1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumBruteForceEvaluations, 87 "Number of brute force evaluations needed to " 88 "calculate high-order polynomial exit values"); 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant derived loop"), 102 cl::init(100)); 103 104 namespace { 105 RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis"); 107 } 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 SCEV::~SCEV() {} 118 void SCEV::dump() const { 119 print(cerr); 120 } 121 122 /// getValueRange - Return the tightest constant bounds that this value is 123 /// known to have. This method is only valid on integer SCEV objects. 124 ConstantRange SCEV::getValueRange() const { 125 const Type *Ty = getType(); 126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); 127 // Default to a full range if no better information is available. 128 return ConstantRange(getBitWidth()); 129 } 130 131 uint32_t SCEV::getBitWidth() const { 132 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 133 return ITy->getBitWidth(); 134 return 0; 135 } 136 137 138 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc, 158 ScalarEvolution &SE) const { 159 return this; 160 } 161 162 void SCEVCouldNotCompute::print(std::ostream &OS) const { 163 OS << "***COULDNOTCOMPUTE***"; 164 } 165 166 bool SCEVCouldNotCompute::classof(const SCEV *S) { 167 return S->getSCEVType() == scCouldNotCompute; 168 } 169 170 171 // SCEVConstants - Only allow the creation of one SCEVConstant for any 172 // particular value. Don't use a SCEVHandle here, or else the object will 173 // never be deleted! 174 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 175 176 177 SCEVConstant::~SCEVConstant() { 178 SCEVConstants->erase(V); 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 182 SCEVConstant *&R = (*SCEVConstants)[V]; 183 if (R == 0) R = new SCEVConstant(V); 184 return R; 185 } 186 187 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 188 return getConstant(ConstantInt::get(Val)); 189 } 190 191 ConstantRange SCEVConstant::getValueRange() const { 192 return ConstantRange(V->getValue()); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(std::ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 202 // particular input. Don't use a SCEVHandle here, or else the object will 203 // never be deleted! 204 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 205 SCEVTruncateExpr*> > SCEVTruncates; 206 207 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 208 : SCEV(scTruncate), Op(op), Ty(ty) { 209 assert(Op->getType()->isInteger() && Ty->isInteger() && 210 "Cannot truncate non-integer value!"); 211 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 212 && "This is not a truncating conversion!"); 213 } 214 215 SCEVTruncateExpr::~SCEVTruncateExpr() { 216 SCEVTruncates->erase(std::make_pair(Op, Ty)); 217 } 218 219 ConstantRange SCEVTruncateExpr::getValueRange() const { 220 return getOperand()->getValueRange().truncate(getBitWidth()); 221 } 222 223 void SCEVTruncateExpr::print(std::ostream &OS) const { 224 OS << "(truncate " << *Op << " to " << *Ty << ")"; 225 } 226 227 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 228 // particular input. Don't use a SCEVHandle here, or else the object will never 229 // be deleted! 230 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 231 SCEVZeroExtendExpr*> > SCEVZeroExtends; 232 233 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 234 : SCEV(scZeroExtend), Op(op), Ty(ty) { 235 assert(Op->getType()->isInteger() && Ty->isInteger() && 236 "Cannot zero extend non-integer value!"); 237 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 238 && "This is not an extending conversion!"); 239 } 240 241 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 242 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 243 } 244 245 ConstantRange SCEVZeroExtendExpr::getValueRange() const { 246 return getOperand()->getValueRange().zeroExtend(getBitWidth()); 247 } 248 249 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 250 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 251 } 252 253 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 254 // particular input. Don't use a SCEVHandle here, or else the object will never 255 // be deleted! 256 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 257 SCEVSignExtendExpr*> > SCEVSignExtends; 258 259 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 260 : SCEV(scSignExtend), Op(op), Ty(ty) { 261 assert(Op->getType()->isInteger() && Ty->isInteger() && 262 "Cannot sign extend non-integer value!"); 263 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 264 && "This is not an extending conversion!"); 265 } 266 267 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 268 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 269 } 270 271 ConstantRange SCEVSignExtendExpr::getValueRange() const { 272 return getOperand()->getValueRange().signExtend(getBitWidth()); 273 } 274 275 void SCEVSignExtendExpr::print(std::ostream &OS) const { 276 OS << "(signextend " << *Op << " to " << *Ty << ")"; 277 } 278 279 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 280 // particular input. Don't use a SCEVHandle here, or else the object will never 281 // be deleted! 282 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 283 SCEVCommutativeExpr*> > SCEVCommExprs; 284 285 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 286 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 287 std::vector<SCEV*>(Operands.begin(), 288 Operands.end()))); 289 } 290 291 void SCEVCommutativeExpr::print(std::ostream &OS) const { 292 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 293 const char *OpStr = getOperationStr(); 294 OS << "(" << *Operands[0]; 295 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 296 OS << OpStr << *Operands[i]; 297 OS << ")"; 298 } 299 300 SCEVHandle SCEVCommutativeExpr:: 301 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 302 const SCEVHandle &Conc, 303 ScalarEvolution &SE) const { 304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 305 SCEVHandle H = 306 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 307 if (H != getOperand(i)) { 308 std::vector<SCEVHandle> NewOps; 309 NewOps.reserve(getNumOperands()); 310 for (unsigned j = 0; j != i; ++j) 311 NewOps.push_back(getOperand(j)); 312 NewOps.push_back(H); 313 for (++i; i != e; ++i) 314 NewOps.push_back(getOperand(i)-> 315 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 316 317 if (isa<SCEVAddExpr>(this)) 318 return SE.getAddExpr(NewOps); 319 else if (isa<SCEVMulExpr>(this)) 320 return SE.getMulExpr(NewOps); 321 else 322 assert(0 && "Unknown commutative expr!"); 323 } 324 } 325 return this; 326 } 327 328 329 // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 333 SCEVSDivExpr*> > SCEVSDivs; 334 335 SCEVSDivExpr::~SCEVSDivExpr() { 336 SCEVSDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 void SCEVSDivExpr::print(std::ostream &OS) const { 340 OS << "(" << *LHS << " /s " << *RHS << ")"; 341 } 342 343 const Type *SCEVSDivExpr::getType() const { 344 return LHS->getType(); 345 } 346 347 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 348 // particular input. Don't use a SCEVHandle here, or else the object will never 349 // be deleted! 350 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 351 SCEVAddRecExpr*> > SCEVAddRecExprs; 352 353 SCEVAddRecExpr::~SCEVAddRecExpr() { 354 SCEVAddRecExprs->erase(std::make_pair(L, 355 std::vector<SCEV*>(Operands.begin(), 356 Operands.end()))); 357 } 358 359 SCEVHandle SCEVAddRecExpr:: 360 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 361 const SCEVHandle &Conc, 362 ScalarEvolution &SE) const { 363 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 364 SCEVHandle H = 365 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 366 if (H != getOperand(i)) { 367 std::vector<SCEVHandle> NewOps; 368 NewOps.reserve(getNumOperands()); 369 for (unsigned j = 0; j != i; ++j) 370 NewOps.push_back(getOperand(j)); 371 NewOps.push_back(H); 372 for (++i; i != e; ++i) 373 NewOps.push_back(getOperand(i)-> 374 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 375 376 return SE.getAddRecExpr(NewOps, L); 377 } 378 } 379 return this; 380 } 381 382 383 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 384 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 385 // contain L and if the start is invariant. 386 return !QueryLoop->contains(L->getHeader()) && 387 getOperand(0)->isLoopInvariant(QueryLoop); 388 } 389 390 391 void SCEVAddRecExpr::print(std::ostream &OS) const { 392 OS << "{" << *Operands[0]; 393 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 394 OS << ",+," << *Operands[i]; 395 OS << "}<" << L->getHeader()->getName() + ">"; 396 } 397 398 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 399 // value. Don't use a SCEVHandle here, or else the object will never be 400 // deleted! 401 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 402 403 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 404 405 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 406 // All non-instruction values are loop invariant. All instructions are loop 407 // invariant if they are not contained in the specified loop. 408 if (Instruction *I = dyn_cast<Instruction>(V)) 409 return !L->contains(I->getParent()); 410 return true; 411 } 412 413 const Type *SCEVUnknown::getType() const { 414 return V->getType(); 415 } 416 417 void SCEVUnknown::print(std::ostream &OS) const { 418 WriteAsOperand(OS, V, false); 419 } 420 421 //===----------------------------------------------------------------------===// 422 // SCEV Utilities 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 427 /// than the complexity of the RHS. This comparator is used to canonicalize 428 /// expressions. 429 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 430 bool operator()(SCEV *LHS, SCEV *RHS) { 431 return LHS->getSCEVType() < RHS->getSCEVType(); 432 } 433 }; 434 } 435 436 /// GroupByComplexity - Given a list of SCEV objects, order them by their 437 /// complexity, and group objects of the same complexity together by value. 438 /// When this routine is finished, we know that any duplicates in the vector are 439 /// consecutive and that complexity is monotonically increasing. 440 /// 441 /// Note that we go take special precautions to ensure that we get determinstic 442 /// results from this routine. In other words, we don't want the results of 443 /// this to depend on where the addresses of various SCEV objects happened to 444 /// land in memory. 445 /// 446 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 447 if (Ops.size() < 2) return; // Noop 448 if (Ops.size() == 2) { 449 // This is the common case, which also happens to be trivially simple. 450 // Special case it. 451 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) 452 std::swap(Ops[0], Ops[1]); 453 return; 454 } 455 456 // Do the rough sort by complexity. 457 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 458 459 // Now that we are sorted by complexity, group elements of the same 460 // complexity. Note that this is, at worst, N^2, but the vector is likely to 461 // be extremely short in practice. Note that we take this approach because we 462 // do not want to depend on the addresses of the objects we are grouping. 463 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 464 SCEV *S = Ops[i]; 465 unsigned Complexity = S->getSCEVType(); 466 467 // If there are any objects of the same complexity and same value as this 468 // one, group them. 469 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 470 if (Ops[j] == S) { // Found a duplicate. 471 // Move it to immediately after i'th element. 472 std::swap(Ops[i+1], Ops[j]); 473 ++i; // no need to rescan it. 474 if (i == e-2) return; // Done! 475 } 476 } 477 } 478 } 479 480 481 482 //===----------------------------------------------------------------------===// 483 // Simple SCEV method implementations 484 //===----------------------------------------------------------------------===// 485 486 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 487 /// specified signed integer value and return a SCEV for the constant. 