1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/Target/TargetData.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ConstantRange.h" 77 #include "llvm/Support/GetElementPtrTypeIterator.h" 78 #include "llvm/Support/InstIterator.h" 79 #include "llvm/Support/ManagedStatic.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/ADT/Statistic.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include <algorithm> 85 using namespace llvm; 86 87 STATISTIC(NumArrayLenItCounts, 88 "Number of trip counts computed with array length"); 89 STATISTIC(NumTripCountsComputed, 90 "Number of loops with predictable loop counts"); 91 STATISTIC(NumTripCountsNotComputed, 92 "Number of loops without predictable loop counts"); 93 STATISTIC(NumBruteForceTripCountsComputed, 94 "Number of loops with trip counts computed by force"); 95 96 static cl::opt<unsigned> 97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 98 cl::desc("Maximum number of iterations SCEV will " 99 "symbolically execute a constant derived loop"), 100 cl::init(100)); 101 102 static RegisterPass<ScalarEvolution> 103 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 104 char ScalarEvolution::ID = 0; 105 106 //===----------------------------------------------------------------------===// 107 // SCEV class definitions 108 //===----------------------------------------------------------------------===// 109 110 //===----------------------------------------------------------------------===// 111 // Implementation of the SCEV class. 112 // 113 SCEV::~SCEV() {} 114 void SCEV::dump() const { 115 print(errs()); 116 errs() << '\n'; 117 } 118 119 void SCEV::print(std::ostream &o) const { 120 raw_os_ostream OS(o); 121 print(OS); 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 bool SCEV::isOne() const { 131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 132 return SC->getValue()->isOne(); 133 return false; 134 } 135 136 SCEVCouldNotCompute::SCEVCouldNotCompute(const ScalarEvolution* p) : 137 SCEV(scCouldNotCompute, p) {} 138 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc, 158 ScalarEvolution &SE) const { 159 return this; 160 } 161 162 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 163 OS << "***COULDNOTCOMPUTE***"; 164 } 165 166 bool SCEVCouldNotCompute::classof(const SCEV *S) { 167 return S->getSCEVType() == scCouldNotCompute; 168 } 169 170 171 // SCEVConstants - Only allow the creation of one SCEVConstant for any 172 // particular value. Don't use a SCEVHandle here, or else the object will 173 // never be deleted! 174 175 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 176 SCEVConstant *&R = SCEVConstants[V]; 177 if (R == 0) R = new SCEVConstant(V, this); 178 return R; 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 182 return getConstant(ConstantInt::get(Val)); 183 } 184 185 SCEVHandle 186 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 187 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 188 } 189 190 const Type *SCEVConstant::getType() const { return V->getType(); } 191 192 void SCEVConstant::print(raw_ostream &OS) const { 193 WriteAsOperand(OS, V, false); 194 } 195 196 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 197 const SCEVHandle &op, const Type *ty, 198 const ScalarEvolution* p) 199 : SCEV(SCEVTy, p), Op(op), Ty(ty) {} 200 201 SCEVCastExpr::~SCEVCastExpr() {} 202 203 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 204 return Op->dominates(BB, DT); 205 } 206 207 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 208 // particular input. Don't use a SCEVHandle here, or else the object will 209 // never be deleted! 210 211 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty, 212 const ScalarEvolution* p) 213 : SCEVCastExpr(scTruncate, op, ty, p) { 214 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 215 (Ty->isInteger() || isa<PointerType>(Ty)) && 216 "Cannot truncate non-integer value!"); 217 } 218 219 220 void SCEVTruncateExpr::print(raw_ostream &OS) const { 221 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 222 } 223 224 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 225 // particular input. Don't use a SCEVHandle here, or else the object will never 226 // be deleted! 227 228 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty, 229 const ScalarEvolution* p) 230 : SCEVCastExpr(scZeroExtend, op, ty, p) { 231 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 232 (Ty->isInteger() || isa<PointerType>(Ty)) && 233 "Cannot zero extend non-integer value!"); 234 } 235 236 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 237 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 238 } 239 240 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 241 // particular input. Don't use a SCEVHandle here, or else the object will never 242 // be deleted! 243 244 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty, 245 const ScalarEvolution* p) 246 : SCEVCastExpr(scSignExtend, op, ty, p) { 247 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 248 (Ty->isInteger() || isa<PointerType>(Ty)) && 249 "Cannot sign extend non-integer value!"); 250 } 251 252 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 253 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 254 } 255 256 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 257 // particular input. Don't use a SCEVHandle here, or else the object will never 258 // be deleted! 259 260 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 261 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 262 const char *OpStr = getOperationStr(); 263 OS << "(" << *Operands[0]; 264 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 265 OS << OpStr << *Operands[i]; 266 OS << ")"; 267 } 268 269 SCEVHandle SCEVCommutativeExpr:: 270 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 271 const SCEVHandle &Conc, 272 ScalarEvolution &SE) const { 273 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 274 SCEVHandle H = 275 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 276 if (H != getOperand(i)) { 277 SmallVector<SCEVHandle, 8> NewOps; 278 NewOps.reserve(getNumOperands()); 279 for (unsigned j = 0; j != i; ++j) 280 NewOps.push_back(getOperand(j)); 281 NewOps.push_back(H); 282 for (++i; i != e; ++i) 283 NewOps.push_back(getOperand(i)-> 284 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 285 286 if (isa<SCEVAddExpr>(this)) 287 return SE.getAddExpr(NewOps); 288 else if (isa<SCEVMulExpr>(this)) 289 return SE.getMulExpr(NewOps); 290 else if (isa<SCEVSMaxExpr>(this)) 291 return SE.getSMaxExpr(NewOps); 292 else if (isa<SCEVUMaxExpr>(this)) 293 return SE.getUMaxExpr(NewOps); 294 else 295 assert(0 && "Unknown commutative expr!"); 296 } 297 } 298 return this; 299 } 300 301 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 302 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 303 if (!getOperand(i)->dominates(BB, DT)) 304 return false; 305 } 306 return true; 307 } 308 309 310 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 311 // input. Don't use a SCEVHandle here, or else the object will never be 312 // deleted! 313 314 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 315 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 316 } 317 318 void SCEVUDivExpr::print(raw_ostream &OS) const { 319 OS << "(" << *LHS << " /u " << *RHS << ")"; 320 } 321 322 const Type *SCEVUDivExpr::getType() const { 323 // In most cases the types of LHS and RHS will be the same, but in some 324 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 325 // depend on the type for correctness, but handling types carefully can 326 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 327 // a pointer type than the RHS, so use the RHS' type here. 328 return RHS->getType(); 329 } 330 331 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 332 // particular input. Don't use a SCEVHandle here, or else the object will never 333 // be deleted! 334 335 SCEVHandle SCEVAddRecExpr:: 336 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 337 const SCEVHandle &Conc, 338 ScalarEvolution &SE) const { 339 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 340 SCEVHandle H = 341 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 342 if (H != getOperand(i)) { 343 SmallVector<SCEVHandle, 8> NewOps; 344 NewOps.reserve(getNumOperands()); 345 for (unsigned j = 0; j != i; ++j) 346 NewOps.push_back(getOperand(j)); 347 NewOps.push_back(H); 348 for (++i; i != e; ++i) 349 NewOps.push_back(getOperand(i)-> 350 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 351 352 return SE.getAddRecExpr(NewOps, L); 353 } 354 } 355 return this; 356 } 357 358 359 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 360 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 361 // contain L and if the start is invariant. 362 // Add recurrences are never invariant in the function-body (null loop). 363 return QueryLoop && 364 !QueryLoop->contains(L->getHeader()) && 365 getOperand(0)->isLoopInvariant(QueryLoop); 366 } 367 368 369 void SCEVAddRecExpr::print(raw_ostream &OS) const { 370 OS << "{" << *Operands[0]; 371 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 372 OS << ",+," << *Operands[i]; 373 OS << "}<" << L->getHeader()->getName() + ">"; 374 } 375 376 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 377 // value. Don't use a SCEVHandle here, or else the object will never be 378 // deleted! 379 380 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 381 // All non-instruction values are loop invariant. All instructions are loop 382 // invariant if they are not contained in the specified loop. 383 // Instructions are never considered invariant in the function body 384 // (null loop) because they are defined within the "loop". 385 if (Instruction *I = dyn_cast<Instruction>(V)) 386 return L && !L->contains(I->getParent()); 387 return true; 388 } 389 390 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 391 if (Instruction *I = dyn_cast<Instruction>(getValue())) 392 return DT->dominates(I->getParent(), BB); 393 return true; 394 } 395 396 const Type *SCEVUnknown::getType() const { 397 return V->getType(); 398 } 399 400 void SCEVUnknown::print(raw_ostream &OS) const { 401 WriteAsOperand(OS, V, false); 402 } 403 404 //===----------------------------------------------------------------------===// 405 // SCEV Utilities 406 //===----------------------------------------------------------------------===// 407 408 namespace { 409 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 410 /// than the complexity of the RHS. This comparator is used to canonicalize 411 /// expressions. 412 class VISIBILITY_HIDDEN SCEVComplexityCompare { 413 LoopInfo *LI; 414 public: 415 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 416 417 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 418 // Primarily, sort the SCEVs by their getSCEVType(). 419 if (LHS->getSCEVType() != RHS->getSCEVType()) 420 return LHS->getSCEVType() < RHS->getSCEVType(); 421 422 // Aside from the getSCEVType() ordering, the particular ordering 423 // isn't very important except that it's beneficial to be consistent, 424 // so that (a + b) and (b + a) don't end up as different expressions. 425 426 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 427 // not as complete as it could be. 428 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 429 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 430 431 // Order pointer values after integer values. This helps SCEVExpander 432 // form GEPs. 433 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 434 return false; 435 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 436 return true; 437 438 // Compare getValueID values. 439 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 440 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 441 442 // Sort arguments by their position. 443 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 444 const Argument *RA = cast<Argument>(RU->getValue()); 445 return LA->getArgNo() < RA->getArgNo(); 446 } 447 448 // For instructions, compare their loop depth, and their opcode. 449 // This is pretty loose. 450 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 451 Instruction *RV = cast<Instruction>(RU->getValue()); 452 453 // Compare loop depths. 454 if (LI->getLoopDepth(LV->getParent()) != 455 LI->getLoopDepth(RV->getParent())) 456 return LI->getLoopDepth(LV->getParent()) < 457 LI->getLoopDepth(RV->getParent()); 458 459 // Compare opcodes. 460 if (LV->getOpcode() != RV->getOpcode()) 461 return LV->getOpcode() < RV->getOpcode(); 462 463 // Compare the number of operands. 464 if (LV->getNumOperands() != RV->getNumOperands()) 465 return LV->getNumOperands() < RV->getNumOperands(); 466 } 467 468 return false; 469 } 470 471 // Compare constant values. 472 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 473 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 474 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 475 } 476 477 // Compare addrec loop depths. 478 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 479 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 480 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 481 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 482 } 483 484 // Lexicographically compare n-ary expressions. 485 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 486 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 487 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 488 if (i >= RC->getNumOperands()) 489 return false; 490 if (operator()(LC->getOperand(i), RC->getOperand(i))) 491 return true; 492 if (operator()(RC->getOperand(i), LC->getOperand(i))) 493 return false; 494 } 495 return LC->getNumOperands() < RC->getNumOperands(); 496 } 497 498 // Lexicographically compare udiv expressions. 499 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 500 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 501 if (operator()(LC->getLHS(), RC->getLHS())) 502 return true; 503 if (operator()(RC->getLHS(), LC->getLHS())) 504 return false; 505 if (operator()(LC->getRHS(), RC->getRHS())) 506 return true; 507 if (operator()(RC->getRHS(), LC->getRHS())) 508 return false; 509 return false; 510 } 511 512 // Compare cast expressions by operand. 513 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 514 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 515 return operator()(LC->getOperand(), RC->getOperand()); 516 } 517 518 assert(0 && "Unknown SCEV kind!"); 519 return false; 520 } 521 }; 522 } 523 524 /// GroupByComplexity - Given a list of SCEV objects, order them by their 525 /// complexity, and group objects of the same complexity together by value. 526 /// When this routine is finished, we know that any duplicates in the vector are 527 /// consecutive and that complexity is monotonically increasing. 528 /// 529 /// Note that we go take special precautions to ensure that we get determinstic 530 /// results from this routine. In other words, we don't want the results of 531 /// this to depend on where the addresses of various SCEV objects happened to 532 /// land in memory. 533 /// 534 static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, 535 LoopInfo *LI) { 536 if (Ops.size() < 2) return; // Noop 537 if (Ops.size() == 2) { 538 // This is the common case, which also happens to be trivially simple. 539 // Special case it. 540 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 541 std::swap(Ops[0], Ops[1]); 542 return; 543 } 544 545 // Do the rough sort by complexity. 546 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 547 548 // Now that we are sorted by complexity, group elements of the same 549 // complexity. Note that this is, at worst, N^2, but the vector is likely to 550 // be extremely short in practice. Note that we take this approach because we 551 // do not want to depend on the addresses of the objects we are grouping. 552 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 553 const SCEV *S = Ops[i]; 554 unsigned Complexity = S->getSCEVType(); 555 556 // If there are any objects of the same complexity and same value as this 557 // one, group them. 558 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 559 if (Ops[j] == S) { // Found a duplicate. 560 // Move it to immediately after i'th element. 561 std::swap(Ops[i+1], Ops[j]); 562 ++i; // no need to rescan it. 563 if (i == e-2) return; // Done! 564 } 565 } 566 } 567 } 568 569 570 571 //===----------------------------------------------------------------------===// 572 // Simple SCEV method implementations 573 //===----------------------------------------------------------------------===// 574 575 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 576 /// Assume, K > 0. 577 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 578 ScalarEvolution &SE, 579 const Type* ResultTy) { 580 // Handle the simplest case efficiently. 581 if (K == 1) 582 return SE.getTruncateOrZeroExtend(It, ResultTy); 583 584 // We are using the following formula for BC(It, K): 585 // 586 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 587 // 588 // Suppose, W is the bitwidth of the return value. We must be prepared for 589 // overflow. Hence, we must assure that the result of our computation is 590 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 591 // safe in modular arithmetic. 592 // 593 // However, this code doesn't use exactly that formula; the formula it uses 594 // is something like the following, where T is the number of factors of 2 in 595 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 596 // exponentiation: 597 // 598 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 599 // 600 // This formula is trivially equivalent to the previous formula. However, 601 // this formula can be implemented much more efficiently. The trick is that 602 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 603 // arithmetic. To do exact division in modular arithmetic, all we have 604 // to do is multiply by the inverse. Therefore, this step can be done at 605 // width W. 606 // 607 // The next issue is how to safely do the division by 2^T. The way this 608 // is done is by doing the multiplication step at a width of at least W + T 609 // bits. This way, the bottom W+T bits of the product are accurate. Then, 610 // when we perform the division by 2^T (which is equivalent to a right shift 611 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 612 // truncated out after the division by 2^T. 613 // 614 // In comparison to just directly using the first formula, this technique 615 // is much more efficient; using the first formula requires W * K bits, 616 // but this formula less than W + K bits. Also, the first formula requires 617 // a division step, whereas this formula only requires multiplies and shifts. 618 // 619 // It doesn't matter whether the subtraction step is done in the calculation 620 // width or the input iteration count's width; if the subtraction overflows, 621 // the result must be zero anyway. We prefer here to do it in the width of 622 // the induction variable because it helps a lot for certain cases; CodeGen 623 // isn't smart enough to ignore the overflow, which leads to much less 624 // efficient code if the width of the subtraction is wider than the native 625 // register width. 626 // 627 // (It's possible to not widen at all by pulling out factors of 2 before 628 // the multiplication; for example, K=2 can be calculated as 629 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 630 // extra arithmetic, so it's not an obvious win, and it gets 631 // much more complicated for K > 3.) 632 633 // Protection from insane SCEVs; this bound is conservative, 634 // but it probably doesn't matter. 635 if (K > 1000) 636 return SE.getCouldNotCompute(); 637 638 unsigned W = SE.getTypeSizeInBits(ResultTy); 639 640 // Calculate K! / 2^T and T; we divide out the factors of two before 641 // multiplying for calculating K! / 2^T to avoid overflow. 642 // Other overflow doesn't matter because we only care about the bottom 643 // W bits of the result. 