1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumArrayLenItCounts, 87 "Number of trip counts computed with array length"); 88 STATISTIC(NumTripCountsComputed, 89 "Number of loops with predictable loop counts"); 90 STATISTIC(NumTripCountsNotComputed, 91 "Number of loops without predictable loop counts"); 92 STATISTIC(NumBruteForceTripCountsComputed, 93 "Number of loops with trip counts computed by force"); 94 95 static cl::opt<unsigned> 96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 97 cl::desc("Maximum number of iterations SCEV will " 98 "symbolically execute a constant derived loop"), 99 cl::init(100)); 100 101 static RegisterPass<ScalarEvolution> 102 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 103 char ScalarEvolution::ID = 0; 104 105 //===----------------------------------------------------------------------===// 106 // SCEV class definitions 107 //===----------------------------------------------------------------------===// 108 109 //===----------------------------------------------------------------------===// 110 // Implementation of the SCEV class. 111 // 112 SCEV::~SCEV() {} 113 void SCEV::dump() const { 114 print(cerr); 115 cerr << '\n'; 116 } 117 118 uint32_t SCEV::getBitWidth() const { 119 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 120 return ITy->getBitWidth(); 121 return 0; 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 131 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 132 133 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 134 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 135 return false; 136 } 137 138 const Type *SCEVCouldNotCompute::getType() const { 139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 140 return 0; 141 } 142 143 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 145 return false; 146 } 147 148 SCEVHandle SCEVCouldNotCompute:: 149 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 150 const SCEVHandle &Conc, 151 ScalarEvolution &SE) const { 152 return this; 153 } 154 155 void SCEVCouldNotCompute::print(std::ostream &OS) const { 156 OS << "***COULDNOTCOMPUTE***"; 157 } 158 159 bool SCEVCouldNotCompute::classof(const SCEV *S) { 160 return S->getSCEVType() == scCouldNotCompute; 161 } 162 163 164 // SCEVConstants - Only allow the creation of one SCEVConstant for any 165 // particular value. Don't use a SCEVHandle here, or else the object will 166 // never be deleted! 167 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 168 169 170 SCEVConstant::~SCEVConstant() { 171 SCEVConstants->erase(V); 172 } 173 174 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 175 SCEVConstant *&R = (*SCEVConstants)[V]; 176 if (R == 0) R = new SCEVConstant(V); 177 return R; 178 } 179 180 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 181 return getConstant(ConstantInt::get(Val)); 182 } 183 184 const Type *SCEVConstant::getType() const { return V->getType(); } 185 186 void SCEVConstant::print(std::ostream &OS) const { 187 WriteAsOperand(OS, V, false); 188 } 189 190 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 191 // particular input. Don't use a SCEVHandle here, or else the object will 192 // never be deleted! 193 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 194 SCEVTruncateExpr*> > SCEVTruncates; 195 196 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 197 : SCEV(scTruncate), Op(op), Ty(ty) { 198 assert(Op->getType()->isInteger() && Ty->isInteger() && 199 "Cannot truncate non-integer value!"); 200 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 201 && "This is not a truncating conversion!"); 202 } 203 204 SCEVTruncateExpr::~SCEVTruncateExpr() { 205 SCEVTruncates->erase(std::make_pair(Op, Ty)); 206 } 207 208 void SCEVTruncateExpr::print(std::ostream &OS) const { 209 OS << "(truncate " << *Op << " to " << *Ty << ")"; 210 } 211 212 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 213 // particular input. Don't use a SCEVHandle here, or else the object will never 214 // be deleted! 215 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 216 SCEVZeroExtendExpr*> > SCEVZeroExtends; 217 218 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 219 : SCEV(scZeroExtend), Op(op), Ty(ty) { 220 assert(Op->getType()->isInteger() && Ty->isInteger() && 221 "Cannot zero extend non-integer value!"); 222 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 223 && "This is not an extending conversion!"); 224 } 225 226 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 227 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 228 } 229 230 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 231 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 232 } 233 234 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 235 // particular input. Don't use a SCEVHandle here, or else the object will never 236 // be deleted! 237 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 238 SCEVSignExtendExpr*> > SCEVSignExtends; 239 240 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 241 : SCEV(scSignExtend), Op(op), Ty(ty) { 242 assert(Op->getType()->isInteger() && Ty->isInteger() && 243 "Cannot sign extend non-integer value!"); 244 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 245 && "This is not an extending conversion!"); 246 } 247 248 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 249 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 250 } 251 252 void SCEVSignExtendExpr::print(std::ostream &OS) const { 253 OS << "(signextend " << *Op << " to " << *Ty << ")"; 254 } 255 256 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 257 // particular input. Don't use a SCEVHandle here, or else the object will never 258 // be deleted! 259 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 260 SCEVCommutativeExpr*> > SCEVCommExprs; 261 262 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 263 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 264 std::vector<SCEV*>(Operands.begin(), 265 Operands.end()))); 266 } 267 268 void SCEVCommutativeExpr::print(std::ostream &OS) const { 269 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 270 const char *OpStr = getOperationStr(); 271 OS << "(" << *Operands[0]; 272 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 273 OS << OpStr << *Operands[i]; 274 OS << ")"; 275 } 276 277 SCEVHandle SCEVCommutativeExpr:: 278 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 279 const SCEVHandle &Conc, 280 ScalarEvolution &SE) const { 281 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 282 SCEVHandle H = 283 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 284 if (H != getOperand(i)) { 285 std::vector<SCEVHandle> NewOps; 286 NewOps.reserve(getNumOperands()); 287 for (unsigned j = 0; j != i; ++j) 288 NewOps.push_back(getOperand(j)); 289 NewOps.push_back(H); 290 for (++i; i != e; ++i) 291 NewOps.push_back(getOperand(i)-> 292 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 293 294 if (isa<SCEVAddExpr>(this)) 295 return SE.getAddExpr(NewOps); 296 else if (isa<SCEVMulExpr>(this)) 297 return SE.getMulExpr(NewOps); 298 else if (isa<SCEVSMaxExpr>(this)) 299 return SE.getSMaxExpr(NewOps); 300 else if (isa<SCEVUMaxExpr>(this)) 301 return SE.getUMaxExpr(NewOps); 302 else 303 assert(0 && "Unknown commutative expr!"); 304 } 305 } 306 return this; 307 } 308 309 310 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 311 // input. Don't use a SCEVHandle here, or else the object will never be 312 // deleted! 313 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 314 SCEVUDivExpr*> > SCEVUDivs; 315 316 SCEVUDivExpr::~SCEVUDivExpr() { 317 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 318 } 319 320 void SCEVUDivExpr::print(std::ostream &OS) const { 321 OS << "(" << *LHS << " /u " << *RHS << ")"; 322 } 323 324 const Type *SCEVUDivExpr::getType() const { 325 return LHS->getType(); 326 } 327 328 329 // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 333 SCEVSDivExpr*> > SCEVSDivs; 334 335 SCEVSDivExpr::~SCEVSDivExpr() { 336 SCEVSDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 void SCEVSDivExpr::print(std::ostream &OS) const { 340 OS << "(" << *LHS << " /s " << *RHS << ")"; 341 } 342 343 const Type *SCEVSDivExpr::getType() const { 344 return LHS->getType(); 345 } 346 347 348 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 349 // particular input. Don't use a SCEVHandle here, or else the object will never 350 // be deleted! 351 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 352 SCEVAddRecExpr*> > SCEVAddRecExprs; 353 354 SCEVAddRecExpr::~SCEVAddRecExpr() { 355 SCEVAddRecExprs->erase(std::make_pair(L, 356 std::vector<SCEV*>(Operands.begin(), 357 Operands.end()))); 358 } 359 360 SCEVHandle SCEVAddRecExpr:: 361 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 362 const SCEVHandle &Conc, 363 ScalarEvolution &SE) const { 364 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 365 SCEVHandle H = 366 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 367 if (H != getOperand(i)) { 368 std::vector<SCEVHandle> NewOps; 369 NewOps.reserve(getNumOperands()); 370 for (unsigned j = 0; j != i; ++j) 371 NewOps.push_back(getOperand(j)); 372 NewOps.push_back(H); 373 for (++i; i != e; ++i) 374 NewOps.push_back(getOperand(i)-> 375 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 376 377 return SE.getAddRecExpr(NewOps, L); 378 } 379 } 380 return this; 381 } 382 383 384 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 385 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 386 // contain L and if the start is invariant. 387 return !QueryLoop->contains(L->getHeader()) && 388 getOperand(0)->isLoopInvariant(QueryLoop); 389 } 390 391 392 void SCEVAddRecExpr::print(std::ostream &OS) const { 393 OS << "{" << *Operands[0]; 394 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 395 OS << ",+," << *Operands[i]; 396 OS << "}<" << L->getHeader()->getName() + ">"; 397 } 398 399 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 400 // value. Don't use a SCEVHandle here, or else the object will never be 401 // deleted! 402 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 403 404 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 405 406 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 407 // All non-instruction values are loop invariant. All instructions are loop 408 // invariant if they are not contained in the specified loop. 409 if (Instruction *I = dyn_cast<Instruction>(V)) 410 return !L->contains(I->getParent()); 411 return true; 412 } 413 414 const Type *SCEVUnknown::getType() const { 415 return V->getType(); 416 } 417 418 void SCEVUnknown::print(std::ostream &OS) const { 419 WriteAsOperand(OS, V, false); 420 } 421 422 //===----------------------------------------------------------------------===// 423 // SCEV Utilities 424 //===----------------------------------------------------------------------===// 425 426 namespace { 427 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 428 /// than the complexity of the RHS. This comparator is used to canonicalize 429 /// expressions. 430 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 431 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 432 return LHS->getSCEVType() < RHS->getSCEVType(); 433 } 434 }; 435 } 436 437 /// GroupByComplexity - Given a list of SCEV objects, order them by their 438 /// complexity, and group objects of the same complexity together by value. 439 /// When this routine is finished, we know that any duplicates in the vector are 440 /// consecutive and that complexity is monotonically increasing. 441 /// 442 /// Note that we go take special precautions to ensure that we get determinstic 443 /// results from this routine. In other words, we don't want the results of 444 /// this to depend on where the addresses of various SCEV objects happened to 445 /// land in memory. 446 /// 447 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 448 if (Ops.size() < 2) return; // Noop 449 if (Ops.size() == 2) { 450 // This is the common case, which also happens to be trivially simple. 451 // Special case it. 452 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 453 std::swap(Ops[0], Ops[1]); 454 return; 455 } 456 457 // Do the rough sort by complexity. 458 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 459 460 // Now that we are sorted by complexity, group elements of the same 461 // complexity. Note that this is, at worst, N^2, but the vector is likely to 462 // be extremely short in practice. Note that we take this approach because we 463 // do not want to depend on the addresses of the objects we are grouping. 464 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 465 SCEV *S = Ops[i]; 466 unsigned Complexity = S->getSCEVType(); 467 468 // If there are any objects of the same complexity and same value as this 469 // one, group them. 470 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 471 if (Ops[j] == S) { // Found a duplicate. 472 // Move it to immediately after i'th element. 473 std::swap(Ops[i+1], Ops[j]); 474 ++i; // no need to rescan it. 475 if (i == e-2) return; // Done! 476 } 477 } 478 } 479 } 480 481 482 483 //===----------------------------------------------------------------------===// 484 // Simple SCEV method implementations 485 //===----------------------------------------------------------------------===// 486 487 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 488 /// specified signed integer value and return a SCEV for the constant. 489 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 490 Constant *C; 491 if (Val == 0) 492 C = Constant::getNullValue(Ty); 493 else if (Ty->isFloatingPoint()) 494 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 495 APFloat::IEEEdouble, Val)); 496 else 497 C = ConstantInt::get(Ty, Val); 498 return getUnknown(C); 499 } 500 501 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 502 /// 503 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 504 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 505 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 506 507 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType()))); 508 } 509 510 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 511 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 512 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 513 return getUnknown(ConstantExpr::getNot(VC->getValue())); 514 515 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType())); 516 return getMinusSCEV(AllOnes, V); 517 } 518 519 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 520 /// 521 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 522 const SCEVHandle &RHS) { 523 // X - Y --> X + -Y 524 return getAddExpr(LHS, getNegativeSCEV(RHS)); 525 } 526 527 528 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 529 // Assume, K > 0. 530 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 531 ScalarEvolution &SE, 532 const IntegerType* ResultTy) { 533 // Handle the simplest case efficiently. 