488 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 489 Constant *C; 490 if (Val == 0) 491 C = Constant::getNullValue(Ty); 492 else if (Ty->isFloatingPoint()) 493 C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 494 APFloat::IEEEdouble, Val)); 495 else 496 C = ConstantInt::get(Ty, Val); 497 return getUnknown(C); 498 } 499 500 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 501 /// input value to the specified type. If the type must be extended, it is zero 502 /// extended. 503 static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty, 504 ScalarEvolution &SE) { 505 const Type *SrcTy = V->getType(); 506 assert(SrcTy->isInteger() && Ty->isInteger() && 507 "Cannot truncate or zero extend with non-integer arguments!"); 508 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 509 return V; // No conversion 510 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 511 return SE.getTruncateExpr(V, Ty); 512 return SE.getZeroExtendExpr(V, Ty); 513 } 514 515 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 516 /// 517 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 518 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 519 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 520 521 return getMulExpr(V, getIntegerSCEV(-1, V->getType())); 522 } 523 524 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 525 /// 526 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 527 const SCEVHandle &RHS) { 528 // X - Y --> X + -Y 529 return getAddExpr(LHS, getNegativeSCEV(RHS)); 530 } 531 532 533 /// PartialFact - Compute V!/(V-NumSteps)! 534 static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps, 535 ScalarEvolution &SE) { 536 // Handle this case efficiently, it is common to have constant iteration 537 // counts while computing loop exit values. 538 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 539 const APInt& Val = SC->getValue()->getValue(); 540 APInt Result(Val.getBitWidth(), 1); 541 for (; NumSteps; --NumSteps) 542 Result *= Val-(NumSteps-1); 543 return SE.getConstant(Result); 544 } 545 546 const Type *Ty = V->getType(); 547 if (NumSteps == 0) 548 return SE.getIntegerSCEV(1, Ty); 549 550 SCEVHandle Result = V; 551 for (unsigned i = 1; i != NumSteps; ++i) 552 Result = SE.getMulExpr(Result, SE.getMinusSCEV(V, 553 SE.getIntegerSCEV(i, Ty))); 554 return Result; 555 } 556 557 558 /// evaluateAtIteration - Return the value of this chain of recurrences at 559 /// the specified iteration number. We can evaluate this recurrence by 560 /// multiplying each element in the chain by the binomial coefficient 561 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 562 /// 563 /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) 564 /// 565 /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. 566 /// Is the binomial equation safe using modular arithmetic?? 567 /// 568 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 569 ScalarEvolution &SE) const { 570 SCEVHandle Result = getStart(); 571 int Divisor = 1; 572 const Type *Ty = It->getType(); 573 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 574 SCEVHandle BC = PartialFact(It, i, SE); 575 Divisor *= i; 576 SCEVHandle Val = SE.getSDivExpr(SE.getMulExpr(BC, getOperand(i)), 577 SE.getIntegerSCEV(Divisor,Ty)); 578 Result = SE.getAddExpr(Result, Val); 579 } 580 return Result; 581 } 582 583 584 //===----------------------------------------------------------------------===// 585 // SCEV Expression folder implementations 586 //===----------------------------------------------------------------------===// 587 588 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 589 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 590 return getUnknown( 591 ConstantExpr::getTrunc(SC->getValue(), Ty)); 592 593 // If the input value is a chrec scev made out of constants, truncate 594 // all of the constants. 595 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 596 std::vector<SCEVHandle> Operands; 597 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 598 // FIXME: This should allow truncation of other expression types! 599 if (isa<SCEVConstant>(AddRec->getOperand(i))) 600 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 601 else 602 break; 603 if (Operands.size() == AddRec->getNumOperands()) 604 return getAddRecExpr(Operands, AddRec->getLoop()); 605 } 606 607 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 608 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 609 return Result; 610 } 611 612 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 613 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 614 return getUnknown( 615 ConstantExpr::getZExt(SC->getValue(), Ty)); 616 617 // FIXME: If the input value is a chrec scev, and we can prove that the value 618 // did not overflow the old, smaller, value, we can zero extend all of the 619 // operands (often constants). This would allow analysis of something like 620 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 621 622 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 623 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 624 return Result; 625 } 626 627 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 628 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 629 return getUnknown( 630 ConstantExpr::getSExt(SC->getValue(), Ty)); 631 632 // FIXME: If the input value is a chrec scev, and we can prove that the value 633 // did not overflow the old, smaller, value, we can sign extend all of the 634 // operands (often constants). This would allow analysis of something like 635 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 636 637 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 638 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 639 return Result; 640 } 641 642 // get - Get a canonical add expression, or something simpler if possible. 643 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 644 assert(!Ops.empty() && "Cannot get empty add!"); 645 if (Ops.size() == 1) return Ops[0]; 646 647 // Sort by complexity, this groups all similar expression types together. 648 GroupByComplexity(Ops); 649 650 // If there are any constants, fold them together. 651 unsigned Idx = 0; 652 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 653 ++Idx; 654 assert(Idx < Ops.size()); 655 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 656 // We found two constants, fold them together! 657 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 658 RHSC->getValue()->getValue()); 659 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 660 Ops[0] = getConstant(CI); 661 Ops.erase(Ops.begin()+1); // Erase the folded element 662 if (Ops.size() == 1) return Ops[0]; 663 LHSC = cast<SCEVConstant>(Ops[0]); 664 } else { 665 // If we couldn't fold the expression, move to the next constant. Note 666 // that this is impossible to happen in practice because we always 667 // constant fold constant ints to constant ints. 668 ++Idx; 669 } 670 } 671 672 // If we are left with a constant zero being added, strip it off. 673 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 674 Ops.erase(Ops.begin()); 675 --Idx; 676 } 677 } 678 679 if (Ops.size() == 1) return Ops[0]; 680 681 // Okay, check to see if the same value occurs in the operand list twice. If 682 // so, merge them together into an multiply expression. Since we sorted the 683 // list, these values are required to be adjacent. 684 const Type *Ty = Ops[0]->getType(); 685 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 686 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 687 // Found a match, merge the two values into a multiply, and add any 688 // remaining values to the result. 689 SCEVHandle Two = getIntegerSCEV(2, Ty); 690 SCEVHandle Mul = getMulExpr(Ops[i], Two); 691 if (Ops.size() == 2) 692 return Mul; 693 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 694 Ops.push_back(Mul); 695 return getAddExpr(Ops); 696 } 697 698 // Now we know the first non-constant operand. Skip past any cast SCEVs. 699 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 700 ++Idx; 701 702 // If there are add operands they would be next. 703 if (Idx < Ops.size()) { 704 bool DeletedAdd = false; 705 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 706 // If we have an add, expand the add operands onto the end of the operands 707 // list. 708 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 709 Ops.erase(Ops.begin()+Idx); 710 DeletedAdd = true; 711 } 712 713 // If we deleted at least one add, we added operands to the end of the list, 714 // and they are not necessarily sorted. Recurse to resort and resimplify 715 // any operands we just aquired. 716 if (DeletedAdd) 717 return getAddExpr(Ops); 718 } 719 720 // Skip over the add expression until we get to a multiply. 721 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 722 ++Idx; 723 724 // If we are adding something to a multiply expression, make sure the 725 // something is not already an operand of the multiply. If so, merge it into 726 // the multiply. 727 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 728 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 729 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 730 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 731 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 732 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 733 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 734 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 735 if (Mul->getNumOperands() != 2) { 736 // If the multiply has more than two operands, we must get the 737 // Y*Z term. 738 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 739 MulOps.erase(MulOps.begin()+MulOp); 740 InnerMul = getMulExpr(MulOps); 741 } 742 SCEVHandle One = getIntegerSCEV(1, Ty); 743 SCEVHandle AddOne = getAddExpr(InnerMul, One); 744 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 745 if (Ops.size() == 2) return OuterMul; 746 if (AddOp < Idx) { 747 Ops.erase(Ops.begin()+AddOp); 748 Ops.erase(Ops.begin()+Idx-1); 749 } else { 750 Ops.erase(Ops.begin()+Idx); 751 Ops.erase(Ops.begin()+AddOp-1); 752 } 753 Ops.push_back(OuterMul); 754 return getAddExpr(Ops); 755 } 756 757 // Check this multiply against other multiplies being added together. 758 for (unsigned OtherMulIdx = Idx+1; 759 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 760 ++OtherMulIdx) { 761 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 762 // If MulOp occurs in OtherMul, we can fold the two multiplies 763 // together. 764 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 765 OMulOp != e; ++OMulOp) 766 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 767 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 768 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 769 if (Mul->getNumOperands() != 2) { 770 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 771 MulOps.erase(MulOps.begin()+MulOp); 772 InnerMul1 = getMulExpr(MulOps); 773 } 774 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 775 if (OtherMul->getNumOperands() != 2) { 776 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 777 OtherMul->op_end()); 778 MulOps.erase(MulOps.begin()+OMulOp); 779 InnerMul2 = getMulExpr(MulOps); 780 } 781 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 782 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 783 if (Ops.size() == 2) return OuterMul; 784 Ops.erase(Ops.begin()+Idx); 785 Ops.erase(Ops.begin()+OtherMulIdx-1); 786 Ops.push_back(OuterMul); 787 return getAddExpr(Ops); 788 } 789 } 790 } 791 } 792 793 // If there are any add recurrences in the operands list, see if any other 794 // added values are loop invariant. If so, we can fold them into the 795 // recurrence. 796 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 797 ++Idx; 798 799 // Scan over all recurrences, trying to fold loop invariants into them. 800 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 801 // Scan all of the other operands to this add and add them to the vector if 802 // they are loop invariant w.r.t. the recurrence. 803 std::vector<SCEVHandle> LIOps; 804 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 805 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 806 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 807 LIOps.push_back(Ops[i]); 808 Ops.erase(Ops.begin()+i); 809 --i; --e; 810 } 811 812 // If we found some loop invariants, fold them into the recurrence. 