644 APInt OddFactorial(W, 1); 645 unsigned T = 1; 646 for (unsigned i = 3; i <= K; ++i) { 647 APInt Mult(W, i); 648 unsigned TwoFactors = Mult.countTrailingZeros(); 649 T += TwoFactors; 650 Mult = Mult.lshr(TwoFactors); 651 OddFactorial *= Mult; 652 } 653 654 // We need at least W + T bits for the multiplication step 655 unsigned CalculationBits = W + T; 656 657 // Calcuate 2^T, at width T+W. 658 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 659 660 // Calculate the multiplicative inverse of K! / 2^T; 661 // this multiplication factor will perform the exact division by 662 // K! / 2^T. 663 APInt Mod = APInt::getSignedMinValue(W+1); 664 APInt MultiplyFactor = OddFactorial.zext(W+1); 665 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 666 MultiplyFactor = MultiplyFactor.trunc(W); 667 668 // Calculate the product, at width T+W 669 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 670 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 671 for (unsigned i = 1; i != K; ++i) { 672 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 673 Dividend = SE.getMulExpr(Dividend, 674 SE.getTruncateOrZeroExtend(S, CalculationTy)); 675 } 676 677 // Divide by 2^T 678 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 679 680 // Truncate the result, and divide by K! / 2^T. 681 682 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 683 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 684 } 685 686 /// evaluateAtIteration - Return the value of this chain of recurrences at 687 /// the specified iteration number. We can evaluate this recurrence by 688 /// multiplying each element in the chain by the binomial coefficient 689 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 690 /// 691 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 692 /// 693 /// where BC(It, k) stands for binomial coefficient. 694 /// 695 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 696 ScalarEvolution &SE) const { 697 SCEVHandle Result = getStart(); 698 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 699 // The computation is correct in the face of overflow provided that the 700 // multiplication is performed _after_ the evaluation of the binomial 701 // coefficient. 702 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 703 if (isa<SCEVCouldNotCompute>(Coeff)) 704 return Coeff; 705 706 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 707 } 708 return Result; 709 } 710 711 //===----------------------------------------------------------------------===// 712 // SCEV Expression folder implementations 713 //===----------------------------------------------------------------------===// 714 715 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 716 const Type *Ty) { 717 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 718 "This is not a truncating conversion!"); 719 assert(isSCEVable(Ty) && 720 "This is not a conversion to a SCEVable type!"); 721 Ty = getEffectiveSCEVType(Ty); 722 723 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 724 return getUnknown( 725 ConstantExpr::getTrunc(SC->getValue(), Ty)); 726 727 // trunc(trunc(x)) --> trunc(x) 728 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 729 return getTruncateExpr(ST->getOperand(), Ty); 730 731 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 732 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 733 return getTruncateOrSignExtend(SS->getOperand(), Ty); 734 735 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 736 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 737 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 738 739 // If the input value is a chrec scev, truncate the chrec's operands. 740 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 741 SmallVector<SCEVHandle, 4> Operands; 742 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 743 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 744 return getAddRecExpr(Operands, AddRec->getLoop()); 745 } 746 747 SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)]; 748 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty, this); 749 return Result; 750 } 751 752 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 753 const Type *Ty) { 754 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 755 "This is not an extending conversion!"); 756 assert(isSCEVable(Ty) && 757 "This is not a conversion to a SCEVable type!"); 758 Ty = getEffectiveSCEVType(Ty); 759 760 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 761 const Type *IntTy = getEffectiveSCEVType(Ty); 762 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 763 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 764 return getUnknown(C); 765 } 766 767 // zext(zext(x)) --> zext(x) 768 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 769 return getZeroExtendExpr(SZ->getOperand(), Ty); 770 771 // If the input value is a chrec scev, and we can prove that the value 772 // did not overflow the old, smaller, value, we can zero extend all of the 773 // operands (often constants). This allows analysis of something like 774 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 775 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 776 if (AR->isAffine()) { 777 // Check whether the backedge-taken count is SCEVCouldNotCompute. 778 // Note that this serves two purposes: It filters out loops that are 779 // simply not analyzable, and it covers the case where this code is 780 // being called from within backedge-taken count analysis, such that 781 // attempting to ask for the backedge-taken count would likely result 782 // in infinite recursion. In the later case, the analysis code will 783 // cope with a conservative value, and it will take care to purge 784 // that value once it has finished. 785 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 786 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 787 // Manually compute the final value for AR, checking for 788 // overflow. 789 SCEVHandle Start = AR->getStart(); 790 SCEVHandle Step = AR->getStepRecurrence(*this); 791 792 // Check whether the backedge-taken count can be losslessly casted to 793 // the addrec's type. The count is always unsigned. 794 SCEVHandle CastedMaxBECount = 795 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 796 SCEVHandle RecastedMaxBECount = 797 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 798 if (MaxBECount == RecastedMaxBECount) { 799 const Type *WideTy = 800 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 801 // Check whether Start+Step*MaxBECount has no unsigned overflow. 802 SCEVHandle ZMul = 803 getMulExpr(CastedMaxBECount, 804 getTruncateOrZeroExtend(Step, Start->getType())); 805 SCEVHandle Add = getAddExpr(Start, ZMul); 806 SCEVHandle OperandExtendedAdd = 807 getAddExpr(getZeroExtendExpr(Start, WideTy), 808 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 809 getZeroExtendExpr(Step, WideTy))); 810 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 811 // Return the expression with the addrec on the outside. 812 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 813 getZeroExtendExpr(Step, Ty), 814 AR->getLoop()); 815 816 // Similar to above, only this time treat the step value as signed. 817 // This covers loops that count down. 818 SCEVHandle SMul = 819 getMulExpr(CastedMaxBECount, 820 getTruncateOrSignExtend(Step, Start->getType())); 821 Add = getAddExpr(Start, SMul); 822 OperandExtendedAdd = 823 getAddExpr(getZeroExtendExpr(Start, WideTy), 824 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 825 getSignExtendExpr(Step, WideTy))); 826 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 827 // Return the expression with the addrec on the outside. 828 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 829 getSignExtendExpr(Step, Ty), 830 AR->getLoop()); 831 } 832 } 833 } 834 835 SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)]; 836 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty, this); 837 return Result; 838 } 839 840 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 841 const Type *Ty) { 842 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 843 "This is not an extending conversion!"); 844 assert(isSCEVable(Ty) && 845 "This is not a conversion to a SCEVable type!"); 846 Ty = getEffectiveSCEVType(Ty); 847 848 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 849 const Type *IntTy = getEffectiveSCEVType(Ty); 850 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 851 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 852 return getUnknown(C); 853 } 854 855 // sext(sext(x)) --> sext(x) 856 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 857 return getSignExtendExpr(SS->getOperand(), Ty); 858 859 // If the input value is a chrec scev, and we can prove that the value 860 // did not overflow the old, smaller, value, we can sign extend all of the 861 // operands (often constants). This allows analysis of something like 862 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 863 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 864 if (AR->isAffine()) { 865 // Check whether the backedge-taken count is SCEVCouldNotCompute. 866 // Note that this serves two purposes: It filters out loops that are 867 // simply not analyzable, and it covers the case where this code is 868 // being called from within backedge-taken count analysis, such that 869 // attempting to ask for the backedge-taken count would likely result 870 // in infinite recursion. In the later case, the analysis code will 871 // cope with a conservative value, and it will take care to purge 872 // that value once it has finished. 873 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 874 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 875 // Manually compute the final value for AR, checking for 876 // overflow. 877 SCEVHandle Start = AR->getStart(); 878 SCEVHandle Step = AR->getStepRecurrence(*this); 879 880 // Check whether the backedge-taken count can be losslessly casted to 881 // the addrec's type. The count is always unsigned. 882 SCEVHandle CastedMaxBECount = 883 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 884 SCEVHandle RecastedMaxBECount = 885 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 886 if (MaxBECount == RecastedMaxBECount) { 887 const Type *WideTy = 888 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 889 // Check whether Start+Step*MaxBECount has no signed overflow. 890 SCEVHandle SMul = 891 getMulExpr(CastedMaxBECount, 892 getTruncateOrSignExtend(Step, Start->getType())); 893 SCEVHandle Add = getAddExpr(Start, SMul); 894 SCEVHandle OperandExtendedAdd = 895 getAddExpr(getSignExtendExpr(Start, WideTy), 896 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 897 getSignExtendExpr(Step, WideTy))); 898 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 899 // Return the expression with the addrec on the outside. 900 return getAddRecExpr(getSignExtendExpr(Start, Ty), 901 getSignExtendExpr(Step, Ty), 902 AR->getLoop()); 903 } 904 } 905 } 906 907 SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)]; 908 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty, this); 909 return Result; 910 } 911 912 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 913 /// unspecified bits out to the given type. 914 /// 915 SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, 916 const Type *Ty) { 917 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 918 "This is not an extending conversion!"); 919 assert(isSCEVable(Ty) && 920 "This is not a conversion to a SCEVable type!"); 921 Ty = getEffectiveSCEVType(Ty); 922 923 // Sign-extend negative constants. 924 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 925 if (SC->getValue()->getValue().isNegative()) 926 return getSignExtendExpr(Op, Ty); 927 928 // Peel off a truncate cast. 929 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 930 SCEVHandle NewOp = T->getOperand(); 931 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 932 return getAnyExtendExpr(NewOp, Ty); 933 return getTruncateOrNoop(NewOp, Ty); 934 } 935 936 // Next try a zext cast. If the cast is folded, use it. 937 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty); 938 if (!isa<SCEVZeroExtendExpr>(ZExt)) 939 return ZExt; 940 941 // Next try a sext cast. If the cast is folded, use it. 942 SCEVHandle SExt = getSignExtendExpr(Op, Ty); 943 if (!isa<SCEVSignExtendExpr>(SExt)) 944 return SExt; 945 946 // If the expression is obviously signed, use the sext cast value. 947 if (isa<SCEVSMaxExpr>(Op)) 948 return SExt; 949 950 // Absent any other information, use the zext cast value. 951 return ZExt; 952 } 953 954 /// CollectAddOperandsWithScales - Process the given Ops list, which is 955 /// a list of operands to be added under the given scale, update the given 956 /// map. This is a helper function for getAddRecExpr. As an example of 957 /// what it does, given a sequence of operands that would form an add 958 /// expression like this: 959 /// 960 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 961 /// 962 /// where A and B are constants, update the map with these values: 963 /// 964 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 965 /// 966 /// and add 13 + A*B*29 to AccumulatedConstant. 967 /// This will allow getAddRecExpr to produce this: 968 /// 969 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 970 /// 971 /// This form often exposes folding opportunities that are hidden in 972 /// the original operand list. 973 /// 974 /// Return true iff it appears that any interesting folding opportunities 975 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 976 /// the common case where no interesting opportunities are present, and 977 /// is also used as a check to avoid infinite recursion. 978 /// 979 static bool 980 CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, 981 SmallVector<SCEVHandle, 8> &NewOps, 982 APInt &AccumulatedConstant, 983 const SmallVectorImpl<SCEVHandle> &Ops, 984 const APInt &Scale, 985 ScalarEvolution &SE) { 986 bool Interesting = false; 987 988 // Iterate over the add operands. 989 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 990 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 991 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 992 APInt NewScale = 993 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 994 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 995 // A multiplication of a constant with another add; recurse. 996 Interesting |= 997 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 998 cast<SCEVAddExpr>(Mul->getOperand(1)) 999 ->getOperands(), 1000 NewScale, SE); 1001 } else { 1002 // A multiplication of a constant with some other value. Update 1003 // the map. 1004 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1005 SCEVHandle Key = SE.getMulExpr(MulOps); 1006 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1007 M.insert(std::make_pair(Key, APInt())); 1008 if (Pair.second) { 1009 Pair.first->second = NewScale; 1010 NewOps.push_back(Pair.first->first); 1011 } else { 1012 Pair.first->second += NewScale; 1013 // The map already had an entry for this value, which may indicate 1014 // a folding opportunity. 1015 Interesting = true; 1016 } 1017 } 1018 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1019 // Pull a buried constant out to the outside. 1020 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1021 Interesting = true; 1022 AccumulatedConstant += Scale * C->getValue()->getValue(); 1023 } else { 1024 // An ordinary operand. Update the map. 1025 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1026 M.insert(std::make_pair(Ops[i], APInt())); 1027 if (Pair.second) { 1028 Pair.first->second = Scale; 1029 NewOps.push_back(Pair.first->first); 1030 } else { 1031 Pair.first->second += Scale; 1032 // The map already had an entry for this value, which may indicate 1033 // a folding opportunity. 1034 Interesting = true; 1035 } 1036 } 1037 } 1038 1039 return Interesting; 1040 } 1041 1042 namespace { 1043 struct APIntCompare { 1044 bool operator()(const APInt &LHS, const APInt &RHS) const { 1045 return LHS.ult(RHS); 1046 } 1047 }; 1048 } 1049 1050 /// getAddExpr - Get a canonical add expression, or something simpler if 1051 /// possible. 1052 SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1053 assert(!Ops.empty() && "Cannot get empty add!"); 1054 if (Ops.size() == 1) return Ops[0]; 1055 #ifndef NDEBUG 1056 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1057 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1058 getEffectiveSCEVType(Ops[0]->getType()) && 1059 "SCEVAddExpr operand types don't match!"); 1060 #endif 1061 1062 // Sort by complexity, this groups all similar expression types together. 1063 GroupByComplexity(Ops, LI); 1064 1065 // If there are any constants, fold them together. 1066 unsigned Idx = 0; 1067 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1068 ++Idx; 1069 assert(Idx < Ops.size()); 1070 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1071 // We found two constants, fold them together! 1072 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1073 RHSC->getValue()->getValue()); 1074 if (Ops.size() == 2) return Ops[0]; 1075 Ops.erase(Ops.begin()+1); // Erase the folded element 1076 LHSC = cast<SCEVConstant>(Ops[0]); 1077 } 1078 1079 // If we are left with a constant zero being added, strip it off. 1080 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1081 Ops.erase(Ops.begin()); 1082 --Idx; 1083 } 1084 } 1085 1086 if (Ops.size() == 1) return Ops[0]; 1087 1088 // Okay, check to see if the same value occurs in the operand list twice. If 1089 // so, merge them together into an multiply expression. Since we sorted the 1090 // list, these values are required to be adjacent. 1091 const Type *Ty = Ops[0]->getType(); 1092 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1093 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1094 // Found a match, merge the two values into a multiply, and add any 1095 // remaining values to the result. 1096 SCEVHandle Two = getIntegerSCEV(2, Ty); 1097 SCEVHandle Mul = getMulExpr(Ops[i], Two); 1098 if (Ops.size() == 2) 1099 return Mul; 1100 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1101 Ops.push_back(Mul); 1102 return getAddExpr(Ops); 1103 } 1104 1105 // Check for truncates. If all the operands are truncated from the same 1106 // type, see if factoring out the truncate would permit the result to be 1107 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1108 // if the contents of the resulting outer trunc fold to something simple. 1109 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1110 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1111 const Type *DstType = Trunc->getType(); 1112 const Type *SrcType = Trunc->getOperand()->getType(); 1113 SmallVector<SCEVHandle, 8> LargeOps; 1114 bool Ok = true; 1115 // Check all the operands to see if they can be represented in the 1116 // source type of the truncate. 1117 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1118 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1119 if (T->getOperand()->getType() != SrcType) { 1120 Ok = false; 1121 break; 1122 } 1123 LargeOps.push_back(T->getOperand()); 1124 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1125 // This could be either sign or zero extension, but sign extension 1126 // is much more likely to be foldable here. 1127 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1128 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1129 SmallVector<SCEVHandle, 8> LargeMulOps; 1130 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1131 if (const SCEVTruncateExpr *T = 1132 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1133 if (T->getOperand()->getType() != SrcType) { 1134 Ok = false; 1135 break; 1136 } 1137 LargeMulOps.push_back(T->getOperand()); 1138 } else if (const SCEVConstant *C = 1139 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1140 // This could be either sign or zero extension, but sign extension 1141 // is much more likely to be foldable here. 1142 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1143 } else { 1144 Ok = false; 1145 break; 1146 } 1147 } 1148 if (Ok) 1149 LargeOps.push_back(getMulExpr(LargeMulOps)); 1150 } else { 1151 Ok = false; 1152 break; 1153 } 1154 } 1155 if (Ok) { 1156 // Evaluate the expression in the larger type. 1157 SCEVHandle Fold = getAddExpr(LargeOps); 1158 // If it folds to something simple, use it. Otherwise, don't. 1159 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1160 return getTruncateExpr(Fold, DstType); 1161 } 1162 } 1163 1164 // Skip past any other cast SCEVs. 1165 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1166 ++Idx; 1167 1168 // If there are add operands they would be next. 1169 if (Idx < Ops.size()) { 1170 bool DeletedAdd = false; 1171 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1172 // If we have an add, expand the add operands onto the end of the operands 1173 // list. 1174 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1175 Ops.erase(Ops.begin()+Idx); 1176 DeletedAdd = true; 1177 } 1178 1179 // If we deleted at least one add, we added operands to the end of the list, 1180 // and they are not necessarily sorted. Recurse to resort and resimplify 1181 // any operands we just aquired. 1182 if (DeletedAdd) 1183 return getAddExpr(Ops); 1184 } 1185 1186 // Skip over the add expression until we get to a multiply. 