534 if (K == 1) 535 return SE.getTruncateOrZeroExtend(It, ResultTy); 536 537 // We are using the following formula for BC(It, K): 538 // 539 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 540 // 541 // Suppose, W is the bitwidth of the return value. We must be prepared for 542 // overflow. Hence, we must assure that the result of our computation is 543 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 544 // safe in modular arithmetic. 545 // 546 // However, this code doesn't use exactly that formula; the formula it uses 547 // is something like the following, where T is the number of factors of 2 in 548 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 549 // exponentiation: 550 // 551 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 552 // 553 // This formula is trivially equivalent to the previous formula. However, 554 // this formula can be implemented much more efficiently. The trick is that 555 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 556 // arithmetic. To do exact division in modular arithmetic, all we have 557 // to do is multiply by the inverse. Therefore, this step can be done at 558 // width W. 559 // 560 // The next issue is how to safely do the division by 2^T. The way this 561 // is done is by doing the multiplication step at a width of at least W + T 562 // bits. This way, the bottom W+T bits of the product are accurate. Then, 563 // when we perform the division by 2^T (which is equivalent to a right shift 564 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 565 // truncated out after the division by 2^T. 566 // 567 // In comparison to just directly using the first formula, this technique 568 // is much more efficient; using the first formula requires W * K bits, 569 // but this formula less than W + K bits. Also, the first formula requires 570 // a division step, whereas this formula only requires multiplies and shifts. 571 // 572 // It doesn't matter whether the subtraction step is done in the calculation 573 // width or the input iteration count's width; if the subtraction overflows, 574 // the result must be zero anyway. We prefer here to do it in the width of 575 // the induction variable because it helps a lot for certain cases; CodeGen 576 // isn't smart enough to ignore the overflow, which leads to much less 577 // efficient code if the width of the subtraction is wider than the native 578 // register width. 579 // 580 // (It's possible to not widen at all by pulling out factors of 2 before 581 // the multiplication; for example, K=2 can be calculated as 582 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 583 // extra arithmetic, so it's not an obvious win, and it gets 584 // much more complicated for K > 3.) 585 586 // Protection from insane SCEVs; this bound is conservative, 587 // but it probably doesn't matter. 588 if (K > 1000) 589 return new SCEVCouldNotCompute(); 590 591 unsigned W = ResultTy->getBitWidth(); 592 593 // Calculate K! / 2^T and T; we divide out the factors of two before 594 // multiplying for calculating K! / 2^T to avoid overflow. 595 // Other overflow doesn't matter because we only care about the bottom 596 // W bits of the result. 597 APInt OddFactorial(W, 1); 598 unsigned T = 1; 599 for (unsigned i = 3; i <= K; ++i) { 600 APInt Mult(W, i); 601 unsigned TwoFactors = Mult.countTrailingZeros(); 602 T += TwoFactors; 603 Mult = Mult.lshr(TwoFactors); 604 OddFactorial *= Mult; 605 } 606 607 // We need at least W + T bits for the multiplication step 608 // FIXME: A temporary hack; we round up the bitwidths 609 // to the nearest power of 2 to be nice to the code generator. 610 unsigned CalculationBits = 1U << Log2_32_Ceil(W + T); 611 // FIXME: Temporary hack to avoid generating integers that are too wide. 612 // Although, it's not completely clear how to determine how much 613 // widening is safe; for example, on X86, we can't really widen 614 // beyond 64 because we need to be able to do multiplication 615 // that's CalculationBits wide, but on X86-64, we can safely widen up to 616 // 128 bits. 617 if (CalculationBits > 64) 618 return new SCEVCouldNotCompute(); 619 620 // Calcuate 2^T, at width T+W. 621 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 622 623 // Calculate the multiplicative inverse of K! / 2^T; 624 // this multiplication factor will perform the exact division by 625 // K! / 2^T. 626 APInt Mod = APInt::getSignedMinValue(W+1); 627 APInt MultiplyFactor = OddFactorial.zext(W+1); 628 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 629 MultiplyFactor = MultiplyFactor.trunc(W); 630 631 // Calculate the product, at width T+W 632 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 633 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 634 for (unsigned i = 1; i != K; ++i) { 635 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 636 Dividend = SE.getMulExpr(Dividend, 637 SE.getTruncateOrZeroExtend(S, CalculationTy)); 638 } 639 640 // Divide by 2^T 641 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 642 643 // Truncate the result, and divide by K! / 2^T. 644 645 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 646 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 647 } 648 649 /// evaluateAtIteration - Return the value of this chain of recurrences at 650 /// the specified iteration number. We can evaluate this recurrence by 651 /// multiplying each element in the chain by the binomial coefficient 652 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 653 /// 654 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 655 /// 656 /// where BC(It, k) stands for binomial coefficient. 657 /// 658 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 659 ScalarEvolution &SE) const { 660 SCEVHandle Result = getStart(); 661 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 662 // The computation is correct in the face of overflow provided that the 663 // multiplication is performed _after_ the evaluation of the binomial 664 // coefficient. 665 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, 666 cast<IntegerType>(getType())); 667 if (isa<SCEVCouldNotCompute>(Coeff)) 668 return Coeff; 669 670 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 671 } 672 return Result; 673 } 674 675 //===----------------------------------------------------------------------===// 676 // SCEV Expression folder implementations 677 //===----------------------------------------------------------------------===// 678 679 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 680 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 681 return getUnknown( 682 ConstantExpr::getTrunc(SC->getValue(), Ty)); 683 684 // If the input value is a chrec scev made out of constants, truncate 685 // all of the constants. 686 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 687 std::vector<SCEVHandle> Operands; 688 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 689 // FIXME: This should allow truncation of other expression types! 690 if (isa<SCEVConstant>(AddRec->getOperand(i))) 691 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 692 else 693 break; 694 if (Operands.size() == AddRec->getNumOperands()) 695 return getAddRecExpr(Operands, AddRec->getLoop()); 696 } 697 698 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 699 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 700 return Result; 701 } 702 703 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 704 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 705 return getUnknown( 706 ConstantExpr::getZExt(SC->getValue(), Ty)); 707 708 // FIXME: If the input value is a chrec scev, and we can prove that the value 709 // did not overflow the old, smaller, value, we can zero extend all of the 710 // operands (often constants). This would allow analysis of something like 711 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 712 713 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 714 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 715 return Result; 716 } 717 718 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 719 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 720 return getUnknown( 721 ConstantExpr::getSExt(SC->getValue(), Ty)); 722 723 // FIXME: If the input value is a chrec scev, and we can prove that the value 724 // did not overflow the old, smaller, value, we can sign extend all of the 725 // operands (often constants). This would allow analysis of something like 726 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 727 728 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 729 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 730 return Result; 731 } 732 733 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 734 /// of the input value to the specified type. If the type must be 735 /// extended, it is zero extended. 736 SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 737 const Type *Ty) { 738 const Type *SrcTy = V->getType(); 739 assert(SrcTy->isInteger() && Ty->isInteger() && 740 "Cannot truncate or zero extend with non-integer arguments!"); 741 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 742 return V; // No conversion 743 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 744 return getTruncateExpr(V, Ty); 745 return getZeroExtendExpr(V, Ty); 746 } 747 748 // get - Get a canonical add expression, or something simpler if possible. 749 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 750 assert(!Ops.empty() && "Cannot get empty add!"); 751 if (Ops.size() == 1) return Ops[0]; 752 753 // Sort by complexity, this groups all similar expression types together. 754 GroupByComplexity(Ops); 755 756 // If there are any constants, fold them together. 757 unsigned Idx = 0; 758 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 759 ++Idx; 760 assert(Idx < Ops.size()); 761 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 762 // We found two constants, fold them together! 763 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 764 RHSC->getValue()->getValue()); 765 Ops[0] = getConstant(Fold); 766 Ops.erase(Ops.begin()+1); // Erase the folded element 767 if (Ops.size() == 1) return Ops[0]; 768 LHSC = cast<SCEVConstant>(Ops[0]); 769 } 770 771 // If we are left with a constant zero being added, strip it off. 772 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 773 Ops.erase(Ops.begin()); 774 --Idx; 775 } 776 } 777 778 if (Ops.size() == 1) return Ops[0]; 779 780 // Okay, check to see if the same value occurs in the operand list twice. If 781 // so, merge them together into an multiply expression. Since we sorted the 782 // list, these values are required to be adjacent. 783 const Type *Ty = Ops[0]->getType(); 784 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 785 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 786 // Found a match, merge the two values into a multiply, and add any 787 // remaining values to the result. 788 SCEVHandle Two = getIntegerSCEV(2, Ty); 789 SCEVHandle Mul = getMulExpr(Ops[i], Two); 790 if (Ops.size() == 2) 791 return Mul; 792 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 793 Ops.push_back(Mul); 794 return getAddExpr(Ops); 795 } 796 797 // Now we know the first non-constant operand. Skip past any cast SCEVs. 798 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 799 ++Idx; 800 801 // If there are add operands they would be next. 802 if (Idx < Ops.size()) { 803 bool DeletedAdd = false; 804 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 805 // If we have an add, expand the add operands onto the end of the operands 806 // list. 807 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 808 Ops.erase(Ops.begin()+Idx); 809 DeletedAdd = true; 810 } 811 812 // If we deleted at least one add, we added operands to the end of the list, 813 // and they are not necessarily sorted. Recurse to resort and resimplify 814 // any operands we just aquired. 815 if (DeletedAdd) 816 return getAddExpr(Ops); 817 } 818 819 // Skip over the add expression until we get to a multiply. 820 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 821 ++Idx; 822 823 // If we are adding something to a multiply expression, make sure the 824 // something is not already an operand of the multiply. If so, merge it into 825 // the multiply. 826 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 827 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 828 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 829 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 830 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 831 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 832 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 833 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 834 if (Mul->getNumOperands() != 2) { 835 // If the multiply has more than two operands, we must get the 836 // Y*Z term. 837 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 838 MulOps.erase(MulOps.begin()+MulOp); 839 InnerMul = getMulExpr(MulOps); 840 } 841 SCEVHandle One = getIntegerSCEV(1, Ty); 842 SCEVHandle AddOne = getAddExpr(InnerMul, One); 843 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 844 if (Ops.size() == 2) return OuterMul; 845 if (AddOp < Idx) { 846 Ops.erase(Ops.begin()+AddOp); 847 Ops.erase(Ops.begin()+Idx-1); 848 } else { 849 Ops.erase(Ops.begin()+Idx); 850 Ops.erase(Ops.begin()+AddOp-1); 851 } 852 Ops.push_back(OuterMul); 853 return getAddExpr(Ops); 854 } 855 856 // Check this multiply against other multiplies being added together. 857 for (unsigned OtherMulIdx = Idx+1; 858 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 859 ++OtherMulIdx) { 860 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 861 // If MulOp occurs in OtherMul, we can fold the two multiplies 862 // together. 863 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 864 OMulOp != e; ++OMulOp) 865 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 866 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 867 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 868 if (Mul->getNumOperands() != 2) { 869 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 870 MulOps.erase(MulOps.begin()+MulOp); 871 InnerMul1 = getMulExpr(MulOps); 872 } 873 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 874 if (OtherMul->getNumOperands() != 2) { 875 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 876 OtherMul->op_end()); 877 MulOps.erase(MulOps.begin()+OMulOp); 878 InnerMul2 = getMulExpr(MulOps); 879 } 880 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 881 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 882 if (Ops.size() == 2) return OuterMul; 883 Ops.erase(Ops.begin()+Idx); 884 Ops.erase(Ops.begin()+OtherMulIdx-1); 885 Ops.push_back(OuterMul); 886 return getAddExpr(Ops); 887 } 888 } 889 } 890 } 891 892 // If there are any add recurrences in the operands list, see if any other 893 // added values are loop invariant. If so, we can fold them into the 894 // recurrence. 