred = ICmpInst::ICMP_EQ; 6429 RHS = getConstant(RA + 1); 6430 Changed = true; 6431 break; 6432 } 6433 if (RA.isMaxSignedValue()) goto trivially_false; 6434 break; 6435 case ICmpInst::ICMP_SLT: 6436 if (RA.isMaxSignedValue()) { 6437 Pred = ICmpInst::ICMP_NE; 6438 Changed = true; 6439 break; 6440 } 6441 if ((RA - 1).isMinSignedValue()) { 6442 Pred = ICmpInst::ICMP_EQ; 6443 RHS = getConstant(RA - 1); 6444 Changed = true; 6445 break; 6446 } 6447 if (RA.isMinSignedValue()) goto trivially_false; 6448 break; 6449 } 6450 } 6451 6452 // Check for obvious equality. 6453 if (HasSameValue(LHS, RHS)) { 6454 if (ICmpInst::isTrueWhenEqual(Pred)) 6455 goto trivially_true; 6456 if (ICmpInst::isFalseWhenEqual(Pred)) 6457 goto trivially_false; 6458 } 6459 6460 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6461 // adding or subtracting 1 from one of the operands. 6462 switch (Pred) { 6463 case ICmpInst::ICMP_SLE: 6464 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6465 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6466 SCEV::FlagNSW); 6467 Pred = ICmpInst::ICMP_SLT; 6468 Changed = true; 6469 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6470 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6471 SCEV::FlagNSW); 6472 Pred = ICmpInst::ICMP_SLT; 6473 Changed = true; 6474 } 6475 break; 6476 case ICmpInst::ICMP_SGE: 6477 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6478 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6479 SCEV::FlagNSW); 6480 Pred = ICmpInst::ICMP_SGT; 6481 Changed = true; 6482 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6483 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6484 SCEV::FlagNSW); 6485 Pred = ICmpInst::ICMP_SGT; 6486 Changed = true; 6487 } 6488 break; 6489 case ICmpInst::ICMP_ULE: 6490 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6491 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6492 SCEV::FlagNUW); 6493 Pred = ICmpInst::ICMP_ULT; 6494 Changed = true; 6495 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6496 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6497 SCEV::FlagNUW); 6498 Pred = ICmpInst::ICMP_ULT; 6499 Changed = true; 6500 } 6501 break; 6502 case ICmpInst::ICMP_UGE: 6503 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6504 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6505 SCEV::FlagNUW); 6506 Pred = ICmpInst::ICMP_UGT; 6507 Changed = true; 6508 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6509 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6510 SCEV::FlagNUW); 6511 Pred = ICmpInst::ICMP_UGT; 6512 Changed = true; 6513 } 6514 break; 6515 default: 6516 break; 6517 } 6518 6519 // TODO: More simplifications are possible here. 6520 6521 // Recursively simplify until we either hit a recursion limit or nothing 6522 // changes. 6523 if (Changed) 6524 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6525 6526 return Changed; 6527 6528 trivially_true: 6529 // Return 0 == 0. 6530 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6531 Pred = ICmpInst::ICMP_EQ; 6532 return true; 6533 6534 trivially_false: 6535 // Return 0 != 0. 6536 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6537 Pred = ICmpInst::ICMP_NE; 6538 return true; 6539 } 6540 6541 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6542 return getSignedRange(S).getSignedMax().isNegative(); 6543 } 6544 6545 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6546 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6547 } 6548 6549 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6550 return !getSignedRange(S).getSignedMin().isNegative(); 6551 } 6552 6553 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6554 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6555 } 6556 6557 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6558 return isKnownNegative(S) || isKnownPositive(S); 6559 } 6560 6561 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6562 const SCEV *LHS, const SCEV *RHS) { 6563 // Canonicalize the inputs first. 6564 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6565 6566 // If LHS or RHS is an addrec, check to see if the condition is true in 6567 // every iteration of the loop. 6568 // If LHS and RHS are both addrec, both conditions must be true in 6569 // every iteration of the loop. 6570 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6571 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6572 bool LeftGuarded = false; 6573 bool RightGuarded = false; 6574 if (LAR) { 6575 const Loop *L = LAR->getLoop(); 6576 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6577 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6578 if (!RAR) return true; 6579 LeftGuarded = true; 6580 } 6581 } 6582 if (RAR) { 6583 const Loop *L = RAR->getLoop(); 6584 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6585 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6586 if (!LAR) return true; 6587 RightGuarded = true; 6588 } 6589 } 6590 if (LeftGuarded && RightGuarded) 6591 return true; 6592 6593 // Otherwise see what can be done with known constant ranges. 6594 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6595 } 6596 6597 bool 6598 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6599 const SCEV *LHS, const SCEV *RHS) { 6600 if (HasSameValue(LHS, RHS)) 6601 return ICmpInst::isTrueWhenEqual(Pred); 6602 6603 // This code is split out from isKnownPredicate because it is called from 6604 // within isLoopEntryGuardedByCond. 6605 switch (Pred) { 6606 default: 6607 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6608 case ICmpInst::ICMP_SGT: 6609 std::swap(LHS, RHS); 6610 case ICmpInst::ICMP_SLT: { 6611 ConstantRange LHSRange = getSignedRange(LHS); 6612 ConstantRange RHSRange = getSignedRange(RHS); 6613 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6614 return true; 6615 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6616 return false; 6617 break; 6618 } 6619 case ICmpInst::ICMP_SGE: 6620 std::swap(LHS, RHS); 6621 case ICmpInst::ICMP_SLE: { 6622 ConstantRange LHSRange = getSignedRange(LHS); 6623 ConstantRange RHSRange = getSignedRange(RHS); 6624 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6625 return true; 6626 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6627 return false; 6628 break; 6629 } 6630 case ICmpInst::ICMP_UGT: 6631 std::swap(LHS, RHS); 6632 case ICmpInst::ICMP_ULT: { 6633 ConstantRange LHSRange = getUnsignedRange(LHS); 6634 ConstantRange RHSRange = getUnsignedRange(RHS); 6635 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6636 return true; 6637 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6638 return false; 6639 break; 6640 } 6641 case ICmpInst::ICMP_UGE: 6642 std::swap(LHS, RHS); 6643 case ICmpInst::ICMP_ULE: { 6644 ConstantRange LHSRange = getUnsignedRange(LHS); 6645 ConstantRange RHSRange = getUnsignedRange(RHS); 6646 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6647 return true; 6648 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6649 return false; 6650 break; 6651 } 6652 case ICmpInst::ICMP_NE: { 6653 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6654 return true; 6655 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6656 return true; 6657 6658 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6659 if (isKnownNonZero(Diff)) 6660 return true; 6661 break; 6662 } 6663 case ICmpInst::ICMP_EQ: 6664 // The check at the top of the function catches the case where 6665 // the values are known to be equal. 6666 break; 6667 } 6668 return false; 6669 } 6670 6671 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6672 /// protected by a conditional between LHS and RHS. This is used to 6673 /// to eliminate casts. 6674 bool 6675 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6676 ICmpInst::Predicate Pred, 6677 const SCEV *LHS, const SCEV *RHS) { 6678 // Interpret a null as meaning no loop, where there is obviously no guard 6679 // (interprocedural conditions notwithstanding). 6680 if (!L) return true; 6681 6682 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6683 6684 BasicBlock *Latch = L->getLoopLatch(); 6685 if (!Latch) 6686 return false; 6687 6688 BranchInst *LoopContinuePredicate = 6689 dyn_cast<BranchInst>(Latch->getTerminator()); 6690 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6691 isImpliedCond(Pred, LHS, RHS, 6692 LoopContinuePredicate->getCondition(), 6693 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6694 return true; 6695 6696 // Check conditions due to any @llvm.assume intrinsics. 