1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumBruteForceEvaluations, 87 "Number of brute force evaluations needed to " 88 "calculate high-order polynomial exit values"); 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant derived loop"), 102 cl::init(100)); 103 104 namespace { 105 RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis"); 107 } 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 SCEV::~SCEV() {} 118 void SCEV::dump() const { 119 print(cerr); 120 } 121 122 /// getValueRange - Return the tightest constant bounds that this value is 123 /// known to have. This method is only valid on integer SCEV objects. 124 ConstantRange SCEV::getValueRange() const { 125 const Type *Ty = getType(); 126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); 127 // Default to a full range if no better information is available. 128 return ConstantRange(getBitWidth()); 129 } 130 131 uint32_t SCEV::getBitWidth() const { 132 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 133 return ITy->getBitWidth(); 134 return 0; 135 } 136 137 138 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc, 158 ScalarEvolution &SE) const { 159 return this; 160 } 161 162 void SCEVCouldNotCompute::print(std::ostream &OS) const { 163 OS << "***COULDNOTCOMPUTE***"; 164 } 165 166 bool SCEVCouldNotCompute::classof(const SCEV *S) { 167 return S->getSCEVType() == scCouldNotCompute; 168 } 169 170 171 // SCEVConstants - Only allow the creation of one SCEVConstant for any 172 // particular value. Don't use a SCEVHandle here, or else the object will 173 // never be deleted! 174 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 175 176 177 SCEVConstant::~SCEVConstant() { 178 SCEVConstants->erase(V); 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 182 SCEVConstant *&R = (*SCEVConstants)[V]; 183 if (R == 0) R = new SCEVConstant(V); 184 return R; 185 } 186 187 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 188 return getConstant(ConstantInt::get(Val)); 189 } 190 191 ConstantRange SCEVConstant::getValueRange() const { 192 return ConstantRange(V->getValue()); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(std::ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 202 // particular input. Don't use a SCEVHandle here, or else the object will 203 // never be deleted! 204 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 205 SCEVTruncateExpr*> > SCEVTruncates; 206 207 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 208 : SCEV(scTruncate), Op(op), Ty(ty) { 209 assert(Op->getType()->isInteger() && Ty->isInteger() && 210 "Cannot truncate non-integer value!"); 211 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 212 && "This is not a truncating conversion!"); 213 } 214 215 SCEVTruncateExpr::~SCEVTruncateExpr() { 216 SCEVTruncates->erase(std::make_pair(Op, Ty)); 217 } 218 219 ConstantRange SCEVTruncateExpr::getValueRange() const { 220 return getOperand()->getValueRange().truncate(getBitWidth()); 221 } 222 223 void SCEVTruncateExpr::print(std::ostream &OS) const { 224 OS << "(truncate " << *Op << " to " << *Ty << ")"; 225 } 226 227 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 228 // particular input. Don't use a SCEVHandle here, or else the object will never 229 // be deleted! 230 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 231 SCEVZeroExtendExpr*> > SCEVZeroExtends; 232 233 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 234 : SCEV(scZeroExtend), Op(op), Ty(ty) { 235 assert(Op->getType()->isInteger() && Ty->isInteger() && 236 "Cannot zero extend non-integer value!"); 237 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 238 && "This is not an extending conversion!"); 239 } 240 241 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 242 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 243 } 244 245 ConstantRange SCEVZeroExtendExpr::getValueRange() const { 246 return getOperand()->getValueRange().zeroExtend(getBitWidth()); 247 } 248 249 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 250 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 251 } 252 253 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 254 // particular input. Don't use a SCEVHandle here, or else the object will never 255 // be deleted! 256 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 257 SCEVSignExtendExpr*> > SCEVSignExtends; 258 259 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 260 : SCEV(scSignExtend), Op(op), Ty(ty) { 261 assert(Op->getType()->isInteger() && Ty->isInteger() && 262 "Cannot sign extend non-integer value!"); 263 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 264 && "This is not an extending conversion!"); 265 } 266 267 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 268 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 269 } 270 271 ConstantRange SCEVSignExtendExpr::getValueRange() const { 272 return getOperand()->getValueRange().signExtend(getBitWidth()); 273 } 274 275 void SCEVSignExtendExpr::print(std::ostream &OS) const { 276 OS << "(signextend " << *Op << " to " << *Ty << ")"; 277 } 278 279 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 280 // particular input. Don't use a SCEVHandle here, or else the object will never 281 // be deleted! 282 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 283 SCEVCommutativeExpr*> > SCEVCommExprs; 284 285 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 286 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 287 std::vector<SCEV*>(Operands.begin(), 288 Operands.end()))); 289 } 290 291 void SCEVCommutativeExpr::print(std::ostream &OS) const { 292 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 293 const char *OpStr = getOperationStr(); 294 OS << "(" << *Operands[0]; 295 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 296 OS << OpStr << *Operands[i]; 297 OS << ")"; 298 } 299 300 SCEVHandle SCEVCommutativeExpr:: 301 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 302 const SCEVHandle &Conc, 303 ScalarEvolution &SE) const { 304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 305 SCEVHandle H = 306 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 307 if (H != getOperand(i)) { 308 std::vector<SCEVHandle> NewOps; 309 NewOps.reserve(getNumOperands()); 310 for (unsigned j = 0; j != i; ++j) 311 NewOps.push_back(getOperand(j)); 312 NewOps.push_back(H); 313 for (++i; i != e; ++i) 314 NewOps.push_back(getOperand(i)-> 315 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 316 317 if (isa<SCEVAddExpr>(this)) 318 return SE.getAddExpr(NewOps); 319 else if (isa<SCEVMulExpr>(this)) 320 return SE.getMulExpr(NewOps); 321 else 322 assert(0 && "Unknown commutative expr!"); 323 } 324 } 325 return this; 326 } 327 328 329 // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 333 SCEVSDivExpr*> > SCEVSDivs; 334 335 SCEVSDivExpr::~SCEVSDivExpr() { 336 SCEVSDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 void SCEVSDivExpr::print(std::ostream &OS) const { 340 OS << "(" << *LHS << " /s " << *RHS << ")"; 341 } 342 343 const Type *SCEVSDivExpr::getType() const { 344 return LHS->getType(); 345 } 346 347 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 348 // particular input. Don't use a SCEVHandle here, or else the object will never 349 // be deleted! 350 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 351 SCEVAddRecExpr*> > SCEVAddRecExprs; 352 353 SCEVAddRecExpr::~SCEVAddRecExpr() { 354 SCEVAddRecExprs->erase(std::make_pair(L, 355 std::vector<SCEV*>(Operands.begin(), 356 Operands.end()))); 357 } 358 359 SCEVHandle SCEVAddRecExpr:: 360 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 361 const SCEVHandle &Conc, 362 ScalarEvolution &SE) const { 363 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 364 SCEVHandle H = 365 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 366 if (H != getOperand(i)) { 367 std::vector<SCEVHandle> NewOps; 368 NewOps.reserve(getNumOperands()); 369 for (unsigned j = 0; j != i; ++j) 370 NewOps.push_back(getOperand(j)); 371 NewOps.push_back(H); 372 for (++i; i != e; ++i) 373 NewOps.push_back(getOperand(i)-> 374 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 375 376 return SE.getAddRecExpr(NewOps, L); 377 } 378 } 379 return this; 380 } 381 382 383 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 384 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 385 // contain L and if the start is invariant. 386 return !QueryLoop->contains(L->getHeader()) && 387 getOperand(0)->isLoopInvariant(QueryLoop); 388 } 389 390 391 void SCEVAddRecExpr::print(std::ostream &OS) const { 392 OS << "{" << *Operands[0]; 393 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 394 OS << ",+," << *Operands[i]; 395 OS << "}<" << L->getHeader()->getName() + ">"; 396 } 397 398 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 399 // value. Don't use a SCEVHandle here, or else the object will never be 400 // deleted! 401 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 402 403 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 404 405 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 406 // All non-instruction values are loop invariant. All instructions are loop 407 // invariant if they are not contained in the specified loop. 408 if (Instruction *I = dyn_cast<Instruction>(V)) 409 return !L->contains(I->getParent()); 410 return true; 411 } 412 413 const Type *SCEVUnknown::getType() const { 414 return V->getType(); 415 } 416 417 void SCEVUnknown::print(std::ostream &OS) const { 418 WriteAsOperand(OS, V, false); 419 } 420 421 //===----------------------------------------------------------------------===// 422 // SCEV Utilities 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 427 /// than the complexity of the RHS. This comparator is used to canonicalize 428 /// expressions. 429 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 430 bool operator()(SCEV *LHS, SCEV *RHS) { 431 return LHS->getSCEVType() < RHS->getSCEVType(); 432 } 433 }; 434 } 435 436 /// GroupByComplexity - Given a list of SCEV objects, order them by their 437 /// complexity, and group objects of the same complexity together by value. 438 /// When this routine is finished, we know that any duplicates in the vector are 439 /// consecutive and that complexity is monotonically increasing. 440 /// 441 /// Note that we go take special precautions to ensure that we get determinstic 442 /// results from this routine. In other words, we don't want the results of 443 /// this to depend on where the addresses of various SCEV objects happened to 444 /// land in memory. 445 /// 446 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 447 if (Ops.size() < 2) return; // Noop 448 if (Ops.size() == 2) { 449 // This is the common case, which also happens to be trivially simple. 450 // Special case it. 451 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) 452 std::swap(Ops[0], Ops[1]); 453 return; 454 } 455 456 // Do the rough sort by complexity. 457 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 458 459 // Now that we are sorted by complexity, group elements of the same 460 // complexity. Note that this is, at worst, N^2, but the vector is likely to 461 // be extremely short in practice. Note that we take this approach because we 462 // do not want to depend on the addresses of the objects we are grouping. 463 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 464 SCEV *S = Ops[i]; 465 unsigned Complexity = S->getSCEVType(); 466 467 // If there are any objects of the same complexity and same value as this 468 // one, group them. 469 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 470 if (Ops[j] == S) { // Found a duplicate. 471 // Move it to immediately after i'th element. 472 std::swap(Ops[i+1], Ops[j]); 473 ++i; // no need to rescan it. 474 if (i == e-2) return; // Done! 475 } 476 } 477 } 478 } 479 480 481 482 //===----------------------------------------------------------------------===// 483 // Simple SCEV method implementations 484 //===----------------------------------------------------------------------===// 485 486 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 487 /// specified signed integer value and return a SCEV for the constant. 