1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 static cl::opt<bool> 119 VerifySCEVMap("verify-scev-maps", 120 cl::desc("Verify no dangling value in ScalarEvolution's " 121 "ExprValueMap (slow)")); 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 LLVM_DUMP_METHOD 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->hasNoUnsignedWrap()) 170 OS << "nuw><"; 171 if (AR->hasNoSignedWrap()) 172 OS << "nsw><"; 173 if (AR->hasNoSelfWrap() && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = nullptr; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->hasNoUnsignedWrap()) 204 OS << "<nuw>"; 205 if (NAry->hasNoSignedWrap()) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 bool SCEV::isNonConstantNegative() const { 291 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 292 if (!Mul) return false; 293 294 // If there is a constant factor, it will be first. 295 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 296 if (!SC) return false; 297 298 // Return true if the value is negative, this matches things like (-42 * V). 299 return SC->getAPInt().isNegative(); 300 } 301 302 SCEVCouldNotCompute::SCEVCouldNotCompute() : 303 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 304 305 bool SCEVCouldNotCompute::classof(const SCEV *S) { 306 return S->getSCEVType() == scCouldNotCompute; 307 } 308 309 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 310 FoldingSetNodeID ID; 311 ID.AddInteger(scConstant); 312 ID.AddPointer(V); 313 void *IP = nullptr; 314 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 315 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 316 UniqueSCEVs.InsertNode(S, IP); 317 return S; 318 } 319 320 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 321 return getConstant(ConstantInt::get(getContext(), Val)); 322 } 323 324 const SCEV * 325 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 326 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 327 return getConstant(ConstantInt::get(ITy, V, isSigned)); 328 } 329 330 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 331 unsigned SCEVTy, const SCEV *op, Type *ty) 332 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 333 334 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 335 const SCEV *op, Type *ty) 336 : SCEVCastExpr(ID, scTruncate, op, ty) { 337 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 338 (Ty->isIntegerTy() || Ty->isPointerTy()) && 339 "Cannot truncate non-integer value!"); 340 } 341 342 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 343 const SCEV *op, Type *ty) 344 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 345 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 346 (Ty->isIntegerTy() || Ty->isPointerTy()) && 347 "Cannot zero extend non-integer value!"); 348 } 349 350 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 351 const SCEV *op, Type *ty) 352 : SCEVCastExpr(ID, scSignExtend, op, ty) { 353 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 354 (Ty->isIntegerTy() || Ty->isPointerTy()) && 355 "Cannot sign extend non-integer value!"); 356 } 357 358 void SCEVUnknown::deleted() { 359 // Clear this SCEVUnknown from various maps. 360 SE->forgetMemoizedResults(this); 361 362 // Remove this SCEVUnknown from the uniquing map. 363 SE->UniqueSCEVs.RemoveNode(this); 364 365 // Release the value. 366 setValPtr(nullptr); 367 } 368 369 void SCEVUnknown::allUsesReplacedWith(Value *New) { 370 // Clear this SCEVUnknown from various maps. 371 SE->forgetMemoizedResults(this); 372 373 // Remove this SCEVUnknown from the uniquing map. 374 SE->UniqueSCEVs.RemoveNode(this); 375 376 // Update this SCEVUnknown to point to the new value. This is needed 377 // because there may still be outstanding SCEVs which still point to 378 // this SCEVUnknown. 379 setValPtr(New); 380 } 381 382 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 383 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 384 if (VCE->getOpcode() == Instruction::PtrToInt) 385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 386 if (CE->getOpcode() == Instruction::GetElementPtr && 387 CE->getOperand(0)->isNullValue() && 388 CE->getNumOperands() == 2) 389 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 390 if (CI->isOne()) { 391 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 392 ->getElementType(); 393 return true; 394 } 395 396 return false; 397 } 398 399 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 401 if (VCE->getOpcode() == Instruction::PtrToInt) 402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 403 if (CE->getOpcode() == Instruction::GetElementPtr && 404 CE->getOperand(0)->isNullValue()) { 405 Type *Ty = 406 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 407 if (StructType *STy = dyn_cast<StructType>(Ty)) 408 if (!STy->isPacked() && 409 CE->getNumOperands() == 3 && 410 CE->getOperand(1)->isNullValue()) { 411 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 412 if (CI->isOne() && 413 STy->getNumElements() == 2 && 414 STy->getElementType(0)->isIntegerTy(1)) { 415 AllocTy = STy->getElementType(1); 416 return true; 417 } 418 } 419 } 420 421 return false; 422 } 423 424 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 425 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 426 if (VCE->getOpcode() == Instruction::PtrToInt) 427 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 428 if (CE->getOpcode() == Instruction::GetElementPtr && 429 CE->getNumOperands() == 3 && 430 CE->getOperand(0)->isNullValue() && 431 CE->getOperand(1)->isNullValue()) { 432 Type *Ty = 433 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 434 // Ignore vector types here so that ScalarEvolutionExpander doesn't 435 // emit getelementptrs that index into vectors. 436 if (Ty->isStructTy() || Ty->isArrayTy()) { 437 CTy = Ty; 438 FieldNo = CE->getOperand(2); 439 return true; 440 } 441 } 442 443 return false; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SCEV Utilities 448 //===----------------------------------------------------------------------===// 449 450 namespace { 451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 452 /// than the complexity of the RHS. This comparator is used to canonicalize 453 /// expressions. 454 class SCEVComplexityCompare { 455 const LoopInfo *const LI; 456 public: 457 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 458 459 // Return true or false if LHS is less than, or at least RHS, respectively. 460 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 461 return compare(LHS, RHS) < 0; 462 } 463 464 // Return negative, zero, or positive, if LHS is less than, equal to, or 465 // greater than RHS, respectively. A three-way result allows recursive 466 // comparisons to be more efficient. 467 int compare(const SCEV *LHS, const SCEV *RHS) const { 468 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 469 if (LHS == RHS) 470 return 0; 471 472 // Primarily, sort the SCEVs by their getSCEVType(). 473 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 474 if (LType != RType) 475 return (int)LType - (int)RType; 476 477 // Aside from the getSCEVType() ordering, the particular ordering 478 // isn't very important except that it's beneficial to be consistent, 479 // so that (a + b) and (b + a) don't end up as different expressions. 480 switch (static_cast<SCEVTypes>(LType)) { 481 case scUnknown: { 482 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 483 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 484 485 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 486 // not as complete as it could be. 487 const Value *LV = LU->getValue(), *RV = RU->getValue(); 488 489 // Order pointer values after integer values. This helps SCEVExpander 490 // form GEPs. 491 bool LIsPointer = LV->getType()->isPointerTy(), 492 RIsPointer = RV->getType()->isPointerTy(); 493 if (LIsPointer != RIsPointer) 494 return (int)LIsPointer - (int)RIsPointer; 495 496 // Compare getValueID values. 497 unsigned LID = LV->getValueID(), 498 RID = RV->getValueID(); 499 if (LID != RID) 500 return (int)LID - (int)RID; 501 502 // Sort arguments by their position. 503 if (const Argument *LA = dyn_cast<Argument>(LV)) { 504 const Argument *RA = cast<Argument>(RV); 505 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 506 return (int)LArgNo - (int)RArgNo; 507 } 508 509 // For instructions, compare their loop depth, and their operand 510 // count. This is pretty loose. 511 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 512 const Instruction *RInst = cast<Instruction>(RV); 513 514 // Compare loop depths. 515 const BasicBlock *LParent = LInst->getParent(), 516 *RParent = RInst->getParent(); 517 if (LParent != RParent) { 518 unsigned LDepth = LI->getLoopDepth(LParent), 519 RDepth = LI->getLoopDepth(RParent); 520 if (LDepth != RDepth) 521 return (int)LDepth - (int)RDepth; 522 } 523 524 // Compare the number of operands. 525 unsigned LNumOps = LInst->getNumOperands(), 526 RNumOps = RInst->getNumOperands(); 527 return (int)LNumOps - (int)RNumOps; 528 } 529 530 return 0; 531 } 532 533 case scConstant: { 534 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 535 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 536 537 // Compare constant values. 538 const APInt &LA = LC->getAPInt(); 539 const APInt &RA = RC->getAPInt(); 540 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 541 if (LBitWidth != RBitWidth) 542 return (int)LBitWidth - (int)RBitWidth; 543 return LA.ult(RA) ? -1 : 1; 544 } 545 546 case scAddRecExpr: { 547 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 548 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 549 550 // Compare addrec loop depths. 551 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 552 if (LLoop != RLoop) { 553 unsigned LDepth = LLoop->getLoopDepth(), 554 RDepth = RLoop->getLoopDepth(); 555 if (LDepth != RDepth) 556 return (int)LDepth - (int)RDepth; 557 } 558 559 // Addrec complexity grows with operand count. 560 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 561 if (LNumOps != RNumOps) 562 return (int)LNumOps - (int)RNumOps; 563 564 // Lexicographically compare. 565 for (unsigned i = 0; i != LNumOps; ++i) { 566 long X = compare(LA->getOperand(i), RA->getOperand(i)); 567 if (X != 0) 568 return X; 569 } 570 571 return 0; 572 } 573 574 case scAddExpr: 575 case scMulExpr: 576 case scSMaxExpr: 577 case scUMaxExpr: { 578 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 579 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 580 581 // Lexicographically compare n-ary expressions. 582 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 583 if (LNumOps != RNumOps) 584 return (int)LNumOps - (int)RNumOps; 585 586 for (unsigned i = 0; i != LNumOps; ++i) { 587 if (i >= RNumOps) 588 return 1; 589 long X = compare(LC->getOperand(i), RC->getOperand(i)); 590 if (X != 0) 591 return X; 592 } 593 return (int)LNumOps - (int)RNumOps; 594 } 595 596 case scUDivExpr: { 597 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 598 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 599 600 // Lexicographically compare udiv expressions. 601 long X = compare(LC->getLHS(), RC->getLHS()); 602 if (X != 0) 603 return X; 604 return compare(LC->getRHS(), RC->getRHS()); 605 } 606 607 case scTruncate: 608 case scZeroExtend: 609 case scSignExtend: { 610 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 611 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 612 613 // Compare cast expressions by operand. 614 return compare(LC->getOperand(), RC->getOperand()); 615 } 616 617 case scCouldNotCompute: 618 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 619 } 620 llvm_unreachable("Unknown SCEV kind!"); 621 } 622 }; 623 } // end anonymous namespace 624 625 /// Given a list of SCEV objects, order them by their complexity, and group 626 /// objects of the same complexity together by value. When this routine is 627 /// finished, we know that any duplicates in the vector are consecutive and that 628 /// complexity is monotonically increasing. 629 /// 630 /// Note that we go take special precautions to ensure that we get deterministic 631 /// results from this routine. In other words, we don't want the results of 632 /// this to depend on where the addresses of various SCEV objects happened to 633 /// land in memory. 634 /// 635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 636 LoopInfo *LI) { 637 if (Ops.size() < 2) return; // Noop 638 if (Ops.size() == 2) { 639 // This is the common case, which also happens to be trivially simple. 640 // Special case it. 641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 642 if (SCEVComplexityCompare(LI)(RHS, LHS)) 643 std::swap(LHS, RHS); 644 return; 645 } 646 647 // Do the rough sort by complexity. 648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 649 650 // Now that we are sorted by complexity, group elements of the same 651 // complexity. Note that this is, at worst, N^2, but the vector is likely to 652 // be extremely short in practice. Note that we take this approach because we 653 // do not want to depend on the addresses of the objects we are grouping. 654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 655 const SCEV *S = Ops[i]; 656 unsigned Complexity = S->getSCEVType(); 657 658 // If there are any objects of the same complexity and same value as this 659 // one, group them. 660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 661 if (Ops[j] == S) { // Found a duplicate. 662 // Move it to immediately after i'th element. 663 std::swap(Ops[i+1], Ops[j]); 664 ++i; // no need to rescan it. 665 if (i == e-2) return; // Done! 666 } 667 } 668 } 669 } 670 671 // Returns the size of the SCEV S. 672 static inline int sizeOfSCEV(const SCEV *S) { 673 struct FindSCEVSize { 674 int Size; 675 FindSCEVSize() : Size(0) {} 676 677 bool follow(const SCEV *S) { 678 ++Size; 679 // Keep looking at all operands of S. 680 return true; 681 } 682 bool isDone() const { 683 return false; 684 } 685 }; 686 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getAPInt(); 766 APInt DenominatorVal = D->getAPInt(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// Compute BC(It, K). The result has width W. Assume, K > 0. 928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 929 ScalarEvolution &SE, 930 Type *ResultTy) { 931 // Handle the simplest case efficiently. 932 if (K == 1) 933 return SE.getTruncateOrZeroExtend(It, ResultTy); 934 935 // We are using the following formula for BC(It, K): 936 // 937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 938 // 939 // Suppose, W is the bitwidth of the return value. We must be prepared for 940 // overflow. Hence, we must assure that the result of our computation is 941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 942 // safe in modular arithmetic. 943 // 944 // However, this code doesn't use exactly that formula; the formula it uses 945 // is something like the following, where T is the number of factors of 2 in 946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 947 // exponentiation: 948 // 949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 950 // 951 // This formula is trivially equivalent to the previous formula. However, 952 // this formula can be implemented much more efficiently. The trick is that 953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 954 // arithmetic. To do exact division in modular arithmetic, all we have 955 // to do is multiply by the inverse. Therefore, this step can be done at 956 // width W. 957 // 958 // The next issue is how to safely do the division by 2^T. The way this 959 // is done is by doing the multiplication step at a width of at least W + T 960 // bits. This way, the bottom W+T bits of the product are accurate. Then, 961 // when we perform the division by 2^T (which is equivalent to a right shift 962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 963 // truncated out after the division by 2^T. 964 // 965 // In comparison to just directly using the first formula, this technique 966 // is much more efficient; using the first formula requires W * K bits, 967 // but this formula less than W + K bits. Also, the first formula requires 968 // a division step, whereas this formula only requires multiplies and shifts. 969 // 970 // It doesn't matter whether the subtraction step is done in the calculation 971 // width or the input iteration count's width; if the subtraction overflows, 972 // the result must be zero anyway. We prefer here to do it in the width of 973 // the induction variable because it helps a lot for certain cases; CodeGen 974 // isn't smart enough to ignore the overflow, which leads to much less 975 // efficient code if the width of the subtraction is wider than the native 976 // register width. 977 // 978 // (It's possible to not widen at all by pulling out factors of 2 before 979 // the multiplication; for example, K=2 can be calculated as 980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 981 // extra arithmetic, so it's not an obvious win, and it gets 982 // much more complicated for K > 3.) 983 984 // Protection from insane SCEVs; this bound is conservative, 985 // but it probably doesn't matter. 986 if (K > 1000) 987 return SE.getCouldNotCompute(); 988 989 unsigned W = SE.getTypeSizeInBits(ResultTy); 990 991 // Calculate K! / 2^T and T; we divide out the factors of two before 992 // multiplying for calculating K! / 2^T to avoid overflow. 993 // Other overflow doesn't matter because we only care about the bottom 994 // W bits of the result. 995 APInt OddFactorial(W, 1); 996 unsigned T = 1; 997 for (unsigned i = 3; i <= K; ++i) { 998 APInt Mult(W, i); 999 unsigned TwoFactors = Mult.countTrailingZeros(); 1000 T += TwoFactors; 1001 Mult = Mult.lshr(TwoFactors); 1002 OddFactorial *= Mult; 1003 } 1004 1005 // We need at least W + T bits for the multiplication step 1006 unsigned CalculationBits = W + T; 1007 1008 // Calculate 2^T, at width T+W. 1009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1010 1011 // Calculate the multiplicative inverse of K! / 2^T; 1012 // this multiplication factor will perform the exact division by 1013 // K! / 2^T. 1014 APInt Mod = APInt::getSignedMinValue(W+1); 1015 APInt MultiplyFactor = OddFactorial.zext(W+1); 1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1017 MultiplyFactor = MultiplyFactor.trunc(W); 1018 1019 // Calculate the product, at width T+W 1020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1021 CalculationBits); 1022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1023 for (unsigned i = 1; i != K; ++i) { 1024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1025 Dividend = SE.getMulExpr(Dividend, 1026 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1027 } 1028 1029 // Divide by 2^T 1030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1031 1032 // Truncate the result, and divide by K! / 2^T. 1033 1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1036 } 1037 1038 /// Return the value of this chain of recurrences at the specified iteration 1039 /// number. We can evaluate this recurrence by multiplying each element in the 1040 /// chain by the binomial coefficient corresponding to it. In other words, we 1041 /// can evaluate {A,+,B,+,C,+,D} as: 1042 /// 1043 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1044 /// 1045 /// where BC(It, k) stands for binomial coefficient. 1046 /// 1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1048 ScalarEvolution &SE) const { 1049 const SCEV *Result = getStart(); 1050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1051 // The computation is correct in the face of overflow provided that the 1052 // multiplication is performed _after_ the evaluation of the binomial 1053 // coefficient. 1054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1055 if (isa<SCEVCouldNotCompute>(Coeff)) 1056 return Coeff; 1057 1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1059 } 1060 return Result; 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // SCEV Expression folder implementations 1065 //===----------------------------------------------------------------------===// 1066 1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1068 Type *Ty) { 1069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1070 "This is not a truncating conversion!"); 1071 assert(isSCEVable(Ty) && 1072 "This is not a conversion to a SCEVable type!"); 1073 Ty = getEffectiveSCEVType(Ty); 1074 1075 FoldingSetNodeID ID; 1076 ID.AddInteger(scTruncate); 1077 ID.AddPointer(Op); 1078 ID.AddPointer(Ty); 1079 void *IP = nullptr; 1080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1081 1082 // Fold if the operand is constant. 1083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1084 return getConstant( 1085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1086 1087 // trunc(trunc(x)) --> trunc(x) 1088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1089 return getTruncateExpr(ST->getOperand(), Ty); 1090 1091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1093 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1094 1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1098 1099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1100 // eliminate all the truncates, or we replace other casts with truncates. 1101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1102 SmallVector<const SCEV *, 4> Operands; 1103 bool hasTrunc = false; 1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1106 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1107 hasTrunc = isa<SCEVTruncateExpr>(S); 1108 Operands.push_back(S); 1109 } 1110 if (!hasTrunc) 1111 return getAddExpr(Operands); 1112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1113 } 1114 1115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1116 // eliminate all the truncates, or we replace other casts with truncates. 1117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1118 SmallVector<const SCEV *, 4> Operands; 1119 bool hasTrunc = false; 1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1122 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1123 hasTrunc = isa<SCEVTruncateExpr>(S); 1124 Operands.push_back(S); 1125 } 1126 if (!hasTrunc) 1127 return getMulExpr(Operands); 1128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1129 } 1130 1131 // If the input value is a chrec scev, truncate the chrec's operands. 1132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1133 SmallVector<const SCEV *, 4> Operands; 1134 for (const SCEV *Op : AddRec->operands()) 1135 Operands.push_back(getTruncateExpr(Op, Ty)); 1136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1137 } 1138 1139 // The cast wasn't folded; create an explicit cast node. We can reuse 1140 // the existing insert position since if we get here, we won't have 1141 // made any changes which would invalidate it. 1142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1143 Op, Ty); 1144 UniqueSCEVs.InsertNode(S, IP); 1145 return S; 1146 } 1147 1148 // Get the limit of a recurrence such that incrementing by Step cannot cause 1149 // signed overflow as long as the value of the recurrence within the 1150 // loop does not exceed this limit before incrementing. 1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1155 if (SE->isKnownPositive(Step)) { 1156 *Pred = ICmpInst::ICMP_SLT; 1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1158 SE->getSignedRange(Step).getSignedMax()); 1159 } 1160 if (SE->isKnownNegative(Step)) { 1161 *Pred = ICmpInst::ICMP_SGT; 1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1163 SE->getSignedRange(Step).getSignedMin()); 1164 } 1165 return nullptr; 1166 } 1167 1168 // Get the limit of a recurrence such that incrementing by Step cannot cause 1169 // unsigned overflow as long as the value of the recurrence within the loop does 1170 // not exceed this limit before incrementing. 1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1172 ICmpInst::Predicate *Pred, 1173 ScalarEvolution *SE) { 1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1175 *Pred = ICmpInst::ICMP_ULT; 1176 1177 return SE->getConstant(APInt::getMinValue(BitWidth) - 1178 SE->getUnsignedRange(Step).getUnsignedMax()); 1179 } 1180 1181 namespace { 1182 1183 struct ExtendOpTraitsBase { 1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1185 }; 1186 1187 // Used to make code generic over signed and unsigned overflow. 1188 template <typename ExtendOp> struct ExtendOpTraits { 1189 // Members present: 1190 // 1191 // static const SCEV::NoWrapFlags WrapType; 1192 // 1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1194 // 1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1196 // ICmpInst::Predicate *Pred, 1197 // ScalarEvolution *SE); 1198 }; 1199 1200 template <> 1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1203 1204 static const GetExtendExprTy GetExtendExpr; 1205 1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1207 ICmpInst::Predicate *Pred, 1208 ScalarEvolution *SE) { 1209 return getSignedOverflowLimitForStep(Step, Pred, SE); 1210 } 1211 }; 1212 1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1215 1216 template <> 1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1219 1220 static const GetExtendExprTy GetExtendExpr; 1221 1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1223 ICmpInst::Predicate *Pred, 1224 ScalarEvolution *SE) { 1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1226 } 1227 }; 1228 1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1231 } 1232 1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1238 // expression "Step + sext/zext(PreIncAR)" is congruent with 1239 // "sext/zext(PostIncAR)" 1240 template <typename ExtendOpTy> 1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1242 ScalarEvolution *SE) { 1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1245 1246 const Loop *L = AR->getLoop(); 1247 const SCEV *Start = AR->getStart(); 1248 const SCEV *Step = AR->getStepRecurrence(*SE); 1249 1250 // Check for a simple looking step prior to loop entry. 1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1252 if (!SA) 1253 return nullptr; 1254 1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1256 // subtraction is expensive. For this purpose, perform a quick and dirty 1257 // difference, by checking for Step in the operand list. 1258 SmallVector<const SCEV *, 4> DiffOps; 1259 for (const SCEV *Op : SA->operands()) 1260 if (Op != Step) 1261 DiffOps.push_back(Op); 1262 1263 if (DiffOps.size() == SA->getNumOperands()) 1264 return nullptr; 1265 1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1267 // `Step`: 1268 1269 // 1. NSW/NUW flags on the step increment. 1270 auto PreStartFlags = 1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1275 1276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1277 // "S+X does not sign/unsign-overflow". 1278 // 1279 1280 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1283 return PreStart; 1284 1285 // 2. Direct overflow check on the step operation's expression. 1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1288 const SCEV *OperandExtendedStart = 1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1290 (SE->*GetExtendExpr)(Step, WideTy)); 1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1292 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1297 } 1298 return PreStart; 1299 } 1300 1301 // 3. Loop precondition. 1302 ICmpInst::Predicate Pred; 1303 const SCEV *OverflowLimit = 1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1305 1306 if (OverflowLimit && 1307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1308 return PreStart; 1309 1310 return nullptr; 1311 } 1312 1313 // Get the normalized zero or sign extended expression for this AddRec's Start. 1314 template <typename ExtendOpTy> 1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1316 ScalarEvolution *SE) { 1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1318 1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1320 if (!PreStart) 1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1322 1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1324 (SE->*GetExtendExpr)(PreStart, Ty)); 1325 } 1326 1327 // Try to prove away overflow by looking at "nearby" add recurrences. A 1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1330 // 1331 // Formally: 1332 // 1333 // {S,+,X} == {S-T,+,X} + T 1334 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1335 // 1336 // If ({S-T,+,X} + T) does not overflow ... (1) 1337 // 1338 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1339 // 1340 // If {S-T,+,X} does not overflow ... (2) 1341 // 1342 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1343 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1344 // 1345 // If (S-T)+T does not overflow ... (3) 1346 // 1347 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1348 // == {Ext(S),+,Ext(X)} == LHS 1349 // 1350 // Thus, if (1), (2) and (3) are true for some T, then 1351 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1352 // 1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1354 // does not overflow" restricted to the 0th iteration. Therefore we only need 1355 // to check for (1) and (2). 1356 // 1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1358 // is `Delta` (defined below). 1359 // 1360 template <typename ExtendOpTy> 1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1362 const SCEV *Step, 1363 const Loop *L) { 1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1365 1366 // We restrict `Start` to a constant to prevent SCEV from spending too much 1367 // time here. It is correct (but more expensive) to continue with a 1368 // non-constant `Start` and do a general SCEV subtraction to compute 1369 // `PreStart` below. 1370 // 1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1372 if (!StartC) 1373 return false; 1374 1375 APInt StartAI = StartC->getAPInt(); 1376 1377 for (unsigned Delta : {-2, -1, 1, 2}) { 1378 const SCEV *PreStart = getConstant(StartAI - Delta); 1379 1380 FoldingSetNodeID ID; 1381 ID.AddInteger(scAddRecExpr); 1382 ID.AddPointer(PreStart); 1383 ID.AddPointer(Step); 1384 ID.AddPointer(L); 1385 void *IP = nullptr; 1386 const auto *PreAR = 1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1388 1389 // Give up if we don't already have the add recurrence we need because 1390 // actually constructing an add recurrence is relatively expensive. 1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1395 DeltaS, &Pred, this); 1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1397 return true; 1398 } 1399 } 1400 1401 return false; 1402 } 1403 1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1405 Type *Ty) { 1406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1407 "This is not an extending conversion!"); 1408 assert(isSCEVable(Ty) && 1409 "This is not a conversion to a SCEVable type!"); 1410 Ty = getEffectiveSCEVType(Ty); 1411 1412 // Fold if the operand is constant. 1413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1414 return getConstant( 1415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1416 1417 // zext(zext(x)) --> zext(x) 1418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1419 return getZeroExtendExpr(SZ->getOperand(), Ty); 1420 1421 // Before doing any expensive analysis, check to see if we've already 1422 // computed a SCEV for this Op and Ty. 1423 FoldingSetNodeID ID; 1424 ID.AddInteger(scZeroExtend); 1425 ID.AddPointer(Op); 1426 ID.AddPointer(Ty); 1427 void *IP = nullptr; 1428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1429 1430 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1432 // It's possible the bits taken off by the truncate were all zero bits. If 1433 // so, we should be able to simplify this further. 1434 const SCEV *X = ST->getOperand(); 1435 ConstantRange CR = getUnsignedRange(X); 1436 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1437 unsigned NewBits = getTypeSizeInBits(Ty); 1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1439 CR.zextOrTrunc(NewBits))) 1440 return getTruncateOrZeroExtend(X, Ty); 1441 } 1442 1443 // If the input value is a chrec scev, and we can prove that the value 1444 // did not overflow the old, smaller, value, we can zero extend all of the 1445 // operands (often constants). This allows analysis of something like 1446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1448 if (AR->isAffine()) { 1449 const SCEV *Start = AR->getStart(); 1450 const SCEV *Step = AR->getStepRecurrence(*this); 1451 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1452 const Loop *L = AR->getLoop(); 1453 1454 if (!AR->hasNoUnsignedWrap()) { 1455 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1456 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1457 } 1458 1459 // If we have special knowledge that this addrec won't overflow, 1460 // we don't need to do any further analysis. 1461 if (AR->hasNoUnsignedWrap()) 1462 return getAddRecExpr( 1463 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1464 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1465 1466 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1467 // Note that this serves two purposes: It filters out loops that are 1468 // simply not analyzable, and it covers the case where this code is 1469 // being called from within backedge-taken count analysis, such that 1470 // attempting to ask for the backedge-taken count would likely result 1471 // in infinite recursion. In the later case, the analysis code will 1472 // cope with a conservative value, and it will take care to purge 1473 // that value once it has finished. 1474 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1475 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1476 // Manually compute the final value for AR, checking for 1477 // overflow. 1478 1479 // Check whether the backedge-taken count can be losslessly casted to 1480 // the addrec's type. The count is always unsigned. 1481 const SCEV *CastedMaxBECount = 1482 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1483 const SCEV *RecastedMaxBECount = 1484 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1485 if (MaxBECount == RecastedMaxBECount) { 1486 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1487 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1488 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1489 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1490 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1491 const SCEV *WideMaxBECount = 1492 getZeroExtendExpr(CastedMaxBECount, WideTy); 1493 const SCEV *OperandExtendedAdd = 1494 getAddExpr(WideStart, 1495 getMulExpr(WideMaxBECount, 1496 getZeroExtendExpr(Step, WideTy))); 1497 if (ZAdd == OperandExtendedAdd) { 1498 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1499 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1500 // Return the expression with the addrec on the outside. 1501 return getAddRecExpr( 1502 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1503 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1504 } 1505 // Similar to above, only this time treat the step value as signed. 1506 // This covers loops that count down. 1507 OperandExtendedAdd = 1508 getAddExpr(WideStart, 1509 getMulExpr(WideMaxBECount, 1510 getSignExtendExpr(Step, WideTy))); 1511 if (ZAdd == OperandExtendedAdd) { 1512 // Cache knowledge of AR NW, which is propagated to this AddRec. 1513 // Negative step causes unsigned wrap, but it still can't self-wrap. 1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1515 // Return the expression with the addrec on the outside. 1516 return getAddRecExpr( 1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1518 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1519 } 1520 } 1521 } 1522 1523 // Normally, in the cases we can prove no-overflow via a 1524 // backedge guarding condition, we can also compute a backedge 1525 // taken count for the loop. The exceptions are assumptions and 1526 // guards present in the loop -- SCEV is not great at exploiting 1527 // these to compute max backedge taken counts, but can still use 1528 // these to prove lack of overflow. Use this fact to avoid 1529 // doing extra work that may not pay off. 1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1531 !AC.assumptions().empty()) { 1532 // If the backedge is guarded by a comparison with the pre-inc 1533 // value the addrec is safe. Also, if the entry is guarded by 1534 // a comparison with the start value and the backedge is 1535 // guarded by a comparison with the post-inc value, the addrec 1536 // is safe. 1537 if (isKnownPositive(Step)) { 1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1539 getUnsignedRange(Step).getUnsignedMax()); 1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1541 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1542 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1543 AR->getPostIncExpr(*this), N))) { 1544 // Cache knowledge of AR NUW, which is propagated to this 1545 // AddRec. 1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1547 // Return the expression with the addrec on the outside. 1548 return getAddRecExpr( 1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1550 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1551 } 1552 } else if (isKnownNegative(Step)) { 1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1554 getSignedRange(Step).getSignedMin()); 1555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1556 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1557 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1558 AR->getPostIncExpr(*this), N))) { 1559 // Cache knowledge of AR NW, which is propagated to this 1560 // AddRec. Negative step causes unsigned wrap, but it 1561 // still can't self-wrap. 1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1563 // Return the expression with the addrec on the outside. 1564 return getAddRecExpr( 1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1566 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1567 } 1568 } 1569 } 1570 1571 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1572 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1573 return getAddRecExpr( 1574 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1575 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1576 } 1577 } 1578 1579 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1580 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1581 if (SA->hasNoUnsignedWrap()) { 1582 // If the addition does not unsign overflow then we can, by definition, 1583 // commute the zero extension with the addition operation. 1584 SmallVector<const SCEV *, 4> Ops; 1585 for (const auto *Op : SA->operands()) 1586 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1587 return getAddExpr(Ops, SCEV::FlagNUW); 1588 } 1589 } 1590 1591 // The cast wasn't folded; create an explicit cast node. 1592 // Recompute the insert position, as it may have been invalidated. 1593 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1594 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1595 Op, Ty); 1596 UniqueSCEVs.InsertNode(S, IP); 1597 return S; 1598 } 1599 1600 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1601 Type *Ty) { 1602 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1603 "This is not an extending conversion!"); 1604 assert(isSCEVable(Ty) && 1605 "This is not a conversion to a SCEVable type!"); 1606 Ty = getEffectiveSCEVType(Ty); 1607 1608 // Fold if the operand is constant. 1609 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1610 return getConstant( 1611 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1612 1613 // sext(sext(x)) --> sext(x) 1614 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1615 return getSignExtendExpr(SS->getOperand(), Ty); 1616 1617 // sext(zext(x)) --> zext(x) 1618 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1619 return getZeroExtendExpr(SZ->getOperand(), Ty); 1620 1621 // Before doing any expensive analysis, check to see if we've already 1622 // computed a SCEV for this Op and Ty. 1623 FoldingSetNodeID ID; 1624 ID.AddInteger(scSignExtend); 1625 ID.AddPointer(Op); 1626 ID.AddPointer(Ty); 1627 void *IP = nullptr; 1628 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1629 1630 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1631 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1632 // It's possible the bits taken off by the truncate were all sign bits. If 1633 // so, we should be able to simplify this further. 1634 const SCEV *X = ST->getOperand(); 1635 ConstantRange CR = getSignedRange(X); 1636 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1637 unsigned NewBits = getTypeSizeInBits(Ty); 1638 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1639 CR.sextOrTrunc(NewBits))) 1640 return getTruncateOrSignExtend(X, Ty); 1641 } 1642 1643 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1644 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1645 if (SA->getNumOperands() == 2) { 1646 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1647 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1648 if (SMul && SC1) { 1649 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1650 const APInt &C1 = SC1->getAPInt(); 1651 const APInt &C2 = SC2->getAPInt(); 1652 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1653 C2.ugt(C1) && C2.isPowerOf2()) 1654 return getAddExpr(getSignExtendExpr(SC1, Ty), 1655 getSignExtendExpr(SMul, Ty)); 1656 } 1657 } 1658 } 1659 1660 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1661 if (SA->hasNoSignedWrap()) { 1662 // If the addition does not sign overflow then we can, by definition, 1663 // commute the sign extension with the addition operation. 1664 SmallVector<const SCEV *, 4> Ops; 1665 for (const auto *Op : SA->operands()) 1666 Ops.push_back(getSignExtendExpr(Op, Ty)); 1667 return getAddExpr(Ops, SCEV::FlagNSW); 1668 } 1669 } 1670 // If the input value is a chrec scev, and we can prove that the value 1671 // did not overflow the old, smaller, value, we can sign extend all of the 1672 // operands (often constants). This allows analysis of something like 1673 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1674 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1675 if (AR->isAffine()) { 1676 const SCEV *Start = AR->getStart(); 1677 const SCEV *Step = AR->getStepRecurrence(*this); 1678 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1679 const Loop *L = AR->getLoop(); 1680 1681 if (!AR->hasNoSignedWrap()) { 1682 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1683 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1684 } 1685 1686 // If we have special knowledge that this addrec won't overflow, 1687 // we don't need to do any further analysis. 1688 if (AR->hasNoSignedWrap()) 1689 return getAddRecExpr( 1690 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1691 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1692 1693 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1694 // Note that this serves two purposes: It filters out loops that are 1695 // simply not analyzable, and it covers the case where this code is 1696 // being called from within backedge-taken count analysis, such that 1697 // attempting to ask for the backedge-taken count would likely result 1698 // in infinite recursion. In the later case, the analysis code will 1699 // cope with a conservative value, and it will take care to purge 1700 // that value once it has finished. 1701 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1702 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1703 // Manually compute the final value for AR, checking for 1704 // overflow. 1705 1706 // Check whether the backedge-taken count can be losslessly casted to 1707 // the addrec's type. The count is always unsigned. 1708 const SCEV *CastedMaxBECount = 1709 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1710 const SCEV *RecastedMaxBECount = 1711 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1712 if (MaxBECount == RecastedMaxBECount) { 1713 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1714 // Check whether Start+Step*MaxBECount has no signed overflow. 1715 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1716 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1717 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1718 const SCEV *WideMaxBECount = 1719 getZeroExtendExpr(CastedMaxBECount, WideTy); 1720 const SCEV *OperandExtendedAdd = 1721 getAddExpr(WideStart, 1722 getMulExpr(WideMaxBECount, 1723 getSignExtendExpr(Step, WideTy))); 1724 if (SAdd == OperandExtendedAdd) { 1725 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1727 // Return the expression with the addrec on the outside. 1728 return getAddRecExpr( 1729 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1730 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1731 } 1732 // Similar to above, only this time treat the step value as unsigned. 