895 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 896 ++Idx; 897 898 // Scan over all recurrences, trying to fold loop invariants into them. 899 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 900 // Scan all of the other operands to this add and add them to the vector if 901 // they are loop invariant w.r.t. the recurrence. 902 std::vector<SCEVHandle> LIOps; 903 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 904 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 905 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 906 LIOps.push_back(Ops[i]); 907 Ops.erase(Ops.begin()+i); 908 --i; --e; 909 } 910 911 // If we found some loop invariants, fold them into the recurrence. 912 if (!LIOps.empty()) { 913 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 914 LIOps.push_back(AddRec->getStart()); 915 916 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 917 AddRecOps[0] = getAddExpr(LIOps); 918 919 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 920 // If all of the other operands were loop invariant, we are done. 921 if (Ops.size() == 1) return NewRec; 922 923 // Otherwise, add the folded AddRec by the non-liv parts. 924 for (unsigned i = 0;; ++i) 925 if (Ops[i] == AddRec) { 926 Ops[i] = NewRec; 927 break; 928 } 929 return getAddExpr(Ops); 930 } 931 932 // Okay, if there weren't any loop invariants to be folded, check to see if 933 // there are multiple AddRec's with the same loop induction variable being 934 // added together. If so, we can fold them. 935 for (unsigned OtherIdx = Idx+1; 936 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 937 if (OtherIdx != Idx) { 938 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 939 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 940 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 941 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 942 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 943 if (i >= NewOps.size()) { 944 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 945 OtherAddRec->op_end()); 946 break; 947 } 948 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 949 } 950 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 951 952 if (Ops.size() == 2) return NewAddRec; 953 954 Ops.erase(Ops.begin()+Idx); 955 Ops.erase(Ops.begin()+OtherIdx-1); 956 Ops.push_back(NewAddRec); 957 return getAddExpr(Ops); 958 } 959 } 960 961 // Otherwise couldn't fold anything into this recurrence. Move onto the 962 // next one. 963 } 964 965 // Okay, it looks like we really DO need an add expr. Check to see if we 966 // already have one, otherwise create a new one. 967 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 968 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 969 SCEVOps)]; 970 if (Result == 0) Result = new SCEVAddExpr(Ops); 971 return Result; 972 } 973 974 975 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 976 assert(!Ops.empty() && "Cannot get empty mul!"); 977 978 // Sort by complexity, this groups all similar expression types together. 979 GroupByComplexity(Ops); 980 981 // If there are any constants, fold them together. 982 unsigned Idx = 0; 983 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 984 985 // C1*(C2+V) -> C1*C2 + C1*V 986 if (Ops.size() == 2) 987 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 988 if (Add->getNumOperands() == 2 && 989 isa<SCEVConstant>(Add->getOperand(0))) 990 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 991 getMulExpr(LHSC, Add->getOperand(1))); 992 993 994 ++Idx; 995 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 996 // We found two constants, fold them together! 997 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 998 RHSC->getValue()->getValue()); 999 Ops[0] = getConstant(Fold); 1000 Ops.erase(Ops.begin()+1); // Erase the folded element 1001 if (Ops.size() == 1) return Ops[0]; 1002 LHSC = cast<SCEVConstant>(Ops[0]); 1003 } 1004 1005 // If we are left with a constant one being multiplied, strip it off. 1006 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1007 Ops.erase(Ops.begin()); 1008 --Idx; 1009 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1010 // If we have a multiply of zero, it will always be zero. 1011 return Ops[0]; 1012 } 1013 } 1014 1015 // Skip over the add expression until we get to a multiply. 1016 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1017 ++Idx; 1018 1019 if (Ops.size() == 1) 1020 return Ops[0]; 1021 1022 // If there are mul operands inline them all into this expression. 1023 if (Idx < Ops.size()) { 1024 bool DeletedMul = false; 1025 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1026 // If we have an mul, expand the mul operands onto the end of the operands 1027 // list. 1028 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1029 Ops.erase(Ops.begin()+Idx); 1030 DeletedMul = true; 1031 } 1032 1033 // If we deleted at least one mul, we added operands to the end of the list, 1034 // and they are not necessarily sorted. Recurse to resort and resimplify 1035 // any operands we just aquired. 1036 if (DeletedMul) 1037 return getMulExpr(Ops); 1038 } 1039 1040 // If there are any add recurrences in the operands list, see if any other 1041 // added values are loop invariant. If so, we can fold them into the 1042 // recurrence. 1043 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1044 ++Idx; 1045 1046 // Scan over all recurrences, trying to fold loop invariants into them. 1047 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1048 // Scan all of the other operands to this mul and add them to the vector if 1049 // they are loop invariant w.r.t. the recurrence. 1050 std::vector<SCEVHandle> LIOps; 1051 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1052 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1053 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1054 LIOps.push_back(Ops[i]); 1055 Ops.erase(Ops.begin()+i); 1056 --i; --e; 1057 } 1058 1059 // If we found some loop invariants, fold them into the recurrence. 1060 if (!LIOps.empty()) { 1061 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1062 std::vector<SCEVHandle> NewOps; 1063 NewOps.reserve(AddRec->getNumOperands()); 1064 if (LIOps.size() == 1) { 1065 SCEV *Scale = LIOps[0]; 1066 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1067 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1068 } else { 1069 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1070 std::vector<SCEVHandle> MulOps(LIOps); 1071 MulOps.push_back(AddRec->getOperand(i)); 1072 NewOps.push_back(getMulExpr(MulOps)); 1073 } 1074 } 1075 1076 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1077 1078 // If all of the other operands were loop invariant, we are done. 1079 if (Ops.size() == 1) return NewRec; 1080 1081 // Otherwise, multiply the folded AddRec by the non-liv parts. 1082 for (unsigned i = 0;; ++i) 1083 if (Ops[i] == AddRec) { 1084 Ops[i] = NewRec; 1085 break; 1086 } 1087 return getMulExpr(Ops); 1088 } 1089 1090 // Okay, if there weren't any loop invariants to be folded, check to see if 1091 // there are multiple AddRec's with the same loop induction variable being 1092 // multiplied together. If so, we can fold them. 1093 for (unsigned OtherIdx = Idx+1; 1094 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1095 if (OtherIdx != Idx) { 1096 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1097 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1098 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1099 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1100 SCEVHandle NewStart = getMulExpr(F->getStart(), 1101 G->getStart()); 1102 SCEVHandle B = F->getStepRecurrence(*this); 1103 SCEVHandle D = G->getStepRecurrence(*this); 1104 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1105 getMulExpr(G, B), 1106 getMulExpr(B, D)); 1107 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1108 F->getLoop()); 1109 if (Ops.size() == 2) return NewAddRec; 1110 1111 Ops.erase(Ops.begin()+Idx); 1112 Ops.erase(Ops.begin()+OtherIdx-1); 1113 Ops.push_back(NewAddRec); 1114 return getMulExpr(Ops); 1115 } 1116 } 1117 1118 // Otherwise couldn't fold anything into this recurrence. Move onto the 1119 // next one. 1120 } 1121 1122 // Okay, it looks like we really DO need an mul expr. Check to see if we 1123 // already have one, otherwise create a new one. 1124 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1125 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1126 SCEVOps)]; 1127 if (Result == 0) 1128 Result = new SCEVMulExpr(Ops); 1129 return Result; 1130 } 1131 1132 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1133 if (LHS == RHS) 1134 return getIntegerSCEV(1, LHS->getType()); // X udiv X --> 1 1135 1136 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1137 if (RHSC->getValue()->equalsInt(1)) 1138 return LHS; // X udiv 1 --> X 1139 1140 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1141 Constant *LHSCV = LHSC->getValue(); 1142 Constant *RHSCV = RHSC->getValue(); 1143 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1144 } 1145 } 1146 1147 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1148 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1149 return Result; 1150 } 1151 1152 SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1153 if (LHS == RHS) 1154 return getIntegerSCEV(1, LHS->getType()); // X sdiv X --> 1 1155 1156 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1157 if (RHSC->getValue()->equalsInt(1)) 1158 return LHS; // X sdiv 1 --> X 1159 1160 if (RHSC->getValue()->isAllOnesValue()) 1161 return getNegativeSCEV(LHS); // X sdiv -1 --> -X 1162 1163 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1164 Constant *LHSCV = LHSC->getValue(); 1165 Constant *RHSCV = RHSC->getValue(); 1166 return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV)); 1167 } 1168 } 1169 1170 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; 1171 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); 1172 return Result; 1173 } 1174 1175 1176 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1177 /// specified loop. Simplify the expression as much as possible. 1178 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1179 const SCEVHandle &Step, const Loop *L) { 1180 std::vector<SCEVHandle> Operands; 1181 Operands.push_back(Start); 1182 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1183 if (StepChrec->getLoop() == L) { 1184 Operands.insert(Operands.end(), StepChrec->op_begin(), 1185 StepChrec->op_end()); 1186 return getAddRecExpr(Operands, L); 1187 } 1188 1189 Operands.push_back(Step); 1190 return getAddRecExpr(Operands, L); 1191 } 1192 1193 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1194 /// specified loop. Simplify the expression as much as possible. 1195 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1196 const Loop *L) { 1197 if (Operands.size() == 1) return Operands[0]; 1198 1199 if (Operands.back()->isZero()) { 1200 Operands.pop_back(); 1201 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1202 } 1203 1204 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1205 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1206 const Loop* NestedLoop = NestedAR->getLoop(); 1207 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1208 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1209 NestedAR->op_end()); 1210 SCEVHandle NestedARHandle(NestedAR); 1211 Operands[0] = NestedAR->getStart(); 1212 NestedOperands[0] = getAddRecExpr(Operands, L); 1213 return getAddRecExpr(NestedOperands, NestedLoop); 1214 } 1215 } 1216 1217 SCEVAddRecExpr *&Result = 1218 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1219 Operands.end()))]; 1220 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1221 return Result; 1222 } 1223 1224 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1225 const SCEVHandle &RHS) { 1226 std::vector<SCEVHandle> Ops; 1227 Ops.push_back(LHS); 1228 Ops.push_back(RHS); 1229 return getSMaxExpr(Ops); 1230 } 1231 1232 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1233 assert(!Ops.empty() && "Cannot get empty smax!"); 1234 if (Ops.size() == 1) return Ops[0]; 1235 1236 // Sort by complexity, this groups all similar expression types together. 1237 GroupByComplexity(Ops); 1238 1239 // If there are any constants, fold them together. 1240 unsigned Idx = 0; 1241 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1242 ++Idx; 1243 assert(Idx < Ops.size()); 1244 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1245 // We found two constants, fold them together! 1246 ConstantInt *Fold = ConstantInt::get( 1247 APIntOps::smax(LHSC->getValue()->getValue(), 1248 RHSC->getValue()->getValue())); 1249 Ops[0] = getConstant(Fold); 1250 Ops.erase(Ops.begin()+1); // Erase the folded element 1251 if (Ops.size() == 1) return Ops[0]; 1252 LHSC = cast<SCEVConstant>(Ops[0]); 1253 } 1254 1255 // If we are left with a constant -inf, strip it off. 1256 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1257 Ops.erase(Ops.begin()); 1258 --Idx; 1259 } 1260 } 1261 1262 if (Ops.size() == 1) return Ops[0]; 1263 1264 // Find the first SMax 1265 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1266 ++Idx; 1267 1268 // Check to see if one of the operands is an SMax. If so, expand its operands 1269 // onto our operand list, and recurse to simplify. 1270 if (Idx < Ops.size()) { 1271 bool DeletedSMax = false; 1272 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1273 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1274 Ops.erase(Ops.begin()+Idx); 1275 DeletedSMax = true; 1276 } 1277 1278 if (DeletedSMax) 1279 return getSMaxExpr(Ops); 1280 } 1281 1282 // Okay, check to see if the same value occurs in the operand list twice. If 1283 // so, delete one. Since we sorted the list, these values are required to 1284 // be adjacent. 1285 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1286 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1287 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1288 --i; --e; 1289 } 1290 1291 if (Ops.size() == 1) return Ops[0]; 1292 1293 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1294 1295 // Okay, it looks like we really DO need an smax expr. Check to see if we 1296 // already have one, otherwise create a new one. 1297 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1298 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1299 SCEVOps)]; 1300 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1301 return Result; 1302 } 1303 1304 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1305 const SCEVHandle &RHS) { 1306 std::vector<SCEVHandle> Ops; 1307 Ops.push_back(LHS); 1308 Ops.push_back(RHS); 1309 return getUMaxExpr(Ops); 1310 } 1311 1312 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1313 assert(!Ops.empty() && "Cannot get empty umax!"); 1314 if (Ops.size() == 1) return Ops[0]; 1315 1316 // Sort by complexity, this groups all similar expression types together. 