488 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 489 Constant *C; 490 if (Val == 0) 491 C = Constant::getNullValue(Ty); 492 else if (Ty->isFloatingPoint()) 493 C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 494 APFloat::IEEEdouble, Val)); 495 else 496 C = ConstantInt::get(Ty, Val); 497 return getUnknown(C); 498 } 499 500 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 501 /// input value to the specified type. If the type must be extended, it is zero 502 /// extended. 503 static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty, 504 ScalarEvolution &SE) { 505 const Type *SrcTy = V->getType(); 506 assert(SrcTy->isInteger() && Ty->isInteger() && 507 "Cannot truncate or zero extend with non-integer arguments!"); 508 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 509 return V; // No conversion 510 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 511 return SE.getTruncateExpr(V, Ty); 512 return SE.getZeroExtendExpr(V, Ty); 513 } 514 515 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 516 /// 517 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 518 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 519 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 520 521 return getMulExpr(V, getIntegerSCEV(-1, V->getType())); 522 } 523 524 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 525 /// 526 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 527 const SCEVHandle &RHS) { 528 // X - Y --> X + -Y 529 return getAddExpr(LHS, getNegativeSCEV(RHS)); 530 } 531 532 533 /// PartialFact - Compute V!/(V-NumSteps)! 534 static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps, 535 ScalarEvolution &SE) { 536 // Handle this case efficiently, it is common to have constant iteration 537 // counts while computing loop exit values. 538 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 539 const APInt& Val = SC->getValue()->getValue(); 540 APInt Result(Val.getBitWidth(), 1); 541 for (; NumSteps; --NumSteps) 542 Result *= Val-(NumSteps-1); 543 return SE.getConstant(Result); 544 } 545 546 const Type *Ty = V->getType(); 547 if (NumSteps == 0) 548 return SE.getIntegerSCEV(1, Ty); 549 550 SCEVHandle Result = V; 551 for (unsigned i = 1; i != NumSteps; ++i) 552 Result = SE.getMulExpr(Result, SE.getMinusSCEV(V, 553 SE.getIntegerSCEV(i, Ty))); 554 return Result; 555 } 556 557 558 /// evaluateAtIteration - Return the value of this chain of recurrences at 559 /// the specified iteration number. We can evaluate this recurrence by 560 /// multiplying each element in the chain by the binomial coefficient 561 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 562 /// 563 /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) 564 /// 565 /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. 566 /// Is the binomial equation safe using modular arithmetic?? 567 /// 568 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 569 ScalarEvolution &SE) const { 570 SCEVHandle Result = getStart(); 571 int Divisor = 1; 572 const Type *Ty = It->getType(); 573 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 574 SCEVHandle BC = PartialFact(It, i, SE); 575 Divisor *= i; 576 SCEVHandle Val = SE.getSDivExpr(SE.getMulExpr(BC, getOperand(i)), 577 SE.getIntegerSCEV(Divisor,Ty)); 578 Result = SE.getAddExpr(Result, Val); 579 } 580 return Result; 581 } 582 583 584 //===----------------------------------------------------------------------===// 585 // SCEV Expression folder implementations 586 //===----------------------------------------------------------------------===// 587 588 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 589 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 590 return getUnknown( 591 ConstantExpr::getTrunc(SC->getValue(), Ty)); 592 593 // If the input value is a chrec scev made out of constants, truncate 594 // all of the constants. 595 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 596 std::vector<SCEVHandle> Operands; 597 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 598 // FIXME: This should allow truncation of other expression types! 599 if (isa<SCEVConstant>(AddRec->getOperand(i))) 600 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 601 else 602 break; 603 if (Operands.size() == AddRec->getNumOperands()) 604 return getAddRecExpr(Operands, AddRec->getLoop()); 605 } 606 607 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 608 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 609 return Result; 610 } 611 612 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 613 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 614 return getUnknown( 615 ConstantExpr::getZExt(SC->getValue(), Ty)); 616 617 // FIXME: If the input value is a chrec scev, and we can prove that the value 618 // did not overflow the old, smaller, value, we can zero extend all of the 619 // operands (often constants). This would allow analysis of something like 620 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 621 622 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 623 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 624 return Result; 625 } 626 627 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 628 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 629 return getUnknown( 630 ConstantExpr::getSExt(SC->getValue(), Ty)); 631 632 // FIXME: If the input value is a chrec scev, and we can prove that the value 633 // did not overflow the old, smaller, value, we can sign extend all of the 634 // operands (often constants). This would allow analysis of something like 635 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 636 637 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 638 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 639 return Result; 640 } 641 642 // get - Get a canonical add expression, or something simpler if possible. 643 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 644 assert(!Ops.empty() && "Cannot get empty add!"); 645 if (Ops.size() == 1) return Ops[0]; 646 647 // Sort by complexity, this groups all similar expression types together. 648 GroupByComplexity(Ops); 649 650 // If there are any constants, fold them together. 651 unsigned Idx = 0; 652 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 653 ++Idx; 654 assert(Idx < Ops.size()); 655 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 656 // We found two constants, fold them together! 657 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 658 RHSC->getValue()->getValue()); 659 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 660 Ops[0] = getConstant(CI); 661 Ops.erase(Ops.begin()+1); // Erase the folded element 662 if (Ops.size() == 1) return Ops[0]; 663 LHSC = cast<SCEVConstant>(Ops[0]); 664 } else { 665 // If we couldn't fold the expression, move to the next constant. Note 666 // that this is impossible to happen in practice because we always 667 // constant fold constant ints to constant ints. 668 ++Idx; 669 } 670 } 671 672 // If we are left with a constant zero being added, strip it off. 673 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 674 Ops.erase(Ops.begin()); 675 --Idx; 676 } 677 } 678 679 if (Ops.size() == 1) return Ops[0]; 680 681 // Okay, check to see if the same value occurs in the operand list twice. If 682 // so, merge them together into an multiply expression. Since we sorted the 683 // list, these values are required to be adjacent. 684 const Type *Ty = Ops[0]->getType(); 685 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 686 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 687 // Found a match, merge the two values into a multiply, and add any 688 // remaining values to the result. 689 SCEVHandle Two = getIntegerSCEV(2, Ty); 690 SCEVHandle Mul = getMulExpr(Ops[i], Two); 691 if (Ops.size() == 2) 692 return Mul; 693 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 694 Ops.push_back(Mul); 695 return getAddExpr(Ops); 696 } 697 698 // Now we know the first non-constant operand. Skip past any cast SCEVs. 699 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 700 ++Idx; 701 702 // If there are add operands they would be next. 703 if (Idx < Ops.size()) { 704 bool DeletedAdd = false; 705 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 706 // If we have an add, expand the add operands onto the end of the operands 707 // list. 708 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 709 Ops.erase(Ops.begin()+Idx); 710 DeletedAdd = true; 711 } 712 713 // If we deleted at least one add, we added operands to the end of the list, 714 // and they are not necessarily sorted. Recurse to resort and resimplify 715 // any operands we just aquired. 716 if (DeletedAdd) 717 return getAddExpr(Ops); 718 } 719 720 // Skip over the add expression until we get to a multiply. 721 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 722 ++Idx; 723 724 // If we are adding something to a multiply expression, make sure the 725 // something is not already an operand of the multiply. If so, merge it into 726 // the multiply. 727 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 728 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 729 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 730 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 731 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 732 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 733 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 734 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 735 if (Mul->getNumOperands() != 2) { 736 // If the multiply has more than two operands, we must get the 737 // Y*Z term. 738 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 739 MulOps.erase(MulOps.begin()+MulOp); 740 InnerMul = getMulExpr(MulOps); 741 } 742 SCEVHandle One = getIntegerSCEV(1, Ty); 743 SCEVHandle AddOne = getAddExpr(InnerMul, One); 744 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 745 if (Ops.size() == 2) return OuterMul; 746 if (AddOp < Idx) { 747 Ops.erase(Ops.begin()+AddOp); 748 Ops.erase(Ops.begin()+Idx-1); 749 } else { 750 Ops.erase(Ops.begin()+Idx); 751 Ops.erase(Ops.begin()+AddOp-1); 752 } 753 Ops.push_back(OuterMul); 754 return getAddExpr(Ops); 755 } 756 757 // Check this multiply against other multiplies being added together. 758 for (unsigned OtherMulIdx = Idx+1; 759 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 760 ++OtherMulIdx) { 761 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 762 // If MulOp occurs in OtherMul, we can fold the two multiplies 763 // together. 764 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 765 OMulOp != e; ++OMulOp) 766 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 767 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 768 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 769 if (Mul->getNumOperands() != 2) { 770 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 771 MulOps.erase(MulOps.begin()+MulOp); 772 InnerMul1 = getMulExpr(MulOps); 773 } 774 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 775 if (OtherMul->getNumOperands() != 2) { 776 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 777 OtherMul->op_end()); 778 MulOps.erase(MulOps.begin()+OMulOp); 779 InnerMul2 = getMulExpr(MulOps); 780 } 781 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 782 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 783 if (Ops.size() == 2) return OuterMul; 784 Ops.erase(Ops.begin()+Idx); 785 Ops.erase(Ops.begin()+OtherMulIdx-1); 786 Ops.push_back(OuterMul); 787 return getAddExpr(Ops); 788 } 789 } 790 } 791 } 792 793 // If there are any add recurrences in the operands list, see if any other 794 // added values are loop invariant. If so, we can fold them into the 795 // recurrence. 796 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 797 ++Idx; 798 799 // Scan over all recurrences, trying to fold loop invariants into them. 800 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 801 // Scan all of the other operands to this add and add them to the vector if 802 // they are loop invariant w.r.t. the recurrence. 803 std::vector<SCEVHandle> LIOps; 804 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 805 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 806 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 807 LIOps.push_back(Ops[i]); 808 Ops.erase(Ops.begin()+i); 809 --i; --e; 810 } 811 812 // If we found some loop invariants, fold them into the recurrence. 