1733 // This covers loops that count up with an unsigned step. 1734 OperandExtendedAdd = 1735 getAddExpr(WideStart, 1736 getMulExpr(WideMaxBECount, 1737 getZeroExtendExpr(Step, WideTy))); 1738 if (SAdd == OperandExtendedAdd) { 1739 // If AR wraps around then 1740 // 1741 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1742 // => SAdd != OperandExtendedAdd 1743 // 1744 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1745 // (SAdd == OperandExtendedAdd => AR is NW) 1746 1747 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1748 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1752 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1753 } 1754 } 1755 } 1756 1757 // Normally, in the cases we can prove no-overflow via a 1758 // backedge guarding condition, we can also compute a backedge 1759 // taken count for the loop. The exceptions are assumptions and 1760 // guards present in the loop -- SCEV is not great at exploiting 1761 // these to compute max backedge taken counts, but can still use 1762 // these to prove lack of overflow. Use this fact to avoid 1763 // doing extra work that may not pay off. 1764 1765 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1766 !AC.assumptions().empty()) { 1767 // If the backedge is guarded by a comparison with the pre-inc 1768 // value the addrec is safe. Also, if the entry is guarded by 1769 // a comparison with the start value and the backedge is 1770 // guarded by a comparison with the post-inc value, the addrec 1771 // is safe. 1772 ICmpInst::Predicate Pred; 1773 const SCEV *OverflowLimit = 1774 getSignedOverflowLimitForStep(Step, &Pred, this); 1775 if (OverflowLimit && 1776 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1777 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1778 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1779 OverflowLimit)))) { 1780 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1781 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1782 return getAddRecExpr( 1783 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1784 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1785 } 1786 } 1787 1788 // If Start and Step are constants, check if we can apply this 1789 // transformation: 1790 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1791 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1792 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1793 if (SC1 && SC2) { 1794 const APInt &C1 = SC1->getAPInt(); 1795 const APInt &C2 = SC2->getAPInt(); 1796 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1797 C2.isPowerOf2()) { 1798 Start = getSignExtendExpr(Start, Ty); 1799 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1800 AR->getNoWrapFlags()); 1801 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1802 } 1803 } 1804 1805 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1806 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1807 return getAddRecExpr( 1808 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1809 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1810 } 1811 } 1812 1813 // If the input value is provably positive and we could not simplify 1814 // away the sext build a zext instead. 1815 if (isKnownNonNegative(Op)) 1816 return getZeroExtendExpr(Op, Ty); 1817 1818 // The cast wasn't folded; create an explicit cast node. 1819 // Recompute the insert position, as it may have been invalidated. 1820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1821 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1822 Op, Ty); 1823 UniqueSCEVs.InsertNode(S, IP); 1824 return S; 1825 } 1826 1827 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1828 /// unspecified bits out to the given type. 1829 /// 1830 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1831 Type *Ty) { 1832 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1833 "This is not an extending conversion!"); 1834 assert(isSCEVable(Ty) && 1835 "This is not a conversion to a SCEVable type!"); 1836 Ty = getEffectiveSCEVType(Ty); 1837 1838 // Sign-extend negative constants. 1839 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1840 if (SC->getAPInt().isNegative()) 1841 return getSignExtendExpr(Op, Ty); 1842 1843 // Peel off a truncate cast. 1844 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1845 const SCEV *NewOp = T->getOperand(); 1846 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1847 return getAnyExtendExpr(NewOp, Ty); 1848 return getTruncateOrNoop(NewOp, Ty); 1849 } 1850 1851 // Next try a zext cast. If the cast is folded, use it. 1852 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1853 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1854 return ZExt; 1855 1856 // Next try a sext cast. If the cast is folded, use it. 1857 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1858 if (!isa<SCEVSignExtendExpr>(SExt)) 1859 return SExt; 1860 1861 // Force the cast to be folded into the operands of an addrec. 1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1863 SmallVector<const SCEV *, 4> Ops; 1864 for (const SCEV *Op : AR->operands()) 1865 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1866 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1867 } 1868 1869 // If the expression is obviously signed, use the sext cast value. 1870 if (isa<SCEVSMaxExpr>(Op)) 1871 return SExt; 1872 1873 // Absent any other information, use the zext cast value. 1874 return ZExt; 1875 } 1876 1877 /// Process the given Ops list, which is a list of operands to be added under 1878 /// the given scale, update the given map. This is a helper function for 1879 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1880 /// that would form an add expression like this: 1881 /// 1882 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1883 /// 1884 /// where A and B are constants, update the map with these values: 1885 /// 1886 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1887 /// 1888 /// and add 13 + A*B*29 to AccumulatedConstant. 1889 /// This will allow getAddRecExpr to produce this: 1890 /// 1891 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1892 /// 1893 /// This form often exposes folding opportunities that are hidden in 1894 /// the original operand list. 1895 /// 1896 /// Return true iff it appears that any interesting folding opportunities 1897 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1898 /// the common case where no interesting opportunities are present, and 1899 /// is also used as a check to avoid infinite recursion. 1900 /// 1901 static bool 1902 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1903 SmallVectorImpl<const SCEV *> &NewOps, 1904 APInt &AccumulatedConstant, 1905 const SCEV *const *Ops, size_t NumOperands, 1906 const APInt &Scale, 1907 ScalarEvolution &SE) { 1908 bool Interesting = false; 1909 1910 // Iterate over the add operands. They are sorted, with constants first. 1911 unsigned i = 0; 1912 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1913 ++i; 1914 // Pull a buried constant out to the outside. 1915 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1916 Interesting = true; 1917 AccumulatedConstant += Scale * C->getAPInt(); 1918 } 1919 1920 // Next comes everything else. We're especially interested in multiplies 1921 // here, but they're in the middle, so just visit the rest with one loop. 1922 for (; i != NumOperands; ++i) { 1923 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1924 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1925 APInt NewScale = 1926 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1927 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1928 // A multiplication of a constant with another add; recurse. 1929 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1930 Interesting |= 1931 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1932 Add->op_begin(), Add->getNumOperands(), 1933 NewScale, SE); 1934 } else { 1935 // A multiplication of a constant with some other value. Update 1936 // the map. 1937 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1938 const SCEV *Key = SE.getMulExpr(MulOps); 1939 auto Pair = M.insert({Key, NewScale}); 1940 if (Pair.second) { 1941 NewOps.push_back(Pair.first->first); 1942 } else { 1943 Pair.first->second += NewScale; 1944 // The map already had an entry for this value, which may indicate 1945 // a folding opportunity. 1946 Interesting = true; 1947 } 1948 } 1949 } else { 1950 // An ordinary operand. Update the map. 1951 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1952 M.insert({Ops[i], Scale}); 1953 if (Pair.second) { 1954 NewOps.push_back(Pair.first->first); 1955 } else { 1956 Pair.first->second += Scale; 1957 // The map already had an entry for this value, which may indicate 1958 // a folding opportunity. 1959 Interesting = true; 1960 } 1961 } 1962 } 1963 1964 return Interesting; 1965 } 1966 1967 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1968 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1969 // can't-overflow flags for the operation if possible. 1970 static SCEV::NoWrapFlags 1971 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1972 const SmallVectorImpl<const SCEV *> &Ops, 1973 SCEV::NoWrapFlags Flags) { 1974 using namespace std::placeholders; 1975 typedef OverflowingBinaryOperator OBO; 1976 1977 bool CanAnalyze = 1978 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1979 (void)CanAnalyze; 1980 assert(CanAnalyze && "don't call from other places!"); 1981 1982 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1983 SCEV::NoWrapFlags SignOrUnsignWrap = 1984 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1985 1986 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1987 auto IsKnownNonNegative = [&](const SCEV *S) { 1988 return SE->isKnownNonNegative(S); 1989 }; 1990 1991 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1992 Flags = 1993 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1994 1995 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1996 1997 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1998 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1999 2000 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2001 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2002 2003 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2004 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2005 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2006 Instruction::Add, C, OBO::NoSignedWrap); 2007 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2008 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2009 } 2010 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2011 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2012 Instruction::Add, C, OBO::NoUnsignedWrap); 2013 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2014 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2015 } 2016 } 2017 2018 return Flags; 2019 } 2020 2021 /// Get a canonical add expression, or something simpler if possible. 2022 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2023 SCEV::NoWrapFlags Flags) { 2024 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2025 "only nuw or nsw allowed"); 2026 assert(!Ops.empty() && "Cannot get empty add!"); 2027 if (Ops.size() == 1) return Ops[0]; 2028 #ifndef NDEBUG 2029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2030 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2032 "SCEVAddExpr operand types don't match!"); 2033 #endif 2034 2035 // Sort by complexity, this groups all similar expression types together. 2036 GroupByComplexity(Ops, &LI); 2037 2038 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2039 2040 // If there are any constants, fold them together. 2041 unsigned Idx = 0; 2042 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2043 ++Idx; 2044 assert(Idx < Ops.size()); 2045 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2046 // We found two constants, fold them together! 2047 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2048 if (Ops.size() == 2) return Ops[0]; 2049 Ops.erase(Ops.begin()+1); // Erase the folded element 2050 LHSC = cast<SCEVConstant>(Ops[0]); 2051 } 2052 2053 // If we are left with a constant zero being added, strip it off. 2054 if (LHSC->getValue()->isZero()) { 2055 Ops.erase(Ops.begin()); 2056 --Idx; 2057 } 2058 2059 if (Ops.size() == 1) return Ops[0]; 2060 } 2061 2062 // Okay, check to see if the same value occurs in the operand list more than 2063 // once. If so, merge them together into an multiply expression. Since we 2064 // sorted the list, these values are required to be adjacent. 2065 Type *Ty = Ops[0]->getType(); 2066 bool FoundMatch = false; 2067 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2068 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2069 // Scan ahead to count how many equal operands there are. 2070 unsigned Count = 2; 2071 while (i+Count != e && Ops[i+Count] == Ops[i]) 2072 ++Count; 2073 // Merge the values into a multiply. 2074 const SCEV *Scale = getConstant(Ty, Count); 2075 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2076 if (Ops.size() == Count) 2077 return Mul; 2078 Ops[i] = Mul; 2079 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2080 --i; e -= Count - 1; 2081 FoundMatch = true; 2082 } 2083 if (FoundMatch) 2084 return getAddExpr(Ops, Flags); 2085 2086 // Check for truncates. If all the operands are truncated from the same 2087 // type, see if factoring out the truncate would permit the result to be 2088 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2089 // if the contents of the resulting outer trunc fold to something simple. 2090 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2091 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2092 Type *DstType = Trunc->getType(); 2093 Type *SrcType = Trunc->getOperand()->getType(); 2094 SmallVector<const SCEV *, 8> LargeOps; 2095 bool Ok = true; 2096 // Check all the operands to see if they can be represented in the 2097 // source type of the truncate. 2098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2099 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2100 if (T->getOperand()->getType() != SrcType) { 2101 Ok = false; 2102 break; 2103 } 2104 LargeOps.push_back(T->getOperand()); 2105 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2106 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2107 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2108 SmallVector<const SCEV *, 8> LargeMulOps; 2109 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2110 if (const SCEVTruncateExpr *T = 2111 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2112 if (T->getOperand()->getType() != SrcType) { 2113 Ok = false; 2114 break; 2115 } 2116 LargeMulOps.push_back(T->getOperand()); 2117 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2118 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2119 } else { 2120 Ok = false; 2121 break; 2122 } 2123 } 2124 if (Ok) 2125 LargeOps.push_back(getMulExpr(LargeMulOps)); 2126 } else { 2127 Ok = false; 2128 break; 2129 } 2130 } 2131 if (Ok) { 2132 // Evaluate the expression in the larger type. 2133 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2134 // If it folds to something simple, use it. Otherwise, don't. 2135 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2136 return getTruncateExpr(Fold, DstType); 2137 } 2138 } 2139 2140 // Skip past any other cast SCEVs. 2141 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2142 ++Idx; 2143 2144 // If there are add operands they would be next. 2145 if (Idx < Ops.size()) { 2146 bool DeletedAdd = false; 2147 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2148 // If we have an add, expand the add operands onto the end of the operands 2149 // list. 2150 Ops.erase(Ops.begin()+Idx); 2151 Ops.append(Add->op_begin(), Add->op_end()); 2152 DeletedAdd = true; 2153 } 2154 2155 // If we deleted at least one add, we added operands to the end of the list, 2156 // and they are not necessarily sorted. Recurse to resort and resimplify 2157 // any operands we just acquired. 2158 if (DeletedAdd) 2159 return getAddExpr(Ops); 2160 } 2161 2162 // Skip over the add expression until we get to a multiply. 2163 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2164 ++Idx; 2165 2166 // Check to see if there are any folding opportunities present with 2167 // operands multiplied by constant values. 2168 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2169 uint64_t BitWidth = getTypeSizeInBits(Ty); 2170 DenseMap<const SCEV *, APInt> M; 2171 SmallVector<const SCEV *, 8> NewOps; 2172 APInt AccumulatedConstant(BitWidth, 0); 2173 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2174 Ops.data(), Ops.size(), 2175 APInt(BitWidth, 1), *this)) { 2176 struct APIntCompare { 2177 bool operator()(const APInt &LHS, const APInt &RHS) const { 2178 return LHS.ult(RHS); 2179 } 2180 }; 2181 2182 // Some interesting folding opportunity is present, so its worthwhile to 2183 // re-generate the operands list. Group the operands by constant scale, 2184 // to avoid multiplying by the same constant scale multiple times. 2185 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2186 for (const SCEV *NewOp : NewOps) 2187 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2188 // Re-generate the operands list. 2189 Ops.clear(); 2190 if (AccumulatedConstant != 0) 2191 Ops.push_back(getConstant(AccumulatedConstant)); 2192 for (auto &MulOp : MulOpLists) 2193 if (MulOp.first != 0) 2194 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2195 getAddExpr(MulOp.second))); 2196 if (Ops.empty()) 2197 return getZero(Ty); 2198 if (Ops.size() == 1) 2199 return Ops[0]; 2200 return getAddExpr(Ops); 2201 } 2202 } 2203 2204 // If we are adding something to a multiply expression, make sure the 2205 // something is not already an operand of the multiply. If so, merge it into 2206 // the multiply. 2207 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2208 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2209 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2210 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2211 if (isa<SCEVConstant>(MulOpSCEV)) 2212 continue; 2213 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2214 if (MulOpSCEV == Ops[AddOp]) { 2215 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2216 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2217 if (Mul->getNumOperands() != 2) { 2218 // If the multiply has more than two operands, we must get the 2219 // Y*Z term. 2220 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2221 Mul->op_begin()+MulOp); 2222 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2223 InnerMul = getMulExpr(MulOps); 2224 } 2225 const SCEV *One = getOne(Ty); 2226 const SCEV *AddOne = getAddExpr(One, InnerMul); 2227 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2228 if (Ops.size() == 2) return OuterMul; 2229 if (AddOp < Idx) { 2230 Ops.erase(Ops.begin()+AddOp); 2231 Ops.erase(Ops.begin()+Idx-1); 2232 } else { 2233 Ops.erase(Ops.begin()+Idx); 2234 Ops.erase(Ops.begin()+AddOp-1); 2235 } 2236 Ops.push_back(OuterMul); 2237 return getAddExpr(Ops); 2238 } 2239 2240 // Check this multiply against other multiplies being added together. 2241 for (unsigned OtherMulIdx = Idx+1; 2242 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2243 ++OtherMulIdx) { 2244 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2245 // If MulOp occurs in OtherMul, we can fold the two multiplies 2246 // together. 2247 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2248 OMulOp != e; ++OMulOp) 2249 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2250 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2251 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2252 if (Mul->getNumOperands() != 2) { 2253 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2254 Mul->op_begin()+MulOp); 2255 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2256 InnerMul1 = getMulExpr(MulOps); 2257 } 2258 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2259 if (OtherMul->getNumOperands() != 2) { 2260 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2261 OtherMul->op_begin()+OMulOp); 2262 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2263 InnerMul2 = getMulExpr(MulOps); 2264 } 2265 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2266 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2267 if (Ops.size() == 2) return OuterMul; 2268 Ops.erase(Ops.begin()+Idx); 2269 Ops.erase(Ops.begin()+OtherMulIdx-1); 2270 Ops.push_back(OuterMul); 2271 return getAddExpr(Ops); 2272 } 2273 } 2274 } 2275 } 2276 2277 // If there are any add recurrences in the operands list, see if any other 2278 // added values are loop invariant. If so, we can fold them into the 2279 // recurrence. 2280 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2281 ++Idx; 2282 2283 // Scan over all recurrences, trying to fold loop invariants into them. 2284 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2285 // Scan all of the other operands to this add and add them to the vector if 2286 // they are loop invariant w.r.t. the recurrence. 2287 SmallVector<const SCEV *, 8> LIOps; 2288 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2289 const Loop *AddRecLoop = AddRec->getLoop(); 2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2291 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2292 LIOps.push_back(Ops[i]); 2293 Ops.erase(Ops.begin()+i); 2294 --i; --e; 2295 } 2296 2297 // If we found some loop invariants, fold them into the recurrence. 2298 if (!LIOps.empty()) { 2299 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2300 LIOps.push_back(AddRec->getStart()); 2301 2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2303 AddRec->op_end()); 2304 // This follows from the fact that the no-wrap flags on the outer add 2305 // expression are applicable on the 0th iteration, when the add recurrence 2306 // will be equal to its start value. 2307 AddRecOps[0] = getAddExpr(LIOps, Flags); 2308 2309 // Build the new addrec. Propagate the NUW and NSW flags if both the 2310 // outer add and the inner addrec are guaranteed to have no overflow. 2311 // Always propagate NW. 2312 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2313 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2314 2315 // If all of the other operands were loop invariant, we are done. 2316 if (Ops.size() == 1) return NewRec; 2317 2318 // Otherwise, add the folded AddRec by the non-invariant parts. 2319 for (unsigned i = 0;; ++i) 2320 if (Ops[i] == AddRec) { 2321 Ops[i] = NewRec; 2322 break; 2323 } 2324 return getAddExpr(Ops); 2325 } 2326 2327 // Okay, if there weren't any loop invariants to be folded, check to see if 2328 // there are multiple AddRec's with the same loop induction variable being 2329 // added together. If so, we can fold them. 2330 for (unsigned OtherIdx = Idx+1; 2331 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2332 ++OtherIdx) 2333 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2334 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2335 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2336 AddRec->op_end()); 2337 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2338 ++OtherIdx) 2339 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2340 if (OtherAddRec->getLoop() == AddRecLoop) { 2341 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2342 i != e; ++i) { 2343 if (i >= AddRecOps.size()) { 2344 AddRecOps.append(OtherAddRec->op_begin()+i, 2345 OtherAddRec->op_end()); 2346 break; 2347 } 2348 AddRecOps[i] = getAddExpr(AddRecOps[i], 2349 OtherAddRec->getOperand(i)); 2350 } 2351 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2352 } 2353 // Step size has changed, so we cannot guarantee no self-wraparound. 2354 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2355 return getAddExpr(Ops); 2356 } 2357 2358 // Otherwise couldn't fold anything into this recurrence. Move onto the 2359 // next one. 2360 } 2361 2362 // Okay, it looks like we really DO need an add expr. Check to see if we 2363 // already have one, otherwise create a new one. 2364 FoldingSetNodeID ID; 2365 ID.AddInteger(scAddExpr); 2366 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2367 ID.AddPointer(Ops[i]); 2368 void *IP = nullptr; 2369 SCEVAddExpr *S = 2370 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2371 if (!S) { 2372 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2373 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2374 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2375 O, Ops.size()); 2376 UniqueSCEVs.InsertNode(S, IP); 2377 } 2378 S->setNoWrapFlags(Flags); 2379 return S; 2380 } 2381 2382 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2383 uint64_t k = i*j; 2384 if (j > 1 && k / j != i) Overflow = true; 2385 return k; 2386 } 2387 2388 /// Compute the result of "n choose k", the binomial coefficient. If an 2389 /// intermediate computation overflows, Overflow will be set and the return will 2390 /// be garbage. Overflow is not cleared on absence of overflow. 2391 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2392 // We use the multiplicative formula: 2393 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2394 // At each iteration, we take the n-th term of the numeral and divide by the 2395 // (k-n)th term of the denominator. This division will always produce an 2396 // integral result, and helps reduce the chance of overflow in the 2397 // intermediate computations. However, we can still overflow even when the 2398 // final result would fit. 2399 2400 if (n == 0 || n == k) return 1; 2401 if (k > n) return 0; 2402 2403 if (k > n/2) 2404 k = n-k; 2405 2406 uint64_t r = 1; 2407 for (uint64_t i = 1; i <= k; ++i) { 2408 r = umul_ov(r, n-(i-1), Overflow); 2409 r /= i; 2410 } 2411 return r; 2412 } 2413 2414 /// Determine if any of the operands in this SCEV are a constant or if 2415 /// any of the add or multiply expressions in this SCEV contain a constant. 2416 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2417 SmallVector<const SCEV *, 4> Ops; 2418 Ops.push_back(StartExpr); 2419 while (!Ops.empty()) { 2420 const SCEV *CurrentExpr = Ops.pop_back_val(); 2421 if (isa<SCEVConstant>(*CurrentExpr)) 2422 return true; 2423 2424 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2425 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2426 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2427 } 2428 } 2429 return false; 2430 } 2431 2432 /// Get a canonical multiply expression, or something simpler if possible. 2433 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2434 SCEV::NoWrapFlags Flags) { 2435 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2436 "only nuw or nsw allowed"); 2437 assert(!Ops.empty() && "Cannot get empty mul!"); 2438 if (Ops.size() == 1) return Ops[0]; 2439 #ifndef NDEBUG 2440 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2441 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2442 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2443 "SCEVMulExpr operand types don't match!"); 2444 #endif 2445 2446 // Sort by complexity, this groups all similar expression types together. 2447 GroupByComplexity(Ops, &LI); 2448 2449 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2450 2451 // If there are any constants, fold them together. 2452 unsigned Idx = 0; 2453 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2454 2455 // C1*(C2+V) -> C1*C2 + C1*V 2456 if (Ops.size() == 2) 2457 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2458 // If any of Add's ops are Adds or Muls with a constant, 2459 // apply this transformation as well. 2460 if (Add->getNumOperands() == 2) 2461 if (containsConstantSomewhere(Add)) 2462 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2463 getMulExpr(LHSC, Add->getOperand(1))); 2464 2465 ++Idx; 2466 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2467 // We found two constants, fold them together! 2468 ConstantInt *Fold = 2469 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2470 Ops[0] = getConstant(Fold); 2471 Ops.erase(Ops.begin()+1); // Erase the folded element 2472 if (Ops.size() == 1) return Ops[0]; 2473 LHSC = cast<SCEVConstant>(Ops[0]); 2474 } 2475 2476 // If we are left with a constant one being multiplied, strip it off. 2477 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2478 Ops.erase(Ops.begin()); 2479 --Idx; 2480 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2481 // If we have a multiply of zero, it will always be zero. 2482 return Ops[0]; 2483 } else if (Ops[0]->isAllOnesValue()) { 2484 // If we have a mul by -1 of an add, try distributing the -1 among the 2485 // add operands. 2486 if (Ops.size() == 2) { 2487 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2488 SmallVector<const SCEV *, 4> NewOps; 2489 bool AnyFolded = false; 2490 for (const SCEV *AddOp : Add->operands()) { 2491 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2492 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2493 NewOps.push_back(Mul); 2494 } 2495 if (AnyFolded) 2496 return getAddExpr(NewOps); 2497 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2498 // Negation preserves a recurrence's no self-wrap property. 2499 SmallVector<const SCEV *, 4> Operands; 2500 for (const SCEV *AddRecOp : AddRec->operands()) 2501 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2502 2503 return getAddRecExpr(Operands, AddRec->getLoop(), 2504 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2505 } 2506 } 2507 } 2508 2509 if (Ops.size() == 1) 2510 return Ops[0]; 2511 } 2512 2513 // Skip over the add expression until we get to a multiply. 2514 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2515 ++Idx; 2516 2517 // If there are mul operands inline them all into this expression. 2518 if (Idx < Ops.size()) { 2519 bool DeletedMul = false; 2520 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2521 // If we have an mul, expand the mul operands onto the end of the operands 2522 // list. 2523 Ops.erase(Ops.begin()+Idx); 2524 Ops.append(Mul->op_begin(), Mul->op_end()); 2525 DeletedMul = true; 2526 } 2527 2528 // If we deleted at least one mul, we added operands to the end of the list, 2529 // and they are not necessarily sorted. Recurse to resort and resimplify 2530 // any operands we just acquired. 2531 if (DeletedMul) 2532 return getMulExpr(Ops); 2533 } 2534 2535 // If there are any add recurrences in the operands list, see if any other 2536 // added values are loop invariant. If so, we can fold them into the 2537 // recurrence. 2538 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2539 ++Idx; 2540 2541 // Scan over all recurrences, trying to fold loop invariants into them. 2542 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2543 // Scan all of the other operands to this mul and add them to the vector if 2544 // they are loop invariant w.r.t. the recurrence. 2545 SmallVector<const SCEV *, 8> LIOps; 2546 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2547 const Loop *AddRecLoop = AddRec->getLoop(); 2548 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2549 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2550 LIOps.push_back(Ops[i]); 2551 Ops.erase(Ops.begin()+i); 2552 --i; --e; 2553 } 2554 2555 // If we found some loop invariants, fold them into the recurrence. 2556 if (!LIOps.empty()) { 2557 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2558 SmallVector<const SCEV *, 4> NewOps; 2559 NewOps.reserve(AddRec->getNumOperands()); 2560 const SCEV *Scale = getMulExpr(LIOps); 2561 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2562 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2563 2564 // Build the new addrec. Propagate the NUW and NSW flags if both the 2565 // outer mul and the inner addrec are guaranteed to have no overflow. 2566 // 2567 // No self-wrap cannot be guaranteed after changing the step size, but 2568 // will be inferred if either NUW or NSW is true. 2569 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2570 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2571 2572 // If all of the other operands were loop invariant, we are done. 2573 if (Ops.size() == 1) return NewRec; 2574 2575 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2576 for (unsigned i = 0;; ++i) 2577 if (Ops[i] == AddRec) { 2578 Ops[i] = NewRec; 2579 break; 2580 } 2581 return getMulExpr(Ops); 2582 } 2583 2584 // Okay, if there weren't any loop invariants to be folded, check to see if 2585 // there are multiple AddRec's with the same loop induction variable being 2586 // multiplied together. If so, we can fold them. 2587 2588 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2589 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2590 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2591 // ]]],+,...up to x=2n}. 2592 // Note that the arguments to choose() are always integers with values 2593 // known at compile time, never SCEV objects. 2594 // 2595 // The implementation avoids pointless extra computations when the two 2596 // addrec's are of different length (mathematically, it's equivalent to 2597 // an infinite stream of zeros on the right). 2598 bool OpsModified = false; 2599 for (unsigned OtherIdx = Idx+1; 2600 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2601 ++OtherIdx) { 2602 const SCEVAddRecExpr *OtherAddRec = 2603 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2604 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2605 continue; 2606 2607 bool Overflow = false; 2608 Type *Ty = AddRec->getType(); 2609 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2610 SmallVector<const SCEV*, 7> AddRecOps; 2611 for (int x = 0, xe = AddRec->getNumOperands() + 2612 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2613 const SCEV *Term = getZero(Ty); 2614 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2615 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2616 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2617 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2618 z < ze && !Overflow; ++z) { 2619 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2620 uint64_t Coeff; 2621 if (LargerThan64Bits) 2622 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2623 else 2624 Coeff = Coeff1*Coeff2; 2625 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2626 const SCEV *Term1 = AddRec->getOperand(y-z); 2627 const SCEV *Term2 = OtherAddRec->getOperand(z); 2628 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2629 } 2630 } 2631 AddRecOps.push_back(Term); 2632 } 2633 if (!Overflow) { 2634 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2635 SCEV::FlagAnyWrap); 2636 if (Ops.size() == 2) return NewAddRec; 2637 Ops[Idx] = NewAddRec; 2638 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2639 OpsModified = true; 2640 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2641 if (!AddRec) 2642 break; 2643 } 2644 } 2645 if (OpsModified) 2646 return getMulExpr(Ops); 2647 2648 // Otherwise couldn't fold anything into this recurrence. Move onto the 2649 // next one. 2650 } 2651 2652 // Okay, it looks like we really DO need an mul expr. Check to see if we 2653 // already have one, otherwise create a new one. 2654 FoldingSetNodeID ID; 2655 ID.AddInteger(scMulExpr); 2656 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2657 ID.AddPointer(Ops[i]); 2658 void *IP = nullptr; 2659 SCEVMulExpr *S = 2660 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2661 if (!S) { 2662 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2663 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2664 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2665 O, Ops.size()); 2666 UniqueSCEVs.InsertNode(S, IP); 2667 } 2668 S->setNoWrapFlags(Flags); 2669 return S; 2670 } 2671 2672 /// Get a canonical unsigned division expression, or something simpler if 2673 /// possible. 2674 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2675 const SCEV *RHS) { 2676 assert(getEffectiveSCEVType(LHS->getType()) == 2677 getEffectiveSCEVType(RHS->getType()) && 2678 "SCEVUDivExpr operand types don't match!"); 2679 2680 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2681 if (RHSC->getValue()->equalsInt(1)) 2682 return LHS; // X udiv 1 --> x 2683 // If the denominator is zero, the result of the udiv is undefined. Don't 2684 // try to analyze it, because the resolution chosen here may differ from 2685 // the resolution chosen in other parts of the compiler. 2686 if (!RHSC->getValue()->isZero()) { 2687 // Determine if the division can be folded into the operands of 2688 // its operands. 2689 // TODO: Generalize this to non-constants by using known-bits information. 2690 Type *Ty = LHS->getType(); 2691 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2692 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2693 // For non-power-of-two values, effectively round the value up to the 2694 // nearest power of two. 2695 if (!RHSC->getAPInt().isPowerOf2()) 2696 ++MaxShiftAmt; 2697 IntegerType *ExtTy = 2698 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2700 if (const SCEVConstant *Step = 2701 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2702 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2703 const APInt &StepInt = Step->getAPInt(); 2704 const APInt &DivInt = RHSC->getAPInt(); 2705 if (!StepInt.urem(DivInt) && 2706 getZeroExtendExpr(AR, ExtTy) == 2707 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2708 getZeroExtendExpr(Step, ExtTy), 2709 AR->getLoop(), SCEV::FlagAnyWrap)) { 2710 SmallVector<const SCEV *, 4> Operands; 2711 for (const SCEV *Op : AR->operands()) 2712 Operands.push_back(getUDivExpr(Op, RHS)); 2713 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2714 } 2715 /// Get a canonical UDivExpr for a recurrence. 2716 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2717 // We can currently only fold X%N if X is constant. 2718 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2719 if (StartC && !DivInt.urem(StepInt) && 2720 getZeroExtendExpr(AR, ExtTy) == 2721 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2722 getZeroExtendExpr(Step, ExtTy), 2723 AR->getLoop(), SCEV::FlagAnyWrap)) { 2724 const APInt &StartInt = StartC->getAPInt(); 2725 const APInt &StartRem = StartInt.urem(StepInt); 2726 if (StartRem != 0) 2727 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2728 AR->getLoop(), SCEV::FlagNW); 2729 } 2730 } 2731 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2732 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2733 SmallVector<const SCEV *, 4> Operands; 2734 for (const SCEV *Op : M->operands()) 2735 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2736 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2737 // Find an operand that's safely divisible. 2738 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2739 const SCEV *Op = M->getOperand(i); 2740 const SCEV *Div = getUDivExpr(Op, RHSC); 2741 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2742 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2743 M->op_end()); 2744 Operands[i] = Div; 2745 return getMulExpr(Operands); 2746 } 2747 } 2748 } 2749 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2750 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2751 SmallVector<const SCEV *, 4> Operands; 2752 for (const SCEV *Op : A->operands()) 2753 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2754 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2755 Operands.clear(); 2756 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2757 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2758 if (isa<SCEVUDivExpr>(Op) || 2759 getMulExpr(Op, RHS) != A->getOperand(i)) 2760 break; 2761 Operands.push_back(Op); 2762 } 2763 if (Operands.size() == A->getNumOperands()) 2764 return getAddExpr(Operands); 2765 } 2766 } 2767 2768 // Fold if both operands are constant. 2769 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2770 Constant *LHSCV = LHSC->getValue(); 2771 Constant *RHSCV = RHSC->getValue(); 2772 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2773 RHSCV))); 2774 } 2775 } 2776 } 2777 2778 FoldingSetNodeID ID; 2779 ID.AddInteger(scUDivExpr); 2780 ID.AddPointer(LHS); 2781 ID.AddPointer(RHS); 2782 void *IP = nullptr; 2783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2784 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2785 LHS, RHS); 2786 UniqueSCEVs.InsertNode(S, IP); 2787 return S; 2788 } 2789 2790 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2791 APInt A = C1->getAPInt().abs(); 2792 APInt B = C2->getAPInt().abs(); 2793 uint32_t ABW = A.getBitWidth(); 2794 uint32_t BBW = B.getBitWidth(); 2795 2796 if (ABW > BBW) 2797 B = B.zext(ABW); 2798 else if (ABW < BBW) 2799 A = A.zext(BBW); 2800 2801 return APIntOps::GreatestCommonDivisor(A, B); 2802 } 2803 2804 /// Get a canonical unsigned division expression, or something simpler if 2805 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2806 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2807 /// it's not exact because the udiv may be clearing bits. 2808 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2809 const SCEV *RHS) { 2810 // TODO: we could try to find factors in all sorts of things, but for now we 2811 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2812 // end of this file for inspiration. 2813 2814 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2815 if (!Mul) 2816 return getUDivExpr(LHS, RHS); 2817 2818 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2819 // If the mulexpr multiplies by a constant, then that constant must be the 2820 // first element of the mulexpr. 2821 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2822 if (LHSCst == RHSCst) { 2823 SmallVector<const SCEV *, 2> Operands; 2824 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2825 return getMulExpr(Operands); 2826 } 2827 2828 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2829 // that there's a factor provided by one of the other terms. We need to 2830 // check. 2831 APInt Factor = gcd(LHSCst, RHSCst); 2832 if (!Factor.isIntN(1)) { 2833 LHSCst = 2834 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2835 RHSCst = 2836 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2837 SmallVector<const SCEV *, 2> Operands; 2838 Operands.push_back(LHSCst); 2839 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2840 LHS = getMulExpr(Operands); 2841 RHS = RHSCst; 2842 Mul = dyn_cast<SCEVMulExpr>(LHS); 2843 if (!Mul) 2844 return getUDivExactExpr(LHS, RHS); 2845 } 2846 } 2847 } 2848 2849 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2850 if (Mul->getOperand(i) == RHS) { 2851 SmallVector<const SCEV *, 2> Operands; 2852 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2853 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2854 return getMulExpr(Operands); 2855 } 2856 } 2857 2858 return getUDivExpr(LHS, RHS); 2859 } 2860 2861 /// Get an add recurrence expression for the specified loop. Simplify the 2862 /// expression as much as possible. 2863 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2864 const Loop *L, 2865 SCEV::NoWrapFlags Flags) { 2866 SmallVector<const SCEV *, 4> Operands; 2867 Operands.push_back(Start); 2868 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2869 if (StepChrec->getLoop() == L) { 2870 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2871 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2872 } 2873 2874 Operands.push_back(Step); 2875 return getAddRecExpr(Operands, L, Flags); 2876 } 2877 2878 /// Get an add recurrence expression for the specified loop. Simplify the 2879 /// expression as much as possible. 2880 const SCEV * 2881 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2882 const Loop *L, SCEV::NoWrapFlags Flags) { 2883 if (Operands.size() == 1) return Operands[0]; 2884 #ifndef NDEBUG 2885 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2886 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2887 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2888 "SCEVAddRecExpr operand types don't match!"); 2889 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2890 assert(isLoopInvariant(Operands[i], L) && 2891 "SCEVAddRecExpr operand is not loop-invariant!"); 2892 #endif 2893 2894 if (Operands.back()->isZero()) { 2895 Operands.pop_back(); 2896 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2897 } 2898 2899 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2900 // use that information to infer NUW and NSW flags. However, computing a 2901 // BE count requires calling getAddRecExpr, so we may not yet have a 2902 // meaningful BE count at this point (and if we don't, we'd be stuck 2903 // with a SCEVCouldNotCompute as the cached BE count). 2904 2905 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2906 2907 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2908 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2909 const Loop *NestedLoop = NestedAR->getLoop(); 2910 if (L->contains(NestedLoop) 2911 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2912 : (!NestedLoop->contains(L) && 2913 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2914 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2915 NestedAR->op_end()); 2916 Operands[0] = NestedAR->getStart(); 2917 // AddRecs require their operands be loop-invariant with respect to their 2918 // loops. Don't perform this transformation if it would break this 2919 // requirement. 