1187 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1188 ++Idx; 1189 1190 // Check to see if there are any folding opportunities present with 1191 // operands multiplied by constant values. 1192 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1193 uint64_t BitWidth = getTypeSizeInBits(Ty); 1194 DenseMap<SCEVHandle, APInt> M; 1195 SmallVector<SCEVHandle, 8> NewOps; 1196 APInt AccumulatedConstant(BitWidth, 0); 1197 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1198 Ops, APInt(BitWidth, 1), *this)) { 1199 // Some interesting folding opportunity is present, so its worthwhile to 1200 // re-generate the operands list. Group the operands by constant scale, 1201 // to avoid multiplying by the same constant scale multiple times. 1202 std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists; 1203 for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(), 1204 E = NewOps.end(); I != E; ++I) 1205 MulOpLists[M.find(*I)->second].push_back(*I); 1206 // Re-generate the operands list. 1207 Ops.clear(); 1208 if (AccumulatedConstant != 0) 1209 Ops.push_back(getConstant(AccumulatedConstant)); 1210 for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I = 1211 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1212 if (I->first != 0) 1213 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); 1214 if (Ops.empty()) 1215 return getIntegerSCEV(0, Ty); 1216 if (Ops.size() == 1) 1217 return Ops[0]; 1218 return getAddExpr(Ops); 1219 } 1220 } 1221 1222 // If we are adding something to a multiply expression, make sure the 1223 // something is not already an operand of the multiply. If so, merge it into 1224 // the multiply. 1225 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1226 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1227 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1228 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1229 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1230 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1231 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1232 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1233 if (Mul->getNumOperands() != 2) { 1234 // If the multiply has more than two operands, we must get the 1235 // Y*Z term. 1236 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1237 MulOps.erase(MulOps.begin()+MulOp); 1238 InnerMul = getMulExpr(MulOps); 1239 } 1240 SCEVHandle One = getIntegerSCEV(1, Ty); 1241 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1242 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1243 if (Ops.size() == 2) return OuterMul; 1244 if (AddOp < Idx) { 1245 Ops.erase(Ops.begin()+AddOp); 1246 Ops.erase(Ops.begin()+Idx-1); 1247 } else { 1248 Ops.erase(Ops.begin()+Idx); 1249 Ops.erase(Ops.begin()+AddOp-1); 1250 } 1251 Ops.push_back(OuterMul); 1252 return getAddExpr(Ops); 1253 } 1254 1255 // Check this multiply against other multiplies being added together. 1256 for (unsigned OtherMulIdx = Idx+1; 1257 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1258 ++OtherMulIdx) { 1259 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1260 // If MulOp occurs in OtherMul, we can fold the two multiplies 1261 // together. 1262 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1263 OMulOp != e; ++OMulOp) 1264 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1265 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1266 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1267 if (Mul->getNumOperands() != 2) { 1268 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1269 MulOps.erase(MulOps.begin()+MulOp); 1270 InnerMul1 = getMulExpr(MulOps); 1271 } 1272 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1273 if (OtherMul->getNumOperands() != 2) { 1274 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(), 1275 OtherMul->op_end()); 1276 MulOps.erase(MulOps.begin()+OMulOp); 1277 InnerMul2 = getMulExpr(MulOps); 1278 } 1279 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1280 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1281 if (Ops.size() == 2) return OuterMul; 1282 Ops.erase(Ops.begin()+Idx); 1283 Ops.erase(Ops.begin()+OtherMulIdx-1); 1284 Ops.push_back(OuterMul); 1285 return getAddExpr(Ops); 1286 } 1287 } 1288 } 1289 } 1290 1291 // If there are any add recurrences in the operands list, see if any other 1292 // added values are loop invariant. If so, we can fold them into the 1293 // recurrence. 1294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1295 ++Idx; 1296 1297 // Scan over all recurrences, trying to fold loop invariants into them. 1298 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1299 // Scan all of the other operands to this add and add them to the vector if 1300 // they are loop invariant w.r.t. the recurrence. 1301 SmallVector<SCEVHandle, 8> LIOps; 1302 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1303 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1304 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1305 LIOps.push_back(Ops[i]); 1306 Ops.erase(Ops.begin()+i); 1307 --i; --e; 1308 } 1309 1310 // If we found some loop invariants, fold them into the recurrence. 1311 if (!LIOps.empty()) { 1312 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1313 LIOps.push_back(AddRec->getStart()); 1314 1315 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(), 1316 AddRec->op_end()); 1317 AddRecOps[0] = getAddExpr(LIOps); 1318 1319 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1320 // If all of the other operands were loop invariant, we are done. 1321 if (Ops.size() == 1) return NewRec; 1322 1323 // Otherwise, add the folded AddRec by the non-liv parts. 1324 for (unsigned i = 0;; ++i) 1325 if (Ops[i] == AddRec) { 1326 Ops[i] = NewRec; 1327 break; 1328 } 1329 return getAddExpr(Ops); 1330 } 1331 1332 // Okay, if there weren't any loop invariants to be folded, check to see if 1333 // there are multiple AddRec's with the same loop induction variable being 1334 // added together. If so, we can fold them. 1335 for (unsigned OtherIdx = Idx+1; 1336 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1337 if (OtherIdx != Idx) { 1338 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1339 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1340 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1341 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); 1342 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1343 if (i >= NewOps.size()) { 1344 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1345 OtherAddRec->op_end()); 1346 break; 1347 } 1348 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1349 } 1350 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1351 1352 if (Ops.size() == 2) return NewAddRec; 1353 1354 Ops.erase(Ops.begin()+Idx); 1355 Ops.erase(Ops.begin()+OtherIdx-1); 1356 Ops.push_back(NewAddRec); 1357 return getAddExpr(Ops); 1358 } 1359 } 1360 1361 // Otherwise couldn't fold anything into this recurrence. Move onto the 1362 // next one. 1363 } 1364 1365 // Okay, it looks like we really DO need an add expr. Check to see if we 1366 // already have one, otherwise create a new one. 1367 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1368 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr, 1369 SCEVOps)]; 1370 if (Result == 0) Result = new SCEVAddExpr(Ops, this); 1371 return Result; 1372 } 1373 1374 1375 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1376 /// possible. 1377 SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1378 assert(!Ops.empty() && "Cannot get empty mul!"); 1379 #ifndef NDEBUG 1380 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1381 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1382 getEffectiveSCEVType(Ops[0]->getType()) && 1383 "SCEVMulExpr operand types don't match!"); 1384 #endif 1385 1386 // Sort by complexity, this groups all similar expression types together. 1387 GroupByComplexity(Ops, LI); 1388 1389 // If there are any constants, fold them together. 1390 unsigned Idx = 0; 1391 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1392 1393 // C1*(C2+V) -> C1*C2 + C1*V 1394 if (Ops.size() == 2) 1395 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1396 if (Add->getNumOperands() == 2 && 1397 isa<SCEVConstant>(Add->getOperand(0))) 1398 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1399 getMulExpr(LHSC, Add->getOperand(1))); 1400 1401 1402 ++Idx; 1403 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1404 // We found two constants, fold them together! 1405 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1406 RHSC->getValue()->getValue()); 1407 Ops[0] = getConstant(Fold); 1408 Ops.erase(Ops.begin()+1); // Erase the folded element 1409 if (Ops.size() == 1) return Ops[0]; 1410 LHSC = cast<SCEVConstant>(Ops[0]); 1411 } 1412 1413 // If we are left with a constant one being multiplied, strip it off. 1414 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1415 Ops.erase(Ops.begin()); 1416 --Idx; 1417 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1418 // If we have a multiply of zero, it will always be zero. 1419 return Ops[0]; 1420 } 1421 } 1422 1423 // Skip over the add expression until we get to a multiply. 1424 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1425 ++Idx; 1426 1427 if (Ops.size() == 1) 1428 return Ops[0]; 1429 1430 // If there are mul operands inline them all into this expression. 1431 if (Idx < Ops.size()) { 1432 bool DeletedMul = false; 1433 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1434 // If we have an mul, expand the mul operands onto the end of the operands 1435 // list. 1436 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1437 Ops.erase(Ops.begin()+Idx); 1438 DeletedMul = true; 1439 } 1440 1441 // If we deleted at least one mul, we added operands to the end of the list, 1442 // and they are not necessarily sorted. Recurse to resort and resimplify 1443 // any operands we just aquired. 1444 if (DeletedMul) 1445 return getMulExpr(Ops); 1446 } 1447 1448 // If there are any add recurrences in the operands list, see if any other 1449 // added values are loop invariant. If so, we can fold them into the 1450 // recurrence. 1451 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1452 ++Idx; 1453 1454 // Scan over all recurrences, trying to fold loop invariants into them. 1455 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1456 // Scan all of the other operands to this mul and add them to the vector if 1457 // they are loop invariant w.r.t. the recurrence. 1458 SmallVector<SCEVHandle, 8> LIOps; 1459 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1460 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1461 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1462 LIOps.push_back(Ops[i]); 1463 Ops.erase(Ops.begin()+i); 1464 --i; --e; 1465 } 1466 1467 // If we found some loop invariants, fold them into the recurrence. 1468 if (!LIOps.empty()) { 1469 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1470 SmallVector<SCEVHandle, 4> NewOps; 1471 NewOps.reserve(AddRec->getNumOperands()); 1472 if (LIOps.size() == 1) { 1473 const SCEV *Scale = LIOps[0]; 1474 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1475 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1476 } else { 1477 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1478 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end()); 1479 MulOps.push_back(AddRec->getOperand(i)); 1480 NewOps.push_back(getMulExpr(MulOps)); 1481 } 1482 } 1483 1484 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1485 1486 // If all of the other operands were loop invariant, we are done. 1487 if (Ops.size() == 1) return NewRec; 1488 1489 // Otherwise, multiply the folded AddRec by the non-liv parts. 1490 for (unsigned i = 0;; ++i) 1491 if (Ops[i] == AddRec) { 1492 Ops[i] = NewRec; 1493 break; 1494 } 1495 return getMulExpr(Ops); 1496 } 1497 1498 // Okay, if there weren't any loop invariants to be folded, check to see if 1499 // there are multiple AddRec's with the same loop induction variable being 1500 // multiplied together. If so, we can fold them. 1501 for (unsigned OtherIdx = Idx+1; 1502 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1503 if (OtherIdx != Idx) { 1504 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1505 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1506 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1507 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1508 SCEVHandle NewStart = getMulExpr(F->getStart(), 1509 G->getStart()); 1510 SCEVHandle B = F->getStepRecurrence(*this); 1511 SCEVHandle D = G->getStepRecurrence(*this); 1512 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1513 getMulExpr(G, B), 1514 getMulExpr(B, D)); 1515 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1516 F->getLoop()); 1517 if (Ops.size() == 2) return NewAddRec; 1518 1519 Ops.erase(Ops.begin()+Idx); 1520 Ops.erase(Ops.begin()+OtherIdx-1); 1521 Ops.push_back(NewAddRec); 1522 return getMulExpr(Ops); 1523 } 1524 } 1525 1526 // Otherwise couldn't fold anything into this recurrence. Move onto the 1527 // next one. 1528 } 1529 1530 // Okay, it looks like we really DO need an mul expr. Check to see if we 1531 // already have one, otherwise create a new one. 1532 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1533 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr, 1534 SCEVOps)]; 1535 if (Result == 0) 1536 Result = new SCEVMulExpr(Ops, this); 1537 return Result; 1538 } 1539 1540 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1541 /// possible. 1542 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1543 const SCEVHandle &RHS) { 1544 assert(getEffectiveSCEVType(LHS->getType()) == 1545 getEffectiveSCEVType(RHS->getType()) && 1546 "SCEVUDivExpr operand types don't match!"); 1547 1548 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1549 if (RHSC->getValue()->equalsInt(1)) 1550 return LHS; // X udiv 1 --> x 1551 if (RHSC->isZero()) 1552 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1553 1554 // Determine if the division can be folded into the operands of 1555 // its operands. 1556 // TODO: Generalize this to non-constants by using known-bits information. 1557 const Type *Ty = LHS->getType(); 1558 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1559 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1560 // For non-power-of-two values, effectively round the value up to the 1561 // nearest power of two. 1562 if (!RHSC->getValue()->getValue().isPowerOf2()) 1563 ++MaxShiftAmt; 1564 const IntegerType *ExtTy = 1565 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1566 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1567 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1568 if (const SCEVConstant *Step = 1569 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1570 if (!Step->getValue()->getValue() 1571 .urem(RHSC->getValue()->getValue()) && 1572 getZeroExtendExpr(AR, ExtTy) == 1573 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1574 getZeroExtendExpr(Step, ExtTy), 1575 AR->getLoop())) { 1576 SmallVector<SCEVHandle, 4> Operands; 1577 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1578 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1579 return getAddRecExpr(Operands, AR->getLoop()); 1580 } 1581 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1582 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1583 SmallVector<SCEVHandle, 4> Operands; 1584 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1585 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1586 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1587 // Find an operand that's safely divisible. 1588 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1589 SCEVHandle Op = M->getOperand(i); 1590 SCEVHandle Div = getUDivExpr(Op, RHSC); 1591 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1592 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands(); 1593 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(), 1594 MOperands.end()); 1595 Operands[i] = Div; 1596 return getMulExpr(Operands); 1597 } 1598 } 1599 } 1600 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1601 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1602 SmallVector<SCEVHandle, 4> Operands; 1603 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1604 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1605 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1606 Operands.clear(); 1607 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1608 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1609 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1610 break; 1611 Operands.push_back(Op); 1612 } 1613 if (Operands.size() == A->getNumOperands()) 1614 return getAddExpr(Operands); 1615 } 1616 } 1617 1618 // Fold if both operands are constant. 1619 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1620 Constant *LHSCV = LHSC->getValue(); 1621 Constant *RHSCV = RHSC->getValue(); 1622 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1623 } 1624 } 1625 1626 SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)]; 1627 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS, this); 1628 return Result; 1629 } 1630 1631 1632 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1633 /// Simplify the expression as much as possible. 1634 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1635 const SCEVHandle &Step, const Loop *L) { 1636 SmallVector<SCEVHandle, 4> Operands; 1637 Operands.push_back(Start); 1638 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1639 if (StepChrec->getLoop() == L) { 1640 Operands.insert(Operands.end(), StepChrec->op_begin(), 1641 StepChrec->op_end()); 1642 return getAddRecExpr(Operands, L); 1643 } 1644 1645 Operands.push_back(Step); 1646 return getAddRecExpr(Operands, L); 1647 } 1648 1649 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1650 /// Simplify the expression as much as possible. 1651 SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, 1652 const Loop *L) { 1653 if (Operands.size() == 1) return Operands[0]; 1654 #ifndef NDEBUG 1655 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1656 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1657 getEffectiveSCEVType(Operands[0]->getType()) && 1658 "SCEVAddRecExpr operand types don't match!"); 1659 #endif 1660 1661 if (Operands.back()->isZero()) { 1662 Operands.pop_back(); 1663 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1664 } 1665 1666 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1667 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1668 const Loop* NestedLoop = NestedAR->getLoop(); 1669 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1670 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(), 1671 NestedAR->op_end()); 1672 SCEVHandle NestedARHandle(NestedAR); 1673 Operands[0] = NestedAR->getStart(); 1674 NestedOperands[0] = getAddRecExpr(Operands, L); 1675 return getAddRecExpr(NestedOperands, NestedLoop); 1676 } 1677 } 1678 1679 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1680 SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)]; 1681 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L, this); 1682 return Result; 1683 } 1684 1685 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1686 const SCEVHandle &RHS) { 1687 SmallVector<SCEVHandle, 2> Ops; 1688 Ops.push_back(LHS); 1689 Ops.push_back(RHS); 1690 return getSMaxExpr(Ops); 1691 } 1692 1693 SCEVHandle 1694 ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1695 assert(!Ops.empty() && "Cannot get empty smax!"); 1696 if (Ops.size() == 1) return Ops[0]; 1697 #ifndef NDEBUG 1698 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1699 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1700 getEffectiveSCEVType(Ops[0]->getType()) && 1701 "SCEVSMaxExpr operand types don't match!"); 1702 #endif 1703 1704 // Sort by complexity, this groups all similar expression types together. 1705 GroupByComplexity(Ops, LI); 1706 1707 // If there are any constants, fold them together. 1708 unsigned Idx = 0; 1709 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1710 ++Idx; 1711 assert(Idx < Ops.size()); 1712 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1713 // We found two constants, fold them together! 1714 ConstantInt *Fold = ConstantInt::get( 1715 APIntOps::smax(LHSC->getValue()->getValue(), 1716 RHSC->getValue()->getValue())); 1717 Ops[0] = getConstant(Fold); 1718 Ops.erase(Ops.begin()+1); // Erase the folded element 1719 if (Ops.size() == 1) return Ops[0]; 1720 LHSC = cast<SCEVConstant>(Ops[0]); 1721 } 1722 1723 // If we are left with a constant -inf, strip it off. 1724 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1725 Ops.erase(Ops.begin()); 1726 --Idx; 1727 } 1728 } 1729 1730 if (Ops.size() == 1) return Ops[0]; 1731 1732 // Find the first SMax 1733 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1734 ++Idx; 1735 1736 // Check to see if one of the operands is an SMax. If so, expand its operands 1737 // onto our operand list, and recurse to simplify. 