813 if (!LIOps.empty()) { 814 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } 815 LIOps.push_back(AddRec->getStart()); 816 817 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 818 AddRecOps[0] = getAddExpr(LIOps); 819 820 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 821 // If all of the other operands were loop invariant, we are done. 822 if (Ops.size() == 1) return NewRec; 823 824 // Otherwise, add the folded AddRec by the non-liv parts. 825 for (unsigned i = 0;; ++i) 826 if (Ops[i] == AddRec) { 827 Ops[i] = NewRec; 828 break; 829 } 830 return getAddExpr(Ops); 831 } 832 833 // Okay, if there weren't any loop invariants to be folded, check to see if 834 // there are multiple AddRec's with the same loop induction variable being 835 // added together. If so, we can fold them. 836 for (unsigned OtherIdx = Idx+1; 837 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 838 if (OtherIdx != Idx) { 839 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 840 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 841 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 842 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 843 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 844 if (i >= NewOps.size()) { 845 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 846 OtherAddRec->op_end()); 847 break; 848 } 849 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 850 } 851 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 852 853 if (Ops.size() == 2) return NewAddRec; 854 855 Ops.erase(Ops.begin()+Idx); 856 Ops.erase(Ops.begin()+OtherIdx-1); 857 Ops.push_back(NewAddRec); 858 return getAddExpr(Ops); 859 } 860 } 861 862 // Otherwise couldn't fold anything into this recurrence. Move onto the 863 // next one. 864 } 865 866 // Okay, it looks like we really DO need an add expr. Check to see if we 867 // already have one, otherwise create a new one. 868 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 869 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 870 SCEVOps)]; 871 if (Result == 0) Result = new SCEVAddExpr(Ops); 872 return Result; 873 } 874 875 876 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 877 assert(!Ops.empty() && "Cannot get empty mul!"); 878 879 // Sort by complexity, this groups all similar expression types together. 880 GroupByComplexity(Ops); 881 882 // If there are any constants, fold them together. 883 unsigned Idx = 0; 884 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 885 886 // C1*(C2+V) -> C1*C2 + C1*V 887 if (Ops.size() == 2) 888 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 889 if (Add->getNumOperands() == 2 && 890 isa<SCEVConstant>(Add->getOperand(0))) 891 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 892 getMulExpr(LHSC, Add->getOperand(1))); 893 894 895 ++Idx; 896 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 897 // We found two constants, fold them together! 898 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 899 RHSC->getValue()->getValue()); 900 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 901 Ops[0] = getConstant(CI); 902 Ops.erase(Ops.begin()+1); // Erase the folded element 903 if (Ops.size() == 1) return Ops[0]; 904 LHSC = cast<SCEVConstant>(Ops[0]); 905 } else { 906 // If we couldn't fold the expression, move to the next constant. Note 907 // that this is impossible to happen in practice because we always 908 // constant fold constant ints to constant ints. 909 ++Idx; 910 } 911 } 912 913 // If we are left with a constant one being multiplied, strip it off. 914 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 915 Ops.erase(Ops.begin()); 916 --Idx; 917 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 918 // If we have a multiply of zero, it will always be zero. 919 return Ops[0]; 920 } 921 } 922 923 // Skip over the add expression until we get to a multiply. 924 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 925 ++Idx; 926 927 if (Ops.size() == 1) 928 return Ops[0]; 929 930 // If there are mul operands inline them all into this expression. 931 if (Idx < Ops.size()) { 932 bool DeletedMul = false; 933 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 934 // If we have an mul, expand the mul operands onto the end of the operands 935 // list. 936 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 937 Ops.erase(Ops.begin()+Idx); 938 DeletedMul = true; 939 } 940 941 // If we deleted at least one mul, we added operands to the end of the list, 942 // and they are not necessarily sorted. Recurse to resort and resimplify 943 // any operands we just aquired. 944 if (DeletedMul) 945 return getMulExpr(Ops); 946 } 947 948 // If there are any add recurrences in the operands list, see if any other 949 // added values are loop invariant. If so, we can fold them into the 950 // recurrence. 951 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 952 ++Idx; 953 954 // Scan over all recurrences, trying to fold loop invariants into them. 955 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 956 // Scan all of the other operands to this mul and add them to the vector if 957 // they are loop invariant w.r.t. the recurrence. 958 std::vector<SCEVHandle> LIOps; 959 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 960 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 961 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 962 LIOps.push_back(Ops[i]); 963 Ops.erase(Ops.begin()+i); 964 --i; --e; 965 } 966 967 // If we found some loop invariants, fold them into the recurrence. 968 if (!LIOps.empty()) { 969 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } 970 std::vector<SCEVHandle> NewOps; 971 NewOps.reserve(AddRec->getNumOperands()); 972 if (LIOps.size() == 1) { 973 SCEV *Scale = LIOps[0]; 974 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 975 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 976 } else { 977 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 978 std::vector<SCEVHandle> MulOps(LIOps); 979 MulOps.push_back(AddRec->getOperand(i)); 980 NewOps.push_back(getMulExpr(MulOps)); 981 } 982 } 983 984 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 985 986 // If all of the other operands were loop invariant, we are done. 987 if (Ops.size() == 1) return NewRec; 988 989 // Otherwise, multiply the folded AddRec by the non-liv parts. 990 for (unsigned i = 0;; ++i) 991 if (Ops[i] == AddRec) { 992 Ops[i] = NewRec; 993 break; 994 } 995 return getMulExpr(Ops); 996 } 997 998 // Okay, if there weren't any loop invariants to be folded, check to see if 999 // there are multiple AddRec's with the same loop induction variable being 1000 // multiplied together. If so, we can fold them. 1001 for (unsigned OtherIdx = Idx+1; 1002 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1003 if (OtherIdx != Idx) { 1004 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1005 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1006 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1007 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1008 SCEVHandle NewStart = getMulExpr(F->getStart(), 1009 G->getStart()); 1010 SCEVHandle B = F->getStepRecurrence(*this); 1011 SCEVHandle D = G->getStepRecurrence(*this); 1012 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1013 getMulExpr(G, B), 1014 getMulExpr(B, D)); 1015 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1016 F->getLoop()); 1017 if (Ops.size() == 2) return NewAddRec; 1018 1019 Ops.erase(Ops.begin()+Idx); 1020 Ops.erase(Ops.begin()+OtherIdx-1); 1021 Ops.push_back(NewAddRec); 1022 return getMulExpr(Ops); 1023 } 1024 } 1025 1026 // Otherwise couldn't fold anything into this recurrence. Move onto the 1027 // next one. 1028 } 1029 1030 // Okay, it looks like we really DO need an mul expr. Check to see if we 1031 // already have one, otherwise create a new one. 1032 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1033 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1034 SCEVOps)]; 1035 if (Result == 0) 1036 Result = new SCEVMulExpr(Ops); 1037 return Result; 1038 } 1039 1040 SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1041 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1042 if (RHSC->getValue()->equalsInt(1)) 1043 return LHS; // X sdiv 1 --> x 1044 if (RHSC->getValue()->isAllOnesValue()) 1045 return getNegativeSCEV(LHS); // X sdiv -1 --> -x 1046 1047 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1048 Constant *LHSCV = LHSC->getValue(); 1049 Constant *RHSCV = RHSC->getValue(); 1050 return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV)); 1051 } 1052 } 1053 1054 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1055 1056 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; 1057 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); 1058 return Result; 1059 } 1060 1061 1062 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1063 /// specified loop. Simplify the expression as much as possible. 1064 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1065 const SCEVHandle &Step, const Loop *L) { 1066 std::vector<SCEVHandle> Operands; 1067 Operands.push_back(Start); 1068 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1069 if (StepChrec->getLoop() == L) { 1070 Operands.insert(Operands.end(), StepChrec->op_begin(), 1071 StepChrec->op_end()); 1072 return getAddRecExpr(Operands, L); 1073 } 1074 1075 Operands.push_back(Step); 1076 return getAddRecExpr(Operands, L); 1077 } 1078 1079 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1080 /// specified loop. Simplify the expression as much as possible. 1081 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1082 const Loop *L) { 1083 if (Operands.size() == 1) return Operands[0]; 1084 1085 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) 1086 if (StepC->getValue()->isZero()) { 1087 Operands.pop_back(); 1088 return getAddRecExpr(Operands, L); // { X,+,0 } --> X 1089 } 1090 1091 SCEVAddRecExpr *&Result = 1092 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1093 Operands.end()))]; 1094 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1095 return Result; 1096 } 1097 1098 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1099 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1100 return getConstant(CI); 1101 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1102 if (Result == 0) Result = new SCEVUnknown(V); 1103 return Result; 1104 } 1105 1106 1107 //===----------------------------------------------------------------------===// 1108 // ScalarEvolutionsImpl Definition and Implementation 1109 //===----------------------------------------------------------------------===// 1110 // 1111 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1112 /// evolution code. 1113 /// 1114 namespace { 1115 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1116 /// SE - A reference to the public ScalarEvolution object. 1117 ScalarEvolution &SE; 1118 1119 /// F - The function we are analyzing. 1120 /// 1121 Function &F; 1122 1123 /// LI - The loop information for the function we are currently analyzing. 1124 /// 1125 LoopInfo &LI; 1126 1127 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1128 /// things. 1129 SCEVHandle UnknownValue; 1130 1131 /// Scalars - This is a cache of the scalars we have analyzed so far. 1132 /// 1133 std::map<Value*, SCEVHandle> Scalars; 1134 1135 /// IterationCounts - Cache the iteration count of the loops for this 1136 /// function as they are computed. 1137 std::map<const Loop*, SCEVHandle> IterationCounts; 1138 1139 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1140 /// the PHI instructions that we attempt to compute constant evolutions for. 1141 /// This allows us to avoid potentially expensive recomputation of these 1142 /// properties. An instruction maps to null if we are unable to compute its 1143 /// exit value. 1144 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1145 1146 public: 1147 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li) 1148 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1149 1150 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1151 /// expression and create a new one. 1152 SCEVHandle getSCEV(Value *V); 1153 1154 /// hasSCEV - Return true if the SCEV for this value has already been 1155 /// computed. 