2920 bool AllInvariant = all_of( 2921 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2922 2923 if (AllInvariant) { 2924 // Create a recurrence for the outer loop with the same step size. 2925 // 2926 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2927 // inner recurrence has the same property. 2928 SCEV::NoWrapFlags OuterFlags = 2929 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2930 2931 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2932 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2933 return isLoopInvariant(Op, NestedLoop); 2934 }); 2935 2936 if (AllInvariant) { 2937 // Ok, both add recurrences are valid after the transformation. 2938 // 2939 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2940 // the outer recurrence has the same property. 2941 SCEV::NoWrapFlags InnerFlags = 2942 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2943 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2944 } 2945 } 2946 // Reset Operands to its original state. 2947 Operands[0] = NestedAR; 2948 } 2949 } 2950 2951 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2952 // already have one, otherwise create a new one. 2953 FoldingSetNodeID ID; 2954 ID.AddInteger(scAddRecExpr); 2955 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2956 ID.AddPointer(Operands[i]); 2957 ID.AddPointer(L); 2958 void *IP = nullptr; 2959 SCEVAddRecExpr *S = 2960 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2961 if (!S) { 2962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2963 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2964 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2965 O, Operands.size(), L); 2966 UniqueSCEVs.InsertNode(S, IP); 2967 } 2968 S->setNoWrapFlags(Flags); 2969 return S; 2970 } 2971 2972 const SCEV * 2973 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2974 const SmallVectorImpl<const SCEV *> &IndexExprs, 2975 bool InBounds) { 2976 // getSCEV(Base)->getType() has the same address space as Base->getType() 2977 // because SCEV::getType() preserves the address space. 2978 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2979 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2980 // instruction to its SCEV, because the Instruction may be guarded by control 2981 // flow and the no-overflow bits may not be valid for the expression in any 2982 // context. This can be fixed similarly to how these flags are handled for 2983 // adds. 2984 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2985 2986 const SCEV *TotalOffset = getZero(IntPtrTy); 2987 // The address space is unimportant. The first thing we do on CurTy is getting 2988 // its element type. 2989 Type *CurTy = PointerType::getUnqual(PointeeType); 2990 for (const SCEV *IndexExpr : IndexExprs) { 2991 // Compute the (potentially symbolic) offset in bytes for this index. 2992 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2993 // For a struct, add the member offset. 2994 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2995 unsigned FieldNo = Index->getZExtValue(); 2996 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2997 2998 // Add the field offset to the running total offset. 2999 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3000 3001 // Update CurTy to the type of the field at Index. 3002 CurTy = STy->getTypeAtIndex(Index); 3003 } else { 3004 // Update CurTy to its element type. 3005 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3006 // For an array, add the element offset, explicitly scaled. 3007 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3008 // Getelementptr indices are signed. 3009 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3010 3011 // Multiply the index by the element size to compute the element offset. 3012 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3013 3014 // Add the element offset to the running total offset. 3015 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3016 } 3017 } 3018 3019 // Add the total offset from all the GEP indices to the base. 3020 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3021 } 3022 3023 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3024 const SCEV *RHS) { 3025 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3026 return getSMaxExpr(Ops); 3027 } 3028 3029 const SCEV * 3030 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3031 assert(!Ops.empty() && "Cannot get empty smax!"); 3032 if (Ops.size() == 1) return Ops[0]; 3033 #ifndef NDEBUG 3034 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3035 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3036 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3037 "SCEVSMaxExpr operand types don't match!"); 3038 #endif 3039 3040 // Sort by complexity, this groups all similar expression types together. 3041 GroupByComplexity(Ops, &LI); 3042 3043 // If there are any constants, fold them together. 3044 unsigned Idx = 0; 3045 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3046 ++Idx; 3047 assert(Idx < Ops.size()); 3048 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3049 // We found two constants, fold them together! 3050 ConstantInt *Fold = ConstantInt::get( 3051 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3052 Ops[0] = getConstant(Fold); 3053 Ops.erase(Ops.begin()+1); // Erase the folded element 3054 if (Ops.size() == 1) return Ops[0]; 3055 LHSC = cast<SCEVConstant>(Ops[0]); 3056 } 3057 3058 // If we are left with a constant minimum-int, strip it off. 3059 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3060 Ops.erase(Ops.begin()); 3061 --Idx; 3062 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3063 // If we have an smax with a constant maximum-int, it will always be 3064 // maximum-int. 3065 return Ops[0]; 3066 } 3067 3068 if (Ops.size() == 1) return Ops[0]; 3069 } 3070 3071 // Find the first SMax 3072 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3073 ++Idx; 3074 3075 // Check to see if one of the operands is an SMax. If so, expand its operands 3076 // onto our operand list, and recurse to simplify. 3077 if (Idx < Ops.size()) { 3078 bool DeletedSMax = false; 3079 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3080 Ops.erase(Ops.begin()+Idx); 3081 Ops.append(SMax->op_begin(), SMax->op_end()); 3082 DeletedSMax = true; 3083 } 3084 3085 if (DeletedSMax) 3086 return getSMaxExpr(Ops); 3087 } 3088 3089 // Okay, check to see if the same value occurs in the operand list twice. If 3090 // so, delete one. Since we sorted the list, these values are required to 3091 // be adjacent. 3092 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3093 // X smax Y smax Y --> X smax Y 3094 // X smax Y --> X, if X is always greater than Y 3095 if (Ops[i] == Ops[i+1] || 3096 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3097 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3098 --i; --e; 3099 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3100 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3101 --i; --e; 3102 } 3103 3104 if (Ops.size() == 1) return Ops[0]; 3105 3106 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3107 3108 // Okay, it looks like we really DO need an smax expr. Check to see if we 3109 // already have one, otherwise create a new one. 3110 FoldingSetNodeID ID; 3111 ID.AddInteger(scSMaxExpr); 3112 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3113 ID.AddPointer(Ops[i]); 3114 void *IP = nullptr; 3115 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3116 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3117 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3118 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3119 O, Ops.size()); 3120 UniqueSCEVs.InsertNode(S, IP); 3121 return S; 3122 } 3123 3124 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3125 const SCEV *RHS) { 3126 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3127 return getUMaxExpr(Ops); 3128 } 3129 3130 const SCEV * 3131 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3132 assert(!Ops.empty() && "Cannot get empty umax!"); 3133 if (Ops.size() == 1) return Ops[0]; 3134 #ifndef NDEBUG 3135 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3136 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3137 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3138 "SCEVUMaxExpr operand types don't match!"); 3139 #endif 3140 3141 // Sort by complexity, this groups all similar expression types together. 3142 GroupByComplexity(Ops, &LI); 3143 3144 // If there are any constants, fold them together. 3145 unsigned Idx = 0; 3146 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3147 ++Idx; 3148 assert(Idx < Ops.size()); 3149 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3150 // We found two constants, fold them together! 3151 ConstantInt *Fold = ConstantInt::get( 3152 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3153 Ops[0] = getConstant(Fold); 3154 Ops.erase(Ops.begin()+1); // Erase the folded element 3155 if (Ops.size() == 1) return Ops[0]; 3156 LHSC = cast<SCEVConstant>(Ops[0]); 3157 } 3158 3159 // If we are left with a constant minimum-int, strip it off. 3160 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3161 Ops.erase(Ops.begin()); 3162 --Idx; 3163 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3164 // If we have an umax with a constant maximum-int, it will always be 3165 // maximum-int. 3166 return Ops[0]; 3167 } 3168 3169 if (Ops.size() == 1) return Ops[0]; 3170 } 3171 3172 // Find the first UMax 3173 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3174 ++Idx; 3175 3176 // Check to see if one of the operands is a UMax. If so, expand its operands 3177 // onto our operand list, and recurse to simplify. 3178 if (Idx < Ops.size()) { 3179 bool DeletedUMax = false; 3180 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3181 Ops.erase(Ops.begin()+Idx); 3182 Ops.append(UMax->op_begin(), UMax->op_end()); 3183 DeletedUMax = true; 3184 } 3185 3186 if (DeletedUMax) 3187 return getUMaxExpr(Ops); 3188 } 3189 3190 // Okay, check to see if the same value occurs in the operand list twice. If 3191 // so, delete one. Since we sorted the list, these values are required to 3192 // be adjacent. 3193 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3194 // X umax Y umax Y --> X umax Y 3195 // X umax Y --> X, if X is always greater than Y 3196 if (Ops[i] == Ops[i+1] || 3197 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3198 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3199 --i; --e; 3200 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3201 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3202 --i; --e; 3203 } 3204 3205 if (Ops.size() == 1) return Ops[0]; 3206 3207 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3208 3209 // Okay, it looks like we really DO need a umax expr. Check to see if we 3210 // already have one, otherwise create a new one. 3211 FoldingSetNodeID ID; 3212 ID.AddInteger(scUMaxExpr); 3213 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3214 ID.AddPointer(Ops[i]); 3215 void *IP = nullptr; 3216 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3217 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3218 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3219 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3220 O, Ops.size()); 3221 UniqueSCEVs.InsertNode(S, IP); 3222 return S; 3223 } 3224 3225 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3226 const SCEV *RHS) { 3227 // ~smax(~x, ~y) == smin(x, y). 3228 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3229 } 3230 3231 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3232 const SCEV *RHS) { 3233 // ~umax(~x, ~y) == umin(x, y) 3234 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3235 } 3236 3237 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3238 // We can bypass creating a target-independent 3239 // constant expression and then folding it back into a ConstantInt. 3240 // This is just a compile-time optimization. 3241 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3242 } 3243 3244 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3245 StructType *STy, 3246 unsigned FieldNo) { 3247 // We can bypass creating a target-independent 3248 // constant expression and then folding it back into a ConstantInt. 3249 // This is just a compile-time optimization. 3250 return getConstant( 3251 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3252 } 3253 3254 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3255 // Don't attempt to do anything other than create a SCEVUnknown object 3256 // here. createSCEV only calls getUnknown after checking for all other 3257 // interesting possibilities, and any other code that calls getUnknown 3258 // is doing so in order to hide a value from SCEV canonicalization. 3259 3260 FoldingSetNodeID ID; 3261 ID.AddInteger(scUnknown); 3262 ID.AddPointer(V); 3263 void *IP = nullptr; 3264 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3265 assert(cast<SCEVUnknown>(S)->getValue() == V && 3266 "Stale SCEVUnknown in uniquing map!"); 3267 return S; 3268 } 3269 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3270 FirstUnknown); 3271 FirstUnknown = cast<SCEVUnknown>(S); 3272 UniqueSCEVs.InsertNode(S, IP); 3273 return S; 3274 } 3275 3276 //===----------------------------------------------------------------------===// 3277 // Basic SCEV Analysis and PHI Idiom Recognition Code 3278 // 3279 3280 /// Test if values of the given type are analyzable within the SCEV 3281 /// framework. This primarily includes integer types, and it can optionally 3282 /// include pointer types if the ScalarEvolution class has access to 3283 /// target-specific information. 3284 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3285 // Integers and pointers are always SCEVable. 3286 return Ty->isIntegerTy() || Ty->isPointerTy(); 3287 } 3288 3289 /// Return the size in bits of the specified type, for which isSCEVable must 3290 /// return true. 3291 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3292 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3293 return getDataLayout().getTypeSizeInBits(Ty); 3294 } 3295 3296 /// Return a type with the same bitwidth as the given type and which represents 3297 /// how SCEV will treat the given type, for which isSCEVable must return 3298 /// true. For pointer types, this is the pointer-sized integer type. 3299 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3300 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3301 3302 if (Ty->isIntegerTy()) 3303 return Ty; 3304 3305 // The only other support type is pointer. 3306 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3307 return getDataLayout().getIntPtrType(Ty); 3308 } 3309 3310 const SCEV *ScalarEvolution::getCouldNotCompute() { 3311 return CouldNotCompute.get(); 3312 } 3313 3314 3315 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3316 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3317 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3318 // is set iff if find such SCEVUnknown. 3319 // 3320 struct FindInvalidSCEVUnknown { 3321 bool FindOne; 3322 FindInvalidSCEVUnknown() { FindOne = false; } 3323 bool follow(const SCEV *S) { 3324 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3325 case scConstant: 3326 return false; 3327 case scUnknown: 3328 if (!cast<SCEVUnknown>(S)->getValue()) 3329 FindOne = true; 3330 return false; 3331 default: 3332 return true; 3333 } 3334 } 3335 bool isDone() const { return FindOne; } 3336 }; 3337 3338 FindInvalidSCEVUnknown F; 3339 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3340 ST.visitAll(S); 3341 3342 return !F.FindOne; 3343 } 3344 3345 namespace { 3346 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3347 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set 3348 // iff if such sub scAddRecExpr type SCEV is found. 3349 struct FindAddRecurrence { 3350 bool FoundOne; 3351 FindAddRecurrence() : FoundOne(false) {} 3352 3353 bool follow(const SCEV *S) { 3354 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3355 case scAddRecExpr: 3356 FoundOne = true; 3357 case scConstant: 3358 case scUnknown: 3359 case scCouldNotCompute: 3360 return false; 3361 default: 3362 return true; 3363 } 3364 } 3365 bool isDone() const { return FoundOne; } 3366 }; 3367 } 3368 3369 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3370 HasRecMapType::iterator I = HasRecMap.find_as(S); 3371 if (I != HasRecMap.end()) 3372 return I->second; 3373 3374 FindAddRecurrence F; 3375 SCEVTraversal<FindAddRecurrence> ST(F); 3376 ST.visitAll(S); 3377 HasRecMap.insert({S, F.FoundOne}); 3378 return F.FoundOne; 3379 } 3380 3381 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3382 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3383 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3384 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3385 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3386 if (!Add) 3387 return {S, nullptr}; 3388 3389 if (Add->getNumOperands() != 2) 3390 return {S, nullptr}; 3391 3392 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3393 if (!ConstOp) 3394 return {S, nullptr}; 3395 3396 return {Add->getOperand(1), ConstOp->getValue()}; 3397 } 3398 3399 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3400 /// by the value and offset from any ValueOffsetPair in the set. 3401 SetVector<ScalarEvolution::ValueOffsetPair> * 3402 ScalarEvolution::getSCEVValues(const SCEV *S) { 3403 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3404 if (SI == ExprValueMap.end()) 3405 return nullptr; 3406 #ifndef NDEBUG 3407 if (VerifySCEVMap) { 3408 // Check there is no dangling Value in the set returned. 3409 for (const auto &VE : SI->second) 3410 assert(ValueExprMap.count(VE.first)); 3411 } 3412 #endif 3413 return &SI->second; 3414 } 3415 3416 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3417 /// cannot be used separately. eraseValueFromMap should be used to remove 3418 /// V from ValueExprMap and ExprValueMap at the same time. 3419 void ScalarEvolution::eraseValueFromMap(Value *V) { 3420 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3421 if (I != ValueExprMap.end()) { 3422 const SCEV *S = I->second; 3423 // Remove {V, 0} from the set of ExprValueMap[S] 3424 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3425 SV->remove({V, nullptr}); 3426 3427 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3428 const SCEV *Stripped; 3429 ConstantInt *Offset; 3430 std::tie(Stripped, Offset) = splitAddExpr(S); 3431 if (Offset != nullptr) { 3432 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3433 SV->remove({V, Offset}); 3434 } 3435 ValueExprMap.erase(V); 3436 } 3437 } 3438 3439 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3440 /// create a new one. 3441 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3442 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3443 3444 const SCEV *S = getExistingSCEV(V); 3445 if (S == nullptr) { 3446 S = createSCEV(V); 3447 // During PHI resolution, it is possible to create two SCEVs for the same 3448 // V, so it is needed to double check whether V->S is inserted into 3449 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3450 std::pair<ValueExprMapType::iterator, bool> Pair = 3451 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3452 if (Pair.second) { 3453 ExprValueMap[S].insert({V, nullptr}); 3454 3455 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3456 // ExprValueMap. 3457 const SCEV *Stripped = S; 3458 ConstantInt *Offset = nullptr; 3459 std::tie(Stripped, Offset) = splitAddExpr(S); 3460 // If stripped is SCEVUnknown, don't bother to save 3461 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3462 // increase the complexity of the expansion code. 3463 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3464 // because it may generate add/sub instead of GEP in SCEV expansion. 3465 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3466 !isa<GetElementPtrInst>(V)) 3467 ExprValueMap[Stripped].insert({V, Offset}); 3468 } 3469 } 3470 return S; 3471 } 3472 3473 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3474 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3475 3476 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3477 if (I != ValueExprMap.end()) { 3478 const SCEV *S = I->second; 3479 if (checkValidity(S)) 3480 return S; 3481 eraseValueFromMap(V); 3482 forgetMemoizedResults(S); 3483 } 3484 return nullptr; 3485 } 3486 3487 /// Return a SCEV corresponding to -V = -1*V 3488 /// 3489 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3490 SCEV::NoWrapFlags Flags) { 3491 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3492 return getConstant( 3493 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3494 3495 Type *Ty = V->getType(); 3496 Ty = getEffectiveSCEVType(Ty); 3497 return getMulExpr( 3498 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3499 } 3500 3501 /// Return a SCEV corresponding to ~V = -1-V 3502 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3503 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3504 return getConstant( 3505 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3506 3507 Type *Ty = V->getType(); 3508 Ty = getEffectiveSCEVType(Ty); 3509 const SCEV *AllOnes = 3510 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3511 return getMinusSCEV(AllOnes, V); 3512 } 3513 3514 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3515 SCEV::NoWrapFlags Flags) { 3516 // Fast path: X - X --> 0. 3517 if (LHS == RHS) 3518 return getZero(LHS->getType()); 3519 3520 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3521 // makes it so that we cannot make much use of NUW. 3522 auto AddFlags = SCEV::FlagAnyWrap; 3523 const bool RHSIsNotMinSigned = 3524 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3525 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3526 // Let M be the minimum representable signed value. Then (-1)*RHS 3527 // signed-wraps if and only if RHS is M. That can happen even for 3528 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3529 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3530 // (-1)*RHS, we need to prove that RHS != M. 3531 // 3532 // If LHS is non-negative and we know that LHS - RHS does not 3533 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3534 // either by proving that RHS > M or that LHS >= 0. 3535 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3536 AddFlags = SCEV::FlagNSW; 3537 } 3538 } 3539 3540 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3541 // RHS is NSW and LHS >= 0. 3542 // 3543 // The difficulty here is that the NSW flag may have been proven 3544 // relative to a loop that is to be found in a recurrence in LHS and 3545 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3546 // larger scope than intended. 3547 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3548 3549 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3550 } 3551 3552 const SCEV * 3553 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3554 Type *SrcTy = V->getType(); 3555 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3556 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3557 "Cannot truncate or zero extend with non-integer arguments!"); 3558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3559 return V; // No conversion 3560 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3561 return getTruncateExpr(V, Ty); 3562 return getZeroExtendExpr(V, Ty); 3563 } 3564 3565 const SCEV * 3566 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3567 Type *Ty) { 3568 Type *SrcTy = V->getType(); 3569 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3570 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3571 "Cannot truncate or zero extend with non-integer arguments!"); 3572 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3573 return V; // No conversion 3574 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3575 return getTruncateExpr(V, Ty); 3576 return getSignExtendExpr(V, Ty); 3577 } 3578 3579 const SCEV * 3580 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3581 Type *SrcTy = V->getType(); 3582 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3583 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3584 "Cannot noop or zero extend with non-integer arguments!"); 3585 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3586 "getNoopOrZeroExtend cannot truncate!"); 3587 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3588 return V; // No conversion 3589 return getZeroExtendExpr(V, Ty); 3590 } 3591 3592 const SCEV * 3593 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3594 Type *SrcTy = V->getType(); 3595 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3596 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3597 "Cannot noop or sign extend with non-integer arguments!"); 3598 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3599 "getNoopOrSignExtend cannot truncate!"); 3600 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3601 return V; // No conversion 3602 return getSignExtendExpr(V, Ty); 3603 } 3604 3605 const SCEV * 3606 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3607 Type *SrcTy = V->getType(); 3608 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3609 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3610 "Cannot noop or any extend with non-integer arguments!"); 3611 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3612 "getNoopOrAnyExtend cannot truncate!"); 3613 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3614 return V; // No conversion 3615 return getAnyExtendExpr(V, Ty); 3616 } 3617 3618 const SCEV * 3619 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3620 Type *SrcTy = V->getType(); 3621 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3622 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3623 "Cannot truncate or noop with non-integer arguments!"); 3624 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3625 "getTruncateOrNoop cannot extend!"); 3626 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3627 return V; // No conversion 3628 return getTruncateExpr(V, Ty); 3629 } 3630 3631 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3632 const SCEV *RHS) { 3633 const SCEV *PromotedLHS = LHS; 3634 const SCEV *PromotedRHS = RHS; 3635 3636 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3637 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3638 else 3639 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3640 3641 return getUMaxExpr(PromotedLHS, PromotedRHS); 3642 } 3643 3644 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3645 const SCEV *RHS) { 3646 const SCEV *PromotedLHS = LHS; 3647 const SCEV *PromotedRHS = RHS; 3648 3649 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3650 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3651 else 3652 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3653 3654 return getUMinExpr(PromotedLHS, PromotedRHS); 3655 } 3656 3657 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3658 // A pointer operand may evaluate to a nonpointer expression, such as null. 3659 if (!V->getType()->isPointerTy()) 3660 return V; 3661 3662 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3663 return getPointerBase(Cast->getOperand()); 3664 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3665 const SCEV *PtrOp = nullptr; 3666 for (const SCEV *NAryOp : NAry->operands()) { 3667 if (NAryOp->getType()->isPointerTy()) { 3668 // Cannot find the base of an expression with multiple pointer operands. 3669 if (PtrOp) 3670 return V; 3671 PtrOp = NAryOp; 3672 } 3673 } 3674 if (!PtrOp) 3675 return V; 3676 return getPointerBase(PtrOp); 3677 } 3678 return V; 3679 } 3680 3681 /// Push users of the given Instruction onto the given Worklist. 3682 static void 3683 PushDefUseChildren(Instruction *I, 3684 SmallVectorImpl<Instruction *> &Worklist) { 3685 // Push the def-use children onto the Worklist stack. 3686 for (User *U : I->users()) 3687 Worklist.push_back(cast<Instruction>(U)); 3688 } 3689 3690 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3691 SmallVector<Instruction *, 16> Worklist; 3692 PushDefUseChildren(PN, Worklist); 3693 3694 SmallPtrSet<Instruction *, 8> Visited; 3695 Visited.insert(PN); 3696 while (!Worklist.empty()) { 3697 Instruction *I = Worklist.pop_back_val(); 3698 if (!Visited.insert(I).second) 3699 continue; 3700 3701 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3702 if (It != ValueExprMap.end()) { 3703 const SCEV *Old = It->second; 3704 3705 // Short-circuit the def-use traversal if the symbolic name 3706 // ceases to appear in expressions. 3707 if (Old != SymName && !hasOperand(Old, SymName)) 3708 continue; 3709 3710 // SCEVUnknown for a PHI either means that it has an unrecognized 3711 // structure, it's a PHI that's in the progress of being computed 3712 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3713 // additional loop trip count information isn't going to change anything. 3714 // In the second case, createNodeForPHI will perform the necessary 3715 // updates on its own when it gets to that point. In the third, we do 3716 // want to forget the SCEVUnknown. 3717 if (!isa<PHINode>(I) || 3718 !isa<SCEVUnknown>(Old) || 3719 (I != PN && Old == SymName)) { 3720 eraseValueFromMap(It->first); 3721 forgetMemoizedResults(Old); 3722 } 3723 } 3724 3725 PushDefUseChildren(I, Worklist); 3726 } 3727 } 3728 3729 namespace { 3730 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3731 public: 3732 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3733 ScalarEvolution &SE) { 3734 SCEVInitRewriter Rewriter(L, SE); 3735 const SCEV *Result = Rewriter.visit(S); 3736 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3737 } 3738 3739 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3740 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3741 3742 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3743 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3744 Valid = false; 3745 return Expr; 3746 } 3747 3748 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3749 // Only allow AddRecExprs for this loop. 3750 if (Expr->getLoop() == L) 3751 return Expr->getStart(); 3752 Valid = false; 3753 return Expr; 3754 } 3755 3756 bool isValid() { return Valid; } 3757 3758 private: 3759 const Loop *L; 3760 bool Valid; 3761 }; 3762 3763 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3764 public: 3765 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3766 ScalarEvolution &SE) { 3767 SCEVShiftRewriter Rewriter(L, SE); 3768 const SCEV *Result = Rewriter.visit(S); 3769 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3770 } 3771 3772 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3773 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3774 3775 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3776 // Only allow AddRecExprs for this loop. 3777 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3778 Valid = false; 3779 return Expr; 3780 } 3781 3782 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3783 if (Expr->getLoop() == L && Expr->isAffine()) 3784 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3785 Valid = false; 3786 return Expr; 3787 } 3788 bool isValid() { return Valid; } 3789 3790 private: 3791 const Loop *L; 3792 bool Valid; 3793 }; 3794 } // end anonymous namespace 3795 3796 SCEV::NoWrapFlags 3797 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3798 if (!AR->isAffine()) 3799 return SCEV::FlagAnyWrap; 3800 3801 typedef OverflowingBinaryOperator OBO; 3802 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3803 3804 if (!AR->hasNoSignedWrap()) { 3805 ConstantRange AddRecRange = getSignedRange(AR); 3806 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3807 3808 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3809 Instruction::Add, IncRange, OBO::NoSignedWrap); 3810 if (NSWRegion.contains(AddRecRange)) 3811 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3812 } 3813 3814 if (!AR->hasNoUnsignedWrap()) { 3815 ConstantRange AddRecRange = getUnsignedRange(AR); 3816 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3817 3818 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3819 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3820 if (NUWRegion.contains(AddRecRange)) 3821 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3822 } 3823 3824 return Result; 3825 } 3826 3827 namespace { 3828 /// Represents an abstract binary operation. This may exist as a 3829 /// normal instruction or constant expression, or may have been 3830 /// derived from an expression tree. 3831 struct BinaryOp { 3832 unsigned Opcode; 3833 Value *LHS; 3834 Value *RHS; 3835 bool IsNSW; 3836 bool IsNUW; 3837 3838 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3839 /// constant expression. 3840 Operator *Op; 3841 3842 explicit BinaryOp(Operator *Op) 3843 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3844 IsNSW(false), IsNUW(false), Op(Op) { 3845 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3846 IsNSW = OBO->hasNoSignedWrap(); 3847 IsNUW = OBO->hasNoUnsignedWrap(); 3848 } 3849 } 3850 3851 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3852 bool IsNUW = false) 3853 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3854 Op(nullptr) {} 3855 }; 3856 } 3857 3858 3859 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3860 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3861 auto *Op = dyn_cast<Operator>(V); 3862 if (!Op) 3863 return None; 3864 3865 // Implementation detail: all the cleverness here should happen without 3866 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3867 // SCEV expressions when possible, and we should not break that. 3868 3869 switch (Op->getOpcode()) { 3870 case Instruction::Add: 3871 case Instruction::Sub: 3872 case Instruction::Mul: 3873 case Instruction::UDiv: 3874 case Instruction::And: 3875 case Instruction::Or: 3876 case Instruction::AShr: 3877 case Instruction::Shl: 3878 return BinaryOp(Op); 3879 3880 case Instruction::Xor: 3881 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 3882 // If the RHS of the xor is a signbit, then this is just an add. 3883 // Instcombine turns add of signbit into xor as a strength reduction step. 3884 if (RHSC->getValue().isSignBit()) 3885 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 3886 return BinaryOp(Op); 3887 3888 case Instruction::LShr: 3889 // Turn logical shift right of a constant into a unsigned divide. 3890 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 3891 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 3892 3893 // If the shift count is not less than the bitwidth, the result of 3894 // the shift is undefined. Don't try to analyze it, because the 3895 // resolution chosen here may differ from the resolution chosen in 3896 // other parts of the compiler. 3897 if (SA->getValue().ult(BitWidth)) { 3898 Constant *X = 3899 ConstantInt::get(SA->getContext(), 3900 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3901 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 3902 } 3903 } 3904 return BinaryOp(Op); 3905 3906 case Instruction::ExtractValue: { 3907 auto *EVI = cast<ExtractValueInst>(Op); 3908 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 3909 break; 3910 3911 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 3912 if (!CI) 3913 break; 3914 3915 if (auto *F = CI->getCalledFunction()) 3916 switch (F->getIntrinsicID()) { 3917 case Intrinsic::sadd_with_overflow: 3918 case Intrinsic::uadd_with_overflow: { 3919 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 3920 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3921 CI->getArgOperand(1)); 3922 3923 // Now that we know that all uses of the arithmetic-result component of 3924 // CI are guarded by the overflow check, we can go ahead and pretend 3925 // that the arithmetic is non-overflowing. 3926 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 3927 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3928 CI->getArgOperand(1), /* IsNSW = */ true, 3929 /* IsNUW = */ false); 3930 else 3931 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3932 CI->getArgOperand(1), /* IsNSW = */ false, 3933 /* IsNUW*/ true); 3934 } 3935 3936 case Intrinsic::ssub_with_overflow: 3937 case Intrinsic::usub_with_overflow: 3938 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 3939 CI->getArgOperand(1)); 3940 3941 case Intrinsic::smul_with_overflow: 3942 case Intrinsic::umul_with_overflow: 3943 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 3944 CI->getArgOperand(1)); 3945 default: 3946 break; 3947 } 3948 } 3949 3950 default: 3951 break; 3952 } 3953 3954 return None; 3955 } 3956 3957 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3958 const Loop *L = LI.getLoopFor(PN->getParent()); 3959 if (!L || L->getHeader() != PN->getParent()) 3960 return nullptr; 3961 3962 // The loop may have multiple entrances or multiple exits; we can analyze 3963 // this phi as an addrec if it has a unique entry value and a unique 3964 // backedge value. 3965 Value *BEValueV = nullptr, *StartValueV = nullptr; 3966 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3967 Value *V = PN->getIncomingValue(i); 3968 if (L->contains(PN->getIncomingBlock(i))) { 3969 if (!BEValueV) { 3970 BEValueV = V; 3971 } else if (BEValueV != V) { 3972 BEValueV = nullptr; 3973 break; 3974 } 3975 } else if (!StartValueV) { 3976 StartValueV = V; 3977 } else if (StartValueV != V) { 3978 StartValueV = nullptr; 3979 break; 3980 } 3981 } 3982 if (BEValueV && StartValueV) { 3983 // While we are analyzing this PHI node, handle its value symbolically. 3984 const SCEV *SymbolicName = getUnknown(PN); 3985 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3986 "PHI node already processed?"); 3987 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3988 3989 // Using this symbolic name for the PHI, analyze the value coming around 3990 // the back-edge. 3991 const SCEV *BEValue = getSCEV(BEValueV); 3992 3993 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3994 // has a special value for the first iteration of the loop. 3995 3996 // If the value coming around the backedge is an add with the symbolic 3997 // value we just inserted, then we found a simple induction variable! 3998 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3999 // If there is a single occurrence of the symbolic value, replace it 4000 // with a recurrence. 4001 unsigned FoundIndex = Add->getNumOperands(); 4002 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4003 if (Add->getOperand(i) == SymbolicName) 4004 if (FoundIndex == e) { 4005 FoundIndex = i; 4006 break; 4007 } 4008 4009 if (FoundIndex != Add->getNumOperands()) { 4010 // Create an add with everything but the specified operand. 4011 SmallVector<const SCEV *, 8> Ops; 4012 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4013 if (i != FoundIndex) 4014 Ops.push_back(Add->getOperand(i)); 4015 const SCEV *Accum = getAddExpr(Ops); 4016 4017 // This is not a valid addrec if the step amount is varying each 4018 // loop iteration, but is not itself an addrec in this loop. 4019 if (isLoopInvariant(Accum, L) || 4020 (isa<SCEVAddRecExpr>(Accum) && 4021 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4022 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4023 4024 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4025 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4026 if (BO->IsNUW) 4027 Flags = setFlags(Flags, SCEV::FlagNUW); 4028 if (BO->IsNSW) 4029 Flags = setFlags(Flags, SCEV::FlagNSW); 4030 } 4031 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4032 // If the increment is an inbounds GEP, then we know the address 4033 // space cannot be wrapped around. We cannot make any guarantee 4034 // about signed or unsigned overflow because pointers are 4035 // unsigned but we may have a negative index from the base 4036 // pointer. We can guarantee that no unsigned wrap occurs if the 4037 // indices form a positive value. 4038 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4039 Flags = setFlags(Flags, SCEV::FlagNW); 4040 4041 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4042 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4043 Flags = setFlags(Flags, SCEV::FlagNUW); 4044 } 4045 4046 // We cannot transfer nuw and nsw flags from subtraction 4047 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4048 // for instance. 4049 } 4050 4051 const SCEV *StartVal = getSCEV(StartValueV); 4052 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4053 4054 // Okay, for the entire analysis of this edge we assumed the PHI 4055 // to be symbolic. We now need to go back and purge all of the 4056 // entries for the scalars that use the symbolic expression. 4057 forgetSymbolicName(PN, SymbolicName); 4058 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4059 4060 // We can add Flags to the post-inc expression only if we 4061 // know that it us *undefined behavior* for BEValueV to 4062 // overflow. 4063 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4064 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4065 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4066 4067 return PHISCEV; 4068 } 4069 } 4070 } else { 4071 // Otherwise, this could be a loop like this: 4072 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4073 // In this case, j = {1,+,1} and BEValue is j. 4074 // Because the other in-value of i (0) fits the evolution of BEValue 4075 // i really is an addrec evolution. 4076 // 4077 // We can generalize this saying that i is the shifted value of BEValue 4078 // by one iteration: 4079 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4080 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4081 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4082 if (Shifted != getCouldNotCompute() && 4083 Start != getCouldNotCompute()) { 4084 const SCEV *StartVal = getSCEV(StartValueV); 4085 if (Start == StartVal) { 4086 // Okay, for the entire analysis of this edge we assumed the PHI 4087 // to be symbolic. We now need to go back and purge all of the 4088 // entries for the scalars that use the symbolic expression. 4089 forgetSymbolicName(PN, SymbolicName); 4090 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4091 return Shifted; 4092 } 4093 } 4094 } 4095 4096 // Remove the temporary PHI node SCEV that has been inserted while intending 4097 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4098 // as it will prevent later (possibly simpler) SCEV expressions to be added 4099 // to the ValueExprMap. 4100 eraseValueFromMap(PN); 4101 } 4102 4103 return nullptr; 4104 } 4105 4106 // Checks if the SCEV S is available at BB. S is considered available at BB 4107 // if S can be materialized at BB without introducing a fault. 4108 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4109 BasicBlock *BB) { 4110 struct CheckAvailable { 4111 bool TraversalDone = false; 4112 bool Available = true; 4113 4114 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4115 BasicBlock *BB = nullptr; 4116 DominatorTree &DT; 4117 4118 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4119 : L(L), BB(BB), DT(DT) {} 4120 4121 bool setUnavailable() { 4122 TraversalDone = true; 4123 Available = false; 4124 return false; 4125 } 4126 4127 bool follow(const SCEV *S) { 4128 switch (S->getSCEVType()) { 4129 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4130 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4131 // These expressions are available if their operand(s) is/are. 4132 return true; 4133 4134 case scAddRecExpr: { 4135 // We allow add recurrences that are on the loop BB is in, or some 4136 // outer loop. This guarantees availability because the value of the 4137 // add recurrence at BB is simply the "current" value of the induction 4138 // variable. We can relax this in the future; for instance an add 4139 // recurrence on a sibling dominating loop is also available at BB. 4140 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4141 if (L && (ARLoop == L || ARLoop->contains(L))) 4142 return true; 4143 4144 return setUnavailable(); 4145 } 4146 4147 case scUnknown: { 4148 // For SCEVUnknown, we check for simple dominance. 4149 const auto *SU = cast<SCEVUnknown>(S); 4150 Value *V = SU->getValue(); 4151 4152 if (isa<Argument>(V)) 4153 return false; 4154 4155 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4156 return false; 4157 4158 return setUnavailable(); 4159 } 4160 4161 case scUDivExpr: 4162 case scCouldNotCompute: 4163 // We do not try to smart about these at all. 4164 return setUnavailable(); 4165 } 4166 llvm_unreachable("switch should be fully covered!"); 4167 } 4168 4169 bool isDone() { return TraversalDone; } 4170 }; 4171 4172 CheckAvailable CA(L, BB, DT); 4173 SCEVTraversal<CheckAvailable> ST(CA); 4174 4175 ST.visitAll(S); 4176 return CA.Available; 4177 } 4178 4179 // Try to match a control flow sequence that branches out at BI and merges back 4180 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4181 // match. 