1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 static RegisterPass<ScalarEvolution> 107 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 262 if (!getOperand(i)->dominates(BB, DT)) 263 return false; 264 } 265 return true; 266 } 267 268 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 270 if (!getOperand(i)->properlyDominates(BB, DT)) 271 return false; 272 } 273 return true; 274 } 275 276 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 278 } 279 280 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 282 } 283 284 void SCEVUDivExpr::print(raw_ostream &OS) const { 285 OS << "(" << *LHS << " /u " << *RHS << ")"; 286 } 287 288 const Type *SCEVUDivExpr::getType() const { 289 // In most cases the types of LHS and RHS will be the same, but in some 290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 291 // depend on the type for correctness, but handling types carefully can 292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 293 // a pointer type than the RHS, so use the RHS' type here. 294 return RHS->getType(); 295 } 296 297 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 298 // Add recurrences are never invariant in the function-body (null loop). 299 if (!QueryLoop) 300 return false; 301 302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 303 if (QueryLoop->contains(L)) 304 return false; 305 306 // This recurrence is variant w.r.t. QueryLoop if any of its operands 307 // are variant. 308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 309 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 310 return false; 311 312 // Otherwise it's loop-invariant. 313 return true; 314 } 315 316 bool 317 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 318 return DT->dominates(L->getHeader(), BB) && 319 SCEVNAryExpr::dominates(BB, DT); 320 } 321 322 bool 323 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 324 // This uses a "dominates" query instead of "properly dominates" query because 325 // the instruction which produces the addrec's value is a PHI, and a PHI 326 // effectively properly dominates its entire containing block. 327 return DT->dominates(L->getHeader(), BB) && 328 SCEVNAryExpr::properlyDominates(BB, DT); 329 } 330 331 void SCEVAddRecExpr::print(raw_ostream &OS) const { 332 OS << "{" << *Operands[0]; 333 for (unsigned i = 1, e = NumOperands; i != e; ++i) 334 OS << ",+," << *Operands[i]; 335 OS << "}<"; 336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 337 OS << ">"; 338 } 339 340 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 341 // All non-instruction values are loop invariant. All instructions are loop 342 // invariant if they are not contained in the specified loop. 343 // Instructions are never considered invariant in the function body 344 // (null loop) because they are defined within the "loop". 345 if (Instruction *I = dyn_cast<Instruction>(V)) 346 return L && !L->contains(I); 347 return true; 348 } 349 350 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 351 if (Instruction *I = dyn_cast<Instruction>(getValue())) 352 return DT->dominates(I->getParent(), BB); 353 return true; 354 } 355 356 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 357 if (Instruction *I = dyn_cast<Instruction>(getValue())) 358 return DT->properlyDominates(I->getParent(), BB); 359 return true; 360 } 361 362 const Type *SCEVUnknown::getType() const { 363 return V->getType(); 364 } 365 366 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 368 if (VCE->getOpcode() == Instruction::PtrToInt) 369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 370 if (CE->getOpcode() == Instruction::GetElementPtr && 371 CE->getOperand(0)->isNullValue() && 372 CE->getNumOperands() == 2) 373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 374 if (CI->isOne()) { 375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 376 ->getElementType(); 377 return true; 378 } 379 380 return false; 381 } 382 383 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 385 if (VCE->getOpcode() == Instruction::PtrToInt) 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 387 if (CE->getOpcode() == Instruction::GetElementPtr && 388 CE->getOperand(0)->isNullValue()) { 389 const Type *Ty = 390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 391 if (const StructType *STy = dyn_cast<StructType>(Ty)) 392 if (!STy->isPacked() && 393 CE->getNumOperands() == 3 && 394 CE->getOperand(1)->isNullValue()) { 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 396 if (CI->isOne() && 397 STy->getNumElements() == 2 && 398 STy->getElementType(0)->isIntegerTy(1)) { 399 AllocTy = STy->getElementType(1); 400 return true; 401 } 402 } 403 } 404 405 return false; 406 } 407 408 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 410 if (VCE->getOpcode() == Instruction::PtrToInt) 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 412 if (CE->getOpcode() == Instruction::GetElementPtr && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(0)->isNullValue() && 415 CE->getOperand(1)->isNullValue()) { 416 const Type *Ty = 417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 418 // Ignore vector types here so that ScalarEvolutionExpander doesn't 419 // emit getelementptrs that index into vectors. 420 if (Ty->isStructTy() || Ty->isArrayTy()) { 421 CTy = Ty; 422 FieldNo = CE->getOperand(2); 423 return true; 424 } 425 } 426 427 return false; 428 } 429 430 void SCEVUnknown::print(raw_ostream &OS) const { 431 const Type *AllocTy; 432 if (isSizeOf(AllocTy)) { 433 OS << "sizeof(" << *AllocTy << ")"; 434 return; 435 } 436 if (isAlignOf(AllocTy)) { 437 OS << "alignof(" << *AllocTy << ")"; 438 return; 439 } 440 441 const Type *CTy; 442 Constant *FieldNo; 443 if (isOffsetOf(CTy, FieldNo)) { 444 OS << "offsetof(" << *CTy << ", "; 445 WriteAsOperand(OS, FieldNo, false); 446 OS << ")"; 447 return; 448 } 449 450 // Otherwise just print it normally. 451 WriteAsOperand(OS, V, false); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // SCEV Utilities 456 //===----------------------------------------------------------------------===// 457 458 static bool CompareTypes(const Type *A, const Type *B) { 459 if (A->getTypeID() != B->getTypeID()) 460 return A->getTypeID() < B->getTypeID(); 461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 462 const IntegerType *BI = cast<IntegerType>(B); 463 return AI->getBitWidth() < BI->getBitWidth(); 464 } 465 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 466 const PointerType *BI = cast<PointerType>(B); 467 return CompareTypes(AI->getElementType(), BI->getElementType()); 468 } 469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 470 const ArrayType *BI = cast<ArrayType>(B); 471 if (AI->getNumElements() != BI->getNumElements()) 472 return AI->getNumElements() < BI->getNumElements(); 473 return CompareTypes(AI->getElementType(), BI->getElementType()); 474 } 475 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 476 const VectorType *BI = cast<VectorType>(B); 477 if (AI->getNumElements() != BI->getNumElements()) 478 return AI->getNumElements() < BI->getNumElements(); 479 return CompareTypes(AI->getElementType(), BI->getElementType()); 480 } 481 if (const StructType *AI = dyn_cast<StructType>(A)) { 482 const StructType *BI = cast<StructType>(B); 483 if (AI->getNumElements() != BI->getNumElements()) 484 return AI->getNumElements() < BI->getNumElements(); 485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 487 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 488 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 489 } 490 return false; 491 } 492 493 namespace { 494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 495 /// than the complexity of the RHS. This comparator is used to canonicalize 496 /// expressions. 497 class SCEVComplexityCompare { 498 LoopInfo *LI; 499 public: 500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 501 502 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 503 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 504 if (LHS == RHS) 505 return false; 506 507 // Primarily, sort the SCEVs by their getSCEVType(). 508 if (LHS->getSCEVType() != RHS->getSCEVType()) 509 return LHS->getSCEVType() < RHS->getSCEVType(); 510 511 // Aside from the getSCEVType() ordering, the particular ordering 512 // isn't very important except that it's beneficial to be consistent, 513 // so that (a + b) and (b + a) don't end up as different expressions. 514 515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 516 // not as complete as it could be. 517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 519 520 // Order pointer values after integer values. This helps SCEVExpander 521 // form GEPs. 522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy()) 523 return false; 524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy()) 525 return true; 526 527 // Compare getValueID values. 528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 529 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 530 531 // Sort arguments by their position. 532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 533 const Argument *RA = cast<Argument>(RU->getValue()); 534 return LA->getArgNo() < RA->getArgNo(); 535 } 536 537 // For instructions, compare their loop depth, and their opcode. 538 // This is pretty loose. 539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 540 Instruction *RV = cast<Instruction>(RU->getValue()); 541 542 // Compare loop depths. 543 if (LI->getLoopDepth(LV->getParent()) != 544 LI->getLoopDepth(RV->getParent())) 545 return LI->getLoopDepth(LV->getParent()) < 546 LI->getLoopDepth(RV->getParent()); 547 548 // Compare opcodes. 549 if (LV->getOpcode() != RV->getOpcode()) 550 return LV->getOpcode() < RV->getOpcode(); 551 552 // Compare the number of operands. 553 if (LV->getNumOperands() != RV->getNumOperands()) 554 return LV->getNumOperands() < RV->getNumOperands(); 555 } 556 557 return false; 558 } 559 560 // Compare constant values. 561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 562 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 565 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 566 } 567 568 // Compare addrec loop depths. 569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 573 } 574 575 // Lexicographically compare n-ary expressions. 576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 579 if (i >= RC->getNumOperands()) 580 return false; 581 if (operator()(LC->getOperand(i), RC->getOperand(i))) 582 return true; 583 if (operator()(RC->getOperand(i), LC->getOperand(i))) 584 return false; 585 } 586 return LC->getNumOperands() < RC->getNumOperands(); 587 } 588 589 // Lexicographically compare udiv expressions. 590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 592 if (operator()(LC->getLHS(), RC->getLHS())) 593 return true; 594 if (operator()(RC->getLHS(), LC->getLHS())) 595 return false; 596 if (operator()(LC->getRHS(), RC->getRHS())) 597 return true; 598 if (operator()(RC->getRHS(), LC->getRHS())) 599 return false; 600 return false; 601 } 602 603 // Compare cast expressions by operand. 604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 606 return operator()(LC->getOperand(), RC->getOperand()); 607 } 608 609 llvm_unreachable("Unknown SCEV kind!"); 610 return false; 611 } 612 }; 613 } 614 615 /// GroupByComplexity - Given a list of SCEV objects, order them by their 616 /// complexity, and group objects of the same complexity together by value. 617 /// When this routine is finished, we know that any duplicates in the vector are 618 /// consecutive and that complexity is monotonically increasing. 619 /// 620 /// Note that we go take special precautions to ensure that we get deterministic 621 /// results from this routine. In other words, we don't want the results of 622 /// this to depend on where the addresses of various SCEV objects happened to 623 /// land in memory. 624 /// 625 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 626 LoopInfo *LI) { 627 if (Ops.size() < 2) return; // Noop 628 if (Ops.size() == 2) { 629 // This is the common case, which also happens to be trivially simple. 630 // Special case it. 631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 632 std::swap(Ops[0], Ops[1]); 633 return; 634 } 635 636 // Do the rough sort by complexity. 637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 638 639 // Now that we are sorted by complexity, group elements of the same 640 // complexity. Note that this is, at worst, N^2, but the vector is likely to 641 // be extremely short in practice. Note that we take this approach because we 642 // do not want to depend on the addresses of the objects we are grouping. 643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 644 const SCEV *S = Ops[i]; 645 unsigned Complexity = S->getSCEVType(); 646 647 // If there are any objects of the same complexity and same value as this 648 // one, group them. 649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 650 if (Ops[j] == S) { // Found a duplicate. 651 // Move it to immediately after i'th element. 652 std::swap(Ops[i+1], Ops[j]); 653 ++i; // no need to rescan it. 654 if (i == e-2) return; // Done! 655 } 656 } 657 } 658 } 659 660 661 662 //===----------------------------------------------------------------------===// 663 // Simple SCEV method implementations 664 //===----------------------------------------------------------------------===// 665 666 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 667 /// Assume, K > 0. 668 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 669 ScalarEvolution &SE, 670 const Type* ResultTy) { 671 // Handle the simplest case efficiently. 672 if (K == 1) 673 return SE.getTruncateOrZeroExtend(It, ResultTy); 674 675 // We are using the following formula for BC(It, K): 676 // 677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 678 // 679 // Suppose, W is the bitwidth of the return value. We must be prepared for 680 // overflow. Hence, we must assure that the result of our computation is 681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 682 // safe in modular arithmetic. 683 // 684 // However, this code doesn't use exactly that formula; the formula it uses 685 // is something like the following, where T is the number of factors of 2 in 686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 687 // exponentiation: 688 // 689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 690 // 691 // This formula is trivially equivalent to the previous formula. However, 692 // this formula can be implemented much more efficiently. The trick is that 693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 694 // arithmetic. To do exact division in modular arithmetic, all we have 695 // to do is multiply by the inverse. Therefore, this step can be done at 696 // width W. 697 // 698 // The next issue is how to safely do the division by 2^T. The way this 699 // is done is by doing the multiplication step at a width of at least W + T 700 // bits. This way, the bottom W+T bits of the product are accurate. Then, 701 // when we perform the division by 2^T (which is equivalent to a right shift 702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 703 // truncated out after the division by 2^T. 704 // 705 // In comparison to just directly using the first formula, this technique 706 // is much more efficient; using the first formula requires W * K bits, 707 // but this formula less than W + K bits. Also, the first formula requires 708 // a division step, whereas this formula only requires multiplies and shifts. 