6697 for (auto &AssumeVH : AC->assumptions()) { 6698 if (!AssumeVH) 6699 continue; 6700 auto *CI = cast<CallInst>(AssumeVH); 6701 if (!DT->dominates(CI, Latch->getTerminator())) 6702 continue; 6703 6704 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6705 return true; 6706 } 6707 6708 struct ClearWalkingBEDominatingCondsOnExit { 6709 ScalarEvolution &SE; 6710 6711 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE) 6712 : SE(SE){}; 6713 6714 ~ClearWalkingBEDominatingCondsOnExit() { 6715 SE.WalkingBEDominatingConds = false; 6716 } 6717 }; 6718 6719 // We don't want more than one activation of the following loop on the stack 6720 // -- that can lead to O(n!) time complexity. 6721 if (WalkingBEDominatingConds) 6722 return false; 6723 6724 WalkingBEDominatingConds = true; 6725 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this); 6726 6727 // If the loop is not reachable from the entry block, we risk running into an 6728 // infinite loop as we walk up into the dom tree. These loops do not matter 6729 // anyway, so we just return a conservative answer when we see them. 6730 if (!DT->isReachableFromEntry(L->getHeader())) 6731 return false; 6732 6733 for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()]; 6734 DTN != HeaderDTN; 6735 DTN = DTN->getIDom()) { 6736 6737 assert(DTN && "should reach the loop header before reaching the root!"); 6738 6739 BasicBlock *BB = DTN->getBlock(); 6740 BasicBlock *PBB = BB->getSinglePredecessor(); 6741 if (!PBB) 6742 continue; 6743 6744 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 6745 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 6746 continue; 6747 6748 Value *Condition = ContinuePredicate->getCondition(); 6749 6750 // If we have an edge `E` within the loop body that dominates the only 6751 // latch, the condition guarding `E` also guards the backedge. This 6752 // reasoning works only for loops with a single latch. 6753 6754 BasicBlockEdge DominatingEdge(PBB, BB); 6755 if (DominatingEdge.isSingleEdge()) { 6756 // We're constructively (and conservatively) enumerating edges within the 6757 // loop body that dominate the latch. The dominator tree better agree 6758 // with us on this: 6759 assert(DT->dominates(DominatingEdge, Latch) && "should be!"); 6760 6761 if (isImpliedCond(Pred, LHS, RHS, Condition, 6762 BB != ContinuePredicate->getSuccessor(0))) 6763 return true; 6764 } 6765 } 6766 6767 return false; 6768 } 6769 6770 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6771 /// by a conditional between LHS and RHS. This is used to help avoid max 6772 /// expressions in loop trip counts, and to eliminate casts. 6773 bool 6774 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6775 ICmpInst::Predicate Pred, 6776 const SCEV *LHS, const SCEV *RHS) { 6777 // Interpret a null as meaning no loop, where there is obviously no guard 6778 // (interprocedural conditions notwithstanding). 6779 if (!L) return false; 6780 6781 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6782 6783 // Starting at the loop predecessor, climb up the predecessor chain, as long 6784 // as there are predecessors that can be found that have unique successors 6785 // leading to the original header. 6786 for (std::pair<BasicBlock *, BasicBlock *> 6787 Pair(L->getLoopPredecessor(), L->getHeader()); 6788 Pair.first; 6789 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6790 6791 BranchInst *LoopEntryPredicate = 6792 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6793 if (!LoopEntryPredicate || 6794 LoopEntryPredicate->isUnconditional()) 6795 continue; 6796 6797 if (isImpliedCond(Pred, LHS, RHS, 6798 LoopEntryPredicate->getCondition(), 6799 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6800 return true; 6801 } 6802 6803 // Check conditions due to any @llvm.assume intrinsics. 6804 for (auto &AssumeVH : AC->assumptions()) { 6805 if (!AssumeVH) 6806 continue; 6807 auto *CI = cast<CallInst>(AssumeVH); 6808 if (!DT->dominates(CI, L->getHeader())) 6809 continue; 6810 6811 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6812 return true; 6813 } 6814 6815 return false; 6816 } 6817 6818 /// RAII wrapper to prevent recursive application of isImpliedCond. 6819 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6820 /// currently evaluating isImpliedCond. 6821 struct MarkPendingLoopPredicate { 6822 Value *Cond; 6823 DenseSet<Value*> &LoopPreds; 6824 bool Pending; 6825 6826 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6827 : Cond(C), LoopPreds(LP) { 6828 Pending = !LoopPreds.insert(Cond).second; 6829 } 6830 ~MarkPendingLoopPredicate() { 6831 if (!Pending) 6832 LoopPreds.erase(Cond); 6833 } 6834 }; 6835 6836 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6837 /// and RHS is true whenever the given Cond value evaluates to true. 6838 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6839 const SCEV *LHS, const SCEV *RHS, 6840 Value *FoundCondValue, 6841 bool Inverse) { 6842 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6843 if (Mark.Pending) 6844 return false; 6845 6846 // Recursively handle And and Or conditions. 6847 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6848 if (BO->getOpcode() == Instruction::And) { 6849 if (!Inverse) 6850 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6851 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6852 } else if (BO->getOpcode() == Instruction::Or) { 6853 if (Inverse) 6854 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6855 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6856 } 6857 } 6858 6859 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6860 if (!ICI) return false; 6861 6862 // Now that we found a conditional branch that dominates the loop or controls 6863 // the loop latch. Check to see if it is the comparison we are looking for. 6864 ICmpInst::Predicate FoundPred; 6865 if (Inverse) 6866 FoundPred = ICI->getInversePredicate(); 6867 else 6868 FoundPred = ICI->getPredicate(); 6869 6870 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6871 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6872 6873 // Balance the types. 6874 if (getTypeSizeInBits(LHS->getType()) < 6875 getTypeSizeInBits(FoundLHS->getType())) { 6876 if (CmpInst::isSigned(Pred)) { 6877 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 6878 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 6879 } else { 6880 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 6881 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 6882 } 6883 } else if (getTypeSizeInBits(LHS->getType()) > 6884 getTypeSizeInBits(FoundLHS->getType())) { 6885 if (CmpInst::isSigned(FoundPred)) { 6886 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6887 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6888 } else { 6889 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6890 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6891 } 6892 } 6893 6894 // Canonicalize the query to match the way instcombine will have 6895 // canonicalized the comparison. 6896 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6897 if (LHS == RHS) 6898 return CmpInst::isTrueWhenEqual(Pred); 6899 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6900 if (FoundLHS == FoundRHS) 6901 return CmpInst::isFalseWhenEqual(FoundPred); 6902 6903 // Check to see if we can make the LHS or RHS match. 6904 if (LHS == FoundRHS || RHS == FoundLHS) { 6905 if (isa<SCEVConstant>(RHS)) { 6906 std::swap(FoundLHS, FoundRHS); 6907 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6908 } else { 6909 std::swap(LHS, RHS); 6910 Pred = ICmpInst::getSwappedPredicate(Pred); 6911 } 6912 } 6913 6914 // Check whether the found predicate is the same as the desired predicate. 6915 if (FoundPred == Pred) 6916 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6917 6918 // Check whether swapping the found predicate makes it the same as the 6919 // desired predicate. 6920 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6921 if (isa<SCEVConstant>(RHS)) 6922 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6923 else 6924 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6925 RHS, LHS, FoundLHS, FoundRHS); 6926 } 6927 6928 // Check if we can make progress by sharpening ranges. 6929 if (FoundPred == ICmpInst::ICMP_NE && 6930 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 6931 6932 const SCEVConstant *C = nullptr; 6933 const SCEV *V = nullptr; 6934 6935 if (isa<SCEVConstant>(FoundLHS)) { 6936 C = cast<SCEVConstant>(FoundLHS); 6937 V = FoundRHS; 6938 } else { 6939 C = cast<SCEVConstant>(FoundRHS); 6940 V = FoundLHS; 6941 } 6942 6943 // The guarding predicate tells us that C != V. If the known range 6944 // of V is [C, t), we can sharpen the range to [C + 1, t). The 6945 // range we consider has to correspond to same signedness as the 6946 // predicate we're interested in folding. 6947 6948 APInt Min = ICmpInst::isSigned(Pred) ? 