1156 bool hasSCEV(Value *V) const { 1157 return Scalars.count(V); 1158 } 1159 1160 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1161 /// the specified value. 1162 void setSCEV(Value *V, const SCEVHandle &H) { 1163 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1164 assert(isNew && "This entry already existed!"); 1165 } 1166 1167 1168 /// getSCEVAtScope - Compute the value of the specified expression within 1169 /// the indicated loop (which may be null to indicate in no loop). If the 1170 /// expression cannot be evaluated, return UnknownValue itself. 1171 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1172 1173 1174 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1175 /// an analyzable loop-invariant iteration count. 1176 bool hasLoopInvariantIterationCount(const Loop *L); 1177 1178 /// getIterationCount - If the specified loop has a predictable iteration 1179 /// count, return it. Note that it is not valid to call this method on a 1180 /// loop without a loop-invariant iteration count. 1181 SCEVHandle getIterationCount(const Loop *L); 1182 1183 /// deleteValueFromRecords - This method should be called by the 1184 /// client before it removes a value from the program, to make sure 1185 /// that no dangling references are left around. 1186 void deleteValueFromRecords(Value *V); 1187 1188 private: 1189 /// createSCEV - We know that there is no SCEV for the specified value. 1190 /// Analyze the expression. 1191 SCEVHandle createSCEV(Value *V); 1192 1193 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1194 /// SCEVs. 1195 SCEVHandle createNodeForPHI(PHINode *PN); 1196 1197 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1198 /// for the specified instruction and replaces any references to the 1199 /// symbolic value SymName with the specified value. This is used during 1200 /// PHI resolution. 1201 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1202 const SCEVHandle &SymName, 1203 const SCEVHandle &NewVal); 1204 1205 /// ComputeIterationCount - Compute the number of times the specified loop 1206 /// will iterate. 1207 SCEVHandle ComputeIterationCount(const Loop *L); 1208 1209 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1210 /// 'setcc load X, cst', try to see if we can compute the trip count. 1211 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1212 Constant *RHS, 1213 const Loop *L, 1214 ICmpInst::Predicate p); 1215 1216 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1217 /// constant number of times (the condition evolves only from constants), 1218 /// try to evaluate a few iterations of the loop until we get the exit 1219 /// condition gets a value of ExitWhen (true or false). If we cannot 1220 /// evaluate the trip count of the loop, return UnknownValue. 1221 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1222 bool ExitWhen); 1223 1224 /// HowFarToZero - Return the number of times a backedge comparing the 1225 /// specified value to zero will execute. If not computable, return 1226 /// UnknownValue. 1227 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1228 1229 /// HowFarToNonZero - Return the number of times a backedge checking the 1230 /// specified value for nonzero will execute. If not computable, return 1231 /// UnknownValue. 1232 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1233 1234 /// HowManyLessThans - Return the number of times a backedge containing the 1235 /// specified less-than comparison will execute. If not computable, return 1236 /// UnknownValue. isSigned specifies whether the less-than is signed. 1237 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1238 bool isSigned); 1239 1240 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1241 /// in the header of its containing loop, we know the loop executes a 1242 /// constant number of times, and the PHI node is just a recurrence 1243 /// involving constants, fold it. 1244 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1245 const Loop *L); 1246 }; 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // Basic SCEV Analysis and PHI Idiom Recognition Code 1251 // 1252 1253 /// deleteValueFromRecords - This method should be called by the 1254 /// client before it removes an instruction from the program, to make sure 1255 /// that no dangling references are left around. 1256 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1257 SmallVector<Value *, 16> Worklist; 1258 1259 if (Scalars.erase(V)) { 1260 if (PHINode *PN = dyn_cast<PHINode>(V)) 1261 ConstantEvolutionLoopExitValue.erase(PN); 1262 Worklist.push_back(V); 1263 } 1264 1265 while (!Worklist.empty()) { 1266 Value *VV = Worklist.back(); 1267 Worklist.pop_back(); 1268 1269 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1270 UI != UE; ++UI) { 1271 Instruction *Inst = cast<Instruction>(*UI); 1272 if (Scalars.erase(Inst)) { 1273 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1274 ConstantEvolutionLoopExitValue.erase(PN); 1275 Worklist.push_back(Inst); 1276 } 1277 } 1278 } 1279 } 1280 1281 1282 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1283 /// expression and create a new one. 1284 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1285 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1286 1287 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1288 if (I != Scalars.end()) return I->second; 1289 SCEVHandle S = createSCEV(V); 1290 Scalars.insert(std::make_pair(V, S)); 1291 return S; 1292 } 1293 1294 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1295 /// the specified instruction and replaces any references to the symbolic value 1296 /// SymName with the specified value. This is used during PHI resolution. 1297 void ScalarEvolutionsImpl:: 1298 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1299 const SCEVHandle &NewVal) { 1300 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1301 if (SI == Scalars.end()) return; 1302 1303 SCEVHandle NV = 1304 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1305 if (NV == SI->second) return; // No change. 1306 1307 SI->second = NV; // Update the scalars map! 1308 1309 // Any instruction values that use this instruction might also need to be 1310 // updated! 1311 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1312 UI != E; ++UI) 1313 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1314 } 1315 1316 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1317 /// a loop header, making it a potential recurrence, or it doesn't. 1318 /// 1319 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1320 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1321 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1322 if (L->getHeader() == PN->getParent()) { 1323 // If it lives in the loop header, it has two incoming values, one 1324 // from outside the loop, and one from inside. 1325 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1326 unsigned BackEdge = IncomingEdge^1; 1327 1328 // While we are analyzing this PHI node, handle its value symbolically. 1329 SCEVHandle SymbolicName = SE.getUnknown(PN); 1330 assert(Scalars.find(PN) == Scalars.end() && 1331 "PHI node already processed?"); 1332 Scalars.insert(std::make_pair(PN, SymbolicName)); 1333 1334 // Using this symbolic name for the PHI, analyze the value coming around 1335 // the back-edge. 1336 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1337 1338 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1339 // has a special value for the first iteration of the loop. 1340 1341 // If the value coming around the backedge is an add with the symbolic 1342 // value we just inserted, then we found a simple induction variable! 1343 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1344 // If there is a single occurrence of the symbolic value, replace it 1345 // with a recurrence. 1346 unsigned FoundIndex = Add->getNumOperands(); 1347 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1348 if (Add->getOperand(i) == SymbolicName) 1349 if (FoundIndex == e) { 1350 FoundIndex = i; 1351 break; 1352 } 1353 1354 if (FoundIndex != Add->getNumOperands()) { 1355 // Create an add with everything but the specified operand. 1356 std::vector<SCEVHandle> Ops; 1357 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1358 if (i != FoundIndex) 1359 Ops.push_back(Add->getOperand(i)); 1360 SCEVHandle Accum = SE.getAddExpr(Ops); 1361 1362 // This is not a valid addrec if the step amount is varying each 1363 // loop iteration, but is not itself an addrec in this loop. 1364 if (Accum->isLoopInvariant(L) || 1365 (isa<SCEVAddRecExpr>(Accum) && 1366 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1367 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1368 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1369 1370 // Okay, for the entire analysis of this edge we assumed the PHI 1371 // to be symbolic. We now need to go back and update all of the 1372 // entries for the scalars that use the PHI (except for the PHI 1373 // itself) to use the new analyzed value instead of the "symbolic" 1374 // value. 1375 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1376 return PHISCEV; 1377 } 1378 } 1379 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1380 // Otherwise, this could be a loop like this: 1381 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1382 // In this case, j = {1,+,1} and BEValue is j. 1383 // Because the other in-value of i (0) fits the evolution of BEValue 1384 // i really is an addrec evolution. 1385 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1386 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1387 1388 // If StartVal = j.start - j.stride, we can use StartVal as the 1389 // initial step of the addrec evolution. 1390 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1391 AddRec->getOperand(1))) { 1392 SCEVHandle PHISCEV = 1393 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1394 1395 // Okay, for the entire analysis of this edge we assumed the PHI 1396 // to be symbolic. We now need to go back and update all of the 1397 // entries for the scalars that use the PHI (except for the PHI 1398 // itself) to use the new analyzed value instead of the "symbolic" 1399 // value. 1400 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1401 return PHISCEV; 1402 } 1403 } 1404 } 1405 1406 return SymbolicName; 1407 } 1408 1409 // If it's not a loop phi, we can't handle it yet. 1410 return SE.getUnknown(PN); 1411 } 1412 1413 /// GetConstantFactor - Determine the largest constant factor that S has. For 1414 /// example, turn {4,+,8} -> 4. (S umod result) should always equal zero. 1415 static APInt GetConstantFactor(SCEVHandle S) { 1416 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 1417 const APInt& V = C->getValue()->getValue(); 1418 if (!V.isMinValue()) 1419 return V; 1420 else // Zero is a multiple of everything. 1421 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1); 1422 } 1423 1424 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) { 1425 return GetConstantFactor(T->getOperand()).trunc( 1426 cast<IntegerType>(T->getType())->getBitWidth()); 1427 } 1428 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) 1429 return GetConstantFactor(E->getOperand()).zext( 1430 cast<IntegerType>(E->getType())->getBitWidth()); 1431 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) 1432 return GetConstantFactor(E->getOperand()).sext( 1433 cast<IntegerType>(E->getType())->getBitWidth()); 1434 1435 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1436 // The result is the min of all operands. 1437 APInt Res(GetConstantFactor(A->getOperand(0))); 1438 for (unsigned i = 1, e = A->getNumOperands(); 1439 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) { 1440 APInt Tmp(GetConstantFactor(A->getOperand(i))); 1441 Res = APIntOps::umin(Res, Tmp); 1442 } 1443 return Res; 1444 } 1445 1446 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1447 // The result is the product of all the operands. 1448 APInt Res(GetConstantFactor(M->getOperand(0))); 1449 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) { 1450 APInt Tmp(GetConstantFactor(M->getOperand(i))); 1451 Res *= Tmp; 1452 } 1453 return Res; 1454 } 1455 1456 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1457 // For now, we just handle linear expressions. 