1738 if (Idx < Ops.size()) { 1739 bool DeletedSMax = false; 1740 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1741 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1742 Ops.erase(Ops.begin()+Idx); 1743 DeletedSMax = true; 1744 } 1745 1746 if (DeletedSMax) 1747 return getSMaxExpr(Ops); 1748 } 1749 1750 // Okay, check to see if the same value occurs in the operand list twice. If 1751 // so, delete one. Since we sorted the list, these values are required to 1752 // be adjacent. 1753 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1754 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1755 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1756 --i; --e; 1757 } 1758 1759 if (Ops.size() == 1) return Ops[0]; 1760 1761 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1762 1763 // Okay, it looks like we really DO need an smax expr. Check to see if we 1764 // already have one, otherwise create a new one. 1765 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1766 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr, 1767 SCEVOps)]; 1768 if (Result == 0) Result = new SCEVSMaxExpr(Ops, this); 1769 return Result; 1770 } 1771 1772 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1773 const SCEVHandle &RHS) { 1774 SmallVector<SCEVHandle, 2> Ops; 1775 Ops.push_back(LHS); 1776 Ops.push_back(RHS); 1777 return getUMaxExpr(Ops); 1778 } 1779 1780 SCEVHandle 1781 ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1782 assert(!Ops.empty() && "Cannot get empty umax!"); 1783 if (Ops.size() == 1) return Ops[0]; 1784 #ifndef NDEBUG 1785 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1786 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1787 getEffectiveSCEVType(Ops[0]->getType()) && 1788 "SCEVUMaxExpr operand types don't match!"); 1789 #endif 1790 1791 // Sort by complexity, this groups all similar expression types together. 1792 GroupByComplexity(Ops, LI); 1793 1794 // If there are any constants, fold them together. 1795 unsigned Idx = 0; 1796 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1797 ++Idx; 1798 assert(Idx < Ops.size()); 1799 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1800 // We found two constants, fold them together! 1801 ConstantInt *Fold = ConstantInt::get( 1802 APIntOps::umax(LHSC->getValue()->getValue(), 1803 RHSC->getValue()->getValue())); 1804 Ops[0] = getConstant(Fold); 1805 Ops.erase(Ops.begin()+1); // Erase the folded element 1806 if (Ops.size() == 1) return Ops[0]; 1807 LHSC = cast<SCEVConstant>(Ops[0]); 1808 } 1809 1810 // If we are left with a constant zero, strip it off. 1811 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1812 Ops.erase(Ops.begin()); 1813 --Idx; 1814 } 1815 } 1816 1817 if (Ops.size() == 1) return Ops[0]; 1818 1819 // Find the first UMax 1820 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1821 ++Idx; 1822 1823 // Check to see if one of the operands is a UMax. If so, expand its operands 1824 // onto our operand list, and recurse to simplify. 1825 if (Idx < Ops.size()) { 1826 bool DeletedUMax = false; 1827 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1828 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1829 Ops.erase(Ops.begin()+Idx); 1830 DeletedUMax = true; 1831 } 1832 1833 if (DeletedUMax) 1834 return getUMaxExpr(Ops); 1835 } 1836 1837 // Okay, check to see if the same value occurs in the operand list twice. If 1838 // so, delete one. Since we sorted the list, these values are required to 1839 // be adjacent. 1840 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1841 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1842 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1843 --i; --e; 1844 } 1845 1846 if (Ops.size() == 1) return Ops[0]; 1847 1848 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1849 1850 // Okay, it looks like we really DO need a umax expr. Check to see if we 1851 // already have one, otherwise create a new one. 1852 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1853 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr, 1854 SCEVOps)]; 1855 if (Result == 0) Result = new SCEVUMaxExpr(Ops, this); 1856 return Result; 1857 } 1858 1859 SCEVHandle ScalarEvolution::getSMinExpr(const SCEVHandle &LHS, 1860 const SCEVHandle &RHS) { 1861 // ~smax(~x, ~y) == smin(x, y). 1862 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 1863 } 1864 1865 SCEVHandle ScalarEvolution::getUMinExpr(const SCEVHandle &LHS, 1866 const SCEVHandle &RHS) { 1867 // ~umax(~x, ~y) == umin(x, y) 1868 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 1869 } 1870 1871 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1872 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1873 return getConstant(CI); 1874 if (isa<ConstantPointerNull>(V)) 1875 return getIntegerSCEV(0, V->getType()); 1876 SCEVUnknown *&Result = SCEVUnknowns[V]; 1877 if (Result == 0) Result = new SCEVUnknown(V, this); 1878 return Result; 1879 } 1880 1881 //===----------------------------------------------------------------------===// 1882 // Basic SCEV Analysis and PHI Idiom Recognition Code 1883 // 1884 1885 /// isSCEVable - Test if values of the given type are analyzable within 1886 /// the SCEV framework. This primarily includes integer types, and it 1887 /// can optionally include pointer types if the ScalarEvolution class 1888 /// has access to target-specific information. 1889 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1890 // Integers are always SCEVable. 1891 if (Ty->isInteger()) 1892 return true; 1893 1894 // Pointers are SCEVable if TargetData information is available 1895 // to provide pointer size information. 1896 if (isa<PointerType>(Ty)) 1897 return TD != NULL; 1898 1899 // Otherwise it's not SCEVable. 1900 return false; 1901 } 1902 1903 /// getTypeSizeInBits - Return the size in bits of the specified type, 1904 /// for which isSCEVable must return true. 1905 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1906 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1907 1908 // If we have a TargetData, use it! 1909 if (TD) 1910 return TD->getTypeSizeInBits(Ty); 1911 1912 // Otherwise, we support only integer types. 1913 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1914 return Ty->getPrimitiveSizeInBits(); 1915 } 1916 1917 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1918 /// the given type and which represents how SCEV will treat the given 1919 /// type, for which isSCEVable must return true. For pointer types, 1920 /// this is the pointer-sized integer type. 1921 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1922 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1923 1924 if (Ty->isInteger()) 1925 return Ty; 1926 1927 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1928 return TD->getIntPtrType(); 1929 } 1930 1931 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1932 return CouldNotCompute; 1933 } 1934 1935 /// hasSCEV - Return true if the SCEV for this value has already been 1936 /// computed. 1937 bool ScalarEvolution::hasSCEV(Value *V) const { 1938 return Scalars.count(V); 1939 } 1940 1941 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1942 /// expression and create a new one. 1943 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1944 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1945 1946 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1947 if (I != Scalars.end()) return I->second; 1948 SCEVHandle S = createSCEV(V); 1949 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1950 return S; 1951 } 1952 1953 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1954 /// specified signed integer value and return a SCEV for the constant. 1955 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1956 Ty = getEffectiveSCEVType(Ty); 1957 Constant *C; 1958 if (Val == 0) 1959 C = Constant::getNullValue(Ty); 1960 else if (Ty->isFloatingPoint()) 1961 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1962 APFloat::IEEEdouble, Val)); 1963 else 1964 C = ConstantInt::get(Ty, Val); 1965 return getUnknown(C); 1966 } 1967 1968 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1969 /// 1970 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 1971 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1972 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 1973 1974 const Type *Ty = V->getType(); 1975 Ty = getEffectiveSCEVType(Ty); 1976 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 1977 } 1978 1979 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1980 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 1981 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1982 return getUnknown(ConstantExpr::getNot(VC->getValue())); 1983 1984 const Type *Ty = V->getType(); 1985 Ty = getEffectiveSCEVType(Ty); 1986 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 1987 return getMinusSCEV(AllOnes, V); 1988 } 1989 1990 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1991 /// 1992 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 1993 const SCEVHandle &RHS) { 1994 // X - Y --> X + -Y 1995 return getAddExpr(LHS, getNegativeSCEV(RHS)); 1996 } 1997 1998 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1999 /// input value to the specified type. If the type must be extended, it is zero 2000 /// extended. 2001 SCEVHandle 2002 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 2003 const Type *Ty) { 2004 const Type *SrcTy = V->getType(); 2005 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2006 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2007 "Cannot truncate or zero extend with non-integer arguments!"); 2008 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2009 return V; // No conversion 2010 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2011 return getTruncateExpr(V, Ty); 2012 return getZeroExtendExpr(V, Ty); 2013 } 2014 2015 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2016 /// input value to the specified type. If the type must be extended, it is sign 2017 /// extended. 2018 SCEVHandle 2019 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 2020 const Type *Ty) { 2021 const Type *SrcTy = V->getType(); 2022 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2023 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2024 "Cannot truncate or zero extend with non-integer arguments!"); 2025 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2026 return V; // No conversion 2027 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2028 return getTruncateExpr(V, Ty); 2029 return getSignExtendExpr(V, Ty); 2030 } 2031 2032 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2033 /// input value to the specified type. If the type must be extended, it is zero 2034 /// extended. The conversion must not be narrowing. 2035 SCEVHandle 2036 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 2037 const Type *SrcTy = V->getType(); 2038 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2039 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2040 "Cannot noop or zero extend with non-integer arguments!"); 2041 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2042 "getNoopOrZeroExtend cannot truncate!"); 2043 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2044 return V; // No conversion 2045 return getZeroExtendExpr(V, Ty); 2046 } 2047 2048 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2049 /// input value to the specified type. If the type must be extended, it is sign 2050 /// extended. The conversion must not be narrowing. 2051 SCEVHandle 2052 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { 2053 const Type *SrcTy = V->getType(); 2054 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2055 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2056 "Cannot noop or sign extend with non-integer arguments!"); 2057 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2058 "getNoopOrSignExtend cannot truncate!"); 2059 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2060 return V; // No conversion 2061 return getSignExtendExpr(V, Ty); 2062 } 2063 2064 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2065 /// the input value to the specified type. If the type must be extended, 2066 /// it is extended with unspecified bits. The conversion must not be 2067 /// narrowing. 2068 SCEVHandle 2069 ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { 2070 const Type *SrcTy = V->getType(); 2071 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2072 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2073 "Cannot noop or any extend with non-integer arguments!"); 2074 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2075 "getNoopOrAnyExtend cannot truncate!"); 2076 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2077 return V; // No conversion 2078 return getAnyExtendExpr(V, Ty); 2079 } 2080 2081 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2082 /// input value to the specified type. The conversion must not be widening. 2083 SCEVHandle 2084 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { 2085 const Type *SrcTy = V->getType(); 2086 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2087 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2088 "Cannot truncate or noop with non-integer arguments!"); 2089 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2090 "getTruncateOrNoop cannot extend!"); 2091 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2092 return V; // No conversion 2093 return getTruncateExpr(V, Ty); 2094 } 2095 2096 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2097 /// the types using zero-extension, and then perform a umax operation 2098 /// with them. 2099 SCEVHandle ScalarEvolution::getUMaxFromMismatchedTypes(const SCEVHandle &LHS, 2100 const SCEVHandle &RHS) { 2101 SCEVHandle PromotedLHS = LHS; 2102 SCEVHandle PromotedRHS = RHS; 2103 2104 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2105 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2106 else 2107 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2108 2109 return getUMaxExpr(PromotedLHS, PromotedRHS); 2110 } 2111 2112 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2113 /// the types using zero-extension, and then perform a umin operation 2114 /// with them. 2115 SCEVHandle ScalarEvolution::getUMinFromMismatchedTypes(const SCEVHandle &LHS, 2116 const SCEVHandle &RHS) { 2117 SCEVHandle PromotedLHS = LHS; 2118 SCEVHandle PromotedRHS = RHS; 2119 2120 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2121 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2122 else 2123 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2124 2125 return getUMinExpr(PromotedLHS, PromotedRHS); 2126 } 2127 2128 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 2129 /// the specified instruction and replaces any references to the symbolic value 2130 /// SymName with the specified value. This is used during PHI resolution. 2131 void ScalarEvolution:: 2132 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 2133 const SCEVHandle &NewVal) { 2134 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 2135 Scalars.find(SCEVCallbackVH(I, this)); 2136 if (SI == Scalars.end()) return; 2137 2138 SCEVHandle NV = 2139 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 2140 if (NV == SI->second) return; // No change. 2141 2142 SI->second = NV; // Update the scalars map! 2143 2144 // Any instruction values that use this instruction might also need to be 2145 // updated! 2146 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 2147 UI != E; ++UI) 2148 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 2149 } 2150 2151 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2152 /// a loop header, making it a potential recurrence, or it doesn't. 2153 /// 2154 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 2155 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2156 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2157 if (L->getHeader() == PN->getParent()) { 2158 // If it lives in the loop header, it has two incoming values, one 2159 // from outside the loop, and one from inside. 2160 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2161 unsigned BackEdge = IncomingEdge^1; 2162 2163 // While we are analyzing this PHI node, handle its value symbolically. 2164 SCEVHandle SymbolicName = getUnknown(PN); 2165 assert(Scalars.find(PN) == Scalars.end() && 2166 "PHI node already processed?"); 2167 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2168 2169 // Using this symbolic name for the PHI, analyze the value coming around 2170 // the back-edge. 2171 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 2172 2173 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2174 // has a special value for the first iteration of the loop. 2175 2176 // If the value coming around the backedge is an add with the symbolic 2177 // value we just inserted, then we found a simple induction variable! 2178 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2179 // If there is a single occurrence of the symbolic value, replace it 2180 // with a recurrence. 2181 unsigned FoundIndex = Add->getNumOperands(); 2182 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2183 if (Add->getOperand(i) == SymbolicName) 2184 if (FoundIndex == e) { 2185 FoundIndex = i; 2186 break; 2187 } 2188 2189 if (FoundIndex != Add->getNumOperands()) { 2190 // Create an add with everything but the specified operand. 2191 SmallVector<SCEVHandle, 8> Ops; 2192 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2193 if (i != FoundIndex) 2194 Ops.push_back(Add->getOperand(i)); 2195 SCEVHandle Accum = getAddExpr(Ops); 2196 2197 // This is not a valid addrec if the step amount is varying each 2198 // loop iteration, but is not itself an addrec in this loop. 2199 if (Accum->isLoopInvariant(L) || 2200 (isa<SCEVAddRecExpr>(Accum) && 2201 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2202 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2203 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 2204 2205 // Okay, for the entire analysis of this edge we assumed the PHI 2206 // to be symbolic. We now need to go back and update all of the 2207 // entries for the scalars that use the PHI (except for the PHI 2208 // itself) to use the new analyzed value instead of the "symbolic" 2209 // value. 2210 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2211 return PHISCEV; 2212 } 2213 } 2214 } else if (const SCEVAddRecExpr *AddRec = 2215 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2216 // Otherwise, this could be a loop like this: 2217 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2218 // In this case, j = {1,+,1} and BEValue is j. 2219 // Because the other in-value of i (0) fits the evolution of BEValue 2220 // i really is an addrec evolution. 2221 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2222 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2223 2224 // If StartVal = j.start - j.stride, we can use StartVal as the 2225 // initial step of the addrec evolution. 2226 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2227 AddRec->getOperand(1))) { 2228 SCEVHandle PHISCEV = 2229 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2230 2231 // Okay, for the entire analysis of this edge we assumed the PHI 2232 // to be symbolic. We now need to go back and update all of the 2233 // entries for the scalars that use the PHI (except for the PHI 2234 // itself) to use the new analyzed value instead of the "symbolic" 2235 // value. 2236 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2237 return PHISCEV; 2238 } 2239 } 2240 } 2241 2242 return SymbolicName; 2243 } 2244 2245 // If it's not a loop phi, we can't handle it yet. 2246 return getUnknown(PN); 2247 } 2248 2249 /// createNodeForGEP - Expand GEP instructions into add and multiply 2250 /// operations. This allows them to be analyzed by regular SCEV code. 2251 /// 2252 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 2253 2254 const Type *IntPtrTy = TD->getIntPtrType(); 2255 Value *Base = GEP->getOperand(0); 2256 // Don't attempt to analyze GEPs over unsized objects. 2257 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2258 return getUnknown(GEP); 2259 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 2260 gep_type_iterator GTI = gep_type_begin(GEP); 2261 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2262 E = GEP->op_end(); 2263 I != E; ++I) { 2264 Value *Index = *I; 2265 // Compute the (potentially symbolic) offset in bytes for this index. 