6949 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 6950 6951 if (Min == C->getValue()->getValue()) { 6952 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 6953 // This is true even if (Min + 1) wraps around -- in case of 6954 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 6955 6956 APInt SharperMin = Min + 1; 6957 6958 switch (Pred) { 6959 case ICmpInst::ICMP_SGE: 6960 case ICmpInst::ICMP_UGE: 6961 // We know V `Pred` SharperMin. If this implies LHS `Pred` 6962 // RHS, we're done. 6963 if (isImpliedCondOperands(Pred, LHS, RHS, V, 6964 getConstant(SharperMin))) 6965 return true; 6966 6967 case ICmpInst::ICMP_SGT: 6968 case ICmpInst::ICMP_UGT: 6969 // We know from the range information that (V `Pred` Min || 6970 // V == Min). We know from the guarding condition that !(V 6971 // == Min). This gives us 6972 // 6973 // V `Pred` Min || V == Min && !(V == Min) 6974 // => V `Pred` Min 6975 // 6976 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 6977 6978 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 6979 return true; 6980 6981 default: 6982 // No change 6983 break; 6984 } 6985 } 6986 } 6987 6988 // Check whether the actual condition is beyond sufficient. 6989 if (FoundPred == ICmpInst::ICMP_EQ) 6990 if (ICmpInst::isTrueWhenEqual(Pred)) 6991 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6992 return true; 6993 if (Pred == ICmpInst::ICMP_NE) 6994 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6995 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6996 return true; 6997 6998 // Otherwise assume the worst. 6999 return false; 7000 } 7001 7002 /// isImpliedCondOperands - Test whether the condition described by Pred, 7003 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7004 /// and FoundRHS is true. 7005 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7006 const SCEV *LHS, const SCEV *RHS, 7007 const SCEV *FoundLHS, 7008 const SCEV *FoundRHS) { 7009 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7010 return true; 7011 7012 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7013 FoundLHS, FoundRHS) || 7014 // ~x < ~y --> x > y 7015 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7016 getNotSCEV(FoundRHS), 7017 getNotSCEV(FoundLHS)); 7018 } 7019 7020 7021 /// If Expr computes ~A, return A else return nullptr 7022 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7023 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7024 if (!Add || Add->getNumOperands() != 2) return nullptr; 7025 7026 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7027 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7028 return nullptr; 7029 7030 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7031 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7032 7033 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7034 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7035 return nullptr; 7036 7037 return AddRHS->getOperand(1); 7038 } 7039 7040 7041 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7042 template<typename MaxExprType> 7043 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7044 const SCEV *Candidate) { 7045 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7046 if (!MaxExpr) return false; 7047 7048 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7049 return It != MaxExpr->op_end(); 7050 } 7051 7052 7053 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7054 template<typename MaxExprType> 7055 static bool IsMinConsistingOf(ScalarEvolution &SE, 7056 const SCEV *MaybeMinExpr, 7057 const SCEV *Candidate) { 7058 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7059 if (!MaybeMaxExpr) 7060 return false; 7061 7062 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7063 } 7064 7065 7066 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7067 /// expression? 7068 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7069 ICmpInst::Predicate Pred, 7070 const SCEV *LHS, const SCEV *RHS) { 7071 switch (Pred) { 7072 default: 7073 return false; 7074 7075 case ICmpInst::ICMP_SGE: 7076 std::swap(LHS, RHS); 7077 // fall through 7078 case ICmpInst::ICMP_SLE: 7079 return 7080 // min(A, ...) <= A 7081 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7082 // A <= max(A, ...) 7083 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7084 7085 case ICmpInst::ICMP_UGE: 7086 std::swap(LHS, RHS); 7087 // fall through 7088 case ICmpInst::ICMP_ULE: 7089 return 7090 // min(A, ...) <= A 7091 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7092 // A <= max(A, ...) 7093 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7094 } 7095 7096 llvm_unreachable("covered switch fell through?!"); 7097 } 7098 7099 /// isImpliedCondOperandsHelper - Test whether the condition described by 7100 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7101 /// FoundLHS, and FoundRHS is true. 7102 bool 7103 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7104 const SCEV *LHS, const SCEV *RHS, 7105 const SCEV *FoundLHS, 7106 const SCEV *FoundRHS) { 7107 auto IsKnownPredicateFull = 7108 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7109 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7110 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS); 7111 }; 7112 7113 switch (Pred) { 7114 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7115 case ICmpInst::ICMP_EQ: 7116 case ICmpInst::ICMP_NE: 7117 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7118 return true; 7119 break; 7120 case ICmpInst::ICMP_SLT: 7121 case ICmpInst::ICMP_SLE: 7122 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7123 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7124 return true; 7125 break; 7126 case ICmpInst::ICMP_SGT: 7127 case ICmpInst::ICMP_SGE: 7128 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7129 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7130 return true; 7131 break; 7132 case ICmpInst::ICMP_ULT: 7133 case ICmpInst::ICMP_ULE: 7134 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7135 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7136 return true; 7137 break; 7138 case ICmpInst::ICMP_UGT: 7139 case ICmpInst::ICMP_UGE: 7140 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7141 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7142 return true; 7143 break; 7144 } 7145 7146 return false; 7147 } 7148 7149 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7150 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7151 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7152 const SCEV *LHS, 7153 const SCEV *RHS, 7154 const SCEV *FoundLHS, 7155 const SCEV *FoundRHS) { 7156 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7157 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7158 // reduce the compile time impact of this optimization. 7159 return false; 7160 7161 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7162 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7163 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7164 return false; 7165 7166 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7167 7168 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7169 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7170 ConstantRange FoundLHSRange = 7171 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7172 7173 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7174 // for `LHS`: 7175 APInt Addend = 7176 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7177 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7178 7179 // We can also compute the range of values for `LHS` that satisfy the 7180 // consequent, "`LHS` `Pred` `RHS`": 7181 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7182 ConstantRange SatisfyingLHSRange = 7183 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7184 7185 // The antecedent implies the consequent if every value of `LHS` that 7186 // satisfies the antecedent also satisfies the consequent. 7187 return SatisfyingLHSRange.contains(LHSRange); 7188 } 7189 7190 // Verify if an linear IV with positive stride can overflow when in a 7191 // less-than comparison, knowing the invariant term of the comparison, the 7192 // stride and the knowledge of NSW/NUW flags on the recurrence. 