813 if (!LIOps.empty()) { 814 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } 815 LIOps.push_back(AddRec->getStart()); 816 817 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 818 AddRecOps[0] = getAddExpr(LIOps); 819 820 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 821 // If all of the other operands were loop invariant, we are done. 822 if (Ops.size() == 1) return NewRec; 823 824 // Otherwise, add the folded AddRec by the non-liv parts. 825 for (unsigned i = 0;; ++i) 826 if (Ops[i] == AddRec) { 827 Ops[i] = NewRec; 828 break; 829 } 830 return getAddExpr(Ops); 831 } 832 833 // Okay, if there weren't any loop invariants to be folded, check to see if 834 // there are multiple AddRec's with the same loop induction variable being 835 // added together. If so, we can fold them. 836 for (unsigned OtherIdx = Idx+1; 837 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 838 if (OtherIdx != Idx) { 839 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 840 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 841 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 842 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 843 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 844 if (i >= NewOps.size()) { 845 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 846 OtherAddRec->op_end()); 847 break; 848 } 849 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 850 } 851 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 852 853 if (Ops.size() == 2) return NewAddRec; 854 855 Ops.erase(Ops.begin()+Idx); 856 Ops.erase(Ops.begin()+OtherIdx-1); 857 Ops.push_back(NewAddRec); 858 return getAddExpr(Ops); 859 } 860 } 861 862 // Otherwise couldn't fold anything into this recurrence. Move onto the 863 // next one. 864 } 865 866 // Okay, it looks like we really DO need an add expr. Check to see if we 867 // already have one, otherwise create a new one. 868 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 869 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 870 SCEVOps)]; 871 if (Result == 0) Result = new SCEVAddExpr(Ops); 872 return Result; 873 } 874 875 876 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 877 assert(!Ops.empty() && "Cannot get empty mul!"); 878 879 // Sort by complexity, this groups all similar expression types together. 880 GroupByComplexity(Ops); 881 882 // If there are any constants, fold them together. 883 unsigned Idx = 0; 884 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 885 886 // C1*(C2+V) -> C1*C2 + C1*V 887 if (Ops.size() == 2) 888 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 889 if (Add->getNumOperands() == 2 && 890 isa<SCEVConstant>(Add->getOperand(0))) 891 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 892 getMulExpr(LHSC, Add->getOperand(1))); 893 894 895 ++Idx; 896 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 897 // We found two constants, fold them together! 898 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 899 RHSC->getValue()->getValue()); 900 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 901 Ops[0] = getConstant(CI); 902 Ops.erase(Ops.begin()+1); // Erase the folded element 903 if (Ops.size() == 1) return Ops[0]; 904 LHSC = cast<SCEVConstant>(Ops[0]); 905 } else { 906 // If we couldn't fold the expression, move to the next constant. Note 907 // that this is impossible to happen in practice because we always 908 // constant fold constant ints to constant ints. 909 ++Idx; 910 } 911 } 912 913 // If we are left with a constant one being multiplied, strip it off. 914 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 915 Ops.erase(Ops.begin()); 916 --Idx; 917 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 918 // If we have a multiply of zero, it will always be zero. 919 return Ops[0]; 920 } 921 } 922 923 // Skip over the add expression until we get to a multiply. 924 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 925 ++Idx; 926 927 if (Ops.size() == 1) 928 return Ops[0]; 929 930 // If there are mul operands inline them all into this expression. 931 if (Idx < Ops.size()) { 932 bool DeletedMul = false; 933 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 934 // If we have an mul, expand the mul operands onto the end of the operands 935 // list. 936 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 937 Ops.erase(Ops.begin()+Idx); 938 DeletedMul = true; 939 } 940 941 // If we deleted at least one mul, we added operands to the end of the list, 942 // and they are not necessarily sorted. Recurse to resort and resimplify 943 // any operands we just aquired. 944 if (DeletedMul) 945 return getMulExpr(Ops); 946 } 947 948 // If there are any add recurrences in the operands list, see if any other 949 // added values are loop invariant. If so, we can fold them into the 950 // recurrence. 951 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 952 ++Idx; 953 954 // Scan over all recurrences, trying to fold loop invariants into them. 955 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 956 // Scan all of the other operands to this mul and add them to the vector if 957 // they are loop invariant w.r.t. the recurrence. 958 std::vector<SCEVHandle> LIOps; 959 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 960 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 961 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 962 LIOps.push_back(Ops[i]); 963 Ops.erase(Ops.begin()+i); 964 --i; --e; 965 } 966 967 // If we found some loop invariants, fold them into the recurrence. 968 if (!LIOps.empty()) { 969 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } 970 std::vector<SCEVHandle> NewOps; 971 NewOps.reserve(AddRec->getNumOperands()); 972 if (LIOps.size() == 1) { 973 SCEV *Scale = LIOps[0]; 974 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 975 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 976 } else { 977 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 978 std::vector<SCEVHandle> MulOps(LIOps); 979 MulOps.push_back(AddRec->getOperand(i)); 980 NewOps.push_back(getMulExpr(MulOps)); 981 } 982 } 983 984 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 985 986 // If all of the other operands were loop invariant, we are done. 987 if (Ops.size() == 1) return NewRec; 988 989 // Otherwise, multiply the folded AddRec by the non-liv parts. 990 for (unsigned i = 0;; ++i) 991 if (Ops[i] == AddRec) { 992 Ops[i] = NewRec; 993 break; 994 } 995 return getMulExpr(Ops); 996 } 997 998 // Okay, if there weren't any loop invariants to be folded, check to see if 999 // there are multiple AddRec's with the same loop induction variable being 1000 // multiplied together. If so, we can fold them. 1001 for (unsigned OtherIdx = Idx+1; 1002 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1003 if (OtherIdx != Idx) { 1004 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1005 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1006 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1007 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1008 SCEVHandle NewStart = getMulExpr(F->getStart(), 1009 G->getStart()); 1010 SCEVHandle B = F->getStepRecurrence(*this); 1011 SCEVHandle D = G->getStepRecurrence(*this); 1012 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1013 getMulExpr(G, B), 1014 getMulExpr(B, D)); 1015 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1016 F->getLoop()); 1017 if (Ops.size() == 2) return NewAddRec; 1018 1019 Ops.erase(Ops.begin()+Idx); 1020 Ops.erase(Ops.begin()+OtherIdx-1); 1021 Ops.push_back(NewAddRec); 1022 return getMulExpr(Ops); 1023 } 1024 } 1025 1026 // Otherwise couldn't fold anything into this recurrence. Move onto the 1027 // next one. 1028 } 1029 1030 // Okay, it looks like we really DO need an mul expr. Check to see if we 1031 // already have one, otherwise create a new one. 1032 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1033 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1034 SCEVOps)]; 1035 if (Result == 0) 1036 Result = new SCEVMulExpr(Ops); 1037 return Result; 1038 } 1039 1040 SCEVHandle ScalarEvolution::getSDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1041 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1042 if (RHSC->getValue()->equalsInt(1)) 1043 return LHS; // X sdiv 1 --> x 1044 if (RHSC->getValue()->isAllOnesValue()) 1045 return getNegativeSCEV(LHS); // X sdiv -1 --> -x 1046 1047 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1048 Constant *LHSCV = LHSC->getValue(); 1049 Constant *RHSCV = RHSC->getValue(); 1050 return getUnknown(ConstantExpr::getSDiv(LHSCV, RHSCV)); 1051 } 1052 } 1053 1054 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1055 1056 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; 1057 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); 1058 return Result; 1059 } 1060 1061 1062 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1063 /// specified loop. Simplify the expression as much as possible. 1064 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1065 const SCEVHandle &Step, const Loop *L) { 1066 std::vector<SCEVHandle> Operands; 1067 Operands.push_back(Start); 1068 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1069 if (StepChrec->getLoop() == L) { 1070 Operands.insert(Operands.end(), StepChrec->op_begin(), 1071 StepChrec->op_end()); 1072 return getAddRecExpr(Operands, L); 1073 } 1074 1075 Operands.push_back(Step); 1076 return getAddRecExpr(Operands, L); 1077 } 1078 1079 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1080 /// specified loop. Simplify the expression as much as possible. 1081 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1082 const Loop *L) { 1083 if (Operands.size() == 1) return Operands[0]; 1084 1085 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) 1086 if (StepC->getValue()->isZero()) { 1087 Operands.pop_back(); 1088 return getAddRecExpr(Operands, L); // { X,+,0 } --> X 1089 } 1090 1091 SCEVAddRecExpr *&Result = 1092 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1093 Operands.end()))]; 1094 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1095 return Result; 1096 } 1097 1098 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1099 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1100 return getConstant(CI); 1101 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1102 if (Result == 0) Result = new SCEVUnknown(V); 1103 return Result; 1104 } 1105 1106 1107 //===----------------------------------------------------------------------===// 1108 // ScalarEvolutionsImpl Definition and Implementation 1109 //===----------------------------------------------------------------------===// 1110 // 1111 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1112 /// evolution code. 1113 /// 1114 namespace { 1115 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1116 /// SE - A reference to the public ScalarEvolution object. 1117 ScalarEvolution &SE; 1118 1119 /// F - The function we are analyzing. 1120 /// 1121 Function &F; 1122 1123 /// LI - The loop information for the function we are currently analyzing. 1124 /// 1125 LoopInfo &LI; 1126 1127 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1128 /// things. 1129 SCEVHandle UnknownValue; 1130 1131 /// Scalars - This is a cache of the scalars we have analyzed so far. 1132 /// 1133 std::map<Value*, SCEVHandle> Scalars; 1134 1135 /// IterationCounts - Cache the iteration count of the loops for this 1136 /// function as they are computed. 1137 std::map<const Loop*, SCEVHandle> IterationCounts; 1138 1139 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1140 /// the PHI instructions that we attempt to compute constant evolutions for. 1141 /// This allows us to avoid potentially expensive recomputation of these 1142 /// properties. An instruction maps to null if we are unable to compute its 1143 /// exit value. 1144 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1145 1146 public: 1147 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li) 1148 : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1149 1150 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1151 /// expression and create a new one. 1152 SCEVHandle getSCEV(Value *V); 1153 1154 /// hasSCEV - Return true if the SCEV for this value has already been 1155 /// computed. 