2266 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2267 // For a struct, add the member offset. 2268 const StructLayout &SL = *TD->getStructLayout(STy); 2269 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2270 uint64_t Offset = SL.getElementOffset(FieldNo); 2271 TotalOffset = getAddExpr(TotalOffset, 2272 getIntegerSCEV(Offset, IntPtrTy)); 2273 } else { 2274 // For an array, add the element offset, explicitly scaled. 2275 SCEVHandle LocalOffset = getSCEV(Index); 2276 if (!isa<PointerType>(LocalOffset->getType())) 2277 // Getelementptr indicies are signed. 2278 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2279 IntPtrTy); 2280 LocalOffset = 2281 getMulExpr(LocalOffset, 2282 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2283 IntPtrTy)); 2284 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2285 } 2286 } 2287 return getAddExpr(getSCEV(Base), TotalOffset); 2288 } 2289 2290 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2291 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2292 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2293 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2294 uint32_t 2295 ScalarEvolution::GetMinTrailingZeros(const SCEVHandle &S) { 2296 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2297 return C->getValue()->getValue().countTrailingZeros(); 2298 2299 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2300 return std::min(GetMinTrailingZeros(T->getOperand()), 2301 (uint32_t)getTypeSizeInBits(T->getType())); 2302 2303 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2304 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2305 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2306 getTypeSizeInBits(E->getType()) : OpRes; 2307 } 2308 2309 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2310 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2311 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2312 getTypeSizeInBits(E->getType()) : OpRes; 2313 } 2314 2315 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2316 // The result is the min of all operands results. 2317 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2318 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2319 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2320 return MinOpRes; 2321 } 2322 2323 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2324 // The result is the sum of all operands results. 2325 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2326 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2327 for (unsigned i = 1, e = M->getNumOperands(); 2328 SumOpRes != BitWidth && i != e; ++i) 2329 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2330 BitWidth); 2331 return SumOpRes; 2332 } 2333 2334 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2335 // The result is the min of all operands results. 2336 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2337 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2338 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2339 return MinOpRes; 2340 } 2341 2342 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2343 // The result is the min of all operands results. 2344 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2345 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2346 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2347 return MinOpRes; 2348 } 2349 2350 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2351 // The result is the min of all operands results. 2352 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2353 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2354 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2355 return MinOpRes; 2356 } 2357 2358 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2359 // For a SCEVUnknown, ask ValueTracking. 2360 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2361 APInt Mask = APInt::getAllOnesValue(BitWidth); 2362 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2363 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2364 return Zeros.countTrailingOnes(); 2365 } 2366 2367 // SCEVUDivExpr 2368 return 0; 2369 } 2370 2371 uint32_t 2372 ScalarEvolution::GetMinLeadingZeros(const SCEVHandle &S) { 2373 // TODO: Handle other SCEV expression types here. 2374 2375 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2376 return C->getValue()->getValue().countLeadingZeros(); 2377 2378 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) { 2379 // A zero-extension cast adds zero bits. 2380 return GetMinLeadingZeros(C->getOperand()) + 2381 (getTypeSizeInBits(C->getType()) - 2382 getTypeSizeInBits(C->getOperand()->getType())); 2383 } 2384 2385 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2386 // For a SCEVUnknown, ask ValueTracking. 2387 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2388 APInt Mask = APInt::getAllOnesValue(BitWidth); 2389 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2390 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2391 return Zeros.countLeadingOnes(); 2392 } 2393 2394 return 1; 2395 } 2396 2397 uint32_t 2398 ScalarEvolution::GetMinSignBits(const SCEVHandle &S) { 2399 // TODO: Handle other SCEV expression types here. 2400 2401 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 2402 const APInt &A = C->getValue()->getValue(); 2403 return A.isNegative() ? A.countLeadingOnes() : 2404 A.countLeadingZeros(); 2405 } 2406 2407 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) { 2408 // A sign-extension cast adds sign bits. 2409 return GetMinSignBits(C->getOperand()) + 2410 (getTypeSizeInBits(C->getType()) - 2411 getTypeSizeInBits(C->getOperand()->getType())); 2412 } 2413 2414 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2415 // For a SCEVUnknown, ask ValueTracking. 2416 return ComputeNumSignBits(U->getValue(), TD); 2417 } 2418 2419 return 1; 2420 } 2421 2422 /// createSCEV - We know that there is no SCEV for the specified value. 2423 /// Analyze the expression. 2424 /// 2425 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2426 if (!isSCEVable(V->getType())) 2427 return getUnknown(V); 2428 2429 unsigned Opcode = Instruction::UserOp1; 2430 if (Instruction *I = dyn_cast<Instruction>(V)) 2431 Opcode = I->getOpcode(); 2432 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2433 Opcode = CE->getOpcode(); 2434 else 2435 return getUnknown(V); 2436 2437 User *U = cast<User>(V); 2438 switch (Opcode) { 2439 case Instruction::Add: 2440 return getAddExpr(getSCEV(U->getOperand(0)), 2441 getSCEV(U->getOperand(1))); 2442 case Instruction::Mul: 2443 return getMulExpr(getSCEV(U->getOperand(0)), 2444 getSCEV(U->getOperand(1))); 2445 case Instruction::UDiv: 2446 return getUDivExpr(getSCEV(U->getOperand(0)), 2447 getSCEV(U->getOperand(1))); 2448 case Instruction::Sub: 2449 return getMinusSCEV(getSCEV(U->getOperand(0)), 2450 getSCEV(U->getOperand(1))); 2451 case Instruction::And: 2452 // For an expression like x&255 that merely masks off the high bits, 2453 // use zext(trunc(x)) as the SCEV expression. 2454 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2455 if (CI->isNullValue()) 2456 return getSCEV(U->getOperand(1)); 2457 if (CI->isAllOnesValue()) 2458 return getSCEV(U->getOperand(0)); 2459 const APInt &A = CI->getValue(); 2460 2461 // Instcombine's ShrinkDemandedConstant may strip bits out of 2462 // constants, obscuring what would otherwise be a low-bits mask. 2463 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2464 // knew about to reconstruct a low-bits mask value. 2465 unsigned LZ = A.countLeadingZeros(); 2466 unsigned BitWidth = A.getBitWidth(); 2467 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2468 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2469 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2470 2471 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2472 2473 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2474 return 2475 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2476 IntegerType::get(BitWidth - LZ)), 2477 U->getType()); 2478 } 2479 break; 2480 2481 case Instruction::Or: 2482 // If the RHS of the Or is a constant, we may have something like: 2483 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2484 // optimizations will transparently handle this case. 2485 // 2486 // In order for this transformation to be safe, the LHS must be of the 2487 // form X*(2^n) and the Or constant must be less than 2^n. 2488 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2489 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2490 const APInt &CIVal = CI->getValue(); 2491 if (GetMinTrailingZeros(LHS) >= 2492 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2493 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2494 } 2495 break; 2496 case Instruction::Xor: 2497 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2498 // If the RHS of the xor is a signbit, then this is just an add. 2499 // Instcombine turns add of signbit into xor as a strength reduction step. 2500 if (CI->getValue().isSignBit()) 2501 return getAddExpr(getSCEV(U->getOperand(0)), 2502 getSCEV(U->getOperand(1))); 2503 2504 // If the RHS of xor is -1, then this is a not operation. 2505 if (CI->isAllOnesValue()) 2506 return getNotSCEV(getSCEV(U->getOperand(0))); 2507 2508 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2509 // This is a variant of the check for xor with -1, and it handles 2510 // the case where instcombine has trimmed non-demanded bits out 2511 // of an xor with -1. 2512 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2513 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2514 if (BO->getOpcode() == Instruction::And && 2515 LCI->getValue() == CI->getValue()) 2516 if (const SCEVZeroExtendExpr *Z = 2517 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2518 const Type *UTy = U->getType(); 2519 SCEVHandle Z0 = Z->getOperand(); 2520 const Type *Z0Ty = Z0->getType(); 2521 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 2522 2523 // If C is a low-bits mask, the zero extend is zerving to 2524 // mask off the high bits. Complement the operand and 2525 // re-apply the zext. 2526 if (APIntOps::isMask(Z0TySize, CI->getValue())) 2527 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 2528 2529 // If C is a single bit, it may be in the sign-bit position 2530 // before the zero-extend. In this case, represent the xor 2531 // using an add, which is equivalent, and re-apply the zext. 2532 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 2533 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 2534 Trunc.isSignBit()) 2535 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 2536 UTy); 2537 } 2538 } 2539 break; 2540 2541 case Instruction::Shl: 2542 // Turn shift left of a constant amount into a multiply. 2543 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2544 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2545 Constant *X = ConstantInt::get( 2546 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2547 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2548 } 2549 break; 2550 2551 case Instruction::LShr: 2552 // Turn logical shift right of a constant into a unsigned divide. 2553 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2554 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2555 Constant *X = ConstantInt::get( 2556 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2557 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2558 } 2559 break; 2560 2561 case Instruction::AShr: 2562 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2563 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2564 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2565 if (L->getOpcode() == Instruction::Shl && 2566 L->getOperand(1) == U->getOperand(1)) { 2567 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2568 uint64_t Amt = BitWidth - CI->getZExtValue(); 2569 if (Amt == BitWidth) 2570 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2571 if (Amt > BitWidth) 2572 return getIntegerSCEV(0, U->getType()); // value is undefined 2573 return 2574 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2575 IntegerType::get(Amt)), 2576 U->getType()); 2577 } 2578 break; 2579 2580 case Instruction::Trunc: 2581 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2582 2583 case Instruction::ZExt: 2584 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2585 2586 case Instruction::SExt: 2587 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2588 2589 case Instruction::BitCast: 2590 // BitCasts are no-op casts so we just eliminate the cast. 2591 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2592 return getSCEV(U->getOperand(0)); 2593 break; 2594 2595 case Instruction::IntToPtr: 2596 if (!TD) break; // Without TD we can't analyze pointers. 2597 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2598 TD->getIntPtrType()); 2599 2600 case Instruction::PtrToInt: 2601 if (!TD) break; // Without TD we can't analyze pointers. 2602 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2603 U->getType()); 2604 2605 case Instruction::GetElementPtr: 2606 if (!TD) break; // Without TD we can't analyze pointers. 2607 return createNodeForGEP(U); 2608 2609 case Instruction::PHI: 2610 return createNodeForPHI(cast<PHINode>(U)); 2611 2612 case Instruction::Select: 2613 // This could be a smax or umax that was lowered earlier. 2614 // Try to recover it. 2615 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2616 Value *LHS = ICI->getOperand(0); 2617 Value *RHS = ICI->getOperand(1); 2618 switch (ICI->getPredicate()) { 2619 case ICmpInst::ICMP_SLT: 2620 case ICmpInst::ICMP_SLE: 2621 std::swap(LHS, RHS); 2622 // fall through 2623 case ICmpInst::ICMP_SGT: 2624 case ICmpInst::ICMP_SGE: 2625 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2626 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2627 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2628 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 2629 break; 2630 case ICmpInst::ICMP_ULT: 2631 case ICmpInst::ICMP_ULE: 2632 std::swap(LHS, RHS); 2633 // fall through 2634 case ICmpInst::ICMP_UGT: 2635 case ICmpInst::ICMP_UGE: 2636 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2637 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2638 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2639 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 2640 break; 2641 case ICmpInst::ICMP_NE: 2642 // n != 0 ? n : 1 -> umax(n, 1) 2643 if (LHS == U->getOperand(1) && 2644 isa<ConstantInt>(U->getOperand(2)) && 2645 cast<ConstantInt>(U->getOperand(2))->isOne() && 2646 isa<ConstantInt>(RHS) && 2647 cast<ConstantInt>(RHS)->isZero()) 2648 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 2649 break; 2650 case ICmpInst::ICMP_EQ: 2651 // n == 0 ? 1 : n -> umax(n, 1) 2652 if (LHS == U->getOperand(2) && 2653 isa<ConstantInt>(U->getOperand(1)) && 2654 cast<ConstantInt>(U->getOperand(1))->isOne() && 2655 isa<ConstantInt>(RHS) && 2656 cast<ConstantInt>(RHS)->isZero()) 2657 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 2658 break; 2659 default: 2660 break; 2661 } 2662 } 2663 2664 default: // We cannot analyze this expression. 2665 break; 2666 } 2667 2668 return getUnknown(V); 2669 } 2670 2671 2672 2673 //===----------------------------------------------------------------------===// 2674 // Iteration Count Computation Code 2675 // 2676 2677 /// getBackedgeTakenCount - If the specified loop has a predictable 2678 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2679 /// object. The backedge-taken count is the number of times the loop header 2680 /// will be branched to from within the loop. This is one less than the 2681 /// trip count of the loop, since it doesn't count the first iteration, 2682 /// when the header is branched to from outside the loop. 2683 /// 2684 /// Note that it is not valid to call this method on a loop without a 2685 /// loop-invariant backedge-taken count (see 2686 /// hasLoopInvariantBackedgeTakenCount). 2687 /// 2688 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2689 return getBackedgeTakenInfo(L).Exact; 2690 } 2691 2692 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2693 /// return the least SCEV value that is known never to be less than the 2694 /// actual backedge taken count. 2695 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2696 return getBackedgeTakenInfo(L).Max; 2697 } 2698 2699 const ScalarEvolution::BackedgeTakenInfo & 2700 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2701 // Initially insert a CouldNotCompute for this loop. If the insertion 2702 // succeeds, procede to actually compute a backedge-taken count and 2703 // update the value. The temporary CouldNotCompute value tells SCEV 2704 // code elsewhere that it shouldn't attempt to request a new 2705 // backedge-taken count, which could result in infinite recursion. 2706 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2707 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2708 if (Pair.second) { 2709 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2710 if (ItCount.Exact != CouldNotCompute) { 2711 assert(ItCount.Exact->isLoopInvariant(L) && 2712 ItCount.Max->isLoopInvariant(L) && 2713 "Computed trip count isn't loop invariant for loop!"); 2714 ++NumTripCountsComputed; 2715 2716 // Update the value in the map. 2717 Pair.first->second = ItCount; 2718 } else { 2719 if (ItCount.Max != CouldNotCompute) 2720 // Update the value in the map. 2721 Pair.first->second = ItCount; 2722 if (isa<PHINode>(L->getHeader()->begin())) 2723 // Only count loops that have phi nodes as not being computable. 2724 ++NumTripCountsNotComputed; 2725 } 2726 2727 // Now that we know more about the trip count for this loop, forget any 2728 // existing SCEV values for PHI nodes in this loop since they are only 2729 // conservative estimates made without the benefit 2730 // of trip count information. 2731 if (ItCount.hasAnyInfo()) 2732 forgetLoopPHIs(L); 2733 } 2734 return Pair.first->second; 2735 } 2736 2737 /// forgetLoopBackedgeTakenCount - This method should be called by the 2738 /// client when it has changed a loop in a way that may effect 2739 /// ScalarEvolution's ability to compute a trip count, or if the loop 2740 /// is deleted. 2741 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2742 BackedgeTakenCounts.erase(L); 2743 forgetLoopPHIs(L); 2744 } 2745 2746 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2747 /// PHI nodes in the given loop. This is used when the trip count of 2748 /// the loop may have changed. 2749 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2750 BasicBlock *Header = L->getHeader(); 2751 2752 // Push all Loop-header PHIs onto the Worklist stack, except those 2753 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2754 // a PHI either means that it has an unrecognized structure, or it's 2755 // a PHI that's in the progress of being computed by createNodeForPHI. 2756 // In the former case, additional loop trip count information isn't 2757 // going to change anything. In the later case, createNodeForPHI will 2758 // perform the necessary updates on its own when it gets to that point. 2759 SmallVector<Instruction *, 16> Worklist; 2760 for (BasicBlock::iterator I = Header->begin(); 2761 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2762 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); 2763 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2764 Worklist.push_back(PN); 2765 } 2766 2767 while (!Worklist.empty()) { 2768 Instruction *I = Worklist.pop_back_val(); 2769 if (Scalars.erase(I)) 2770 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2771 UI != UE; ++UI) 2772 Worklist.push_back(cast<Instruction>(UI)); 2773 } 2774 } 2775 2776 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2777 /// of the specified loop will execute. 2778 ScalarEvolution::BackedgeTakenInfo 2779 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2780 SmallVector<BasicBlock*, 8> ExitingBlocks; 2781 L->getExitingBlocks(ExitingBlocks); 2782 2783 // Examine all exits and pick the most conservative values. 2784 SCEVHandle BECount = CouldNotCompute; 2785 SCEVHandle MaxBECount = CouldNotCompute; 2786 bool CouldNotComputeBECount = false; 2787 bool CouldNotComputeMaxBECount = false; 2788 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2789 BackedgeTakenInfo NewBTI = 2790 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 2791 2792 if (NewBTI.Exact == CouldNotCompute) { 2793 // We couldn't compute an exact value for this exit, so 2794 // we don't be able to compute an exact value for the loop. 2795 CouldNotComputeBECount = true; 2796 BECount = CouldNotCompute; 2797 } else if (!CouldNotComputeBECount) { 2798 if (BECount == CouldNotCompute) 2799 BECount = NewBTI.Exact; 2800 else { 2801 // TODO: More analysis could be done here. For example, a 2802 // loop with a short-circuiting && operator has an exact count 2803 // of the min of both sides. 