1458 if (A->getNumOperands() == 2) { 1459 // We want the GCD between the start and the stride value. 1460 APInt Start(GetConstantFactor(A->getOperand(0))); 1461 if (Start == 1) 1462 return Start; 1463 APInt Stride(GetConstantFactor(A->getOperand(1))); 1464 return APIntOps::GreatestCommonDivisor(Start, Stride); 1465 } 1466 } 1467 1468 // SCEVSDivExpr, SCEVUnknown. 1469 return APInt(S->getBitWidth(), 1); 1470 } 1471 1472 /// createSCEV - We know that there is no SCEV for the specified value. 1473 /// Analyze the expression. 1474 /// 1475 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1476 if (Instruction *I = dyn_cast<Instruction>(V)) { 1477 switch (I->getOpcode()) { 1478 case Instruction::Add: 1479 return SE.getAddExpr(getSCEV(I->getOperand(0)), 1480 getSCEV(I->getOperand(1))); 1481 case Instruction::Mul: 1482 return SE.getMulExpr(getSCEV(I->getOperand(0)), 1483 getSCEV(I->getOperand(1))); 1484 case Instruction::SDiv: 1485 return SE.getSDivExpr(getSCEV(I->getOperand(0)), 1486 getSCEV(I->getOperand(1))); 1487 break; 1488 1489 case Instruction::Sub: 1490 return SE.getMinusSCEV(getSCEV(I->getOperand(0)), 1491 getSCEV(I->getOperand(1))); 1492 case Instruction::Or: 1493 // If the RHS of the Or is a constant, we may have something like: 1494 // X*4+1 which got turned into X*4|1. Handle this as an add so loop 1495 // optimizations will transparently handle this case. 1496 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1497 SCEVHandle LHS = getSCEV(I->getOperand(0)); 1498 APInt CommonFact(GetConstantFactor(LHS)); 1499 assert(!CommonFact.isMinValue() && 1500 "Common factor should at least be 1!"); 1501 if (CommonFact.ugt(CI->getValue())) { 1502 // If the LHS is a multiple that is larger than the RHS, use +. 1503 return SE.getAddExpr(LHS, 1504 getSCEV(I->getOperand(1))); 1505 } 1506 } 1507 break; 1508 case Instruction::Xor: 1509 // If the RHS of the xor is a signbit, then this is just an add. 1510 // Instcombine turns add of signbit into xor as a strength reduction step. 1511 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1512 if (CI->getValue().isSignBit()) 1513 return SE.getAddExpr(getSCEV(I->getOperand(0)), 1514 getSCEV(I->getOperand(1))); 1515 } 1516 break; 1517 1518 case Instruction::Shl: 1519 // Turn shift left of a constant amount into a multiply. 1520 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1521 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1522 Constant *X = ConstantInt::get( 1523 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1524 return SE.getMulExpr(getSCEV(I->getOperand(0)), getSCEV(X)); 1525 } 1526 break; 1527 1528 case Instruction::Trunc: 1529 return SE.getTruncateExpr(getSCEV(I->getOperand(0)), I->getType()); 1530 1531 case Instruction::ZExt: 1532 return SE.getZeroExtendExpr(getSCEV(I->getOperand(0)), I->getType()); 1533 1534 case Instruction::SExt: 1535 return SE.getSignExtendExpr(getSCEV(I->getOperand(0)), I->getType()); 1536 1537 case Instruction::BitCast: 1538 // BitCasts are no-op casts so we just eliminate the cast. 1539 if (I->getType()->isInteger() && 1540 I->getOperand(0)->getType()->isInteger()) 1541 return getSCEV(I->getOperand(0)); 1542 break; 1543 1544 case Instruction::PHI: 1545 return createNodeForPHI(cast<PHINode>(I)); 1546 1547 default: // We cannot analyze this expression. 1548 break; 1549 } 1550 } 1551 1552 return SE.getUnknown(V); 1553 } 1554 1555 1556 1557 //===----------------------------------------------------------------------===// 1558 // Iteration Count Computation Code 1559 // 1560 1561 /// getIterationCount - If the specified loop has a predictable iteration 1562 /// count, return it. Note that it is not valid to call this method on a 1563 /// loop without a loop-invariant iteration count. 1564 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1565 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1566 if (I == IterationCounts.end()) { 1567 SCEVHandle ItCount = ComputeIterationCount(L); 1568 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1569 if (ItCount != UnknownValue) { 1570 assert(ItCount->isLoopInvariant(L) && 1571 "Computed trip count isn't loop invariant for loop!"); 1572 ++NumTripCountsComputed; 1573 } else if (isa<PHINode>(L->getHeader()->begin())) { 1574 // Only count loops that have phi nodes as not being computable. 1575 ++NumTripCountsNotComputed; 1576 } 1577 } 1578 return I->second; 1579 } 1580 1581 /// ComputeIterationCount - Compute the number of times the specified loop 1582 /// will iterate. 1583 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1584 // If the loop has a non-one exit block count, we can't analyze it. 1585 SmallVector<BasicBlock*, 8> ExitBlocks; 1586 L->getExitBlocks(ExitBlocks); 1587 if (ExitBlocks.size() != 1) return UnknownValue; 1588 1589 // Okay, there is one exit block. Try to find the condition that causes the 1590 // loop to be exited. 1591 BasicBlock *ExitBlock = ExitBlocks[0]; 1592 1593 BasicBlock *ExitingBlock = 0; 1594 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1595 PI != E; ++PI) 1596 if (L->contains(*PI)) { 1597 if (ExitingBlock == 0) 1598 ExitingBlock = *PI; 1599 else 1600 return UnknownValue; // More than one block exiting! 1601 } 1602 assert(ExitingBlock && "No exits from loop, something is broken!"); 1603 1604 // Okay, we've computed the exiting block. See what condition causes us to 1605 // exit. 1606 // 1607 // FIXME: we should be able to handle switch instructions (with a single exit) 1608 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1609 if (ExitBr == 0) return UnknownValue; 1610 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1611 1612 // At this point, we know we have a conditional branch that determines whether 1613 // the loop is exited. However, we don't know if the branch is executed each 1614 // time through the loop. If not, then the execution count of the branch will 1615 // not be equal to the trip count of the loop. 1616 // 1617 // Currently we check for this by checking to see if the Exit branch goes to 1618 // the loop header. If so, we know it will always execute the same number of 1619 // times as the loop. We also handle the case where the exit block *is* the 1620 // loop header. This is common for un-rotated loops. More extensive analysis 1621 // could be done to handle more cases here. 1622 if (ExitBr->getSuccessor(0) != L->getHeader() && 1623 ExitBr->getSuccessor(1) != L->getHeader() && 1624 ExitBr->getParent() != L->getHeader()) 1625 return UnknownValue; 1626 1627 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 1628 1629 // If its not an integer comparison then compute it the hard way. 1630 // Note that ICmpInst deals with pointer comparisons too so we must check 1631 // the type of the operand. 1632 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 1633 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 1634 ExitBr->getSuccessor(0) == ExitBlock); 1635 1636 // If the condition was exit on true, convert the condition to exit on false 1637 ICmpInst::Predicate Cond; 1638 if (ExitBr->getSuccessor(1) == ExitBlock) 1639 Cond = ExitCond->getPredicate(); 1640 else 1641 Cond = ExitCond->getInversePredicate(); 1642 1643 // Handle common loops like: for (X = "string"; *X; ++X) 1644 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 1645 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 1646 SCEVHandle ItCnt = 1647 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 1648 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 1649 } 1650 1651 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 1652 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 1653 1654 // Try to evaluate any dependencies out of the loop. 1655 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 1656 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 1657 Tmp = getSCEVAtScope(RHS, L); 1658 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 1659 1660 // At this point, we would like to compute how many iterations of the 1661 // loop the predicate will return true for these inputs. 1662 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { 1663 // If there is a constant, force it into the RHS. 1664 std::swap(LHS, RHS); 1665 Cond = ICmpInst::getSwappedPredicate(Cond); 1666 } 1667 1668 // FIXME: think about handling pointer comparisons! i.e.: 1669 // while (P != P+100) ++P; 1670 1671 // If we have a comparison of a chrec against a constant, try to use value 1672 // ranges to answer this query. 1673 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 1674 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 1675 if (AddRec->getLoop() == L) { 1676 // Form the comparison range using the constant of the correct type so 1677 // that the ConstantRange class knows to do a signed or unsigned 1678 // comparison. 1679 ConstantInt *CompVal = RHSC->getValue(); 1680 const Type *RealTy = ExitCond->getOperand(0)->getType(); 1681 CompVal = dyn_cast<ConstantInt>( 1682 ConstantExpr::getBitCast(CompVal, RealTy)); 1683 if (CompVal) { 1684 // Form the constant range. 1685 ConstantRange CompRange( 1686 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 1687 1688 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 1689 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 1690 } 1691 } 1692 1693 switch (Cond) { 1694 case ICmpInst::ICMP_NE: { // while (X != Y) 1695 // Convert to: while (X-Y != 0) 1696 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 1697 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1698 break; 1699 } 1700 case ICmpInst::ICMP_EQ: { 1701 // Convert to: while (X-Y == 0) // while (X == Y) 1702 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 1703 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1704 break; 1705 } 1706 case ICmpInst::ICMP_SLT: { 1707 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 1708 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1709 break; 1710 } 1711 case ICmpInst::ICMP_SGT: { 1712 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS), 1713 SE.getNegativeSCEV(RHS), L, true); 1714 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1715 break; 1716 } 1717 case ICmpInst::ICMP_ULT: { 1718 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 1719 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1720 break; 1721 } 1722 case ICmpInst::ICMP_UGT: { 1723 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS), 1724 SE.getNegativeSCEV(RHS), L, false); 1725 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1726 break; 1727 } 1728 default: 1729 #if 0 1730 cerr << "ComputeIterationCount "; 1731 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 1732 cerr << "[unsigned] "; 1733 cerr << *LHS << " " 1734 << Instruction::getOpcodeName(Instruction::ICmp) 1735 << " " << *RHS << "\n"; 1736 #endif 1737 break; 1738 } 1739 return ComputeIterationCountExhaustively(L, ExitCond, 1740 ExitBr->getSuccessor(0) == ExitBlock); 1741 } 1742 1743 static ConstantInt * 1744 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 1745 ScalarEvolution &SE) { 1746 SCEVHandle InVal = SE.getConstant(C); 1747 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 1748 assert(isa<SCEVConstant>(Val) && 1749 "Evaluation of SCEV at constant didn't fold correctly?"); 1750 return cast<SCEVConstant>(Val)->getValue(); 1751 } 1752 1753 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 1754 /// and a GEP expression (missing the pointer index) indexing into it, return 1755 /// the addressed element of the initializer or null if the index expression is 1756 /// invalid. 