1156 bool hasSCEV(Value *V) const { 1157 return Scalars.count(V); 1158 } 1159 1160 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1161 /// the specified value. 1162 void setSCEV(Value *V, const SCEVHandle &H) { 1163 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1164 assert(isNew && "This entry already existed!"); 1165 } 1166 1167 1168 /// getSCEVAtScope - Compute the value of the specified expression within 1169 /// the indicated loop (which may be null to indicate in no loop). If the 1170 /// expression cannot be evaluated, return UnknownValue itself. 1171 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1172 1173 1174 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1175 /// an analyzable loop-invariant iteration count. 1176 bool hasLoopInvariantIterationCount(const Loop *L); 1177 1178 /// getIterationCount - If the specified loop has a predictable iteration 1179 /// count, return it. Note that it is not valid to call this method on a 1180 /// loop without a loop-invariant iteration count. 1181 SCEVHandle getIterationCount(const Loop *L); 1182 1183 /// deleteValueFromRecords - This method should be called by the 1184 /// client before it removes a value from the program, to make sure 1185 /// that no dangling references are left around. 1186 void deleteValueFromRecords(Value *V); 1187 1188 private: 1189 /// createSCEV - We know that there is no SCEV for the specified value. 1190 /// Analyze the expression. 1191 SCEVHandle createSCEV(Value *V); 1192 1193 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1194 /// SCEVs. 1195 SCEVHandle createNodeForPHI(PHINode *PN); 1196 1197 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1198 /// for the specified instruction and replaces any references to the 1199 /// symbolic value SymName with the specified value. This is used during 1200 /// PHI resolution. 1201 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1202 const SCEVHandle &SymName, 1203 const SCEVHandle &NewVal); 1204 1205 /// ComputeIterationCount - Compute the number of times the specified loop 1206 /// will iterate. 1207 SCEVHandle ComputeIterationCount(const Loop *L); 1208 1209 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1210 /// 'setcc load X, cst', try to see if we can compute the trip count. 1211 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1212 Constant *RHS, 1213 const Loop *L, 1214 ICmpInst::Predicate p); 1215 1216 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1217 /// constant number of times (the condition evolves only from constants), 1218 /// try to evaluate a few iterations of the loop until we get the exit 1219 /// condition gets a value of ExitWhen (true or false). If we cannot 1220 /// evaluate the trip count of the loop, return UnknownValue. 1221 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1222 bool ExitWhen); 1223 1224 /// HowFarToZero - Return the number of times a backedge comparing the 1225 /// specified value to zero will execute. If not computable, return 1226 /// UnknownValue. 1227 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1228 1229 /// HowFarToNonZero - Return the number of times a backedge checking the 1230 /// specified value for nonzero will execute. If not computable, return 1231 /// UnknownValue. 1232 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1233 1234 /// HowManyLessThans - Return the number of times a backedge containing the 1235 /// specified less-than comparison will execute. If not computable, return 1236 /// UnknownValue. isSigned specifies whether the less-than is signed. 1237 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1238 bool isSigned); 1239 1240 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1241 /// in the header of its containing loop, we know the loop executes a 1242 /// constant number of times, and the PHI node is just a recurrence 1243 /// involving constants, fold it. 1244 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1245 const Loop *L); 1246 }; 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // Basic SCEV Analysis and PHI Idiom Recognition Code 1251 // 1252 1253 /// deleteValueFromRecords - This method should be called by the 1254 /// client before it removes an instruction from the program, to make sure 1255 /// that no dangling references are left around. 1256 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1257 SmallVector<Value *, 16> Worklist; 1258 1259 if (Scalars.erase(V)) { 1260 if (PHINode *PN = dyn_cast<PHINode>(V)) 1261 ConstantEvolutionLoopExitValue.erase(PN); 1262 Worklist.push_back(V); 1263 } 1264 1265 while (!Worklist.empty()) { 1266 Value *VV = Worklist.back(); 1267 Worklist.pop_back(); 1268 1269 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1270 UI != UE; ++UI) { 1271 Instruction *Inst = cast<Instruction>(*UI); 1272 if (Scalars.erase(Inst)) { 1273 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1274 ConstantEvolutionLoopExitValue.erase(PN); 1275 Worklist.push_back(Inst); 1276 } 1277 } 1278 } 1279 } 1280 1281 1282 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1283 /// expression and create a new one. 1284 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1285 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1286 1287 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1288 if (I != Scalars.end()) return I->second; 1289 SCEVHandle S = createSCEV(V); 1290 Scalars.insert(std::make_pair(V, S)); 1291 return S; 1292 } 1293 1294 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1295 /// the specified instruction and replaces any references to the symbolic value 1296 /// SymName with the specified value. This is used during PHI resolution. 1297 void ScalarEvolutionsImpl:: 1298 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1299 const SCEVHandle &NewVal) { 1300 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1301 if (SI == Scalars.end()) return; 1302 1303 SCEVHandle NV = 1304 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1305 if (NV == SI->second) return; // No change. 1306 1307 SI->second = NV; // Update the scalars map! 1308 1309 // Any instruction values that use this instruction might also need to be 1310 // updated! 1311 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1312 UI != E; ++UI) 1313 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1314 } 1315 1316 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1317 /// a loop header, making it a potential recurrence, or it doesn't. 1318 /// 1319 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1320 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1321 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1322 if (L->getHeader() == PN->getParent()) { 1323 // If it lives in the loop header, it has two incoming values, one 1324 // from outside the loop, and one from inside. 1325 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1326 unsigned BackEdge = IncomingEdge^1; 1327 1328 // While we are analyzing this PHI node, handle its value symbolically. 1329 SCEVHandle SymbolicName = SE.getUnknown(PN); 1330 assert(Scalars.find(PN) == Scalars.end() && 1331 "PHI node already processed?"); 1332 Scalars.insert(std::make_pair(PN, SymbolicName)); 1333 1334 // Using this symbolic name for the PHI, analyze the value coming around 1335 // the back-edge. 1336 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1337 1338 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1339 // has a special value for the first iteration of the loop. 1340 1341 // If the value coming around the backedge is an add with the symbolic 1342 // value we just inserted, then we found a simple induction variable! 1343 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1344 // If there is a single occurrence of the symbolic value, replace it 1345 // with a recurrence. 1346 unsigned FoundIndex = Add->getNumOperands(); 1347 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1348 if (Add->getOperand(i) == SymbolicName) 1349 if (FoundIndex == e) { 1350 FoundIndex = i; 1351 break; 1352 } 1353 1354 if (FoundIndex != Add->getNumOperands()) { 1355 // Create an add with everything but the specified operand. 1356 std::vector<SCEVHandle> Ops; 1357 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1358 if (i != FoundIndex) 1359 Ops.push_back(Add->getOperand(i)); 1360 SCEVHandle Accum = SE.getAddExpr(Ops); 1361 1362 // This is not a valid addrec if the step amount is varying each 1363 // loop iteration, but is not itself an addrec in this loop. 1364 if (Accum->isLoopInvariant(L) || 1365 (isa<SCEVAddRecExpr>(Accum) && 1366 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1367 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1368 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1369 1370 // Okay, for the entire analysis of this edge we assumed the PHI 1371 // to be symbolic. We now need to go back and update all of the 1372 // entries for the scalars that use the PHI (except for the PHI 1373 // itself) to use the new analyzed value instead of the "symbolic" 1374 // value. 1375 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1376 return PHISCEV; 1377 } 1378 } 1379 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1380 // Otherwise, this could be a loop like this: 1381 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1382 // In this case, j = {1,+,1} and BEValue is j. 1383 // Because the other in-value of i (0) fits the evolution of BEValue 1384 // i really is an addrec evolution. 1385 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1386 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1387 1388 // If StartVal = j.start - j.stride, we can use StartVal as the 1389 // initial step of the addrec evolution. 1390 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1391 AddRec->getOperand(1))) { 1392 SCEVHandle PHISCEV = 1393 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1394 1395 // Okay, for the entire analysis of this edge we assumed the PHI 1396 // to be symbolic. We now need to go back and update all of the 1397 // entries for the scalars that use the PHI (except for the PHI 1398 // itself) to use the new analyzed value instead of the "symbolic" 1399 // value. 1400 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1401 return PHISCEV; 1402 } 1403 } 1404 } 1405 1406 return SymbolicName; 1407 } 1408 1409 // If it's not a loop phi, we can't handle it yet. 1410 return SE.getUnknown(PN); 1411 } 1412 1413 /// GetConstantFactor - Determine the largest constant factor that S has. For 1414 /// example, turn {4,+,8} -> 4. (S umod result) should always equal zero. 1415 static APInt GetConstantFactor(SCEVHandle S) { 1416 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 1417 const APInt& V = C->getValue()->getValue(); 1418 if (!V.isMinValue()) 1419 return V; 1420 else // Zero is a multiple of everything. 1421 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1); 1422 } 1423 1424 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) { 1425 return GetConstantFactor(T->getOperand()).trunc( 1426 cast<IntegerType>(T->getType())->getBitWidth()); 1427 } 1428 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) 1429 return GetConstantFactor(E->getOperand()).zext( 1430 cast<IntegerType>(E->getType())->getBitWidth()); 1431 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) 1432 return GetConstantFactor(E->getOperand()).sext( 1433 cast<IntegerType>(E->getType())->getBitWidth()); 1434 1435 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1436 // The result is the min of all operands. 1437 APInt Res(GetConstantFactor(A->getOperand(0))); 1438 for (unsigned i = 1, e = A->getNumOperands(); 1439 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) { 1440 APInt Tmp(GetConstantFactor(A->getOperand(i))); 1441 Res = APIntOps::umin(Res, Tmp); 1442 } 1443 return Res; 1444 } 1445 1446 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1447 // The result is the product of all the operands. 1448 APInt Res(GetConstantFactor(M->getOperand(0))); 1449 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) { 1450 APInt Tmp(GetConstantFactor(M->getOperand(i))); 1451 Res *= Tmp; 1452 } 1453 return Res; 1454 } 1455 1456 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1457 // For now, we just handle linear expressions. 