4182 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4183 Value *&C, Value *&LHS, Value *&RHS) { 4184 C = BI->getCondition(); 4185 4186 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4187 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4188 4189 if (!LeftEdge.isSingleEdge()) 4190 return false; 4191 4192 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4193 4194 Use &LeftUse = Merge->getOperandUse(0); 4195 Use &RightUse = Merge->getOperandUse(1); 4196 4197 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4198 LHS = LeftUse; 4199 RHS = RightUse; 4200 return true; 4201 } 4202 4203 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4204 LHS = RightUse; 4205 RHS = LeftUse; 4206 return true; 4207 } 4208 4209 return false; 4210 } 4211 4212 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4213 auto IsReachable = 4214 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4215 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4216 const Loop *L = LI.getLoopFor(PN->getParent()); 4217 4218 // We don't want to break LCSSA, even in a SCEV expression tree. 4219 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4220 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4221 return nullptr; 4222 4223 // Try to match 4224 // 4225 // br %cond, label %left, label %right 4226 // left: 4227 // br label %merge 4228 // right: 4229 // br label %merge 4230 // merge: 4231 // V = phi [ %x, %left ], [ %y, %right ] 4232 // 4233 // as "select %cond, %x, %y" 4234 4235 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4236 assert(IDom && "At least the entry block should dominate PN"); 4237 4238 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4239 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4240 4241 if (BI && BI->isConditional() && 4242 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4243 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4244 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4245 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4246 } 4247 4248 return nullptr; 4249 } 4250 4251 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4252 if (const SCEV *S = createAddRecFromPHI(PN)) 4253 return S; 4254 4255 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4256 return S; 4257 4258 // If the PHI has a single incoming value, follow that value, unless the 4259 // PHI's incoming blocks are in a different loop, in which case doing so 4260 // risks breaking LCSSA form. Instcombine would normally zap these, but 4261 // it doesn't have DominatorTree information, so it may miss cases. 4262 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4263 if (LI.replacementPreservesLCSSAForm(PN, V)) 4264 return getSCEV(V); 4265 4266 // If it's not a loop phi, we can't handle it yet. 4267 return getUnknown(PN); 4268 } 4269 4270 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4271 Value *Cond, 4272 Value *TrueVal, 4273 Value *FalseVal) { 4274 // Handle "constant" branch or select. This can occur for instance when a 4275 // loop pass transforms an inner loop and moves on to process the outer loop. 4276 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4277 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4278 4279 // Try to match some simple smax or umax patterns. 4280 auto *ICI = dyn_cast<ICmpInst>(Cond); 4281 if (!ICI) 4282 return getUnknown(I); 4283 4284 Value *LHS = ICI->getOperand(0); 4285 Value *RHS = ICI->getOperand(1); 4286 4287 switch (ICI->getPredicate()) { 4288 case ICmpInst::ICMP_SLT: 4289 case ICmpInst::ICMP_SLE: 4290 std::swap(LHS, RHS); 4291 LLVM_FALLTHROUGH; 4292 case ICmpInst::ICMP_SGT: 4293 case ICmpInst::ICMP_SGE: 4294 // a >s b ? a+x : b+x -> smax(a, b)+x 4295 // a >s b ? b+x : a+x -> smin(a, b)+x 4296 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4297 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4298 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4299 const SCEV *LA = getSCEV(TrueVal); 4300 const SCEV *RA = getSCEV(FalseVal); 4301 const SCEV *LDiff = getMinusSCEV(LA, LS); 4302 const SCEV *RDiff = getMinusSCEV(RA, RS); 4303 if (LDiff == RDiff) 4304 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4305 LDiff = getMinusSCEV(LA, RS); 4306 RDiff = getMinusSCEV(RA, LS); 4307 if (LDiff == RDiff) 4308 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4309 } 4310 break; 4311 case ICmpInst::ICMP_ULT: 4312 case ICmpInst::ICMP_ULE: 4313 std::swap(LHS, RHS); 4314 LLVM_FALLTHROUGH; 4315 case ICmpInst::ICMP_UGT: 4316 case ICmpInst::ICMP_UGE: 4317 // a >u b ? a+x : b+x -> umax(a, b)+x 4318 // a >u b ? b+x : a+x -> umin(a, b)+x 4319 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4320 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4321 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4322 const SCEV *LA = getSCEV(TrueVal); 4323 const SCEV *RA = getSCEV(FalseVal); 4324 const SCEV *LDiff = getMinusSCEV(LA, LS); 4325 const SCEV *RDiff = getMinusSCEV(RA, RS); 4326 if (LDiff == RDiff) 4327 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4328 LDiff = getMinusSCEV(LA, RS); 4329 RDiff = getMinusSCEV(RA, LS); 4330 if (LDiff == RDiff) 4331 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4332 } 4333 break; 4334 case ICmpInst::ICMP_NE: 4335 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4336 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4337 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4338 const SCEV *One = getOne(I->getType()); 4339 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4340 const SCEV *LA = getSCEV(TrueVal); 4341 const SCEV *RA = getSCEV(FalseVal); 4342 const SCEV *LDiff = getMinusSCEV(LA, LS); 4343 const SCEV *RDiff = getMinusSCEV(RA, One); 4344 if (LDiff == RDiff) 4345 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4346 } 4347 break; 4348 case ICmpInst::ICMP_EQ: 4349 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4350 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4351 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4352 const SCEV *One = getOne(I->getType()); 4353 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4354 const SCEV *LA = getSCEV(TrueVal); 4355 const SCEV *RA = getSCEV(FalseVal); 4356 const SCEV *LDiff = getMinusSCEV(LA, One); 4357 const SCEV *RDiff = getMinusSCEV(RA, LS); 4358 if (LDiff == RDiff) 4359 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4360 } 4361 break; 4362 default: 4363 break; 4364 } 4365 4366 return getUnknown(I); 4367 } 4368 4369 /// Expand GEP instructions into add and multiply operations. This allows them 4370 /// to be analyzed by regular SCEV code. 4371 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4372 // Don't attempt to analyze GEPs over unsized objects. 4373 if (!GEP->getSourceElementType()->isSized()) 4374 return getUnknown(GEP); 4375 4376 SmallVector<const SCEV *, 4> IndexExprs; 4377 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4378 IndexExprs.push_back(getSCEV(*Index)); 4379 return getGEPExpr(GEP->getSourceElementType(), 4380 getSCEV(GEP->getPointerOperand()), 4381 IndexExprs, GEP->isInBounds()); 4382 } 4383 4384 uint32_t 4385 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4386 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4387 return C->getAPInt().countTrailingZeros(); 4388 4389 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4390 return std::min(GetMinTrailingZeros(T->getOperand()), 4391 (uint32_t)getTypeSizeInBits(T->getType())); 4392 4393 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4394 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4395 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4396 getTypeSizeInBits(E->getType()) : OpRes; 4397 } 4398 4399 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4400 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4401 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4402 getTypeSizeInBits(E->getType()) : OpRes; 4403 } 4404 4405 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4406 // The result is the min of all operands results. 4407 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4408 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4409 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4410 return MinOpRes; 4411 } 4412 4413 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4414 // The result is the sum of all operands results. 4415 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4416 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4417 for (unsigned i = 1, e = M->getNumOperands(); 4418 SumOpRes != BitWidth && i != e; ++i) 4419 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4420 BitWidth); 4421 return SumOpRes; 4422 } 4423 4424 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4425 // The result is the min of all operands results. 4426 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4427 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4428 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4429 return MinOpRes; 4430 } 4431 4432 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4433 // The result is the min of all operands results. 4434 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4435 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4436 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4437 return MinOpRes; 4438 } 4439 4440 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4441 // The result is the min of all operands results. 4442 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4443 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4444 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4445 return MinOpRes; 4446 } 4447 4448 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4449 // For a SCEVUnknown, ask ValueTracking. 4450 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4451 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4452 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4453 nullptr, &DT); 4454 return Zeros.countTrailingOnes(); 4455 } 4456 4457 // SCEVUDivExpr 4458 return 0; 4459 } 4460 4461 /// Helper method to assign a range to V from metadata present in the IR. 4462 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4463 if (Instruction *I = dyn_cast<Instruction>(V)) 4464 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4465 return getConstantRangeFromMetadata(*MD); 4466 4467 return None; 4468 } 4469 4470 /// Determine the range for a particular SCEV. If SignHint is 4471 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4472 /// with a "cleaner" unsigned (resp. signed) representation. 4473 ConstantRange 4474 ScalarEvolution::getRange(const SCEV *S, 4475 ScalarEvolution::RangeSignHint SignHint) { 4476 DenseMap<const SCEV *, ConstantRange> &Cache = 4477 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4478 : SignedRanges; 4479 4480 // See if we've computed this range already. 4481 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4482 if (I != Cache.end()) 4483 return I->second; 4484 4485 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4486 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4487 4488 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4489 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4490 4491 // If the value has known zeros, the maximum value will have those known zeros 4492 // as well. 4493 uint32_t TZ = GetMinTrailingZeros(S); 4494 if (TZ != 0) { 4495 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4496 ConservativeResult = 4497 ConstantRange(APInt::getMinValue(BitWidth), 4498 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4499 else 4500 ConservativeResult = ConstantRange( 4501 APInt::getSignedMinValue(BitWidth), 4502 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4503 } 4504 4505 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4506 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4507 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4508 X = X.add(getRange(Add->getOperand(i), SignHint)); 4509 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4510 } 4511 4512 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4513 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4514 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4515 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4516 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4517 } 4518 4519 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4520 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4521 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4522 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4523 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4524 } 4525 4526 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4527 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4528 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4529 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4530 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4531 } 4532 4533 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4534 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4535 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4536 return setRange(UDiv, SignHint, 4537 ConservativeResult.intersectWith(X.udiv(Y))); 4538 } 4539 4540 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4541 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4542 return setRange(ZExt, SignHint, 4543 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4544 } 4545 4546 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4547 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4548 return setRange(SExt, SignHint, 4549 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4550 } 4551 4552 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4553 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4554 return setRange(Trunc, SignHint, 4555 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4556 } 4557 4558 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4559 // If there's no unsigned wrap, the value will never be less than its 4560 // initial value. 4561 if (AddRec->hasNoUnsignedWrap()) 4562 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4563 if (!C->getValue()->isZero()) 4564 ConservativeResult = ConservativeResult.intersectWith( 4565 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4566 4567 // If there's no signed wrap, and all the operands have the same sign or 4568 // zero, the value won't ever change sign. 4569 if (AddRec->hasNoSignedWrap()) { 4570 bool AllNonNeg = true; 4571 bool AllNonPos = true; 4572 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4573 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4574 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4575 } 4576 if (AllNonNeg) 4577 ConservativeResult = ConservativeResult.intersectWith( 4578 ConstantRange(APInt(BitWidth, 0), 4579 APInt::getSignedMinValue(BitWidth))); 4580 else if (AllNonPos) 4581 ConservativeResult = ConservativeResult.intersectWith( 4582 ConstantRange(APInt::getSignedMinValue(BitWidth), 4583 APInt(BitWidth, 1))); 4584 } 4585 4586 // TODO: non-affine addrec 4587 if (AddRec->isAffine()) { 4588 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4589 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4590 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4591 auto RangeFromAffine = getRangeForAffineAR( 4592 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4593 BitWidth); 4594 if (!RangeFromAffine.isFullSet()) 4595 ConservativeResult = 4596 ConservativeResult.intersectWith(RangeFromAffine); 4597 4598 auto RangeFromFactoring = getRangeViaFactoring( 4599 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4600 BitWidth); 4601 if (!RangeFromFactoring.isFullSet()) 4602 ConservativeResult = 4603 ConservativeResult.intersectWith(RangeFromFactoring); 4604 } 4605 } 4606 4607 return setRange(AddRec, SignHint, ConservativeResult); 4608 } 4609 4610 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4611 // Check if the IR explicitly contains !range metadata. 4612 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4613 if (MDRange.hasValue()) 4614 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4615 4616 // Split here to avoid paying the compile-time cost of calling both 4617 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4618 // if needed. 4619 const DataLayout &DL = getDataLayout(); 4620 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4621 // For a SCEVUnknown, ask ValueTracking. 4622 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4623 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4624 if (Ones != ~Zeros + 1) 4625 ConservativeResult = 4626 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4627 } else { 4628 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4629 "generalize as needed!"); 4630 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4631 if (NS > 1) 4632 ConservativeResult = ConservativeResult.intersectWith( 4633 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4634 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4635 } 4636 4637 return setRange(U, SignHint, ConservativeResult); 4638 } 4639 4640 return setRange(S, SignHint, ConservativeResult); 4641 } 4642 4643 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4644 const SCEV *Step, 4645 const SCEV *MaxBECount, 4646 unsigned BitWidth) { 4647 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4648 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4649 "Precondition!"); 4650 4651 ConstantRange Result(BitWidth, /* isFullSet = */ true); 4652 4653 // Check for overflow. This must be done with ConstantRange arithmetic 4654 // because we could be called from within the ScalarEvolution overflow 4655 // checking code. 4656 4657 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4658 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4659 ConstantRange ZExtMaxBECountRange = 4660 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4661 4662 ConstantRange StepSRange = getSignedRange(Step); 4663 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4664 4665 ConstantRange StartURange = getUnsignedRange(Start); 4666 ConstantRange EndURange = 4667 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4668 4669 // Check for unsigned overflow. 4670 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1); 4671 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4672 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4673 ZExtEndURange) { 4674 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4675 EndURange.getUnsignedMin()); 4676 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4677 EndURange.getUnsignedMax()); 4678 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4679 if (!IsFullRange) 4680 Result = 4681 Result.intersectWith(ConstantRange(Min, Max + 1)); 4682 } 4683 4684 ConstantRange StartSRange = getSignedRange(Start); 4685 ConstantRange EndSRange = 4686 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4687 4688 // Check for signed overflow. This must be done with ConstantRange 4689 // arithmetic because we could be called from within the ScalarEvolution 4690 // overflow checking code. 4691 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4692 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4693 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4694 SExtEndSRange) { 4695 APInt Min = 4696 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin()); 4697 APInt Max = 4698 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax()); 4699 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4700 if (!IsFullRange) 4701 Result = 4702 Result.intersectWith(ConstantRange(Min, Max + 1)); 4703 } 4704 4705 return Result; 4706 } 4707 4708 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4709 const SCEV *Step, 4710 const SCEV *MaxBECount, 4711 unsigned BitWidth) { 4712 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4713 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4714 4715 struct SelectPattern { 4716 Value *Condition = nullptr; 4717 APInt TrueValue; 4718 APInt FalseValue; 4719 4720 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4721 const SCEV *S) { 4722 Optional<unsigned> CastOp; 4723 APInt Offset(BitWidth, 0); 4724 4725 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4726 "Should be!"); 4727 4728 // Peel off a constant offset: 4729 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4730 // In the future we could consider being smarter here and handle 4731 // {Start+Step,+,Step} too. 4732 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4733 return; 4734 4735 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4736 S = SA->getOperand(1); 4737 } 4738 4739 // Peel off a cast operation 4740 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4741 CastOp = SCast->getSCEVType(); 4742 S = SCast->getOperand(); 4743 } 4744 4745 using namespace llvm::PatternMatch; 4746 4747 auto *SU = dyn_cast<SCEVUnknown>(S); 4748 const APInt *TrueVal, *FalseVal; 4749 if (!SU || 4750 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4751 m_APInt(FalseVal)))) { 4752 Condition = nullptr; 4753 return; 4754 } 4755 4756 TrueValue = *TrueVal; 4757 FalseValue = *FalseVal; 4758 4759 // Re-apply the cast we peeled off earlier 4760 if (CastOp.hasValue()) 4761 switch (*CastOp) { 4762 default: 4763 llvm_unreachable("Unknown SCEV cast type!"); 4764 4765 case scTruncate: 4766 TrueValue = TrueValue.trunc(BitWidth); 4767 FalseValue = FalseValue.trunc(BitWidth); 4768 break; 4769 case scZeroExtend: 4770 TrueValue = TrueValue.zext(BitWidth); 4771 FalseValue = FalseValue.zext(BitWidth); 4772 break; 4773 case scSignExtend: 4774 TrueValue = TrueValue.sext(BitWidth); 4775 FalseValue = FalseValue.sext(BitWidth); 4776 break; 4777 } 4778 4779 // Re-apply the constant offset we peeled off earlier 4780 TrueValue += Offset; 4781 FalseValue += Offset; 4782 } 4783 4784 bool isRecognized() { return Condition != nullptr; } 4785 }; 4786 4787 SelectPattern StartPattern(*this, BitWidth, Start); 4788 if (!StartPattern.isRecognized()) 4789 return ConstantRange(BitWidth, /* isFullSet = */ true); 4790 4791 SelectPattern StepPattern(*this, BitWidth, Step); 4792 if (!StepPattern.isRecognized()) 4793 return ConstantRange(BitWidth, /* isFullSet = */ true); 4794 4795 if (StartPattern.Condition != StepPattern.Condition) { 4796 // We don't handle this case today; but we could, by considering four 4797 // possibilities below instead of two. I'm not sure if there are cases where 4798 // that will help over what getRange already does, though. 4799 return ConstantRange(BitWidth, /* isFullSet = */ true); 4800 } 4801 4802 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4803 // construct arbitrary general SCEV expressions here. This function is called 4804 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4805 // say) can end up caching a suboptimal value. 4806 4807 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4808 // C2352 and C2512 (otherwise it isn't needed). 4809 4810 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4811 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4812 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4813 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4814 4815 ConstantRange TrueRange = 4816 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4817 ConstantRange FalseRange = 4818 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4819 4820 return TrueRange.unionWith(FalseRange); 4821 } 4822 4823 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4824 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4825 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4826 4827 // Return early if there are no flags to propagate to the SCEV. 4828 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4829 if (BinOp->hasNoUnsignedWrap()) 4830 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4831 if (BinOp->hasNoSignedWrap()) 4832 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4833 if (Flags == SCEV::FlagAnyWrap) 4834 return SCEV::FlagAnyWrap; 4835 4836 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 4837 } 4838 4839 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 4840 // Here we check that I is in the header of the innermost loop containing I, 4841 // since we only deal with instructions in the loop header. The actual loop we 4842 // need to check later will come from an add recurrence, but getting that 4843 // requires computing the SCEV of the operands, which can be expensive. This 4844 // check we can do cheaply to rule out some cases early. 4845 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 4846 if (InnermostContainingLoop == nullptr || 4847 InnermostContainingLoop->getHeader() != I->getParent()) 4848 return false; 4849 4850 // Only proceed if we can prove that I does not yield poison. 4851 if (!isKnownNotFullPoison(I)) return false; 4852 4853 // At this point we know that if I is executed, then it does not wrap 4854 // according to at least one of NSW or NUW. If I is not executed, then we do 4855 // not know if the calculation that I represents would wrap. Multiple 4856 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 4857 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4858 // derived from other instructions that map to the same SCEV. We cannot make 4859 // that guarantee for cases where I is not executed. So we need to find the 4860 // loop that I is considered in relation to and prove that I is executed for 4861 // every iteration of that loop. That implies that the value that I 4862 // calculates does not wrap anywhere in the loop, so then we can apply the 4863 // flags to the SCEV. 4864 // 4865 // We check isLoopInvariant to disambiguate in case we are adding recurrences 4866 // from different loops, so that we know which loop to prove that I is 4867 // executed in. 4868 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 4869 // I could be an extractvalue from a call to an overflow intrinsic. 4870 // TODO: We can do better here in some cases. 4871 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 4872 return false; 4873 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 4874 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4875 bool AllOtherOpsLoopInvariant = true; 4876 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 4877 ++OtherOpIndex) { 4878 if (OtherOpIndex != OpIndex) { 4879 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 4880 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 4881 AllOtherOpsLoopInvariant = false; 4882 break; 4883 } 4884 } 4885 } 4886 if (AllOtherOpsLoopInvariant && 4887 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 4888 return true; 4889 } 4890 } 4891 return false; 4892 } 4893 4894 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 4895 // If we know that \c I can never be poison period, then that's enough. 4896 if (isSCEVExprNeverPoison(I)) 4897 return true; 4898 4899 // For an add recurrence specifically, we assume that infinite loops without 4900 // side effects are undefined behavior, and then reason as follows: 4901 // 4902 // If the add recurrence is poison in any iteration, it is poison on all 4903 // future iterations (since incrementing poison yields poison). If the result 4904 // of the add recurrence is fed into the loop latch condition and the loop 4905 // does not contain any throws or exiting blocks other than the latch, we now 4906 // have the ability to "choose" whether the backedge is taken or not (by 4907 // choosing a sufficiently evil value for the poison feeding into the branch) 4908 // for every iteration including and after the one in which \p I first became 4909 // poison. There are two possibilities (let's call the iteration in which \p 4910 // I first became poison as K): 4911 // 4912 // 1. In the set of iterations including and after K, the loop body executes 4913 // no side effects. In this case executing the backege an infinte number 4914 // of times will yield undefined behavior. 4915 // 4916 // 2. In the set of iterations including and after K, the loop body executes 4917 // at least one side effect. In this case, that specific instance of side 4918 // effect is control dependent on poison, which also yields undefined 4919 // behavior. 4920 4921 auto *ExitingBB = L->getExitingBlock(); 4922 auto *LatchBB = L->getLoopLatch(); 4923 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 4924 return false; 4925 4926 SmallPtrSet<const Instruction *, 16> Pushed; 4927 SmallVector<const Instruction *, 8> PoisonStack; 4928 4929 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 4930 // things that are known to be fully poison under that assumption go on the 4931 // PoisonStack. 4932 Pushed.insert(I); 4933 PoisonStack.push_back(I); 4934 4935 bool LatchControlDependentOnPoison = false; 4936 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 4937 const Instruction *Poison = PoisonStack.pop_back_val(); 4938 4939 for (auto *PoisonUser : Poison->users()) { 4940 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 4941 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 4942 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 4943 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 4944 assert(BI->isConditional() && "Only possibility!"); 4945 if (BI->getParent() == LatchBB) { 4946 LatchControlDependentOnPoison = true; 4947 break; 4948 } 4949 } 4950 } 4951 } 4952 4953 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 4954 } 4955 4956 ScalarEvolution::LoopProperties 4957 ScalarEvolution::getLoopProperties(const Loop *L) { 4958 typedef ScalarEvolution::LoopProperties LoopProperties; 4959 4960 auto Itr = LoopPropertiesCache.find(L); 4961 if (Itr == LoopPropertiesCache.end()) { 4962 auto HasSideEffects = [](Instruction *I) { 4963 if (auto *SI = dyn_cast<StoreInst>(I)) 4964 return !SI->isSimple(); 4965 4966 return I->mayHaveSideEffects(); 4967 }; 4968 4969 LoopProperties LP = {/* HasNoAbnormalExits */ true, 4970 /*HasNoSideEffects*/ true}; 4971 4972 for (auto *BB : L->getBlocks()) 4973 for (auto &I : *BB) { 4974 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4975 LP.HasNoAbnormalExits = false; 4976 if (HasSideEffects(&I)) 4977 LP.HasNoSideEffects = false; 4978 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 4979 break; // We're already as pessimistic as we can get. 4980 } 4981 4982 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 4983 assert(InsertPair.second && "We just checked!"); 4984 Itr = InsertPair.first; 4985 } 4986 4987 return Itr->second; 4988 } 4989 4990 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4991 if (!isSCEVable(V->getType())) 4992 return getUnknown(V); 4993 4994 if (Instruction *I = dyn_cast<Instruction>(V)) { 4995 // Don't attempt to analyze instructions in blocks that aren't 4996 // reachable. Such instructions don't matter, and they aren't required 4997 // to obey basic rules for definitions dominating uses which this 4998 // analysis depends on. 4999 if (!DT.isReachableFromEntry(I->getParent())) 5000 return getUnknown(V); 5001 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5002 return getConstant(CI); 5003 else if (isa<ConstantPointerNull>(V)) 5004 return getZero(V->getType()); 5005 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5006 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5007 else if (!isa<ConstantExpr>(V)) 5008 return getUnknown(V); 5009 5010 Operator *U = cast<Operator>(V); 5011 if (auto BO = MatchBinaryOp(U, DT)) { 5012 switch (BO->Opcode) { 5013 case Instruction::Add: { 5014 // The simple thing to do would be to just call getSCEV on both operands 5015 // and call getAddExpr with the result. However if we're looking at a 5016 // bunch of things all added together, this can be quite inefficient, 5017 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5018 // Instead, gather up all the operands and make a single getAddExpr call. 5019 // LLVM IR canonical form means we need only traverse the left operands. 5020 SmallVector<const SCEV *, 4> AddOps; 5021 do { 5022 if (BO->Op) { 5023 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5024 AddOps.push_back(OpSCEV); 5025 break; 5026 } 5027 5028 // If a NUW or NSW flag can be applied to the SCEV for this 5029 // addition, then compute the SCEV for this addition by itself 5030 // with a separate call to getAddExpr. We need to do that 5031 // instead of pushing the operands of the addition onto AddOps, 5032 // since the flags are only known to apply to this particular 5033 // addition - they may not apply to other additions that can be 5034 // formed with operands from AddOps. 5035 const SCEV *RHS = getSCEV(BO->RHS); 5036 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5037 if (Flags != SCEV::FlagAnyWrap) { 5038 const SCEV *LHS = getSCEV(BO->LHS); 5039 if (BO->Opcode == Instruction::Sub) 5040 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5041 else 5042 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5043 break; 5044 } 5045 } 5046 5047 if (BO->Opcode == Instruction::Sub) 5048 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5049 else 5050 AddOps.push_back(getSCEV(BO->RHS)); 5051 5052 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5053 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5054 NewBO->Opcode != Instruction::Sub)) { 5055 AddOps.push_back(getSCEV(BO->LHS)); 5056 break; 5057 } 5058 BO = NewBO; 5059 } while (true); 5060 5061 return getAddExpr(AddOps); 5062 } 5063 5064 case Instruction::Mul: { 5065 SmallVector<const SCEV *, 4> MulOps; 5066 do { 5067 if (BO->Op) { 5068 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5069 MulOps.push_back(OpSCEV); 5070 break; 5071 } 5072 5073 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5074 if (Flags != SCEV::FlagAnyWrap) { 5075 MulOps.push_back( 5076 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5077 break; 5078 } 5079 } 5080 5081 MulOps.push_back(getSCEV(BO->RHS)); 5082 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5083 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5084 MulOps.push_back(getSCEV(BO->LHS)); 5085 break; 5086 } 5087 BO = NewBO; 5088 } while (true); 5089 5090 return getMulExpr(MulOps); 5091 } 5092 case Instruction::UDiv: 5093 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5094 case Instruction::Sub: { 5095 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5096 if (BO->Op) 5097 Flags = getNoWrapFlagsFromUB(BO->Op); 5098 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5099 } 5100 case Instruction::And: 5101 // For an expression like x&255 that merely masks off the high bits, 5102 // use zext(trunc(x)) as the SCEV expression. 5103 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5104 if (CI->isNullValue()) 5105 return getSCEV(BO->RHS); 5106 if (CI->isAllOnesValue()) 5107 return getSCEV(BO->LHS); 5108 const APInt &A = CI->getValue(); 5109 5110 // Instcombine's ShrinkDemandedConstant may strip bits out of 5111 // constants, obscuring what would otherwise be a low-bits mask. 5112 // Use computeKnownBits to compute what ShrinkDemandedConstant 5113 // knew about to reconstruct a low-bits mask value. 5114 unsigned LZ = A.countLeadingZeros(); 5115 unsigned TZ = A.countTrailingZeros(); 5116 unsigned BitWidth = A.getBitWidth(); 5117 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5118 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5119 0, &AC, nullptr, &DT); 5120 5121 APInt EffectiveMask = 5122 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5123 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5124 const SCEV *MulCount = getConstant(ConstantInt::get( 5125 getContext(), APInt::getOneBitSet(BitWidth, TZ))); 5126 return getMulExpr( 5127 getZeroExtendExpr( 5128 getTruncateExpr( 5129 getUDivExactExpr(getSCEV(BO->LHS), MulCount), 5130 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5131 BO->LHS->getType()), 5132 MulCount); 5133 } 5134 } 5135 break; 5136 5137 case Instruction::Or: 5138 // If the RHS of the Or is a constant, we may have something like: 5139 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5140 // optimizations will transparently handle this case. 5141 // 5142 // In order for this transformation to be safe, the LHS must be of the 5143 // form X*(2^n) and the Or constant must be less than 2^n. 5144 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5145 const SCEV *LHS = getSCEV(BO->LHS); 5146 const APInt &CIVal = CI->getValue(); 5147 if (GetMinTrailingZeros(LHS) >= 5148 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5149 // Build a plain add SCEV. 5150 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5151 // If the LHS of the add was an addrec and it has no-wrap flags, 5152 // transfer the no-wrap flags, since an or won't introduce a wrap. 5153 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5154 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5155 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5156 OldAR->getNoWrapFlags()); 5157 } 5158 return S; 5159 } 5160 } 5161 break; 5162 5163 case Instruction::Xor: 5164 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5165 // If the RHS of xor is -1, then this is a not operation. 5166 if (CI->isAllOnesValue()) 5167 return getNotSCEV(getSCEV(BO->LHS)); 5168 5169 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5170 // This is a variant of the check for xor with -1, and it handles 5171 // the case where instcombine has trimmed non-demanded bits out 5172 // of an xor with -1. 5173 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5174 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5175 if (LBO->getOpcode() == Instruction::And && 5176 LCI->getValue() == CI->getValue()) 5177 if (const SCEVZeroExtendExpr *Z = 5178 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5179 Type *UTy = BO->LHS->getType(); 5180 const SCEV *Z0 = Z->getOperand(); 5181 Type *Z0Ty = Z0->getType(); 5182 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5183 5184 // If C is a low-bits mask, the zero extend is serving to 5185 // mask off the high bits. Complement the operand and 5186 // re-apply the zext. 5187 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5188 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5189 5190 // If C is a single bit, it may be in the sign-bit position 5191 // before the zero-extend. In this case, represent the xor 5192 // using an add, which is equivalent, and re-apply the zext. 5193 APInt Trunc = CI->getValue().trunc(Z0TySize); 5194 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5195 Trunc.isSignBit()) 5196 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5197 UTy); 5198 } 5199 } 5200 break; 5201 5202 case Instruction::Shl: 5203 // Turn shift left of a constant amount into a multiply. 5204 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5205 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5206 5207 // If the shift count is not less than the bitwidth, the result of 5208 // the shift is undefined. Don't try to analyze it, because the 5209 // resolution chosen here may differ from the resolution chosen in 5210 // other parts of the compiler. 5211 if (SA->getValue().uge(BitWidth)) 5212 break; 5213 5214 // It is currently not resolved how to interpret NSW for left 5215 // shift by BitWidth - 1, so we avoid applying flags in that 5216 // case. Remove this check (or this comment) once the situation 5217 // is resolved. See 5218 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5219 // and http://reviews.llvm.org/D8890 . 5220 auto Flags = SCEV::FlagAnyWrap; 5221 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5222 Flags = getNoWrapFlagsFromUB(BO->Op); 5223 5224 Constant *X = ConstantInt::get(getContext(), 5225 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5226 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5227 } 5228 break; 5229 5230 case Instruction::AShr: 5231 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5232 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5233 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5234 if (L->getOpcode() == Instruction::Shl && 5235 L->getOperand(1) == BO->RHS) { 5236 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5237 5238 // If the shift count is not less than the bitwidth, the result of 5239 // the shift is undefined. Don't try to analyze it, because the 5240 // resolution chosen here may differ from the resolution chosen in 5241 // other parts of the compiler. 5242 if (CI->getValue().uge(BitWidth)) 5243 break; 5244 5245 uint64_t Amt = BitWidth - CI->getZExtValue(); 5246 if (Amt == BitWidth) 5247 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5248 return getSignExtendExpr( 5249 getTruncateExpr(getSCEV(L->getOperand(0)), 5250 IntegerType::get(getContext(), Amt)), 5251 BO->LHS->getType()); 5252 } 5253 break; 5254 } 5255 } 5256 5257 switch (U->getOpcode()) { 5258 case Instruction::Trunc: 5259 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5260 5261 case Instruction::ZExt: 5262 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5263 5264 case Instruction::SExt: 5265 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5266 5267 case Instruction::BitCast: 5268 // BitCasts are no-op casts so we just eliminate the cast. 5269 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5270 return getSCEV(U->getOperand(0)); 5271 break; 5272 5273 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5274 // lead to pointer expressions which cannot safely be expanded to GEPs, 5275 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5276 // simplifying integer expressions. 5277 5278 case Instruction::GetElementPtr: 5279 return createNodeForGEP(cast<GEPOperator>(U)); 5280 5281 case Instruction::PHI: 5282 return createNodeForPHI(cast<PHINode>(U)); 5283 5284 case Instruction::Select: 5285 // U can also be a select constant expr, which let fall through. Since 5286 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5287 // constant expressions cannot have instructions as operands, we'd have 5288 // returned getUnknown for a select constant expressions anyway. 5289 if (isa<Instruction>(U)) 5290 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5291 U->getOperand(1), U->getOperand(2)); 5292 break; 5293 5294 case Instruction::Call: 5295 case Instruction::Invoke: 5296 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5297 return getSCEV(RV); 5298 break; 5299 } 5300 5301 return getUnknown(V); 5302 } 5303 5304 5305 5306 //===----------------------------------------------------------------------===// 5307 // Iteration Count Computation Code 5308 // 5309 5310 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 5311 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5312 return getSmallConstantTripCount(L, ExitingBB); 5313 5314 // No trip count information for multiple exits. 5315 return 0; 5316 } 5317 5318 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 5319 BasicBlock *ExitingBlock) { 5320 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5321 assert(L->isLoopExiting(ExitingBlock) && 5322 "Exiting block must actually branch out of the loop!"); 5323 const SCEVConstant *ExitCount = 5324 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5325 if (!ExitCount) 5326 return 0; 5327 5328 ConstantInt *ExitConst = ExitCount->getValue(); 5329 5330 // Guard against huge trip counts. 5331 if (ExitConst->getValue().getActiveBits() > 32) 5332 return 0; 5333 5334 // In case of integer overflow, this returns 0, which is correct. 5335 return ((unsigned)ExitConst->getZExtValue()) + 1; 5336 } 5337 5338 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 5339 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5340 return getSmallConstantTripMultiple(L, ExitingBB); 5341 5342 // No trip multiple information for multiple exits. 5343 return 0; 5344 } 5345 5346 /// Returns the largest constant divisor of the trip count of this loop as a 5347 /// normal unsigned value, if possible. This means that the actual trip count is 5348 /// always a multiple of the returned value (don't forget the trip count could 5349 /// very well be zero as well!). 5350 /// 5351 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5352 /// multiple of a constant (which is also the case if the trip count is simply 5353 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5354 /// if the trip count is very large (>= 2^32). 5355 /// 5356 /// As explained in the comments for getSmallConstantTripCount, this assumes 5357 /// that control exits the loop via ExitingBlock. 5358 unsigned 5359 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 5360 BasicBlock *ExitingBlock) { 5361 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5362 assert(L->isLoopExiting(ExitingBlock) && 5363 "Exiting block must actually branch out of the loop!"); 5364 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5365 if (ExitCount == getCouldNotCompute()) 5366 return 1; 5367 5368 // Get the trip count from the BE count by adding 1. 5369 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5370 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 5371 // to factor simple cases. 5372 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 5373 TCMul = Mul->getOperand(0); 5374 5375 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 5376 if (!MulC) 5377 return 1; 5378 5379 ConstantInt *Result = MulC->getValue(); 5380 5381 // Guard against huge trip counts (this requires checking 5382 // for zero to handle the case where the trip count == -1 and the 5383 // addition wraps). 