2804 CouldNotComputeBECount = true; 2805 BECount = CouldNotCompute; 2806 } 2807 } 2808 if (NewBTI.Max == CouldNotCompute) { 2809 // We couldn't compute an maximum value for this exit, so 2810 // we don't be able to compute an maximum value for the loop. 2811 CouldNotComputeMaxBECount = true; 2812 MaxBECount = CouldNotCompute; 2813 } else if (!CouldNotComputeMaxBECount) { 2814 if (MaxBECount == CouldNotCompute) 2815 MaxBECount = NewBTI.Max; 2816 else 2817 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max); 2818 } 2819 } 2820 2821 return BackedgeTakenInfo(BECount, MaxBECount); 2822 } 2823 2824 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 2825 /// of the specified loop will execute if it exits via the specified block. 2826 ScalarEvolution::BackedgeTakenInfo 2827 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 2828 BasicBlock *ExitingBlock) { 2829 2830 // Okay, we've chosen an exiting block. See what condition causes us to 2831 // exit at this block. 2832 // 2833 // FIXME: we should be able to handle switch instructions (with a single exit) 2834 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2835 if (ExitBr == 0) return CouldNotCompute; 2836 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2837 2838 // At this point, we know we have a conditional branch that determines whether 2839 // the loop is exited. However, we don't know if the branch is executed each 2840 // time through the loop. If not, then the execution count of the branch will 2841 // not be equal to the trip count of the loop. 2842 // 2843 // Currently we check for this by checking to see if the Exit branch goes to 2844 // the loop header. If so, we know it will always execute the same number of 2845 // times as the loop. We also handle the case where the exit block *is* the 2846 // loop header. This is common for un-rotated loops. 2847 // 2848 // If both of those tests fail, walk up the unique predecessor chain to the 2849 // header, stopping if there is an edge that doesn't exit the loop. If the 2850 // header is reached, the execution count of the branch will be equal to the 2851 // trip count of the loop. 2852 // 2853 // More extensive analysis could be done to handle more cases here. 2854 // 2855 if (ExitBr->getSuccessor(0) != L->getHeader() && 2856 ExitBr->getSuccessor(1) != L->getHeader() && 2857 ExitBr->getParent() != L->getHeader()) { 2858 // The simple checks failed, try climbing the unique predecessor chain 2859 // up to the header. 2860 bool Ok = false; 2861 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 2862 BasicBlock *Pred = BB->getUniquePredecessor(); 2863 if (!Pred) 2864 return CouldNotCompute; 2865 TerminatorInst *PredTerm = Pred->getTerminator(); 2866 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 2867 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 2868 if (PredSucc == BB) 2869 continue; 2870 // If the predecessor has a successor that isn't BB and isn't 2871 // outside the loop, assume the worst. 2872 if (L->contains(PredSucc)) 2873 return CouldNotCompute; 2874 } 2875 if (Pred == L->getHeader()) { 2876 Ok = true; 2877 break; 2878 } 2879 BB = Pred; 2880 } 2881 if (!Ok) 2882 return CouldNotCompute; 2883 } 2884 2885 // Procede to the next level to examine the exit condition expression. 2886 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 2887 ExitBr->getSuccessor(0), 2888 ExitBr->getSuccessor(1)); 2889 } 2890 2891 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 2892 /// backedge of the specified loop will execute if its exit condition 2893 /// were a conditional branch of ExitCond, TBB, and FBB. 2894 ScalarEvolution::BackedgeTakenInfo 2895 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 2896 Value *ExitCond, 2897 BasicBlock *TBB, 2898 BasicBlock *FBB) { 2899 // Check if the controlling expression for this loop is an and or or. In 2900 // such cases, an exact backedge-taken count may be infeasible, but a 2901 // maximum count may still be feasible. 2902 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 2903 if (BO->getOpcode() == Instruction::And) { 2904 // Recurse on the operands of the and. 2905 BackedgeTakenInfo BTI0 = 2906 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 2907 BackedgeTakenInfo BTI1 = 2908 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 2909 SCEVHandle BECount = CouldNotCompute; 2910 SCEVHandle MaxBECount = CouldNotCompute; 2911 if (L->contains(TBB)) { 2912 // Both conditions must be true for the loop to continue executing. 2913 // Choose the less conservative count. 2914 if (BTI0.Exact == CouldNotCompute) 2915 BECount = BTI1.Exact; 2916 else if (BTI1.Exact == CouldNotCompute) 2917 BECount = BTI0.Exact; 2918 else 2919 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 2920 if (BTI0.Max == CouldNotCompute) 2921 MaxBECount = BTI1.Max; 2922 else if (BTI1.Max == CouldNotCompute) 2923 MaxBECount = BTI0.Max; 2924 else 2925 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 2926 } else { 2927 // Both conditions must be true for the loop to exit. 2928 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 2929 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute) 2930 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 2931 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute) 2932 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 2933 } 2934 2935 return BackedgeTakenInfo(BECount, MaxBECount); 2936 } 2937 if (BO->getOpcode() == Instruction::Or) { 2938 // Recurse on the operands of the or. 2939 BackedgeTakenInfo BTI0 = 2940 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 2941 BackedgeTakenInfo BTI1 = 2942 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 2943 SCEVHandle BECount = CouldNotCompute; 2944 SCEVHandle MaxBECount = CouldNotCompute; 2945 if (L->contains(FBB)) { 2946 // Both conditions must be false for the loop to continue executing. 2947 // Choose the less conservative count. 2948 if (BTI0.Exact == CouldNotCompute) 2949 BECount = BTI1.Exact; 2950 else if (BTI1.Exact == CouldNotCompute) 2951 BECount = BTI0.Exact; 2952 else 2953 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 2954 if (BTI0.Max == CouldNotCompute) 2955 MaxBECount = BTI1.Max; 2956 else if (BTI1.Max == CouldNotCompute) 2957 MaxBECount = BTI0.Max; 2958 else 2959 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 2960 } else { 2961 // Both conditions must be false for the loop to exit. 2962 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 2963 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute) 2964 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 2965 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute) 2966 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 2967 } 2968 2969 return BackedgeTakenInfo(BECount, MaxBECount); 2970 } 2971 } 2972 2973 // With an icmp, it may be feasible to compute an exact backedge-taken count. 2974 // Procede to the next level to examine the icmp. 2975 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 2976 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 2977 2978 // If it's not an integer or pointer comparison then compute it the hard way. 2979 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 2980 } 2981 2982 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 2983 /// backedge of the specified loop will execute if its exit condition 2984 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 2985 ScalarEvolution::BackedgeTakenInfo 2986 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 2987 ICmpInst *ExitCond, 2988 BasicBlock *TBB, 2989 BasicBlock *FBB) { 2990 2991 // If the condition was exit on true, convert the condition to exit on false 2992 ICmpInst::Predicate Cond; 2993 if (!L->contains(FBB)) 2994 Cond = ExitCond->getPredicate(); 2995 else 2996 Cond = ExitCond->getInversePredicate(); 2997 2998 // Handle common loops like: for (X = "string"; *X; ++X) 2999 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3000 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3001 SCEVHandle ItCnt = 3002 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3003 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3004 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3005 return BackedgeTakenInfo(ItCnt, 3006 isa<SCEVConstant>(ItCnt) ? ItCnt : 3007 getConstant(APInt::getMaxValue(BitWidth)-1)); 3008 } 3009 } 3010 3011 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 3012 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 3013 3014 // Try to evaluate any dependencies out of the loop. 3015 LHS = getSCEVAtScope(LHS, L); 3016 RHS = getSCEVAtScope(RHS, L); 3017 3018 // At this point, we would like to compute how many iterations of the 3019 // loop the predicate will return true for these inputs. 3020 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3021 // If there is a loop-invariant, force it into the RHS. 3022 std::swap(LHS, RHS); 3023 Cond = ICmpInst::getSwappedPredicate(Cond); 3024 } 3025 3026 // If we have a comparison of a chrec against a constant, try to use value 3027 // ranges to answer this query. 3028 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3029 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3030 if (AddRec->getLoop() == L) { 3031 // Form the constant range. 3032 ConstantRange CompRange( 3033 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3034 3035 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3036 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3037 } 3038 3039 switch (Cond) { 3040 case ICmpInst::ICMP_NE: { // while (X != Y) 3041 // Convert to: while (X-Y != 0) 3042 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3043 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3044 break; 3045 } 3046 case ICmpInst::ICMP_EQ: { 3047 // Convert to: while (X-Y == 0) // while (X == Y) 3048 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3049 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3050 break; 3051 } 3052 case ICmpInst::ICMP_SLT: { 3053 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3054 if (BTI.hasAnyInfo()) return BTI; 3055 break; 3056 } 3057 case ICmpInst::ICMP_SGT: { 3058 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3059 getNotSCEV(RHS), L, true); 3060 if (BTI.hasAnyInfo()) return BTI; 3061 break; 3062 } 3063 case ICmpInst::ICMP_ULT: { 3064 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3065 if (BTI.hasAnyInfo()) return BTI; 3066 break; 3067 } 3068 case ICmpInst::ICMP_UGT: { 3069 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3070 getNotSCEV(RHS), L, false); 3071 if (BTI.hasAnyInfo()) return BTI; 3072 break; 3073 } 3074 default: 3075 #if 0 3076 errs() << "ComputeBackedgeTakenCount "; 3077 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3078 errs() << "[unsigned] "; 3079 errs() << *LHS << " " 3080 << Instruction::getOpcodeName(Instruction::ICmp) 3081 << " " << *RHS << "\n"; 3082 #endif 3083 break; 3084 } 3085 return 3086 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3087 } 3088 3089 static ConstantInt * 3090 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3091 ScalarEvolution &SE) { 3092 SCEVHandle InVal = SE.getConstant(C); 3093 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 3094 assert(isa<SCEVConstant>(Val) && 3095 "Evaluation of SCEV at constant didn't fold correctly?"); 3096 return cast<SCEVConstant>(Val)->getValue(); 3097 } 3098 3099 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3100 /// and a GEP expression (missing the pointer index) indexing into it, return 3101 /// the addressed element of the initializer or null if the index expression is 3102 /// invalid. 3103 static Constant * 3104 GetAddressedElementFromGlobal(GlobalVariable *GV, 3105 const std::vector<ConstantInt*> &Indices) { 3106 Constant *Init = GV->getInitializer(); 3107 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3108 uint64_t Idx = Indices[i]->getZExtValue(); 3109 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3110 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3111 Init = cast<Constant>(CS->getOperand(Idx)); 3112 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3113 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3114 Init = cast<Constant>(CA->getOperand(Idx)); 3115 } else if (isa<ConstantAggregateZero>(Init)) { 3116 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3117 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3118 Init = Constant::getNullValue(STy->getElementType(Idx)); 3119 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3120 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3121 Init = Constant::getNullValue(ATy->getElementType()); 3122 } else { 3123 assert(0 && "Unknown constant aggregate type!"); 3124 } 3125 return 0; 3126 } else { 3127 return 0; // Unknown initializer type 3128 } 3129 } 3130 return Init; 3131 } 3132 3133 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3134 /// 'icmp op load X, cst', try to see if we can compute the backedge 3135 /// execution count. 3136 SCEVHandle ScalarEvolution:: 3137 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 3138 const Loop *L, 3139 ICmpInst::Predicate predicate) { 3140 if (LI->isVolatile()) return CouldNotCompute; 3141 3142 // Check to see if the loaded pointer is a getelementptr of a global. 3143 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3144 if (!GEP) return CouldNotCompute; 3145 3146 // Make sure that it is really a constant global we are gepping, with an 3147 // initializer, and make sure the first IDX is really 0. 3148 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3149 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 3150 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3151 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3152 return CouldNotCompute; 3153 3154 // Okay, we allow one non-constant index into the GEP instruction. 3155 Value *VarIdx = 0; 3156 std::vector<ConstantInt*> Indexes; 3157 unsigned VarIdxNum = 0; 3158 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3159 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3160 Indexes.push_back(CI); 3161 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3162 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's. 3163 VarIdx = GEP->getOperand(i); 3164 VarIdxNum = i-2; 3165 Indexes.push_back(0); 3166 } 3167 3168 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3169 // Check to see if X is a loop variant variable value now. 3170 SCEVHandle Idx = getSCEV(VarIdx); 3171 Idx = getSCEVAtScope(Idx, L); 3172 3173 // We can only recognize very limited forms of loop index expressions, in 3174 // particular, only affine AddRec's like {C1,+,C2}. 3175 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3176 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3177 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3178 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3179 return CouldNotCompute; 3180 3181 unsigned MaxSteps = MaxBruteForceIterations; 3182 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3183 ConstantInt *ItCst = 3184 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); 3185 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3186 3187 // Form the GEP offset. 3188 Indexes[VarIdxNum] = Val; 3189 3190 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 3191 if (Result == 0) break; // Cannot compute! 3192 3193 // Evaluate the condition for this iteration. 3194 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3195 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3196 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3197 #if 0 3198 errs() << "\n***\n*** Computed loop count " << *ItCst 3199 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3200 << "***\n"; 3201 #endif 3202 ++NumArrayLenItCounts; 3203 return getConstant(ItCst); // Found terminating iteration! 3204 } 3205 } 3206 return CouldNotCompute; 3207 } 3208 3209 3210 /// CanConstantFold - Return true if we can constant fold an instruction of the 3211 /// specified type, assuming that all operands were constants. 3212 static bool CanConstantFold(const Instruction *I) { 3213 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3214 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3215 return true; 3216 3217 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3218 if (const Function *F = CI->getCalledFunction()) 3219 return canConstantFoldCallTo(F); 3220 return false; 3221 } 3222 3223 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3224 /// in the loop that V is derived from. We allow arbitrary operations along the 3225 /// way, but the operands of an operation must either be constants or a value 3226 /// derived from a constant PHI. If this expression does not fit with these 3227 /// constraints, return null. 3228 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3229 // If this is not an instruction, or if this is an instruction outside of the 3230 // loop, it can't be derived from a loop PHI. 3231 Instruction *I = dyn_cast<Instruction>(V); 3232 if (I == 0 || !L->contains(I->getParent())) return 0; 3233 3234 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3235 if (L->getHeader() == I->getParent()) 3236 return PN; 3237 else 3238 // We don't currently keep track of the control flow needed to evaluate 3239 // PHIs, so we cannot handle PHIs inside of loops. 3240 return 0; 3241 } 3242 3243 // If we won't be able to constant fold this expression even if the operands 3244 // are constants, return early. 3245 if (!CanConstantFold(I)) return 0; 3246 3247 // Otherwise, we can evaluate this instruction if all of its operands are 3248 // constant or derived from a PHI node themselves. 3249 PHINode *PHI = 0; 3250 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3251 if (!(isa<Constant>(I->getOperand(Op)) || 3252 isa<GlobalValue>(I->getOperand(Op)))) { 3253 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3254 if (P == 0) return 0; // Not evolving from PHI 3255 if (PHI == 0) 3256 PHI = P; 3257 else if (PHI != P) 3258 return 0; // Evolving from multiple different PHIs. 3259 } 3260 3261 // This is a expression evolving from a constant PHI! 3262 return PHI; 3263 } 3264 3265 /// EvaluateExpression - Given an expression that passes the 3266 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3267 /// in the loop has the value PHIVal. If we can't fold this expression for some 3268 /// reason, return null. 3269 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3270 if (isa<PHINode>(V)) return PHIVal; 3271 if (Constant *C = dyn_cast<Constant>(V)) return C; 3272 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3273 Instruction *I = cast<Instruction>(V); 3274 3275 std::vector<Constant*> Operands; 3276 Operands.resize(I->getNumOperands()); 3277 3278 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3279 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3280 if (Operands[i] == 0) return 0; 3281 } 3282 3283 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3284 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3285 &Operands[0], Operands.size()); 3286 else 3287 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3288 &Operands[0], Operands.size()); 3289 } 3290 3291 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3292 /// in the header of its containing loop, we know the loop executes a 3293 /// constant number of times, and the PHI node is just a recurrence 3294 /// involving constants, fold it. 3295 Constant *ScalarEvolution:: 3296 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 3297 std::map<PHINode*, Constant*>::iterator I = 3298 ConstantEvolutionLoopExitValue.find(PN); 3299 if (I != ConstantEvolutionLoopExitValue.end()) 3300 return I->second; 3301 3302 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3303 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3304 3305 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3306 3307 // Since the loop is canonicalized, the PHI node must have two entries. One 3308 // entry must be a constant (coming in from outside of the loop), and the 3309 // second must be derived from the same PHI. 3310 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3311 Constant *StartCST = 3312 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3313 if (StartCST == 0) 3314 return RetVal = 0; // Must be a constant. 3315 3316 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3317 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3318 if (PN2 != PN) 3319 return RetVal = 0; // Not derived from same PHI. 3320 3321 // Execute the loop symbolically to determine the exit value. 