7193 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7194 bool IsSigned, bool NoWrap) { 7195 if (NoWrap) return false; 7196 7197 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7198 const SCEV *One = getConstant(Stride->getType(), 1); 7199 7200 if (IsSigned) { 7201 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7202 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7203 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7204 .getSignedMax(); 7205 7206 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7207 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7208 } 7209 7210 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7211 APInt MaxValue = APInt::getMaxValue(BitWidth); 7212 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7213 .getUnsignedMax(); 7214 7215 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7216 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7217 } 7218 7219 // Verify if an linear IV with negative stride can overflow when in a 7220 // greater-than comparison, knowing the invariant term of the comparison, 7221 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7222 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7223 bool IsSigned, bool NoWrap) { 7224 if (NoWrap) return false; 7225 7226 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7227 const SCEV *One = getConstant(Stride->getType(), 1); 7228 7229 if (IsSigned) { 7230 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7231 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7232 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7233 .getSignedMax(); 7234 7235 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7236 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7237 } 7238 7239 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7240 APInt MinValue = APInt::getMinValue(BitWidth); 7241 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7242 .getUnsignedMax(); 7243 7244 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7245 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7246 } 7247 7248 // Compute the backedge taken count knowing the interval difference, the 7249 // stride and presence of the equality in the comparison. 7250 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7251 bool Equality) { 7252 const SCEV *One = getConstant(Step->getType(), 1); 7253 Delta = Equality ? getAddExpr(Delta, Step) 7254 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7255 return getUDivExpr(Delta, Step); 7256 } 7257 7258 /// HowManyLessThans - Return the number of times a backedge containing the 7259 /// specified less-than comparison will execute. If not computable, return 7260 /// CouldNotCompute. 7261 /// 7262 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7263 /// the branch (loops exits only if condition is true). In this case, we can use 7264 /// NoWrapFlags to skip overflow checks. 7265 ScalarEvolution::ExitLimit 7266 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7267 const Loop *L, bool IsSigned, 7268 bool ControlsExit) { 7269 // We handle only IV < Invariant 7270 if (!isLoopInvariant(RHS, L)) 7271 return getCouldNotCompute(); 7272 7273 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7274 7275 // Avoid weird loops 7276 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7277 return getCouldNotCompute(); 7278 7279 bool NoWrap = ControlsExit && 7280 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7281 7282 const SCEV *Stride = IV->getStepRecurrence(*this); 7283 7284 // Avoid negative or zero stride values 7285 if (!isKnownPositive(Stride)) 7286 return getCouldNotCompute(); 7287 7288 // Avoid proven overflow cases: this will ensure that the backedge taken count 7289 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7290 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7291 // behaviors like the case of C language. 7292 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7293 return getCouldNotCompute(); 7294 7295 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7296 : ICmpInst::ICMP_ULT; 7297 const SCEV *Start = IV->getStart(); 7298 const SCEV *End = RHS; 7299 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7300 const SCEV *Diff = getMinusSCEV(RHS, Start); 7301 // If we have NoWrap set, then we can assume that the increment won't 7302 // overflow, in which case if RHS - Start is a constant, we don't need to 7303 // do a max operation since we can just figure it out statically 7304 if (NoWrap && isa<SCEVConstant>(Diff)) { 7305 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7306 if (D.isNegative()) 7307 End = Start; 7308 } else 7309 End = IsSigned ? getSMaxExpr(RHS, Start) 7310 : getUMaxExpr(RHS, Start); 7311 } 7312 7313 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7314 7315 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7316 : getUnsignedRange(Start).getUnsignedMin(); 7317 7318 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7319 : getUnsignedRange(Stride).getUnsignedMin(); 7320 7321 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7322 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7323 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7324 7325 // Although End can be a MAX expression we estimate MaxEnd considering only 7326 // the case End = RHS. This is safe because in the other case (End - Start) 7327 // is zero, leading to a zero maximum backedge taken count. 7328 APInt MaxEnd = 7329 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7330 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7331 7332 const SCEV *MaxBECount; 7333 if (isa<SCEVConstant>(BECount)) 7334 MaxBECount = BECount; 7335 else 7336 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7337 getConstant(MinStride), false); 7338 7339 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7340 MaxBECount = BECount; 7341 7342 return ExitLimit(BECount, MaxBECount); 7343 } 7344 7345 ScalarEvolution::ExitLimit 7346 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7347 const Loop *L, bool IsSigned, 7348 bool ControlsExit) { 7349 // We handle only IV > Invariant 7350 if (!isLoopInvariant(RHS, L)) 7351 return getCouldNotCompute(); 7352 7353 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7354 7355 // Avoid weird loops 7356 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7357 return getCouldNotCompute(); 7358 7359 bool NoWrap = ControlsExit && 7360 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7361 7362 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7363 7364 // Avoid negative or zero stride values 7365 if (!isKnownPositive(Stride)) 7366 return getCouldNotCompute(); 7367 7368 // Avoid proven overflow cases: this will ensure that the backedge taken count 7369 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7370 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7371 // behaviors like the case of C language. 7372 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7373 return getCouldNotCompute(); 7374 7375 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7376 : ICmpInst::ICMP_UGT; 7377 7378 const SCEV *Start = IV->getStart(); 7379 const SCEV *End = RHS; 7380 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7381 const SCEV *Diff = getMinusSCEV(RHS, Start); 7382 // If we have NoWrap set, then we can assume that the increment won't 7383 // overflow, in which case if RHS - Start is a constant, we don't need to 7384 // do a max operation since we can just figure it out statically 7385 if (NoWrap && isa<SCEVConstant>(Diff)) { 7386 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7387 if (!D.isNegative()) 7388 End = Start; 7389 } else 7390 End = IsSigned ? getSMinExpr(RHS, Start) 7391 : getUMinExpr(RHS, Start); 7392 } 7393 7394 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7395 7396 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7397 : getUnsignedRange(Start).getUnsignedMax(); 7398 7399 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7400 : getUnsignedRange(Stride).getUnsignedMin(); 7401 7402 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7403 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7404 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7405 7406 // Although End can be a MIN expression we estimate MinEnd considering only 7407 // the case End = RHS. This is safe because in the other case (Start - End) 7408 // is zero, leading to a zero maximum backedge taken count. 7409 APInt MinEnd = 7410 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7411 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7412 7413 7414 const SCEV *MaxBECount = getCouldNotCompute(); 7415 if (isa<SCEVConstant>(BECount)) 7416 MaxBECount = BECount; 7417 else 7418 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7419 getConstant(MinStride), false); 7420 7421 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7422 MaxBECount = BECount; 7423 7424 return ExitLimit(BECount, MaxBECount); 7425 } 7426 7427 /// getNumIterationsInRange - Return the number of iterations of this loop that 7428 /// produce values in the specified constant range. Another way of looking at 7429 /// this is that it returns the first iteration number where the value is not in 7430 /// the condition, thus computing the exit count. If the iteration count can't 7431 /// be computed, an instance of SCEVCouldNotCompute is returned. 7432 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7433 ScalarEvolution &SE) const { 7434 if (Range.isFullSet()) // Infinite loop. 7435 return SE.getCouldNotCompute(); 7436 7437 // If the start is a non-zero constant, shift the range to simplify things. 