5384 if (!Result || Result->getValue().getActiveBits() > 32 || 5385 Result->getValue().getActiveBits() == 0) 5386 return 1; 5387 5388 return (unsigned)Result->getZExtValue(); 5389 } 5390 5391 /// Get the expression for the number of loop iterations for which this loop is 5392 /// guaranteed not to exit via ExitingBlock. Otherwise return 5393 /// SCEVCouldNotCompute. 5394 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 5395 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5396 } 5397 5398 const SCEV * 5399 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5400 SCEVUnionPredicate &Preds) { 5401 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5402 } 5403 5404 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5405 return getBackedgeTakenInfo(L).getExact(this); 5406 } 5407 5408 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5409 /// known never to be less than the actual backedge taken count. 5410 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5411 return getBackedgeTakenInfo(L).getMax(this); 5412 } 5413 5414 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5415 static void 5416 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5417 BasicBlock *Header = L->getHeader(); 5418 5419 // Push all Loop-header PHIs onto the Worklist stack. 5420 for (BasicBlock::iterator I = Header->begin(); 5421 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5422 Worklist.push_back(PN); 5423 } 5424 5425 const ScalarEvolution::BackedgeTakenInfo & 5426 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5427 auto &BTI = getBackedgeTakenInfo(L); 5428 if (BTI.hasFullInfo()) 5429 return BTI; 5430 5431 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5432 5433 if (!Pair.second) 5434 return Pair.first->second; 5435 5436 BackedgeTakenInfo Result = 5437 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5438 5439 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5440 } 5441 5442 const ScalarEvolution::BackedgeTakenInfo & 5443 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5444 // Initially insert an invalid entry for this loop. If the insertion 5445 // succeeds, proceed to actually compute a backedge-taken count and 5446 // update the value. The temporary CouldNotCompute value tells SCEV 5447 // code elsewhere that it shouldn't attempt to request a new 5448 // backedge-taken count, which could result in infinite recursion. 5449 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5450 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5451 if (!Pair.second) 5452 return Pair.first->second; 5453 5454 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5455 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5456 // must be cleared in this scope. 5457 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5458 5459 if (Result.getExact(this) != getCouldNotCompute()) { 5460 assert(isLoopInvariant(Result.getExact(this), L) && 5461 isLoopInvariant(Result.getMax(this), L) && 5462 "Computed backedge-taken count isn't loop invariant for loop!"); 5463 ++NumTripCountsComputed; 5464 } 5465 else if (Result.getMax(this) == getCouldNotCompute() && 5466 isa<PHINode>(L->getHeader()->begin())) { 5467 // Only count loops that have phi nodes as not being computable. 5468 ++NumTripCountsNotComputed; 5469 } 5470 5471 // Now that we know more about the trip count for this loop, forget any 5472 // existing SCEV values for PHI nodes in this loop since they are only 5473 // conservative estimates made without the benefit of trip count 5474 // information. This is similar to the code in forgetLoop, except that 5475 // it handles SCEVUnknown PHI nodes specially. 5476 if (Result.hasAnyInfo()) { 5477 SmallVector<Instruction *, 16> Worklist; 5478 PushLoopPHIs(L, Worklist); 5479 5480 SmallPtrSet<Instruction *, 8> Visited; 5481 while (!Worklist.empty()) { 5482 Instruction *I = Worklist.pop_back_val(); 5483 if (!Visited.insert(I).second) 5484 continue; 5485 5486 ValueExprMapType::iterator It = 5487 ValueExprMap.find_as(static_cast<Value *>(I)); 5488 if (It != ValueExprMap.end()) { 5489 const SCEV *Old = It->second; 5490 5491 // SCEVUnknown for a PHI either means that it has an unrecognized 5492 // structure, or it's a PHI that's in the progress of being computed 5493 // by createNodeForPHI. In the former case, additional loop trip 5494 // count information isn't going to change anything. In the later 5495 // case, createNodeForPHI will perform the necessary updates on its 5496 // own when it gets to that point. 5497 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5498 eraseValueFromMap(It->first); 5499 forgetMemoizedResults(Old); 5500 } 5501 if (PHINode *PN = dyn_cast<PHINode>(I)) 5502 ConstantEvolutionLoopExitValue.erase(PN); 5503 } 5504 5505 PushDefUseChildren(I, Worklist); 5506 } 5507 } 5508 5509 // Re-lookup the insert position, since the call to 5510 // computeBackedgeTakenCount above could result in a 5511 // recusive call to getBackedgeTakenInfo (on a different 5512 // loop), which would invalidate the iterator computed 5513 // earlier. 5514 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5515 } 5516 5517 void ScalarEvolution::forgetLoop(const Loop *L) { 5518 // Drop any stored trip count value. 5519 auto RemoveLoopFromBackedgeMap = 5520 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5521 auto BTCPos = Map.find(L); 5522 if (BTCPos != Map.end()) { 5523 BTCPos->second.clear(); 5524 Map.erase(BTCPos); 5525 } 5526 }; 5527 5528 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5529 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5530 5531 // Drop information about expressions based on loop-header PHIs. 5532 SmallVector<Instruction *, 16> Worklist; 5533 PushLoopPHIs(L, Worklist); 5534 5535 SmallPtrSet<Instruction *, 8> Visited; 5536 while (!Worklist.empty()) { 5537 Instruction *I = Worklist.pop_back_val(); 5538 if (!Visited.insert(I).second) 5539 continue; 5540 5541 ValueExprMapType::iterator It = 5542 ValueExprMap.find_as(static_cast<Value *>(I)); 5543 if (It != ValueExprMap.end()) { 5544 eraseValueFromMap(It->first); 5545 forgetMemoizedResults(It->second); 5546 if (PHINode *PN = dyn_cast<PHINode>(I)) 5547 ConstantEvolutionLoopExitValue.erase(PN); 5548 } 5549 5550 PushDefUseChildren(I, Worklist); 5551 } 5552 5553 // Forget all contained loops too, to avoid dangling entries in the 5554 // ValuesAtScopes map. 5555 for (Loop *I : *L) 5556 forgetLoop(I); 5557 5558 LoopPropertiesCache.erase(L); 5559 } 5560 5561 void ScalarEvolution::forgetValue(Value *V) { 5562 Instruction *I = dyn_cast<Instruction>(V); 5563 if (!I) return; 5564 5565 // Drop information about expressions based on loop-header PHIs. 5566 SmallVector<Instruction *, 16> Worklist; 5567 Worklist.push_back(I); 5568 5569 SmallPtrSet<Instruction *, 8> Visited; 5570 while (!Worklist.empty()) { 5571 I = Worklist.pop_back_val(); 5572 if (!Visited.insert(I).second) 5573 continue; 5574 5575 ValueExprMapType::iterator It = 5576 ValueExprMap.find_as(static_cast<Value *>(I)); 5577 if (It != ValueExprMap.end()) { 5578 eraseValueFromMap(It->first); 5579 forgetMemoizedResults(It->second); 5580 if (PHINode *PN = dyn_cast<PHINode>(I)) 5581 ConstantEvolutionLoopExitValue.erase(PN); 5582 } 5583 5584 PushDefUseChildren(I, Worklist); 5585 } 5586 } 5587 5588 /// Get the exact loop backedge taken count considering all loop exits. A 5589 /// computable result can only be returned for loops with a single exit. 5590 /// Returning the minimum taken count among all exits is incorrect because one 5591 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5592 /// the limit of each loop test is never skipped. This is a valid assumption as 5593 /// long as the loop exits via that test. For precise results, it is the 5594 /// caller's responsibility to specify the relevant loop exit using 5595 /// getExact(ExitingBlock, SE). 5596 const SCEV * 5597 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5598 SCEVUnionPredicate *Preds) const { 5599 // If any exits were not computable, the loop is not computable. 5600 if (!isComplete() || ExitNotTaken.empty()) 5601 return SE->getCouldNotCompute(); 5602 5603 const SCEV *BECount = nullptr; 5604 for (auto &ENT : ExitNotTaken) { 5605 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5606 5607 if (!BECount) 5608 BECount = ENT.ExactNotTaken; 5609 else if (BECount != ENT.ExactNotTaken) 5610 return SE->getCouldNotCompute(); 5611 if (Preds && !ENT.hasAlwaysTruePredicate()) 5612 Preds->add(ENT.Predicate.get()); 5613 5614 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5615 "Predicate should be always true!"); 5616 } 5617 5618 assert(BECount && "Invalid not taken count for loop exit"); 5619 return BECount; 5620 } 5621 5622 /// Get the exact not taken count for this loop exit. 5623 const SCEV * 5624 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5625 ScalarEvolution *SE) const { 5626 for (auto &ENT : ExitNotTaken) 5627 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5628 return ENT.ExactNotTaken; 5629 5630 return SE->getCouldNotCompute(); 5631 } 5632 5633 /// getMax - Get the max backedge taken count for the loop. 5634 const SCEV * 5635 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5636 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5637 return !ENT.hasAlwaysTruePredicate(); 5638 }; 5639 5640 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5641 return SE->getCouldNotCompute(); 5642 5643 return getMax(); 5644 } 5645 5646 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5647 ScalarEvolution *SE) const { 5648 if (getMax() && getMax() != SE->getCouldNotCompute() && 5649 SE->hasOperand(getMax(), S)) 5650 return true; 5651 5652 for (auto &ENT : ExitNotTaken) 5653 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5654 SE->hasOperand(ENT.ExactNotTaken, S)) 5655 return true; 5656 5657 return false; 5658 } 5659 5660 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5661 /// computable exit into a persistent ExitNotTakenInfo array. 5662 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5663 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 5664 &&ExitCounts, 5665 bool Complete, const SCEV *MaxCount) 5666 : MaxAndComplete(MaxCount, Complete) { 5667 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5668 ExitNotTaken.reserve(ExitCounts.size()); 5669 std::transform( 5670 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 5671 [&](const EdgeExitInfo &EEI) { 5672 BasicBlock *ExitBB = EEI.first; 5673 const ExitLimit &EL = EEI.second; 5674 if (EL.Predicate.isAlwaysTrue()) 5675 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 5676 return ExitNotTakenInfo( 5677 ExitBB, EL.ExactNotTaken, 5678 llvm::make_unique<SCEVUnionPredicate>(std::move(EL.Predicate))); 5679 }); 5680 } 5681 5682 /// Invalidate this result and free the ExitNotTakenInfo array. 5683 void ScalarEvolution::BackedgeTakenInfo::clear() { 5684 ExitNotTaken.clear(); 5685 } 5686 5687 /// Compute the number of times the backedge of the specified loop will execute. 5688 ScalarEvolution::BackedgeTakenInfo 5689 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5690 bool AllowPredicates) { 5691 SmallVector<BasicBlock *, 8> ExitingBlocks; 5692 L->getExitingBlocks(ExitingBlocks); 5693 5694 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5695 5696 SmallVector<EdgeExitInfo, 4> ExitCounts; 5697 bool CouldComputeBECount = true; 5698 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5699 const SCEV *MustExitMaxBECount = nullptr; 5700 const SCEV *MayExitMaxBECount = nullptr; 5701 5702 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5703 // and compute maxBECount. 5704 // Do a union of all the predicates here. 5705 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5706 BasicBlock *ExitBB = ExitingBlocks[i]; 5707 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5708 5709 assert((AllowPredicates || EL.Predicate.isAlwaysTrue()) && 5710 "Predicated exit limit when predicates are not allowed!"); 5711 5712 // 1. For each exit that can be computed, add an entry to ExitCounts. 5713 // CouldComputeBECount is true only if all exits can be computed. 5714 if (EL.ExactNotTaken == getCouldNotCompute()) 5715 // We couldn't compute an exact value for this exit, so 5716 // we won't be able to compute an exact value for the loop. 5717 CouldComputeBECount = false; 5718 else 5719 ExitCounts.emplace_back(ExitBB, EL); 5720 5721 // 2. Derive the loop's MaxBECount from each exit's max number of 5722 // non-exiting iterations. Partition the loop exits into two kinds: 5723 // LoopMustExits and LoopMayExits. 5724 // 5725 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5726 // is a LoopMayExit. If any computable LoopMustExit is found, then 5727 // MaxBECount is the minimum EL.MaxNotTaken of computable 5728 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 5729 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 5730 // computable EL.MaxNotTaken. 5731 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 5732 DT.dominates(ExitBB, Latch)) { 5733 if (!MustExitMaxBECount) 5734 MustExitMaxBECount = EL.MaxNotTaken; 5735 else { 5736 MustExitMaxBECount = 5737 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 5738 } 5739 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5740 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 5741 MayExitMaxBECount = EL.MaxNotTaken; 5742 else { 5743 MayExitMaxBECount = 5744 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 5745 } 5746 } 5747 } 5748 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5749 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5750 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 5751 MaxBECount); 5752 } 5753 5754 ScalarEvolution::ExitLimit 5755 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 5756 bool AllowPredicates) { 5757 5758 // Okay, we've chosen an exiting block. See what condition causes us to exit 5759 // at this block and remember the exit block and whether all other targets 5760 // lead to the loop header. 5761 bool MustExecuteLoopHeader = true; 5762 BasicBlock *Exit = nullptr; 5763 for (auto *SBB : successors(ExitingBlock)) 5764 if (!L->contains(SBB)) { 5765 if (Exit) // Multiple exit successors. 5766 return getCouldNotCompute(); 5767 Exit = SBB; 5768 } else if (SBB != L->getHeader()) { 5769 MustExecuteLoopHeader = false; 5770 } 5771 5772 // At this point, we know we have a conditional branch that determines whether 5773 // the loop is exited. However, we don't know if the branch is executed each 5774 // time through the loop. If not, then the execution count of the branch will 5775 // not be equal to the trip count of the loop. 5776 // 5777 // Currently we check for this by checking to see if the Exit branch goes to 5778 // the loop header. If so, we know it will always execute the same number of 5779 // times as the loop. We also handle the case where the exit block *is* the 5780 // loop header. This is common for un-rotated loops. 5781 // 5782 // If both of those tests fail, walk up the unique predecessor chain to the 5783 // header, stopping if there is an edge that doesn't exit the loop. If the 5784 // header is reached, the execution count of the branch will be equal to the 5785 // trip count of the loop. 5786 // 5787 // More extensive analysis could be done to handle more cases here. 5788 // 5789 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5790 // The simple checks failed, try climbing the unique predecessor chain 5791 // up to the header. 5792 bool Ok = false; 5793 for (BasicBlock *BB = ExitingBlock; BB; ) { 5794 BasicBlock *Pred = BB->getUniquePredecessor(); 5795 if (!Pred) 5796 return getCouldNotCompute(); 5797 TerminatorInst *PredTerm = Pred->getTerminator(); 5798 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5799 if (PredSucc == BB) 5800 continue; 5801 // If the predecessor has a successor that isn't BB and isn't 5802 // outside the loop, assume the worst. 5803 if (L->contains(PredSucc)) 5804 return getCouldNotCompute(); 5805 } 5806 if (Pred == L->getHeader()) { 5807 Ok = true; 5808 break; 5809 } 5810 BB = Pred; 5811 } 5812 if (!Ok) 5813 return getCouldNotCompute(); 5814 } 5815 5816 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5817 TerminatorInst *Term = ExitingBlock->getTerminator(); 5818 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5819 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5820 // Proceed to the next level to examine the exit condition expression. 5821 return computeExitLimitFromCond( 5822 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 5823 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 5824 } 5825 5826 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5827 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5828 /*ControlsExit=*/IsOnlyExit); 5829 5830 return getCouldNotCompute(); 5831 } 5832 5833 ScalarEvolution::ExitLimit 5834 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5835 Value *ExitCond, 5836 BasicBlock *TBB, 5837 BasicBlock *FBB, 5838 bool ControlsExit, 5839 bool AllowPredicates) { 5840 // Check if the controlling expression for this loop is an And or Or. 5841 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5842 if (BO->getOpcode() == Instruction::And) { 5843 // Recurse on the operands of the and. 5844 bool EitherMayExit = L->contains(TBB); 5845 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5846 ControlsExit && !EitherMayExit, 5847 AllowPredicates); 5848 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5849 ControlsExit && !EitherMayExit, 5850 AllowPredicates); 5851 const SCEV *BECount = getCouldNotCompute(); 5852 const SCEV *MaxBECount = getCouldNotCompute(); 5853 if (EitherMayExit) { 5854 // Both conditions must be true for the loop to continue executing. 5855 // Choose the less conservative count. 5856 if (EL0.ExactNotTaken == getCouldNotCompute() || 5857 EL1.ExactNotTaken == getCouldNotCompute()) 5858 BECount = getCouldNotCompute(); 5859 else 5860 BECount = 5861 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5862 if (EL0.MaxNotTaken == getCouldNotCompute()) 5863 MaxBECount = EL1.MaxNotTaken; 5864 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5865 MaxBECount = EL0.MaxNotTaken; 5866 else 5867 MaxBECount = 5868 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5869 } else { 5870 // Both conditions must be true at the same time for the loop to exit. 5871 // For now, be conservative. 5872 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5873 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5874 MaxBECount = EL0.MaxNotTaken; 5875 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5876 BECount = EL0.ExactNotTaken; 5877 } 5878 5879 SCEVUnionPredicate NP; 5880 NP.add(&EL0.Predicate); 5881 NP.add(&EL1.Predicate); 5882 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5883 // to be more aggressive when computing BECount than when computing 5884 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 5885 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 5886 // to not. 5887 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5888 !isa<SCEVCouldNotCompute>(BECount)) 5889 MaxBECount = BECount; 5890 5891 return ExitLimit(BECount, MaxBECount, NP); 5892 } 5893 if (BO->getOpcode() == Instruction::Or) { 5894 // Recurse on the operands of the or. 5895 bool EitherMayExit = L->contains(FBB); 5896 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5897 ControlsExit && !EitherMayExit, 5898 AllowPredicates); 5899 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5900 ControlsExit && !EitherMayExit, 5901 AllowPredicates); 5902 const SCEV *BECount = getCouldNotCompute(); 5903 const SCEV *MaxBECount = getCouldNotCompute(); 5904 if (EitherMayExit) { 5905 // Both conditions must be false for the loop to continue executing. 5906 // Choose the less conservative count. 5907 if (EL0.ExactNotTaken == getCouldNotCompute() || 5908 EL1.ExactNotTaken == getCouldNotCompute()) 5909 BECount = getCouldNotCompute(); 5910 else 5911 BECount = 5912 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5913 if (EL0.MaxNotTaken == getCouldNotCompute()) 5914 MaxBECount = EL1.MaxNotTaken; 5915 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5916 MaxBECount = EL0.MaxNotTaken; 5917 else 5918 MaxBECount = 5919 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5920 } else { 5921 // Both conditions must be false at the same time for the loop to exit. 5922 // For now, be conservative. 5923 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5924 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5925 MaxBECount = EL0.MaxNotTaken; 5926 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5927 BECount = EL0.ExactNotTaken; 5928 } 5929 5930 SCEVUnionPredicate NP; 5931 NP.add(&EL0.Predicate); 5932 NP.add(&EL1.Predicate); 5933 return ExitLimit(BECount, MaxBECount, NP); 5934 } 5935 } 5936 5937 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5938 // Proceed to the next level to examine the icmp. 5939 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 5940 ExitLimit EL = 5941 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5942 if (EL.hasFullInfo() || !AllowPredicates) 5943 return EL; 5944 5945 // Try again, but use SCEV predicates this time. 5946 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 5947 /*AllowPredicates=*/true); 5948 } 5949 5950 // Check for a constant condition. These are normally stripped out by 5951 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5952 // preserve the CFG and is temporarily leaving constant conditions 5953 // in place. 5954 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5955 if (L->contains(FBB) == !CI->getZExtValue()) 5956 // The backedge is always taken. 5957 return getCouldNotCompute(); 5958 else 5959 // The backedge is never taken. 5960 return getZero(CI->getType()); 5961 } 5962 5963 // If it's not an integer or pointer comparison then compute it the hard way. 5964 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5965 } 5966 5967 ScalarEvolution::ExitLimit 5968 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5969 ICmpInst *ExitCond, 5970 BasicBlock *TBB, 5971 BasicBlock *FBB, 5972 bool ControlsExit, 5973 bool AllowPredicates) { 5974 5975 // If the condition was exit on true, convert the condition to exit on false 5976 ICmpInst::Predicate Cond; 5977 if (!L->contains(FBB)) 5978 Cond = ExitCond->getPredicate(); 5979 else 5980 Cond = ExitCond->getInversePredicate(); 5981 5982 // Handle common loops like: for (X = "string"; *X; ++X) 5983 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5984 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5985 ExitLimit ItCnt = 5986 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5987 if (ItCnt.hasAnyInfo()) 5988 return ItCnt; 5989 } 5990 5991 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5992 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5993 5994 // Try to evaluate any dependencies out of the loop. 5995 LHS = getSCEVAtScope(LHS, L); 5996 RHS = getSCEVAtScope(RHS, L); 5997 5998 // At this point, we would like to compute how many iterations of the 5999 // loop the predicate will return true for these inputs. 6000 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6001 // If there is a loop-invariant, force it into the RHS. 6002 std::swap(LHS, RHS); 6003 Cond = ICmpInst::getSwappedPredicate(Cond); 6004 } 6005 6006 // Simplify the operands before analyzing them. 6007 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6008 6009 // If we have a comparison of a chrec against a constant, try to use value 6010 // ranges to answer this query. 6011 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6012 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6013 if (AddRec->getLoop() == L) { 6014 // Form the constant range. 6015 ConstantRange CompRange( 6016 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 6017 6018 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6019 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6020 } 6021 6022 switch (Cond) { 6023 case ICmpInst::ICMP_NE: { // while (X != Y) 6024 // Convert to: while (X-Y != 0) 6025 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6026 AllowPredicates); 6027 if (EL.hasAnyInfo()) return EL; 6028 break; 6029 } 6030 case ICmpInst::ICMP_EQ: { // while (X == Y) 6031 // Convert to: while (X-Y == 0) 6032 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6033 if (EL.hasAnyInfo()) return EL; 6034 break; 6035 } 6036 case ICmpInst::ICMP_SLT: 6037 case ICmpInst::ICMP_ULT: { // while (X < Y) 6038 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6039 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6040 AllowPredicates); 6041 if (EL.hasAnyInfo()) return EL; 6042 break; 6043 } 6044 case ICmpInst::ICMP_SGT: 6045 case ICmpInst::ICMP_UGT: { // while (X > Y) 6046 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6047 ExitLimit EL = 6048 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6049 AllowPredicates); 6050 if (EL.hasAnyInfo()) return EL; 6051 break; 6052 } 6053 default: 6054 break; 6055 } 6056 6057 auto *ExhaustiveCount = 6058 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6059 6060 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6061 return ExhaustiveCount; 6062 6063 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6064 ExitCond->getOperand(1), L, Cond); 6065 } 6066 6067 ScalarEvolution::ExitLimit 6068 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6069 SwitchInst *Switch, 6070 BasicBlock *ExitingBlock, 6071 bool ControlsExit) { 6072 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6073 6074 // Give up if the exit is the default dest of a switch. 6075 if (Switch->getDefaultDest() == ExitingBlock) 6076 return getCouldNotCompute(); 6077 6078 assert(L->contains(Switch->getDefaultDest()) && 6079 "Default case must not exit the loop!"); 6080 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6081 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6082 6083 // while (X != Y) --> while (X-Y != 0) 6084 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6085 if (EL.hasAnyInfo()) 6086 return EL; 6087 6088 return getCouldNotCompute(); 6089 } 6090 6091 static ConstantInt * 6092 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6093 ScalarEvolution &SE) { 6094 const SCEV *InVal = SE.getConstant(C); 6095 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6096 assert(isa<SCEVConstant>(Val) && 6097 "Evaluation of SCEV at constant didn't fold correctly?"); 6098 return cast<SCEVConstant>(Val)->getValue(); 6099 } 6100 6101 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6102 /// compute the backedge execution count. 6103 ScalarEvolution::ExitLimit 6104 ScalarEvolution::computeLoadConstantCompareExitLimit( 6105 LoadInst *LI, 6106 Constant *RHS, 6107 const Loop *L, 6108 ICmpInst::Predicate predicate) { 6109 6110 if (LI->isVolatile()) return getCouldNotCompute(); 6111 6112 // Check to see if the loaded pointer is a getelementptr of a global. 6113 // TODO: Use SCEV instead of manually grubbing with GEPs. 6114 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6115 if (!GEP) return getCouldNotCompute(); 6116 6117 // Make sure that it is really a constant global we are gepping, with an 6118 // initializer, and make sure the first IDX is really 0. 6119 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6120 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6121 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6122 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6123 return getCouldNotCompute(); 6124 6125 // Okay, we allow one non-constant index into the GEP instruction. 6126 Value *VarIdx = nullptr; 6127 std::vector<Constant*> Indexes; 6128 unsigned VarIdxNum = 0; 6129 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6130 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6131 Indexes.push_back(CI); 6132 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6133 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6134 VarIdx = GEP->getOperand(i); 6135 VarIdxNum = i-2; 6136 Indexes.push_back(nullptr); 6137 } 6138 6139 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6140 if (!VarIdx) 6141 return getCouldNotCompute(); 6142 6143 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6144 // Check to see if X is a loop variant variable value now. 6145 const SCEV *Idx = getSCEV(VarIdx); 6146 Idx = getSCEVAtScope(Idx, L); 6147 6148 // We can only recognize very limited forms of loop index expressions, in 6149 // particular, only affine AddRec's like {C1,+,C2}. 6150 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6151 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6152 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6153 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6154 return getCouldNotCompute(); 6155 6156 unsigned MaxSteps = MaxBruteForceIterations; 6157 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6158 ConstantInt *ItCst = ConstantInt::get( 6159 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6160 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6161 6162 // Form the GEP offset. 6163 Indexes[VarIdxNum] = Val; 6164 6165 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6166 Indexes); 6167 if (!Result) break; // Cannot compute! 6168 6169 // Evaluate the condition for this iteration. 6170 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6171 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6172 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6173 ++NumArrayLenItCounts; 6174 return getConstant(ItCst); // Found terminating iteration! 6175 } 6176 } 6177 return getCouldNotCompute(); 6178 } 6179 6180 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6181 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6182 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6183 if (!RHS) 6184 return getCouldNotCompute(); 6185 6186 const BasicBlock *Latch = L->getLoopLatch(); 6187 if (!Latch) 6188 return getCouldNotCompute(); 6189 6190 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6191 if (!Predecessor) 6192 return getCouldNotCompute(); 6193 6194 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6195 // Return LHS in OutLHS and shift_opt in OutOpCode. 6196 auto MatchPositiveShift = 6197 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6198 6199 using namespace PatternMatch; 6200 6201 ConstantInt *ShiftAmt; 6202 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6203 OutOpCode = Instruction::LShr; 6204 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6205 OutOpCode = Instruction::AShr; 6206 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6207 OutOpCode = Instruction::Shl; 6208 else 6209 return false; 6210 6211 return ShiftAmt->getValue().isStrictlyPositive(); 6212 }; 6213 6214 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6215 // 6216 // loop: 6217 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6218 // %iv.shifted = lshr i32 %iv, <positive constant> 6219 // 6220 // Return true on a succesful match. Return the corresponding PHI node (%iv 6221 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6222 auto MatchShiftRecurrence = 6223 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6224 Optional<Instruction::BinaryOps> PostShiftOpCode; 6225 6226 { 6227 Instruction::BinaryOps OpC; 6228 Value *V; 6229 6230 // If we encounter a shift instruction, "peel off" the shift operation, 6231 // and remember that we did so. Later when we inspect %iv's backedge 6232 // value, we will make sure that the backedge value uses the same 6233 // operation. 6234 // 6235 // Note: the peeled shift operation does not have to be the same 6236 // instruction as the one feeding into the PHI's backedge value. We only 6237 // really care about it being the same *kind* of shift instruction -- 6238 // that's all that is required for our later inferences to hold. 6239 if (MatchPositiveShift(LHS, V, OpC)) { 6240 PostShiftOpCode = OpC; 6241 LHS = V; 6242 } 6243 } 6244 6245 PNOut = dyn_cast<PHINode>(LHS); 6246 if (!PNOut || PNOut->getParent() != L->getHeader()) 6247 return false; 6248 6249 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6250 Value *OpLHS; 6251 6252 return 6253 // The backedge value for the PHI node must be a shift by a positive 6254 // amount 6255 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6256 6257 // of the PHI node itself 6258 OpLHS == PNOut && 6259 6260 // and the kind of shift should be match the kind of shift we peeled 6261 // off, if any. 6262 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6263 }; 6264 6265 PHINode *PN; 6266 Instruction::BinaryOps OpCode; 6267 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6268 return getCouldNotCompute(); 6269 6270 const DataLayout &DL = getDataLayout(); 6271 6272 // The key rationale for this optimization is that for some kinds of shift 6273 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6274 // within a finite number of iterations. If the condition guarding the 6275 // backedge (in the sense that the backedge is taken if the condition is true) 6276 // is false for the value the shift recurrence stabilizes to, then we know 6277 // that the backedge is taken only a finite number of times. 6278 6279 ConstantInt *StableValue = nullptr; 6280 switch (OpCode) { 6281 default: 6282 llvm_unreachable("Impossible case!"); 6283 6284 case Instruction::AShr: { 6285 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6286 // bitwidth(K) iterations. 6287 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6288 bool KnownZero, KnownOne; 6289 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6290 Predecessor->getTerminator(), &DT); 6291 auto *Ty = cast<IntegerType>(RHS->getType()); 6292 if (KnownZero) 6293 StableValue = ConstantInt::get(Ty, 0); 6294 else if (KnownOne) 6295 StableValue = ConstantInt::get(Ty, -1, true); 6296 else 6297 return getCouldNotCompute(); 6298 6299 break; 6300 } 6301 case Instruction::LShr: 6302 case Instruction::Shl: 6303 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6304 // stabilize to 0 in at most bitwidth(K) iterations. 6305 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6306 break; 6307 } 6308 6309 auto *Result = 6310 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6311 assert(Result->getType()->isIntegerTy(1) && 6312 "Otherwise cannot be an operand to a branch instruction"); 6313 6314 if (Result->isZeroValue()) { 6315 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6316 const SCEV *UpperBound = 6317 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6318 SCEVUnionPredicate P; 6319 return ExitLimit(getCouldNotCompute(), UpperBound, P); 6320 } 6321 6322 return getCouldNotCompute(); 6323 } 6324 6325 /// Return true if we can constant fold an instruction of the specified type, 6326 /// assuming that all operands were constants. 6327 static bool CanConstantFold(const Instruction *I) { 6328 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6329 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6330 isa<LoadInst>(I)) 6331 return true; 6332 6333 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6334 if (const Function *F = CI->getCalledFunction()) 6335 return canConstantFoldCallTo(F); 6336 return false; 6337 } 6338 6339 /// Determine whether this instruction can constant evolve within this loop 6340 /// assuming its operands can all constant evolve. 6341 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6342 // An instruction outside of the loop can't be derived from a loop PHI. 6343 if (!L->contains(I)) return false; 6344 6345 if (isa<PHINode>(I)) { 6346 // We don't currently keep track of the control flow needed to evaluate 6347 // PHIs, so we cannot handle PHIs inside of loops. 6348 return L->getHeader() == I->getParent(); 6349 } 6350 6351 // If we won't be able to constant fold this expression even if the operands 6352 // are constants, bail early. 6353 return CanConstantFold(I); 6354 } 6355 6356 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6357 /// recursing through each instruction operand until reaching a loop header phi. 6358 static PHINode * 6359 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6360 DenseMap<Instruction *, PHINode *> &PHIMap) { 6361 6362 // Otherwise, we can evaluate this instruction if all of its operands are 6363 // constant or derived from a PHI node themselves. 6364 PHINode *PHI = nullptr; 6365 for (Value *Op : UseInst->operands()) { 6366 if (isa<Constant>(Op)) continue; 6367 6368 Instruction *OpInst = dyn_cast<Instruction>(Op); 6369 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6370 6371 PHINode *P = dyn_cast<PHINode>(OpInst); 6372 if (!P) 6373 // If this operand is already visited, reuse the prior result. 6374 // We may have P != PHI if this is the deepest point at which the 6375 // inconsistent paths meet. 6376 P = PHIMap.lookup(OpInst); 6377 if (!P) { 6378 // Recurse and memoize the results, whether a phi is found or not. 6379 // This recursive call invalidates pointers into PHIMap. 6380 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 6381 PHIMap[OpInst] = P; 6382 } 6383 if (!P) 6384 return nullptr; // Not evolving from PHI 6385 if (PHI && PHI != P) 6386 return nullptr; // Evolving from multiple different PHIs. 6387 PHI = P; 6388 } 6389 // This is a expression evolving from a constant PHI! 6390 return PHI; 6391 } 6392 6393 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6394 /// in the loop that V is derived from. We allow arbitrary operations along the 6395 /// way, but the operands of an operation must either be constants or a value 6396 /// derived from a constant PHI. If this expression does not fit with these 6397 /// constraints, return null. 6398 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6399 Instruction *I = dyn_cast<Instruction>(V); 6400 if (!I || !canConstantEvolve(I, L)) return nullptr; 6401 6402 if (PHINode *PN = dyn_cast<PHINode>(I)) 6403 return PN; 6404 6405 // Record non-constant instructions contained by the loop. 6406 DenseMap<Instruction *, PHINode *> PHIMap; 6407 return getConstantEvolvingPHIOperands(I, L, PHIMap); 6408 } 6409 6410 /// EvaluateExpression - Given an expression that passes the 6411 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6412 /// in the loop has the value PHIVal. If we can't fold this expression for some 6413 /// reason, return null. 6414 static Constant *EvaluateExpression(Value *V, const Loop *L, 6415 DenseMap<Instruction *, Constant *> &Vals, 6416 const DataLayout &DL, 6417 const TargetLibraryInfo *TLI) { 6418 // Convenient constant check, but redundant for recursive calls. 6419 if (Constant *C = dyn_cast<Constant>(V)) return C; 6420 Instruction *I = dyn_cast<Instruction>(V); 6421 if (!I) return nullptr; 6422 6423 if (Constant *C = Vals.lookup(I)) return C; 6424 6425 // An instruction inside the loop depends on a value outside the loop that we 6426 // weren't given a mapping for, or a value such as a call inside the loop. 6427 if (!canConstantEvolve(I, L)) return nullptr; 6428 6429 // An unmapped PHI can be due to a branch or another loop inside this loop, 6430 // or due to this not being the initial iteration through a loop where we 6431 // couldn't compute the evolution of this particular PHI last time. 6432 if (isa<PHINode>(I)) return nullptr; 6433 6434 std::vector<Constant*> Operands(I->getNumOperands()); 6435 6436 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6437 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6438 if (!Operand) { 6439 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6440 if (!Operands[i]) return nullptr; 6441 continue; 6442 } 6443 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6444 Vals[Operand] = C; 6445 if (!C) return nullptr; 6446 Operands[i] = C; 6447 } 6448 6449 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6450 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6451 Operands[1], DL, TLI); 6452 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6453 if (!LI->isVolatile()) 6454 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6455 } 6456 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6457 } 6458 6459 6460 // If every incoming value to PN except the one for BB is a specific Constant, 6461 // return that, else return nullptr. 6462 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6463 Constant *IncomingVal = nullptr; 6464 6465 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6466 if (PN->getIncomingBlock(i) == BB) 6467 continue; 6468 6469 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6470 if (!CurrentVal) 6471 return nullptr; 6472 6473 if (IncomingVal != CurrentVal) { 6474 if (IncomingVal) 6475 return nullptr; 6476 IncomingVal = CurrentVal; 6477 } 6478 } 6479 6480 return IncomingVal; 6481 } 6482 6483 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6484 /// in the header of its containing loop, we know the loop executes a 6485 /// constant number of times, and the PHI node is just a recurrence 6486 /// involving constants, fold it. 6487 Constant * 6488 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6489 const APInt &BEs, 6490 const Loop *L) { 6491 auto I = ConstantEvolutionLoopExitValue.find(PN); 6492 if (I != ConstantEvolutionLoopExitValue.end()) 6493 return I->second; 6494 6495 if (BEs.ugt(MaxBruteForceIterations)) 6496 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6497 6498 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6499 6500 DenseMap<Instruction *, Constant *> CurrentIterVals; 6501 BasicBlock *Header = L->getHeader(); 6502 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6503 6504 BasicBlock *Latch = L->getLoopLatch(); 6505 if (!Latch) 6506 return nullptr; 6507 6508 for (auto &I : *Header) { 6509 PHINode *PHI = dyn_cast<PHINode>(&I); 6510 if (!PHI) break; 6511 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6512 if (!StartCST) continue; 6513 CurrentIterVals[PHI] = StartCST; 6514 } 6515 if (!CurrentIterVals.count(PN)) 6516 return RetVal = nullptr; 6517 6518 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6519 6520 // Execute the loop symbolically to determine the exit value. 6521 if (BEs.getActiveBits() >= 32) 6522 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6523 6524 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6525 unsigned IterationNum = 0; 6526 const DataLayout &DL = getDataLayout(); 6527 for (; ; ++IterationNum) { 6528 if (IterationNum == NumIterations) 6529 return RetVal = CurrentIterVals[PN]; // Got exit value! 6530 6531 // Compute the value of the PHIs for the next iteration. 6532 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6533 DenseMap<Instruction *, Constant *> NextIterVals; 6534 Constant *NextPHI = 6535 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6536 if (!NextPHI) 6537 return nullptr; // Couldn't evaluate! 6538 NextIterVals[PN] = NextPHI; 6539 6540 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6541 6542 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6543 // cease to be able to evaluate one of them or if they stop evolving, 6544 // because that doesn't necessarily prevent us from computing PN. 6545 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6546 for (const auto &I : CurrentIterVals) { 6547 PHINode *PHI = dyn_cast<PHINode>(I.first); 6548 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6549 PHIsToCompute.emplace_back(PHI, I.second); 6550 } 6551 // We use two distinct loops because EvaluateExpression may invalidate any 6552 // iterators into CurrentIterVals. 6553 for (const auto &I : PHIsToCompute) { 6554 PHINode *PHI = I.first; 6555 Constant *&NextPHI = NextIterVals[PHI]; 6556 if (!NextPHI) { // Not already computed. 6557 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6558 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6559 } 6560 if (NextPHI != I.second) 6561 StoppedEvolving = false; 6562 } 6563 6564 // If all entries in CurrentIterVals == NextIterVals then we can stop 6565 // iterating, the loop can't continue to change. 6566 if (StoppedEvolving) 6567 return RetVal = CurrentIterVals[PN]; 6568 6569 CurrentIterVals.swap(NextIterVals); 6570 } 6571 } 6572 6573 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6574 Value *Cond, 6575 bool ExitWhen) { 6576 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6577 if (!PN) return getCouldNotCompute(); 6578 6579 // If the loop is canonicalized, the PHI will have exactly two entries. 6580 // That's the only form we support here. 6581 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6582 6583 DenseMap<Instruction *, Constant *> CurrentIterVals; 6584 BasicBlock *Header = L->getHeader(); 6585 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6586 6587 BasicBlock *Latch = L->getLoopLatch(); 6588 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6589 6590 for (auto &I : *Header) { 6591 PHINode *PHI = dyn_cast<PHINode>(&I); 6592 if (!PHI) 6593 break; 6594 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6595 if (!StartCST) continue; 6596 CurrentIterVals[PHI] = StartCST; 6597 } 6598 if (!CurrentIterVals.count(PN)) 6599 return getCouldNotCompute(); 6600 6601 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6602 // the loop symbolically to determine when the condition gets a value of 6603 // "ExitWhen". 