3322 if (BEs.getActiveBits() >= 32) 3323 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3324 3325 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3326 unsigned IterationNum = 0; 3327 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3328 if (IterationNum == NumIterations) 3329 return RetVal = PHIVal; // Got exit value! 3330 3331 // Compute the value of the PHI node for the next iteration. 3332 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3333 if (NextPHI == PHIVal) 3334 return RetVal = NextPHI; // Stopped evolving! 3335 if (NextPHI == 0) 3336 return 0; // Couldn't evaluate! 3337 PHIVal = NextPHI; 3338 } 3339 } 3340 3341 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 3342 /// constant number of times (the condition evolves only from constants), 3343 /// try to evaluate a few iterations of the loop until we get the exit 3344 /// condition gets a value of ExitWhen (true or false). If we cannot 3345 /// evaluate the trip count of the loop, return CouldNotCompute. 3346 SCEVHandle ScalarEvolution:: 3347 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 3348 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3349 if (PN == 0) return CouldNotCompute; 3350 3351 // Since the loop is canonicalized, the PHI node must have two entries. One 3352 // entry must be a constant (coming in from outside of the loop), and the 3353 // second must be derived from the same PHI. 3354 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3355 Constant *StartCST = 3356 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3357 if (StartCST == 0) return CouldNotCompute; // Must be a constant. 3358 3359 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3360 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3361 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI. 3362 3363 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3364 // the loop symbolically to determine when the condition gets a value of 3365 // "ExitWhen". 3366 unsigned IterationNum = 0; 3367 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3368 for (Constant *PHIVal = StartCST; 3369 IterationNum != MaxIterations; ++IterationNum) { 3370 ConstantInt *CondVal = 3371 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3372 3373 // Couldn't symbolically evaluate. 3374 if (!CondVal) return CouldNotCompute; 3375 3376 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3377 ConstantEvolutionLoopExitValue[PN] = PHIVal; 3378 ++NumBruteForceTripCountsComputed; 3379 return getConstant(Type::Int32Ty, IterationNum); 3380 } 3381 3382 // Compute the value of the PHI node for the next iteration. 3383 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3384 if (NextPHI == 0 || NextPHI == PHIVal) 3385 return CouldNotCompute; // Couldn't evaluate or not making progress... 3386 PHIVal = NextPHI; 3387 } 3388 3389 // Too many iterations were needed to evaluate. 3390 return CouldNotCompute; 3391 } 3392 3393 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3394 /// at the specified scope in the program. The L value specifies a loop 3395 /// nest to evaluate the expression at, where null is the top-level or a 3396 /// specified loop is immediately inside of the loop. 3397 /// 3398 /// This method can be used to compute the exit value for a variable defined 3399 /// in a loop by querying what the value will hold in the parent loop. 3400 /// 3401 /// In the case that a relevant loop exit value cannot be computed, the 3402 /// original value V is returned. 3403 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3404 // FIXME: this should be turned into a virtual method on SCEV! 3405 3406 if (isa<SCEVConstant>(V)) return V; 3407 3408 // If this instruction is evolved from a constant-evolving PHI, compute the 3409 // exit value from the loop without using SCEVs. 3410 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3411 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3412 const Loop *LI = (*this->LI)[I->getParent()]; 3413 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3414 if (PHINode *PN = dyn_cast<PHINode>(I)) 3415 if (PN->getParent() == LI->getHeader()) { 3416 // Okay, there is no closed form solution for the PHI node. Check 3417 // to see if the loop that contains it has a known backedge-taken 3418 // count. If so, we may be able to force computation of the exit 3419 // value. 3420 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 3421 if (const SCEVConstant *BTCC = 3422 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3423 // Okay, we know how many times the containing loop executes. If 3424 // this is a constant evolving PHI node, get the final value at 3425 // the specified iteration number. 3426 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3427 BTCC->getValue()->getValue(), 3428 LI); 3429 if (RV) return getUnknown(RV); 3430 } 3431 } 3432 3433 // Okay, this is an expression that we cannot symbolically evaluate 3434 // into a SCEV. Check to see if it's possible to symbolically evaluate 3435 // the arguments into constants, and if so, try to constant propagate the 3436 // result. This is particularly useful for computing loop exit values. 3437 if (CanConstantFold(I)) { 3438 // Check to see if we've folded this instruction at this loop before. 3439 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3440 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3441 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3442 if (!Pair.second) 3443 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 3444 3445 std::vector<Constant*> Operands; 3446 Operands.reserve(I->getNumOperands()); 3447 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3448 Value *Op = I->getOperand(i); 3449 if (Constant *C = dyn_cast<Constant>(Op)) { 3450 Operands.push_back(C); 3451 } else { 3452 // If any of the operands is non-constant and if they are 3453 // non-integer and non-pointer, don't even try to analyze them 3454 // with scev techniques. 3455 if (!isSCEVable(Op->getType())) 3456 return V; 3457 3458 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 3459 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3460 Constant *C = SC->getValue(); 3461 if (C->getType() != Op->getType()) 3462 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3463 Op->getType(), 3464 false), 3465 C, Op->getType()); 3466 Operands.push_back(C); 3467 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3468 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3469 if (C->getType() != Op->getType()) 3470 C = 3471 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3472 Op->getType(), 3473 false), 3474 C, Op->getType()); 3475 Operands.push_back(C); 3476 } else 3477 return V; 3478 } else { 3479 return V; 3480 } 3481 } 3482 } 3483 3484 Constant *C; 3485 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3486 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3487 &Operands[0], Operands.size()); 3488 else 3489 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3490 &Operands[0], Operands.size()); 3491 Pair.first->second = C; 3492 return getUnknown(C); 3493 } 3494 } 3495 3496 // This is some other type of SCEVUnknown, just return it. 3497 return V; 3498 } 3499 3500 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3501 // Avoid performing the look-up in the common case where the specified 3502 // expression has no loop-variant portions. 3503 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3504 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3505 if (OpAtScope != Comm->getOperand(i)) { 3506 // Okay, at least one of these operands is loop variant but might be 3507 // foldable. Build a new instance of the folded commutative expression. 3508 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); 3509 NewOps.push_back(OpAtScope); 3510 3511 for (++i; i != e; ++i) { 3512 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3513 NewOps.push_back(OpAtScope); 3514 } 3515 if (isa<SCEVAddExpr>(Comm)) 3516 return getAddExpr(NewOps); 3517 if (isa<SCEVMulExpr>(Comm)) 3518 return getMulExpr(NewOps); 3519 if (isa<SCEVSMaxExpr>(Comm)) 3520 return getSMaxExpr(NewOps); 3521 if (isa<SCEVUMaxExpr>(Comm)) 3522 return getUMaxExpr(NewOps); 3523 assert(0 && "Unknown commutative SCEV type!"); 3524 } 3525 } 3526 // If we got here, all operands are loop invariant. 3527 return Comm; 3528 } 3529 3530 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3531 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 3532 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 3533 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3534 return Div; // must be loop invariant 3535 return getUDivExpr(LHS, RHS); 3536 } 3537 3538 // If this is a loop recurrence for a loop that does not contain L, then we 3539 // are dealing with the final value computed by the loop. 3540 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3541 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3542 // To evaluate this recurrence, we need to know how many times the AddRec 3543 // loop iterates. Compute this now. 3544 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3545 if (BackedgeTakenCount == CouldNotCompute) return AddRec; 3546 3547 // Then, evaluate the AddRec. 3548 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3549 } 3550 return AddRec; 3551 } 3552 3553 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3554 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3555 if (Op == Cast->getOperand()) 3556 return Cast; // must be loop invariant 3557 return getZeroExtendExpr(Op, Cast->getType()); 3558 } 3559 3560 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3561 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3562 if (Op == Cast->getOperand()) 3563 return Cast; // must be loop invariant 3564 return getSignExtendExpr(Op, Cast->getType()); 3565 } 3566 3567 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3568 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3569 if (Op == Cast->getOperand()) 3570 return Cast; // must be loop invariant 3571 return getTruncateExpr(Op, Cast->getType()); 3572 } 3573 3574 assert(0 && "Unknown SCEV type!"); 3575 return 0; 3576 } 3577 3578 /// getSCEVAtScope - This is a convenience function which does 3579 /// getSCEVAtScope(getSCEV(V), L). 3580 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3581 return getSCEVAtScope(getSCEV(V), L); 3582 } 3583 3584 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3585 /// following equation: 3586 /// 3587 /// A * X = B (mod N) 3588 /// 3589 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3590 /// A and B isn't important. 3591 /// 3592 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3593 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3594 ScalarEvolution &SE) { 3595 uint32_t BW = A.getBitWidth(); 3596 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3597 assert(A != 0 && "A must be non-zero."); 3598 3599 // 1. D = gcd(A, N) 3600 // 3601 // The gcd of A and N may have only one prime factor: 2. The number of 3602 // trailing zeros in A is its multiplicity 3603 uint32_t Mult2 = A.countTrailingZeros(); 3604 // D = 2^Mult2 3605 3606 // 2. Check if B is divisible by D. 3607 // 3608 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3609 // is not less than multiplicity of this prime factor for D. 3610 if (B.countTrailingZeros() < Mult2) 3611 return SE.getCouldNotCompute(); 3612 3613 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3614 // modulo (N / D). 3615 // 3616 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3617 // bit width during computations. 3618 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3619 APInt Mod(BW + 1, 0); 3620 Mod.set(BW - Mult2); // Mod = N / D 3621 APInt I = AD.multiplicativeInverse(Mod); 3622 3623 // 4. Compute the minimum unsigned root of the equation: 3624 // I * (B / D) mod (N / D) 3625 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3626 3627 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3628 // bits. 3629 return SE.getConstant(Result.trunc(BW)); 3630 } 3631 3632 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3633 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3634 /// might be the same) or two SCEVCouldNotCompute objects. 3635 /// 3636 static std::pair<SCEVHandle,SCEVHandle> 3637 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3638 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3639 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3640 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3641 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3642 3643 // We currently can only solve this if the coefficients are constants. 3644 if (!LC || !MC || !NC) { 3645 const SCEV *CNC = SE.getCouldNotCompute(); 3646 return std::make_pair(CNC, CNC); 3647 } 3648 3649 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3650 const APInt &L = LC->getValue()->getValue(); 3651 const APInt &M = MC->getValue()->getValue(); 3652 const APInt &N = NC->getValue()->getValue(); 3653 APInt Two(BitWidth, 2); 3654 APInt Four(BitWidth, 4); 3655 3656 { 3657 using namespace APIntOps; 3658 const APInt& C = L; 3659 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3660 // The B coefficient is M-N/2 3661 APInt B(M); 3662 B -= sdiv(N,Two); 3663 3664 // The A coefficient is N/2 3665 APInt A(N.sdiv(Two)); 3666 3667 // Compute the B^2-4ac term. 3668 APInt SqrtTerm(B); 3669 SqrtTerm *= B; 3670 SqrtTerm -= Four * (A * C); 3671 3672 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3673 // integer value or else APInt::sqrt() will assert. 3674 APInt SqrtVal(SqrtTerm.sqrt()); 3675 3676 // Compute the two solutions for the quadratic formula. 3677 // The divisions must be performed as signed divisions. 3678 APInt NegB(-B); 3679 APInt TwoA( A << 1 ); 3680 if (TwoA.isMinValue()) { 3681 const SCEV *CNC = SE.getCouldNotCompute(); 3682 return std::make_pair(CNC, CNC); 3683 } 3684 3685 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3686 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3687 3688 return std::make_pair(SE.getConstant(Solution1), 3689 SE.getConstant(Solution2)); 3690 } // end APIntOps namespace 3691 } 3692 3693 /// HowFarToZero - Return the number of times a backedge comparing the specified 3694 /// value to zero will execute. If not computable, return CouldNotCompute. 3695 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3696 // If the value is a constant 3697 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3698 // If the value is already zero, the branch will execute zero times. 3699 if (C->getValue()->isZero()) return C; 3700 return CouldNotCompute; // Otherwise it will loop infinitely. 3701 } 3702 3703 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3704 if (!AddRec || AddRec->getLoop() != L) 3705 return CouldNotCompute; 3706 3707 if (AddRec->isAffine()) { 3708 // If this is an affine expression, the execution count of this branch is 3709 // the minimum unsigned root of the following equation: 3710 // 3711 // Start + Step*N = 0 (mod 2^BW) 3712 // 3713 // equivalent to: 3714 // 3715 // Step*N = -Start (mod 2^BW) 3716 // 3717 // where BW is the common bit width of Start and Step. 3718 3719 // Get the initial value for the loop. 3720 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3721 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3722 3723 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3724 // For now we handle only constant steps. 3725 3726 // First, handle unitary steps. 3727 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3728 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3729 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3730 return Start; // N = Start (as unsigned) 3731 3732 // Then, try to solve the above equation provided that Start is constant. 3733 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3734 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3735 -StartC->getValue()->getValue(), 3736 *this); 3737 } 3738 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3739 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3740 // the quadratic equation to solve it. 3741 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3742 *this); 3743 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3744 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3745 if (R1) { 3746 #if 0 3747 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3748 << " sol#2: " << *R2 << "\n"; 3749 #endif 3750 // Pick the smallest positive root value. 3751 if (ConstantInt *CB = 3752 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3753 R1->getValue(), R2->getValue()))) { 3754 if (CB->getZExtValue() == false) 3755 std::swap(R1, R2); // R1 is the minimum root now. 3756 3757 // We can only use this value if the chrec ends up with an exact zero 3758 // value at this index. When solving for "X*X != 5", for example, we 3759 // should not accept a root of 2. 3760 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3761 if (Val->isZero()) 3762 return R1; // We found a quadratic root! 3763 } 3764 } 3765 } 3766 3767 return CouldNotCompute; 3768 } 3769 3770 /// HowFarToNonZero - Return the number of times a backedge checking the 3771 /// specified value for nonzero will execute. If not computable, return 3772 /// CouldNotCompute 3773 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3774 // Loops that look like: while (X == 0) are very strange indeed. We don't 3775 // handle them yet except for the trivial case. This could be expanded in the 3776 // future as needed. 3777 3778 // If the value is a constant, check to see if it is known to be non-zero 3779 // already. If so, the backedge will execute zero times. 3780 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3781 if (!C->getValue()->isNullValue()) 3782 return getIntegerSCEV(0, C->getType()); 3783 return CouldNotCompute; // Otherwise it will loop infinitely. 3784 } 3785 3786 // We could implement others, but I really doubt anyone writes loops like 3787 // this, and if they did, they would already be constant folded. 3788 return CouldNotCompute; 3789 } 3790 3791 /// getLoopPredecessor - If the given loop's header has exactly one unique 3792 /// predecessor outside the loop, return it. Otherwise return null. 3793 /// 3794 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3795 BasicBlock *Header = L->getHeader(); 3796 BasicBlock *Pred = 0; 3797 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3798 PI != E; ++PI) 3799 if (!L->contains(*PI)) { 3800 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3801 Pred = *PI; 3802 } 3803 return Pred; 3804 } 3805 3806 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3807 /// (which may not be an immediate predecessor) which has exactly one 3808 /// successor from which BB is reachable, or null if no such block is 3809 /// found. 3810 /// 3811 BasicBlock * 3812 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3813 // If the block has a unique predecessor, then there is no path from the 3814 // predecessor to the block that does not go through the direct edge 3815 // from the predecessor to the block. 3816 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3817 return Pred; 3818 3819 // A loop's header is defined to be a block that dominates the loop. 3820 // If the header has a unique predecessor outside the loop, it must be 3821 // a block that has exactly one successor that can reach the loop. 3822 if (Loop *L = LI->getLoopFor(BB)) 3823 return getLoopPredecessor(L); 3824 3825 return 0; 3826 } 3827 3828 /// HasSameValue - SCEV structural equivalence is usually sufficient for 3829 /// testing whether two expressions are equal, however for the purposes of 3830 /// looking for a condition guarding a loop, it can be useful to be a little 3831 /// more general, since a front-end may have replicated the controlling 3832 /// expression. 3833 /// 3834 static bool HasSameValue(const SCEVHandle &A, const SCEVHandle &B) { 3835 // Quick check to see if they are the same SCEV. 3836 if (A == B) return true; 3837 3838 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 3839 // two different instructions with the same value. Check for this case. 3840 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 3841 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 3842 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 3843 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 3844 if (AI->isIdenticalTo(BI)) 3845 return true; 3846 3847 // Otherwise assume they may have a different value. 3848 return false; 3849 } 3850 3851 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3852 /// a conditional between LHS and RHS. This is used to help avoid max 3853 /// expressions in loop trip counts. 3854 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3855 ICmpInst::Predicate Pred, 3856 const SCEV *LHS, const SCEV *RHS) { 3857 // Interpret a null as meaning no loop, where there is obviously no guard 3858 // (interprocedural conditions notwithstanding). 