1757 static Constant * 1758 GetAddressedElementFromGlobal(GlobalVariable *GV, 1759 const std::vector<ConstantInt*> &Indices) { 1760 Constant *Init = GV->getInitializer(); 1761 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1762 uint64_t Idx = Indices[i]->getZExtValue(); 1763 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 1764 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 1765 Init = cast<Constant>(CS->getOperand(Idx)); 1766 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 1767 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 1768 Init = cast<Constant>(CA->getOperand(Idx)); 1769 } else if (isa<ConstantAggregateZero>(Init)) { 1770 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 1771 assert(Idx < STy->getNumElements() && "Bad struct index!"); 1772 Init = Constant::getNullValue(STy->getElementType(Idx)); 1773 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 1774 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 1775 Init = Constant::getNullValue(ATy->getElementType()); 1776 } else { 1777 assert(0 && "Unknown constant aggregate type!"); 1778 } 1779 return 0; 1780 } else { 1781 return 0; // Unknown initializer type 1782 } 1783 } 1784 return Init; 1785 } 1786 1787 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1788 /// 'setcc load X, cst', try to se if we can compute the trip count. 1789 SCEVHandle ScalarEvolutionsImpl:: 1790 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 1791 const Loop *L, 1792 ICmpInst::Predicate predicate) { 1793 if (LI->isVolatile()) return UnknownValue; 1794 1795 // Check to see if the loaded pointer is a getelementptr of a global. 1796 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 1797 if (!GEP) return UnknownValue; 1798 1799 // Make sure that it is really a constant global we are gepping, with an 1800 // initializer, and make sure the first IDX is really 0. 1801 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1802 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1803 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 1804 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 1805 return UnknownValue; 1806 1807 // Okay, we allow one non-constant index into the GEP instruction. 1808 Value *VarIdx = 0; 1809 std::vector<ConstantInt*> Indexes; 1810 unsigned VarIdxNum = 0; 1811 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 1812 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 1813 Indexes.push_back(CI); 1814 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 1815 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 1816 VarIdx = GEP->getOperand(i); 1817 VarIdxNum = i-2; 1818 Indexes.push_back(0); 1819 } 1820 1821 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 1822 // Check to see if X is a loop variant variable value now. 1823 SCEVHandle Idx = getSCEV(VarIdx); 1824 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 1825 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 1826 1827 // We can only recognize very limited forms of loop index expressions, in 1828 // particular, only affine AddRec's like {C1,+,C2}. 1829 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 1830 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 1831 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 1832 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 1833 return UnknownValue; 1834 1835 unsigned MaxSteps = MaxBruteForceIterations; 1836 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 1837 ConstantInt *ItCst = 1838 ConstantInt::get(IdxExpr->getType(), IterationNum); 1839 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 1840 1841 // Form the GEP offset. 1842 Indexes[VarIdxNum] = Val; 1843 1844 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 1845 if (Result == 0) break; // Cannot compute! 1846 1847 // Evaluate the condition for this iteration. 1848 Result = ConstantExpr::getICmp(predicate, Result, RHS); 1849 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 1850 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 1851 #if 0 1852 cerr << "\n***\n*** Computed loop count " << *ItCst 1853 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 1854 << "***\n"; 1855 #endif 1856 ++NumArrayLenItCounts; 1857 return SE.getConstant(ItCst); // Found terminating iteration! 1858 } 1859 } 1860 return UnknownValue; 1861 } 1862 1863 1864 /// CanConstantFold - Return true if we can constant fold an instruction of the 1865 /// specified type, assuming that all operands were constants. 1866 static bool CanConstantFold(const Instruction *I) { 1867 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 1868 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 1869 return true; 1870 1871 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1872 if (const Function *F = CI->getCalledFunction()) 1873 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast 1874 return false; 1875 } 1876 1877 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 1878 /// in the loop that V is derived from. We allow arbitrary operations along the 1879 /// way, but the operands of an operation must either be constants or a value 1880 /// derived from a constant PHI. If this expression does not fit with these 1881 /// constraints, return null. 1882 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 1883 // If this is not an instruction, or if this is an instruction outside of the 1884 // loop, it can't be derived from a loop PHI. 1885 Instruction *I = dyn_cast<Instruction>(V); 1886 if (I == 0 || !L->contains(I->getParent())) return 0; 1887 1888 if (PHINode *PN = dyn_cast<PHINode>(I)) 1889 if (L->getHeader() == I->getParent()) 1890 return PN; 1891 else 1892 // We don't currently keep track of the control flow needed to evaluate 1893 // PHIs, so we cannot handle PHIs inside of loops. 1894 return 0; 1895 1896 // If we won't be able to constant fold this expression even if the operands 1897 // are constants, return early. 1898 if (!CanConstantFold(I)) return 0; 1899 1900 // Otherwise, we can evaluate this instruction if all of its operands are 1901 // constant or derived from a PHI node themselves. 1902 PHINode *PHI = 0; 1903 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 1904 if (!(isa<Constant>(I->getOperand(Op)) || 1905 isa<GlobalValue>(I->getOperand(Op)))) { 1906 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 1907 if (P == 0) return 0; // Not evolving from PHI 1908 if (PHI == 0) 1909 PHI = P; 1910 else if (PHI != P) 1911 return 0; // Evolving from multiple different PHIs. 1912 } 1913 1914 // This is a expression evolving from a constant PHI! 1915 return PHI; 1916 } 1917 1918 /// EvaluateExpression - Given an expression that passes the 1919 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 1920 /// in the loop has the value PHIVal. If we can't fold this expression for some 1921 /// reason, return null. 1922 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 1923 if (isa<PHINode>(V)) return PHIVal; 1924 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) 1925 return GV; 1926 if (Constant *C = dyn_cast<Constant>(V)) return C; 1927 Instruction *I = cast<Instruction>(V); 1928 1929 std::vector<Constant*> Operands; 1930 Operands.resize(I->getNumOperands()); 1931 1932 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 1933 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 1934 if (Operands[i] == 0) return 0; 1935 } 1936 1937 return ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 1938 } 1939 1940 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1941 /// in the header of its containing loop, we know the loop executes a 1942 /// constant number of times, and the PHI node is just a recurrence 1943 /// involving constants, fold it. 1944 Constant *ScalarEvolutionsImpl:: 1945 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 1946 std::map<PHINode*, Constant*>::iterator I = 1947 ConstantEvolutionLoopExitValue.find(PN); 1948 if (I != ConstantEvolutionLoopExitValue.end()) 1949 return I->second; 1950 1951 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 1952 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 1953 1954 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 1955 1956 // Since the loop is canonicalized, the PHI node must have two entries. One 1957 // entry must be a constant (coming in from outside of the loop), and the 1958 // second must be derived from the same PHI. 1959 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1960 Constant *StartCST = 1961 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1962 if (StartCST == 0) 1963 return RetVal = 0; // Must be a constant. 1964 1965 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 1966 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 1967 if (PN2 != PN) 1968 return RetVal = 0; // Not derived from same PHI. 1969 1970 // Execute the loop symbolically to determine the exit value. 1971 if (Its.getActiveBits() >= 32) 1972 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 1973 1974 unsigned NumIterations = Its.getZExtValue(); // must be in range 1975 unsigned IterationNum = 0; 1976 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 1977 if (IterationNum == NumIterations) 1978 return RetVal = PHIVal; // Got exit value! 1979 1980 // Compute the value of the PHI node for the next iteration. 1981 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 1982 if (NextPHI == PHIVal) 1983 return RetVal = NextPHI; // Stopped evolving! 1984 if (NextPHI == 0) 1985 return 0; // Couldn't evaluate! 1986 PHIVal = NextPHI; 1987 } 1988 } 1989 1990 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1991 /// constant number of times (the condition evolves only from constants), 1992 /// try to evaluate a few iterations of the loop until we get the exit 1993 /// condition gets a value of ExitWhen (true or false). If we cannot 1994 /// evaluate the trip count of the loop, return UnknownValue. 1995 SCEVHandle ScalarEvolutionsImpl:: 1996 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 1997 PHINode *PN = getConstantEvolvingPHI(Cond, L); 1998 if (PN == 0) return UnknownValue; 1999 2000 // Since the loop is canonicalized, the PHI node must have two entries. One 2001 // entry must be a constant (coming in from outside of the loop), and the 2002 // second must be derived from the same PHI. 2003 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2004 Constant *StartCST = 2005 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2006 if (StartCST == 0) return UnknownValue; // Must be a constant. 2007 2008 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2009 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2010 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2011 2012 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2013 // the loop symbolically to determine when the condition gets a value of 2014 // "ExitWhen". 2015 unsigned IterationNum = 0; 2016 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2017 for (Constant *PHIVal = StartCST; 2018 IterationNum != MaxIterations; ++IterationNum) { 2019 ConstantInt *CondVal = 2020 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2021 2022 // Couldn't symbolically evaluate. 2023 if (!CondVal) return UnknownValue; 2024 2025 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2026 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2027 ++NumBruteForceTripCountsComputed; 2028 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2029 } 2030 2031 // Compute the value of the PHI node for the next iteration. 2032 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2033 if (NextPHI == 0 || NextPHI == PHIVal) 2034 return UnknownValue; // Couldn't evaluate or not making progress... 2035 PHIVal = NextPHI; 2036 } 2037 2038 // Too many iterations were needed to evaluate. 2039 return UnknownValue; 2040 } 2041 2042 /// getSCEVAtScope - Compute the value of the specified expression within the 2043 /// indicated loop (which may be null to indicate in no loop). If the 2044 /// expression cannot be evaluated, return UnknownValue. 2045 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2046 // FIXME: this should be turned into a virtual method on SCEV! 2047 2048 if (isa<SCEVConstant>(V)) return V; 2049 2050 // If this instruction is evolves from a constant-evolving PHI, compute the 2051 // exit value from the loop without using SCEVs. 2052 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2053 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2054 const Loop *LI = this->LI[I->getParent()]; 2055 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2056 if (PHINode *PN = dyn_cast<PHINode>(I)) 2057 if (PN->getParent() == LI->getHeader()) { 2058 // Okay, there is no closed form solution for the PHI node. Check 2059 // to see if the loop that contains it has a known iteration count. 