1458 if (A->getNumOperands() == 2) { 1459 // We want the GCD between the start and the stride value. 1460 APInt Start(GetConstantFactor(A->getOperand(0))); 1461 if (Start == 1) 1462 return Start; 1463 APInt Stride(GetConstantFactor(A->getOperand(1))); 1464 return APIntOps::GreatestCommonDivisor(Start, Stride); 1465 } 1466 } 1467 1468 // SCEVSDivExpr, SCEVUnknown. 1469 return APInt(S->getBitWidth(), 1); 1470 } 1471 1472 /// createSCEV - We know that there is no SCEV for the specified value. 1473 /// Analyze the expression. 1474 /// 1475 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1476 if (Instruction *I = dyn_cast<Instruction>(V)) { 1477 switch (I->getOpcode()) { 1478 case Instruction::Add: 1479 return SE.getAddExpr(getSCEV(I->getOperand(0)), 1480 getSCEV(I->getOperand(1))); 1481 case Instruction::Mul: 1482 return SE.getMulExpr(getSCEV(I->getOperand(0)), 1483 getSCEV(I->getOperand(1))); 1484 case Instruction::SDiv: 1485 return SE.getSDivExpr(getSCEV(I->getOperand(0)), 1486 getSCEV(I->getOperand(1))); 1487 case Instruction::Sub: 1488 return SE.getMinusSCEV(getSCEV(I->getOperand(0)), 1489 getSCEV(I->getOperand(1))); 1490 case Instruction::Or: 1491 // If the RHS of the Or is a constant, we may have something like: 1492 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1493 // optimizations will transparently handle this case. 1494 // 1495 // In order for this transformation to be safe, the LHS must be of the 1496 // form X*(2^n) and the Or constant must be less than 2^n. 1497 1498 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1499 SCEVHandle LHS = getSCEV(I->getOperand(0)); 1500 APInt CommonFact(GetConstantFactor(LHS)); 1501 assert(!CommonFact.isMinValue() && 1502 "Common factor should at least be 1!"); 1503 const APInt &CIVal = CI->getValue(); 1504 if (CommonFact.countTrailingZeros() >= 1505 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1506 return SE.getAddExpr(LHS, 1507 getSCEV(I->getOperand(1))); 1508 } 1509 break; 1510 case Instruction::Xor: 1511 // If the RHS of the xor is a signbit, then this is just an add. 1512 // Instcombine turns add of signbit into xor as a strength reduction step. 1513 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1514 if (CI->getValue().isSignBit()) 1515 return SE.getAddExpr(getSCEV(I->getOperand(0)), 1516 getSCEV(I->getOperand(1))); 1517 } 1518 break; 1519 1520 case Instruction::Shl: 1521 // Turn shift left of a constant amount into a multiply. 1522 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1523 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1524 Constant *X = ConstantInt::get( 1525 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1526 return SE.getMulExpr(getSCEV(I->getOperand(0)), getSCEV(X)); 1527 } 1528 break; 1529 1530 case Instruction::Trunc: 1531 return SE.getTruncateExpr(getSCEV(I->getOperand(0)), I->getType()); 1532 1533 case Instruction::ZExt: 1534 return SE.getZeroExtendExpr(getSCEV(I->getOperand(0)), I->getType()); 1535 1536 case Instruction::SExt: 1537 return SE.getSignExtendExpr(getSCEV(I->getOperand(0)), I->getType()); 1538 1539 case Instruction::BitCast: 1540 // BitCasts are no-op casts so we just eliminate the cast. 1541 if (I->getType()->isInteger() && 1542 I->getOperand(0)->getType()->isInteger()) 1543 return getSCEV(I->getOperand(0)); 1544 break; 1545 1546 case Instruction::PHI: 1547 return createNodeForPHI(cast<PHINode>(I)); 1548 1549 default: // We cannot analyze this expression. 1550 break; 1551 } 1552 } 1553 1554 return SE.getUnknown(V); 1555 } 1556 1557 1558 1559 //===----------------------------------------------------------------------===// 1560 // Iteration Count Computation Code 1561 // 1562 1563 /// getIterationCount - If the specified loop has a predictable iteration 1564 /// count, return it. Note that it is not valid to call this method on a 1565 /// loop without a loop-invariant iteration count. 1566 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1567 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1568 if (I == IterationCounts.end()) { 1569 SCEVHandle ItCount = ComputeIterationCount(L); 1570 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1571 if (ItCount != UnknownValue) { 1572 assert(ItCount->isLoopInvariant(L) && 1573 "Computed trip count isn't loop invariant for loop!"); 1574 ++NumTripCountsComputed; 1575 } else if (isa<PHINode>(L->getHeader()->begin())) { 1576 // Only count loops that have phi nodes as not being computable. 1577 ++NumTripCountsNotComputed; 1578 } 1579 } 1580 return I->second; 1581 } 1582 1583 /// ComputeIterationCount - Compute the number of times the specified loop 1584 /// will iterate. 1585 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1586 // If the loop has a non-one exit block count, we can't analyze it. 1587 SmallVector<BasicBlock*, 8> ExitBlocks; 1588 L->getExitBlocks(ExitBlocks); 1589 if (ExitBlocks.size() != 1) return UnknownValue; 1590 1591 // Okay, there is one exit block. Try to find the condition that causes the 1592 // loop to be exited. 1593 BasicBlock *ExitBlock = ExitBlocks[0]; 1594 1595 BasicBlock *ExitingBlock = 0; 1596 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1597 PI != E; ++PI) 1598 if (L->contains(*PI)) { 1599 if (ExitingBlock == 0) 1600 ExitingBlock = *PI; 1601 else 1602 return UnknownValue; // More than one block exiting! 1603 } 1604 assert(ExitingBlock && "No exits from loop, something is broken!"); 1605 1606 // Okay, we've computed the exiting block. See what condition causes us to 1607 // exit. 1608 // 1609 // FIXME: we should be able to handle switch instructions (with a single exit) 1610 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1611 if (ExitBr == 0) return UnknownValue; 1612 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1613 1614 // At this point, we know we have a conditional branch that determines whether 1615 // the loop is exited. However, we don't know if the branch is executed each 1616 // time through the loop. If not, then the execution count of the branch will 1617 // not be equal to the trip count of the loop. 1618 // 1619 // Currently we check for this by checking to see if the Exit branch goes to 1620 // the loop header. If so, we know it will always execute the same number of 1621 // times as the loop. We also handle the case where the exit block *is* the 1622 // loop header. This is common for un-rotated loops. More extensive analysis 1623 // could be done to handle more cases here. 1624 if (ExitBr->getSuccessor(0) != L->getHeader() && 1625 ExitBr->getSuccessor(1) != L->getHeader() && 1626 ExitBr->getParent() != L->getHeader()) 1627 return UnknownValue; 1628 1629 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 1630 1631 // If its not an integer comparison then compute it the hard way. 1632 // Note that ICmpInst deals with pointer comparisons too so we must check 1633 // the type of the operand. 1634 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 1635 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 1636 ExitBr->getSuccessor(0) == ExitBlock); 1637 1638 // If the condition was exit on true, convert the condition to exit on false 1639 ICmpInst::Predicate Cond; 1640 if (ExitBr->getSuccessor(1) == ExitBlock) 1641 Cond = ExitCond->getPredicate(); 1642 else 1643 Cond = ExitCond->getInversePredicate(); 1644 1645 // Handle common loops like: for (X = "string"; *X; ++X) 1646 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 1647 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 1648 SCEVHandle ItCnt = 1649 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 1650 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 1651 } 1652 1653 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 1654 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 1655 1656 // Try to evaluate any dependencies out of the loop. 1657 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 1658 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 1659 Tmp = getSCEVAtScope(RHS, L); 1660 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 1661 1662 // At this point, we would like to compute how many iterations of the 1663 // loop the predicate will return true for these inputs. 1664 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { 1665 // If there is a constant, force it into the RHS. 1666 std::swap(LHS, RHS); 1667 Cond = ICmpInst::getSwappedPredicate(Cond); 1668 } 1669 1670 // FIXME: think about handling pointer comparisons! i.e.: 1671 // while (P != P+100) ++P; 1672 1673 // If we have a comparison of a chrec against a constant, try to use value 1674 // ranges to answer this query. 1675 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 1676 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 1677 if (AddRec->getLoop() == L) { 1678 // Form the comparison range using the constant of the correct type so 1679 // that the ConstantRange class knows to do a signed or unsigned 1680 // comparison. 1681 ConstantInt *CompVal = RHSC->getValue(); 1682 const Type *RealTy = ExitCond->getOperand(0)->getType(); 1683 CompVal = dyn_cast<ConstantInt>( 1684 ConstantExpr::getBitCast(CompVal, RealTy)); 1685 if (CompVal) { 1686 // Form the constant range. 1687 ConstantRange CompRange( 1688 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 1689 1690 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 1691 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 1692 } 1693 } 1694 1695 switch (Cond) { 1696 case ICmpInst::ICMP_NE: { // while (X != Y) 1697 // Convert to: while (X-Y != 0) 1698 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 1699 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1700 break; 1701 } 1702 case ICmpInst::ICMP_EQ: { 1703 // Convert to: while (X-Y == 0) // while (X == Y) 1704 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 1705 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1706 break; 1707 } 1708 case ICmpInst::ICMP_SLT: { 1709 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 1710 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1711 break; 1712 } 1713 case ICmpInst::ICMP_SGT: { 1714 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS), 1715 SE.getNegativeSCEV(RHS), L, true); 1716 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1717 break; 1718 } 1719 case ICmpInst::ICMP_ULT: { 1720 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 1721 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1722 break; 1723 } 1724 case ICmpInst::ICMP_UGT: { 1725 SCEVHandle TC = HowManyLessThans(SE.getNegativeSCEV(LHS), 1726 SE.getNegativeSCEV(RHS), L, false); 1727 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1728 break; 1729 } 1730 default: 1731 #if 0 1732 cerr << "ComputeIterationCount "; 1733 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 1734 cerr << "[unsigned] "; 1735 cerr << *LHS << " " 1736 << Instruction::getOpcodeName(Instruction::ICmp) 1737 << " " << *RHS << "\n"; 1738 #endif 1739 break; 1740 } 1741 return ComputeIterationCountExhaustively(L, ExitCond, 1742 ExitBr->getSuccessor(0) == ExitBlock); 1743 } 1744 1745 static ConstantInt * 1746 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 1747 ScalarEvolution &SE) { 1748 SCEVHandle InVal = SE.getConstant(C); 1749 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 1750 assert(isa<SCEVConstant>(Val) && 1751 "Evaluation of SCEV at constant didn't fold correctly?"); 1752 return cast<SCEVConstant>(Val)->getValue(); 1753 } 1754 1755 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 1756 /// and a GEP expression (missing the pointer index) indexing into it, return 1757 /// the addressed element of the initializer or null if the index expression is 1758 /// invalid. 