7438 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7439 if (!SC->getValue()->isZero()) { 7440 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7441 Operands[0] = SE.getConstant(SC->getType(), 0); 7442 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7443 getNoWrapFlags(FlagNW)); 7444 if (const SCEVAddRecExpr *ShiftedAddRec = 7445 dyn_cast<SCEVAddRecExpr>(Shifted)) 7446 return ShiftedAddRec->getNumIterationsInRange( 7447 Range.subtract(SC->getValue()->getValue()), SE); 7448 // This is strange and shouldn't happen. 7449 return SE.getCouldNotCompute(); 7450 } 7451 7452 // The only time we can solve this is when we have all constant indices. 7453 // Otherwise, we cannot determine the overflow conditions. 7454 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7455 if (!isa<SCEVConstant>(getOperand(i))) 7456 return SE.getCouldNotCompute(); 7457 7458 7459 // Okay at this point we know that all elements of the chrec are constants and 7460 // that the start element is zero. 7461 7462 // First check to see if the range contains zero. If not, the first 7463 // iteration exits. 7464 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7465 if (!Range.contains(APInt(BitWidth, 0))) 7466 return SE.getConstant(getType(), 0); 7467 7468 if (isAffine()) { 7469 // If this is an affine expression then we have this situation: 7470 // Solve {0,+,A} in Range === Ax in Range 7471 7472 // We know that zero is in the range. If A is positive then we know that 7473 // the upper value of the range must be the first possible exit value. 7474 // If A is negative then the lower of the range is the last possible loop 7475 // value. Also note that we already checked for a full range. 7476 APInt One(BitWidth,1); 7477 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7478 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7479 7480 // The exit value should be (End+A)/A. 7481 APInt ExitVal = (End + A).udiv(A); 7482 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7483 7484 // Evaluate at the exit value. If we really did fall out of the valid 7485 // range, then we computed our trip count, otherwise wrap around or other 7486 // things must have happened. 7487 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7488 if (Range.contains(Val->getValue())) 7489 return SE.getCouldNotCompute(); // Something strange happened 7490 7491 // Ensure that the previous value is in the range. This is a sanity check. 7492 assert(Range.contains( 7493 EvaluateConstantChrecAtConstant(this, 7494 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7495 "Linear scev computation is off in a bad way!"); 7496 return SE.getConstant(ExitValue); 7497 } else if (isQuadratic()) { 7498 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7499 // quadratic equation to solve it. To do this, we must frame our problem in 7500 // terms of figuring out when zero is crossed, instead of when 7501 // Range.getUpper() is crossed. 7502 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7503 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7504 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7505 // getNoWrapFlags(FlagNW) 7506 FlagAnyWrap); 7507 7508 // Next, solve the constructed addrec 7509 std::pair<const SCEV *,const SCEV *> Roots = 7510 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7511 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7512 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7513 if (R1) { 7514 // Pick the smallest positive root value. 7515 if (ConstantInt *CB = 7516 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7517 R1->getValue(), R2->getValue()))) { 7518 if (!CB->getZExtValue()) 7519 std::swap(R1, R2); // R1 is the minimum root now. 7520 7521 // Make sure the root is not off by one. The returned iteration should 7522 // not be in the range, but the previous one should be. When solving 7523 // for "X*X < 5", for example, we should not return a root of 2. 7524 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7525 R1->getValue(), 7526 SE); 7527 if (Range.contains(R1Val->getValue())) { 7528 // The next iteration must be out of the range... 7529 ConstantInt *NextVal = 7530 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7531 7532 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7533 if (!Range.contains(R1Val->getValue())) 7534 return SE.getConstant(NextVal); 7535 return SE.getCouldNotCompute(); // Something strange happened 7536 } 7537 7538 // If R1 was not in the range, then it is a good return value. Make 7539 // sure that R1-1 WAS in the range though, just in case. 7540 ConstantInt *NextVal = 7541 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7542 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7543 if (Range.contains(R1Val->getValue())) 7544 return R1; 7545 return SE.getCouldNotCompute(); // Something strange happened 7546 } 7547 } 7548 } 7549 7550 return SE.getCouldNotCompute(); 7551 } 7552 7553 namespace { 7554 struct FindUndefs { 7555 bool Found; 7556 FindUndefs() : Found(false) {} 7557 7558 bool follow(const SCEV *S) { 7559 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7560 if (isa<UndefValue>(C->getValue())) 7561 Found = true; 7562 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7563 if (isa<UndefValue>(C->getValue())) 7564 Found = true; 7565 } 7566 7567 // Keep looking if we haven't found it yet. 7568 return !Found; 7569 } 7570 bool isDone() const { 7571 // Stop recursion if we have found an undef. 7572 return Found; 7573 } 7574 }; 7575 } 7576 7577 // Return true when S contains at least an undef value. 7578 static inline bool 7579 containsUndefs(const SCEV *S) { 7580 FindUndefs F; 7581 SCEVTraversal<FindUndefs> ST(F); 7582 ST.visitAll(S); 7583 7584 return F.Found; 7585 } 7586 7587 namespace { 7588 // Collect all steps of SCEV expressions. 7589 struct SCEVCollectStrides { 7590 ScalarEvolution &SE; 7591 SmallVectorImpl<const SCEV *> &Strides; 7592 7593 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7594 : SE(SE), Strides(S) {} 7595 7596 bool follow(const SCEV *S) { 7597 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7598 Strides.push_back(AR->getStepRecurrence(SE)); 7599 return true; 7600 } 7601 bool isDone() const { return false; } 7602 }; 7603 7604 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7605 struct SCEVCollectTerms { 7606 SmallVectorImpl<const SCEV *> &Terms; 7607 7608 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7609 : Terms(T) {} 7610 7611 bool follow(const SCEV *S) { 7612 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7613 if (!containsUndefs(S)) 7614 Terms.push_back(S); 7615 7616 // Stop recursion: once we collected a term, do not walk its operands. 7617 return false; 7618 } 7619 7620 // Keep looking. 7621 return true; 7622 } 7623 bool isDone() const { return false; } 7624 }; 7625 } 7626 7627 /// Find parametric terms in this SCEVAddRecExpr. 7628 void SCEVAddRecExpr::collectParametricTerms( 7629 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 7630 SmallVector<const SCEV *, 4> Strides; 7631 SCEVCollectStrides StrideCollector(SE, Strides); 7632 visitAll(this, StrideCollector); 7633 7634 DEBUG({ 7635 dbgs() << "Strides:\n"; 7636 for (const SCEV *S : Strides) 7637 dbgs() << *S << "\n"; 7638 }); 7639 7640 for (const SCEV *S : Strides) { 7641 SCEVCollectTerms TermCollector(Terms); 7642 visitAll(S, TermCollector); 7643 } 7644 7645 DEBUG({ 7646 dbgs() << "Terms:\n"; 7647 for (const SCEV *T : Terms) 7648 dbgs() << *T << "\n"; 7649 }); 7650 } 7651 7652 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7653 SmallVectorImpl<const SCEV *> &Terms, 7654 SmallVectorImpl<const SCEV *> &Sizes) { 7655 int Last = Terms.size() - 1; 7656 const SCEV *Step = Terms[Last]; 7657 7658 // End of recursion. 7659 if (Last == 0) { 7660 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7661 SmallVector<const SCEV *, 2> Qs; 7662 for (const SCEV *Op : M->operands()) 7663 if (!isa<SCEVConstant>(Op)) 7664 Qs.push_back(Op); 7665 7666 Step = SE.getMulExpr(Qs); 7667 } 7668 7669 Sizes.push_back(Step); 7670 return true; 7671 } 7672 7673 for (const SCEV *&Term : Terms) { 7674 // Normalize the terms before the next call to findArrayDimensionsRec. 7675 const SCEV *Q, *R; 7676 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7677 7678 // Bail out when GCD does not evenly divide one of the terms. 7679 if (!R->isZero()) 7680 return false; 7681 7682 Term = Q; 7683 } 7684 7685 // Remove all SCEVConstants. 7686 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7687 return isa<SCEVConstant>(E); 7688 }), 7689 Terms.end()); 7690 7691 if (Terms.size() > 0) 7692 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7693 return false; 7694 7695 Sizes.push_back(Step); 7696 return true; 7697 } 7698 7699 namespace { 7700 struct FindParameter { 7701 bool FoundParameter; 7702 FindParameter() : FoundParameter(false) {} 7703 7704 bool follow(const SCEV *S) { 7705 if (isa<SCEVUnknown>(S)) { 7706 FoundParameter = true; 7707 // Stop recursion: we found a parameter. 7708 return false; 7709 } 7710 // Keep looking. 