2060 // If so, we may be able to force computation of the exit value. 2061 SCEVHandle IterationCount = getIterationCount(LI); 2062 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2063 // Okay, we know how many times the containing loop executes. If 2064 // this is a constant evolving PHI node, get the final value at 2065 // the specified iteration number. 2066 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2067 ICC->getValue()->getValue(), 2068 LI); 2069 if (RV) return SE.getUnknown(RV); 2070 } 2071 } 2072 2073 // Okay, this is an expression that we cannot symbolically evaluate 2074 // into a SCEV. Check to see if it's possible to symbolically evaluate 2075 // the arguments into constants, and if so, try to constant propagate the 2076 // result. This is particularly useful for computing loop exit values. 2077 if (CanConstantFold(I)) { 2078 std::vector<Constant*> Operands; 2079 Operands.reserve(I->getNumOperands()); 2080 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2081 Value *Op = I->getOperand(i); 2082 if (Constant *C = dyn_cast<Constant>(Op)) { 2083 Operands.push_back(C); 2084 } else { 2085 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2086 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2087 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2088 Op->getType(), 2089 false)); 2090 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2091 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2092 Operands.push_back(ConstantExpr::getIntegerCast(C, 2093 Op->getType(), 2094 false)); 2095 else 2096 return V; 2097 } else { 2098 return V; 2099 } 2100 } 2101 } 2102 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 2103 return SE.getUnknown(C); 2104 } 2105 } 2106 2107 // This is some other type of SCEVUnknown, just return it. 2108 return V; 2109 } 2110 2111 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2112 // Avoid performing the look-up in the common case where the specified 2113 // expression has no loop-variant portions. 2114 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2115 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2116 if (OpAtScope != Comm->getOperand(i)) { 2117 if (OpAtScope == UnknownValue) return UnknownValue; 2118 // Okay, at least one of these operands is loop variant but might be 2119 // foldable. Build a new instance of the folded commutative expression. 2120 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2121 NewOps.push_back(OpAtScope); 2122 2123 for (++i; i != e; ++i) { 2124 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2125 if (OpAtScope == UnknownValue) return UnknownValue; 2126 NewOps.push_back(OpAtScope); 2127 } 2128 if (isa<SCEVAddExpr>(Comm)) 2129 return SE.getAddExpr(NewOps); 2130 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); 2131 return SE.getMulExpr(NewOps); 2132 } 2133 } 2134 // If we got here, all operands are loop invariant. 2135 return Comm; 2136 } 2137 2138 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) { 2139 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2140 if (LHS == UnknownValue) return LHS; 2141 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2142 if (RHS == UnknownValue) return RHS; 2143 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2144 return Div; // must be loop invariant 2145 return SE.getSDivExpr(LHS, RHS); 2146 } 2147 2148 // If this is a loop recurrence for a loop that does not contain L, then we 2149 // are dealing with the final value computed by the loop. 2150 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2151 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2152 // To evaluate this recurrence, we need to know how many times the AddRec 2153 // loop iterates. Compute this now. 2154 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2155 if (IterationCount == UnknownValue) return UnknownValue; 2156 IterationCount = getTruncateOrZeroExtend(IterationCount, 2157 AddRec->getType(), SE); 2158 2159 // If the value is affine, simplify the expression evaluation to just 2160 // Start + Step*IterationCount. 2161 if (AddRec->isAffine()) 2162 return SE.getAddExpr(AddRec->getStart(), 2163 SE.getMulExpr(IterationCount, 2164 AddRec->getOperand(1))); 2165 2166 // Otherwise, evaluate it the hard way. 2167 return AddRec->evaluateAtIteration(IterationCount, SE); 2168 } 2169 return UnknownValue; 2170 } 2171 2172 //assert(0 && "Unknown SCEV type!"); 2173 return UnknownValue; 2174 } 2175 2176 2177 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2178 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2179 /// might be the same) or two SCEVCouldNotCompute objects. 2180 /// 2181 static std::pair<SCEVHandle,SCEVHandle> 2182 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2183 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2184 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2185 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2186 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2187 2188 // We currently can only solve this if the coefficients are constants. 2189 if (!LC || !MC || !NC) { 2190 SCEV *CNC = new SCEVCouldNotCompute(); 2191 return std::make_pair(CNC, CNC); 2192 } 2193 2194 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2195 const APInt &L = LC->getValue()->getValue(); 2196 const APInt &M = MC->getValue()->getValue(); 2197 const APInt &N = NC->getValue()->getValue(); 2198 APInt Two(BitWidth, 2); 2199 APInt Four(BitWidth, 4); 2200 2201 { 2202 using namespace APIntOps; 2203 const APInt& C = L; 2204 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2205 // The B coefficient is M-N/2 2206 APInt B(M); 2207 B -= sdiv(N,Two); 2208 2209 // The A coefficient is N/2 2210 APInt A(N.sdiv(Two)); 2211 2212 // Compute the B^2-4ac term. 2213 APInt SqrtTerm(B); 2214 SqrtTerm *= B; 2215 SqrtTerm -= Four * (A * C); 2216 2217 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2218 // integer value or else APInt::sqrt() will assert. 2219 APInt SqrtVal(SqrtTerm.sqrt()); 2220 2221 // Compute the two solutions for the quadratic formula. 2222 // The divisions must be performed as signed divisions. 2223 APInt NegB(-B); 2224 APInt TwoA( A << 1 ); 2225 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2226 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2227 2228 return std::make_pair(SE.getConstant(Solution1), 2229 SE.getConstant(Solution2)); 2230 } // end APIntOps namespace 2231 } 2232 2233 /// HowFarToZero - Return the number of times a backedge comparing the specified 2234 /// value to zero will execute. If not computable, return UnknownValue 2235 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2236 // If the value is a constant 2237 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2238 // If the value is already zero, the branch will execute zero times. 2239 if (C->getValue()->isZero()) return C; 2240 return UnknownValue; // Otherwise it will loop infinitely. 2241 } 2242 2243 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2244 if (!AddRec || AddRec->getLoop() != L) 2245 return UnknownValue; 2246 2247 if (AddRec->isAffine()) { 2248 // If this is an affine expression the execution count of this branch is 2249 // equal to: 2250 // 2251 // (0 - Start/Step) iff Start % Step == 0 2252 // 2253 // Get the initial value for the loop. 2254 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2255 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2256 SCEVHandle Step = AddRec->getOperand(1); 2257 2258 Step = getSCEVAtScope(Step, L->getParentLoop()); 2259 2260 // Figure out if Start % Step == 0. 2261 // FIXME: We should add DivExpr and RemExpr operations to our AST. 2262 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2263 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 2264 return SE.getNegativeSCEV(Start); // 0 - Start/1 == -Start 2265 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 2266 return Start; // 0 - Start/-1 == Start 2267 2268 // Check to see if Start is divisible by SC with no remainder. 2269 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 2270 ConstantInt *StartCC = StartC->getValue(); 2271 Constant *StartNegC = ConstantExpr::getNeg(StartCC); 2272 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue()); 2273 if (Rem->isNullValue()) { 2274 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue()); 2275 return SE.getUnknown(Result); 2276 } 2277 } 2278 } 2279 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2280 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2281 // the quadratic equation to solve it. 2282 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2283 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2284 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2285 if (R1) { 2286 #if 0 2287 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2288 << " sol#2: " << *R2 << "\n"; 2289 #endif 2290 // Pick the smallest positive root value. 2291 if (ConstantInt *CB = 2292 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2293 R1->getValue(), R2->getValue()))) { 2294 if (CB->getZExtValue() == false) 2295 std::swap(R1, R2); // R1 is the minimum root now. 2296 2297 // We can only use this value if the chrec ends up with an exact zero 2298 // value at this index. When solving for "X*X != 5", for example, we 2299 // should not accept a root of 2. 2300 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2301 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) 2302 if (EvalVal->getValue()->isZero()) 2303 return R1; // We found a quadratic root! 2304 } 2305 } 2306 } 2307 2308 return UnknownValue; 2309 } 2310 2311 /// HowFarToNonZero - Return the number of times a backedge checking the 2312 /// specified value for nonzero will execute. If not computable, return 2313 /// UnknownValue 2314 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2315 // Loops that look like: while (X == 0) are very strange indeed. We don't 2316 // handle them yet except for the trivial case. This could be expanded in the 2317 // future as needed. 2318 2319 // If the value is a constant, check to see if it is known to be non-zero 2320 // already. If so, the backedge will execute zero times. 2321 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2322 Constant *Zero = Constant::getNullValue(C->getValue()->getType()); 2323 Constant *NonZero = 2324 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero); 2325 if (NonZero == ConstantInt::getTrue()) 2326 return getSCEV(Zero); 2327 return UnknownValue; // Otherwise it will loop infinitely. 2328 } 2329 2330 // We could implement others, but I really doubt anyone writes loops like 2331 // this, and if they did, they would already be constant folded. 2332 return UnknownValue; 2333 } 2334 2335 /// HowManyLessThans - Return the number of times a backedge containing the 2336 /// specified less-than comparison will execute. If not computable, return 2337 /// UnknownValue. 2338 SCEVHandle ScalarEvolutionsImpl:: 2339 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 2340 // Only handle: "ADDREC < LoopInvariant". 2341 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2342 2343 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2344 if (!AddRec || AddRec->getLoop() != L) 2345 return UnknownValue; 2346 2347 if (AddRec->isAffine()) { 2348 // FORNOW: We only support unit strides. 2349 SCEVHandle Zero = SE.getIntegerSCEV(0, RHS->getType()); 2350 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 2351 if (AddRec->getOperand(1) != One) 2352 return UnknownValue; 2353 2354 // The number of iterations for "{n,+,1} < m", is m-n. However, we don't 2355 // know that m is >= n on input to the loop. If it is, the condition return 2356 // true zero times. What we really should return, for full generality, is 2357 // SMAX(0, m-n). Since we cannot check this, we will instead check for a 2358 // canonical loop form: most do-loops will have a check that dominates the 2359 // loop, that only enters the loop if (n-1)<m. If we can find this check, 2360 // we know that the SMAX will evaluate to m-n, because we know that m >= n. 2361 2362 // Search for the check. 