1317 GroupByComplexity(Ops); 1318 1319 // If there are any constants, fold them together. 1320 unsigned Idx = 0; 1321 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1322 ++Idx; 1323 assert(Idx < Ops.size()); 1324 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1325 // We found two constants, fold them together! 1326 ConstantInt *Fold = ConstantInt::get( 1327 APIntOps::umax(LHSC->getValue()->getValue(), 1328 RHSC->getValue()->getValue())); 1329 Ops[0] = getConstant(Fold); 1330 Ops.erase(Ops.begin()+1); // Erase the folded element 1331 if (Ops.size() == 1) return Ops[0]; 1332 LHSC = cast<SCEVConstant>(Ops[0]); 1333 } 1334 1335 // If we are left with a constant zero, strip it off. 1336 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1337 Ops.erase(Ops.begin()); 1338 --Idx; 1339 } 1340 } 1341 1342 if (Ops.size() == 1) return Ops[0]; 1343 1344 // Find the first UMax 1345 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1346 ++Idx; 1347 1348 // Check to see if one of the operands is a UMax. If so, expand its operands 1349 // onto our operand list, and recurse to simplify. 1350 if (Idx < Ops.size()) { 1351 bool DeletedUMax = false; 1352 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1353 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1354 Ops.erase(Ops.begin()+Idx); 1355 DeletedUMax = true; 1356 } 1357 1358 if (DeletedUMax) 1359 return getUMaxExpr(Ops); 1360 } 1361 1362 // Okay, check to see if the same value occurs in the operand list twice. If 1363 // so, delete one. Since we sorted the list, these values are required to 1364 // be adjacent. 1365 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1366 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1367 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1368 --i; --e; 1369 } 1370 1371 if (Ops.size() == 1) return Ops[0]; 1372 1373 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1374 1375 // Okay, it looks like we really DO need a umax expr. Check to see if we 1376 // already have one, otherwise create a new one. 1377 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1378 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1379 SCEVOps)]; 1380 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1381 return Result; 1382 } 1383 1384 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1385 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1386 return getConstant(CI); 1387 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1388 if (Result == 0) Result = new SCEVUnknown(V); 1389 return Result; 1390 } 1391 1392 1393 //===----------------------------------------------------------------------===// 1394 // ScalarEvolutionsImpl Definition and Implementation 1395 //===----------------------------------------------------------------------===// 1396 // 1397 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1398 /// evolution code. 1399 /// 1400 namespace { 1401 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1402 /// SE - A reference to the public ScalarEvolution object. 1403 ScalarEvolution &SE; 1404 1405 /// F - The function we are analyzing. 1406 /// 1407 Function &F; 1408 1409 /// LI - The loop information for the function we are currently analyzing. 1410 /// 1411 LoopInfo &LI; 1412 1413 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1414 /// things. 1415 SCEVHandle UnknownValue; 1416 1417 /// Scalars - This is a cache of the scalars we have analyzed so far. 1418 /// 1419 std::map<Value*, SCEVHandle> Scalars; 1420 1421 /// IterationCounts - Cache the iteration count of the loops for this 1422 /// function as they are computed. 1423 std::map<const Loop*, SCEVHandle> IterationCounts; 1424 1425 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1426 /// the PHI instructions that we attempt to compute constant evolutions for. 1427 /// This allows us to avoid potentially expensive recomputation of these 1428 /// properties. An instruction maps to null if we are unable to compute its 1429 /// exit value. 1430 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1431 1432 public: 1433 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li) 1434 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1435 1436 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1437 /// expression and create a new one. 1438 SCEVHandle getSCEV(Value *V); 1439 1440 /// hasSCEV - Return true if the SCEV for this value has already been 1441 /// computed. 1442 bool hasSCEV(Value *V) const { 1443 return Scalars.count(V); 1444 } 1445 1446 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1447 /// the specified value. 1448 void setSCEV(Value *V, const SCEVHandle &H) { 1449 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1450 assert(isNew && "This entry already existed!"); 1451 isNew = false; 1452 } 1453 1454 1455 /// getSCEVAtScope - Compute the value of the specified expression within 1456 /// the indicated loop (which may be null to indicate in no loop). If the 1457 /// expression cannot be evaluated, return UnknownValue itself. 1458 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1459 1460 1461 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1462 /// an analyzable loop-invariant iteration count. 1463 bool hasLoopInvariantIterationCount(const Loop *L); 1464 1465 /// getIterationCount - If the specified loop has a predictable iteration 1466 /// count, return it. Note that it is not valid to call this method on a 1467 /// loop without a loop-invariant iteration count. 1468 SCEVHandle getIterationCount(const Loop *L); 1469 1470 /// deleteValueFromRecords - This method should be called by the 1471 /// client before it removes a value from the program, to make sure 1472 /// that no dangling references are left around. 1473 void deleteValueFromRecords(Value *V); 1474 1475 private: 1476 /// createSCEV - We know that there is no SCEV for the specified value. 1477 /// Analyze the expression. 1478 SCEVHandle createSCEV(Value *V); 1479 1480 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1481 /// SCEVs. 1482 SCEVHandle createNodeForPHI(PHINode *PN); 1483 1484 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1485 /// for the specified instruction and replaces any references to the 1486 /// symbolic value SymName with the specified value. This is used during 1487 /// PHI resolution. 1488 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1489 const SCEVHandle &SymName, 1490 const SCEVHandle &NewVal); 1491 1492 /// ComputeIterationCount - Compute the number of times the specified loop 1493 /// will iterate. 1494 SCEVHandle ComputeIterationCount(const Loop *L); 1495 1496 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1497 /// 'icmp op load X, cst', try to see if we can compute the trip count. 1498 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1499 Constant *RHS, 1500 const Loop *L, 1501 ICmpInst::Predicate p); 1502 1503 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1504 /// constant number of times (the condition evolves only from constants), 1505 /// try to evaluate a few iterations of the loop until we get the exit 1506 /// condition gets a value of ExitWhen (true or false). If we cannot 1507 /// evaluate the trip count of the loop, return UnknownValue. 1508 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1509 bool ExitWhen); 1510 1511 /// HowFarToZero - Return the number of times a backedge comparing the 1512 /// specified value to zero will execute. If not computable, return 1513 /// UnknownValue. 1514 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1515 1516 /// HowFarToNonZero - Return the number of times a backedge checking the 1517 /// specified value for nonzero will execute. If not computable, return 1518 /// UnknownValue. 1519 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1520 1521 /// HowManyLessThans - Return the number of times a backedge containing the 1522 /// specified less-than comparison will execute. If not computable, return 1523 /// UnknownValue. isSigned specifies whether the less-than is signed. 1524 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1525 bool isSigned, bool trueWhenEqual); 1526 1527 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 1528 /// (which may not be an immediate predecessor) which has exactly one 1529 /// successor from which BB is reachable, or null if no such block is 1530 /// found. 1531 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); 1532 1533 /// executesAtLeastOnce - Test whether entry to the loop is protected by 1534 /// a conditional between LHS and RHS. 1535 bool executesAtLeastOnce(const Loop *L, bool isSigned, bool trueWhenEqual, 1536 SCEV *LHS, SCEV *RHS); 1537 1538 /// potentialInfiniteLoop - Test whether the loop might jump over the exit value 1539 /// due to wrapping. 1540 bool potentialInfiniteLoop(SCEV *Stride, SCEV *RHS, bool isSigned, 1541 bool trueWhenEqual); 1542 1543 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1544 /// in the header of its containing loop, we know the loop executes a 1545 /// constant number of times, and the PHI node is just a recurrence 1546 /// involving constants, fold it. 1547 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1548 const Loop *L); 1549 }; 1550 } 1551 1552 //===----------------------------------------------------------------------===// 1553 // Basic SCEV Analysis and PHI Idiom Recognition Code 1554 // 1555 1556 /// deleteValueFromRecords - This method should be called by the 1557 /// client before it removes an instruction from the program, to make sure 1558 /// that no dangling references are left around. 1559 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1560 SmallVector<Value *, 16> Worklist; 1561 1562 if (Scalars.erase(V)) { 1563 if (PHINode *PN = dyn_cast<PHINode>(V)) 1564 ConstantEvolutionLoopExitValue.erase(PN); 1565 Worklist.push_back(V); 1566 } 1567 1568 while (!Worklist.empty()) { 1569 Value *VV = Worklist.back(); 1570 Worklist.pop_back(); 1571 1572 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1573 UI != UE; ++UI) { 1574 Instruction *Inst = cast<Instruction>(*UI); 1575 if (Scalars.erase(Inst)) { 1576 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1577 ConstantEvolutionLoopExitValue.erase(PN); 1578 Worklist.push_back(Inst); 1579 } 1580 } 1581 } 1582 } 1583 1584 1585 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1586 /// expression and create a new one. 1587 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1588 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1589 1590 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1591 if (I != Scalars.end()) return I->second; 1592 SCEVHandle S = createSCEV(V); 1593 Scalars.insert(std::make_pair(V, S)); 1594 return S; 1595 } 1596 1597 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1598 /// the specified instruction and replaces any references to the symbolic value 1599 /// SymName with the specified value. This is used during PHI resolution. 1600 void ScalarEvolutionsImpl:: 1601 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1602 const SCEVHandle &NewVal) { 1603 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1604 if (SI == Scalars.end()) return; 1605 1606 SCEVHandle NV = 1607 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1608 if (NV == SI->second) return; // No change. 1609 1610 SI->second = NV; // Update the scalars map! 1611 1612 // Any instruction values that use this instruction might also need to be 1613 // updated! 1614 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1615 UI != E; ++UI) 1616 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1617 } 1618 1619 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1620 /// a loop header, making it a potential recurrence, or it doesn't. 1621 /// 1622 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1623 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1624 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1625 if (L->getHeader() == PN->getParent()) { 1626 // If it lives in the loop header, it has two incoming values, one 1627 // from outside the loop, and one from inside. 1628 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1629 unsigned BackEdge = IncomingEdge^1; 1630 1631 // While we are analyzing this PHI node, handle its value symbolically. 1632 SCEVHandle SymbolicName = SE.getUnknown(PN); 1633 assert(Scalars.find(PN) == Scalars.end() && 1634 "PHI node already processed?"); 1635 Scalars.insert(std::make_pair(PN, SymbolicName)); 1636 1637 // Using this symbolic name for the PHI, analyze the value coming around 1638 // the back-edge. 1639 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1640 1641 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1642 // has a special value for the first iteration of the loop. 1643 1644 // If the value coming around the backedge is an add with the symbolic 1645 // value we just inserted, then we found a simple induction variable! 1646 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1647 // If there is a single occurrence of the symbolic value, replace it 1648 // with a recurrence. 1649 unsigned FoundIndex = Add->getNumOperands(); 1650 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1651 if (Add->getOperand(i) == SymbolicName) 1652 if (FoundIndex == e) { 1653 FoundIndex = i; 1654 break; 1655 } 1656 1657 if (FoundIndex != Add->getNumOperands()) { 1658 // Create an add with everything but the specified operand. 1659 std::vector<SCEVHandle> Ops; 1660 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1661 if (i != FoundIndex) 1662 Ops.push_back(Add->getOperand(i)); 1663 SCEVHandle Accum = SE.getAddExpr(Ops); 1664 1665 // This is not a valid addrec if the step amount is varying each 1666 // loop iteration, but is not itself an addrec in this loop. 1667 if (Accum->isLoopInvariant(L) || 1668 (isa<SCEVAddRecExpr>(Accum) && 1669 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1670 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1671 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1672 1673 // Okay, for the entire analysis of this edge we assumed the PHI 1674 // to be symbolic. We now need to go back and update all of the 1675 // entries for the scalars that use the PHI (except for the PHI 1676 // itself) to use the new analyzed value instead of the "symbolic" 1677 // value. 1678 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1679 return PHISCEV; 1680 } 1681 } 1682 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1683 // Otherwise, this could be a loop like this: 1684 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1685 // In this case, j = {1,+,1} and BEValue is j. 1686 // Because the other in-value of i (0) fits the evolution of BEValue 1687 // i really is an addrec evolution. 