1759 static Constant * 1760 GetAddressedElementFromGlobal(GlobalVariable *GV, 1761 const std::vector<ConstantInt*> &Indices) { 1762 Constant *Init = GV->getInitializer(); 1763 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1764 uint64_t Idx = Indices[i]->getZExtValue(); 1765 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 1766 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 1767 Init = cast<Constant>(CS->getOperand(Idx)); 1768 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 1769 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 1770 Init = cast<Constant>(CA->getOperand(Idx)); 1771 } else if (isa<ConstantAggregateZero>(Init)) { 1772 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 1773 assert(Idx < STy->getNumElements() && "Bad struct index!"); 1774 Init = Constant::getNullValue(STy->getElementType(Idx)); 1775 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 1776 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 1777 Init = Constant::getNullValue(ATy->getElementType()); 1778 } else { 1779 assert(0 && "Unknown constant aggregate type!"); 1780 } 1781 return 0; 1782 } else { 1783 return 0; // Unknown initializer type 1784 } 1785 } 1786 return Init; 1787 } 1788 1789 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1790 /// 'setcc load X, cst', try to se if we can compute the trip count. 1791 SCEVHandle ScalarEvolutionsImpl:: 1792 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 1793 const Loop *L, 1794 ICmpInst::Predicate predicate) { 1795 if (LI->isVolatile()) return UnknownValue; 1796 1797 // Check to see if the loaded pointer is a getelementptr of a global. 1798 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 1799 if (!GEP) return UnknownValue; 1800 1801 // Make sure that it is really a constant global we are gepping, with an 1802 // initializer, and make sure the first IDX is really 0. 1803 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1804 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1805 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 1806 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 1807 return UnknownValue; 1808 1809 // Okay, we allow one non-constant index into the GEP instruction. 1810 Value *VarIdx = 0; 1811 std::vector<ConstantInt*> Indexes; 1812 unsigned VarIdxNum = 0; 1813 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 1814 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 1815 Indexes.push_back(CI); 1816 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 1817 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 1818 VarIdx = GEP->getOperand(i); 1819 VarIdxNum = i-2; 1820 Indexes.push_back(0); 1821 } 1822 1823 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 1824 // Check to see if X is a loop variant variable value now. 1825 SCEVHandle Idx = getSCEV(VarIdx); 1826 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 1827 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 1828 1829 // We can only recognize very limited forms of loop index expressions, in 1830 // particular, only affine AddRec's like {C1,+,C2}. 1831 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 1832 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 1833 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 1834 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 1835 return UnknownValue; 1836 1837 unsigned MaxSteps = MaxBruteForceIterations; 1838 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 1839 ConstantInt *ItCst = 1840 ConstantInt::get(IdxExpr->getType(), IterationNum); 1841 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 1842 1843 // Form the GEP offset. 1844 Indexes[VarIdxNum] = Val; 1845 1846 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 1847 if (Result == 0) break; // Cannot compute! 1848 1849 // Evaluate the condition for this iteration. 1850 Result = ConstantExpr::getICmp(predicate, Result, RHS); 1851 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 1852 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 1853 #if 0 1854 cerr << "\n***\n*** Computed loop count " << *ItCst 1855 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 1856 << "***\n"; 1857 #endif 1858 ++NumArrayLenItCounts; 1859 return SE.getConstant(ItCst); // Found terminating iteration! 1860 } 1861 } 1862 return UnknownValue; 1863 } 1864 1865 1866 /// CanConstantFold - Return true if we can constant fold an instruction of the 1867 /// specified type, assuming that all operands were constants. 1868 static bool CanConstantFold(const Instruction *I) { 1869 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 1870 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 1871 return true; 1872 1873 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1874 if (const Function *F = CI->getCalledFunction()) 1875 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast 1876 return false; 1877 } 1878 1879 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 1880 /// in the loop that V is derived from. We allow arbitrary operations along the 1881 /// way, but the operands of an operation must either be constants or a value 1882 /// derived from a constant PHI. If this expression does not fit with these 1883 /// constraints, return null. 1884 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 1885 // If this is not an instruction, or if this is an instruction outside of the 1886 // loop, it can't be derived from a loop PHI. 1887 Instruction *I = dyn_cast<Instruction>(V); 1888 if (I == 0 || !L->contains(I->getParent())) return 0; 1889 1890 if (PHINode *PN = dyn_cast<PHINode>(I)) 1891 if (L->getHeader() == I->getParent()) 1892 return PN; 1893 else 1894 // We don't currently keep track of the control flow needed to evaluate 1895 // PHIs, so we cannot handle PHIs inside of loops. 1896 return 0; 1897 1898 // If we won't be able to constant fold this expression even if the operands 1899 // are constants, return early. 1900 if (!CanConstantFold(I)) return 0; 1901 1902 // Otherwise, we can evaluate this instruction if all of its operands are 1903 // constant or derived from a PHI node themselves. 1904 PHINode *PHI = 0; 1905 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 1906 if (!(isa<Constant>(I->getOperand(Op)) || 1907 isa<GlobalValue>(I->getOperand(Op)))) { 1908 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 1909 if (P == 0) return 0; // Not evolving from PHI 1910 if (PHI == 0) 1911 PHI = P; 1912 else if (PHI != P) 1913 return 0; // Evolving from multiple different PHIs. 1914 } 1915 1916 // This is a expression evolving from a constant PHI! 1917 return PHI; 1918 } 1919 1920 /// EvaluateExpression - Given an expression that passes the 1921 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 1922 /// in the loop has the value PHIVal. If we can't fold this expression for some 1923 /// reason, return null. 1924 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 1925 if (isa<PHINode>(V)) return PHIVal; 1926 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) 1927 return GV; 1928 if (Constant *C = dyn_cast<Constant>(V)) return C; 1929 Instruction *I = cast<Instruction>(V); 1930 1931 std::vector<Constant*> Operands; 1932 Operands.resize(I->getNumOperands()); 1933 1934 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 1935 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 1936 if (Operands[i] == 0) return 0; 1937 } 1938 1939 return ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 1940 } 1941 1942 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1943 /// in the header of its containing loop, we know the loop executes a 1944 /// constant number of times, and the PHI node is just a recurrence 1945 /// involving constants, fold it. 1946 Constant *ScalarEvolutionsImpl:: 1947 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 1948 std::map<PHINode*, Constant*>::iterator I = 1949 ConstantEvolutionLoopExitValue.find(PN); 1950 if (I != ConstantEvolutionLoopExitValue.end()) 1951 return I->second; 1952 1953 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 1954 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 1955 1956 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 1957 1958 // Since the loop is canonicalized, the PHI node must have two entries. One 1959 // entry must be a constant (coming in from outside of the loop), and the 1960 // second must be derived from the same PHI. 1961 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1962 Constant *StartCST = 1963 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1964 if (StartCST == 0) 1965 return RetVal = 0; // Must be a constant. 1966 1967 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 1968 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 1969 if (PN2 != PN) 1970 return RetVal = 0; // Not derived from same PHI. 1971 1972 // Execute the loop symbolically to determine the exit value. 1973 if (Its.getActiveBits() >= 32) 1974 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 1975 1976 unsigned NumIterations = Its.getZExtValue(); // must be in range 1977 unsigned IterationNum = 0; 1978 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 1979 if (IterationNum == NumIterations) 1980 return RetVal = PHIVal; // Got exit value! 1981 1982 // Compute the value of the PHI node for the next iteration. 1983 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 1984 if (NextPHI == PHIVal) 1985 return RetVal = NextPHI; // Stopped evolving! 1986 if (NextPHI == 0) 1987 return 0; // Couldn't evaluate! 1988 PHIVal = NextPHI; 1989 } 1990 } 1991 1992 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1993 /// constant number of times (the condition evolves only from constants), 1994 /// try to evaluate a few iterations of the loop until we get the exit 1995 /// condition gets a value of ExitWhen (true or false). If we cannot 1996 /// evaluate the trip count of the loop, return UnknownValue. 1997 SCEVHandle ScalarEvolutionsImpl:: 1998 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 1999 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2000 if (PN == 0) return UnknownValue; 2001 2002 // Since the loop is canonicalized, the PHI node must have two entries. One 2003 // entry must be a constant (coming in from outside of the loop), and the 2004 // second must be derived from the same PHI. 2005 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2006 Constant *StartCST = 2007 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2008 if (StartCST == 0) return UnknownValue; // Must be a constant. 2009 2010 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2011 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2012 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2013 2014 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2015 // the loop symbolically to determine when the condition gets a value of 2016 // "ExitWhen". 2017 unsigned IterationNum = 0; 2018 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2019 for (Constant *PHIVal = StartCST; 2020 IterationNum != MaxIterations; ++IterationNum) { 2021 ConstantInt *CondVal = 2022 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2023 2024 // Couldn't symbolically evaluate. 2025 if (!CondVal) return UnknownValue; 2026 2027 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2028 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2029 ++NumBruteForceTripCountsComputed; 2030 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2031 } 2032 2033 // Compute the value of the PHI node for the next iteration. 2034 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2035 if (NextPHI == 0 || NextPHI == PHIVal) 2036 return UnknownValue; // Couldn't evaluate or not making progress... 2037 PHIVal = NextPHI; 2038 } 2039 2040 // Too many iterations were needed to evaluate. 2041 return UnknownValue; 2042 } 2043 2044 /// getSCEVAtScope - Compute the value of the specified expression within the 2045 /// indicated loop (which may be null to indicate in no loop). If the 2046 /// expression cannot be evaluated, return UnknownValue. 2047 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2048 // FIXME: this should be turned into a virtual method on SCEV! 2049 2050 if (isa<SCEVConstant>(V)) return V; 2051 2052 // If this instruction is evolves from a constant-evolving PHI, compute the 2053 // exit value from the loop without using SCEVs. 2054 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2055 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2056 const Loop *LI = this->LI[I->getParent()]; 2057 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2058 if (PHINode *PN = dyn_cast<PHINode>(I)) 2059 if (PN->getParent() == LI->getHeader()) { 2060 // Okay, there is no closed form solution for the PHI node. Check 2061 // to see if the loop that contains it has a known iteration count. 