709 // 710 // It doesn't matter whether the subtraction step is done in the calculation 711 // width or the input iteration count's width; if the subtraction overflows, 712 // the result must be zero anyway. We prefer here to do it in the width of 713 // the induction variable because it helps a lot for certain cases; CodeGen 714 // isn't smart enough to ignore the overflow, which leads to much less 715 // efficient code if the width of the subtraction is wider than the native 716 // register width. 717 // 718 // (It's possible to not widen at all by pulling out factors of 2 before 719 // the multiplication; for example, K=2 can be calculated as 720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 721 // extra arithmetic, so it's not an obvious win, and it gets 722 // much more complicated for K > 3.) 723 724 // Protection from insane SCEVs; this bound is conservative, 725 // but it probably doesn't matter. 726 if (K > 1000) 727 return SE.getCouldNotCompute(); 728 729 unsigned W = SE.getTypeSizeInBits(ResultTy); 730 731 // Calculate K! / 2^T and T; we divide out the factors of two before 732 // multiplying for calculating K! / 2^T to avoid overflow. 733 // Other overflow doesn't matter because we only care about the bottom 734 // W bits of the result. 735 APInt OddFactorial(W, 1); 736 unsigned T = 1; 737 for (unsigned i = 3; i <= K; ++i) { 738 APInt Mult(W, i); 739 unsigned TwoFactors = Mult.countTrailingZeros(); 740 T += TwoFactors; 741 Mult = Mult.lshr(TwoFactors); 742 OddFactorial *= Mult; 743 } 744 745 // We need at least W + T bits for the multiplication step 746 unsigned CalculationBits = W + T; 747 748 // Calculate 2^T, at width T+W. 749 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 750 751 // Calculate the multiplicative inverse of K! / 2^T; 752 // this multiplication factor will perform the exact division by 753 // K! / 2^T. 754 APInt Mod = APInt::getSignedMinValue(W+1); 755 APInt MultiplyFactor = OddFactorial.zext(W+1); 756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 757 MultiplyFactor = MultiplyFactor.trunc(W); 758 759 // Calculate the product, at width T+W 760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 761 CalculationBits); 762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 763 for (unsigned i = 1; i != K; ++i) { 764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 765 Dividend = SE.getMulExpr(Dividend, 766 SE.getTruncateOrZeroExtend(S, CalculationTy)); 767 } 768 769 // Divide by 2^T 770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 771 772 // Truncate the result, and divide by K! / 2^T. 773 774 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 775 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 776 } 777 778 /// evaluateAtIteration - Return the value of this chain of recurrences at 779 /// the specified iteration number. We can evaluate this recurrence by 780 /// multiplying each element in the chain by the binomial coefficient 781 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 782 /// 783 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 784 /// 785 /// where BC(It, k) stands for binomial coefficient. 786 /// 787 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 788 ScalarEvolution &SE) const { 789 const SCEV *Result = getStart(); 790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 791 // The computation is correct in the face of overflow provided that the 792 // multiplication is performed _after_ the evaluation of the binomial 793 // coefficient. 794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 795 if (isa<SCEVCouldNotCompute>(Coeff)) 796 return Coeff; 797 798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 799 } 800 return Result; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // SCEV Expression folder implementations 805 //===----------------------------------------------------------------------===// 806 807 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 808 const Type *Ty) { 809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 810 "This is not a truncating conversion!"); 811 assert(isSCEVable(Ty) && 812 "This is not a conversion to a SCEVable type!"); 813 Ty = getEffectiveSCEVType(Ty); 814 815 FoldingSetNodeID ID; 816 ID.AddInteger(scTruncate); 817 ID.AddPointer(Op); 818 ID.AddPointer(Ty); 819 void *IP = 0; 820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 821 822 // Fold if the operand is constant. 823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 824 return getConstant( 825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 826 getEffectiveSCEVType(Ty)))); 827 828 // trunc(trunc(x)) --> trunc(x) 829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 830 return getTruncateExpr(ST->getOperand(), Ty); 831 832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 834 return getTruncateOrSignExtend(SS->getOperand(), Ty); 835 836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 839 840 // If the input value is a chrec scev, truncate the chrec's operands. 841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 842 SmallVector<const SCEV *, 4> Operands; 843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 845 return getAddRecExpr(Operands, AddRec->getLoop()); 846 } 847 848 // The cast wasn't folded; create an explicit cast node. 849 // Recompute the insert position, as it may have been invalidated. 850 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 851 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 852 Op, Ty); 853 UniqueSCEVs.InsertNode(S, IP); 854 return S; 855 } 856 857 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 858 const Type *Ty) { 859 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 860 "This is not an extending conversion!"); 861 assert(isSCEVable(Ty) && 862 "This is not a conversion to a SCEVable type!"); 863 Ty = getEffectiveSCEVType(Ty); 864 865 // Fold if the operand is constant. 866 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 867 const Type *IntTy = getEffectiveSCEVType(Ty); 868 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 869 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 870 return getConstant(cast<ConstantInt>(C)); 871 } 872 873 // zext(zext(x)) --> zext(x) 874 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 875 return getZeroExtendExpr(SZ->getOperand(), Ty); 876 877 // Before doing any expensive analysis, check to see if we've already 878 // computed a SCEV for this Op and Ty. 879 FoldingSetNodeID ID; 880 ID.AddInteger(scZeroExtend); 881 ID.AddPointer(Op); 882 ID.AddPointer(Ty); 883 void *IP = 0; 884 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 885 886 // If the input value is a chrec scev, and we can prove that the value 887 // did not overflow the old, smaller, value, we can zero extend all of the 888 // operands (often constants). This allows analysis of something like 889 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 890 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 891 if (AR->isAffine()) { 892 const SCEV *Start = AR->getStart(); 893 const SCEV *Step = AR->getStepRecurrence(*this); 894 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 895 const Loop *L = AR->getLoop(); 896 897 // If we have special knowledge that this addrec won't overflow, 898 // we don't need to do any further analysis. 899 if (AR->hasNoUnsignedWrap()) 900 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 901 getZeroExtendExpr(Step, Ty), 902 L); 903 904 // Check whether the backedge-taken count is SCEVCouldNotCompute. 905 // Note that this serves two purposes: It filters out loops that are 906 // simply not analyzable, and it covers the case where this code is 907 // being called from within backedge-taken count analysis, such that 908 // attempting to ask for the backedge-taken count would likely result 909 // in infinite recursion. In the later case, the analysis code will 910 // cope with a conservative value, and it will take care to purge 911 // that value once it has finished. 912 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 913 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 914 // Manually compute the final value for AR, checking for 915 // overflow. 916 917 // Check whether the backedge-taken count can be losslessly casted to 918 // the addrec's type. The count is always unsigned. 919 const SCEV *CastedMaxBECount = 920 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 921 const SCEV *RecastedMaxBECount = 922 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 923 if (MaxBECount == RecastedMaxBECount) { 924 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 925 // Check whether Start+Step*MaxBECount has no unsigned overflow. 926 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 927 const SCEV *Add = getAddExpr(Start, ZMul); 928 const SCEV *OperandExtendedAdd = 929 getAddExpr(getZeroExtendExpr(Start, WideTy), 930 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 931 getZeroExtendExpr(Step, WideTy))); 932 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 933 // Return the expression with the addrec on the outside. 934 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 935 getZeroExtendExpr(Step, Ty), 936 L); 937 938 // Similar to above, only this time treat the step value as signed. 939 // This covers loops that count down. 940 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 941 Add = getAddExpr(Start, SMul); 942 OperandExtendedAdd = 943 getAddExpr(getZeroExtendExpr(Start, WideTy), 944 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 945 getSignExtendExpr(Step, WideTy))); 946 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 947 // Return the expression with the addrec on the outside. 948 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 949 getSignExtendExpr(Step, Ty), 950 L); 951 } 952 953 // If the backedge is guarded by a comparison with the pre-inc value 954 // the addrec is safe. Also, if the entry is guarded by a comparison 955 // with the start value and the backedge is guarded by a comparison 956 // with the post-inc value, the addrec is safe. 957 if (isKnownPositive(Step)) { 958 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 959 getUnsignedRange(Step).getUnsignedMax()); 960 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 961 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 962 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 963 AR->getPostIncExpr(*this), N))) 964 // Return the expression with the addrec on the outside. 965 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 966 getZeroExtendExpr(Step, Ty), 967 L); 968 } else if (isKnownNegative(Step)) { 969 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 970 getSignedRange(Step).getSignedMin()); 971 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 972 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 973 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 974 AR->getPostIncExpr(*this), N))) 975 // Return the expression with the addrec on the outside. 976 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 977 getSignExtendExpr(Step, Ty), 978 L); 979 } 980 } 981 } 982 983 // The cast wasn't folded; create an explicit cast node. 984 // Recompute the insert position, as it may have been invalidated. 985 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 986 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 987 Op, Ty); 988 UniqueSCEVs.InsertNode(S, IP); 989 return S; 990 } 991 992 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 993 const Type *Ty) { 994 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 995 "This is not an extending conversion!"); 996 assert(isSCEVable(Ty) && 997 "This is not a conversion to a SCEVable type!"); 998 Ty = getEffectiveSCEVType(Ty); 999 1000 // Fold if the operand is constant. 1001 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 1002 const Type *IntTy = getEffectiveSCEVType(Ty); 1003 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 1004 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 1005 return getConstant(cast<ConstantInt>(C)); 1006 } 1007 1008 // sext(sext(x)) --> sext(x) 1009 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1010 return getSignExtendExpr(SS->getOperand(), Ty); 1011 1012 // Before doing any expensive analysis, check to see if we've already 1013 // computed a SCEV for this Op and Ty. 1014 FoldingSetNodeID ID; 1015 ID.AddInteger(scSignExtend); 1016 ID.AddPointer(Op); 1017 ID.AddPointer(Ty); 1018 void *IP = 0; 1019 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1020 1021 // If the input value is a chrec scev, and we can prove that the value 1022 // did not overflow the old, smaller, value, we can sign extend all of the 1023 // operands (often constants). This allows analysis of something like 1024 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1025 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1026 if (AR->isAffine()) { 1027 const SCEV *Start = AR->getStart(); 1028 const SCEV *Step = AR->getStepRecurrence(*this); 1029 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1030 const Loop *L = AR->getLoop(); 1031 1032 // If we have special knowledge that this addrec won't overflow, 1033 // we don't need to do any further analysis. 1034 if (AR->hasNoSignedWrap()) 1035 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1036 getSignExtendExpr(Step, Ty), 1037 L); 1038 1039 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1040 // Note that this serves two purposes: It filters out loops that are 1041 // simply not analyzable, and it covers the case where this code is 1042 // being called from within backedge-taken count analysis, such that 1043 // attempting to ask for the backedge-taken count would likely result 1044 // in infinite recursion. In the later case, the analysis code will 1045 // cope with a conservative value, and it will take care to purge 1046 // that value once it has finished. 1047 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1048 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1049 // Manually compute the final value for AR, checking for 1050 // overflow. 1051 1052 // Check whether the backedge-taken count can be losslessly casted to 1053 // the addrec's type. The count is always unsigned. 1054 const SCEV *CastedMaxBECount = 1055 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1056 const SCEV *RecastedMaxBECount = 1057 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1058 if (MaxBECount == RecastedMaxBECount) { 1059 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1060 // Check whether Start+Step*MaxBECount has no signed overflow. 1061 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1062 const SCEV *Add = getAddExpr(Start, SMul); 1063 const SCEV *OperandExtendedAdd = 1064 getAddExpr(getSignExtendExpr(Start, WideTy), 1065 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1066 getSignExtendExpr(Step, WideTy))); 1067 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1068 // Return the expression with the addrec on the outside. 1069 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1070 getSignExtendExpr(Step, Ty), 1071 L); 1072 1073 // Similar to above, only this time treat the step value as unsigned. 1074 // This covers loops that count up with an unsigned step. 1075 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1076 Add = getAddExpr(Start, UMul); 1077 OperandExtendedAdd = 1078 getAddExpr(getSignExtendExpr(Start, WideTy), 1079 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1080 getZeroExtendExpr(Step, WideTy))); 1081 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1082 // Return the expression with the addrec on the outside. 