1688 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1689 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1690 1691 // If StartVal = j.start - j.stride, we can use StartVal as the 1692 // initial step of the addrec evolution. 1693 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1694 AddRec->getOperand(1))) { 1695 SCEVHandle PHISCEV = 1696 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1697 1698 // Okay, for the entire analysis of this edge we assumed the PHI 1699 // to be symbolic. We now need to go back and update all of the 1700 // entries for the scalars that use the PHI (except for the PHI 1701 // itself) to use the new analyzed value instead of the "symbolic" 1702 // value. 1703 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1704 return PHISCEV; 1705 } 1706 } 1707 } 1708 1709 return SymbolicName; 1710 } 1711 1712 // If it's not a loop phi, we can't handle it yet. 1713 return SE.getUnknown(PN); 1714 } 1715 1716 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1717 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1718 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1719 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1720 static uint32_t GetMinTrailingZeros(SCEVHandle S) { 1721 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1722 return C->getValue()->getValue().countTrailingZeros(); 1723 1724 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1725 return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth()); 1726 1727 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1728 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 1729 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes; 1730 } 1731 1732 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1733 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 1734 return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes; 1735 } 1736 1737 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1738 // The result is the min of all operands results. 1739 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 1740 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1741 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 1742 return MinOpRes; 1743 } 1744 1745 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1746 // The result is the sum of all operands results. 1747 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 1748 uint32_t BitWidth = M->getBitWidth(); 1749 for (unsigned i = 1, e = M->getNumOperands(); 1750 SumOpRes != BitWidth && i != e; ++i) 1751 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 1752 BitWidth); 1753 return SumOpRes; 1754 } 1755 1756 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1757 // The result is the min of all operands results. 1758 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 1759 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1760 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 1761 return MinOpRes; 1762 } 1763 1764 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1765 // The result is the min of all operands results. 1766 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 1767 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1768 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 1769 return MinOpRes; 1770 } 1771 1772 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1773 // The result is the min of all operands results. 1774 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 1775 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1776 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 1777 return MinOpRes; 1778 } 1779 1780 // SCEVUDivExpr, SCEVSDivExpr, SCEVUnknown 1781 return 0; 1782 } 1783 1784 /// createSCEV - We know that there is no SCEV for the specified value. 1785 /// Analyze the expression. 1786 /// 1787 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1788 if (!isa<IntegerType>(V->getType())) 1789 return SE.getUnknown(V); 1790 1791 unsigned Opcode = Instruction::UserOp1; 1792 if (Instruction *I = dyn_cast<Instruction>(V)) 1793 Opcode = I->getOpcode(); 1794 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1795 Opcode = CE->getOpcode(); 1796 else 1797 return SE.getUnknown(V); 1798 1799 User *U = cast<User>(V); 1800 switch (Opcode) { 1801 case Instruction::Add: 1802 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1803 getSCEV(U->getOperand(1))); 1804 case Instruction::Mul: 1805 return SE.getMulExpr(getSCEV(U->getOperand(0)), 1806 getSCEV(U->getOperand(1))); 1807 case Instruction::UDiv: 1808 return SE.getUDivExpr(getSCEV(U->getOperand(0)), 1809 getSCEV(U->getOperand(1))); 1810 case Instruction::SDiv: 1811 return SE.getSDivExpr(getSCEV(U->getOperand(0)), 1812 getSCEV(U->getOperand(1))); 1813 case Instruction::Sub: 1814 return SE.getMinusSCEV(getSCEV(U->getOperand(0)), 1815 getSCEV(U->getOperand(1))); 1816 case Instruction::Or: 1817 // If the RHS of the Or is a constant, we may have something like: 1818 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1819 // optimizations will transparently handle this case. 1820 // 1821 // In order for this transformation to be safe, the LHS must be of the 1822 // form X*(2^n) and the Or constant must be less than 2^n. 1823 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1824 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1825 const APInt &CIVal = CI->getValue(); 1826 if (GetMinTrailingZeros(LHS) >= 1827 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1828 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1))); 1829 } 1830 break; 1831 case Instruction::Xor: 1832 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1833 // If the RHS of the xor is a signbit, then this is just an add. 1834 // Instcombine turns add of signbit into xor as a strength reduction step. 1835 if (CI->getValue().isSignBit()) 1836 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1837 getSCEV(U->getOperand(1))); 1838 1839 // If the RHS of xor is -1, then this is a not operation. 1840 else if (CI->isAllOnesValue()) 1841 return SE.getNotSCEV(getSCEV(U->getOperand(0))); 1842 } 1843 break; 1844 1845 case Instruction::Shl: 1846 // Turn shift left of a constant amount into a multiply. 1847 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1848 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1849 Constant *X = ConstantInt::get( 1850 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1851 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1852 } 1853 break; 1854 1855 case Instruction::LShr: 1856 // Turn logical shift right of a constant into an unsigned divide. 1857 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1858 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1859 Constant *X = ConstantInt::get( 1860 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1861 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1862 } 1863 break; 1864 1865 case Instruction::Trunc: 1866 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1867 1868 case Instruction::ZExt: 1869 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1870 1871 case Instruction::SExt: 1872 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1873 1874 case Instruction::BitCast: 1875 // BitCasts are no-op casts so we just eliminate the cast. 1876 if (U->getType()->isInteger() && 1877 U->getOperand(0)->getType()->isInteger()) 1878 return getSCEV(U->getOperand(0)); 1879 break; 1880 1881 case Instruction::PHI: 1882 return createNodeForPHI(cast<PHINode>(U)); 1883 1884 case Instruction::Select: 1885 // This could be a smax or umax that was lowered earlier. 1886 // Try to recover it. 1887 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 1888 Value *LHS = ICI->getOperand(0); 1889 Value *RHS = ICI->getOperand(1); 1890 switch (ICI->getPredicate()) { 1891 case ICmpInst::ICMP_SLT: 1892 case ICmpInst::ICMP_SLE: 1893 std::swap(LHS, RHS); 1894 // fall through 1895 case ICmpInst::ICMP_SGT: 1896 case ICmpInst::ICMP_SGE: 1897 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 1898 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 1899 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 1900 // ~smax(~x, ~y) == smin(x, y). 1901 return SE.getNotSCEV(SE.getSMaxExpr( 1902 SE.getNotSCEV(getSCEV(LHS)), 1903 SE.getNotSCEV(getSCEV(RHS)))); 1904 break; 1905 case ICmpInst::ICMP_ULT: 1906 case ICmpInst::ICMP_ULE: 1907 std::swap(LHS, RHS); 1908 // fall through 1909 case ICmpInst::ICMP_UGT: 1910 case ICmpInst::ICMP_UGE: 1911 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 1912 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 1913 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 1914 // ~umax(~x, ~y) == umin(x, y) 1915 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)), 1916 SE.getNotSCEV(getSCEV(RHS)))); 1917 break; 1918 default: 1919 break; 1920 } 1921 } 1922 1923 default: // We cannot analyze this expression. 1924 break; 1925 } 1926 1927 return SE.getUnknown(V); 1928 } 1929 1930 1931 1932 //===----------------------------------------------------------------------===// 1933 // Iteration Count Computation Code 1934 // 1935 1936 /// getIterationCount - If the specified loop has a predictable iteration 1937 /// count, return it. Note that it is not valid to call this method on a 1938 /// loop without a loop-invariant iteration count. 1939 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1940 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1941 if (I == IterationCounts.end()) { 1942 SCEVHandle ItCount = ComputeIterationCount(L); 1943 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1944 if (ItCount != UnknownValue) { 1945 assert(ItCount->isLoopInvariant(L) && 1946 "Computed trip count isn't loop invariant for loop!"); 1947 ++NumTripCountsComputed; 1948 } else if (isa<PHINode>(L->getHeader()->begin())) { 1949 // Only count loops that have phi nodes as not being computable. 1950 ++NumTripCountsNotComputed; 1951 } 1952 } 1953 return I->second; 1954 } 1955 1956 /// ComputeIterationCount - Compute the number of times the specified loop 1957 /// will iterate. 1958 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1959 // If the loop has a non-one exit block count, we can't analyze it. 1960 SmallVector<BasicBlock*, 8> ExitBlocks; 1961 L->getExitBlocks(ExitBlocks); 1962 if (ExitBlocks.size() != 1) return UnknownValue; 1963 1964 // Okay, there is one exit block. Try to find the condition that causes the 1965 // loop to be exited. 1966 BasicBlock *ExitBlock = ExitBlocks[0]; 1967 1968 BasicBlock *ExitingBlock = 0; 1969 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1970 PI != E; ++PI) 1971 if (L->contains(*PI)) { 1972 if (ExitingBlock == 0) 1973 ExitingBlock = *PI; 1974 else 1975 return UnknownValue; // More than one block exiting! 1976 } 1977 assert(ExitingBlock && "No exits from loop, something is broken!"); 1978 1979 // Okay, we've computed the exiting block. See what condition causes us to 1980 // exit. 1981 // 1982 // FIXME: we should be able to handle switch instructions (with a single exit) 1983 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1984 if (ExitBr == 0) return UnknownValue; 1985 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1986 1987 // At this point, we know we have a conditional branch that determines whether 1988 // the loop is exited. However, we don't know if the branch is executed each 1989 // time through the loop. If not, then the execution count of the branch will 1990 // not be equal to the trip count of the loop. 1991 // 1992 // Currently we check for this by checking to see if the Exit branch goes to 1993 // the loop header. If so, we know it will always execute the same number of 1994 // times as the loop. We also handle the case where the exit block *is* the 1995 // loop header. This is common for un-rotated loops. More extensive analysis 1996 // could be done to handle more cases here. 1997 if (ExitBr->getSuccessor(0) != L->getHeader() && 1998 ExitBr->getSuccessor(1) != L->getHeader() && 1999 ExitBr->getParent() != L->getHeader()) 2000 return UnknownValue; 2001 2002 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2003 2004 // If it's not an integer comparison then compute it the hard way. 2005 // Note that ICmpInst deals with pointer comparisons too so we must check 2006 // the type of the operand. 2007 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2008 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 2009 ExitBr->getSuccessor(0) == ExitBlock); 2010 2011 // If the condition was exit on true, convert the condition to exit on false 2012 ICmpInst::Predicate Cond; 2013 if (ExitBr->getSuccessor(1) == ExitBlock) 2014 Cond = ExitCond->getPredicate(); 2015 else 2016 Cond = ExitCond->getInversePredicate(); 2017 2018 // Handle common loops like: for (X = "string"; *X; ++X) 2019 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2020 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2021 SCEVHandle ItCnt = 2022 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 2023 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2024 } 2025 2026 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2027 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2028 2029 // Try to evaluate any dependencies out of the loop. 2030 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2031 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2032 Tmp = getSCEVAtScope(RHS, L); 2033 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2034 2035 // At this point, we would like to compute how many iterations of the 2036 // loop the predicate will return true for these inputs. 2037 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2038 // If there is a loop-invariant, force it into the RHS. 2039 std::swap(LHS, RHS); 2040 Cond = ICmpInst::getSwappedPredicate(Cond); 2041 } 2042 2043 // FIXME: think about handling pointer comparisons! i.e.: 2044 // while (P != P+100) ++P; 2045 2046 // If we have a comparison of a chrec against a constant, try to use value 2047 // ranges to answer this query. 2048 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2049 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2050 if (AddRec->getLoop() == L) { 2051 // Form the comparison range using the constant of the correct type so 2052 // that the ConstantRange class knows to do a signed or unsigned 2053 // comparison. 2054 ConstantInt *CompVal = RHSC->getValue(); 2055 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2056 CompVal = dyn_cast<ConstantInt>( 2057 ConstantExpr::getBitCast(CompVal, RealTy)); 2058 if (CompVal) { 2059 // Form the constant range. 