2062 // If so, we may be able to force computation of the exit value. 2063 SCEVHandle IterationCount = getIterationCount(LI); 2064 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2065 // Okay, we know how many times the containing loop executes. If 2066 // this is a constant evolving PHI node, get the final value at 2067 // the specified iteration number. 2068 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2069 ICC->getValue()->getValue(), 2070 LI); 2071 if (RV) return SE.getUnknown(RV); 2072 } 2073 } 2074 2075 // Okay, this is an expression that we cannot symbolically evaluate 2076 // into a SCEV. Check to see if it's possible to symbolically evaluate 2077 // the arguments into constants, and if so, try to constant propagate the 2078 // result. This is particularly useful for computing loop exit values. 2079 if (CanConstantFold(I)) { 2080 std::vector<Constant*> Operands; 2081 Operands.reserve(I->getNumOperands()); 2082 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2083 Value *Op = I->getOperand(i); 2084 if (Constant *C = dyn_cast<Constant>(Op)) { 2085 Operands.push_back(C); 2086 } else { 2087 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2088 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2089 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2090 Op->getType(), 2091 false)); 2092 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2093 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2094 Operands.push_back(ConstantExpr::getIntegerCast(C, 2095 Op->getType(), 2096 false)); 2097 else 2098 return V; 2099 } else { 2100 return V; 2101 } 2102 } 2103 } 2104 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 2105 return SE.getUnknown(C); 2106 } 2107 } 2108 2109 // This is some other type of SCEVUnknown, just return it. 2110 return V; 2111 } 2112 2113 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2114 // Avoid performing the look-up in the common case where the specified 2115 // expression has no loop-variant portions. 2116 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2117 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2118 if (OpAtScope != Comm->getOperand(i)) { 2119 if (OpAtScope == UnknownValue) return UnknownValue; 2120 // Okay, at least one of these operands is loop variant but might be 2121 // foldable. Build a new instance of the folded commutative expression. 2122 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2123 NewOps.push_back(OpAtScope); 2124 2125 for (++i; i != e; ++i) { 2126 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2127 if (OpAtScope == UnknownValue) return UnknownValue; 2128 NewOps.push_back(OpAtScope); 2129 } 2130 if (isa<SCEVAddExpr>(Comm)) 2131 return SE.getAddExpr(NewOps); 2132 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); 2133 return SE.getMulExpr(NewOps); 2134 } 2135 } 2136 // If we got here, all operands are loop invariant. 2137 return Comm; 2138 } 2139 2140 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) { 2141 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2142 if (LHS == UnknownValue) return LHS; 2143 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2144 if (RHS == UnknownValue) return RHS; 2145 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2146 return Div; // must be loop invariant 2147 return SE.getSDivExpr(LHS, RHS); 2148 } 2149 2150 // If this is a loop recurrence for a loop that does not contain L, then we 2151 // are dealing with the final value computed by the loop. 2152 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2153 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2154 // To evaluate this recurrence, we need to know how many times the AddRec 2155 // loop iterates. Compute this now. 2156 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2157 if (IterationCount == UnknownValue) return UnknownValue; 2158 IterationCount = getTruncateOrZeroExtend(IterationCount, 2159 AddRec->getType(), SE); 2160 2161 // If the value is affine, simplify the expression evaluation to just 2162 // Start + Step*IterationCount. 2163 if (AddRec->isAffine()) 2164 return SE.getAddExpr(AddRec->getStart(), 2165 SE.getMulExpr(IterationCount, 2166 AddRec->getOperand(1))); 2167 2168 // Otherwise, evaluate it the hard way. 2169 return AddRec->evaluateAtIteration(IterationCount, SE); 2170 } 2171 return UnknownValue; 2172 } 2173 2174 //assert(0 && "Unknown SCEV type!"); 2175 return UnknownValue; 2176 } 2177 2178 2179 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2180 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2181 /// might be the same) or two SCEVCouldNotCompute objects. 2182 /// 2183 static std::pair<SCEVHandle,SCEVHandle> 2184 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2185 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2186 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2187 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2188 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2189 2190 // We currently can only solve this if the coefficients are constants. 2191 if (!LC || !MC || !NC) { 2192 SCEV *CNC = new SCEVCouldNotCompute(); 2193 return std::make_pair(CNC, CNC); 2194 } 2195 2196 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2197 const APInt &L = LC->getValue()->getValue(); 2198 const APInt &M = MC->getValue()->getValue(); 2199 const APInt &N = NC->getValue()->getValue(); 2200 APInt Two(BitWidth, 2); 2201 APInt Four(BitWidth, 4); 2202 2203 { 2204 using namespace APIntOps; 2205 const APInt& C = L; 2206 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2207 // The B coefficient is M-N/2 2208 APInt B(M); 2209 B -= sdiv(N,Two); 2210 2211 // The A coefficient is N/2 2212 APInt A(N.sdiv(Two)); 2213 2214 // Compute the B^2-4ac term. 2215 APInt SqrtTerm(B); 2216 SqrtTerm *= B; 2217 SqrtTerm -= Four * (A * C); 2218 2219 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2220 // integer value or else APInt::sqrt() will assert. 2221 APInt SqrtVal(SqrtTerm.sqrt()); 2222 2223 // Compute the two solutions for the quadratic formula. 2224 // The divisions must be performed as signed divisions. 2225 APInt NegB(-B); 2226 APInt TwoA( A << 1 ); 2227 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2228 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2229 2230 return std::make_pair(SE.getConstant(Solution1), 2231 SE.getConstant(Solution2)); 2232 } // end APIntOps namespace 2233 } 2234 2235 /// HowFarToZero - Return the number of times a backedge comparing the specified 2236 /// value to zero will execute. If not computable, return UnknownValue 2237 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2238 // If the value is a constant 2239 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2240 // If the value is already zero, the branch will execute zero times. 2241 if (C->getValue()->isZero()) return C; 2242 return UnknownValue; // Otherwise it will loop infinitely. 2243 } 2244 2245 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2246 if (!AddRec || AddRec->getLoop() != L) 2247 return UnknownValue; 2248 2249 if (AddRec->isAffine()) { 2250 // If this is an affine expression the execution count of this branch is 2251 // equal to: 2252 // 2253 // (0 - Start/Step) iff Start % Step == 0 2254 // 2255 // Get the initial value for the loop. 2256 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2257 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2258 SCEVHandle Step = AddRec->getOperand(1); 2259 2260 Step = getSCEVAtScope(Step, L->getParentLoop()); 2261 2262 // Figure out if Start % Step == 0. 2263 // FIXME: We should add DivExpr and RemExpr operations to our AST. 2264 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2265 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 2266 return SE.getNegativeSCEV(Start); // 0 - Start/1 == -Start 2267 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 2268 return Start; // 0 - Start/-1 == Start 2269 2270 // Check to see if Start is divisible by SC with no remainder. 2271 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 2272 ConstantInt *StartCC = StartC->getValue(); 2273 Constant *StartNegC = ConstantExpr::getNeg(StartCC); 2274 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue()); 2275 if (Rem->isNullValue()) { 2276 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue()); 2277 return SE.getUnknown(Result); 2278 } 2279 } 2280 } 2281 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2282 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2283 // the quadratic equation to solve it. 2284 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2285 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2286 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2287 if (R1) { 2288 #if 0 2289 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2290 << " sol#2: " << *R2 << "\n"; 2291 #endif 2292 // Pick the smallest positive root value. 2293 if (ConstantInt *CB = 2294 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2295 R1->getValue(), R2->getValue()))) { 2296 if (CB->getZExtValue() == false) 2297 std::swap(R1, R2); // R1 is the minimum root now. 2298 2299 // We can only use this value if the chrec ends up with an exact zero 2300 // value at this index. When solving for "X*X != 5", for example, we 2301 // should not accept a root of 2. 2302 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2303 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) 2304 if (EvalVal->getValue()->isZero()) 2305 return R1; // We found a quadratic root! 2306 } 2307 } 2308 } 2309 2310 return UnknownValue; 2311 } 2312 2313 /// HowFarToNonZero - Return the number of times a backedge checking the 2314 /// specified value for nonzero will execute. If not computable, return 2315 /// UnknownValue 2316 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2317 // Loops that look like: while (X == 0) are very strange indeed. We don't 2318 // handle them yet except for the trivial case. This could be expanded in the 2319 // future as needed. 2320 2321 // If the value is a constant, check to see if it is known to be non-zero 2322 // already. If so, the backedge will execute zero times. 2323 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2324 Constant *Zero = Constant::getNullValue(C->getValue()->getType()); 2325 Constant *NonZero = 2326 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero); 2327 if (NonZero == ConstantInt::getTrue()) 2328 return getSCEV(Zero); 2329 return UnknownValue; // Otherwise it will loop infinitely. 2330 } 2331 2332 // We could implement others, but I really doubt anyone writes loops like 2333 // this, and if they did, they would already be constant folded. 2334 return UnknownValue; 2335 } 2336 2337 /// HowManyLessThans - Return the number of times a backedge containing the 2338 /// specified less-than comparison will execute. If not computable, return 2339 /// UnknownValue. 2340 SCEVHandle ScalarEvolutionsImpl:: 2341 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 2342 // Only handle: "ADDREC < LoopInvariant". 2343 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2344 2345 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2346 if (!AddRec || AddRec->getLoop() != L) 2347 return UnknownValue; 2348 2349 if (AddRec->isAffine()) { 2350 // FORNOW: We only support unit strides. 2351 SCEVHandle Zero = SE.getIntegerSCEV(0, RHS->getType()); 2352 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 2353 if (AddRec->getOperand(1) != One) 2354 return UnknownValue; 2355 2356 // The number of iterations for "{n,+,1} < m", is m-n. However, we don't 2357 // know that m is >= n on input to the loop. If it is, the condition return 2358 // true zero times. What we really should return, for full generality, is 2359 // SMAX(0, m-n). Since we cannot check this, we will instead check for a 2360 // canonical loop form: most do-loops will have a check that dominates the 2361 // loop, that only enters the loop if (n-1)<m. If we can find this check, 2362 // we know that the SMAX will evaluate to m-n, because we know that m >= n. 2363 2364 // Search for the check. 