1083 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1084 getZeroExtendExpr(Step, Ty), 1085 L); 1086 } 1087 1088 // If the backedge is guarded by a comparison with the pre-inc value 1089 // the addrec is safe. Also, if the entry is guarded by a comparison 1090 // with the start value and the backedge is guarded by a comparison 1091 // with the post-inc value, the addrec is safe. 1092 if (isKnownPositive(Step)) { 1093 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1094 getSignedRange(Step).getSignedMax()); 1095 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1096 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1097 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1098 AR->getPostIncExpr(*this), N))) 1099 // Return the expression with the addrec on the outside. 1100 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1101 getSignExtendExpr(Step, Ty), 1102 L); 1103 } else if (isKnownNegative(Step)) { 1104 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1105 getSignedRange(Step).getSignedMin()); 1106 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1107 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1108 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1109 AR->getPostIncExpr(*this), N))) 1110 // Return the expression with the addrec on the outside. 1111 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1112 getSignExtendExpr(Step, Ty), 1113 L); 1114 } 1115 } 1116 } 1117 1118 // The cast wasn't folded; create an explicit cast node. 1119 // Recompute the insert position, as it may have been invalidated. 1120 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1121 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1122 Op, Ty); 1123 UniqueSCEVs.InsertNode(S, IP); 1124 return S; 1125 } 1126 1127 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1128 /// unspecified bits out to the given type. 1129 /// 1130 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1131 const Type *Ty) { 1132 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1133 "This is not an extending conversion!"); 1134 assert(isSCEVable(Ty) && 1135 "This is not a conversion to a SCEVable type!"); 1136 Ty = getEffectiveSCEVType(Ty); 1137 1138 // Sign-extend negative constants. 1139 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1140 if (SC->getValue()->getValue().isNegative()) 1141 return getSignExtendExpr(Op, Ty); 1142 1143 // Peel off a truncate cast. 1144 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1145 const SCEV *NewOp = T->getOperand(); 1146 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1147 return getAnyExtendExpr(NewOp, Ty); 1148 return getTruncateOrNoop(NewOp, Ty); 1149 } 1150 1151 // Next try a zext cast. If the cast is folded, use it. 1152 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1153 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1154 return ZExt; 1155 1156 // Next try a sext cast. If the cast is folded, use it. 1157 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1158 if (!isa<SCEVSignExtendExpr>(SExt)) 1159 return SExt; 1160 1161 // Force the cast to be folded into the operands of an addrec. 1162 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1163 SmallVector<const SCEV *, 4> Ops; 1164 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1165 I != E; ++I) 1166 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1167 return getAddRecExpr(Ops, AR->getLoop()); 1168 } 1169 1170 // If the expression is obviously signed, use the sext cast value. 1171 if (isa<SCEVSMaxExpr>(Op)) 1172 return SExt; 1173 1174 // Absent any other information, use the zext cast value. 1175 return ZExt; 1176 } 1177 1178 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1179 /// a list of operands to be added under the given scale, update the given 1180 /// map. This is a helper function for getAddRecExpr. As an example of 1181 /// what it does, given a sequence of operands that would form an add 1182 /// expression like this: 1183 /// 1184 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1185 /// 1186 /// where A and B are constants, update the map with these values: 1187 /// 1188 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1189 /// 1190 /// and add 13 + A*B*29 to AccumulatedConstant. 1191 /// This will allow getAddRecExpr to produce this: 1192 /// 1193 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1194 /// 1195 /// This form often exposes folding opportunities that are hidden in 1196 /// the original operand list. 1197 /// 1198 /// Return true iff it appears that any interesting folding opportunities 1199 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1200 /// the common case where no interesting opportunities are present, and 1201 /// is also used as a check to avoid infinite recursion. 1202 /// 1203 static bool 1204 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1205 SmallVector<const SCEV *, 8> &NewOps, 1206 APInt &AccumulatedConstant, 1207 const SCEV *const *Ops, size_t NumOperands, 1208 const APInt &Scale, 1209 ScalarEvolution &SE) { 1210 bool Interesting = false; 1211 1212 // Iterate over the add operands. They are sorted, with constants first. 1213 unsigned i = 0; 1214 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1215 ++i; 1216 // Pull a buried constant out to the outside. 1217 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1218 Interesting = true; 1219 AccumulatedConstant += Scale * C->getValue()->getValue(); 1220 } 1221 1222 // Next comes everything else. We're especially interested in multiplies 1223 // here, but they're in the middle, so just visit the rest with one loop. 1224 for (; i != NumOperands; ++i) { 1225 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1226 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1227 APInt NewScale = 1228 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1229 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1230 // A multiplication of a constant with another add; recurse. 1231 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1232 Interesting |= 1233 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1234 Add->op_begin(), Add->getNumOperands(), 1235 NewScale, SE); 1236 } else { 1237 // A multiplication of a constant with some other value. Update 1238 // the map. 1239 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1240 const SCEV *Key = SE.getMulExpr(MulOps); 1241 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1242 M.insert(std::make_pair(Key, NewScale)); 1243 if (Pair.second) { 1244 NewOps.push_back(Pair.first->first); 1245 } else { 1246 Pair.first->second += NewScale; 1247 // The map already had an entry for this value, which may indicate 1248 // a folding opportunity. 1249 Interesting = true; 1250 } 1251 } 1252 } else { 1253 // An ordinary operand. Update the map. 1254 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1255 M.insert(std::make_pair(Ops[i], Scale)); 1256 if (Pair.second) { 1257 NewOps.push_back(Pair.first->first); 1258 } else { 1259 Pair.first->second += Scale; 1260 // The map already had an entry for this value, which may indicate 1261 // a folding opportunity. 1262 Interesting = true; 1263 } 1264 } 1265 } 1266 1267 return Interesting; 1268 } 1269 1270 namespace { 1271 struct APIntCompare { 1272 bool operator()(const APInt &LHS, const APInt &RHS) const { 1273 return LHS.ult(RHS); 1274 } 1275 }; 1276 } 1277 1278 /// getAddExpr - Get a canonical add expression, or something simpler if 1279 /// possible. 1280 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1281 bool HasNUW, bool HasNSW) { 1282 assert(!Ops.empty() && "Cannot get empty add!"); 1283 if (Ops.size() == 1) return Ops[0]; 1284 #ifndef NDEBUG 1285 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1286 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1287 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1288 "SCEVAddExpr operand types don't match!"); 1289 #endif 1290 1291 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1292 if (!HasNUW && HasNSW) { 1293 bool All = true; 1294 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1295 if (!isKnownNonNegative(Ops[i])) { 1296 All = false; 1297 break; 1298 } 1299 if (All) HasNUW = true; 1300 } 1301 1302 // Sort by complexity, this groups all similar expression types together. 1303 GroupByComplexity(Ops, LI); 1304 1305 // If there are any constants, fold them together. 1306 unsigned Idx = 0; 1307 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1308 ++Idx; 1309 assert(Idx < Ops.size()); 1310 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1311 // We found two constants, fold them together! 1312 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1313 RHSC->getValue()->getValue()); 1314 if (Ops.size() == 2) return Ops[0]; 1315 Ops.erase(Ops.begin()+1); // Erase the folded element 1316 LHSC = cast<SCEVConstant>(Ops[0]); 1317 } 1318 1319 // If we are left with a constant zero being added, strip it off. 1320 if (LHSC->getValue()->isZero()) { 1321 Ops.erase(Ops.begin()); 1322 --Idx; 1323 } 1324 1325 if (Ops.size() == 1) return Ops[0]; 1326 } 1327 1328 // Okay, check to see if the same value occurs in the operand list twice. If 1329 // so, merge them together into an multiply expression. Since we sorted the 1330 // list, these values are required to be adjacent. 1331 const Type *Ty = Ops[0]->getType(); 1332 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1333 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1334 // Found a match, merge the two values into a multiply, and add any 1335 // remaining values to the result. 1336 const SCEV *Two = getConstant(Ty, 2); 1337 const SCEV *Mul = getMulExpr(Ops[i], Two); 1338 if (Ops.size() == 2) 1339 return Mul; 1340 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1341 Ops.push_back(Mul); 1342 return getAddExpr(Ops, HasNUW, HasNSW); 1343 } 1344 1345 // Check for truncates. If all the operands are truncated from the same 1346 // type, see if factoring out the truncate would permit the result to be 1347 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1348 // if the contents of the resulting outer trunc fold to something simple. 1349 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1350 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1351 const Type *DstType = Trunc->getType(); 1352 const Type *SrcType = Trunc->getOperand()->getType(); 1353 SmallVector<const SCEV *, 8> LargeOps; 1354 bool Ok = true; 1355 // Check all the operands to see if they can be represented in the 1356 // source type of the truncate. 1357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1359 if (T->getOperand()->getType() != SrcType) { 1360 Ok = false; 1361 break; 1362 } 1363 LargeOps.push_back(T->getOperand()); 1364 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1365 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1366 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1367 SmallVector<const SCEV *, 8> LargeMulOps; 1368 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1369 if (const SCEVTruncateExpr *T = 1370 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1371 if (T->getOperand()->getType() != SrcType) { 1372 Ok = false; 1373 break; 1374 } 1375 LargeMulOps.push_back(T->getOperand()); 1376 } else if (const SCEVConstant *C = 1377 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1378 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1379 } else { 1380 Ok = false; 1381 break; 1382 } 1383 } 1384 if (Ok) 1385 LargeOps.push_back(getMulExpr(LargeMulOps)); 1386 } else { 1387 Ok = false; 1388 break; 1389 } 1390 } 1391 if (Ok) { 1392 // Evaluate the expression in the larger type. 1393 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1394 // If it folds to something simple, use it. Otherwise, don't. 1395 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1396 return getTruncateExpr(Fold, DstType); 1397 } 1398 } 1399 1400 // Skip past any other cast SCEVs. 1401 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1402 ++Idx; 1403 1404 // If there are add operands they would be next. 1405 if (Idx < Ops.size()) { 1406 bool DeletedAdd = false; 1407 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1408 // If we have an add, expand the add operands onto the end of the operands 1409 // list. 1410 Ops.erase(Ops.begin()+Idx); 1411 Ops.append(Add->op_begin(), Add->op_end()); 1412 DeletedAdd = true; 1413 } 1414 1415 // If we deleted at least one add, we added operands to the end of the list, 1416 // and they are not necessarily sorted. Recurse to resort and resimplify 1417 // any operands we just acquired. 1418 if (DeletedAdd) 1419 return getAddExpr(Ops); 1420 } 1421 1422 // Skip over the add expression until we get to a multiply. 1423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1424 ++Idx; 1425 1426 // Check to see if there are any folding opportunities present with 1427 // operands multiplied by constant values. 1428 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1429 uint64_t BitWidth = getTypeSizeInBits(Ty); 1430 DenseMap<const SCEV *, APInt> M; 1431 SmallVector<const SCEV *, 8> NewOps; 1432 APInt AccumulatedConstant(BitWidth, 0); 1433 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1434 Ops.data(), Ops.size(), 1435 APInt(BitWidth, 1), *this)) { 1436 // Some interesting folding opportunity is present, so its worthwhile to 1437 // re-generate the operands list. Group the operands by constant scale, 1438 // to avoid multiplying by the same constant scale multiple times. 1439 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1440 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1441 E = NewOps.end(); I != E; ++I) 1442 MulOpLists[M.find(*I)->second].push_back(*I); 1443 // Re-generate the operands list. 1444 Ops.clear(); 1445 if (AccumulatedConstant != 0) 1446 Ops.push_back(getConstant(AccumulatedConstant)); 1447 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1448 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1449 if (I->first != 0) 1450 Ops.push_back(getMulExpr(getConstant(I->first), 1451 getAddExpr(I->second))); 1452 if (Ops.empty()) 1453 return getConstant(Ty, 0); 1454 if (Ops.size() == 1) 1455 return Ops[0]; 1456 return getAddExpr(Ops); 1457 } 1458 } 1459 1460 // If we are adding something to a multiply expression, make sure the 1461 // something is not already an operand of the multiply. If so, merge it into 1462 // the multiply. 1463 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1464 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1465 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1466 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1467 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1468 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1469 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1470 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1471 if (Mul->getNumOperands() != 2) { 1472 // If the multiply has more than two operands, we must get the 1473 // Y*Z term. 1474 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1475 MulOps.erase(MulOps.begin()+MulOp); 1476 InnerMul = getMulExpr(MulOps); 1477 } 1478 const SCEV *One = getConstant(Ty, 1); 1479 const SCEV *AddOne = getAddExpr(InnerMul, One); 1480 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1481 if (Ops.size() == 2) return OuterMul; 1482 if (AddOp < Idx) { 1483 Ops.erase(Ops.begin()+AddOp); 1484 Ops.erase(Ops.begin()+Idx-1); 1485 } else { 1486 Ops.erase(Ops.begin()+Idx); 1487 Ops.erase(Ops.begin()+AddOp-1); 1488 } 1489 Ops.push_back(OuterMul); 1490 return getAddExpr(Ops); 1491 } 1492 1493 // Check this multiply against other multiplies being added together. 