6604 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6605 const DataLayout &DL = getDataLayout(); 6606 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6607 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6608 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6609 6610 // Couldn't symbolically evaluate. 6611 if (!CondVal) return getCouldNotCompute(); 6612 6613 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6614 ++NumBruteForceTripCountsComputed; 6615 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6616 } 6617 6618 // Update all the PHI nodes for the next iteration. 6619 DenseMap<Instruction *, Constant *> NextIterVals; 6620 6621 // Create a list of which PHIs we need to compute. We want to do this before 6622 // calling EvaluateExpression on them because that may invalidate iterators 6623 // into CurrentIterVals. 6624 SmallVector<PHINode *, 8> PHIsToCompute; 6625 for (const auto &I : CurrentIterVals) { 6626 PHINode *PHI = dyn_cast<PHINode>(I.first); 6627 if (!PHI || PHI->getParent() != Header) continue; 6628 PHIsToCompute.push_back(PHI); 6629 } 6630 for (PHINode *PHI : PHIsToCompute) { 6631 Constant *&NextPHI = NextIterVals[PHI]; 6632 if (NextPHI) continue; // Already computed! 6633 6634 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6635 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6636 } 6637 CurrentIterVals.swap(NextIterVals); 6638 } 6639 6640 // Too many iterations were needed to evaluate. 6641 return getCouldNotCompute(); 6642 } 6643 6644 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6645 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6646 ValuesAtScopes[V]; 6647 // Check to see if we've folded this expression at this loop before. 6648 for (auto &LS : Values) 6649 if (LS.first == L) 6650 return LS.second ? LS.second : V; 6651 6652 Values.emplace_back(L, nullptr); 6653 6654 // Otherwise compute it. 6655 const SCEV *C = computeSCEVAtScope(V, L); 6656 for (auto &LS : reverse(ValuesAtScopes[V])) 6657 if (LS.first == L) { 6658 LS.second = C; 6659 break; 6660 } 6661 return C; 6662 } 6663 6664 /// This builds up a Constant using the ConstantExpr interface. That way, we 6665 /// will return Constants for objects which aren't represented by a 6666 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6667 /// Returns NULL if the SCEV isn't representable as a Constant. 6668 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6669 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6670 case scCouldNotCompute: 6671 case scAddRecExpr: 6672 break; 6673 case scConstant: 6674 return cast<SCEVConstant>(V)->getValue(); 6675 case scUnknown: 6676 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6677 case scSignExtend: { 6678 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6679 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6680 return ConstantExpr::getSExt(CastOp, SS->getType()); 6681 break; 6682 } 6683 case scZeroExtend: { 6684 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6685 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6686 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6687 break; 6688 } 6689 case scTruncate: { 6690 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6691 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6692 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6693 break; 6694 } 6695 case scAddExpr: { 6696 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6697 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6698 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6699 unsigned AS = PTy->getAddressSpace(); 6700 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6701 C = ConstantExpr::getBitCast(C, DestPtrTy); 6702 } 6703 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6704 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6705 if (!C2) return nullptr; 6706 6707 // First pointer! 6708 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6709 unsigned AS = C2->getType()->getPointerAddressSpace(); 6710 std::swap(C, C2); 6711 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6712 // The offsets have been converted to bytes. We can add bytes to an 6713 // i8* by GEP with the byte count in the first index. 6714 C = ConstantExpr::getBitCast(C, DestPtrTy); 6715 } 6716 6717 // Don't bother trying to sum two pointers. We probably can't 6718 // statically compute a load that results from it anyway. 6719 if (C2->getType()->isPointerTy()) 6720 return nullptr; 6721 6722 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6723 if (PTy->getElementType()->isStructTy()) 6724 C2 = ConstantExpr::getIntegerCast( 6725 C2, Type::getInt32Ty(C->getContext()), true); 6726 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6727 } else 6728 C = ConstantExpr::getAdd(C, C2); 6729 } 6730 return C; 6731 } 6732 break; 6733 } 6734 case scMulExpr: { 6735 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6736 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6737 // Don't bother with pointers at all. 6738 if (C->getType()->isPointerTy()) return nullptr; 6739 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6740 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6741 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6742 C = ConstantExpr::getMul(C, C2); 6743 } 6744 return C; 6745 } 6746 break; 6747 } 6748 case scUDivExpr: { 6749 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6750 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6751 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6752 if (LHS->getType() == RHS->getType()) 6753 return ConstantExpr::getUDiv(LHS, RHS); 6754 break; 6755 } 6756 case scSMaxExpr: 6757 case scUMaxExpr: 6758 break; // TODO: smax, umax. 6759 } 6760 return nullptr; 6761 } 6762 6763 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6764 if (isa<SCEVConstant>(V)) return V; 6765 6766 // If this instruction is evolved from a constant-evolving PHI, compute the 6767 // exit value from the loop without using SCEVs. 6768 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6769 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6770 const Loop *LI = this->LI[I->getParent()]; 6771 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6772 if (PHINode *PN = dyn_cast<PHINode>(I)) 6773 if (PN->getParent() == LI->getHeader()) { 6774 // Okay, there is no closed form solution for the PHI node. Check 6775 // to see if the loop that contains it has a known backedge-taken 6776 // count. If so, we may be able to force computation of the exit 6777 // value. 6778 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6779 if (const SCEVConstant *BTCC = 6780 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6781 // Okay, we know how many times the containing loop executes. If 6782 // this is a constant evolving PHI node, get the final value at 6783 // the specified iteration number. 6784 Constant *RV = 6785 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6786 if (RV) return getSCEV(RV); 6787 } 6788 } 6789 6790 // Okay, this is an expression that we cannot symbolically evaluate 6791 // into a SCEV. Check to see if it's possible to symbolically evaluate 6792 // the arguments into constants, and if so, try to constant propagate the 6793 // result. This is particularly useful for computing loop exit values. 6794 if (CanConstantFold(I)) { 6795 SmallVector<Constant *, 4> Operands; 6796 bool MadeImprovement = false; 6797 for (Value *Op : I->operands()) { 6798 if (Constant *C = dyn_cast<Constant>(Op)) { 6799 Operands.push_back(C); 6800 continue; 6801 } 6802 6803 // If any of the operands is non-constant and if they are 6804 // non-integer and non-pointer, don't even try to analyze them 6805 // with scev techniques. 6806 if (!isSCEVable(Op->getType())) 6807 return V; 6808 6809 const SCEV *OrigV = getSCEV(Op); 6810 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6811 MadeImprovement |= OrigV != OpV; 6812 6813 Constant *C = BuildConstantFromSCEV(OpV); 6814 if (!C) return V; 6815 if (C->getType() != Op->getType()) 6816 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6817 Op->getType(), 6818 false), 6819 C, Op->getType()); 6820 Operands.push_back(C); 6821 } 6822 6823 // Check to see if getSCEVAtScope actually made an improvement. 6824 if (MadeImprovement) { 6825 Constant *C = nullptr; 6826 const DataLayout &DL = getDataLayout(); 6827 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6828 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6829 Operands[1], DL, &TLI); 6830 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6831 if (!LI->isVolatile()) 6832 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6833 } else 6834 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6835 if (!C) return V; 6836 return getSCEV(C); 6837 } 6838 } 6839 } 6840 6841 // This is some other type of SCEVUnknown, just return it. 6842 return V; 6843 } 6844 6845 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6846 // Avoid performing the look-up in the common case where the specified 6847 // expression has no loop-variant portions. 6848 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6849 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6850 if (OpAtScope != Comm->getOperand(i)) { 6851 // Okay, at least one of these operands is loop variant but might be 6852 // foldable. Build a new instance of the folded commutative expression. 6853 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6854 Comm->op_begin()+i); 6855 NewOps.push_back(OpAtScope); 6856 6857 for (++i; i != e; ++i) { 6858 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6859 NewOps.push_back(OpAtScope); 6860 } 6861 if (isa<SCEVAddExpr>(Comm)) 6862 return getAddExpr(NewOps); 6863 if (isa<SCEVMulExpr>(Comm)) 6864 return getMulExpr(NewOps); 6865 if (isa<SCEVSMaxExpr>(Comm)) 6866 return getSMaxExpr(NewOps); 6867 if (isa<SCEVUMaxExpr>(Comm)) 6868 return getUMaxExpr(NewOps); 6869 llvm_unreachable("Unknown commutative SCEV type!"); 6870 } 6871 } 6872 // If we got here, all operands are loop invariant. 6873 return Comm; 6874 } 6875 6876 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6877 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6878 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6879 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6880 return Div; // must be loop invariant 6881 return getUDivExpr(LHS, RHS); 6882 } 6883 6884 // If this is a loop recurrence for a loop that does not contain L, then we 6885 // are dealing with the final value computed by the loop. 6886 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6887 // First, attempt to evaluate each operand. 6888 // Avoid performing the look-up in the common case where the specified 6889 // expression has no loop-variant portions. 6890 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6891 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6892 if (OpAtScope == AddRec->getOperand(i)) 6893 continue; 6894 6895 // Okay, at least one of these operands is loop variant but might be 6896 // foldable. Build a new instance of the folded commutative expression. 6897 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6898 AddRec->op_begin()+i); 6899 NewOps.push_back(OpAtScope); 6900 for (++i; i != e; ++i) 6901 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6902 6903 const SCEV *FoldedRec = 6904 getAddRecExpr(NewOps, AddRec->getLoop(), 6905 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6906 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6907 // The addrec may be folded to a nonrecurrence, for example, if the 6908 // induction variable is multiplied by zero after constant folding. Go 6909 // ahead and return the folded value. 6910 if (!AddRec) 6911 return FoldedRec; 6912 break; 6913 } 6914 6915 // If the scope is outside the addrec's loop, evaluate it by using the 6916 // loop exit value of the addrec. 6917 if (!AddRec->getLoop()->contains(L)) { 6918 // To evaluate this recurrence, we need to know how many times the AddRec 6919 // loop iterates. Compute this now. 6920 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6921 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6922 6923 // Then, evaluate the AddRec. 6924 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6925 } 6926 6927 return AddRec; 6928 } 6929 6930 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6931 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6932 if (Op == Cast->getOperand()) 6933 return Cast; // must be loop invariant 6934 return getZeroExtendExpr(Op, Cast->getType()); 6935 } 6936 6937 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6938 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6939 if (Op == Cast->getOperand()) 6940 return Cast; // must be loop invariant 6941 return getSignExtendExpr(Op, Cast->getType()); 6942 } 6943 6944 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6945 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6946 if (Op == Cast->getOperand()) 6947 return Cast; // must be loop invariant 6948 return getTruncateExpr(Op, Cast->getType()); 6949 } 6950 6951 llvm_unreachable("Unknown SCEV type!"); 6952 } 6953 6954 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6955 return getSCEVAtScope(getSCEV(V), L); 6956 } 6957 6958 /// Finds the minimum unsigned root of the following equation: 6959 /// 6960 /// A * X = B (mod N) 6961 /// 6962 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6963 /// A and B isn't important. 6964 /// 6965 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6966 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6967 ScalarEvolution &SE) { 6968 uint32_t BW = A.getBitWidth(); 6969 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6970 assert(A != 0 && "A must be non-zero."); 6971 6972 // 1. D = gcd(A, N) 6973 // 6974 // The gcd of A and N may have only one prime factor: 2. The number of 6975 // trailing zeros in A is its multiplicity 6976 uint32_t Mult2 = A.countTrailingZeros(); 6977 // D = 2^Mult2 6978 6979 // 2. Check if B is divisible by D. 6980 // 6981 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6982 // is not less than multiplicity of this prime factor for D. 6983 if (B.countTrailingZeros() < Mult2) 6984 return SE.getCouldNotCompute(); 6985 6986 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6987 // modulo (N / D). 6988 // 6989 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6990 // bit width during computations. 6991 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6992 APInt Mod(BW + 1, 0); 6993 Mod.setBit(BW - Mult2); // Mod = N / D 6994 APInt I = AD.multiplicativeInverse(Mod); 6995 6996 // 4. Compute the minimum unsigned root of the equation: 6997 // I * (B / D) mod (N / D) 6998 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6999 7000 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 7001 // bits. 7002 return SE.getConstant(Result.trunc(BW)); 7003 } 7004 7005 /// Find the roots of the quadratic equation for the given quadratic chrec 7006 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7007 /// two SCEVCouldNotCompute objects. 7008 /// 7009 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7010 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7011 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7012 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7013 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7014 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7015 7016 // We currently can only solve this if the coefficients are constants. 7017 if (!LC || !MC || !NC) 7018 return None; 7019 7020 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7021 const APInt &L = LC->getAPInt(); 7022 const APInt &M = MC->getAPInt(); 7023 const APInt &N = NC->getAPInt(); 7024 APInt Two(BitWidth, 2); 7025 APInt Four(BitWidth, 4); 7026 7027 { 7028 using namespace APIntOps; 7029 const APInt& C = L; 7030 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7031 // The B coefficient is M-N/2 7032 APInt B(M); 7033 B -= sdiv(N,Two); 7034 7035 // The A coefficient is N/2 7036 APInt A(N.sdiv(Two)); 7037 7038 // Compute the B^2-4ac term. 7039 APInt SqrtTerm(B); 7040 SqrtTerm *= B; 7041 SqrtTerm -= Four * (A * C); 7042 7043 if (SqrtTerm.isNegative()) { 7044 // The loop is provably infinite. 7045 return None; 7046 } 7047 7048 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7049 // integer value or else APInt::sqrt() will assert. 7050 APInt SqrtVal(SqrtTerm.sqrt()); 7051 7052 // Compute the two solutions for the quadratic formula. 7053 // The divisions must be performed as signed divisions. 7054 APInt NegB(-B); 7055 APInt TwoA(A << 1); 7056 if (TwoA.isMinValue()) 7057 return None; 7058 7059 LLVMContext &Context = SE.getContext(); 7060 7061 ConstantInt *Solution1 = 7062 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7063 ConstantInt *Solution2 = 7064 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7065 7066 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7067 cast<SCEVConstant>(SE.getConstant(Solution2))); 7068 } // end APIntOps namespace 7069 } 7070 7071 ScalarEvolution::ExitLimit 7072 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7073 bool AllowPredicates) { 7074 7075 // This is only used for loops with a "x != y" exit test. The exit condition 7076 // is now expressed as a single expression, V = x-y. So the exit test is 7077 // effectively V != 0. We know and take advantage of the fact that this 7078 // expression only being used in a comparison by zero context. 7079 7080 SCEVUnionPredicate P; 7081 // If the value is a constant 7082 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7083 // If the value is already zero, the branch will execute zero times. 7084 if (C->getValue()->isZero()) return C; 7085 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7086 } 7087 7088 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7089 if (!AddRec && AllowPredicates) 7090 // Try to make this an AddRec using runtime tests, in the first X 7091 // iterations of this loop, where X is the SCEV expression found by the 7092 // algorithm below. 7093 AddRec = convertSCEVToAddRecWithPredicates(V, L, P); 7094 7095 if (!AddRec || AddRec->getLoop() != L) 7096 return getCouldNotCompute(); 7097 7098 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7099 // the quadratic equation to solve it. 7100 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7101 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7102 const SCEVConstant *R1 = Roots->first; 7103 const SCEVConstant *R2 = Roots->second; 7104 // Pick the smallest positive root value. 7105 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7106 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7107 if (!CB->getZExtValue()) 7108 std::swap(R1, R2); // R1 is the minimum root now. 7109 7110 // We can only use this value if the chrec ends up with an exact zero 7111 // value at this index. When solving for "X*X != 5", for example, we 7112 // should not accept a root of 2. 7113 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7114 if (Val->isZero()) 7115 return ExitLimit(R1, R1, P); // We found a quadratic root! 7116 } 7117 } 7118 return getCouldNotCompute(); 7119 } 7120 7121 // Otherwise we can only handle this if it is affine. 7122 if (!AddRec->isAffine()) 7123 return getCouldNotCompute(); 7124 7125 // If this is an affine expression, the execution count of this branch is 7126 // the minimum unsigned root of the following equation: 7127 // 7128 // Start + Step*N = 0 (mod 2^BW) 7129 // 7130 // equivalent to: 7131 // 7132 // Step*N = -Start (mod 2^BW) 7133 // 7134 // where BW is the common bit width of Start and Step. 7135 7136 // Get the initial value for the loop. 7137 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7138 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7139 7140 // For now we handle only constant steps. 7141 // 7142 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7143 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7144 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7145 // We have not yet seen any such cases. 7146 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7147 if (!StepC || StepC->getValue()->equalsInt(0)) 7148 return getCouldNotCompute(); 7149 7150 // For positive steps (counting up until unsigned overflow): 7151 // N = -Start/Step (as unsigned) 7152 // For negative steps (counting down to zero): 7153 // N = Start/-Step 7154 // First compute the unsigned distance from zero in the direction of Step. 7155 bool CountDown = StepC->getAPInt().isNegative(); 7156 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7157 7158 // Handle unitary steps, which cannot wraparound. 7159 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7160 // N = Distance (as unsigned) 7161 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7162 ConstantRange CR = getUnsignedRange(Start); 7163 const SCEV *MaxBECount; 7164 if (!CountDown && CR.getUnsignedMin().isMinValue()) 7165 // When counting up, the worst starting value is 1, not 0. 7166 MaxBECount = CR.getUnsignedMax().isMinValue() 7167 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 7168 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 7169 else 7170 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 7171 : -CR.getUnsignedMin()); 7172 return ExitLimit(Distance, MaxBECount, P); 7173 } 7174 7175 // As a special case, handle the instance where Step is a positive power of 7176 // two. In this case, determining whether Step divides Distance evenly can be 7177 // done by counting and comparing the number of trailing zeros of Step and 7178 // Distance. 7179 if (!CountDown) { 7180 const APInt &StepV = StepC->getAPInt(); 7181 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 7182 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 7183 // case is not handled as this code is guarded by !CountDown. 7184 if (StepV.isPowerOf2() && 7185 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 7186 // Here we've constrained the equation to be of the form 7187 // 7188 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 7189 // 7190 // where we're operating on a W bit wide integer domain and k is 7191 // non-negative. The smallest unsigned solution for X is the trip count. 7192 // 7193 // (0) is equivalent to: 7194 // 7195 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 7196 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 7197 // <=> 2^k * Distance' - X = L * 2^(W - N) 7198 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 7199 // 7200 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 7201 // by 2^(W - N). 7202 // 7203 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 7204 // 7205 // E.g. say we're solving 7206 // 7207 // 2 * Val = 2 * X (in i8) ... (3) 7208 // 7209 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 7210 // 7211 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 7212 // necessarily the smallest unsigned value of X that satisfies (3). 7213 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 7214 // is i8 1, not i8 -127 7215 7216 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 7217 7218 // Since SCEV does not have a URem node, we construct one using a truncate 7219 // and a zero extend. 7220 7221 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 7222 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 7223 auto *WideTy = Distance->getType(); 7224 7225 const SCEV *Limit = 7226 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 7227 return ExitLimit(Limit, Limit, P); 7228 } 7229 } 7230 7231 // If the condition controls loop exit (the loop exits only if the expression 7232 // is true) and the addition is no-wrap we can use unsigned divide to 7233 // compute the backedge count. In this case, the step may not divide the 7234 // distance, but we don't care because if the condition is "missed" the loop 7235 // will have undefined behavior due to wrapping. 7236 if (ControlsExit && AddRec->hasNoSelfWrap() && 7237 loopHasNoAbnormalExits(AddRec->getLoop())) { 7238 const SCEV *Exact = 7239 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7240 return ExitLimit(Exact, Exact, P); 7241 } 7242 7243 // Then, try to solve the above equation provided that Start is constant. 7244 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 7245 const SCEV *E = SolveLinEquationWithOverflow( 7246 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this); 7247 return ExitLimit(E, E, P); 7248 } 7249 return getCouldNotCompute(); 7250 } 7251 7252 ScalarEvolution::ExitLimit 7253 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7254 // Loops that look like: while (X == 0) are very strange indeed. We don't 7255 // handle them yet except for the trivial case. This could be expanded in the 7256 // future as needed. 7257 7258 // If the value is a constant, check to see if it is known to be non-zero 7259 // already. If so, the backedge will execute zero times. 7260 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7261 if (!C->getValue()->isNullValue()) 7262 return getZero(C->getType()); 7263 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7264 } 7265 7266 // We could implement others, but I really doubt anyone writes loops like 7267 // this, and if they did, they would already be constant folded. 7268 return getCouldNotCompute(); 7269 } 7270 7271 std::pair<BasicBlock *, BasicBlock *> 7272 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7273 // If the block has a unique predecessor, then there is no path from the 7274 // predecessor to the block that does not go through the direct edge 7275 // from the predecessor to the block. 7276 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7277 return {Pred, BB}; 7278 7279 // A loop's header is defined to be a block that dominates the loop. 7280 // If the header has a unique predecessor outside the loop, it must be 7281 // a block that has exactly one successor that can reach the loop. 7282 if (Loop *L = LI.getLoopFor(BB)) 7283 return {L->getLoopPredecessor(), L->getHeader()}; 7284 7285 return {nullptr, nullptr}; 7286 } 7287 7288 /// SCEV structural equivalence is usually sufficient for testing whether two 7289 /// expressions are equal, however for the purposes of looking for a condition 7290 /// guarding a loop, it can be useful to be a little more general, since a 7291 /// front-end may have replicated the controlling expression. 7292 /// 7293 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7294 // Quick check to see if they are the same SCEV. 7295 if (A == B) return true; 7296 7297 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7298 // Not all instructions that are "identical" compute the same value. For 7299 // instance, two distinct alloca instructions allocating the same type are 7300 // identical and do not read memory; but compute distinct values. 7301 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7302 }; 7303 7304 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7305 // two different instructions with the same value. Check for this case. 7306 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7307 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7308 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7309 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7310 if (ComputesEqualValues(AI, BI)) 7311 return true; 7312 7313 // Otherwise assume they may have a different value. 7314 return false; 7315 } 7316 7317 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7318 const SCEV *&LHS, const SCEV *&RHS, 7319 unsigned Depth) { 7320 bool Changed = false; 7321 7322 // If we hit the max recursion limit bail out. 7323 if (Depth >= 3) 7324 return false; 7325 7326 // Canonicalize a constant to the right side. 7327 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7328 // Check for both operands constant. 7329 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7330 if (ConstantExpr::getICmp(Pred, 7331 LHSC->getValue(), 7332 RHSC->getValue())->isNullValue()) 7333 goto trivially_false; 7334 else 7335 goto trivially_true; 7336 } 7337 // Otherwise swap the operands to put the constant on the right. 7338 std::swap(LHS, RHS); 7339 Pred = ICmpInst::getSwappedPredicate(Pred); 7340 Changed = true; 7341 } 7342 7343 // If we're comparing an addrec with a value which is loop-invariant in the 7344 // addrec's loop, put the addrec on the left. Also make a dominance check, 7345 // as both operands could be addrecs loop-invariant in each other's loop. 7346 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7347 const Loop *L = AR->getLoop(); 7348 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7349 std::swap(LHS, RHS); 7350 Pred = ICmpInst::getSwappedPredicate(Pred); 7351 Changed = true; 7352 } 7353 } 7354 7355 // If there's a constant operand, canonicalize comparisons with boundary 7356 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7357 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7358 const APInt &RA = RC->getAPInt(); 7359 switch (Pred) { 7360 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7361 case ICmpInst::ICMP_EQ: 7362 case ICmpInst::ICMP_NE: 7363 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7364 if (!RA) 7365 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7366 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7367 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7368 ME->getOperand(0)->isAllOnesValue()) { 7369 RHS = AE->getOperand(1); 7370 LHS = ME->getOperand(1); 7371 Changed = true; 7372 } 7373 break; 7374 case ICmpInst::ICMP_UGE: 7375 if ((RA - 1).isMinValue()) { 7376 Pred = ICmpInst::ICMP_NE; 7377 RHS = getConstant(RA - 1); 7378 Changed = true; 7379 break; 7380 } 7381 if (RA.isMaxValue()) { 7382 Pred = ICmpInst::ICMP_EQ; 7383 Changed = true; 7384 break; 7385 } 7386 if (RA.isMinValue()) goto trivially_true; 7387 7388 Pred = ICmpInst::ICMP_UGT; 7389 RHS = getConstant(RA - 1); 7390 Changed = true; 7391 break; 7392 case ICmpInst::ICMP_ULE: 7393 if ((RA + 1).isMaxValue()) { 7394 Pred = ICmpInst::ICMP_NE; 7395 RHS = getConstant(RA + 1); 7396 Changed = true; 7397 break; 7398 } 7399 if (RA.isMinValue()) { 7400 Pred = ICmpInst::ICMP_EQ; 7401 Changed = true; 7402 break; 7403 } 7404 if (RA.isMaxValue()) goto trivially_true; 7405 7406 Pred = ICmpInst::ICMP_ULT; 7407 RHS = getConstant(RA + 1); 7408 Changed = true; 7409 break; 7410 case ICmpInst::ICMP_SGE: 7411 if ((RA - 1).isMinSignedValue()) { 7412 Pred = ICmpInst::ICMP_NE; 7413 RHS = getConstant(RA - 1); 7414 Changed = true; 7415 break; 7416 } 7417 if (RA.isMaxSignedValue()) { 7418 Pred = ICmpInst::ICMP_EQ; 7419 Changed = true; 7420 break; 7421 } 7422 if (RA.isMinSignedValue()) goto trivially_true; 7423 7424 Pred = ICmpInst::ICMP_SGT; 7425 RHS = getConstant(RA - 1); 7426 Changed = true; 7427 break; 7428 case ICmpInst::ICMP_SLE: 7429 if ((RA + 1).isMaxSignedValue()) { 7430 Pred = ICmpInst::ICMP_NE; 7431 RHS = getConstant(RA + 1); 7432 Changed = true; 7433 break; 7434 } 7435 if (RA.isMinSignedValue()) { 7436 Pred = ICmpInst::ICMP_EQ; 7437 Changed = true; 7438 break; 7439 } 7440 if (RA.isMaxSignedValue()) goto trivially_true; 7441 7442 Pred = ICmpInst::ICMP_SLT; 7443 RHS = getConstant(RA + 1); 7444 Changed = true; 7445 break; 7446 case ICmpInst::ICMP_UGT: 7447 if (RA.isMinValue()) { 7448 Pred = ICmpInst::ICMP_NE; 7449 Changed = true; 7450 break; 7451 } 7452 if ((RA + 1).isMaxValue()) { 7453 Pred = ICmpInst::ICMP_EQ; 7454 RHS = getConstant(RA + 1); 7455 Changed = true; 7456 break; 7457 } 7458 if (RA.isMaxValue()) goto trivially_false; 7459 break; 7460 case ICmpInst::ICMP_ULT: 7461 if (RA.isMaxValue()) { 7462 Pred = ICmpInst::ICMP_NE; 7463 Changed = true; 7464 break; 7465 } 7466 if ((RA - 1).isMinValue()) { 7467 Pred = ICmpInst::ICMP_EQ; 7468 RHS = getConstant(RA - 1); 7469 Changed = true; 7470 break; 7471 } 7472 if (RA.isMinValue()) goto trivially_false; 7473 break; 7474 case ICmpInst::ICMP_SGT: 7475 if (RA.isMinSignedValue()) { 7476 Pred = ICmpInst::ICMP_NE; 7477 Changed = true; 7478 break; 7479 } 7480 if ((RA + 1).isMaxSignedValue()) { 7481 Pred = ICmpInst::ICMP_EQ; 7482 RHS = getConstant(RA + 1); 7483 Changed = true; 7484 break; 7485 } 7486 if (RA.isMaxSignedValue()) goto trivially_false; 7487 break; 7488 case ICmpInst::ICMP_SLT: 7489 if (RA.isMaxSignedValue()) { 7490 Pred = ICmpInst::ICMP_NE; 7491 Changed = true; 7492 break; 7493 } 7494 if ((RA - 1).isMinSignedValue()) { 7495 Pred = ICmpInst::ICMP_EQ; 7496 RHS = getConstant(RA - 1); 7497 Changed = true; 7498 break; 7499 } 7500 if (RA.isMinSignedValue()) goto trivially_false; 7501 break; 7502 } 7503 } 7504 7505 // Check for obvious equality. 7506 if (HasSameValue(LHS, RHS)) { 7507 if (ICmpInst::isTrueWhenEqual(Pred)) 7508 goto trivially_true; 7509 if (ICmpInst::isFalseWhenEqual(Pred)) 7510 goto trivially_false; 7511 } 7512 7513 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7514 // adding or subtracting 1 from one of the operands. 7515 switch (Pred) { 7516 case ICmpInst::ICMP_SLE: 7517 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7518 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7519 SCEV::FlagNSW); 7520 Pred = ICmpInst::ICMP_SLT; 7521 Changed = true; 7522 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7523 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7524 SCEV::FlagNSW); 7525 Pred = ICmpInst::ICMP_SLT; 7526 Changed = true; 7527 } 7528 break; 7529 case ICmpInst::ICMP_SGE: 7530 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7531 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7532 SCEV::FlagNSW); 7533 Pred = ICmpInst::ICMP_SGT; 7534 Changed = true; 7535 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7536 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7537 SCEV::FlagNSW); 7538 Pred = ICmpInst::ICMP_SGT; 7539 Changed = true; 7540 } 7541 break; 7542 case ICmpInst::ICMP_ULE: 7543 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7544 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7545 SCEV::FlagNUW); 7546 Pred = ICmpInst::ICMP_ULT; 7547 Changed = true; 7548 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7549 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7550 Pred = ICmpInst::ICMP_ULT; 7551 Changed = true; 7552 } 7553 break; 7554 case ICmpInst::ICMP_UGE: 7555 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7556 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7557 Pred = ICmpInst::ICMP_UGT; 7558 Changed = true; 7559 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7560 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7561 SCEV::FlagNUW); 7562 Pred = ICmpInst::ICMP_UGT; 7563 Changed = true; 7564 } 7565 break; 7566 default: 7567 break; 7568 } 7569 7570 // TODO: More simplifications are possible here. 7571 7572 // Recursively simplify until we either hit a recursion limit or nothing 7573 // changes. 7574 if (Changed) 7575 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7576 7577 return Changed; 7578 7579 trivially_true: 7580 // Return 0 == 0. 7581 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7582 Pred = ICmpInst::ICMP_EQ; 7583 return true; 7584 7585 trivially_false: 7586 // Return 0 != 0. 7587 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7588 Pred = ICmpInst::ICMP_NE; 7589 return true; 7590 } 7591 7592 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7593 return getSignedRange(S).getSignedMax().isNegative(); 7594 } 7595 7596 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7597 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7598 } 7599 7600 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7601 return !getSignedRange(S).getSignedMin().isNegative(); 7602 } 7603 7604 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7605 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7606 } 7607 7608 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7609 return isKnownNegative(S) || isKnownPositive(S); 7610 } 7611 7612 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7613 const SCEV *LHS, const SCEV *RHS) { 7614 // Canonicalize the inputs first. 7615 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7616 7617 // If LHS or RHS is an addrec, check to see if the condition is true in 7618 // every iteration of the loop. 7619 // If LHS and RHS are both addrec, both conditions must be true in 7620 // every iteration of the loop. 7621 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7622 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7623 bool LeftGuarded = false; 7624 bool RightGuarded = false; 7625 if (LAR) { 7626 const Loop *L = LAR->getLoop(); 7627 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7628 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7629 if (!RAR) return true; 7630 LeftGuarded = true; 7631 } 7632 } 7633 if (RAR) { 7634 const Loop *L = RAR->getLoop(); 7635 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7636 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7637 if (!LAR) return true; 7638 RightGuarded = true; 7639 } 7640 } 7641 if (LeftGuarded && RightGuarded) 7642 return true; 7643 7644 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7645 return true; 7646 7647 // Otherwise see what can be done with known constant ranges. 7648 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7649 } 7650 7651 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7652 ICmpInst::Predicate Pred, 7653 bool &Increasing) { 7654 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7655 7656 #ifndef NDEBUG 7657 // Verify an invariant: inverting the predicate should turn a monotonically 7658 // increasing change to a monotonically decreasing one, and vice versa. 7659 bool IncreasingSwapped; 7660 bool ResultSwapped = isMonotonicPredicateImpl( 7661 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7662 7663 assert(Result == ResultSwapped && "should be able to analyze both!"); 7664 if (ResultSwapped) 7665 assert(Increasing == !IncreasingSwapped && 7666 "monotonicity should flip as we flip the predicate"); 7667 #endif 7668 7669 return Result; 7670 } 7671 7672 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7673 ICmpInst::Predicate Pred, 7674 bool &Increasing) { 7675 7676 // A zero step value for LHS means the induction variable is essentially a 7677 // loop invariant value. We don't really depend on the predicate actually 7678 // flipping from false to true (for increasing predicates, and the other way 7679 // around for decreasing predicates), all we care about is that *if* the 7680 // predicate changes then it only changes from false to true. 7681 // 7682 // A zero step value in itself is not very useful, but there may be places 7683 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7684 // as general as possible. 7685 7686 switch (Pred) { 7687 default: 7688 return false; // Conservative answer 7689 7690 case ICmpInst::ICMP_UGT: 7691 case ICmpInst::ICMP_UGE: 7692 case ICmpInst::ICMP_ULT: 7693 case ICmpInst::ICMP_ULE: 7694 if (!LHS->hasNoUnsignedWrap()) 7695 return false; 7696 7697 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7698 return true; 7699 7700 case ICmpInst::ICMP_SGT: 7701 case ICmpInst::ICMP_SGE: 7702 case ICmpInst::ICMP_SLT: 7703 case ICmpInst::ICMP_SLE: { 7704 if (!LHS->hasNoSignedWrap()) 7705 return false; 7706 7707 const SCEV *Step = LHS->getStepRecurrence(*this); 7708 7709 if (isKnownNonNegative(Step)) { 7710 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7711 return true; 7712 } 7713 7714 if (isKnownNonPositive(Step)) { 7715 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7716 return true; 7717 } 7718 7719 return false; 7720 } 7721 7722 } 7723 7724 llvm_unreachable("switch has default clause!"); 7725 } 7726 7727 bool ScalarEvolution::isLoopInvariantPredicate( 7728 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7729 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7730 const SCEV *&InvariantRHS) { 7731 7732 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7733 if (!isLoopInvariant(RHS, L)) { 7734 if (!isLoopInvariant(LHS, L)) 7735 return false; 7736 7737 std::swap(LHS, RHS); 7738 Pred = ICmpInst::getSwappedPredicate(Pred); 7739 } 7740 7741 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7742 if (!ArLHS || ArLHS->getLoop() != L) 7743 return false; 7744 7745 bool Increasing; 7746 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7747 return false; 7748 7749 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7750 // true as the loop iterates, and the backedge is control dependent on 7751 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7752 // 7753 // * if the predicate was false in the first iteration then the predicate 7754 // is never evaluated again, since the loop exits without taking the 7755 // backedge. 7756 // * if the predicate was true in the first iteration then it will 7757 // continue to be true for all future iterations since it is 7758 // monotonically increasing. 7759 // 7760 // For both the above possibilities, we can replace the loop varying 7761 // predicate with its value on the first iteration of the loop (which is 7762 // loop invariant). 7763 // 7764 // A similar reasoning applies for a monotonically decreasing predicate, by 7765 // replacing true with false and false with true in the above two bullets. 7766 7767 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7768 7769 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7770 return false; 7771 7772 InvariantPred = Pred; 7773 InvariantLHS = ArLHS->getStart(); 7774 InvariantRHS = RHS; 7775 return true; 7776 } 7777 7778 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7779 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7780 if (HasSameValue(LHS, RHS)) 7781 return ICmpInst::isTrueWhenEqual(Pred); 7782 7783 // This code is split out from isKnownPredicate because it is called from 7784 // within isLoopEntryGuardedByCond. 7785 7786 auto CheckRanges = 7787 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7788 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7789 .contains(RangeLHS); 7790 }; 7791 7792 // The check at the top of the function catches the case where the values are 7793 // known to be equal. 7794 if (Pred == CmpInst::ICMP_EQ) 7795 return false; 7796 7797 if (Pred == CmpInst::ICMP_NE) 7798 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7799 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7800 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7801 7802 if (CmpInst::isSigned(Pred)) 7803 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7804 7805 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7806 } 7807 7808 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7809 const SCEV *LHS, 7810 const SCEV *RHS) { 7811 7812 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7813 // Return Y via OutY. 7814 auto MatchBinaryAddToConst = 7815 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7816 SCEV::NoWrapFlags ExpectedFlags) { 7817 const SCEV *NonConstOp, *ConstOp; 7818 SCEV::NoWrapFlags FlagsPresent; 7819 7820 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7821 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7822 return false; 7823 7824 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7825 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7826 }; 7827 7828 APInt C; 7829 7830 switch (Pred) { 7831 default: 7832 break; 7833 7834 case ICmpInst::ICMP_SGE: 7835 std::swap(LHS, RHS); 7836 case ICmpInst::ICMP_SLE: 7837 // X s<= (X + C)<nsw> if C >= 0 7838 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7839 return true; 7840 7841 // (X + C)<nsw> s<= X if C <= 0 7842 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7843 !C.isStrictlyPositive()) 7844 return true; 7845 break; 7846 7847 case ICmpInst::ICMP_SGT: 7848 std::swap(LHS, RHS); 7849 case ICmpInst::ICMP_SLT: 7850 // X s< (X + C)<nsw> if C > 0 7851 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7852 C.isStrictlyPositive()) 7853 return true; 7854 7855 // (X + C)<nsw> s< X if C < 0 7856 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7857 return true; 7858 break; 7859 } 7860 7861 return false; 7862 } 7863 7864 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7865 const SCEV *LHS, 7866 const SCEV *RHS) { 7867 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7868 return false; 7869 7870 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7871 // the stack can result in exponential time complexity. 7872 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7873 7874 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7875 // 7876 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7877 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7878 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7879 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7880 // use isKnownPredicate later if needed. 7881 return isKnownNonNegative(RHS) && 7882 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7883 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7884 } 7885 7886 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 7887 ICmpInst::Predicate Pred, 7888 const SCEV *LHS, const SCEV *RHS) { 7889 // No need to even try if we know the module has no guards. 