2363 BasicBlock *Preheader = L->getLoopPreheader(); 2364 BasicBlock *PreheaderDest = L->getHeader(); 2365 if (Preheader == 0) return UnknownValue; 2366 2367 BranchInst *LoopEntryPredicate = 2368 dyn_cast<BranchInst>(Preheader->getTerminator()); 2369 if (!LoopEntryPredicate) return UnknownValue; 2370 2371 // This might be a critical edge broken out. If the loop preheader ends in 2372 // an unconditional branch to the loop, check to see if the preheader has a 2373 // single predecessor, and if so, look for its terminator. 2374 while (LoopEntryPredicate->isUnconditional()) { 2375 PreheaderDest = Preheader; 2376 Preheader = Preheader->getSinglePredecessor(); 2377 if (!Preheader) return UnknownValue; // Multiple preds. 2378 2379 LoopEntryPredicate = 2380 dyn_cast<BranchInst>(Preheader->getTerminator()); 2381 if (!LoopEntryPredicate) return UnknownValue; 2382 } 2383 2384 // Now that we found a conditional branch that dominates the loop, check to 2385 // see if it is the comparison we are looking for. 2386 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){ 2387 Value *PreCondLHS = ICI->getOperand(0); 2388 Value *PreCondRHS = ICI->getOperand(1); 2389 ICmpInst::Predicate Cond; 2390 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2391 Cond = ICI->getPredicate(); 2392 else 2393 Cond = ICI->getInversePredicate(); 2394 2395 switch (Cond) { 2396 case ICmpInst::ICMP_UGT: 2397 if (isSigned) return UnknownValue; 2398 std::swap(PreCondLHS, PreCondRHS); 2399 Cond = ICmpInst::ICMP_ULT; 2400 break; 2401 case ICmpInst::ICMP_SGT: 2402 if (!isSigned) return UnknownValue; 2403 std::swap(PreCondLHS, PreCondRHS); 2404 Cond = ICmpInst::ICMP_SLT; 2405 break; 2406 case ICmpInst::ICMP_ULT: 2407 if (isSigned) return UnknownValue; 2408 break; 2409 case ICmpInst::ICMP_SLT: 2410 if (!isSigned) return UnknownValue; 2411 break; 2412 default: 2413 return UnknownValue; 2414 } 2415 2416 if (PreCondLHS->getType()->isInteger()) { 2417 if (RHS != getSCEV(PreCondRHS)) 2418 return UnknownValue; // Not a comparison against 'm'. 2419 2420 if (SE.getMinusSCEV(AddRec->getOperand(0), One) 2421 != getSCEV(PreCondLHS)) 2422 return UnknownValue; // Not a comparison against 'n-1'. 2423 } 2424 else return UnknownValue; 2425 2426 // cerr << "Computed Loop Trip Count as: " 2427 // << // *SE.getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; 2428 return SE.getMinusSCEV(RHS, AddRec->getOperand(0)); 2429 } 2430 else 2431 return UnknownValue; 2432 } 2433 2434 return UnknownValue; 2435 } 2436 2437 /// getNumIterationsInRange - Return the number of iterations of this loop that 2438 /// produce values in the specified constant range. Another way of looking at 2439 /// this is that it returns the first iteration number where the value is not in 2440 /// the condition, thus computing the exit count. If the iteration count can't 2441 /// be computed, an instance of SCEVCouldNotCompute is returned. 2442 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2443 ScalarEvolution &SE) const { 2444 if (Range.isFullSet()) // Infinite loop. 2445 return new SCEVCouldNotCompute(); 2446 2447 // If the start is a non-zero constant, shift the range to simplify things. 2448 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2449 if (!SC->getValue()->isZero()) { 2450 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2451 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 2452 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 2453 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2454 return ShiftedAddRec->getNumIterationsInRange( 2455 Range.subtract(SC->getValue()->getValue()), SE); 2456 // This is strange and shouldn't happen. 2457 return new SCEVCouldNotCompute(); 2458 } 2459 2460 // The only time we can solve this is when we have all constant indices. 2461 // Otherwise, we cannot determine the overflow conditions. 2462 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2463 if (!isa<SCEVConstant>(getOperand(i))) 2464 return new SCEVCouldNotCompute(); 2465 2466 2467 // Okay at this point we know that all elements of the chrec are constants and 2468 // that the start element is zero. 2469 2470 // First check to see if the range contains zero. If not, the first 2471 // iteration exits. 2472 if (!Range.contains(APInt(getBitWidth(),0))) 2473 return SE.getConstant(ConstantInt::get(getType(),0)); 2474 2475 if (isAffine()) { 2476 // If this is an affine expression then we have this situation: 2477 // Solve {0,+,A} in Range === Ax in Range 2478 2479 // We know that zero is in the range. If A is positive then we know that 2480 // the upper value of the range must be the first possible exit value. 2481 // If A is negative then the lower of the range is the last possible loop 2482 // value. Also note that we already checked for a full range. 2483 APInt One(getBitWidth(),1); 2484 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2485 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 2486 2487 // The exit value should be (End+A)/A. 2488 APInt ExitVal = (End + A).udiv(A); 2489 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2490 2491 // Evaluate at the exit value. If we really did fall out of the valid 2492 // range, then we computed our trip count, otherwise wrap around or other 2493 // things must have happened. 2494 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 2495 if (Range.contains(Val->getValue())) 2496 return new SCEVCouldNotCompute(); // Something strange happened 2497 2498 // Ensure that the previous value is in the range. This is a sanity check. 2499 assert(Range.contains( 2500 EvaluateConstantChrecAtConstant(this, 2501 ConstantInt::get(ExitVal - One), SE)->getValue()) && 2502 "Linear scev computation is off in a bad way!"); 2503 return SE.getConstant(ExitValue); 2504 } else if (isQuadratic()) { 2505 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2506 // quadratic equation to solve it. To do this, we must frame our problem in 2507 // terms of figuring out when zero is crossed, instead of when 2508 // Range.getUpper() is crossed. 2509 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2510 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 2511 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 2512 2513 // Next, solve the constructed addrec 2514 std::pair<SCEVHandle,SCEVHandle> Roots = 2515 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 2516 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2517 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2518 if (R1) { 2519 // Pick the smallest positive root value. 2520 if (ConstantInt *CB = 2521 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2522 R1->getValue(), R2->getValue()))) { 2523 if (CB->getZExtValue() == false) 2524 std::swap(R1, R2); // R1 is the minimum root now. 2525 2526 // Make sure the root is not off by one. The returned iteration should 2527 // not be in the range, but the previous one should be. When solving 2528 // for "X*X < 5", for example, we should not return a root of 2. 2529 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 2530 R1->getValue(), 2531 SE); 2532 if (Range.contains(R1Val->getValue())) { 2533 // The next iteration must be out of the range... 2534 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 2535 2536 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2537 if (!Range.contains(R1Val->getValue())) 2538 return SE.getConstant(NextVal); 2539 return new SCEVCouldNotCompute(); // Something strange happened 2540 } 2541 2542 // If R1 was not in the range, then it is a good return value. Make 2543 // sure that R1-1 WAS in the range though, just in case. 2544 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 2545 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2546 if (Range.contains(R1Val->getValue())) 2547 return R1; 2548 return new SCEVCouldNotCompute(); // Something strange happened 2549 } 2550 } 2551 } 2552 2553 // Fallback, if this is a general polynomial, figure out the progression 2554 // through brute force: evaluate until we find an iteration that fails the 2555 // test. This is likely to be slow, but getting an accurate trip count is 2556 // incredibly important, we will be able to simplify the exit test a lot, and 2557 // we are almost guaranteed to get a trip count in this case. 2558 ConstantInt *TestVal = ConstantInt::get(getType(), 0); 2559 ConstantInt *EndVal = TestVal; // Stop when we wrap around. 2560 do { 2561 ++NumBruteForceEvaluations; 2562 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE); 2563 if (!isa<SCEVConstant>(Val)) // This shouldn't happen. 2564 return new SCEVCouldNotCompute(); 2565 2566 // Check to see if we found the value! 2567 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) 2568 return SE.getConstant(TestVal); 2569 2570 // Increment to test the next index. 2571 TestVal = ConstantInt::get(TestVal->getValue()+1); 2572 } while (TestVal != EndVal); 2573 2574 return new SCEVCouldNotCompute(); 2575 } 2576 2577 2578 2579 //===----------------------------------------------------------------------===// 2580 // ScalarEvolution Class Implementation 2581 //===----------------------------------------------------------------------===// 2582 2583 bool ScalarEvolution::runOnFunction(Function &F) { 2584 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>()); 2585 return false; 2586 } 2587 2588 void ScalarEvolution::releaseMemory() { 2589 delete (ScalarEvolutionsImpl*)Impl; 2590 Impl = 0; 2591 } 2592 2593 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 2594 AU.setPreservesAll(); 2595 AU.addRequiredTransitive<LoopInfo>(); 2596 } 2597 2598 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 2599 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 2600 } 2601 2602 /// hasSCEV - Return true if the SCEV for this value has already been 2603 /// computed. 2604 bool ScalarEvolution::hasSCEV(Value *V) const { 2605 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 2606 } 2607 2608 2609 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 2610 /// the specified value. 2611 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 2612 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 2613 } 2614 2615 2616 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 2617 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 2618 } 2619 2620 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 2621 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 2622 } 2623 2624 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 2625 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 2626 } 2627 2628 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 2629 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 2630 } 2631 2632 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 2633 const Loop *L) { 2634 // Print all inner loops first 2635 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 2636 PrintLoopInfo(OS, SE, *I); 2637 2638 cerr << "Loop " << L->getHeader()->getName() << ": "; 2639 2640 SmallVector<BasicBlock*, 8> ExitBlocks; 2641 L->getExitBlocks(ExitBlocks); 2642 if (ExitBlocks.size() != 1) 2643 cerr << "<multiple exits> "; 2644 2645 if (SE->hasLoopInvariantIterationCount(L)) { 2646 cerr << *SE->getIterationCount(L) << " iterations! "; 2647 } else { 2648 cerr << "Unpredictable iteration count. "; 2649 } 2650 2651 cerr << "\n"; 2652 } 2653 2654 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 2655 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 2656 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 2657 2658 OS << "Classifying expressions for: " << F.getName() << "\n"; 2659 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 2660 if (I->getType()->isInteger()) { 2661 OS << *I; 2662 OS << " --> "; 2663 SCEVHandle SV = getSCEV(&*I); 2664 SV->print(OS); 2665 OS << "\t\t"; 2666 2667 if ((*I).getType()->isInteger()) { 2668 ConstantRange Bounds = SV->getValueRange(); 2669 if (!Bounds.isFullSet()) 2670 OS << "Bounds: " << Bounds << " "; 2671 } 2672 2673 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 2674 OS << "Exits: "; 2675 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 2676 if (isa<SCEVCouldNotCompute>(ExitValue)) { 2677 OS << "<<Unknown>>"; 2678 } else { 2679 OS << *ExitValue; 2680 } 2681 } 2682 2683 2684 OS << "\n"; 2685 } 2686 2687 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 2688 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 2689 PrintLoopInfo(OS, this, *I); 2690 } 2691