1494 for (unsigned OtherMulIdx = Idx+1; 1495 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1496 ++OtherMulIdx) { 1497 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1498 // If MulOp occurs in OtherMul, we can fold the two multiplies 1499 // together. 1500 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1501 OMulOp != e; ++OMulOp) 1502 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1503 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1504 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1505 if (Mul->getNumOperands() != 2) { 1506 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1507 Mul->op_end()); 1508 MulOps.erase(MulOps.begin()+MulOp); 1509 InnerMul1 = getMulExpr(MulOps); 1510 } 1511 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1512 if (OtherMul->getNumOperands() != 2) { 1513 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1514 OtherMul->op_end()); 1515 MulOps.erase(MulOps.begin()+OMulOp); 1516 InnerMul2 = getMulExpr(MulOps); 1517 } 1518 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1519 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1520 if (Ops.size() == 2) return OuterMul; 1521 Ops.erase(Ops.begin()+Idx); 1522 Ops.erase(Ops.begin()+OtherMulIdx-1); 1523 Ops.push_back(OuterMul); 1524 return getAddExpr(Ops); 1525 } 1526 } 1527 } 1528 } 1529 1530 // If there are any add recurrences in the operands list, see if any other 1531 // added values are loop invariant. If so, we can fold them into the 1532 // recurrence. 1533 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1534 ++Idx; 1535 1536 // Scan over all recurrences, trying to fold loop invariants into them. 1537 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1538 // Scan all of the other operands to this add and add them to the vector if 1539 // they are loop invariant w.r.t. the recurrence. 1540 SmallVector<const SCEV *, 8> LIOps; 1541 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1542 const Loop *AddRecLoop = AddRec->getLoop(); 1543 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1544 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1545 LIOps.push_back(Ops[i]); 1546 Ops.erase(Ops.begin()+i); 1547 --i; --e; 1548 } 1549 1550 // If we found some loop invariants, fold them into the recurrence. 1551 if (!LIOps.empty()) { 1552 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1553 LIOps.push_back(AddRec->getStart()); 1554 1555 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1556 AddRec->op_end()); 1557 AddRecOps[0] = getAddExpr(LIOps); 1558 1559 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition 1560 // is not associative so this isn't necessarily safe. 1561 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop); 1562 1563 // If all of the other operands were loop invariant, we are done. 1564 if (Ops.size() == 1) return NewRec; 1565 1566 // Otherwise, add the folded AddRec by the non-liv parts. 1567 for (unsigned i = 0;; ++i) 1568 if (Ops[i] == AddRec) { 1569 Ops[i] = NewRec; 1570 break; 1571 } 1572 return getAddExpr(Ops); 1573 } 1574 1575 // Okay, if there weren't any loop invariants to be folded, check to see if 1576 // there are multiple AddRec's with the same loop induction variable being 1577 // added together. If so, we can fold them. 1578 for (unsigned OtherIdx = Idx+1; 1579 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1580 if (OtherIdx != Idx) { 1581 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1582 if (AddRecLoop == OtherAddRec->getLoop()) { 1583 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1584 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1585 AddRec->op_end()); 1586 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1587 if (i >= NewOps.size()) { 1588 NewOps.append(OtherAddRec->op_begin()+i, 1589 OtherAddRec->op_end()); 1590 break; 1591 } 1592 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1593 } 1594 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1595 1596 if (Ops.size() == 2) return NewAddRec; 1597 1598 Ops.erase(Ops.begin()+Idx); 1599 Ops.erase(Ops.begin()+OtherIdx-1); 1600 Ops.push_back(NewAddRec); 1601 return getAddExpr(Ops); 1602 } 1603 } 1604 1605 // Otherwise couldn't fold anything into this recurrence. Move onto the 1606 // next one. 1607 } 1608 1609 // Okay, it looks like we really DO need an add expr. Check to see if we 1610 // already have one, otherwise create a new one. 1611 FoldingSetNodeID ID; 1612 ID.AddInteger(scAddExpr); 1613 ID.AddInteger(Ops.size()); 1614 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1615 ID.AddPointer(Ops[i]); 1616 void *IP = 0; 1617 SCEVAddExpr *S = 1618 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1619 if (!S) { 1620 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1621 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1622 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1623 O, Ops.size()); 1624 UniqueSCEVs.InsertNode(S, IP); 1625 } 1626 if (HasNUW) S->setHasNoUnsignedWrap(true); 1627 if (HasNSW) S->setHasNoSignedWrap(true); 1628 return S; 1629 } 1630 1631 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1632 /// possible. 1633 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1634 bool HasNUW, bool HasNSW) { 1635 assert(!Ops.empty() && "Cannot get empty mul!"); 1636 if (Ops.size() == 1) return Ops[0]; 1637 #ifndef NDEBUG 1638 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1639 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1640 getEffectiveSCEVType(Ops[0]->getType()) && 1641 "SCEVMulExpr operand types don't match!"); 1642 #endif 1643 1644 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1645 if (!HasNUW && HasNSW) { 1646 bool All = true; 1647 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1648 if (!isKnownNonNegative(Ops[i])) { 1649 All = false; 1650 break; 1651 } 1652 if (All) HasNUW = true; 1653 } 1654 1655 // Sort by complexity, this groups all similar expression types together. 1656 GroupByComplexity(Ops, LI); 1657 1658 // If there are any constants, fold them together. 1659 unsigned Idx = 0; 1660 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1661 1662 // C1*(C2+V) -> C1*C2 + C1*V 1663 if (Ops.size() == 2) 1664 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1665 if (Add->getNumOperands() == 2 && 1666 isa<SCEVConstant>(Add->getOperand(0))) 1667 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1668 getMulExpr(LHSC, Add->getOperand(1))); 1669 1670 ++Idx; 1671 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1672 // We found two constants, fold them together! 1673 ConstantInt *Fold = ConstantInt::get(getContext(), 1674 LHSC->getValue()->getValue() * 1675 RHSC->getValue()->getValue()); 1676 Ops[0] = getConstant(Fold); 1677 Ops.erase(Ops.begin()+1); // Erase the folded element 1678 if (Ops.size() == 1) return Ops[0]; 1679 LHSC = cast<SCEVConstant>(Ops[0]); 1680 } 1681 1682 // If we are left with a constant one being multiplied, strip it off. 1683 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1684 Ops.erase(Ops.begin()); 1685 --Idx; 1686 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1687 // If we have a multiply of zero, it will always be zero. 1688 return Ops[0]; 1689 } else if (Ops[0]->isAllOnesValue()) { 1690 // If we have a mul by -1 of an add, try distributing the -1 among the 1691 // add operands. 1692 if (Ops.size() == 2) 1693 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1694 SmallVector<const SCEV *, 4> NewOps; 1695 bool AnyFolded = false; 1696 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1697 I != E; ++I) { 1698 const SCEV *Mul = getMulExpr(Ops[0], *I); 1699 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1700 NewOps.push_back(Mul); 1701 } 1702 if (AnyFolded) 1703 return getAddExpr(NewOps); 1704 } 1705 } 1706 1707 if (Ops.size() == 1) 1708 return Ops[0]; 1709 } 1710 1711 // Skip over the add expression until we get to a multiply. 1712 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1713 ++Idx; 1714 1715 // If there are mul operands inline them all into this expression. 1716 if (Idx < Ops.size()) { 1717 bool DeletedMul = false; 1718 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1719 // If we have an mul, expand the mul operands onto the end of the operands 1720 // list. 1721 Ops.erase(Ops.begin()+Idx); 1722 Ops.append(Mul->op_begin(), Mul->op_end()); 1723 DeletedMul = true; 1724 } 1725 1726 // If we deleted at least one mul, we added operands to the end of the list, 1727 // and they are not necessarily sorted. Recurse to resort and resimplify 1728 // any operands we just acquired. 1729 if (DeletedMul) 1730 return getMulExpr(Ops); 1731 } 1732 1733 // If there are any add recurrences in the operands list, see if any other 1734 // added values are loop invariant. If so, we can fold them into the 1735 // recurrence. 1736 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1737 ++Idx; 1738 1739 // Scan over all recurrences, trying to fold loop invariants into them. 1740 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1741 // Scan all of the other operands to this mul and add them to the vector if 1742 // they are loop invariant w.r.t. the recurrence. 1743 SmallVector<const SCEV *, 8> LIOps; 1744 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1745 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1746 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1747 LIOps.push_back(Ops[i]); 1748 Ops.erase(Ops.begin()+i); 1749 --i; --e; 1750 } 1751 1752 // If we found some loop invariants, fold them into the recurrence. 1753 if (!LIOps.empty()) { 1754 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1755 SmallVector<const SCEV *, 4> NewOps; 1756 NewOps.reserve(AddRec->getNumOperands()); 1757 const SCEV *Scale = getMulExpr(LIOps); 1758 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1759 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1760 1761 // It's tempting to propagate the NSW flag here, but nsw multiplication 1762 // is not associative so this isn't necessarily safe. 1763 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1764 HasNUW && AddRec->hasNoUnsignedWrap(), 1765 /*HasNSW=*/false); 1766 1767 // If all of the other operands were loop invariant, we are done. 1768 if (Ops.size() == 1) return NewRec; 1769 1770 // Otherwise, multiply the folded AddRec by the non-liv parts. 1771 for (unsigned i = 0;; ++i) 1772 if (Ops[i] == AddRec) { 1773 Ops[i] = NewRec; 1774 break; 1775 } 1776 return getMulExpr(Ops); 1777 } 1778 1779 // Okay, if there weren't any loop invariants to be folded, check to see if 1780 // there are multiple AddRec's with the same loop induction variable being 1781 // multiplied together. If so, we can fold them. 1782 for (unsigned OtherIdx = Idx+1; 1783 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1784 if (OtherIdx != Idx) { 1785 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1786 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1787 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1788 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1789 const SCEV *NewStart = getMulExpr(F->getStart(), 1790 G->getStart()); 1791 const SCEV *B = F->getStepRecurrence(*this); 1792 const SCEV *D = G->getStepRecurrence(*this); 1793 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1794 getMulExpr(G, B), 1795 getMulExpr(B, D)); 1796 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1797 F->getLoop()); 1798 if (Ops.size() == 2) return NewAddRec; 1799 1800 Ops.erase(Ops.begin()+Idx); 1801 Ops.erase(Ops.begin()+OtherIdx-1); 1802 Ops.push_back(NewAddRec); 1803 return getMulExpr(Ops); 1804 } 1805 } 1806 1807 // Otherwise couldn't fold anything into this recurrence. Move onto the 1808 // next one. 1809 } 1810 1811 // Okay, it looks like we really DO need an mul expr. Check to see if we 1812 // already have one, otherwise create a new one. 1813 FoldingSetNodeID ID; 1814 ID.AddInteger(scMulExpr); 1815 ID.AddInteger(Ops.size()); 1816 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1817 ID.AddPointer(Ops[i]); 1818 void *IP = 0; 1819 SCEVMulExpr *S = 1820 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1821 if (!S) { 1822 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1823 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1824 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1825 O, Ops.size()); 1826 UniqueSCEVs.InsertNode(S, IP); 1827 } 1828 if (HasNUW) S->setHasNoUnsignedWrap(true); 1829 if (HasNSW) S->setHasNoSignedWrap(true); 1830 return S; 1831 } 1832 1833 /// getUDivExpr - Get a canonical unsigned division expression, or something 1834 /// simpler if possible. 1835 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1836 const SCEV *RHS) { 1837 assert(getEffectiveSCEVType(LHS->getType()) == 1838 getEffectiveSCEVType(RHS->getType()) && 1839 "SCEVUDivExpr operand types don't match!"); 1840 1841 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1842 if (RHSC->getValue()->equalsInt(1)) 1843 return LHS; // X udiv 1 --> x 1844 // If the denominator is zero, the result of the udiv is undefined. Don't 1845 // try to analyze it, because the resolution chosen here may differ from 1846 // the resolution chosen in other parts of the compiler. 1847 if (!RHSC->getValue()->isZero()) { 1848 // Determine if the division can be folded into the operands of 1849 // its operands. 1850 // TODO: Generalize this to non-constants by using known-bits information. 1851 const Type *Ty = LHS->getType(); 1852 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1853 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1854 // For non-power-of-two values, effectively round the value up to the 1855 // nearest power of two. 1856 if (!RHSC->getValue()->getValue().isPowerOf2()) 1857 ++MaxShiftAmt; 1858 const IntegerType *ExtTy = 1859 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1860 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1861 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1862 if (const SCEVConstant *Step = 1863 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1864 if (!Step->getValue()->getValue() 1865 .urem(RHSC->getValue()->getValue()) && 1866 getZeroExtendExpr(AR, ExtTy) == 1867 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1868 getZeroExtendExpr(Step, ExtTy), 1869 AR->getLoop())) { 1870 SmallVector<const SCEV *, 4> Operands; 1871 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1872 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1873 return getAddRecExpr(Operands, AR->getLoop()); 1874 } 1875 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1876 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1877 SmallVector<const SCEV *, 4> Operands; 1878 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1879 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1880 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1881 // Find an operand that's safely divisible. 1882 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1883 const SCEV *Op = M->getOperand(i); 1884 const SCEV *Div = getUDivExpr(Op, RHSC); 1885 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1886 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1887 M->op_end()); 1888 Operands[i] = Div; 1889 return getMulExpr(Operands); 1890 } 1891 } 1892 } 1893 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1894 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1895 SmallVector<const SCEV *, 4> Operands; 1896 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1897 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1898 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1899 Operands.clear(); 1900 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1901 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1902 if (isa<SCEVUDivExpr>(Op) || 1903 getMulExpr(Op, RHS) != A->getOperand(i)) 1904 break; 1905 Operands.push_back(Op); 1906 } 1907 if (Operands.size() == A->getNumOperands()) 1908 return getAddExpr(Operands); 1909 } 1910 } 1911 1912 // Fold if both operands are constant. 