2365 BasicBlock *Preheader = L->getLoopPreheader(); 2366 BasicBlock *PreheaderDest = L->getHeader(); 2367 if (Preheader == 0) return UnknownValue; 2368 2369 BranchInst *LoopEntryPredicate = 2370 dyn_cast<BranchInst>(Preheader->getTerminator()); 2371 if (!LoopEntryPredicate) return UnknownValue; 2372 2373 // This might be a critical edge broken out. If the loop preheader ends in 2374 // an unconditional branch to the loop, check to see if the preheader has a 2375 // single predecessor, and if so, look for its terminator. 2376 while (LoopEntryPredicate->isUnconditional()) { 2377 PreheaderDest = Preheader; 2378 Preheader = Preheader->getSinglePredecessor(); 2379 if (!Preheader) return UnknownValue; // Multiple preds. 2380 2381 LoopEntryPredicate = 2382 dyn_cast<BranchInst>(Preheader->getTerminator()); 2383 if (!LoopEntryPredicate) return UnknownValue; 2384 } 2385 2386 // Now that we found a conditional branch that dominates the loop, check to 2387 // see if it is the comparison we are looking for. 2388 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){ 2389 Value *PreCondLHS = ICI->getOperand(0); 2390 Value *PreCondRHS = ICI->getOperand(1); 2391 ICmpInst::Predicate Cond; 2392 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2393 Cond = ICI->getPredicate(); 2394 else 2395 Cond = ICI->getInversePredicate(); 2396 2397 switch (Cond) { 2398 case ICmpInst::ICMP_UGT: 2399 if (isSigned) return UnknownValue; 2400 std::swap(PreCondLHS, PreCondRHS); 2401 Cond = ICmpInst::ICMP_ULT; 2402 break; 2403 case ICmpInst::ICMP_SGT: 2404 if (!isSigned) return UnknownValue; 2405 std::swap(PreCondLHS, PreCondRHS); 2406 Cond = ICmpInst::ICMP_SLT; 2407 break; 2408 case ICmpInst::ICMP_ULT: 2409 if (isSigned) return UnknownValue; 2410 break; 2411 case ICmpInst::ICMP_SLT: 2412 if (!isSigned) return UnknownValue; 2413 break; 2414 default: 2415 return UnknownValue; 2416 } 2417 2418 if (PreCondLHS->getType()->isInteger()) { 2419 if (RHS != getSCEV(PreCondRHS)) 2420 return UnknownValue; // Not a comparison against 'm'. 2421 2422 if (SE.getMinusSCEV(AddRec->getOperand(0), One) 2423 != getSCEV(PreCondLHS)) 2424 return UnknownValue; // Not a comparison against 'n-1'. 2425 } 2426 else return UnknownValue; 2427 2428 // cerr << "Computed Loop Trip Count as: " 2429 // << // *SE.getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; 2430 return SE.getMinusSCEV(RHS, AddRec->getOperand(0)); 2431 } 2432 else 2433 return UnknownValue; 2434 } 2435 2436 return UnknownValue; 2437 } 2438 2439 /// getNumIterationsInRange - Return the number of iterations of this loop that 2440 /// produce values in the specified constant range. Another way of looking at 2441 /// this is that it returns the first iteration number where the value is not in 2442 /// the condition, thus computing the exit count. If the iteration count can't 2443 /// be computed, an instance of SCEVCouldNotCompute is returned. 2444 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2445 ScalarEvolution &SE) const { 2446 if (Range.isFullSet()) // Infinite loop. 2447 return new SCEVCouldNotCompute(); 2448 2449 // If the start is a non-zero constant, shift the range to simplify things. 2450 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2451 if (!SC->getValue()->isZero()) { 2452 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2453 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 2454 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 2455 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2456 return ShiftedAddRec->getNumIterationsInRange( 2457 Range.subtract(SC->getValue()->getValue()), SE); 2458 // This is strange and shouldn't happen. 2459 return new SCEVCouldNotCompute(); 2460 } 2461 2462 // The only time we can solve this is when we have all constant indices. 2463 // Otherwise, we cannot determine the overflow conditions. 2464 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2465 if (!isa<SCEVConstant>(getOperand(i))) 2466 return new SCEVCouldNotCompute(); 2467 2468 2469 // Okay at this point we know that all elements of the chrec are constants and 2470 // that the start element is zero. 2471 2472 // First check to see if the range contains zero. If not, the first 2473 // iteration exits. 2474 if (!Range.contains(APInt(getBitWidth(),0))) 2475 return SE.getConstant(ConstantInt::get(getType(),0)); 2476 2477 if (isAffine()) { 2478 // If this is an affine expression then we have this situation: 2479 // Solve {0,+,A} in Range === Ax in Range 2480 2481 // We know that zero is in the range. If A is positive then we know that 2482 // the upper value of the range must be the first possible exit value. 2483 // If A is negative then the lower of the range is the last possible loop 2484 // value. Also note that we already checked for a full range. 2485 APInt One(getBitWidth(),1); 2486 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2487 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 2488 2489 // The exit value should be (End+A)/A. 2490 APInt ExitVal = (End + A).udiv(A); 2491 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2492 2493 // Evaluate at the exit value. If we really did fall out of the valid 2494 // range, then we computed our trip count, otherwise wrap around or other 2495 // things must have happened. 2496 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 2497 if (Range.contains(Val->getValue())) 2498 return new SCEVCouldNotCompute(); // Something strange happened 2499 2500 // Ensure that the previous value is in the range. This is a sanity check. 2501 assert(Range.contains( 2502 EvaluateConstantChrecAtConstant(this, 2503 ConstantInt::get(ExitVal - One), SE)->getValue()) && 2504 "Linear scev computation is off in a bad way!"); 2505 return SE.getConstant(ExitValue); 2506 } else if (isQuadratic()) { 2507 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2508 // quadratic equation to solve it. To do this, we must frame our problem in 2509 // terms of figuring out when zero is crossed, instead of when 2510 // Range.getUpper() is crossed. 2511 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2512 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 2513 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 2514 2515 // Next, solve the constructed addrec 2516 std::pair<SCEVHandle,SCEVHandle> Roots = 2517 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 2518 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2519 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2520 if (R1) { 2521 // Pick the smallest positive root value. 2522 if (ConstantInt *CB = 2523 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2524 R1->getValue(), R2->getValue()))) { 2525 if (CB->getZExtValue() == false) 2526 std::swap(R1, R2); // R1 is the minimum root now. 2527 2528 // Make sure the root is not off by one. The returned iteration should 2529 // not be in the range, but the previous one should be. When solving 2530 // for "X*X < 5", for example, we should not return a root of 2. 2531 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 2532 R1->getValue(), 2533 SE); 2534 if (Range.contains(R1Val->getValue())) { 2535 // The next iteration must be out of the range... 2536 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 2537 2538 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2539 if (!Range.contains(R1Val->getValue())) 2540 return SE.getConstant(NextVal); 2541 return new SCEVCouldNotCompute(); // Something strange happened 2542 } 2543 2544 // If R1 was not in the range, then it is a good return value. Make 2545 // sure that R1-1 WAS in the range though, just in case. 2546 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 2547 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 2548 if (Range.contains(R1Val->getValue())) 2549 return R1; 2550 return new SCEVCouldNotCompute(); // Something strange happened 2551 } 2552 } 2553 } 2554 2555 // Fallback, if this is a general polynomial, figure out the progression 2556 // through brute force: evaluate until we find an iteration that fails the 2557 // test. This is likely to be slow, but getting an accurate trip count is 2558 // incredibly important, we will be able to simplify the exit test a lot, and 2559 // we are almost guaranteed to get a trip count in this case. 2560 ConstantInt *TestVal = ConstantInt::get(getType(), 0); 2561 ConstantInt *EndVal = TestVal; // Stop when we wrap around. 2562 do { 2563 ++NumBruteForceEvaluations; 2564 SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE); 2565 if (!isa<SCEVConstant>(Val)) // This shouldn't happen. 2566 return new SCEVCouldNotCompute(); 2567 2568 // Check to see if we found the value! 2569 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) 2570 return SE.getConstant(TestVal); 2571 2572 // Increment to test the next index. 2573 TestVal = ConstantInt::get(TestVal->getValue()+1); 2574 } while (TestVal != EndVal); 2575 2576 return new SCEVCouldNotCompute(); 2577 } 2578 2579 2580 2581 //===----------------------------------------------------------------------===// 2582 // ScalarEvolution Class Implementation 2583 //===----------------------------------------------------------------------===// 2584 2585 bool ScalarEvolution::runOnFunction(Function &F) { 2586 Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>()); 2587 return false; 2588 } 2589 2590 void ScalarEvolution::releaseMemory() { 2591 delete (ScalarEvolutionsImpl*)Impl; 2592 Impl = 0; 2593 } 2594 2595 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 2596 AU.setPreservesAll(); 2597 AU.addRequiredTransitive<LoopInfo>(); 2598 } 2599 2600 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 2601 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 2602 } 2603 2604 /// hasSCEV - Return true if the SCEV for this value has already been 2605 /// computed. 2606 bool ScalarEvolution::hasSCEV(Value *V) const { 2607 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 2608 } 2609 2610 2611 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 2612 /// the specified value. 2613 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 2614 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 2615 } 2616 2617 2618 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 2619 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 2620 } 2621 2622 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 2623 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 2624 } 2625 2626 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 2627 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 2628 } 2629 2630 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 2631 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 2632 } 2633 2634 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 2635 const Loop *L) { 2636 // Print all inner loops first 2637 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 2638 PrintLoopInfo(OS, SE, *I); 2639 2640 cerr << "Loop " << L->getHeader()->getName() << ": "; 2641 2642 SmallVector<BasicBlock*, 8> ExitBlocks; 2643 L->getExitBlocks(ExitBlocks); 2644 if (ExitBlocks.size() != 1) 2645 cerr << "<multiple exits> "; 2646 2647 if (SE->hasLoopInvariantIterationCount(L)) { 2648 cerr << *SE->getIterationCount(L) << " iterations! "; 2649 } else { 2650 cerr << "Unpredictable iteration count. "; 2651 } 2652 2653 cerr << "\n"; 2654 } 2655 2656 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 2657 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 2658 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 2659 2660 OS << "Classifying expressions for: " << F.getName() << "\n"; 2661 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 2662 if (I->getType()->isInteger()) { 2663 OS << *I; 2664 OS << " --> "; 2665 SCEVHandle SV = getSCEV(&*I); 2666 SV->print(OS); 2667 OS << "\t\t"; 2668 2669 if ((*I).getType()->isInteger()) { 2670 ConstantRange Bounds = SV->getValueRange(); 2671 if (!Bounds.isFullSet()) 2672 OS << "Bounds: " << Bounds << " "; 2673 } 2674 2675 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 2676 OS << "Exits: "; 2677 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 2678 if (isa<SCEVCouldNotCompute>(ExitValue)) { 2679 OS << "<<Unknown>>"; 2680 } else { 2681 OS << *ExitValue; 2682 } 2683 } 2684 2685 2686 OS << "\n"; 2687 } 2688 2689 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 2690 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 2691 PrintLoopInfo(OS, this, *I); 2692 } 2693