2060 ConstantRange CompRange( 2061 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2062 2063 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 2064 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2065 } 2066 } 2067 2068 switch (Cond) { 2069 case ICmpInst::ICMP_NE: { // while (X != Y) 2070 // Convert to: while (X-Y != 0) 2071 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 2072 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2073 break; 2074 } 2075 case ICmpInst::ICMP_EQ: { 2076 // Convert to: while (X-Y == 0) // while (X == Y) 2077 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 2078 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2079 break; 2080 } 2081 case ICmpInst::ICMP_SLT: { 2082 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true, false); 2083 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2084 break; 2085 } 2086 case ICmpInst::ICMP_SGT: { 2087 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2088 SE.getNotSCEV(RHS), L, true, false); 2089 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2090 break; 2091 } 2092 case ICmpInst::ICMP_ULT: { 2093 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false, false); 2094 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2095 break; 2096 } 2097 case ICmpInst::ICMP_UGT: { 2098 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2099 SE.getNotSCEV(RHS), L, false, false); 2100 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2101 break; 2102 } 2103 case ICmpInst::ICMP_SLE: { 2104 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true, true); 2105 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2106 break; 2107 } 2108 case ICmpInst::ICMP_SGE: { 2109 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2110 SE.getNotSCEV(RHS), L, true, true); 2111 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2112 break; 2113 } 2114 case ICmpInst::ICMP_ULE: { 2115 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false, true); 2116 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2117 break; 2118 } 2119 case ICmpInst::ICMP_UGE: { 2120 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2121 SE.getNotSCEV(RHS), L, false, true); 2122 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2123 break; 2124 } 2125 default: 2126 #if 0 2127 cerr << "ComputeIterationCount "; 2128 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2129 cerr << "[unsigned] "; 2130 cerr << *LHS << " " 2131 << Instruction::getOpcodeName(Instruction::ICmp) 2132 << " " << *RHS << "\n"; 2133 #endif 2134 break; 2135 } 2136 return ComputeIterationCountExhaustively(L, ExitCond, 2137 ExitBr->getSuccessor(0) == ExitBlock); 2138 } 2139 2140 static ConstantInt * 2141 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2142 ScalarEvolution &SE) { 2143 SCEVHandle InVal = SE.getConstant(C); 2144 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2145 assert(isa<SCEVConstant>(Val) && 2146 "Evaluation of SCEV at constant didn't fold correctly?"); 2147 return cast<SCEVConstant>(Val)->getValue(); 2148 } 2149 2150 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2151 /// and a GEP expression (missing the pointer index) indexing into it, return 2152 /// the addressed element of the initializer or null if the index expression is 2153 /// invalid. 2154 static Constant * 2155 GetAddressedElementFromGlobal(GlobalVariable *GV, 2156 const std::vector<ConstantInt*> &Indices) { 2157 Constant *Init = GV->getInitializer(); 2158 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2159 uint64_t Idx = Indices[i]->getZExtValue(); 2160 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2161 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2162 Init = cast<Constant>(CS->getOperand(Idx)); 2163 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2164 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2165 Init = cast<Constant>(CA->getOperand(Idx)); 2166 } else if (isa<ConstantAggregateZero>(Init)) { 2167 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2168 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2169 Init = Constant::getNullValue(STy->getElementType(Idx)); 2170 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2171 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2172 Init = Constant::getNullValue(ATy->getElementType()); 2173 } else { 2174 assert(0 && "Unknown constant aggregate type!"); 2175 } 2176 return 0; 2177 } else { 2178 return 0; // Unknown initializer type 2179 } 2180 } 2181 return Init; 2182 } 2183 2184 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 2185 /// 'icmp op load X, cst', try to see if we can compute the trip count. 2186 SCEVHandle ScalarEvolutionsImpl:: 2187 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 2188 const Loop *L, 2189 ICmpInst::Predicate predicate) { 2190 if (LI->isVolatile()) return UnknownValue; 2191 2192 // Check to see if the loaded pointer is a getelementptr of a global. 2193 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2194 if (!GEP) return UnknownValue; 2195 2196 // Make sure that it is really a constant global we are gepping, with an 2197 // initializer, and make sure the first IDX is really 0. 2198 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2199 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2200 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2201 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2202 return UnknownValue; 2203 2204 // Okay, we allow one non-constant index into the GEP instruction. 2205 Value *VarIdx = 0; 2206 std::vector<ConstantInt*> Indexes; 2207 unsigned VarIdxNum = 0; 2208 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2209 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2210 Indexes.push_back(CI); 2211 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2212 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2213 VarIdx = GEP->getOperand(i); 2214 VarIdxNum = i-2; 2215 Indexes.push_back(0); 2216 } 2217 2218 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2219 // Check to see if X is a loop variant variable value now. 2220 SCEVHandle Idx = getSCEV(VarIdx); 2221 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2222 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2223 2224 // We can only recognize very limited forms of loop index expressions, in 2225 // particular, only affine AddRec's like {C1,+,C2}. 2226 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2227 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2228 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2229 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2230 return UnknownValue; 2231 2232 unsigned MaxSteps = MaxBruteForceIterations; 2233 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2234 ConstantInt *ItCst = 2235 ConstantInt::get(IdxExpr->getType(), IterationNum); 2236 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 2237 2238 // Form the GEP offset. 2239 Indexes[VarIdxNum] = Val; 2240 2241 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2242 if (Result == 0) break; // Cannot compute! 2243 2244 // Evaluate the condition for this iteration. 2245 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2246 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2247 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2248 #if 0 2249 cerr << "\n***\n*** Computed loop count " << *ItCst 2250 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2251 << "***\n"; 2252 #endif 2253 ++NumArrayLenItCounts; 2254 return SE.getConstant(ItCst); // Found terminating iteration! 2255 } 2256 } 2257 return UnknownValue; 2258 } 2259 2260 2261 /// CanConstantFold - Return true if we can constant fold an instruction of the 2262 /// specified type, assuming that all operands were constants. 2263 static bool CanConstantFold(const Instruction *I) { 2264 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2265 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2266 return true; 2267 2268 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2269 if (const Function *F = CI->getCalledFunction()) 2270 return canConstantFoldCallTo(F); 2271 return false; 2272 } 2273 2274 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2275 /// in the loop that V is derived from. We allow arbitrary operations along the 2276 /// way, but the operands of an operation must either be constants or a value 2277 /// derived from a constant PHI. If this expression does not fit with these 2278 /// constraints, return null. 2279 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2280 // If this is not an instruction, or if this is an instruction outside of the 2281 // loop, it can't be derived from a loop PHI. 2282 Instruction *I = dyn_cast<Instruction>(V); 2283 if (I == 0 || !L->contains(I->getParent())) return 0; 2284 2285 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2286 if (L->getHeader() == I->getParent()) 2287 return PN; 2288 else 2289 // We don't currently keep track of the control flow needed to evaluate 2290 // PHIs, so we cannot handle PHIs inside of loops. 2291 return 0; 2292 } 2293 2294 // If we won't be able to constant fold this expression even if the operands 2295 // are constants, return early. 2296 if (!CanConstantFold(I)) return 0; 2297 2298 // Otherwise, we can evaluate this instruction if all of its operands are 2299 // constant or derived from a PHI node themselves. 2300 PHINode *PHI = 0; 2301 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2302 if (!(isa<Constant>(I->getOperand(Op)) || 2303 isa<GlobalValue>(I->getOperand(Op)))) { 2304 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2305 if (P == 0) return 0; // Not evolving from PHI 2306 if (PHI == 0) 2307 PHI = P; 2308 else if (PHI != P) 2309 return 0; // Evolving from multiple different PHIs. 2310 } 2311 2312 // This is a expression evolving from a constant PHI! 2313 return PHI; 2314 } 2315 2316 /// EvaluateExpression - Given an expression that passes the 2317 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2318 /// in the loop has the value PHIVal. If we can't fold this expression for some 2319 /// reason, return null. 2320 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2321 if (isa<PHINode>(V)) return PHIVal; 2322 if (Constant *C = dyn_cast<Constant>(V)) return C; 2323 Instruction *I = cast<Instruction>(V); 2324 2325 std::vector<Constant*> Operands; 2326 Operands.resize(I->getNumOperands()); 2327 2328 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2329 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2330 if (Operands[i] == 0) return 0; 2331 } 2332 2333 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2334 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2335 &Operands[0], Operands.size()); 2336 else 2337 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2338 &Operands[0], Operands.size()); 2339 } 2340 2341 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2342 /// in the header of its containing loop, we know the loop executes a 2343 /// constant number of times, and the PHI node is just a recurrence 2344 /// involving constants, fold it. 2345 Constant *ScalarEvolutionsImpl:: 2346 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 2347 std::map<PHINode*, Constant*>::iterator I = 2348 ConstantEvolutionLoopExitValue.find(PN); 2349 if (I != ConstantEvolutionLoopExitValue.end()) 2350 return I->second; 2351 2352 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 2353 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2354 2355 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2356 2357 // Since the loop is canonicalized, the PHI node must have two entries. One 2358 // entry must be a constant (coming in from outside of the loop), and the 2359 // second must be derived from the same PHI. 2360 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2361 Constant *StartCST = 2362 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2363 if (StartCST == 0) 2364 return RetVal = 0; // Must be a constant. 2365 2366 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2367 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2368 if (PN2 != PN) 2369 return RetVal = 0; // Not derived from same PHI. 2370 2371 // Execute the loop symbolically to determine the exit value. 2372 if (Its.getActiveBits() >= 32) 2373 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2374 2375 unsigned NumIterations = Its.getZExtValue(); // must be in range 2376 unsigned IterationNum = 0; 2377 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2378 if (IterationNum == NumIterations) 2379 return RetVal = PHIVal; // Got exit value! 2380 2381 // Compute the value of the PHI node for the next iteration. 2382 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2383 if (NextPHI == PHIVal) 2384 return RetVal = NextPHI; // Stopped evolving! 2385 if (NextPHI == 0) 2386 return 0; // Couldn't evaluate! 2387 PHIVal = NextPHI; 2388 } 2389 } 2390 2391 /// ComputeIterationCountExhaustively - If the trip is known to execute a 2392 /// constant number of times (the condition evolves only from constants), 2393 /// try to evaluate a few iterations of the loop until we get the exit 2394 /// condition gets a value of ExitWhen (true or false). If we cannot 2395 /// evaluate the trip count of the loop, return UnknownValue. 2396 SCEVHandle ScalarEvolutionsImpl:: 2397 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2398 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2399 if (PN == 0) return UnknownValue; 2400 2401 // Since the loop is canonicalized, the PHI node must have two entries. One 2402 // entry must be a constant (coming in from outside of the loop), and the 2403 // second must be derived from the same PHI. 2404 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2405 Constant *StartCST = 2406 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2407 if (StartCST == 0) return UnknownValue; // Must be a constant. 2408 2409 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2410 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2411 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2412 2413 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2414 // the loop symbolically to determine when the condition gets a value of 2415 // "ExitWhen". 2416 unsigned IterationNum = 0; 2417 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2418 for (Constant *PHIVal = StartCST; 2419 IterationNum != MaxIterations; ++IterationNum) { 2420 ConstantInt *CondVal = 2421 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2422 2423 // Couldn't symbolically evaluate. 2424 if (!CondVal) return UnknownValue; 2425 2426 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2427 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2428 ++NumBruteForceTripCountsComputed; 2429 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2430 } 2431 2432 // Compute the value of the PHI node for the next iteration. 2433 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2434 if (NextPHI == 0 || NextPHI == PHIVal) 2435 return UnknownValue; // Couldn't evaluate or not making progress... 2436 PHIVal = NextPHI; 2437 } 2438 2439 // Too many iterations were needed to evaluate. 2440 return UnknownValue; 2441 } 2442 2443 /// getSCEVAtScope - Compute the value of the specified expression within the 2444 /// indicated loop (which may be null to indicate in no loop). If the 2445 /// expression cannot be evaluated, return UnknownValue. 