1913 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1914 Constant *LHSCV = LHSC->getValue(); 1915 Constant *RHSCV = RHSC->getValue(); 1916 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1917 RHSCV))); 1918 } 1919 } 1920 } 1921 1922 FoldingSetNodeID ID; 1923 ID.AddInteger(scUDivExpr); 1924 ID.AddPointer(LHS); 1925 ID.AddPointer(RHS); 1926 void *IP = 0; 1927 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1928 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1929 LHS, RHS); 1930 UniqueSCEVs.InsertNode(S, IP); 1931 return S; 1932 } 1933 1934 1935 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1936 /// Simplify the expression as much as possible. 1937 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1938 const SCEV *Step, const Loop *L, 1939 bool HasNUW, bool HasNSW) { 1940 SmallVector<const SCEV *, 4> Operands; 1941 Operands.push_back(Start); 1942 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1943 if (StepChrec->getLoop() == L) { 1944 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1945 return getAddRecExpr(Operands, L); 1946 } 1947 1948 Operands.push_back(Step); 1949 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1950 } 1951 1952 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1953 /// Simplify the expression as much as possible. 1954 const SCEV * 1955 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1956 const Loop *L, 1957 bool HasNUW, bool HasNSW) { 1958 if (Operands.size() == 1) return Operands[0]; 1959 #ifndef NDEBUG 1960 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1961 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1962 getEffectiveSCEVType(Operands[0]->getType()) && 1963 "SCEVAddRecExpr operand types don't match!"); 1964 #endif 1965 1966 if (Operands.back()->isZero()) { 1967 Operands.pop_back(); 1968 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1969 } 1970 1971 // It's tempting to want to call getMaxBackedgeTakenCount count here and 1972 // use that information to infer NUW and NSW flags. However, computing a 1973 // BE count requires calling getAddRecExpr, so we may not yet have a 1974 // meaningful BE count at this point (and if we don't, we'd be stuck 1975 // with a SCEVCouldNotCompute as the cached BE count). 1976 1977 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1978 if (!HasNUW && HasNSW) { 1979 bool All = true; 1980 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1981 if (!isKnownNonNegative(Operands[i])) { 1982 All = false; 1983 break; 1984 } 1985 if (All) HasNUW = true; 1986 } 1987 1988 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1989 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1990 const Loop *NestedLoop = NestedAR->getLoop(); 1991 if (L->contains(NestedLoop->getHeader()) ? 1992 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 1993 (!NestedLoop->contains(L->getHeader()) && 1994 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 1995 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1996 NestedAR->op_end()); 1997 Operands[0] = NestedAR->getStart(); 1998 // AddRecs require their operands be loop-invariant with respect to their 1999 // loops. Don't perform this transformation if it would break this 2000 // requirement. 2001 bool AllInvariant = true; 2002 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2003 if (!Operands[i]->isLoopInvariant(L)) { 2004 AllInvariant = false; 2005 break; 2006 } 2007 if (AllInvariant) { 2008 NestedOperands[0] = getAddRecExpr(Operands, L); 2009 AllInvariant = true; 2010 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2011 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2012 AllInvariant = false; 2013 break; 2014 } 2015 if (AllInvariant) 2016 // Ok, both add recurrences are valid after the transformation. 2017 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2018 } 2019 // Reset Operands to its original state. 2020 Operands[0] = NestedAR; 2021 } 2022 } 2023 2024 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2025 // already have one, otherwise create a new one. 2026 FoldingSetNodeID ID; 2027 ID.AddInteger(scAddRecExpr); 2028 ID.AddInteger(Operands.size()); 2029 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2030 ID.AddPointer(Operands[i]); 2031 ID.AddPointer(L); 2032 void *IP = 0; 2033 SCEVAddRecExpr *S = 2034 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2035 if (!S) { 2036 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2037 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2038 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2039 O, Operands.size(), L); 2040 UniqueSCEVs.InsertNode(S, IP); 2041 } 2042 if (HasNUW) S->setHasNoUnsignedWrap(true); 2043 if (HasNSW) S->setHasNoSignedWrap(true); 2044 return S; 2045 } 2046 2047 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2048 const SCEV *RHS) { 2049 SmallVector<const SCEV *, 2> Ops; 2050 Ops.push_back(LHS); 2051 Ops.push_back(RHS); 2052 return getSMaxExpr(Ops); 2053 } 2054 2055 const SCEV * 2056 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2057 assert(!Ops.empty() && "Cannot get empty smax!"); 2058 if (Ops.size() == 1) return Ops[0]; 2059 #ifndef NDEBUG 2060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2061 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2062 getEffectiveSCEVType(Ops[0]->getType()) && 2063 "SCEVSMaxExpr operand types don't match!"); 2064 #endif 2065 2066 // Sort by complexity, this groups all similar expression types together. 2067 GroupByComplexity(Ops, LI); 2068 2069 // If there are any constants, fold them together. 2070 unsigned Idx = 0; 2071 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2072 ++Idx; 2073 assert(Idx < Ops.size()); 2074 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2075 // We found two constants, fold them together! 2076 ConstantInt *Fold = ConstantInt::get(getContext(), 2077 APIntOps::smax(LHSC->getValue()->getValue(), 2078 RHSC->getValue()->getValue())); 2079 Ops[0] = getConstant(Fold); 2080 Ops.erase(Ops.begin()+1); // Erase the folded element 2081 if (Ops.size() == 1) return Ops[0]; 2082 LHSC = cast<SCEVConstant>(Ops[0]); 2083 } 2084 2085 // If we are left with a constant minimum-int, strip it off. 2086 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2087 Ops.erase(Ops.begin()); 2088 --Idx; 2089 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2090 // If we have an smax with a constant maximum-int, it will always be 2091 // maximum-int. 2092 return Ops[0]; 2093 } 2094 2095 if (Ops.size() == 1) return Ops[0]; 2096 } 2097 2098 // Find the first SMax 2099 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2100 ++Idx; 2101 2102 // Check to see if one of the operands is an SMax. If so, expand its operands 2103 // onto our operand list, and recurse to simplify. 2104 if (Idx < Ops.size()) { 2105 bool DeletedSMax = false; 2106 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2107 Ops.erase(Ops.begin()+Idx); 2108 Ops.append(SMax->op_begin(), SMax->op_end()); 2109 DeletedSMax = true; 2110 } 2111 2112 if (DeletedSMax) 2113 return getSMaxExpr(Ops); 2114 } 2115 2116 // Okay, check to see if the same value occurs in the operand list twice. If 2117 // so, delete one. Since we sorted the list, these values are required to 2118 // be adjacent. 2119 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2120 // X smax Y smax Y --> X smax Y 2121 // X smax Y --> X, if X is always greater than Y 2122 if (Ops[i] == Ops[i+1] || 2123 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2124 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2125 --i; --e; 2126 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2127 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2128 --i; --e; 2129 } 2130 2131 if (Ops.size() == 1) return Ops[0]; 2132 2133 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2134 2135 // Okay, it looks like we really DO need an smax expr. Check to see if we 2136 // already have one, otherwise create a new one. 2137 FoldingSetNodeID ID; 2138 ID.AddInteger(scSMaxExpr); 2139 ID.AddInteger(Ops.size()); 2140 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2141 ID.AddPointer(Ops[i]); 2142 void *IP = 0; 2143 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2144 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2145 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2146 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2147 O, Ops.size()); 2148 UniqueSCEVs.InsertNode(S, IP); 2149 return S; 2150 } 2151 2152 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2153 const SCEV *RHS) { 2154 SmallVector<const SCEV *, 2> Ops; 2155 Ops.push_back(LHS); 2156 Ops.push_back(RHS); 2157 return getUMaxExpr(Ops); 2158 } 2159 2160 const SCEV * 2161 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2162 assert(!Ops.empty() && "Cannot get empty umax!"); 2163 if (Ops.size() == 1) return Ops[0]; 2164 #ifndef NDEBUG 2165 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2166 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2167 getEffectiveSCEVType(Ops[0]->getType()) && 2168 "SCEVUMaxExpr operand types don't match!"); 2169 #endif 2170 2171 // Sort by complexity, this groups all similar expression types together. 2172 GroupByComplexity(Ops, LI); 2173 2174 // If there are any constants, fold them together. 2175 unsigned Idx = 0; 2176 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2177 ++Idx; 2178 assert(Idx < Ops.size()); 2179 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2180 // We found two constants, fold them together! 2181 ConstantInt *Fold = ConstantInt::get(getContext(), 2182 APIntOps::umax(LHSC->getValue()->getValue(), 2183 RHSC->getValue()->getValue())); 2184 Ops[0] = getConstant(Fold); 2185 Ops.erase(Ops.begin()+1); // Erase the folded element 2186 if (Ops.size() == 1) return Ops[0]; 2187 LHSC = cast<SCEVConstant>(Ops[0]); 2188 } 2189 2190 // If we are left with a constant minimum-int, strip it off. 2191 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2192 Ops.erase(Ops.begin()); 2193 --Idx; 2194 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2195 // If we have an umax with a constant maximum-int, it will always be 2196 // maximum-int. 2197 return Ops[0]; 2198 } 2199 2200 if (Ops.size() == 1) return Ops[0]; 2201 } 2202 2203 // Find the first UMax 2204 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2205 ++Idx; 2206 2207 // Check to see if one of the operands is a UMax. If so, expand its operands 2208 // onto our operand list, and recurse to simplify. 2209 if (Idx < Ops.size()) { 2210 bool DeletedUMax = false; 2211 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2212 Ops.erase(Ops.begin()+Idx); 2213 Ops.append(UMax->op_begin(), UMax->op_end()); 2214 DeletedUMax = true; 2215 } 2216 2217 if (DeletedUMax) 2218 return getUMaxExpr(Ops); 2219 } 2220 2221 // Okay, check to see if the same value occurs in the operand list twice. If 2222 // so, delete one. Since we sorted the list, these values are required to 2223 // be adjacent. 2224 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2225 // X umax Y umax Y --> X umax Y 2226 // X umax Y --> X, if X is always greater than Y 2227 if (Ops[i] == Ops[i+1] || 2228 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2229 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2230 --i; --e; 2231 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2232 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2233 --i; --e; 2234 } 2235 2236 if (Ops.size() == 1) return Ops[0]; 2237 2238 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2239 2240 // Okay, it looks like we really DO need a umax expr. Check to see if we 2241 // already have one, otherwise create a new one. 2242 FoldingSetNodeID ID; 2243 ID.AddInteger(scUMaxExpr); 2244 ID.AddInteger(Ops.size()); 2245 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2246 ID.AddPointer(Ops[i]); 2247 void *IP = 0; 2248 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2249 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2250 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2251 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2252 O, Ops.size()); 2253 UniqueSCEVs.InsertNode(S, IP); 2254 return S; 2255 } 2256 2257 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2258 const SCEV *RHS) { 2259 // ~smax(~x, ~y) == smin(x, y). 2260 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2261 } 2262 2263 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2264 const SCEV *RHS) { 2265 // ~umax(~x, ~y) == umin(x, y) 2266 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2267 } 2268 2269 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2270 // If we have TargetData, we can bypass creating a target-independent 2271 // constant expression and then folding it back into a ConstantInt. 2272 // This is just a compile-time optimization. 2273 if (TD) 2274 return getConstant(TD->getIntPtrType(getContext()), 2275 TD->getTypeAllocSize(AllocTy)); 2276 2277 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2278 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2279 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2280 C = Folded; 2281 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2282 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2283 } 2284 2285 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2286 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2287 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2288 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2289 C = Folded; 2290 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2291 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2292 } 2293 2294 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2295 unsigned FieldNo) { 2296 // If we have TargetData, we can bypass creating a target-independent 2297 // constant expression and then folding it back into a ConstantInt. 2298 // This is just a compile-time optimization. 2299 if (TD) 2300 return getConstant(TD->getIntPtrType(getContext()), 2301 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2302 2303 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2304 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2305 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2306 C = Folded; 2307 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2308 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2309 } 2310 2311 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2312 Constant *FieldNo) { 2313 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2314 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2315 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2316 C = Folded; 2317 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2318 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2319 } 2320 2321 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2322 // Don't attempt to do anything other than create a SCEVUnknown object 2323 // here. createSCEV only calls getUnknown after checking for all other 2324 // interesting possibilities, and any other code that calls getUnknown 2325 // is doing so in order to hide a value from SCEV canonicalization. 