7890 if (!HasGuards) 7891 return false; 7892 7893 return any_of(*BB, [&](Instruction &I) { 7894 using namespace llvm::PatternMatch; 7895 7896 Value *Condition; 7897 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 7898 m_Value(Condition))) && 7899 isImpliedCond(Pred, LHS, RHS, Condition, false); 7900 }); 7901 } 7902 7903 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7904 /// protected by a conditional between LHS and RHS. This is used to 7905 /// to eliminate casts. 7906 bool 7907 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7908 ICmpInst::Predicate Pred, 7909 const SCEV *LHS, const SCEV *RHS) { 7910 // Interpret a null as meaning no loop, where there is obviously no guard 7911 // (interprocedural conditions notwithstanding). 7912 if (!L) return true; 7913 7914 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7915 return true; 7916 7917 BasicBlock *Latch = L->getLoopLatch(); 7918 if (!Latch) 7919 return false; 7920 7921 BranchInst *LoopContinuePredicate = 7922 dyn_cast<BranchInst>(Latch->getTerminator()); 7923 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7924 isImpliedCond(Pred, LHS, RHS, 7925 LoopContinuePredicate->getCondition(), 7926 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7927 return true; 7928 7929 // We don't want more than one activation of the following loops on the stack 7930 // -- that can lead to O(n!) time complexity. 7931 if (WalkingBEDominatingConds) 7932 return false; 7933 7934 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7935 7936 // See if we can exploit a trip count to prove the predicate. 7937 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7938 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7939 if (LatchBECount != getCouldNotCompute()) { 7940 // We know that Latch branches back to the loop header exactly 7941 // LatchBECount times. This means the backdege condition at Latch is 7942 // equivalent to "{0,+,1} u< LatchBECount". 7943 Type *Ty = LatchBECount->getType(); 7944 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7945 const SCEV *LoopCounter = 7946 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7947 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7948 LatchBECount)) 7949 return true; 7950 } 7951 7952 // Check conditions due to any @llvm.assume intrinsics. 7953 for (auto &AssumeVH : AC.assumptions()) { 7954 if (!AssumeVH) 7955 continue; 7956 auto *CI = cast<CallInst>(AssumeVH); 7957 if (!DT.dominates(CI, Latch->getTerminator())) 7958 continue; 7959 7960 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7961 return true; 7962 } 7963 7964 // If the loop is not reachable from the entry block, we risk running into an 7965 // infinite loop as we walk up into the dom tree. These loops do not matter 7966 // anyway, so we just return a conservative answer when we see them. 7967 if (!DT.isReachableFromEntry(L->getHeader())) 7968 return false; 7969 7970 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 7971 return true; 7972 7973 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7974 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7975 7976 assert(DTN && "should reach the loop header before reaching the root!"); 7977 7978 BasicBlock *BB = DTN->getBlock(); 7979 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 7980 return true; 7981 7982 BasicBlock *PBB = BB->getSinglePredecessor(); 7983 if (!PBB) 7984 continue; 7985 7986 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7987 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7988 continue; 7989 7990 Value *Condition = ContinuePredicate->getCondition(); 7991 7992 // If we have an edge `E` within the loop body that dominates the only 7993 // latch, the condition guarding `E` also guards the backedge. This 7994 // reasoning works only for loops with a single latch. 7995 7996 BasicBlockEdge DominatingEdge(PBB, BB); 7997 if (DominatingEdge.isSingleEdge()) { 7998 // We're constructively (and conservatively) enumerating edges within the 7999 // loop body that dominate the latch. The dominator tree better agree 8000 // with us on this: 8001 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8002 8003 if (isImpliedCond(Pred, LHS, RHS, Condition, 8004 BB != ContinuePredicate->getSuccessor(0))) 8005 return true; 8006 } 8007 } 8008 8009 return false; 8010 } 8011 8012 bool 8013 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8014 ICmpInst::Predicate Pred, 8015 const SCEV *LHS, const SCEV *RHS) { 8016 // Interpret a null as meaning no loop, where there is obviously no guard 8017 // (interprocedural conditions notwithstanding). 8018 if (!L) return false; 8019 8020 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8021 return true; 8022 8023 // Starting at the loop predecessor, climb up the predecessor chain, as long 8024 // as there are predecessors that can be found that have unique successors 8025 // leading to the original header. 8026 for (std::pair<BasicBlock *, BasicBlock *> 8027 Pair(L->getLoopPredecessor(), L->getHeader()); 8028 Pair.first; 8029 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8030 8031 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8032 return true; 8033 8034 BranchInst *LoopEntryPredicate = 8035 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8036 if (!LoopEntryPredicate || 8037 LoopEntryPredicate->isUnconditional()) 8038 continue; 8039 8040 if (isImpliedCond(Pred, LHS, RHS, 8041 LoopEntryPredicate->getCondition(), 8042 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8043 return true; 8044 } 8045 8046 // Check conditions due to any @llvm.assume intrinsics. 8047 for (auto &AssumeVH : AC.assumptions()) { 8048 if (!AssumeVH) 8049 continue; 8050 auto *CI = cast<CallInst>(AssumeVH); 8051 if (!DT.dominates(CI, L->getHeader())) 8052 continue; 8053 8054 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8055 return true; 8056 } 8057 8058 return false; 8059 } 8060 8061 namespace { 8062 /// RAII wrapper to prevent recursive application of isImpliedCond. 8063 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 8064 /// currently evaluating isImpliedCond. 8065 struct MarkPendingLoopPredicate { 8066 Value *Cond; 8067 DenseSet<Value*> &LoopPreds; 8068 bool Pending; 8069 8070 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 8071 : Cond(C), LoopPreds(LP) { 8072 Pending = !LoopPreds.insert(Cond).second; 8073 } 8074 ~MarkPendingLoopPredicate() { 8075 if (!Pending) 8076 LoopPreds.erase(Cond); 8077 } 8078 }; 8079 } // end anonymous namespace 8080 8081 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8082 const SCEV *LHS, const SCEV *RHS, 8083 Value *FoundCondValue, 8084 bool Inverse) { 8085 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 8086 if (Mark.Pending) 8087 return false; 8088 8089 // Recursively handle And and Or conditions. 8090 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8091 if (BO->getOpcode() == Instruction::And) { 8092 if (!Inverse) 8093 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8094 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8095 } else if (BO->getOpcode() == Instruction::Or) { 8096 if (Inverse) 8097 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8098 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8099 } 8100 } 8101 8102 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8103 if (!ICI) return false; 8104 8105 // Now that we found a conditional branch that dominates the loop or controls 8106 // the loop latch. Check to see if it is the comparison we are looking for. 8107 ICmpInst::Predicate FoundPred; 8108 if (Inverse) 8109 FoundPred = ICI->getInversePredicate(); 8110 else 8111 FoundPred = ICI->getPredicate(); 8112 8113 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8114 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8115 8116 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8117 } 8118 8119 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8120 const SCEV *RHS, 8121 ICmpInst::Predicate FoundPred, 8122 const SCEV *FoundLHS, 8123 const SCEV *FoundRHS) { 8124 // Balance the types. 8125 if (getTypeSizeInBits(LHS->getType()) < 8126 getTypeSizeInBits(FoundLHS->getType())) { 8127 if (CmpInst::isSigned(Pred)) { 8128 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8129 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8130 } else { 8131 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8132 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8133 } 8134 } else if (getTypeSizeInBits(LHS->getType()) > 8135 getTypeSizeInBits(FoundLHS->getType())) { 8136 if (CmpInst::isSigned(FoundPred)) { 8137 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8138 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8139 } else { 8140 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8141 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8142 } 8143 } 8144 8145 // Canonicalize the query to match the way instcombine will have 8146 // canonicalized the comparison. 8147 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8148 if (LHS == RHS) 8149 return CmpInst::isTrueWhenEqual(Pred); 8150 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8151 if (FoundLHS == FoundRHS) 8152 return CmpInst::isFalseWhenEqual(FoundPred); 8153 8154 // Check to see if we can make the LHS or RHS match. 8155 if (LHS == FoundRHS || RHS == FoundLHS) { 8156 if (isa<SCEVConstant>(RHS)) { 8157 std::swap(FoundLHS, FoundRHS); 8158 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8159 } else { 8160 std::swap(LHS, RHS); 8161 Pred = ICmpInst::getSwappedPredicate(Pred); 8162 } 8163 } 8164 8165 // Check whether the found predicate is the same as the desired predicate. 8166 if (FoundPred == Pred) 8167 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8168 8169 // Check whether swapping the found predicate makes it the same as the 8170 // desired predicate. 8171 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8172 if (isa<SCEVConstant>(RHS)) 8173 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8174 else 8175 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8176 RHS, LHS, FoundLHS, FoundRHS); 8177 } 8178 8179 // Unsigned comparison is the same as signed comparison when both the operands 8180 // are non-negative. 8181 if (CmpInst::isUnsigned(FoundPred) && 8182 CmpInst::getSignedPredicate(FoundPred) == Pred && 8183 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8184 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8185 8186 // Check if we can make progress by sharpening ranges. 8187 if (FoundPred == ICmpInst::ICMP_NE && 8188 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8189 8190 const SCEVConstant *C = nullptr; 8191 const SCEV *V = nullptr; 8192 8193 if (isa<SCEVConstant>(FoundLHS)) { 8194 C = cast<SCEVConstant>(FoundLHS); 8195 V = FoundRHS; 8196 } else { 8197 C = cast<SCEVConstant>(FoundRHS); 8198 V = FoundLHS; 8199 } 8200 8201 // The guarding predicate tells us that C != V. If the known range 8202 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8203 // range we consider has to correspond to same signedness as the 8204 // predicate we're interested in folding. 8205 8206 APInt Min = ICmpInst::isSigned(Pred) ? 8207 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8208 8209 if (Min == C->getAPInt()) { 8210 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8211 // This is true even if (Min + 1) wraps around -- in case of 8212 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8213 8214 APInt SharperMin = Min + 1; 8215 8216 switch (Pred) { 8217 case ICmpInst::ICMP_SGE: 8218 case ICmpInst::ICMP_UGE: 8219 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8220 // RHS, we're done. 8221 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8222 getConstant(SharperMin))) 8223 return true; 8224 8225 case ICmpInst::ICMP_SGT: 8226 case ICmpInst::ICMP_UGT: 8227 // We know from the range information that (V `Pred` Min || 8228 // V == Min). We know from the guarding condition that !(V 8229 // == Min). This gives us 8230 // 8231 // V `Pred` Min || V == Min && !(V == Min) 8232 // => V `Pred` Min 8233 // 8234 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8235 8236 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8237 return true; 8238 8239 default: 8240 // No change 8241 break; 8242 } 8243 } 8244 } 8245 8246 // Check whether the actual condition is beyond sufficient. 8247 if (FoundPred == ICmpInst::ICMP_EQ) 8248 if (ICmpInst::isTrueWhenEqual(Pred)) 8249 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8250 return true; 8251 if (Pred == ICmpInst::ICMP_NE) 8252 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8253 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8254 return true; 8255 8256 // Otherwise assume the worst. 8257 return false; 8258 } 8259 8260 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8261 const SCEV *&L, const SCEV *&R, 8262 SCEV::NoWrapFlags &Flags) { 8263 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8264 if (!AE || AE->getNumOperands() != 2) 8265 return false; 8266 8267 L = AE->getOperand(0); 8268 R = AE->getOperand(1); 8269 Flags = AE->getNoWrapFlags(); 8270 return true; 8271 } 8272 8273 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8274 const SCEV *Less) { 8275 // We avoid subtracting expressions here because this function is usually 8276 // fairly deep in the call stack (i.e. is called many times). 8277 8278 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8279 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8280 const auto *MAR = cast<SCEVAddRecExpr>(More); 8281 8282 if (LAR->getLoop() != MAR->getLoop()) 8283 return None; 8284 8285 // We look at affine expressions only; not for correctness but to keep 8286 // getStepRecurrence cheap. 8287 if (!LAR->isAffine() || !MAR->isAffine()) 8288 return None; 8289 8290 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8291 return None; 8292 8293 Less = LAR->getStart(); 8294 More = MAR->getStart(); 8295 8296 // fall through 8297 } 8298 8299 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8300 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8301 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8302 return M - L; 8303 } 8304 8305 const SCEV *L, *R; 8306 SCEV::NoWrapFlags Flags; 8307 if (splitBinaryAdd(Less, L, R, Flags)) 8308 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8309 if (R == More) 8310 return -(LC->getAPInt()); 8311 8312 if (splitBinaryAdd(More, L, R, Flags)) 8313 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8314 if (R == Less) 8315 return LC->getAPInt(); 8316 8317 return None; 8318 } 8319 8320 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8321 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8322 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8323 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8324 return false; 8325 8326 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8327 if (!AddRecLHS) 8328 return false; 8329 8330 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8331 if (!AddRecFoundLHS) 8332 return false; 8333 8334 // We'd like to let SCEV reason about control dependencies, so we constrain 8335 // both the inequalities to be about add recurrences on the same loop. This 8336 // way we can use isLoopEntryGuardedByCond later. 8337 8338 const Loop *L = AddRecFoundLHS->getLoop(); 8339 if (L != AddRecLHS->getLoop()) 8340 return false; 8341 8342 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8343 // 8344 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8345 // ... (2) 8346 // 8347 // Informal proof for (2), assuming (1) [*]: 8348 // 8349 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8350 // 8351 // Then 8352 // 8353 // FoundLHS s< FoundRHS s< INT_MIN - C 8354 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8355 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8356 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8357 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8358 // <=> FoundLHS + C s< FoundRHS + C 8359 // 8360 // [*]: (1) can be proved by ruling out overflow. 8361 // 8362 // [**]: This can be proved by analyzing all the four possibilities: 8363 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8364 // (A s>= 0, B s>= 0). 8365 // 8366 // Note: 8367 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8368 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8369 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8370 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8371 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8372 // C)". 8373 8374 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8375 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8376 if (!LDiff || !RDiff || *LDiff != *RDiff) 8377 return false; 8378 8379 if (LDiff->isMinValue()) 8380 return true; 8381 8382 APInt FoundRHSLimit; 8383 8384 if (Pred == CmpInst::ICMP_ULT) { 8385 FoundRHSLimit = -(*RDiff); 8386 } else { 8387 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8388 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8389 } 8390 8391 // Try to prove (1) or (2), as needed. 8392 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8393 getConstant(FoundRHSLimit)); 8394 } 8395 8396 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8397 const SCEV *LHS, const SCEV *RHS, 8398 const SCEV *FoundLHS, 8399 const SCEV *FoundRHS) { 8400 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8401 return true; 8402 8403 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8404 return true; 8405 8406 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8407 FoundLHS, FoundRHS) || 8408 // ~x < ~y --> x > y 8409 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8410 getNotSCEV(FoundRHS), 8411 getNotSCEV(FoundLHS)); 8412 } 8413 8414 8415 /// If Expr computes ~A, return A else return nullptr 8416 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8417 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8418 if (!Add || Add->getNumOperands() != 2 || 8419 !Add->getOperand(0)->isAllOnesValue()) 8420 return nullptr; 8421 8422 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8423 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8424 !AddRHS->getOperand(0)->isAllOnesValue()) 8425 return nullptr; 8426 8427 return AddRHS->getOperand(1); 8428 } 8429 8430 8431 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8432 template<typename MaxExprType> 8433 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8434 const SCEV *Candidate) { 8435 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8436 if (!MaxExpr) return false; 8437 8438 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8439 } 8440 8441 8442 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8443 template<typename MaxExprType> 8444 static bool IsMinConsistingOf(ScalarEvolution &SE, 8445 const SCEV *MaybeMinExpr, 8446 const SCEV *Candidate) { 8447 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8448 if (!MaybeMaxExpr) 8449 return false; 8450 8451 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8452 } 8453 8454 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8455 ICmpInst::Predicate Pred, 8456 const SCEV *LHS, const SCEV *RHS) { 8457 8458 // If both sides are affine addrecs for the same loop, with equal 8459 // steps, and we know the recurrences don't wrap, then we only 8460 // need to check the predicate on the starting values. 8461 8462 if (!ICmpInst::isRelational(Pred)) 8463 return false; 8464 8465 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8466 if (!LAR) 8467 return false; 8468 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8469 if (!RAR) 8470 return false; 8471 if (LAR->getLoop() != RAR->getLoop()) 8472 return false; 8473 if (!LAR->isAffine() || !RAR->isAffine()) 8474 return false; 8475 8476 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8477 return false; 8478 8479 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8480 SCEV::FlagNSW : SCEV::FlagNUW; 8481 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8482 return false; 8483 8484 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8485 } 8486 8487 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8488 /// expression? 8489 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8490 ICmpInst::Predicate Pred, 8491 const SCEV *LHS, const SCEV *RHS) { 8492 switch (Pred) { 8493 default: 8494 return false; 8495 8496 case ICmpInst::ICMP_SGE: 8497 std::swap(LHS, RHS); 8498 LLVM_FALLTHROUGH; 8499 case ICmpInst::ICMP_SLE: 8500 return 8501 // min(A, ...) <= A 8502 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8503 // A <= max(A, ...) 8504 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8505 8506 case ICmpInst::ICMP_UGE: 8507 std::swap(LHS, RHS); 8508 LLVM_FALLTHROUGH; 8509 case ICmpInst::ICMP_ULE: 8510 return 8511 // min(A, ...) <= A 8512 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8513 // A <= max(A, ...) 8514 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8515 } 8516 8517 llvm_unreachable("covered switch fell through?!"); 8518 } 8519 8520 bool 8521 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8522 const SCEV *LHS, const SCEV *RHS, 8523 const SCEV *FoundLHS, 8524 const SCEV *FoundRHS) { 8525 auto IsKnownPredicateFull = 8526 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8527 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8528 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8529 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8530 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8531 }; 8532 8533 switch (Pred) { 8534 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8535 case ICmpInst::ICMP_EQ: 8536 case ICmpInst::ICMP_NE: 8537 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8538 return true; 8539 break; 8540 case ICmpInst::ICMP_SLT: 8541 case ICmpInst::ICMP_SLE: 8542 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8543 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8544 return true; 8545 break; 8546 case ICmpInst::ICMP_SGT: 8547 case ICmpInst::ICMP_SGE: 8548 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8549 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8550 return true; 8551 break; 8552 case ICmpInst::ICMP_ULT: 8553 case ICmpInst::ICMP_ULE: 8554 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8555 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8556 return true; 8557 break; 8558 case ICmpInst::ICMP_UGT: 8559 case ICmpInst::ICMP_UGE: 8560 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8561 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8562 return true; 8563 break; 8564 } 8565 8566 return false; 8567 } 8568 8569 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8570 const SCEV *LHS, 8571 const SCEV *RHS, 8572 const SCEV *FoundLHS, 8573 const SCEV *FoundRHS) { 8574 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8575 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8576 // reduce the compile time impact of this optimization. 8577 return false; 8578 8579 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 8580 if (!Addend) 8581 return false; 8582 8583 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8584 8585 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8586 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8587 ConstantRange FoundLHSRange = 8588 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8589 8590 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 8591 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 8592 8593 // We can also compute the range of values for `LHS` that satisfy the 8594 // consequent, "`LHS` `Pred` `RHS`": 8595 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8596 ConstantRange SatisfyingLHSRange = 8597 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8598 8599 // The antecedent implies the consequent if every value of `LHS` that 8600 // satisfies the antecedent also satisfies the consequent. 8601 return SatisfyingLHSRange.contains(LHSRange); 8602 } 8603 8604 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8605 bool IsSigned, bool NoWrap) { 8606 assert(isKnownPositive(Stride) && "Positive stride expected!"); 8607 8608 if (NoWrap) return false; 8609 8610 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8611 const SCEV *One = getOne(Stride->getType()); 8612 8613 if (IsSigned) { 8614 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8615 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8616 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8617 .getSignedMax(); 8618 8619 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8620 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8621 } 8622 8623 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8624 APInt MaxValue = APInt::getMaxValue(BitWidth); 8625 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8626 .getUnsignedMax(); 8627 8628 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8629 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8630 } 8631 8632 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8633 bool IsSigned, bool NoWrap) { 8634 if (NoWrap) return false; 8635 8636 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8637 const SCEV *One = getOne(Stride->getType()); 8638 8639 if (IsSigned) { 8640 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8641 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8642 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8643 .getSignedMax(); 8644 8645 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8646 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8647 } 8648 8649 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8650 APInt MinValue = APInt::getMinValue(BitWidth); 8651 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8652 .getUnsignedMax(); 8653 8654 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8655 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8656 } 8657 8658 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8659 bool Equality) { 8660 const SCEV *One = getOne(Step->getType()); 8661 Delta = Equality ? getAddExpr(Delta, Step) 8662 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8663 return getUDivExpr(Delta, Step); 8664 } 8665 8666 ScalarEvolution::ExitLimit 8667 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 8668 const Loop *L, bool IsSigned, 8669 bool ControlsExit, bool AllowPredicates) { 8670 SCEVUnionPredicate P; 8671 // We handle only IV < Invariant 8672 if (!isLoopInvariant(RHS, L)) 8673 return getCouldNotCompute(); 8674 8675 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8676 bool PredicatedIV = false; 8677 8678 if (!IV && AllowPredicates) { 8679 // Try to make this an AddRec using runtime tests, in the first X 8680 // iterations of this loop, where X is the SCEV expression found by the 8681 // algorithm below. 8682 IV = convertSCEVToAddRecWithPredicates(LHS, L, P); 8683 PredicatedIV = true; 8684 } 8685 8686 // Avoid weird loops 8687 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8688 return getCouldNotCompute(); 8689 8690 bool NoWrap = ControlsExit && 8691 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8692 8693 const SCEV *Stride = IV->getStepRecurrence(*this); 8694 8695 bool PositiveStride = isKnownPositive(Stride); 8696 8697 // Avoid negative or zero stride values. 8698 if (!PositiveStride) { 8699 // We can compute the correct backedge taken count for loops with unknown 8700 // strides if we can prove that the loop is not an infinite loop with side 8701 // effects. Here's the loop structure we are trying to handle - 8702 // 8703 // i = start 8704 // do { 8705 // A[i] = i; 8706 // i += s; 8707 // } while (i < end); 8708 // 8709 // The backedge taken count for such loops is evaluated as - 8710 // (max(end, start + stride) - start - 1) /u stride 8711 // 8712 // The additional preconditions that we need to check to prove correctness 8713 // of the above formula is as follows - 8714 // 8715 // a) IV is either nuw or nsw depending upon signedness (indicated by the 8716 // NoWrap flag). 8717 // b) loop is single exit with no side effects. 8718 // 8719 // 8720 // Precondition a) implies that if the stride is negative, this is a single 8721 // trip loop. The backedge taken count formula reduces to zero in this case. 8722 // 8723 // Precondition b) implies that the unknown stride cannot be zero otherwise 8724 // we have UB. 8725 // 8726 // The positive stride case is the same as isKnownPositive(Stride) returning 8727 // true (original behavior of the function). 8728 // 8729 // We want to make sure that the stride is truly unknown as there are edge 8730 // cases where ScalarEvolution propagates no wrap flags to the 8731 // post-increment/decrement IV even though the increment/decrement operation 8732 // itself is wrapping. The computed backedge taken count may be wrong in 8733 // such cases. This is prevented by checking that the stride is not known to 8734 // be either positive or non-positive. For example, no wrap flags are 8735 // propagated to the post-increment IV of this loop with a trip count of 2 - 8736 // 8737 // unsigned char i; 8738 // for(i=127; i<128; i+=129) 8739 // A[i] = i; 8740 // 8741 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 8742 !loopHasNoSideEffects(L)) 8743 return getCouldNotCompute(); 8744 8745 } else if (!Stride->isOne() && 8746 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8747 // Avoid proven overflow cases: this will ensure that the backedge taken 8748 // count will not generate any unsigned overflow. Relaxed no-overflow 8749 // conditions exploit NoWrapFlags, allowing to optimize in presence of 8750 // undefined behaviors like the case of C language. 8751 return getCouldNotCompute(); 8752 8753 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8754 : ICmpInst::ICMP_ULT; 8755 const SCEV *Start = IV->getStart(); 8756 const SCEV *End = RHS; 8757 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 8758 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 8759 8760 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8761 8762 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8763 : getUnsignedRange(Start).getUnsignedMin(); 8764 8765 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8766 8767 APInt StrideForMaxBECount; 8768 8769 if (PositiveStride) 8770 StrideForMaxBECount = IsSigned ? getSignedRange(Stride).getSignedMin() 8771 : getUnsignedRange(Stride).getUnsignedMin(); 8772 else 8773 // Using a stride of 1 is safe when computing max backedge taken count for 8774 // a loop with unknown stride. 8775 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 8776 8777 APInt Limit = 8778 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 8779 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 8780 8781 // Although End can be a MAX expression we estimate MaxEnd considering only 8782 // the case End = RHS. This is safe because in the other case (End - Start) 8783 // is zero, leading to a zero maximum backedge taken count. 8784 APInt MaxEnd = 8785 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8786 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8787 8788 const SCEV *MaxBECount; 8789 if (isa<SCEVConstant>(BECount)) 8790 MaxBECount = BECount; 8791 else 8792 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8793 getConstant(StrideForMaxBECount), false); 8794 8795 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8796 MaxBECount = BECount; 8797 8798 return ExitLimit(BECount, MaxBECount, P); 8799 } 8800 8801 ScalarEvolution::ExitLimit 8802 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8803 const Loop *L, bool IsSigned, 8804 bool ControlsExit, bool AllowPredicates) { 8805 SCEVUnionPredicate P; 8806 // We handle only IV > Invariant 8807 if (!isLoopInvariant(RHS, L)) 8808 return getCouldNotCompute(); 8809 8810 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8811 if (!IV && AllowPredicates) 8812 // Try to make this an AddRec using runtime tests, in the first X 8813 // iterations of this loop, where X is the SCEV expression found by the 8814 // algorithm below. 8815 IV = convertSCEVToAddRecWithPredicates(LHS, L, P); 8816 8817 // Avoid weird loops 8818 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8819 return getCouldNotCompute(); 8820 8821 bool NoWrap = ControlsExit && 8822 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8823 8824 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8825 8826 // Avoid negative or zero stride values 8827 if (!isKnownPositive(Stride)) 8828 return getCouldNotCompute(); 8829 8830 // Avoid proven overflow cases: this will ensure that the backedge taken count 8831 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8832 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8833 // behaviors like the case of C language. 8834 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8835 return getCouldNotCompute(); 8836 8837 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8838 : ICmpInst::ICMP_UGT; 8839 8840 const SCEV *Start = IV->getStart(); 8841 const SCEV *End = RHS; 8842 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 8843 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 8844 8845 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8846 8847 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8848 : getUnsignedRange(Start).getUnsignedMax(); 8849 8850 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8851 : getUnsignedRange(Stride).getUnsignedMin(); 8852 8853 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8854 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8855 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8856 8857 // Although End can be a MIN expression we estimate MinEnd considering only 8858 // the case End = RHS. This is safe because in the other case (Start - End) 8859 // is zero, leading to a zero maximum backedge taken count. 8860 APInt MinEnd = 8861 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8862 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8863 8864 8865 const SCEV *MaxBECount = getCouldNotCompute(); 8866 if (isa<SCEVConstant>(BECount)) 8867 MaxBECount = BECount; 8868 else 8869 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8870 getConstant(MinStride), false); 8871 8872 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8873 MaxBECount = BECount; 8874 8875 return ExitLimit(BECount, MaxBECount, P); 8876 } 8877 8878 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 8879 ScalarEvolution &SE) const { 8880 if (Range.isFullSet()) // Infinite loop. 8881 return SE.getCouldNotCompute(); 8882 8883 // If the start is a non-zero constant, shift the range to simplify things. 8884 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8885 if (!SC->getValue()->isZero()) { 8886 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8887 Operands[0] = SE.getZero(SC->getType()); 8888 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8889 getNoWrapFlags(FlagNW)); 8890 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8891 return ShiftedAddRec->getNumIterationsInRange( 8892 Range.subtract(SC->getAPInt()), SE); 8893 // This is strange and shouldn't happen. 8894 return SE.getCouldNotCompute(); 8895 } 8896 8897 // The only time we can solve this is when we have all constant indices. 8898 // Otherwise, we cannot determine the overflow conditions. 8899 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8900 return SE.getCouldNotCompute(); 8901 8902 // Okay at this point we know that all elements of the chrec are constants and 8903 // that the start element is zero. 8904 8905 // First check to see if the range contains zero. If not, the first 8906 // iteration exits. 8907 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8908 if (!Range.contains(APInt(BitWidth, 0))) 8909 return SE.getZero(getType()); 8910 8911 if (isAffine()) { 8912 // If this is an affine expression then we have this situation: 8913 // Solve {0,+,A} in Range === Ax in Range 8914 8915 // We know that zero is in the range. If A is positive then we know that 8916 // the upper value of the range must be the first possible exit value. 8917 // If A is negative then the lower of the range is the last possible loop 8918 // value. Also note that we already checked for a full range. 8919 APInt One(BitWidth,1); 8920 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8921 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8922 8923 // The exit value should be (End+A)/A. 8924 APInt ExitVal = (End + A).udiv(A); 8925 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8926 8927 // Evaluate at the exit value. If we really did fall out of the valid 8928 // range, then we computed our trip count, otherwise wrap around or other 8929 // things must have happened. 8930 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8931 if (Range.contains(Val->getValue())) 8932 return SE.getCouldNotCompute(); // Something strange happened 8933 8934 // Ensure that the previous value is in the range. This is a sanity check. 8935 assert(Range.contains( 8936 EvaluateConstantChrecAtConstant(this, 8937 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8938 "Linear scev computation is off in a bad way!"); 8939 return SE.getConstant(ExitValue); 8940 } else if (isQuadratic()) { 8941 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8942 // quadratic equation to solve it. To do this, we must frame our problem in 8943 // terms of figuring out when zero is crossed, instead of when 8944 // Range.getUpper() is crossed. 8945 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8946 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8947 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8948 // getNoWrapFlags(FlagNW) 8949 FlagAnyWrap); 8950 8951 // Next, solve the constructed addrec 8952 if (auto Roots = 8953 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 8954 const SCEVConstant *R1 = Roots->first; 8955 const SCEVConstant *R2 = Roots->second; 8956 // Pick the smallest positive root value. 8957 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8958 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8959 if (!CB->getZExtValue()) 8960 std::swap(R1, R2); // R1 is the minimum root now. 8961 8962 // Make sure the root is not off by one. The returned iteration should 8963 // not be in the range, but the previous one should be. When solving 8964 // for "X*X < 5", for example, we should not return a root of 2. 8965 ConstantInt *R1Val = 8966 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 8967 if (Range.contains(R1Val->getValue())) { 8968 // The next iteration must be out of the range... 8969 ConstantInt *NextVal = 8970 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8971 8972 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8973 if (!Range.contains(R1Val->getValue())) 8974 return SE.getConstant(NextVal); 8975 return SE.getCouldNotCompute(); // Something strange happened 8976 } 8977 8978 // If R1 was not in the range, then it is a good return value. Make 8979 // sure that R1-1 WAS in the range though, just in case. 8980 ConstantInt *NextVal = 8981 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8982 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8983 if (Range.contains(R1Val->getValue())) 8984 return R1; 8985 return SE.getCouldNotCompute(); // Something strange happened 8986 } 8987 } 8988 } 8989 8990 return SE.getCouldNotCompute(); 8991 } 8992 8993 namespace { 8994 struct FindUndefs { 8995 bool Found; 8996 FindUndefs() : Found(false) {} 8997 8998 bool follow(const SCEV *S) { 8999 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 9000 if (isa<UndefValue>(C->getValue())) 9001 Found = true; 9002 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 9003 if (isa<UndefValue>(C->getValue())) 9004 Found = true; 9005 } 9006 9007 // Keep looking if we haven't found it yet. 9008 return !Found; 9009 } 9010 bool isDone() const { 9011 // Stop recursion if we have found an undef. 9012 return Found; 9013 } 9014 }; 9015 } 9016 9017 // Return true when S contains at least an undef value. 9018 static inline bool 9019 containsUndefs(const SCEV *S) { 9020 FindUndefs F; 9021 SCEVTraversal<FindUndefs> ST(F); 9022 ST.visitAll(S); 9023 9024 return F.Found; 9025 } 9026 9027 namespace { 9028 // Collect all steps of SCEV expressions. 9029 struct SCEVCollectStrides { 9030 ScalarEvolution &SE; 9031 SmallVectorImpl<const SCEV *> &Strides; 9032 9033 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9034 : SE(SE), Strides(S) {} 9035 9036 bool follow(const SCEV *S) { 9037 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9038 Strides.push_back(AR->getStepRecurrence(SE)); 9039 return true; 9040 } 9041 bool isDone() const { return false; } 9042 }; 9043 9044 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9045 struct SCEVCollectTerms { 9046 SmallVectorImpl<const SCEV *> &Terms; 9047 9048 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9049 : Terms(T) {} 9050 9051 bool follow(const SCEV *S) { 9052 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 9053 if (!containsUndefs(S)) 9054 Terms.push_back(S); 9055 9056 // Stop recursion: once we collected a term, do not walk its operands. 9057 return false; 9058 } 9059 9060 // Keep looking. 9061 return true; 9062 } 9063 bool isDone() const { return false; } 9064 }; 9065 9066 // Check if a SCEV contains an AddRecExpr. 9067 struct SCEVHasAddRec { 9068 bool &ContainsAddRec; 9069 9070 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9071 ContainsAddRec = false; 9072 } 9073 9074 bool follow(const SCEV *S) { 9075 if (isa<SCEVAddRecExpr>(S)) { 9076 ContainsAddRec = true; 9077 9078 // Stop recursion: once we collected a term, do not walk its operands. 9079 return false; 9080 } 9081 9082 // Keep looking. 9083 return true; 9084 } 9085 bool isDone() const { return false; } 9086 }; 9087 9088 // Find factors that are multiplied with an expression that (possibly as a 9089 // subexpression) contains an AddRecExpr. In the expression: 9090 // 9091 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9092 // 9093 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9094 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9095 // parameters as they form a product with an induction variable. 9096 // 9097 // This collector expects all array size parameters to be in the same MulExpr. 9098 // It might be necessary to later add support for collecting parameters that are 9099 // spread over different nested MulExpr. 9100 struct SCEVCollectAddRecMultiplies { 9101 SmallVectorImpl<const SCEV *> &Terms; 9102 ScalarEvolution &SE; 9103 9104 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9105 : Terms(T), SE(SE) {} 9106 9107 bool follow(const SCEV *S) { 9108 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9109 bool HasAddRec = false; 9110 SmallVector<const SCEV *, 0> Operands; 9111 for (auto Op : Mul->operands()) { 9112 if (isa<SCEVUnknown>(Op)) { 9113 Operands.push_back(Op); 9114 } else { 9115 bool ContainsAddRec; 9116 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9117 visitAll(Op, ContiansAddRec); 9118 HasAddRec |= ContainsAddRec; 9119 } 9120 } 9121 if (Operands.size() == 0) 9122 return true; 9123 9124 if (!HasAddRec) 9125 return false; 9126 9127 Terms.push_back(SE.getMulExpr(Operands)); 9128 // Stop recursion: once we collected a term, do not walk its operands. 9129 return false; 9130 } 9131 9132 // Keep looking. 9133 return true; 9134 } 9135 bool isDone() const { return false; } 9136 }; 9137 } 9138 9139 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9140 /// two places: 9141 /// 1) The strides of AddRec expressions. 9142 /// 2) Unknowns that are multiplied with AddRec expressions. 9143 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9144 SmallVectorImpl<const SCEV *> &Terms) { 9145 SmallVector<const SCEV *, 4> Strides; 9146 SCEVCollectStrides StrideCollector(*this, Strides); 9147 visitAll(Expr, StrideCollector); 9148 9149 DEBUG({ 9150 dbgs() << "Strides:\n"; 9151 for (const SCEV *S : Strides) 9152 dbgs() << *S << "\n"; 9153 }); 9154 9155 for (const SCEV *S : Strides) { 9156 SCEVCollectTerms TermCollector(Terms); 9157 visitAll(S, TermCollector); 9158 } 9159 9160 DEBUG({ 9161 dbgs() << "Terms:\n"; 9162 for (const SCEV *T : Terms) 9163 dbgs() << *T << "\n"; 9164 }); 9165 9166 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9167 visitAll(Expr, MulCollector); 9168 } 9169 9170 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9171 SmallVectorImpl<const SCEV *> &Terms, 9172 SmallVectorImpl<const SCEV *> &Sizes) { 9173 int Last = Terms.size() - 1; 9174 const SCEV *Step = Terms[Last]; 9175 9176 // End of recursion. 9177 if (Last == 0) { 9178 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9179 SmallVector<const SCEV *, 2> Qs; 9180 for (const SCEV *Op : M->operands()) 9181 if (!isa<SCEVConstant>(Op)) 9182 Qs.push_back(Op); 9183 9184 Step = SE.getMulExpr(Qs); 9185 } 9186 9187 Sizes.push_back(Step); 9188 return true; 9189 } 9190 9191 for (const SCEV *&Term : Terms) { 9192 // Normalize the terms before the next call to findArrayDimensionsRec. 9193 const SCEV *Q, *R; 9194 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9195 9196 // Bail out when GCD does not evenly divide one of the terms. 9197 if (!R->isZero()) 9198 return false; 9199 9200 Term = Q; 9201 } 9202 9203 // Remove all SCEVConstants. 