7711 return true; 7712 } 7713 bool isDone() const { 7714 // Stop recursion if we have found a parameter. 7715 return FoundParameter; 7716 } 7717 }; 7718 } 7719 7720 // Returns true when S contains at least a SCEVUnknown parameter. 7721 static inline bool 7722 containsParameters(const SCEV *S) { 7723 FindParameter F; 7724 SCEVTraversal<FindParameter> ST(F); 7725 ST.visitAll(S); 7726 7727 return F.FoundParameter; 7728 } 7729 7730 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7731 static inline bool 7732 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7733 for (const SCEV *T : Terms) 7734 if (containsParameters(T)) 7735 return true; 7736 return false; 7737 } 7738 7739 // Return the number of product terms in S. 7740 static inline int numberOfTerms(const SCEV *S) { 7741 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7742 return Expr->getNumOperands(); 7743 return 1; 7744 } 7745 7746 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 7747 if (isa<SCEVConstant>(T)) 7748 return nullptr; 7749 7750 if (isa<SCEVUnknown>(T)) 7751 return T; 7752 7753 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 7754 SmallVector<const SCEV *, 2> Factors; 7755 for (const SCEV *Op : M->operands()) 7756 if (!isa<SCEVConstant>(Op)) 7757 Factors.push_back(Op); 7758 7759 return SE.getMulExpr(Factors); 7760 } 7761 7762 return T; 7763 } 7764 7765 /// Return the size of an element read or written by Inst. 7766 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 7767 Type *Ty; 7768 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 7769 Ty = Store->getValueOperand()->getType(); 7770 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 7771 Ty = Load->getType(); 7772 else 7773 return nullptr; 7774 7775 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 7776 return getSizeOfExpr(ETy, Ty); 7777 } 7778 7779 /// Second step of delinearization: compute the array dimensions Sizes from the 7780 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7781 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 7782 SmallVectorImpl<const SCEV *> &Sizes, 7783 const SCEV *ElementSize) const { 7784 7785 if (Terms.size() < 1 || !ElementSize) 7786 return; 7787 7788 // Early return when Terms do not contain parameters: we do not delinearize 7789 // non parametric SCEVs. 7790 if (!containsParameters(Terms)) 7791 return; 7792 7793 DEBUG({ 7794 dbgs() << "Terms:\n"; 7795 for (const SCEV *T : Terms) 7796 dbgs() << *T << "\n"; 7797 }); 7798 7799 // Remove duplicates. 7800 std::sort(Terms.begin(), Terms.end()); 7801 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7802 7803 // Put larger terms first. 7804 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7805 return numberOfTerms(LHS) > numberOfTerms(RHS); 7806 }); 7807 7808 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7809 7810 // Divide all terms by the element size. 7811 for (const SCEV *&Term : Terms) { 7812 const SCEV *Q, *R; 7813 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 7814 Term = Q; 7815 } 7816 7817 SmallVector<const SCEV *, 4> NewTerms; 7818 7819 // Remove constant factors. 7820 for (const SCEV *T : Terms) 7821 if (const SCEV *NewT = removeConstantFactors(SE, T)) 7822 NewTerms.push_back(NewT); 7823 7824 DEBUG({ 7825 dbgs() << "Terms after sorting:\n"; 7826 for (const SCEV *T : NewTerms) 7827 dbgs() << *T << "\n"; 7828 }); 7829 7830 if (NewTerms.empty() || 7831 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 7832 Sizes.clear(); 7833 return; 7834 } 7835 7836 // The last element to be pushed into Sizes is the size of an element. 7837 Sizes.push_back(ElementSize); 7838 7839 DEBUG({ 7840 dbgs() << "Sizes:\n"; 7841 for (const SCEV *S : Sizes) 7842 dbgs() << *S << "\n"; 7843 }); 7844 } 7845 7846 /// Third step of delinearization: compute the access functions for the 7847 /// Subscripts based on the dimensions in Sizes. 7848 void SCEVAddRecExpr::computeAccessFunctions( 7849 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7850 SmallVectorImpl<const SCEV *> &Sizes) const { 7851 7852 // Early exit in case this SCEV is not an affine multivariate function. 7853 if (Sizes.empty() || !this->isAffine()) 7854 return; 7855 7856 const SCEV *Res = this; 7857 int Last = Sizes.size() - 1; 7858 for (int i = Last; i >= 0; i--) { 7859 const SCEV *Q, *R; 7860 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7861 7862 DEBUG({ 7863 dbgs() << "Res: " << *Res << "\n"; 7864 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7865 dbgs() << "Res divided by Sizes[i]:\n"; 7866 dbgs() << "Quotient: " << *Q << "\n"; 7867 dbgs() << "Remainder: " << *R << "\n"; 7868 }); 7869 7870 Res = Q; 7871 7872 // Do not record the last subscript corresponding to the size of elements in 7873 // the array. 7874 if (i == Last) { 7875 7876 // Bail out if the remainder is too complex. 7877 if (isa<SCEVAddRecExpr>(R)) { 7878 Subscripts.clear(); 7879 Sizes.clear(); 7880 return; 7881 } 7882 7883 continue; 7884 } 7885 7886 // Record the access function for the current subscript. 7887 Subscripts.push_back(R); 7888 } 7889 7890 // Also push in last position the remainder of the last division: it will be 7891 // the access function of the innermost dimension. 7892 Subscripts.push_back(Res); 7893 7894 std::reverse(Subscripts.begin(), Subscripts.end()); 7895 7896 DEBUG({ 7897 dbgs() << "Subscripts:\n"; 7898 for (const SCEV *S : Subscripts) 7899 dbgs() << *S << "\n"; 7900 }); 7901 } 7902 7903 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7904 /// sizes of an array access. Returns the remainder of the delinearization that 7905 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7906 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7907 /// expressions in the stride and base of a SCEV corresponding to the 7908 /// computation of a GCD (greatest common divisor) of base and stride. When 7909 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7910 /// 7911 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7912 /// 7913 /// void foo(long n, long m, long o, double A[n][m][o]) { 7914 /// 7915 /// for (long i = 0; i < n; i++) 7916 /// for (long j = 0; j < m; j++) 7917 /// for (long k = 0; k < o; k++) 7918 /// A[i][j][k] = 1.0; 7919 /// } 7920 /// 7921 /// the delinearization input is the following AddRec SCEV: 7922 /// 7923 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7924 /// 7925 /// From this SCEV, we are able to say that the base offset of the access is %A 7926 /// because it appears as an offset that does not divide any of the strides in 7927 /// the loops: 7928 /// 7929 /// CHECK: Base offset: %A 7930 /// 7931 /// and then SCEV->delinearize determines the size of some of the dimensions of 7932 /// the array as these are the multiples by which the strides are happening: 7933 /// 7934 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7935 /// 7936 /// Note that the outermost dimension remains of UnknownSize because there are 7937 /// no strides that would help identifying the size of the last dimension: when 7938 /// the array has been statically allocated, one could compute the size of that 7939 /// dimension by dividing the overall size of the array by the size of the known 7940 /// dimensions: %m * %o * 8. 7941 /// 7942 /// Finally delinearize provides the access functions for the array reference 7943 /// that does correspond to A[i][j][k] of the above C testcase: 7944 /// 7945 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7946 /// 7947 /// The testcases are checking the output of a function pass: 7948 /// DelinearizationPass that walks through all loads and stores of a function 7949 /// asking for the SCEV of the memory access with respect to all enclosing 7950 /// loops, calling SCEV->delinearize on that and printing the results. 7951 7952 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7953 SmallVectorImpl<const SCEV *> &Subscripts, 7954 SmallVectorImpl<const SCEV *> &Sizes, 7955 const SCEV *ElementSize) const { 7956 // First step: collect parametric terms. 7957 SmallVector<const SCEV *, 4> Terms; 7958 collectParametricTerms(SE, Terms); 7959 7960 if (Terms.empty()) 7961 return; 7962 7963 // Second step: find subscript sizes. 7964 SE.findArrayDimensions(Terms, Sizes, ElementSize); 7965 7966 if (Sizes.empty()) 7967 return; 7968 7969 // Third step: compute the access functions for each subscript. 7970 computeAccessFunctions(SE, Subscripts, Sizes); 7971 7972 if (Subscripts.empty()) 7973 return; 7974 7975 DEBUG({ 7976 dbgs() << "succeeded to delinearize " << *this << "\n"; 7977 dbgs() << "ArrayDecl[UnknownSize]"; 7978 for (const SCEV *S : Sizes) 7979 dbgs() << "[" << *S << "]"; 7980 7981 dbgs() << "\nArrayRef"; 7982 for (const SCEV *S : Subscripts) 7983 dbgs() << "[" << *S << "]"; 7984 dbgs() << "\n"; 7985 }); 7986 } 7987 7988 //===----------------------------------------------------------------------===// 7989 // SCEVCallbackVH Class Implementation 7990 //===----------------------------------------------------------------------===// 7991 7992 void ScalarEvolution::SCEVCallbackVH::deleted() { 7993 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7994 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7995 SE->ConstantEvolutionLoopExitValue.erase(PN); 7996 SE->ValueExprMap.erase(getValPtr()); 7997 // this now dangles! 