2446 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2447 // FIXME: this should be turned into a virtual method on SCEV! 2448 2449 if (isa<SCEVConstant>(V)) return V; 2450 2451 // If this instruction is evolved from a constant-evolving PHI, compute the 2452 // exit value from the loop without using SCEVs. 2453 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2454 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2455 const Loop *LI = this->LI[I->getParent()]; 2456 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2457 if (PHINode *PN = dyn_cast<PHINode>(I)) 2458 if (PN->getParent() == LI->getHeader()) { 2459 // Okay, there is no closed form solution for the PHI node. Check 2460 // to see if the loop that contains it has a known iteration count. 2461 // If so, we may be able to force computation of the exit value. 2462 SCEVHandle IterationCount = getIterationCount(LI); 2463 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2464 // Okay, we know how many times the containing loop executes. If 2465 // this is a constant evolving PHI node, get the final value at 2466 // the specified iteration number. 2467 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2468 ICC->getValue()->getValue(), 2469 LI); 2470 if (RV) return SE.getUnknown(RV); 2471 } 2472 } 2473 2474 // Okay, this is an expression that we cannot symbolically evaluate 2475 // into a SCEV. Check to see if it's possible to symbolically evaluate 2476 // the arguments into constants, and if so, try to constant propagate the 2477 // result. This is particularly useful for computing loop exit values. 2478 if (CanConstantFold(I)) { 2479 std::vector<Constant*> Operands; 2480 Operands.reserve(I->getNumOperands()); 2481 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2482 Value *Op = I->getOperand(i); 2483 if (Constant *C = dyn_cast<Constant>(Op)) { 2484 Operands.push_back(C); 2485 } else { 2486 // If any of the operands is non-constant and if they are 2487 // non-integer, don't even try to analyze them with scev techniques. 2488 if (!isa<IntegerType>(Op->getType())) 2489 return V; 2490 2491 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2492 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2493 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2494 Op->getType(), 2495 false)); 2496 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2497 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2498 Operands.push_back(ConstantExpr::getIntegerCast(C, 2499 Op->getType(), 2500 false)); 2501 else 2502 return V; 2503 } else { 2504 return V; 2505 } 2506 } 2507 } 2508 2509 Constant *C; 2510 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2511 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2512 &Operands[0], Operands.size()); 2513 else 2514 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2515 &Operands[0], Operands.size()); 2516 return SE.getUnknown(C); 2517 } 2518 } 2519 2520 // This is some other type of SCEVUnknown, just return it. 2521 return V; 2522 } 2523 2524 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2525 // Avoid performing the look-up in the common case where the specified 2526 // expression has no loop-variant portions. 2527 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2528 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2529 if (OpAtScope != Comm->getOperand(i)) { 2530 if (OpAtScope == UnknownValue) return UnknownValue; 2531 // Okay, at least one of these operands is loop variant but might be 2532 // foldable. Build a new instance of the folded commutative expression. 2533 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2534 NewOps.push_back(OpAtScope); 2535 2536 for (++i; i != e; ++i) { 2537 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2538 if (OpAtScope == UnknownValue) return UnknownValue; 2539 NewOps.push_back(OpAtScope); 2540 } 2541 if (isa<SCEVAddExpr>(Comm)) 2542 return SE.getAddExpr(NewOps); 2543 if (isa<SCEVMulExpr>(Comm)) 2544 return SE.getMulExpr(NewOps); 2545 if (isa<SCEVSMaxExpr>(Comm)) 2546 return SE.getSMaxExpr(NewOps); 2547 if (isa<SCEVUMaxExpr>(Comm)) 2548 return SE.getUMaxExpr(NewOps); 2549 assert(0 && "Unknown commutative SCEV type!"); 2550 } 2551 } 2552 // If we got here, all operands are loop invariant. 2553 return Comm; 2554 } 2555 2556 if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) { 2557 SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L); 2558 if (LHS == UnknownValue) return LHS; 2559 SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L); 2560 if (RHS == UnknownValue) return RHS; 2561 if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS()) 2562 return UDiv; // must be loop invariant 2563 return SE.getUDivExpr(LHS, RHS); 2564 } 2565 2566 if (SCEVSDivExpr *SDiv = dyn_cast<SCEVSDivExpr>(V)) { 2567 SCEVHandle LHS = getSCEVAtScope(SDiv->getLHS(), L); 2568 if (LHS == UnknownValue) return LHS; 2569 SCEVHandle RHS = getSCEVAtScope(SDiv->getRHS(), L); 2570 if (RHS == UnknownValue) return RHS; 2571 if (LHS == SDiv->getLHS() && RHS == SDiv->getRHS()) 2572 return SDiv; // must be loop invariant 2573 return SE.getSDivExpr(LHS, RHS); 2574 } 2575 2576 // If this is a loop recurrence for a loop that does not contain L, then we 2577 // are dealing with the final value computed by the loop. 2578 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2579 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2580 // To evaluate this recurrence, we need to know how many times the AddRec 2581 // loop iterates. Compute this now. 2582 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2583 if (IterationCount == UnknownValue) return UnknownValue; 2584 2585 // Then, evaluate the AddRec. 2586 return AddRec->evaluateAtIteration(IterationCount, SE); 2587 } 2588 return UnknownValue; 2589 } 2590 2591 //assert(0 && "Unknown SCEV type!"); 2592 return UnknownValue; 2593 } 2594 2595 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2596 /// following equation: 2597 /// 2598 /// A * X = B (mod N) 2599 /// 2600 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2601 /// A and B isn't important. 2602 /// 2603 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2604 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2605 ScalarEvolution &SE) { 2606 uint32_t BW = A.getBitWidth(); 2607 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2608 assert(A != 0 && "A must be non-zero."); 2609 2610 // 1. D = gcd(A, N) 2611 // 2612 // The gcd of A and N may have only one prime factor: 2. The number of 2613 // trailing zeros in A is its multiplicity 2614 uint32_t Mult2 = A.countTrailingZeros(); 2615 // D = 2^Mult2 2616 2617 // 2. Check if B is divisible by D. 2618 // 2619 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2620 // is not less than multiplicity of this prime factor for D. 2621 if (B.countTrailingZeros() < Mult2) 2622 return new SCEVCouldNotCompute(); 2623 2624 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2625 // modulo (N / D). 2626 // 2627 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2628 // bit width during computations. 2629 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2630 APInt Mod(BW + 1, 0); 2631 Mod.set(BW - Mult2); // Mod = N / D 2632 APInt I = AD.multiplicativeInverse(Mod); 2633 2634 // 4. Compute the minimum unsigned root of the equation: 2635 // I * (B / D) mod (N / D) 2636 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2637 2638 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2639 // bits. 2640 return SE.getConstant(Result.trunc(BW)); 2641 } 2642 2643 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2644 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2645 /// might be the same) or two SCEVCouldNotCompute objects. 2646 /// 2647 static std::pair<SCEVHandle,SCEVHandle> 2648 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2649 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2650 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2651 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2652 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2653 2654 // We currently can only solve this if the coefficients are constants. 2655 if (!LC || !MC || !NC) { 2656 SCEV *CNC = new SCEVCouldNotCompute(); 2657 return std::make_pair(CNC, CNC); 2658 } 2659 2660 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2661 const APInt &L = LC->getValue()->getValue(); 2662 const APInt &M = MC->getValue()->getValue(); 2663 const APInt &N = NC->getValue()->getValue(); 2664 APInt Two(BitWidth, 2); 2665 APInt Four(BitWidth, 4); 2666 2667 { 2668 using namespace APIntOps; 2669 const APInt& C = L; 2670 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2671 // The B coefficient is M-N/2 2672 APInt B(M); 2673 B -= sdiv(N,Two); 2674 2675 // The A coefficient is N/2 2676 APInt A(N.sdiv(Two)); 2677 2678 // Compute the B^2-4ac term. 2679 APInt SqrtTerm(B); 2680 SqrtTerm *= B; 2681 SqrtTerm -= Four * (A * C); 2682 2683 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2684 // integer value or else APInt::sqrt() will assert. 2685 APInt SqrtVal(SqrtTerm.sqrt()); 2686 2687 // Compute the two solutions for the quadratic formula. 2688 // The divisions must be performed as signed divisions. 2689 APInt NegB(-B); 2690 APInt TwoA( A << 1 ); 2691 if (TwoA.isMinValue()) { 2692 SCEV *CNC = new SCEVCouldNotCompute(); 2693 return std::make_pair(CNC, CNC); 2694 } 2695 2696 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2697 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2698 2699 return std::make_pair(SE.getConstant(Solution1), 2700 SE.getConstant(Solution2)); 2701 } // end APIntOps namespace 2702 } 2703 2704 /// HowFarToZero - Return the number of times a backedge comparing the specified 2705 /// value to zero will execute. If not computable, return UnknownValue 2706 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2707 // If the value is a constant 2708 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2709 // If the value is already zero, the branch will execute zero times. 2710 if (C->getValue()->isZero()) return C; 2711 return UnknownValue; // Otherwise it will loop infinitely. 2712 } 2713 2714 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2715 if (!AddRec || AddRec->getLoop() != L) 2716 return UnknownValue; 2717 2718 if (AddRec->isAffine()) { 2719 // If this is an affine expression, the execution count of this branch is 2720 // the minimum unsigned root of the following equation: 2721 // 2722 // Start + Step*N = 0 (mod 2^BW) 2723 // 2724 // equivalent to: 2725 // 2726 // Step*N = -Start (mod 2^BW) 2727 // 2728 // where BW is the common bit width of Start and Step. 2729 2730 // Get the initial value for the loop. 2731 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2732 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2733 2734 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2735 2736 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2737 // For now we handle only constant steps. 2738 2739 // First, handle unitary steps. 2740 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2741 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned) 2742 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2743 return Start; // N = Start (as unsigned) 2744 2745 // Then, try to solve the above equation provided that Start is constant. 2746 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2747 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2748 -StartC->getValue()->getValue(),SE); 2749 } 2750 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2751 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2752 // the quadratic equation to solve it. 2753 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2754 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2755 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2756 if (R1) { 2757 #if 0 2758 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2759 << " sol#2: " << *R2 << "\n"; 2760 #endif 2761 // Pick the smallest positive root value. 2762 if (ConstantInt *CB = 2763 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2764 R1->getValue(), R2->getValue()))) { 2765 if (CB->getZExtValue() == false) 2766 std::swap(R1, R2); // R1 is the minimum root now. 2767 2768 // We can only use this value if the chrec ends up with an exact zero 2769 // value at this index. When solving for "X*X != 5", for example, we 2770 // should not accept a root of 2. 2771 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2772 if (Val->isZero()) 2773 return R1; // We found a quadratic root! 2774 } 2775 } 2776 } 2777 2778 return UnknownValue; 2779 } 2780 2781 /// HowFarToNonZero - Return the number of times a backedge checking the 2782 /// specified value for nonzero will execute. If not computable, return 2783 /// UnknownValue 2784 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2785 // Loops that look like: while (X == 0) are very strange indeed. We don't 2786 // handle them yet except for the trivial case. This could be expanded in the 2787 // future as needed. 2788 2789 // If the value is a constant, check to see if it is known to be non-zero 2790 // already. If so, the backedge will execute zero times. 2791 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2792 if (!C->getValue()->isNullValue()) 2793 return SE.getIntegerSCEV(0, C->getType()); 2794 return UnknownValue; // Otherwise it will loop infinitely. 2795 } 2796 2797 // We could implement others, but I really doubt anyone writes loops like 2798 // this, and if they did, they would already be constant folded. 2799 return UnknownValue; 2800 } 2801 2802 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2803 /// (which may not be an immediate predecessor) which has exactly one 2804 /// successor from which BB is reachable, or null if no such block is 2805 /// found. 2806 /// 2807 BasicBlock * 2808 ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 2809 // If the block has a unique predecessor, the predecessor must have 2810 // no other successors from which BB is reachable. 2811 if (BasicBlock *Pred = BB->getSinglePredecessor()) 2812 return Pred; 2813 2814 // A loop's header is defined to be a block that dominates the loop. 2815 // If the loop has a preheader, it must be a block that has exactly 2816 // one successor that can reach BB. This is slightly more strict 2817 // than necessary, but works if critical edges are split. 2818 if (Loop *L = LI.getLoopFor(BB)) 2819 return L->getLoopPreheader(); 2820 2821 return 0; 2822 } 2823 2824 /// executesAtLeastOnce - Test whether entry to the loop is protected by 2825 /// a conditional between LHS and RHS. 2826 bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned, 2827 bool trueWhenEqual, 2828 SCEV *LHS, SCEV *RHS) { 2829 BasicBlock *Preheader = L->getLoopPreheader(); 2830 BasicBlock *PreheaderDest = L->getHeader(); 2831 2832 // Starting at the preheader, climb up the predecessor chain, as long as 2833 // there are predecessors that can be found that have unique successors 2834 // leading to the original header. 