9204 Terms.erase( 9205 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9206 Terms.end()); 9207 9208 if (Terms.size() > 0) 9209 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9210 return false; 9211 9212 Sizes.push_back(Step); 9213 return true; 9214 } 9215 9216 // Returns true when S contains at least a SCEVUnknown parameter. 9217 static inline bool 9218 containsParameters(const SCEV *S) { 9219 struct FindParameter { 9220 bool FoundParameter; 9221 FindParameter() : FoundParameter(false) {} 9222 9223 bool follow(const SCEV *S) { 9224 if (isa<SCEVUnknown>(S)) { 9225 FoundParameter = true; 9226 // Stop recursion: we found a parameter. 9227 return false; 9228 } 9229 // Keep looking. 9230 return true; 9231 } 9232 bool isDone() const { 9233 // Stop recursion if we have found a parameter. 9234 return FoundParameter; 9235 } 9236 }; 9237 9238 FindParameter F; 9239 SCEVTraversal<FindParameter> ST(F); 9240 ST.visitAll(S); 9241 9242 return F.FoundParameter; 9243 } 9244 9245 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9246 static inline bool 9247 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9248 for (const SCEV *T : Terms) 9249 if (containsParameters(T)) 9250 return true; 9251 return false; 9252 } 9253 9254 // Return the number of product terms in S. 9255 static inline int numberOfTerms(const SCEV *S) { 9256 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9257 return Expr->getNumOperands(); 9258 return 1; 9259 } 9260 9261 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9262 if (isa<SCEVConstant>(T)) 9263 return nullptr; 9264 9265 if (isa<SCEVUnknown>(T)) 9266 return T; 9267 9268 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9269 SmallVector<const SCEV *, 2> Factors; 9270 for (const SCEV *Op : M->operands()) 9271 if (!isa<SCEVConstant>(Op)) 9272 Factors.push_back(Op); 9273 9274 return SE.getMulExpr(Factors); 9275 } 9276 9277 return T; 9278 } 9279 9280 /// Return the size of an element read or written by Inst. 9281 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9282 Type *Ty; 9283 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9284 Ty = Store->getValueOperand()->getType(); 9285 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9286 Ty = Load->getType(); 9287 else 9288 return nullptr; 9289 9290 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9291 return getSizeOfExpr(ETy, Ty); 9292 } 9293 9294 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9295 SmallVectorImpl<const SCEV *> &Sizes, 9296 const SCEV *ElementSize) const { 9297 if (Terms.size() < 1 || !ElementSize) 9298 return; 9299 9300 // Early return when Terms do not contain parameters: we do not delinearize 9301 // non parametric SCEVs. 9302 if (!containsParameters(Terms)) 9303 return; 9304 9305 DEBUG({ 9306 dbgs() << "Terms:\n"; 9307 for (const SCEV *T : Terms) 9308 dbgs() << *T << "\n"; 9309 }); 9310 9311 // Remove duplicates. 9312 std::sort(Terms.begin(), Terms.end()); 9313 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9314 9315 // Put larger terms first. 9316 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9317 return numberOfTerms(LHS) > numberOfTerms(RHS); 9318 }); 9319 9320 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9321 9322 // Try to divide all terms by the element size. If term is not divisible by 9323 // element size, proceed with the original term. 9324 for (const SCEV *&Term : Terms) { 9325 const SCEV *Q, *R; 9326 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9327 if (!Q->isZero()) 9328 Term = Q; 9329 } 9330 9331 SmallVector<const SCEV *, 4> NewTerms; 9332 9333 // Remove constant factors. 9334 for (const SCEV *T : Terms) 9335 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9336 NewTerms.push_back(NewT); 9337 9338 DEBUG({ 9339 dbgs() << "Terms after sorting:\n"; 9340 for (const SCEV *T : NewTerms) 9341 dbgs() << *T << "\n"; 9342 }); 9343 9344 if (NewTerms.empty() || 9345 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9346 Sizes.clear(); 9347 return; 9348 } 9349 9350 // The last element to be pushed into Sizes is the size of an element. 9351 Sizes.push_back(ElementSize); 9352 9353 DEBUG({ 9354 dbgs() << "Sizes:\n"; 9355 for (const SCEV *S : Sizes) 9356 dbgs() << *S << "\n"; 9357 }); 9358 } 9359 9360 void ScalarEvolution::computeAccessFunctions( 9361 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9362 SmallVectorImpl<const SCEV *> &Sizes) { 9363 9364 // Early exit in case this SCEV is not an affine multivariate function. 9365 if (Sizes.empty()) 9366 return; 9367 9368 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9369 if (!AR->isAffine()) 9370 return; 9371 9372 const SCEV *Res = Expr; 9373 int Last = Sizes.size() - 1; 9374 for (int i = Last; i >= 0; i--) { 9375 const SCEV *Q, *R; 9376 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9377 9378 DEBUG({ 9379 dbgs() << "Res: " << *Res << "\n"; 9380 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9381 dbgs() << "Res divided by Sizes[i]:\n"; 9382 dbgs() << "Quotient: " << *Q << "\n"; 9383 dbgs() << "Remainder: " << *R << "\n"; 9384 }); 9385 9386 Res = Q; 9387 9388 // Do not record the last subscript corresponding to the size of elements in 9389 // the array. 9390 if (i == Last) { 9391 9392 // Bail out if the remainder is too complex. 9393 if (isa<SCEVAddRecExpr>(R)) { 9394 Subscripts.clear(); 9395 Sizes.clear(); 9396 return; 9397 } 9398 9399 continue; 9400 } 9401 9402 // Record the access function for the current subscript. 9403 Subscripts.push_back(R); 9404 } 9405 9406 // Also push in last position the remainder of the last division: it will be 9407 // the access function of the innermost dimension. 9408 Subscripts.push_back(Res); 9409 9410 std::reverse(Subscripts.begin(), Subscripts.end()); 9411 9412 DEBUG({ 9413 dbgs() << "Subscripts:\n"; 9414 for (const SCEV *S : Subscripts) 9415 dbgs() << *S << "\n"; 9416 }); 9417 } 9418 9419 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9420 /// sizes of an array access. Returns the remainder of the delinearization that 9421 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9422 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9423 /// expressions in the stride and base of a SCEV corresponding to the 9424 /// computation of a GCD (greatest common divisor) of base and stride. When 9425 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9426 /// 9427 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9428 /// 9429 /// void foo(long n, long m, long o, double A[n][m][o]) { 9430 /// 9431 /// for (long i = 0; i < n; i++) 9432 /// for (long j = 0; j < m; j++) 9433 /// for (long k = 0; k < o; k++) 9434 /// A[i][j][k] = 1.0; 9435 /// } 9436 /// 9437 /// the delinearization input is the following AddRec SCEV: 9438 /// 9439 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9440 /// 9441 /// From this SCEV, we are able to say that the base offset of the access is %A 9442 /// because it appears as an offset that does not divide any of the strides in 9443 /// the loops: 9444 /// 9445 /// CHECK: Base offset: %A 9446 /// 9447 /// and then SCEV->delinearize determines the size of some of the dimensions of 9448 /// the array as these are the multiples by which the strides are happening: 9449 /// 9450 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9451 /// 9452 /// Note that the outermost dimension remains of UnknownSize because there are 9453 /// no strides that would help identifying the size of the last dimension: when 9454 /// the array has been statically allocated, one could compute the size of that 9455 /// dimension by dividing the overall size of the array by the size of the known 9456 /// dimensions: %m * %o * 8. 9457 /// 9458 /// Finally delinearize provides the access functions for the array reference 9459 /// that does correspond to A[i][j][k] of the above C testcase: 9460 /// 9461 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9462 /// 9463 /// The testcases are checking the output of a function pass: 9464 /// DelinearizationPass that walks through all loads and stores of a function 9465 /// asking for the SCEV of the memory access with respect to all enclosing 9466 /// loops, calling SCEV->delinearize on that and printing the results. 9467 9468 void ScalarEvolution::delinearize(const SCEV *Expr, 9469 SmallVectorImpl<const SCEV *> &Subscripts, 9470 SmallVectorImpl<const SCEV *> &Sizes, 9471 const SCEV *ElementSize) { 9472 // First step: collect parametric terms. 9473 SmallVector<const SCEV *, 4> Terms; 9474 collectParametricTerms(Expr, Terms); 9475 9476 if (Terms.empty()) 9477 return; 9478 9479 // Second step: find subscript sizes. 9480 findArrayDimensions(Terms, Sizes, ElementSize); 9481 9482 if (Sizes.empty()) 9483 return; 9484 9485 // Third step: compute the access functions for each subscript. 9486 computeAccessFunctions(Expr, Subscripts, Sizes); 9487 9488 if (Subscripts.empty()) 9489 return; 9490 9491 DEBUG({ 9492 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9493 dbgs() << "ArrayDecl[UnknownSize]"; 9494 for (const SCEV *S : Sizes) 9495 dbgs() << "[" << *S << "]"; 9496 9497 dbgs() << "\nArrayRef"; 9498 for (const SCEV *S : Subscripts) 9499 dbgs() << "[" << *S << "]"; 9500 dbgs() << "\n"; 9501 }); 9502 } 9503 9504 //===----------------------------------------------------------------------===// 9505 // SCEVCallbackVH Class Implementation 9506 //===----------------------------------------------------------------------===// 9507 9508 void ScalarEvolution::SCEVCallbackVH::deleted() { 9509 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9510 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9511 SE->ConstantEvolutionLoopExitValue.erase(PN); 9512 SE->eraseValueFromMap(getValPtr()); 9513 // this now dangles! 9514 } 9515 9516 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9517 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9518 9519 // Forget all the expressions associated with users of the old value, 9520 // so that future queries will recompute the expressions using the new 9521 // value. 9522 Value *Old = getValPtr(); 9523 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9524 SmallPtrSet<User *, 8> Visited; 9525 while (!Worklist.empty()) { 9526 User *U = Worklist.pop_back_val(); 9527 // Deleting the Old value will cause this to dangle. Postpone 9528 // that until everything else is done. 9529 if (U == Old) 9530 continue; 9531 if (!Visited.insert(U).second) 9532 continue; 9533 if (PHINode *PN = dyn_cast<PHINode>(U)) 9534 SE->ConstantEvolutionLoopExitValue.erase(PN); 9535 SE->eraseValueFromMap(U); 9536 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9537 } 9538 // Delete the Old value. 9539 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9540 SE->ConstantEvolutionLoopExitValue.erase(PN); 9541 SE->eraseValueFromMap(Old); 9542 // this now dangles! 9543 } 9544 9545 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9546 : CallbackVH(V), SE(se) {} 9547 9548 //===----------------------------------------------------------------------===// 9549 // ScalarEvolution Class Implementation 9550 //===----------------------------------------------------------------------===// 9551 9552 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9553 AssumptionCache &AC, DominatorTree &DT, 9554 LoopInfo &LI) 9555 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9556 CouldNotCompute(new SCEVCouldNotCompute()), 9557 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9558 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9559 FirstUnknown(nullptr) { 9560 9561 // To use guards for proving predicates, we need to scan every instruction in 9562 // relevant basic blocks, and not just terminators. Doing this is a waste of 9563 // time if the IR does not actually contain any calls to 9564 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9565 // 9566 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9567 // to _add_ guards to the module when there weren't any before, and wants 9568 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9569 // efficient in lieu of being smart in that rather obscure case. 9570 9571 auto *GuardDecl = F.getParent()->getFunction( 9572 Intrinsic::getName(Intrinsic::experimental_guard)); 9573 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9574 } 9575 9576 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9577 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9578 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9579 ValueExprMap(std::move(Arg.ValueExprMap)), 9580 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9581 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9582 PredicatedBackedgeTakenCounts( 9583 std::move(Arg.PredicatedBackedgeTakenCounts)), 9584 ConstantEvolutionLoopExitValue( 9585 std::move(Arg.ConstantEvolutionLoopExitValue)), 9586 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9587 LoopDispositions(std::move(Arg.LoopDispositions)), 9588 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9589 BlockDispositions(std::move(Arg.BlockDispositions)), 9590 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9591 SignedRanges(std::move(Arg.SignedRanges)), 9592 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9593 UniquePreds(std::move(Arg.UniquePreds)), 9594 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9595 FirstUnknown(Arg.FirstUnknown) { 9596 Arg.FirstUnknown = nullptr; 9597 } 9598 9599 ScalarEvolution::~ScalarEvolution() { 9600 // Iterate through all the SCEVUnknown instances and call their 9601 // destructors, so that they release their references to their values. 9602 for (SCEVUnknown *U = FirstUnknown; U;) { 9603 SCEVUnknown *Tmp = U; 9604 U = U->Next; 9605 Tmp->~SCEVUnknown(); 9606 } 9607 FirstUnknown = nullptr; 9608 9609 ExprValueMap.clear(); 9610 ValueExprMap.clear(); 9611 HasRecMap.clear(); 9612 9613 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9614 // that a loop had multiple computable exits. 9615 for (auto &BTCI : BackedgeTakenCounts) 9616 BTCI.second.clear(); 9617 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9618 BTCI.second.clear(); 9619 9620 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9621 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9622 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9623 } 9624 9625 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9626 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9627 } 9628 9629 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9630 const Loop *L) { 9631 // Print all inner loops first 9632 for (Loop *I : *L) 9633 PrintLoopInfo(OS, SE, I); 9634 9635 OS << "Loop "; 9636 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9637 OS << ": "; 9638 9639 SmallVector<BasicBlock *, 8> ExitBlocks; 9640 L->getExitBlocks(ExitBlocks); 9641 if (ExitBlocks.size() != 1) 9642 OS << "<multiple exits> "; 9643 9644 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9645 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9646 } else { 9647 OS << "Unpredictable backedge-taken count. "; 9648 } 9649 9650 OS << "\n" 9651 "Loop "; 9652 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9653 OS << ": "; 9654 9655 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9656 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9657 } else { 9658 OS << "Unpredictable max backedge-taken count. "; 9659 } 9660 9661 OS << "\n" 9662 "Loop "; 9663 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9664 OS << ": "; 9665 9666 SCEVUnionPredicate Pred; 9667 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9668 if (!isa<SCEVCouldNotCompute>(PBT)) { 9669 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9670 OS << " Predicates:\n"; 9671 Pred.print(OS, 4); 9672 } else { 9673 OS << "Unpredictable predicated backedge-taken count. "; 9674 } 9675 OS << "\n"; 9676 } 9677 9678 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9679 switch (LD) { 9680 case ScalarEvolution::LoopVariant: 9681 return "Variant"; 9682 case ScalarEvolution::LoopInvariant: 9683 return "Invariant"; 9684 case ScalarEvolution::LoopComputable: 9685 return "Computable"; 9686 } 9687 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9688 } 9689 9690 void ScalarEvolution::print(raw_ostream &OS) const { 9691 // ScalarEvolution's implementation of the print method is to print 9692 // out SCEV values of all instructions that are interesting. Doing 9693 // this potentially causes it to create new SCEV objects though, 9694 // which technically conflicts with the const qualifier. This isn't 9695 // observable from outside the class though, so casting away the 9696 // const isn't dangerous. 9697 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9698 9699 OS << "Classifying expressions for: "; 9700 F.printAsOperand(OS, /*PrintType=*/false); 9701 OS << "\n"; 9702 for (Instruction &I : instructions(F)) 9703 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9704 OS << I << '\n'; 9705 OS << " --> "; 9706 const SCEV *SV = SE.getSCEV(&I); 9707 SV->print(OS); 9708 if (!isa<SCEVCouldNotCompute>(SV)) { 9709 OS << " U: "; 9710 SE.getUnsignedRange(SV).print(OS); 9711 OS << " S: "; 9712 SE.getSignedRange(SV).print(OS); 9713 } 9714 9715 const Loop *L = LI.getLoopFor(I.getParent()); 9716 9717 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9718 if (AtUse != SV) { 9719 OS << " --> "; 9720 AtUse->print(OS); 9721 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9722 OS << " U: "; 9723 SE.getUnsignedRange(AtUse).print(OS); 9724 OS << " S: "; 9725 SE.getSignedRange(AtUse).print(OS); 9726 } 9727 } 9728 9729 if (L) { 9730 OS << "\t\t" "Exits: "; 9731 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9732 if (!SE.isLoopInvariant(ExitValue, L)) { 9733 OS << "<<Unknown>>"; 9734 } else { 9735 OS << *ExitValue; 9736 } 9737 9738 bool First = true; 9739 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9740 if (First) { 9741 OS << "\t\t" "LoopDispositions: { "; 9742 First = false; 9743 } else { 9744 OS << ", "; 9745 } 9746 9747 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9748 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9749 } 9750 9751 for (auto *InnerL : depth_first(L)) { 9752 if (InnerL == L) 9753 continue; 9754 if (First) { 9755 OS << "\t\t" "LoopDispositions: { "; 9756 First = false; 9757 } else { 9758 OS << ", "; 9759 } 9760 9761 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9762 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 9763 } 9764 9765 OS << " }"; 9766 } 9767 9768 OS << "\n"; 9769 } 9770 9771 OS << "Determining loop execution counts for: "; 9772 F.printAsOperand(OS, /*PrintType=*/false); 9773 OS << "\n"; 9774 for (Loop *I : LI) 9775 PrintLoopInfo(OS, &SE, I); 9776 } 9777 9778 ScalarEvolution::LoopDisposition 9779 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9780 auto &Values = LoopDispositions[S]; 9781 for (auto &V : Values) { 9782 if (V.getPointer() == L) 9783 return V.getInt(); 9784 } 9785 Values.emplace_back(L, LoopVariant); 9786 LoopDisposition D = computeLoopDisposition(S, L); 9787 auto &Values2 = LoopDispositions[S]; 9788 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9789 if (V.getPointer() == L) { 9790 V.setInt(D); 9791 break; 9792 } 9793 } 9794 return D; 9795 } 9796 9797 ScalarEvolution::LoopDisposition 9798 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9799 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9800 case scConstant: 9801 return LoopInvariant; 9802 case scTruncate: 9803 case scZeroExtend: 9804 case scSignExtend: 9805 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9806 case scAddRecExpr: { 9807 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9808 9809 // If L is the addrec's loop, it's computable. 9810 if (AR->getLoop() == L) 9811 return LoopComputable; 9812 9813 // Add recurrences are never invariant in the function-body (null loop). 9814 if (!L) 9815 return LoopVariant; 9816 9817 // This recurrence is variant w.r.t. L if L contains AR's loop. 9818 if (L->contains(AR->getLoop())) 9819 return LoopVariant; 9820 9821 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9822 if (AR->getLoop()->contains(L)) 9823 return LoopInvariant; 9824 9825 // This recurrence is variant w.r.t. L if any of its operands 9826 // are variant. 9827 for (auto *Op : AR->operands()) 9828 if (!isLoopInvariant(Op, L)) 9829 return LoopVariant; 9830 9831 // Otherwise it's loop-invariant. 9832 return LoopInvariant; 9833 } 9834 case scAddExpr: 9835 case scMulExpr: 9836 case scUMaxExpr: 9837 case scSMaxExpr: { 9838 bool HasVarying = false; 9839 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9840 LoopDisposition D = getLoopDisposition(Op, L); 9841 if (D == LoopVariant) 9842 return LoopVariant; 9843 if (D == LoopComputable) 9844 HasVarying = true; 9845 } 9846 return HasVarying ? LoopComputable : LoopInvariant; 9847 } 9848 case scUDivExpr: { 9849 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9850 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9851 if (LD == LoopVariant) 9852 return LoopVariant; 9853 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9854 if (RD == LoopVariant) 9855 return LoopVariant; 9856 return (LD == LoopInvariant && RD == LoopInvariant) ? 9857 LoopInvariant : LoopComputable; 9858 } 9859 case scUnknown: 9860 // All non-instruction values are loop invariant. All instructions are loop 9861 // invariant if they are not contained in the specified loop. 9862 // Instructions are never considered invariant in the function body 9863 // (null loop) because they are defined within the "loop". 9864 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9865 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9866 return LoopInvariant; 9867 case scCouldNotCompute: 9868 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9869 } 9870 llvm_unreachable("Unknown SCEV kind!"); 9871 } 9872 9873 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9874 return getLoopDisposition(S, L) == LoopInvariant; 9875 } 9876 9877 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9878 return getLoopDisposition(S, L) == LoopComputable; 9879 } 9880 9881 ScalarEvolution::BlockDisposition 9882 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9883 auto &Values = BlockDispositions[S]; 9884 for (auto &V : Values) { 9885 if (V.getPointer() == BB) 9886 return V.getInt(); 9887 } 9888 Values.emplace_back(BB, DoesNotDominateBlock); 9889 BlockDisposition D = computeBlockDisposition(S, BB); 9890 auto &Values2 = BlockDispositions[S]; 9891 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9892 if (V.getPointer() == BB) { 9893 V.setInt(D); 9894 break; 9895 } 9896 } 9897 return D; 9898 } 9899 9900 ScalarEvolution::BlockDisposition 9901 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9902 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9903 case scConstant: 9904 return ProperlyDominatesBlock; 9905 case scTruncate: 9906 case scZeroExtend: 9907 case scSignExtend: 9908 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9909 case scAddRecExpr: { 9910 // This uses a "dominates" query instead of "properly dominates" query 9911 // to test for proper dominance too, because the instruction which 9912 // produces the addrec's value is a PHI, and a PHI effectively properly 9913 // dominates its entire containing block. 9914 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9915 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9916 return DoesNotDominateBlock; 9917 9918 // Fall through into SCEVNAryExpr handling. 9919 LLVM_FALLTHROUGH; 9920 } 9921 case scAddExpr: 9922 case scMulExpr: 9923 case scUMaxExpr: 9924 case scSMaxExpr: { 9925 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9926 bool Proper = true; 9927 for (const SCEV *NAryOp : NAry->operands()) { 9928 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9929 if (D == DoesNotDominateBlock) 9930 return DoesNotDominateBlock; 9931 if (D == DominatesBlock) 9932 Proper = false; 9933 } 9934 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9935 } 9936 case scUDivExpr: { 9937 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9938 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9939 BlockDisposition LD = getBlockDisposition(LHS, BB); 9940 if (LD == DoesNotDominateBlock) 9941 return DoesNotDominateBlock; 9942 BlockDisposition RD = getBlockDisposition(RHS, BB); 9943 if (RD == DoesNotDominateBlock) 9944 return DoesNotDominateBlock; 9945 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9946 ProperlyDominatesBlock : DominatesBlock; 9947 } 9948 case scUnknown: 9949 if (Instruction *I = 9950 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9951 if (I->getParent() == BB) 9952 return DominatesBlock; 9953 if (DT.properlyDominates(I->getParent(), BB)) 9954 return ProperlyDominatesBlock; 9955 return DoesNotDominateBlock; 9956 } 9957 return ProperlyDominatesBlock; 9958 case scCouldNotCompute: 9959 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9960 } 9961 llvm_unreachable("Unknown SCEV kind!"); 9962 } 9963 9964 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9965 return getBlockDisposition(S, BB) >= DominatesBlock; 9966 } 9967 9968 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9969 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9970 } 9971 9972 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9973 // Search for a SCEV expression node within an expression tree. 9974 // Implements SCEVTraversal::Visitor. 9975 struct SCEVSearch { 9976 const SCEV *Node; 9977 bool IsFound; 9978 9979 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9980 9981 bool follow(const SCEV *S) { 9982 IsFound |= (S == Node); 9983 return !IsFound; 9984 } 9985 bool isDone() const { return IsFound; } 9986 }; 9987 9988 SCEVSearch Search(Op); 9989 visitAll(S, Search); 9990 return Search.IsFound; 9991 } 9992 9993 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9994 ValuesAtScopes.erase(S); 9995 LoopDispositions.erase(S); 9996 BlockDispositions.erase(S); 9997 UnsignedRanges.erase(S); 9998 SignedRanges.erase(S); 9999 ExprValueMap.erase(S); 10000 HasRecMap.erase(S); 10001 10002 auto RemoveSCEVFromBackedgeMap = 10003 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 10004 for (auto I = Map.begin(), E = Map.end(); I != E;) { 10005 BackedgeTakenInfo &BEInfo = I->second; 10006 if (BEInfo.hasOperand(S, this)) { 10007 BEInfo.clear(); 10008 Map.erase(I++); 10009 } else 10010 ++I; 10011 } 10012 }; 10013 10014 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 10015 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10016 } 10017 10018 typedef DenseMap<const Loop *, std::string> VerifyMap; 10019 10020 /// replaceSubString - Replaces all occurrences of From in Str with To. 10021 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 10022 size_t Pos = 0; 10023 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 10024 Str.replace(Pos, From.size(), To.data(), To.size()); 10025 Pos += To.size(); 10026 } 10027 } 10028 10029 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 10030 static void 10031 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 10032 std::string &S = Map[L]; 10033 if (S.empty()) { 10034 raw_string_ostream OS(S); 10035 SE.getBackedgeTakenCount(L)->print(OS); 10036 10037 // false and 0 are semantically equivalent. This can happen in dead loops. 10038 replaceSubString(OS.str(), "false", "0"); 10039 // Remove wrap flags, their use in SCEV is highly fragile. 10040 // FIXME: Remove this when SCEV gets smarter about them. 10041 replaceSubString(OS.str(), "<nw>", ""); 10042 replaceSubString(OS.str(), "<nsw>", ""); 10043 replaceSubString(OS.str(), "<nuw>", ""); 10044 } 10045 10046 for (auto *R : reverse(*L)) 10047 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 10048 } 10049 10050 void ScalarEvolution::verify() const { 10051 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10052 10053 // Gather stringified backedge taken counts for all loops using SCEV's caches. 10054 // FIXME: It would be much better to store actual values instead of strings, 10055 // but SCEV pointers will change if we drop the caches. 10056 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 10057 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10058 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 10059 10060 // Gather stringified backedge taken counts for all loops using a fresh 10061 // ScalarEvolution object. 10062 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10063 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10064 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10065 10066 // Now compare whether they're the same with and without caches. This allows 10067 // verifying that no pass changed the cache. 10068 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10069 "New loops suddenly appeared!"); 10070 10071 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10072 OldE = BackedgeDumpsOld.end(), 10073 NewI = BackedgeDumpsNew.begin(); 10074 OldI != OldE; ++OldI, ++NewI) { 10075 assert(OldI->first == NewI->first && "Loop order changed!"); 10076 10077 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10078 // changes. 10079 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10080 // means that a pass is buggy or SCEV has to learn a new pattern but is 10081 // usually not harmful. 10082 if (OldI->second != NewI->second && 10083 OldI->second.find("undef") == std::string::npos && 10084 NewI->second.find("undef") == std::string::npos && 10085 OldI->second != "***COULDNOTCOMPUTE***" && 10086 NewI->second != "***COULDNOTCOMPUTE***") { 10087 dbgs() << "SCEVValidator: SCEV for loop '" 10088 << OldI->first->getHeader()->getName() 10089 << "' changed from '" << OldI->second 10090 << "' to '" << NewI->second << "'!\n"; 10091 std::abort(); 10092 } 10093 } 10094 10095 // TODO: Verify more things. 10096 } 10097 10098 char ScalarEvolutionAnalysis::PassID; 10099 10100 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10101 FunctionAnalysisManager &AM) { 10102 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10103 AM.getResult<AssumptionAnalysis>(F), 10104 AM.getResult<DominatorTreeAnalysis>(F), 10105 AM.getResult<LoopAnalysis>(F)); 10106 } 10107 10108 PreservedAnalyses 10109 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10110 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10111 return PreservedAnalyses::all(); 10112 } 10113 10114 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10115 "Scalar Evolution Analysis", false, true) 10116 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10117 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10118 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10119 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10120 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10121 "Scalar Evolution Analysis", false, true) 10122 char ScalarEvolutionWrapperPass::ID = 0; 10123 10124 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10125 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10126 } 10127 10128 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10129 SE.reset(new ScalarEvolution( 10130 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10131 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10132 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10133 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10134 return false; 10135 } 10136 10137 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10138 10139 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10140 SE->print(OS); 10141 } 10142 10143 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10144 if (!VerifySCEV) 10145 return; 10146 10147 SE->verify(); 10148 } 10149 10150 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10151 AU.setPreservesAll(); 10152 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10153 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10154 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10155 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10156 } 10157 10158 const SCEVPredicate * 10159 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10160 const SCEVConstant *RHS) { 10161 FoldingSetNodeID ID; 10162 // Unique this node based on the arguments 10163 ID.AddInteger(SCEVPredicate::P_Equal); 10164 ID.AddPointer(LHS); 10165 ID.AddPointer(RHS); 10166 void *IP = nullptr; 10167 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10168 return S; 10169 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10170 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10171 UniquePreds.InsertNode(Eq, IP); 10172 return Eq; 10173 } 10174 10175 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10176 const SCEVAddRecExpr *AR, 10177 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10178 FoldingSetNodeID ID; 10179 // Unique this node based on the arguments 10180 ID.AddInteger(SCEVPredicate::P_Wrap); 10181 ID.AddPointer(AR); 10182 ID.AddInteger(AddedFlags); 10183 void *IP = nullptr; 10184 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10185 return S; 10186 auto *OF = new (SCEVAllocator) 10187 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10188 UniquePreds.InsertNode(OF, IP); 10189 return OF; 10190 } 10191 10192 namespace { 10193 10194 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10195 public: 10196 // Rewrites \p S in the context of a loop L and the predicate A. 10197 // If Assume is true, rewrite is free to add further predicates to A 10198 // such that the result will be an AddRecExpr. 10199 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10200 SCEVUnionPredicate &A, bool Assume) { 10201 SCEVPredicateRewriter Rewriter(L, SE, A, Assume); 10202 return Rewriter.visit(S); 10203 } 10204 10205 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10206 SCEVUnionPredicate &P, bool Assume) 10207 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {} 10208 10209 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10210 auto ExprPreds = P.getPredicatesForExpr(Expr); 10211 for (auto *Pred : ExprPreds) 10212 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10213 if (IPred->getLHS() == Expr) 10214 return IPred->getRHS(); 10215 10216 return Expr; 10217 } 10218 10219 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10220 const SCEV *Operand = visit(Expr->getOperand()); 10221 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10222 if (AR && AR->getLoop() == L && AR->isAffine()) { 10223 // This couldn't be folded because the operand didn't have the nuw 10224 // flag. Add the nusw flag as an assumption that we could make. 10225 const SCEV *Step = AR->getStepRecurrence(SE); 10226 Type *Ty = Expr->getType(); 10227 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10228 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10229 SE.getSignExtendExpr(Step, Ty), L, 10230 AR->getNoWrapFlags()); 10231 } 10232 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10233 } 10234 10235 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10236 const SCEV *Operand = visit(Expr->getOperand()); 10237 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10238 if (AR && AR->getLoop() == L && AR->isAffine()) { 10239 // This couldn't be folded because the operand didn't have the nsw 10240 // flag. Add the nssw flag as an assumption that we could make. 10241 const SCEV *Step = AR->getStepRecurrence(SE); 10242 Type *Ty = Expr->getType(); 10243 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10244 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10245 SE.getSignExtendExpr(Step, Ty), L, 10246 AR->getNoWrapFlags()); 10247 } 10248 return SE.getSignExtendExpr(Operand, Expr->getType()); 10249 } 10250 10251 private: 10252 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10253 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10254 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10255 if (!Assume) { 10256 // Check if we've already made this assumption. 10257 if (P.implies(A)) 10258 return true; 10259 return false; 10260 } 10261 P.add(A); 10262 return true; 10263 } 10264 10265 SCEVUnionPredicate &P; 10266 const Loop *L; 10267 bool Assume; 10268 }; 10269 } // end anonymous namespace 10270 10271 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10272 SCEVUnionPredicate &Preds) { 10273 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false); 10274 } 10275 10276 const SCEVAddRecExpr * 10277 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, 10278 SCEVUnionPredicate &Preds) { 10279 SCEVUnionPredicate TransformPreds; 10280 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true); 10281 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10282 10283 if (!AddRec) 10284 return nullptr; 10285 10286 // Since the transformation was successful, we can now transfer the SCEV 10287 // predicates. 10288 Preds.add(&TransformPreds); 10289 return AddRec; 10290 } 10291 10292 /// SCEV predicates 10293 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10294 SCEVPredicateKind Kind) 10295 : FastID(ID), Kind(Kind) {} 10296 10297 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10298 const SCEVUnknown *LHS, 10299 const SCEVConstant *RHS) 10300 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10301 10302 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10303 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10304 10305 if (!Op) 10306 return false; 10307 10308 return Op->LHS == LHS && Op->RHS == RHS; 10309 } 10310 10311 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10312 10313 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10314 10315 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10316 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10317 } 10318 10319 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10320 const SCEVAddRecExpr *AR, 10321 IncrementWrapFlags Flags) 10322 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10323 10324 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10325 10326 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10327 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10328 10329 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10330 } 10331 10332 bool SCEVWrapPredicate::isAlwaysTrue() const { 10333 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10334 IncrementWrapFlags IFlags = Flags; 10335 10336 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10337 IFlags = clearFlags(IFlags, IncrementNSSW); 10338 10339 return IFlags == IncrementAnyWrap; 10340 } 10341 10342 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10343 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10344 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10345 OS << "<nusw>"; 10346 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10347 OS << "<nssw>"; 10348 OS << "\n"; 10349 } 10350 10351 SCEVWrapPredicate::IncrementWrapFlags 10352 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10353 ScalarEvolution &SE) { 10354 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10355 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10356 10357 // We can safely transfer the NSW flag as NSSW. 10358 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10359 ImpliedFlags = IncrementNSSW; 10360 10361 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10362 // If the increment is positive, the SCEV NUW flag will also imply the 10363 // WrapPredicate NUSW flag. 10364 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10365 if (Step->getValue()->getValue().isNonNegative()) 10366 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10367 } 10368 10369 return ImpliedFlags; 10370 } 10371 10372 /// Union predicates don't get cached so create a dummy set ID for it. 10373 SCEVUnionPredicate::SCEVUnionPredicate() 10374 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10375 10376 bool SCEVUnionPredicate::isAlwaysTrue() const { 10377 return all_of(Preds, 10378 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10379 } 10380 10381 ArrayRef<const SCEVPredicate *> 10382 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10383 auto I = SCEVToPreds.find(Expr); 10384 if (I == SCEVToPreds.end()) 10385 return ArrayRef<const SCEVPredicate *>(); 10386 return I->second; 10387 } 10388 10389 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10390 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10391 return all_of(Set->Preds, 10392 [this](const SCEVPredicate *I) { return this->implies(I); }); 10393 10394 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10395 if (ScevPredsIt == SCEVToPreds.end()) 10396 return false; 10397 auto &SCEVPreds = ScevPredsIt->second; 10398 10399 return any_of(SCEVPreds, 10400 [N](const SCEVPredicate *I) { return I->implies(N); }); 10401 } 10402 10403 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10404 10405 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10406 for (auto Pred : Preds) 10407 Pred->print(OS, Depth); 10408 } 10409 10410 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10411 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10412 for (auto Pred : Set->Preds) 10413 add(Pred); 10414 return; 10415 } 10416 10417 if (implies(N)) 10418 return; 10419 10420 const SCEV *Key = N->getExpr(); 10421 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10422 " associated expression!"); 10423 10424 SCEVToPreds[Key].push_back(N); 10425 Preds.push_back(N); 10426 } 10427 10428 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10429 Loop &L) 10430 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10431 10432 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10433 const SCEV *Expr = SE.getSCEV(V); 10434 RewriteEntry &Entry = RewriteMap[Expr]; 10435 10436 // If we already have an entry and the version matches, return it. 10437 if (Entry.second && Generation == Entry.first) 10438 return Entry.second; 10439 10440 // We found an entry but it's stale. Rewrite the stale entry 10441 // acording to the current predicate. 10442 if (Entry.second) 10443 Expr = Entry.second; 10444 10445 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10446 Entry = {Generation, NewSCEV}; 10447 10448 return NewSCEV; 10449 } 10450 10451 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10452 if (!BackedgeCount) { 10453 SCEVUnionPredicate BackedgePred; 10454 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10455 addPredicate(BackedgePred); 10456 } 10457 return BackedgeCount; 10458 } 10459 10460 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10461 if (Preds.implies(&Pred)) 10462 return; 10463 Preds.add(&Pred); 10464 updateGeneration(); 10465 } 10466 10467 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10468 return Preds; 10469 } 10470 10471 void PredicatedScalarEvolution::updateGeneration() { 10472 // If the generation number wrapped recompute everything. 10473 if (++Generation == 0) { 10474 for (auto &II : RewriteMap) { 10475 const SCEV *Rewritten = II.second.second; 10476 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10477 } 10478 } 10479 } 10480 10481 void PredicatedScalarEvolution::setNoOverflow( 10482 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10483 const SCEV *Expr = getSCEV(V); 10484 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10485 10486 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10487 10488 // Clear the statically implied flags. 10489 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10490 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10491 10492 auto II = FlagsMap.insert({V, Flags}); 10493 if (!II.second) 10494 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10495 } 10496 10497 bool PredicatedScalarEvolution::hasNoOverflow( 10498 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10499 const SCEV *Expr = getSCEV(V); 10500 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10501 10502 Flags = SCEVWrapPredicate::clearFlags( 10503 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10504 10505 auto II = FlagsMap.find(V); 10506 10507 if (II != FlagsMap.end()) 10508 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10509 10510 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10511 } 10512 10513 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10514 const SCEV *Expr = this->getSCEV(V); 10515 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds); 10516 10517 if (!New) 10518 return nullptr; 10519 10520 updateGeneration(); 10521 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10522 return New; 10523 } 10524 10525 PredicatedScalarEvolution::PredicatedScalarEvolution( 10526 const PredicatedScalarEvolution &Init) 10527 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10528 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10529 for (const auto &I : Init.FlagsMap) 10530 FlagsMap.insert(I); 10531 } 10532 10533 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10534 // For each block. 10535 for (auto *BB : L.getBlocks()) 10536 for (auto &I : *BB) { 10537 if (!SE.isSCEVable(I.getType())) 10538 continue; 10539 10540 auto *Expr = SE.getSCEV(&I); 10541 auto II = RewriteMap.find(Expr); 10542 10543 if (II == RewriteMap.end()) 10544 continue; 10545 10546 // Don't print things that are not interesting. 10547 if (II->second.second == Expr) 10548 continue; 10549 10550 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10551 OS.indent(Depth + 2) << *Expr << "\n"; 10552 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10553 } 10554 } 10555