7998 } 7999 8000 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8001 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8002 8003 // Forget all the expressions associated with users of the old value, 8004 // so that future queries will recompute the expressions using the new 8005 // value. 8006 Value *Old = getValPtr(); 8007 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8008 SmallPtrSet<User *, 8> Visited; 8009 while (!Worklist.empty()) { 8010 User *U = Worklist.pop_back_val(); 8011 // Deleting the Old value will cause this to dangle. Postpone 8012 // that until everything else is done. 8013 if (U == Old) 8014 continue; 8015 if (!Visited.insert(U).second) 8016 continue; 8017 if (PHINode *PN = dyn_cast<PHINode>(U)) 8018 SE->ConstantEvolutionLoopExitValue.erase(PN); 8019 SE->ValueExprMap.erase(U); 8020 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8021 } 8022 // Delete the Old value. 8023 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8024 SE->ConstantEvolutionLoopExitValue.erase(PN); 8025 SE->ValueExprMap.erase(Old); 8026 // this now dangles! 8027 } 8028 8029 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8030 : CallbackVH(V), SE(se) {} 8031 8032 //===----------------------------------------------------------------------===// 8033 // ScalarEvolution Class Implementation 8034 //===----------------------------------------------------------------------===// 8035 8036 ScalarEvolution::ScalarEvolution() 8037 : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64), 8038 LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) { 8039 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 8040 } 8041 8042 bool ScalarEvolution::runOnFunction(Function &F) { 8043 this->F = &F; 8044 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8045 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8046 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 8047 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8048 return false; 8049 } 8050 8051 void ScalarEvolution::releaseMemory() { 8052 // Iterate through all the SCEVUnknown instances and call their 8053 // destructors, so that they release their references to their values. 8054 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 8055 U->~SCEVUnknown(); 8056 FirstUnknown = nullptr; 8057 8058 ValueExprMap.clear(); 8059 8060 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8061 // that a loop had multiple computable exits. 8062 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8063 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8064 I != E; ++I) { 8065 I->second.clear(); 8066 } 8067 8068 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8069 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8070 8071 BackedgeTakenCounts.clear(); 8072 ConstantEvolutionLoopExitValue.clear(); 8073 ValuesAtScopes.clear(); 8074 LoopDispositions.clear(); 8075 BlockDispositions.clear(); 8076 UnsignedRanges.clear(); 8077 SignedRanges.clear(); 8078 UniqueSCEVs.clear(); 8079 SCEVAllocator.Reset(); 8080 } 8081 8082 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 8083 AU.setPreservesAll(); 8084 AU.addRequired<AssumptionCacheTracker>(); 8085 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8086 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8087 AU.addRequired<TargetLibraryInfoWrapperPass>(); 8088 } 8089 8090 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8091 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8092 } 8093 8094 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8095 const Loop *L) { 8096 // Print all inner loops first 8097 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8098 PrintLoopInfo(OS, SE, *I); 8099 8100 OS << "Loop "; 8101 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8102 OS << ": "; 8103 8104 SmallVector<BasicBlock *, 8> ExitBlocks; 8105 L->getExitBlocks(ExitBlocks); 8106 if (ExitBlocks.size() != 1) 8107 OS << "<multiple exits> "; 8108 8109 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8110 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8111 } else { 8112 OS << "Unpredictable backedge-taken count. "; 8113 } 8114 8115 OS << "\n" 8116 "Loop "; 8117 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8118 OS << ": "; 8119 8120 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8121 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8122 } else { 8123 OS << "Unpredictable max backedge-taken count. "; 8124 } 8125 8126 OS << "\n"; 8127 } 8128 8129 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 8130 // ScalarEvolution's implementation of the print method is to print 8131 // out SCEV values of all instructions that are interesting. Doing 8132 // this potentially causes it to create new SCEV objects though, 8133 // which technically conflicts with the const qualifier. This isn't 8134 // observable from outside the class though, so casting away the 8135 // const isn't dangerous. 8136 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8137 8138 OS << "Classifying expressions for: "; 8139 F->printAsOperand(OS, /*PrintType=*/false); 8140 OS << "\n"; 8141 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8142 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8143 OS << *I << '\n'; 8144 OS << " --> "; 8145 const SCEV *SV = SE.getSCEV(&*I); 8146 SV->print(OS); 8147 if (!isa<SCEVCouldNotCompute>(SV)) { 8148 OS << " U: "; 8149 SE.getUnsignedRange(SV).print(OS); 8150 OS << " S: "; 8151 SE.getSignedRange(SV).print(OS); 8152 } 8153 8154 const Loop *L = LI->getLoopFor((*I).getParent()); 8155 8156 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8157 if (AtUse != SV) { 8158 OS << " --> "; 8159 AtUse->print(OS); 8160 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8161 OS << " U: "; 8162 SE.getUnsignedRange(AtUse).print(OS); 8163 OS << " S: "; 8164 SE.getSignedRange(AtUse).print(OS); 8165 } 8166 } 8167 8168 if (L) { 8169 OS << "\t\t" "Exits: "; 8170 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8171 if (!SE.isLoopInvariant(ExitValue, L)) { 8172 OS << "<<Unknown>>"; 8173 } else { 8174 OS << *ExitValue; 8175 } 8176 } 8177 8178 OS << "\n"; 8179 } 8180 8181 OS << "Determining loop execution counts for: "; 8182 F->printAsOperand(OS, /*PrintType=*/false); 8183 OS << "\n"; 8184 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 8185 PrintLoopInfo(OS, &SE, *I); 8186 } 8187 8188 ScalarEvolution::LoopDisposition 8189 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8190 auto &Values = LoopDispositions[S]; 8191 for (auto &V : Values) { 8192 if (V.getPointer() == L) 8193 return V.getInt(); 8194 } 8195 Values.emplace_back(L, LoopVariant); 8196 LoopDisposition D = computeLoopDisposition(S, L); 8197 auto &Values2 = LoopDispositions[S]; 8198 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8199 if (V.getPointer() == L) { 8200 V.setInt(D); 8201 break; 8202 } 8203 } 8204 return D; 8205 } 8206 8207 ScalarEvolution::LoopDisposition 8208 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8209 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8210 case scConstant: 8211 return LoopInvariant; 8212 case scTruncate: 8213 case scZeroExtend: 8214 case scSignExtend: 8215 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8216 case scAddRecExpr: { 8217 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8218 8219 // If L is the addrec's loop, it's computable. 8220 if (AR->getLoop() == L) 8221 return LoopComputable; 8222 8223 // Add recurrences are never invariant in the function-body (null loop). 8224 if (!L) 8225 return LoopVariant; 8226 8227 // This recurrence is variant w.r.t. L if L contains AR's loop. 8228 if (L->contains(AR->getLoop())) 8229 return LoopVariant; 8230 8231 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8232 if (AR->getLoop()->contains(L)) 8233 return LoopInvariant; 8234 8235 // This recurrence is variant w.r.t. L if any of its operands 8236 // are variant. 8237 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8238 I != E; ++I) 8239 if (!isLoopInvariant(*I, L)) 8240 return LoopVariant; 8241 8242 // Otherwise it's loop-invariant. 