2835 for (; Preheader; 2836 PreheaderDest = Preheader, 2837 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 2838 2839 BranchInst *LoopEntryPredicate = 2840 dyn_cast<BranchInst>(Preheader->getTerminator()); 2841 if (!LoopEntryPredicate || 2842 LoopEntryPredicate->isUnconditional()) 2843 continue; 2844 2845 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 2846 if (!ICI) continue; 2847 2848 // Now that we found a conditional branch that dominates the loop, check to 2849 // see if it is the comparison we are looking for. 2850 Value *PreCondLHS = ICI->getOperand(0); 2851 Value *PreCondRHS = ICI->getOperand(1); 2852 ICmpInst::Predicate Cond; 2853 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2854 Cond = ICI->getPredicate(); 2855 else 2856 Cond = ICI->getInversePredicate(); 2857 2858 switch (Cond) { 2859 case ICmpInst::ICMP_UGT: 2860 if (isSigned || trueWhenEqual) continue; 2861 std::swap(PreCondLHS, PreCondRHS); 2862 Cond = ICmpInst::ICMP_ULT; 2863 break; 2864 case ICmpInst::ICMP_SGT: 2865 if (!isSigned || trueWhenEqual) continue; 2866 std::swap(PreCondLHS, PreCondRHS); 2867 Cond = ICmpInst::ICMP_SLT; 2868 break; 2869 case ICmpInst::ICMP_ULT: 2870 if (isSigned || trueWhenEqual) continue; 2871 break; 2872 case ICmpInst::ICMP_SLT: 2873 if (!isSigned || trueWhenEqual) continue; 2874 break; 2875 case ICmpInst::ICMP_UGE: 2876 if (isSigned || !trueWhenEqual) continue; 2877 std::swap(PreCondLHS, PreCondRHS); 2878 Cond = ICmpInst::ICMP_ULE; 2879 break; 2880 case ICmpInst::ICMP_SGE: 2881 if (!isSigned || !trueWhenEqual) continue; 2882 std::swap(PreCondLHS, PreCondRHS); 2883 Cond = ICmpInst::ICMP_SLE; 2884 break; 2885 case ICmpInst::ICMP_ULE: 2886 if (isSigned || !trueWhenEqual) continue; 2887 break; 2888 case ICmpInst::ICMP_SLE: 2889 if (!isSigned || !trueWhenEqual) continue; 2890 break; 2891 default: 2892 continue; 2893 } 2894 2895 if (!PreCondLHS->getType()->isInteger()) continue; 2896 2897 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 2898 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 2899 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 2900 (LHS == SE.getNotSCEV(PreCondRHSSCEV) && 2901 RHS == SE.getNotSCEV(PreCondLHSSCEV))) 2902 return true; 2903 } 2904 2905 return false; 2906 } 2907 2908 /// potentialInfiniteLoop - Test whether the loop might jump over the exit value 2909 /// due to wrapping around 2^n. 2910 bool ScalarEvolutionsImpl::potentialInfiniteLoop(SCEV *Stride, SCEV *RHS, 2911 bool isSigned, bool trueWhenEqual) { 2912 // Return true when the distance from RHS to maxint > Stride. 2913 2914 SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride); 2915 if (!SC) 2916 return true; 2917 2918 if (SC->getValue()->isZero()) 2919 return true; 2920 if (!trueWhenEqual && SC->getValue()->isOne()) 2921 return false; 2922 2923 SCEVConstant *R = dyn_cast<SCEVConstant>(RHS); 2924 if (!R) 2925 return true; 2926 2927 if (isSigned) 2928 return true; // XXX: because we don't have an sdiv scev. 2929 2930 // If negative, it wraps around every iteration, but we don't care about that. 2931 APInt S = SC->getValue()->getValue().abs(); 2932 2933 APInt Dist = APInt::getMaxValue(R->getValue()->getBitWidth()) - 2934 R->getValue()->getValue(); 2935 2936 if (trueWhenEqual) 2937 return !S.ult(Dist); 2938 else 2939 return !S.ule(Dist); 2940 } 2941 2942 /// HowManyLessThans - Return the number of times a backedge containing the 2943 /// specified less-than comparison will execute. If not computable, return 2944 /// UnknownValue. 2945 SCEVHandle ScalarEvolutionsImpl:: 2946 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 2947 bool isSigned, bool trueWhenEqual) { 2948 // Only handle: "ADDREC < LoopInvariant". 2949 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2950 2951 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2952 if (!AddRec || AddRec->getLoop() != L) 2953 return UnknownValue; 2954 2955 if (AddRec->isAffine()) { 2956 SCEVHandle Stride = AddRec->getOperand(1); 2957 if (potentialInfiniteLoop(Stride, RHS, isSigned, trueWhenEqual)) 2958 return UnknownValue; 2959 2960 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 2961 // m. So, we count the number of iterations in which {n,+,s} < m is true. 2962 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 2963 // treat m-n as signed nor unsigned due to overflow possibility. 2964 2965 // First, we get the value of the LHS in the first iteration: n 2966 SCEVHandle Start = AddRec->getOperand(0); 2967 2968 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 2969 2970 // Assuming that the loop will run at least once, we know that it will 2971 // run (m-n)/s times. 2972 SCEVHandle End = RHS; 2973 2974 if (!executesAtLeastOnce(L, isSigned, trueWhenEqual, 2975 SE.getMinusSCEV(Start, One), RHS)) { 2976 // If not, we get the value of the LHS in the first iteration in which 2977 // the above condition doesn't hold. This equals to max(m,n). 2978 End = isSigned ? SE.getSMaxExpr(RHS, Start) 2979 : SE.getUMaxExpr(RHS, Start); 2980 } 2981 2982 // If the expression is less-than-or-equal to, we need to extend the 2983 // loop by one iteration. 2984 // 2985 // The loop won't actually run (m-n)/s times because the loop iterations 2986 // might not divide cleanly. For example, if you have {2,+,5} u< 10 the 2987 // division would equal one, but the loop runs twice putting the 2988 // induction variable at 12. 2989 2990 if (!trueWhenEqual) 2991 // (Stride - 1) is correct only because we know it's unsigned. 2992 // What we really want is to decrease the magnitude of Stride by one. 2993 Start = SE.getMinusSCEV(Start, SE.getMinusSCEV(Stride, One)); 2994 else 2995 Start = SE.getMinusSCEV(Start, Stride); 2996 2997 // Finally, we subtract these two values to get the number of times the 2998 // backedge is executed: max(m,n)-n. 2999 return SE.getUDivExpr(SE.getMinusSCEV(End, Start), Stride); 3000 } 3001 3002 return UnknownValue; 3003 } 3004 3005 /// getNumIterationsInRange - Return the number of iterations of this loop that 3006 /// produce values in the specified constant range. Another way of looking at 3007 /// this is that it returns the first iteration number where the value is not in 3008 /// the condition, thus computing the exit count. If the iteration count can't 3009 /// be computed, an instance of SCEVCouldNotCompute is returned. 3010 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3011 ScalarEvolution &SE) const { 3012 if (Range.isFullSet()) // Infinite loop. 3013 return new SCEVCouldNotCompute(); 3014 3015 // If the start is a non-zero constant, shift the range to simplify things. 3016 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3017 if (!SC->getValue()->isZero()) { 3018 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3019 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3020 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3021 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 3022 return ShiftedAddRec->getNumIterationsInRange( 3023 Range.subtract(SC->getValue()->getValue()), SE); 3024 // This is strange and shouldn't happen. 3025 return new SCEVCouldNotCompute(); 3026 } 3027 3028 // The only time we can solve this is when we have all constant indices. 3029 // Otherwise, we cannot determine the overflow conditions. 3030 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3031 if (!isa<SCEVConstant>(getOperand(i))) 3032 return new SCEVCouldNotCompute(); 3033 3034 3035 // Okay at this point we know that all elements of the chrec are constants and 3036 // that the start element is zero. 3037 3038 // First check to see if the range contains zero. If not, the first 3039 // iteration exits. 3040 if (!Range.contains(APInt(getBitWidth(),0))) 3041 return SE.getConstant(ConstantInt::get(getType(),0)); 3042 3043 if (isAffine()) { 3044 // If this is an affine expression then we have this situation: 3045 // Solve {0,+,A} in Range === Ax in Range 3046 3047 // We know that zero is in the range. If A is positive then we know that 3048 // the upper value of the range must be the first possible exit value. 3049 // If A is negative then the lower of the range is the last possible loop 3050 // value. Also note that we already checked for a full range. 3051 APInt One(getBitWidth(),1); 3052 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3053 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3054 3055 // The exit value should be (End+A)/A. 3056 APInt ExitVal = (End + A).udiv(A); 3057 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3058 3059 // Evaluate at the exit value. If we really did fall out of the valid 3060 // range, then we computed our trip count, otherwise wrap around or other 3061 // things must have happened. 3062 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3063 if (Range.contains(Val->getValue())) 3064 return new SCEVCouldNotCompute(); // Something strange happened 3065 3066 // Ensure that the previous value is in the range. This is a sanity check. 3067 assert(Range.contains( 3068 EvaluateConstantChrecAtConstant(this, 3069 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3070 "Linear scev computation is off in a bad way!"); 3071 return SE.getConstant(ExitValue); 3072 } else if (isQuadratic()) { 3073 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3074 // quadratic equation to solve it. To do this, we must frame our problem in 3075 // terms of figuring out when zero is crossed, instead of when 3076 // Range.getUpper() is crossed. 3077 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3078 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3079 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3080 3081 // Next, solve the constructed addrec 3082 std::pair<SCEVHandle,SCEVHandle> Roots = 3083 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3084 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3085 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3086 if (R1) { 3087 // Pick the smallest positive root value. 3088 if (ConstantInt *CB = 3089 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3090 R1->getValue(), R2->getValue()))) { 3091 if (CB->getZExtValue() == false) 3092 std::swap(R1, R2); // R1 is the minimum root now. 3093 3094 // Make sure the root is not off by one. The returned iteration should 3095 // not be in the range, but the previous one should be. When solving 3096 // for "X*X < 5", for example, we should not return a root of 2. 3097 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3098 R1->getValue(), 3099 SE); 3100 if (Range.contains(R1Val->getValue())) { 3101 // The next iteration must be out of the range... 3102 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3103 3104 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3105 if (!Range.contains(R1Val->getValue())) 3106 return SE.getConstant(NextVal); 3107 return new SCEVCouldNotCompute(); // Something strange happened 3108 } 3109 3110 // If R1 was not in the range, then it is a good return value. Make 3111 // sure that R1-1 WAS in the range though, just in case. 3112 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3113 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3114 if (Range.contains(R1Val->getValue())) 3115 return R1; 3116 return new SCEVCouldNotCompute(); // Something strange happened 3117 } 3118 } 3119 } 3120 3121 return new SCEVCouldNotCompute(); 3122 } 3123 3124 3125 3126 //===----------------------------------------------------------------------===// 3127 // ScalarEvolution Class Implementation 3128 //===----------------------------------------------------------------------===// 3129 3130 bool ScalarEvolution::runOnFunction(Function &F) { 3131 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>()); 3132 return false; 3133 } 3134 3135 void ScalarEvolution::releaseMemory() { 3136 delete (ScalarEvolutionsImpl*)Impl; 3137 Impl = 0; 3138 } 3139 3140 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3141 AU.setPreservesAll(); 3142 AU.addRequiredTransitive<LoopInfo>(); 3143 } 3144 3145 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 3146 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 3147 } 3148 3149 /// hasSCEV - Return true if the SCEV for this value has already been 3150 /// computed. 3151 bool ScalarEvolution::hasSCEV(Value *V) const { 3152 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 3153 } 3154 3155 3156 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 3157 /// the specified value. 3158 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 3159 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 3160 } 3161 3162 3163 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 3164 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 3165 } 3166 3167 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 3168 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 3169 } 3170 3171 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 3172 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 3173 } 3174 3175 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 3176 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 3177 } 3178 3179 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 3180 const Loop *L) { 3181 // Print all inner loops first 3182 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3183 PrintLoopInfo(OS, SE, *I); 3184 3185 OS << "Loop " << L->getHeader()->getName() << ": "; 3186 3187 SmallVector<BasicBlock*, 8> ExitBlocks; 3188 L->getExitBlocks(ExitBlocks); 3189 if (ExitBlocks.size() != 1) 3190 OS << "<multiple exits> "; 3191 3192 if (SE->hasLoopInvariantIterationCount(L)) { 3193 OS << *SE->getIterationCount(L) << " iterations! "; 3194 } else { 3195 OS << "Unpredictable iteration count. "; 3196 } 3197 3198 OS << "\n"; 3199 } 3200 3201 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 3202 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 3203 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 3204 3205 OS << "Classifying expressions for: " << F.getName() << "\n"; 3206 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3207 if (I->getType()->isInteger()) { 3208 OS << *I; 3209 OS << " --> "; 3210 SCEVHandle SV = getSCEV(&*I); 3211 SV->print(OS); 3212 OS << "\t\t"; 3213 3214 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 3215 OS << "Exits: "; 3216 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 3217 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3218 OS << "<<Unknown>>"; 3219 } else { 3220 OS << *ExitValue; 3221 } 3222 } 3223 3224 3225 OS << "\n"; 3226 } 3227 3228 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 3229 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 3230 PrintLoopInfo(OS, this, *I); 3231 } 3232