2326 2327 FoldingSetNodeID ID; 2328 ID.AddInteger(scUnknown); 2329 ID.AddPointer(V); 2330 void *IP = 0; 2331 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2332 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V); 2333 UniqueSCEVs.InsertNode(S, IP); 2334 return S; 2335 } 2336 2337 //===----------------------------------------------------------------------===// 2338 // Basic SCEV Analysis and PHI Idiom Recognition Code 2339 // 2340 2341 /// isSCEVable - Test if values of the given type are analyzable within 2342 /// the SCEV framework. This primarily includes integer types, and it 2343 /// can optionally include pointer types if the ScalarEvolution class 2344 /// has access to target-specific information. 2345 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2346 // Integers and pointers are always SCEVable. 2347 return Ty->isIntegerTy() || Ty->isPointerTy(); 2348 } 2349 2350 /// getTypeSizeInBits - Return the size in bits of the specified type, 2351 /// for which isSCEVable must return true. 2352 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2353 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2354 2355 // If we have a TargetData, use it! 2356 if (TD) 2357 return TD->getTypeSizeInBits(Ty); 2358 2359 // Integer types have fixed sizes. 2360 if (Ty->isIntegerTy()) 2361 return Ty->getPrimitiveSizeInBits(); 2362 2363 // The only other support type is pointer. Without TargetData, conservatively 2364 // assume pointers are 64-bit. 2365 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2366 return 64; 2367 } 2368 2369 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2370 /// the given type and which represents how SCEV will treat the given 2371 /// type, for which isSCEVable must return true. For pointer types, 2372 /// this is the pointer-sized integer type. 2373 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2374 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2375 2376 if (Ty->isIntegerTy()) 2377 return Ty; 2378 2379 // The only other support type is pointer. 2380 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2381 if (TD) return TD->getIntPtrType(getContext()); 2382 2383 // Without TargetData, conservatively assume pointers are 64-bit. 2384 return Type::getInt64Ty(getContext()); 2385 } 2386 2387 const SCEV *ScalarEvolution::getCouldNotCompute() { 2388 return &CouldNotCompute; 2389 } 2390 2391 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2392 /// expression and create a new one. 2393 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2394 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2395 2396 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2397 if (I != Scalars.end()) return I->second; 2398 const SCEV *S = createSCEV(V); 2399 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2400 return S; 2401 } 2402 2403 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2404 /// 2405 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2406 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2407 return getConstant( 2408 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2409 2410 const Type *Ty = V->getType(); 2411 Ty = getEffectiveSCEVType(Ty); 2412 return getMulExpr(V, 2413 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2414 } 2415 2416 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2417 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2418 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2419 return getConstant( 2420 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2421 2422 const Type *Ty = V->getType(); 2423 Ty = getEffectiveSCEVType(Ty); 2424 const SCEV *AllOnes = 2425 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2426 return getMinusSCEV(AllOnes, V); 2427 } 2428 2429 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2430 /// 2431 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2432 const SCEV *RHS) { 2433 // X - Y --> X + -Y 2434 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2435 } 2436 2437 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2438 /// input value to the specified type. If the type must be extended, it is zero 2439 /// extended. 2440 const SCEV * 2441 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2442 const Type *Ty) { 2443 const Type *SrcTy = V->getType(); 2444 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2445 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2446 "Cannot truncate or zero extend with non-integer arguments!"); 2447 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2448 return V; // No conversion 2449 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2450 return getTruncateExpr(V, Ty); 2451 return getZeroExtendExpr(V, Ty); 2452 } 2453 2454 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2455 /// input value to the specified type. If the type must be extended, it is sign 2456 /// extended. 2457 const SCEV * 2458 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2459 const Type *Ty) { 2460 const Type *SrcTy = V->getType(); 2461 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2462 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2463 "Cannot truncate or zero extend with non-integer arguments!"); 2464 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2465 return V; // No conversion 2466 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2467 return getTruncateExpr(V, Ty); 2468 return getSignExtendExpr(V, Ty); 2469 } 2470 2471 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2472 /// input value to the specified type. If the type must be extended, it is zero 2473 /// extended. The conversion must not be narrowing. 2474 const SCEV * 2475 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2476 const Type *SrcTy = V->getType(); 2477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2478 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2479 "Cannot noop or zero extend with non-integer arguments!"); 2480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2481 "getNoopOrZeroExtend cannot truncate!"); 2482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2483 return V; // No conversion 2484 return getZeroExtendExpr(V, Ty); 2485 } 2486 2487 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2488 /// input value to the specified type. If the type must be extended, it is sign 2489 /// extended. The conversion must not be narrowing. 2490 const SCEV * 2491 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2492 const Type *SrcTy = V->getType(); 2493 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2494 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2495 "Cannot noop or sign extend with non-integer arguments!"); 2496 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2497 "getNoopOrSignExtend cannot truncate!"); 2498 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2499 return V; // No conversion 2500 return getSignExtendExpr(V, Ty); 2501 } 2502 2503 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2504 /// the input value to the specified type. If the type must be extended, 2505 /// it is extended with unspecified bits. The conversion must not be 2506 /// narrowing. 2507 const SCEV * 2508 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2509 const Type *SrcTy = V->getType(); 2510 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2511 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2512 "Cannot noop or any extend with non-integer arguments!"); 2513 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2514 "getNoopOrAnyExtend cannot truncate!"); 2515 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2516 return V; // No conversion 2517 return getAnyExtendExpr(V, Ty); 2518 } 2519 2520 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2521 /// input value to the specified type. The conversion must not be widening. 2522 const SCEV * 2523 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2524 const Type *SrcTy = V->getType(); 2525 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2526 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2527 "Cannot truncate or noop with non-integer arguments!"); 2528 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2529 "getTruncateOrNoop cannot extend!"); 2530 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2531 return V; // No conversion 2532 return getTruncateExpr(V, Ty); 2533 } 2534 2535 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2536 /// the types using zero-extension, and then perform a umax operation 2537 /// with them. 2538 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2539 const SCEV *RHS) { 2540 const SCEV *PromotedLHS = LHS; 2541 const SCEV *PromotedRHS = RHS; 2542 2543 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2544 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2545 else 2546 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2547 2548 return getUMaxExpr(PromotedLHS, PromotedRHS); 2549 } 2550 2551 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2552 /// the types using zero-extension, and then perform a umin operation 2553 /// with them. 2554 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2555 const SCEV *RHS) { 2556 const SCEV *PromotedLHS = LHS; 2557 const SCEV *PromotedRHS = RHS; 2558 2559 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2560 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2561 else 2562 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2563 2564 return getUMinExpr(PromotedLHS, PromotedRHS); 2565 } 2566 2567 /// PushDefUseChildren - Push users of the given Instruction 2568 /// onto the given Worklist. 2569 static void 2570 PushDefUseChildren(Instruction *I, 2571 SmallVectorImpl<Instruction *> &Worklist) { 2572 // Push the def-use children onto the Worklist stack. 2573 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2574 UI != UE; ++UI) 2575 Worklist.push_back(cast<Instruction>(UI)); 2576 } 2577 2578 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2579 /// instructions that depend on the given instruction and removes them from 2580 /// the Scalars map if they reference SymName. This is used during PHI 2581 /// resolution. 2582 void 2583 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2584 SmallVector<Instruction *, 16> Worklist; 2585 PushDefUseChildren(PN, Worklist); 2586 2587 SmallPtrSet<Instruction *, 8> Visited; 2588 Visited.insert(PN); 2589 while (!Worklist.empty()) { 2590 Instruction *I = Worklist.pop_back_val(); 2591 if (!Visited.insert(I)) continue; 2592 2593 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2594 Scalars.find(static_cast<Value *>(I)); 2595 if (It != Scalars.end()) { 2596 // Short-circuit the def-use traversal if the symbolic name 2597 // ceases to appear in expressions. 2598 if (It->second != SymName && !It->second->hasOperand(SymName)) 2599 continue; 2600 2601 // SCEVUnknown for a PHI either means that it has an unrecognized 2602 // structure, it's a PHI that's in the progress of being computed 2603 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2604 // additional loop trip count information isn't going to change anything. 2605 // In the second case, createNodeForPHI will perform the necessary 2606 // updates on its own when it gets to that point. In the third, we do 2607 // want to forget the SCEVUnknown. 2608 if (!isa<PHINode>(I) || 2609 !isa<SCEVUnknown>(It->second) || 2610 (I != PN && It->second == SymName)) { 2611 ValuesAtScopes.erase(It->second); 2612 Scalars.erase(It); 2613 } 2614 } 2615 2616 PushDefUseChildren(I, Worklist); 2617 } 2618 } 2619 2620 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2621 /// a loop header, making it a potential recurrence, or it doesn't. 2622 /// 2623 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2624 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2625 if (L->getHeader() == PN->getParent()) { 2626 // The loop may have multiple entrances or multiple exits; we can analyze 2627 // this phi as an addrec if it has a unique entry value and a unique 2628 // backedge value. 2629 Value *BEValueV = 0, *StartValueV = 0; 2630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2631 Value *V = PN->getIncomingValue(i); 2632 if (L->contains(PN->getIncomingBlock(i))) { 2633 if (!BEValueV) { 2634 BEValueV = V; 2635 } else if (BEValueV != V) { 2636 BEValueV = 0; 2637 break; 2638 } 2639 } else if (!StartValueV) { 2640 StartValueV = V; 2641 } else if (StartValueV != V) { 2642 StartValueV = 0; 2643 break; 2644 } 2645 } 2646 if (BEValueV && StartValueV) { 2647 // While we are analyzing this PHI node, handle its value symbolically. 2648 const SCEV *SymbolicName = getUnknown(PN); 2649 assert(Scalars.find(PN) == Scalars.end() && 2650 "PHI node already processed?"); 2651 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2652 2653 // Using this symbolic name for the PHI, analyze the value coming around 2654 // the back-edge. 2655 const SCEV *BEValue = getSCEV(BEValueV); 2656 2657 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2658 // has a special value for the first iteration of the loop. 2659 2660 // If the value coming around the backedge is an add with the symbolic 2661 // value we just inserted, then we found a simple induction variable! 2662 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2663 // If there is a single occurrence of the symbolic value, replace it 2664 // with a recurrence. 2665 unsigned FoundIndex = Add->getNumOperands(); 2666 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2667 if (Add->getOperand(i) == SymbolicName) 2668 if (FoundIndex == e) { 2669 FoundIndex = i; 2670 break; 2671 } 2672 2673 if (FoundIndex != Add->getNumOperands()) { 2674 // Create an add with everything but the specified operand. 2675 SmallVector<const SCEV *, 8> Ops; 2676 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2677 if (i != FoundIndex) 2678 Ops.push_back(Add->getOperand(i)); 2679 const SCEV *Accum = getAddExpr(Ops); 2680 2681 // This is not a valid addrec if the step amount is varying each 2682 // loop iteration, but is not itself an addrec in this loop. 2683 if (Accum->isLoopInvariant(L) || 2684 (isa<SCEVAddRecExpr>(Accum) && 2685 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2686 bool HasNUW = false; 2687 bool HasNSW = false; 2688 2689 // If the increment doesn't overflow, then neither the addrec nor 2690 // the post-increment will overflow. 2691 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2692 if (OBO->hasNoUnsignedWrap()) 2693 HasNUW = true; 2694 if (OBO->hasNoSignedWrap()) 2695 HasNSW = true; 2696 } 2697 2698 const SCEV *StartVal = getSCEV(StartValueV); 2699 const SCEV *PHISCEV = 2700 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2701 2702 // Since the no-wrap flags are on the increment, they apply to the 2703 // post-incremented value as well. 2704 if (Accum->isLoopInvariant(L)) 2705 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2706 Accum, L, HasNUW, HasNSW); 2707 2708 // Okay, for the entire analysis of this edge we assumed the PHI 2709 // to be symbolic. We now need to go back and purge all of the 2710 // entries for the scalars that use the symbolic expression. 2711 ForgetSymbolicName(PN, SymbolicName); 2712 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2713 return PHISCEV; 2714 } 2715 } 2716 } else if (const SCEVAddRecExpr *AddRec = 2717 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2718 // Otherwise, this could be a loop like this: 2719 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2720 // In this case, j = {1,+,1} and BEValue is j. 2721 // Because the other in-value of i (0) fits the evolution of BEValue 2722 // i really is an addrec evolution. 