8243 return LoopInvariant; 8244 } 8245 case scAddExpr: 8246 case scMulExpr: 8247 case scUMaxExpr: 8248 case scSMaxExpr: { 8249 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8250 bool HasVarying = false; 8251 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8252 I != E; ++I) { 8253 LoopDisposition D = getLoopDisposition(*I, L); 8254 if (D == LoopVariant) 8255 return LoopVariant; 8256 if (D == LoopComputable) 8257 HasVarying = true; 8258 } 8259 return HasVarying ? LoopComputable : LoopInvariant; 8260 } 8261 case scUDivExpr: { 8262 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8263 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8264 if (LD == LoopVariant) 8265 return LoopVariant; 8266 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8267 if (RD == LoopVariant) 8268 return LoopVariant; 8269 return (LD == LoopInvariant && RD == LoopInvariant) ? 8270 LoopInvariant : LoopComputable; 8271 } 8272 case scUnknown: 8273 // All non-instruction values are loop invariant. All instructions are loop 8274 // invariant if they are not contained in the specified loop. 8275 // Instructions are never considered invariant in the function body 8276 // (null loop) because they are defined within the "loop". 8277 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8278 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8279 return LoopInvariant; 8280 case scCouldNotCompute: 8281 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8282 } 8283 llvm_unreachable("Unknown SCEV kind!"); 8284 } 8285 8286 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8287 return getLoopDisposition(S, L) == LoopInvariant; 8288 } 8289 8290 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8291 return getLoopDisposition(S, L) == LoopComputable; 8292 } 8293 8294 ScalarEvolution::BlockDisposition 8295 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8296 auto &Values = BlockDispositions[S]; 8297 for (auto &V : Values) { 8298 if (V.getPointer() == BB) 8299 return V.getInt(); 8300 } 8301 Values.emplace_back(BB, DoesNotDominateBlock); 8302 BlockDisposition D = computeBlockDisposition(S, BB); 8303 auto &Values2 = BlockDispositions[S]; 8304 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8305 if (V.getPointer() == BB) { 8306 V.setInt(D); 8307 break; 8308 } 8309 } 8310 return D; 8311 } 8312 8313 ScalarEvolution::BlockDisposition 8314 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8315 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8316 case scConstant: 8317 return ProperlyDominatesBlock; 8318 case scTruncate: 8319 case scZeroExtend: 8320 case scSignExtend: 8321 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8322 case scAddRecExpr: { 8323 // This uses a "dominates" query instead of "properly dominates" query 8324 // to test for proper dominance too, because the instruction which 8325 // produces the addrec's value is a PHI, and a PHI effectively properly 8326 // dominates its entire containing block. 8327 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8328 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 8329 return DoesNotDominateBlock; 8330 } 8331 // FALL THROUGH into SCEVNAryExpr handling. 8332 case scAddExpr: 8333 case scMulExpr: 8334 case scUMaxExpr: 8335 case scSMaxExpr: { 8336 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8337 bool Proper = true; 8338 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8339 I != E; ++I) { 8340 BlockDisposition D = getBlockDisposition(*I, BB); 8341 if (D == DoesNotDominateBlock) 8342 return DoesNotDominateBlock; 8343 if (D == DominatesBlock) 8344 Proper = false; 8345 } 8346 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8347 } 8348 case scUDivExpr: { 8349 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8350 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8351 BlockDisposition LD = getBlockDisposition(LHS, BB); 8352 if (LD == DoesNotDominateBlock) 8353 return DoesNotDominateBlock; 8354 BlockDisposition RD = getBlockDisposition(RHS, BB); 8355 if (RD == DoesNotDominateBlock) 8356 return DoesNotDominateBlock; 8357 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8358 ProperlyDominatesBlock : DominatesBlock; 8359 } 8360 case scUnknown: 8361 if (Instruction *I = 8362 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8363 if (I->getParent() == BB) 8364 return DominatesBlock; 8365 if (DT->properlyDominates(I->getParent(), BB)) 8366 return ProperlyDominatesBlock; 8367 return DoesNotDominateBlock; 8368 } 8369 return ProperlyDominatesBlock; 8370 case scCouldNotCompute: 8371 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8372 } 8373 llvm_unreachable("Unknown SCEV kind!"); 8374 } 8375 8376 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8377 return getBlockDisposition(S, BB) >= DominatesBlock; 8378 } 8379 8380 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8381 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8382 } 8383 8384 namespace { 8385 // Search for a SCEV expression node within an expression tree. 8386 // Implements SCEVTraversal::Visitor. 8387 struct SCEVSearch { 8388 const SCEV *Node; 8389 bool IsFound; 8390 8391 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8392 8393 bool follow(const SCEV *S) { 8394 IsFound |= (S == Node); 8395 return !IsFound; 8396 } 8397 bool isDone() const { return IsFound; } 8398 }; 8399 } 8400 8401 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8402 SCEVSearch Search(Op); 8403 visitAll(S, Search); 8404 return Search.IsFound; 8405 } 8406 8407 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8408 ValuesAtScopes.erase(S); 8409 LoopDispositions.erase(S); 8410 BlockDispositions.erase(S); 8411 UnsignedRanges.erase(S); 8412 SignedRanges.erase(S); 8413 8414 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8415 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8416 BackedgeTakenInfo &BEInfo = I->second; 8417 if (BEInfo.hasOperand(S, this)) { 8418 BEInfo.clear(); 8419 BackedgeTakenCounts.erase(I++); 8420 } 8421 else 8422 ++I; 8423 } 8424 } 8425 8426 typedef DenseMap<const Loop *, std::string> VerifyMap; 8427 8428 /// replaceSubString - Replaces all occurrences of From in Str with To. 8429 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8430 size_t Pos = 0; 8431 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8432 Str.replace(Pos, From.size(), To.data(), To.size()); 8433 Pos += To.size(); 8434 } 8435 } 8436 8437 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8438 static void 8439 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8440 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8441 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8442 8443 std::string &S = Map[L]; 8444 if (S.empty()) { 8445 raw_string_ostream OS(S); 8446 SE.getBackedgeTakenCount(L)->print(OS); 8447 8448 // false and 0 are semantically equivalent. This can happen in dead loops. 8449 replaceSubString(OS.str(), "false", "0"); 8450 // Remove wrap flags, their use in SCEV is highly fragile. 8451 // FIXME: Remove this when SCEV gets smarter about them. 8452 replaceSubString(OS.str(), "<nw>", ""); 8453 replaceSubString(OS.str(), "<nsw>", ""); 8454 replaceSubString(OS.str(), "<nuw>", ""); 8455 } 8456 } 8457 } 8458 8459 void ScalarEvolution::verifyAnalysis() const { 8460 if (!VerifySCEV) 8461 return; 8462 8463 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8464 8465 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8466 // FIXME: It would be much better to store actual values instead of strings, 8467 // but SCEV pointers will change if we drop the caches. 8468 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8469 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8470 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8471 8472 // Gather stringified backedge taken counts for all loops without using 8473 // SCEV's caches. 8474 SE.releaseMemory(); 8475 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8476 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8477 8478 // Now compare whether they're the same with and without caches. This allows 8479 // verifying that no pass changed the cache. 8480 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8481 "New loops suddenly appeared!"); 8482 8483 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8484 OldE = BackedgeDumpsOld.end(), 8485 NewI = BackedgeDumpsNew.begin(); 8486 OldI != OldE; ++OldI, ++NewI) { 8487 assert(OldI->first == NewI->first && "Loop order changed!"); 8488 8489 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8490 // changes. 8491 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8492 // means that a pass is buggy or SCEV has to learn a new pattern but is 8493 // usually not harmful. 8494 if (OldI->second != NewI->second && 8495 OldI->second.find("undef") == std::string::npos && 8496 NewI->second.find("undef") == std::string::npos && 8497 OldI->second != "***COULDNOTCOMPUTE***" && 8498 NewI->second != "***COULDNOTCOMPUTE***") { 8499 dbgs() << "SCEVValidator: SCEV for loop '" 8500 << OldI->first->getHeader()->getName() 8501 << "' changed from '" << OldI->second 8502 << "' to '" << NewI->second << "'!\n"; 8503 std::abort(); 8504 } 8505 } 8506 8507 // TODO: Verify more things. 8508 } 8509