3859 if (!L) return false; 3860 3861 BasicBlock *Predecessor = getLoopPredecessor(L); 3862 BasicBlock *PredecessorDest = L->getHeader(); 3863 3864 // Starting at the loop predecessor, climb up the predecessor chain, as long 3865 // as there are predecessors that can be found that have unique successors 3866 // leading to the original header. 3867 for (; Predecessor; 3868 PredecessorDest = Predecessor, 3869 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 3870 3871 BranchInst *LoopEntryPredicate = 3872 dyn_cast<BranchInst>(Predecessor->getTerminator()); 3873 if (!LoopEntryPredicate || 3874 LoopEntryPredicate->isUnconditional()) 3875 continue; 3876 3877 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3878 if (!ICI) continue; 3879 3880 // Now that we found a conditional branch that dominates the loop, check to 3881 // see if it is the comparison we are looking for. 3882 Value *PreCondLHS = ICI->getOperand(0); 3883 Value *PreCondRHS = ICI->getOperand(1); 3884 ICmpInst::Predicate Cond; 3885 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) 3886 Cond = ICI->getPredicate(); 3887 else 3888 Cond = ICI->getInversePredicate(); 3889 3890 if (Cond == Pred) 3891 ; // An exact match. 3892 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3893 ; // The actual condition is beyond sufficient. 3894 else 3895 // Check a few special cases. 3896 switch (Cond) { 3897 case ICmpInst::ICMP_UGT: 3898 if (Pred == ICmpInst::ICMP_ULT) { 3899 std::swap(PreCondLHS, PreCondRHS); 3900 Cond = ICmpInst::ICMP_ULT; 3901 break; 3902 } 3903 continue; 3904 case ICmpInst::ICMP_SGT: 3905 if (Pred == ICmpInst::ICMP_SLT) { 3906 std::swap(PreCondLHS, PreCondRHS); 3907 Cond = ICmpInst::ICMP_SLT; 3908 break; 3909 } 3910 continue; 3911 case ICmpInst::ICMP_NE: 3912 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3913 // so check for this case by checking if the NE is comparing against 3914 // a minimum or maximum constant. 3915 if (!ICmpInst::isTrueWhenEqual(Pred)) 3916 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3917 const APInt &A = CI->getValue(); 3918 switch (Pred) { 3919 case ICmpInst::ICMP_SLT: 3920 if (A.isMaxSignedValue()) break; 3921 continue; 3922 case ICmpInst::ICMP_SGT: 3923 if (A.isMinSignedValue()) break; 3924 continue; 3925 case ICmpInst::ICMP_ULT: 3926 if (A.isMaxValue()) break; 3927 continue; 3928 case ICmpInst::ICMP_UGT: 3929 if (A.isMinValue()) break; 3930 continue; 3931 default: 3932 continue; 3933 } 3934 Cond = ICmpInst::ICMP_NE; 3935 // NE is symmetric but the original comparison may not be. Swap 3936 // the operands if necessary so that they match below. 3937 if (isa<SCEVConstant>(LHS)) 3938 std::swap(PreCondLHS, PreCondRHS); 3939 break; 3940 } 3941 continue; 3942 default: 3943 // We weren't able to reconcile the condition. 3944 continue; 3945 } 3946 3947 if (!PreCondLHS->getType()->isInteger()) continue; 3948 3949 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3950 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3951 if ((HasSameValue(LHS, PreCondLHSSCEV) && 3952 HasSameValue(RHS, PreCondRHSSCEV)) || 3953 (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) && 3954 HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)))) 3955 return true; 3956 } 3957 3958 return false; 3959 } 3960 3961 /// getBECount - Subtract the end and start values and divide by the step, 3962 /// rounding up, to get the number of times the backedge is executed. Return 3963 /// CouldNotCompute if an intermediate computation overflows. 3964 SCEVHandle ScalarEvolution::getBECount(const SCEVHandle &Start, 3965 const SCEVHandle &End, 3966 const SCEVHandle &Step) { 3967 const Type *Ty = Start->getType(); 3968 SCEVHandle NegOne = getIntegerSCEV(-1, Ty); 3969 SCEVHandle Diff = getMinusSCEV(End, Start); 3970 SCEVHandle RoundUp = getAddExpr(Step, NegOne); 3971 3972 // Add an adjustment to the difference between End and Start so that 3973 // the division will effectively round up. 3974 SCEVHandle Add = getAddExpr(Diff, RoundUp); 3975 3976 // Check Add for unsigned overflow. 3977 // TODO: More sophisticated things could be done here. 3978 const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1); 3979 SCEVHandle OperandExtendedAdd = 3980 getAddExpr(getZeroExtendExpr(Diff, WideTy), 3981 getZeroExtendExpr(RoundUp, WideTy)); 3982 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 3983 return CouldNotCompute; 3984 3985 return getUDivExpr(Add, Step); 3986 } 3987 3988 /// HowManyLessThans - Return the number of times a backedge containing the 3989 /// specified less-than comparison will execute. If not computable, return 3990 /// CouldNotCompute. 3991 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3992 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 3993 const Loop *L, bool isSigned) { 3994 // Only handle: "ADDREC < LoopInvariant". 3995 if (!RHS->isLoopInvariant(L)) return CouldNotCompute; 3996 3997 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3998 if (!AddRec || AddRec->getLoop() != L) 3999 return CouldNotCompute; 4000 4001 if (AddRec->isAffine()) { 4002 // FORNOW: We only support unit strides. 4003 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 4004 SCEVHandle Step = AddRec->getStepRecurrence(*this); 4005 4006 // TODO: handle non-constant strides. 4007 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 4008 if (!CStep || CStep->isZero()) 4009 return CouldNotCompute; 4010 if (CStep->isOne()) { 4011 // With unit stride, the iteration never steps past the limit value. 4012 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 4013 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 4014 // Test whether a positive iteration iteration can step past the limit 4015 // value and past the maximum value for its type in a single step. 4016 if (isSigned) { 4017 APInt Max = APInt::getSignedMaxValue(BitWidth); 4018 if ((Max - CStep->getValue()->getValue()) 4019 .slt(CLimit->getValue()->getValue())) 4020 return CouldNotCompute; 4021 } else { 4022 APInt Max = APInt::getMaxValue(BitWidth); 4023 if ((Max - CStep->getValue()->getValue()) 4024 .ult(CLimit->getValue()->getValue())) 4025 return CouldNotCompute; 4026 } 4027 } else 4028 // TODO: handle non-constant limit values below. 4029 return CouldNotCompute; 4030 } else 4031 // TODO: handle negative strides below. 4032 return CouldNotCompute; 4033 4034 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 4035 // m. So, we count the number of iterations in which {n,+,s} < m is true. 4036 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 4037 // treat m-n as signed nor unsigned due to overflow possibility. 4038 4039 // First, we get the value of the LHS in the first iteration: n 4040 SCEVHandle Start = AddRec->getOperand(0); 4041 4042 // Determine the minimum constant start value. 4043 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 4044 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 4045 APInt::getMinValue(BitWidth)); 4046 4047 // If we know that the condition is true in order to enter the loop, 4048 // then we know that it will run exactly (m-n)/s times. Otherwise, we 4049 // only know that it will execute (max(m,n)-n)/s times. In both cases, 4050 // the division must round up. 4051 SCEVHandle End = RHS; 4052 if (!isLoopGuardedByCond(L, 4053 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 4054 getMinusSCEV(Start, Step), RHS)) 4055 End = isSigned ? getSMaxExpr(RHS, Start) 4056 : getUMaxExpr(RHS, Start); 4057 4058 // Determine the maximum constant end value. 4059 SCEVHandle MaxEnd = 4060 isa<SCEVConstant>(End) ? End : 4061 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) 4062 .ashr(GetMinSignBits(End) - 1) : 4063 APInt::getMaxValue(BitWidth) 4064 .lshr(GetMinLeadingZeros(End))); 4065 4066 // Finally, we subtract these two values and divide, rounding up, to get 4067 // the number of times the backedge is executed. 4068 SCEVHandle BECount = getBECount(Start, End, Step); 4069 4070 // The maximum backedge count is similar, except using the minimum start 4071 // value and the maximum end value. 4072 SCEVHandle MaxBECount = getBECount(MinStart, MaxEnd, Step);; 4073 4074 return BackedgeTakenInfo(BECount, MaxBECount); 4075 } 4076 4077 return CouldNotCompute; 4078 } 4079 4080 /// getNumIterationsInRange - Return the number of iterations of this loop that 4081 /// produce values in the specified constant range. Another way of looking at 4082 /// this is that it returns the first iteration number where the value is not in 4083 /// the condition, thus computing the exit count. If the iteration count can't 4084 /// be computed, an instance of SCEVCouldNotCompute is returned. 4085 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 4086 ScalarEvolution &SE) const { 4087 if (Range.isFullSet()) // Infinite loop. 4088 return SE.getCouldNotCompute(); 4089 4090 // If the start is a non-zero constant, shift the range to simplify things. 4091 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 4092 if (!SC->getValue()->isZero()) { 4093 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end()); 4094 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 4095 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 4096 if (const SCEVAddRecExpr *ShiftedAddRec = 4097 dyn_cast<SCEVAddRecExpr>(Shifted)) 4098 return ShiftedAddRec->getNumIterationsInRange( 4099 Range.subtract(SC->getValue()->getValue()), SE); 4100 // This is strange and shouldn't happen. 4101 return SE.getCouldNotCompute(); 4102 } 4103 4104 // The only time we can solve this is when we have all constant indices. 4105 // Otherwise, we cannot determine the overflow conditions. 4106 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 4107 if (!isa<SCEVConstant>(getOperand(i))) 4108 return SE.getCouldNotCompute(); 4109 4110 4111 // Okay at this point we know that all elements of the chrec are constants and 4112 // that the start element is zero. 4113 4114 // First check to see if the range contains zero. If not, the first 4115 // iteration exits. 4116 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 4117 if (!Range.contains(APInt(BitWidth, 0))) 4118 return SE.getIntegerSCEV(0, getType()); 4119 4120 if (isAffine()) { 4121 // If this is an affine expression then we have this situation: 4122 // Solve {0,+,A} in Range === Ax in Range 4123 4124 // We know that zero is in the range. If A is positive then we know that 4125 // the upper value of the range must be the first possible exit value. 4126 // If A is negative then the lower of the range is the last possible loop 4127 // value. Also note that we already checked for a full range. 4128 APInt One(BitWidth,1); 4129 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 4130 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 4131 4132 // The exit value should be (End+A)/A. 4133 APInt ExitVal = (End + A).udiv(A); 4134 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 4135 4136 // Evaluate at the exit value. If we really did fall out of the valid 4137 // range, then we computed our trip count, otherwise wrap around or other 4138 // things must have happened. 4139 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 4140 if (Range.contains(Val->getValue())) 4141 return SE.getCouldNotCompute(); // Something strange happened 4142 4143 // Ensure that the previous value is in the range. This is a sanity check. 4144 assert(Range.contains( 4145 EvaluateConstantChrecAtConstant(this, 4146 ConstantInt::get(ExitVal - One), SE)->getValue()) && 4147 "Linear scev computation is off in a bad way!"); 4148 return SE.getConstant(ExitValue); 4149 } else if (isQuadratic()) { 4150 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 4151 // quadratic equation to solve it. To do this, we must frame our problem in 4152 // terms of figuring out when zero is crossed, instead of when 4153 // Range.getUpper() is crossed. 4154 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end()); 4155 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 4156 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 4157 4158 // Next, solve the constructed addrec 4159 std::pair<SCEVHandle,SCEVHandle> Roots = 4160 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 4161 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4162 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4163 if (R1) { 4164 // Pick the smallest positive root value. 4165 if (ConstantInt *CB = 4166 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4167 R1->getValue(), R2->getValue()))) { 4168 if (CB->getZExtValue() == false) 4169 std::swap(R1, R2); // R1 is the minimum root now. 4170 4171 // Make sure the root is not off by one. The returned iteration should 4172 // not be in the range, but the previous one should be. When solving 4173 // for "X*X < 5", for example, we should not return a root of 2. 4174 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 4175 R1->getValue(), 4176 SE); 4177 if (Range.contains(R1Val->getValue())) { 4178 // The next iteration must be out of the range... 4179 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 4180 4181 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 4182 if (!Range.contains(R1Val->getValue())) 4183 return SE.getConstant(NextVal); 4184 return SE.getCouldNotCompute(); // Something strange happened 4185 } 4186 4187 // If R1 was not in the range, then it is a good return value. Make 4188 // sure that R1-1 WAS in the range though, just in case. 4189 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 4190 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 4191 if (Range.contains(R1Val->getValue())) 4192 return R1; 4193 return SE.getCouldNotCompute(); // Something strange happened 4194 } 4195 } 4196 } 4197 4198 return SE.getCouldNotCompute(); 4199 } 4200 4201 4202 4203 //===----------------------------------------------------------------------===// 4204 // SCEVCallbackVH Class Implementation 4205 //===----------------------------------------------------------------------===// 4206 4207 void ScalarEvolution::SCEVCallbackVH::deleted() { 4208 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4209 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 4210 SE->ConstantEvolutionLoopExitValue.erase(PN); 4211 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 4212 SE->ValuesAtScopes.erase(I); 4213 SE->Scalars.erase(getValPtr()); 4214 // this now dangles! 4215 } 4216 4217 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 4218 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4219 4220 // Forget all the expressions associated with users of the old value, 4221 // so that future queries will recompute the expressions using the new 4222 // value. 4223 SmallVector<User *, 16> Worklist; 4224 Value *Old = getValPtr(); 4225 bool DeleteOld = false; 4226 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 4227 UI != UE; ++UI) 4228 Worklist.push_back(*UI); 4229 while (!Worklist.empty()) { 4230 User *U = Worklist.pop_back_val(); 4231 // Deleting the Old value will cause this to dangle. Postpone 4232 // that until everything else is done. 4233 if (U == Old) { 4234 DeleteOld = true; 4235 continue; 4236 } 4237 if (PHINode *PN = dyn_cast<PHINode>(U)) 4238 SE->ConstantEvolutionLoopExitValue.erase(PN); 4239 if (Instruction *I = dyn_cast<Instruction>(U)) 4240 SE->ValuesAtScopes.erase(I); 4241 if (SE->Scalars.erase(U)) 4242 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 4243 UI != UE; ++UI) 4244 Worklist.push_back(*UI); 4245 } 4246 if (DeleteOld) { 4247 if (PHINode *PN = dyn_cast<PHINode>(Old)) 4248 SE->ConstantEvolutionLoopExitValue.erase(PN); 4249 if (Instruction *I = dyn_cast<Instruction>(Old)) 4250 SE->ValuesAtScopes.erase(I); 4251 SE->Scalars.erase(Old); 4252 // this now dangles! 4253 } 4254 // this may dangle! 4255 } 4256 4257 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 4258 : CallbackVH(V), SE(se) {} 4259 4260 //===----------------------------------------------------------------------===// 4261 // ScalarEvolution Class Implementation 4262 //===----------------------------------------------------------------------===// 4263 4264 ScalarEvolution::ScalarEvolution() 4265 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute(0)) { 4266 } 4267 4268 bool ScalarEvolution::runOnFunction(Function &F) { 4269 this->F = &F; 4270 LI = &getAnalysis<LoopInfo>(); 4271 TD = getAnalysisIfAvailable<TargetData>(); 4272 return false; 4273 } 4274 4275 void ScalarEvolution::releaseMemory() { 4276 Scalars.clear(); 4277 BackedgeTakenCounts.clear(); 4278 ConstantEvolutionLoopExitValue.clear(); 4279 ValuesAtScopes.clear(); 4280 4281 for (std::map<ConstantInt*, SCEVConstant*>::iterator 4282 I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I) 4283 delete I->second; 4284 for (std::map<std::pair<const SCEV*, const Type*>, 4285 SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(), 4286 E = SCEVTruncates.end(); I != E; ++I) 4287 delete I->second; 4288 for (std::map<std::pair<const SCEV*, const Type*>, 4289 SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(), 4290 E = SCEVZeroExtends.end(); I != E; ++I) 4291 delete I->second; 4292 for (std::map<std::pair<unsigned, std::vector<const SCEV*> >, 4293 SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(), 4294 E = SCEVCommExprs.end(); I != E; ++I) 4295 delete I->second; 4296 for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator 4297 I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I) 4298 delete I->second; 4299 for (std::map<std::pair<const SCEV*, const Type*>, 4300 SCEVSignExtendExpr*>::iterator I = SCEVSignExtends.begin(), 4301 E = SCEVSignExtends.end(); I != E; ++I) 4302 delete I->second; 4303 for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >, 4304 SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(), 4305 E = SCEVAddRecExprs.end(); I != E; ++I) 4306 delete I->second; 4307 for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(), 4308 E = SCEVUnknowns.end(); I != E; ++I) 4309 delete I->second; 4310 4311 SCEVConstants.clear(); 4312 SCEVTruncates.clear(); 4313 SCEVZeroExtends.clear(); 4314 SCEVCommExprs.clear(); 4315 SCEVUDivs.clear(); 4316 SCEVSignExtends.clear(); 4317 SCEVAddRecExprs.clear(); 4318 SCEVUnknowns.clear(); 4319 } 4320 4321 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 4322 AU.setPreservesAll(); 4323 AU.addRequiredTransitive<LoopInfo>(); 4324 } 4325 4326 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 4327 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 4328 } 4329 4330 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 4331 const Loop *L) { 4332 // Print all inner loops first 4333 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4334 PrintLoopInfo(OS, SE, *I); 4335 4336 OS << "Loop " << L->getHeader()->getName() << ": "; 4337 4338 SmallVector<BasicBlock*, 8> ExitBlocks; 4339 L->getExitBlocks(ExitBlocks); 4340 if (ExitBlocks.size() != 1) 4341 OS << "<multiple exits> "; 4342 4343 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 4344 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 4345 } else { 4346 OS << "Unpredictable backedge-taken count. "; 4347 } 4348 4349 OS << "\n"; 4350 } 4351 4352 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 4353 // ScalarEvolution's implementaiton of the print method is to print 4354 // out SCEV values of all instructions that are interesting. Doing 4355 // this potentially causes it to create new SCEV objects though, 4356 // which technically conflicts with the const qualifier. This isn't 4357 // observable from outside the class though (the hasSCEV function 4358 // notwithstanding), so casting away the const isn't dangerous. 4359 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 4360 4361 OS << "Classifying expressions for: " << F->getName() << "\n"; 4362 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 4363 if (isSCEVable(I->getType())) { 4364 OS << *I; 4365 OS << " --> "; 4366 SCEVHandle SV = SE.getSCEV(&*I); 4367 SV->print(OS); 4368 4369 const Loop *L = LI->getLoopFor((*I).getParent()); 4370 4371 SCEVHandle AtUse = SE.getSCEVAtScope(SV, L); 4372 if (AtUse != SV) { 4373 OS << " --> "; 4374 AtUse->print(OS); 4375 } 4376 4377 if (L) { 4378 OS << "\t\t" "Exits: "; 4379 SCEVHandle ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 4380 if (!ExitValue->isLoopInvariant(L)) { 4381 OS << "<<Unknown>>"; 4382 } else { 4383 OS << *ExitValue; 4384 } 4385 } 4386 4387 OS << "\n"; 4388 } 4389 4390 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 4391 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 4392 PrintLoopInfo(OS, &SE, *I); 4393 } 4394 4395 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 4396 raw_os_ostream OS(o); 4397 print(OS, M); 4398 } 4399