2723 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2724 const SCEV *StartVal = getSCEV(StartValueV); 2725 2726 // If StartVal = j.start - j.stride, we can use StartVal as the 2727 // initial step of the addrec evolution. 2728 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2729 AddRec->getOperand(1))) { 2730 const SCEV *PHISCEV = 2731 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2732 2733 // Okay, for the entire analysis of this edge we assumed the PHI 2734 // to be symbolic. We now need to go back and purge all of the 2735 // entries for the scalars that use the symbolic expression. 2736 ForgetSymbolicName(PN, SymbolicName); 2737 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2738 return PHISCEV; 2739 } 2740 } 2741 } 2742 } 2743 } 2744 2745 // If the PHI has a single incoming value, follow that value, unless the 2746 // PHI's incoming blocks are in a different loop, in which case doing so 2747 // risks breaking LCSSA form. Instcombine would normally zap these, but 2748 // it doesn't have DominatorTree information, so it may miss cases. 2749 if (Value *V = PN->hasConstantValue(DT)) { 2750 bool AllSameLoop = true; 2751 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2752 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2753 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2754 AllSameLoop = false; 2755 break; 2756 } 2757 if (AllSameLoop) 2758 return getSCEV(V); 2759 } 2760 2761 // If it's not a loop phi, we can't handle it yet. 2762 return getUnknown(PN); 2763 } 2764 2765 /// createNodeForGEP - Expand GEP instructions into add and multiply 2766 /// operations. This allows them to be analyzed by regular SCEV code. 2767 /// 2768 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2769 2770 bool InBounds = GEP->isInBounds(); 2771 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2772 Value *Base = GEP->getOperand(0); 2773 // Don't attempt to analyze GEPs over unsized objects. 2774 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2775 return getUnknown(GEP); 2776 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2777 gep_type_iterator GTI = gep_type_begin(GEP); 2778 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2779 E = GEP->op_end(); 2780 I != E; ++I) { 2781 Value *Index = *I; 2782 // Compute the (potentially symbolic) offset in bytes for this index. 2783 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2784 // For a struct, add the member offset. 2785 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2786 TotalOffset = getAddExpr(TotalOffset, 2787 getOffsetOfExpr(STy, FieldNo), 2788 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2789 } else { 2790 // For an array, add the element offset, explicitly scaled. 2791 const SCEV *LocalOffset = getSCEV(Index); 2792 // Getelementptr indices are signed. 2793 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); 2794 // Lower "inbounds" GEPs to NSW arithmetic. 2795 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI), 2796 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2797 TotalOffset = getAddExpr(TotalOffset, LocalOffset, 2798 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2799 } 2800 } 2801 return getAddExpr(getSCEV(Base), TotalOffset, 2802 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2803 } 2804 2805 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2806 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2807 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2808 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2809 uint32_t 2810 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2811 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2812 return C->getValue()->getValue().countTrailingZeros(); 2813 2814 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2815 return std::min(GetMinTrailingZeros(T->getOperand()), 2816 (uint32_t)getTypeSizeInBits(T->getType())); 2817 2818 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2819 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2820 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2821 getTypeSizeInBits(E->getType()) : OpRes; 2822 } 2823 2824 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2825 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2826 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2827 getTypeSizeInBits(E->getType()) : OpRes; 2828 } 2829 2830 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2831 // The result is the min of all operands results. 2832 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2833 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2834 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2835 return MinOpRes; 2836 } 2837 2838 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2839 // The result is the sum of all operands results. 2840 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2841 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2842 for (unsigned i = 1, e = M->getNumOperands(); 2843 SumOpRes != BitWidth && i != e; ++i) 2844 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2845 BitWidth); 2846 return SumOpRes; 2847 } 2848 2849 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2850 // The result is the min of all operands results. 2851 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2852 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2853 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2854 return MinOpRes; 2855 } 2856 2857 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2858 // The result is the min of all operands results. 2859 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2860 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2861 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2862 return MinOpRes; 2863 } 2864 2865 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2866 // The result is the min of all operands results. 2867 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2868 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2869 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2870 return MinOpRes; 2871 } 2872 2873 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2874 // For a SCEVUnknown, ask ValueTracking. 2875 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2876 APInt Mask = APInt::getAllOnesValue(BitWidth); 2877 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2878 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2879 return Zeros.countTrailingOnes(); 2880 } 2881 2882 // SCEVUDivExpr 2883 return 0; 2884 } 2885 2886 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2887 /// 2888 ConstantRange 2889 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2890 2891 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2892 return ConstantRange(C->getValue()->getValue()); 2893 2894 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2895 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2896 2897 // If the value has known zeros, the maximum unsigned value will have those 2898 // known zeros as well. 2899 uint32_t TZ = GetMinTrailingZeros(S); 2900 if (TZ != 0) 2901 ConservativeResult = 2902 ConstantRange(APInt::getMinValue(BitWidth), 2903 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2904 2905 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2906 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2907 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2908 X = X.add(getUnsignedRange(Add->getOperand(i))); 2909 return ConservativeResult.intersectWith(X); 2910 } 2911 2912 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2913 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2914 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2915 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2916 return ConservativeResult.intersectWith(X); 2917 } 2918 2919 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2920 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2921 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2922 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2923 return ConservativeResult.intersectWith(X); 2924 } 2925 2926 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2927 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2928 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2929 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2930 return ConservativeResult.intersectWith(X); 2931 } 2932 2933 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2934 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2935 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2936 return ConservativeResult.intersectWith(X.udiv(Y)); 2937 } 2938 2939 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2940 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2941 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2942 } 2943 2944 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2945 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2946 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2947 } 2948 2949 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2950 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2951 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2952 } 2953 2954 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2955 // If there's no unsigned wrap, the value will never be less than its 2956 // initial value. 2957 if (AddRec->hasNoUnsignedWrap()) 2958 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2959 if (!C->getValue()->isZero()) 2960 ConservativeResult = 2961 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)); 2962 2963 // TODO: non-affine addrec 2964 if (AddRec->isAffine()) { 2965 const Type *Ty = AddRec->getType(); 2966 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2967 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 2968 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 2969 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2970 2971 const SCEV *Start = AddRec->getStart(); 2972 const SCEV *Step = AddRec->getStepRecurrence(*this); 2973 2974 ConstantRange StartRange = getUnsignedRange(Start); 2975 ConstantRange StepRange = getSignedRange(Step); 2976 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 2977 ConstantRange EndRange = 2978 StartRange.add(MaxBECountRange.multiply(StepRange)); 2979 2980 // Check for overflow. This must be done with ConstantRange arithmetic 2981 // because we could be called from within the ScalarEvolution overflow 2982 // checking code. 2983 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 2984 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 2985 ConstantRange ExtMaxBECountRange = 2986 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 2987 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 2988 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 2989 ExtEndRange) 2990 return ConservativeResult; 2991 2992 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 2993 EndRange.getUnsignedMin()); 2994 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 2995 EndRange.getUnsignedMax()); 2996 if (Min.isMinValue() && Max.isMaxValue()) 2997 return ConservativeResult; 2998 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 2999 } 3000 } 3001 3002 return ConservativeResult; 3003 } 3004 3005 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3006 // For a SCEVUnknown, ask ValueTracking. 3007 APInt Mask = APInt::getAllOnesValue(BitWidth); 3008 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3009 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3010 if (Ones == ~Zeros + 1) 3011 return ConservativeResult; 3012 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3013 } 3014 3015 return ConservativeResult; 3016 } 3017 3018 /// getSignedRange - Determine the signed range for a particular SCEV. 3019 /// 3020 ConstantRange 3021 ScalarEvolution::getSignedRange(const SCEV *S) { 3022 3023 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3024 return ConstantRange(C->getValue()->getValue()); 3025 3026 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3027 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3028 3029 // If the value has known zeros, the maximum signed value will have those 3030 // known zeros as well. 3031 uint32_t TZ = GetMinTrailingZeros(S); 3032 if (TZ != 0) 3033 ConservativeResult = 3034 ConstantRange(APInt::getSignedMinValue(BitWidth), 3035 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3036 3037 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3038 ConstantRange X = getSignedRange(Add->getOperand(0)); 3039 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3040 X = X.add(getSignedRange(Add->getOperand(i))); 3041 return ConservativeResult.intersectWith(X); 3042 } 3043 3044 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3045 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3046 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3047 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3048 return ConservativeResult.intersectWith(X); 3049 } 3050 3051 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3052 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3053 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3054 X = X.smax(getSignedRange(SMax->getOperand(i))); 3055 return ConservativeResult.intersectWith(X); 3056 } 3057 3058 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3059 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3060 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3061 X = X.umax(getSignedRange(UMax->getOperand(i))); 3062 return ConservativeResult.intersectWith(X); 3063 } 3064 3065 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3066 ConstantRange X = getSignedRange(UDiv->getLHS()); 3067 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3068 return ConservativeResult.intersectWith(X.udiv(Y)); 3069 } 3070 3071 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3072 ConstantRange X = getSignedRange(ZExt->getOperand()); 3073 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3074 } 3075 3076 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3077 ConstantRange X = getSignedRange(SExt->getOperand()); 3078 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3079 } 3080 3081 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3082 ConstantRange X = getSignedRange(Trunc->getOperand()); 3083 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3084 } 3085 3086 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3087 // If there's no signed wrap, and all the operands have the same sign or 3088 // zero, the value won't ever change sign. 3089 if (AddRec->hasNoSignedWrap()) { 3090 bool AllNonNeg = true; 3091 bool AllNonPos = true; 3092 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3093 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3094 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3095 } 3096 if (AllNonNeg) 3097 ConservativeResult = ConservativeResult.intersectWith( 3098 ConstantRange(APInt(BitWidth, 0), 3099 APInt::getSignedMinValue(BitWidth))); 3100 else if (AllNonPos) 3101 ConservativeResult = ConservativeResult.intersectWith( 3102 ConstantRange(APInt::getSignedMinValue(BitWidth), 3103 APInt(BitWidth, 1))); 3104 } 3105 3106 // TODO: non-affine addrec 3107 if (AddRec->isAffine()) { 3108 const Type *Ty = AddRec->getType(); 3109 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3110 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3111 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3112 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3113 3114 const SCEV *Start = AddRec->getStart(); 3115 const SCEV *Step = AddRec->getStepRecurrence(*this); 3116 3117 ConstantRange StartRange = getSignedRange(Start); 3118 ConstantRange StepRange = getSignedRange(Step); 3119 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3120 ConstantRange EndRange = 3121 StartRange.add(MaxBECountRange.multiply(StepRange)); 3122 3123 // Check for overflow. This must be done with ConstantRange arithmetic 3124 // because we could be called from within the ScalarEvolution overflow 3125 // checking code. 3126 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3127 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3128 ConstantRange ExtMaxBECountRange = 3129 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3130 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3131 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3132 ExtEndRange) 3133 return ConservativeResult; 3134 3135 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3136 EndRange.getSignedMin()); 3137 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3138 EndRange.getSignedMax()); 3139 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3140 return ConservativeResult; 3141 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3142 } 3143 } 3144 3145 return ConservativeResult; 3146 } 3147 3148 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3149 // For a SCEVUnknown, ask ValueTracking. 3150 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3151 return ConservativeResult; 3152 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3153 if (NS == 1) 3154 return ConservativeResult; 3155 return ConservativeResult.intersectWith( 3156 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3157 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3158 } 3159 3160 return ConservativeResult; 3161 } 3162 3163 /// createSCEV - We know that there is no SCEV for the specified value. 3164 /// Analyze the expression. 3165 /// 3166 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3167 if (!isSCEVable(V->getType())) 3168 return getUnknown(V); 3169 3170 unsigned Opcode = Instruction::UserOp1; 3171 if (Instruction *I = dyn_cast<Instruction>(V)) { 3172 Opcode = I->getOpcode(); 3173 3174 // Don't attempt to analyze instructions in blocks that aren't 3175 // reachable. Such instructions don't matter, and they aren't required 3176 // to obey basic rules for definitions dominating uses which this 3177 // analysis depends on. 3178 if (!DT->isReachableFromEntry(I->getParent())) 3179 return getUnknown(V); 3180 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3181 Opcode = CE->getOpcode(); 3182 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3183 return getConstant(CI); 3184 else if (isa<ConstantPointerNull>(V)) 3185 return getConstant(V->getType(), 0); 3186 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3187 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3188 else 3189 return getUnknown(V); 3190 3191 Operator *U = cast<Operator>(V); 3192 switch (Opcode) { 3193 case Instruction::Add: 3194 // Don't transfer the NSW and NUW bits from the Add instruction to the 3195 // Add expression, because the Instruction may be guarded by control 3196 // flow and the no-overflow bits may not be valid for the expression in 3197 // any context. 3198 return getAddExpr(getSCEV(U->getOperand(0)), 3199 getSCEV(U->getOperand(1))); 3200 case Instruction::Mul: 3201 // Don't transfer the NSW and NUW bits from the Mul instruction to the 3202 // Mul expression, as with Add. 3203 return getMulExpr(getSCEV(U->getOperand(0)), 3204 getSCEV(U->getOperand(1))); 3205 case Instruction::UDiv: 3206 return getUDivExpr(getSCEV(U->getOperand(0)), 3207 getSCEV(U->getOperand(1))); 3208 case Instruction::Sub: 3209 return getMinusSCEV(getSCEV(U->getOperand(0)), 3210 getSCEV(U->getOperand(1))); 3211 case Instruction::And: 3212 // For an expression like x&255 that merely masks off the high bits, 3213 // use zext(trunc(x)) as the SCEV expression. 3214 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3215 if (CI->isNullValue()) 3216 return getSCEV(U->getOperand(1)); 3217 if (CI->isAllOnesValue()) 3218 return getSCEV(U->getOperand(0)); 3219 const APInt &A = CI->getValue(); 3220 3221 // Instcombine's ShrinkDemandedConstant may strip bits out of 3222 // constants, obscuring what would otherwise be a low-bits mask. 3223 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3224 // knew about to reconstruct a low-bits mask value. 3225 unsigned LZ = A.countLeadingZeros(); 3226 unsigned BitWidth = A.getBitWidth(); 3227 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3228 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3229 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3230 3231 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3232 3233 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3234 return 3235 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3236 IntegerType::get(getContext(), BitWidth - LZ)), 3237 U->getType()); 3238 } 3239 break; 3240 3241 case Instruction::Or: 3242 // If the RHS of the Or is a constant, we may have something like: 3243 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3244 // optimizations will transparently handle this case. 3245 // 3246 // In order for this transformation to be safe, the LHS must be of the 3247 // form X*(2^n) and the Or constant must be less than 2^n. 3248 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3249 const SCEV *LHS = getSCEV(U->getOperand(0)); 3250 const APInt &CIVal = CI->getValue(); 3251 if (GetMinTrailingZeros(LHS) >= 3252 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3253 // Build a plain add SCEV. 3254 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3255 // If the LHS of the add was an addrec and it has no-wrap flags, 3256 // transfer the no-wrap flags, since an or won't introduce a wrap. 3257 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3258 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3259 if (OldAR->hasNoUnsignedWrap()) 3260 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3261 if (OldAR->hasNoSignedWrap()) 3262 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3263 } 3264 return S; 3265 } 3266 } 3267 break; 3268 case Instruction::Xor: 3269 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3270 // If the RHS of the xor is a signbit, then this is just an add. 3271 // Instcombine turns add of signbit into xor as a strength reduction step. 3272 if (CI->getValue().isSignBit()) 3273 return getAddExpr(getSCEV(U->getOperand(0)), 3274 getSCEV(U->getOperand(1))); 3275 3276 // If the RHS of xor is -1, then this is a not operation. 3277 if (CI->isAllOnesValue()) 3278 return getNotSCEV(getSCEV(U->getOperand(0))); 3279 3280 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3281 // This is a variant of the check for xor with -1, and it handles 3282 // the case where instcombine has trimmed non-demanded bits out 3283 // of an xor with -1. 3284 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3285 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3286 if (BO->getOpcode() == Instruction::And && 3287 LCI->getValue() == CI->getValue()) 3288 if (const SCEVZeroExtendExpr *Z = 3289 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3290 const Type *UTy = U->getType(); 3291 const SCEV *Z0 = Z->getOperand(); 3292 const Type *Z0Ty = Z0->getType(); 3293 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3294 3295 // If C is a low-bits mask, the zero extend is serving to 3296 // mask off the high bits. Complement the operand and 3297 // re-apply the zext. 3298 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3299 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3300 3301 // If C is a single bit, it may be in the sign-bit position 3302 // before the zero-extend. In this case, represent the xor 3303 // using an add, which is equivalent, and re-apply the zext. 3304 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3305 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3306 Trunc.isSignBit()) 3307 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3308 UTy); 3309 } 3310 } 3311 break; 3312 3313 case Instruction::Shl: 3314 // Turn shift left of a constant amount into a multiply. 3315 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3316 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3317 3318 // If the shift count is not less than the bitwidth, the result of 3319 // the shift is undefined. Don't try to analyze it, because the 3320 // resolution chosen here may differ from the resolution chosen in 3321 // other parts of the compiler. 3322 if (SA->getValue().uge(BitWidth)) 3323 break; 3324 3325 Constant *X = ConstantInt::get(getContext(), 3326 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3327 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3328 } 3329 break; 3330 3331 case Instruction::LShr: 3332 // Turn logical shift right of a constant into a unsigned divide. 3333 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3334 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3335 3336 // If the shift count is not less than the bitwidth, the result of 3337 // the shift is undefined. Don't try to analyze it, because the 3338 // resolution chosen here may differ from the resolution chosen in 3339 // other parts of the compiler. 3340 if (SA->getValue().uge(BitWidth)) 3341 break; 3342 3343 Constant *X = ConstantInt::get(getContext(), 3344 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3345 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3346 } 3347 break; 3348 3349 case Instruction::AShr: 3350 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3351 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3352 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3353 if (L->getOpcode() == Instruction::Shl && 3354 L->getOperand(1) == U->getOperand(1)) { 3355 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3356 3357 // If the shift count is not less than the bitwidth, the result of 3358 // the shift is undefined. Don't try to analyze it, because the 3359 // resolution chosen here may differ from the resolution chosen in 3360 // other parts of the compiler. 3361 if (CI->getValue().uge(BitWidth)) 3362 break; 3363 3364 uint64_t Amt = BitWidth - CI->getZExtValue(); 3365 if (Amt == BitWidth) 3366 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3367 return 3368 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3369 IntegerType::get(getContext(), 3370 Amt)), 3371 U->getType()); 3372 } 3373 break; 3374 3375 case Instruction::Trunc: 3376 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3377 3378 case Instruction::ZExt: 3379 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3380 3381 case Instruction::SExt: 3382 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3383 3384 case Instruction::BitCast: 3385 // BitCasts are no-op casts so we just eliminate the cast. 3386 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3387 return getSCEV(U->getOperand(0)); 3388 break; 3389 3390 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3391 // lead to pointer expressions which cannot safely be expanded to GEPs, 3392 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3393 // simplifying integer expressions. 3394 3395 case Instruction::GetElementPtr: 3396 return createNodeForGEP(cast<GEPOperator>(U)); 3397 3398 case Instruction::PHI: 3399 return createNodeForPHI(cast<PHINode>(U)); 3400 3401 case Instruction::Select: 3402 // This could be a smax or umax that was lowered earlier. 3403 // Try to recover it. 3404 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3405 Value *LHS = ICI->getOperand(0); 3406 Value *RHS = ICI->getOperand(1); 3407 switch (ICI->getPredicate()) { 3408 case ICmpInst::ICMP_SLT: 3409 case ICmpInst::ICMP_SLE: 3410 std::swap(LHS, RHS); 3411 // fall through 3412 case ICmpInst::ICMP_SGT: 3413 case ICmpInst::ICMP_SGE: 3414 // a >s b ? a+x : b+x -> smax(a, b)+x 3415 // a >s b ? b+x : a+x -> smin(a, b)+x 3416 if (LHS->getType() == U->getType()) { 3417 const SCEV *LS = getSCEV(LHS); 3418 const SCEV *RS = getSCEV(RHS); 3419 const SCEV *LA = getSCEV(U->getOperand(1)); 3420 const SCEV *RA = getSCEV(U->getOperand(2)); 3421 const SCEV *LDiff = getMinusSCEV(LA, LS); 3422 const SCEV *RDiff = getMinusSCEV(RA, RS); 3423 if (LDiff == RDiff) 3424 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3425 LDiff = getMinusSCEV(LA, RS); 3426 RDiff = getMinusSCEV(RA, LS); 3427 if (LDiff == RDiff) 3428 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3429 } 3430 break; 3431 case ICmpInst::ICMP_ULT: 3432 case ICmpInst::ICMP_ULE: 3433 std::swap(LHS, RHS); 3434 // fall through 3435 case ICmpInst::ICMP_UGT: 3436 case ICmpInst::ICMP_UGE: 3437 // a >u b ? a+x : b+x -> umax(a, b)+x 3438 // a >u b ? b+x : a+x -> umin(a, b)+x 3439 if (LHS->getType() == U->getType()) { 3440 const SCEV *LS = getSCEV(LHS); 3441 const SCEV *RS = getSCEV(RHS); 3442 const SCEV *LA = getSCEV(U->getOperand(1)); 3443 const SCEV *RA = getSCEV(U->getOperand(2)); 3444 const SCEV *LDiff = getMinusSCEV(LA, LS); 3445 const SCEV *RDiff = getMinusSCEV(RA, RS); 3446 if (LDiff == RDiff) 3447 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3448 LDiff = getMinusSCEV(LA, RS); 3449 RDiff = getMinusSCEV(RA, LS); 3450 if (LDiff == RDiff) 3451 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3452 } 3453 break; 3454 case ICmpInst::ICMP_NE: 3455 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3456 if (LHS->getType() == U->getType() && 3457 isa<ConstantInt>(RHS) && 3458 cast<ConstantInt>(RHS)->isZero()) { 3459 const SCEV *One = getConstant(LHS->getType(), 1); 3460 const SCEV *LS = getSCEV(LHS); 3461 const SCEV *LA = getSCEV(U->getOperand(1)); 3462 const SCEV *RA = getSCEV(U->getOperand(2)); 3463 const SCEV *LDiff = getMinusSCEV(LA, LS); 3464 const SCEV *RDiff = getMinusSCEV(RA, One); 3465 if (LDiff == RDiff) 3466 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3467 } 3468 break; 3469 case ICmpInst::ICMP_EQ: 3470 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3471 if (LHS->getType() == U->getType() && 3472 isa<ConstantInt>(RHS) && 3473 cast<ConstantInt>(RHS)->isZero()) { 3474 const SCEV *One = getConstant(LHS->getType(), 1); 3475 const SCEV *LS = getSCEV(LHS); 3476 const SCEV *LA = getSCEV(U->getOperand(1)); 3477 const SCEV *RA = getSCEV(U->getOperand(2)); 3478 const SCEV *LDiff = getMinusSCEV(LA, One); 3479 const SCEV *RDiff = getMinusSCEV(RA, LS); 3480 if (LDiff == RDiff) 3481 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3482 } 3483 break; 3484 default: 3485 break; 3486 } 3487 } 3488 3489 default: // We cannot analyze this expression. 3490 break; 3491 } 3492 3493 return getUnknown(V); 3494 } 3495 3496 3497 3498 //===----------------------------------------------------------------------===// 3499 // Iteration Count Computation Code 3500 // 3501 3502 /// getBackedgeTakenCount - If the specified loop has a predictable 3503 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3504 /// object. The backedge-taken count is the number of times the loop header 3505 /// will be branched to from within the loop. This is one less than the 3506 /// trip count of the loop, since it doesn't count the first iteration, 3507 /// when the header is branched to from outside the loop. 3508 /// 3509 /// Note that it is not valid to call this method on a loop without a 3510 /// loop-invariant backedge-taken count (see 3511 /// hasLoopInvariantBackedgeTakenCount). 3512 /// 3513 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3514 return getBackedgeTakenInfo(L).Exact; 3515 } 3516 3517 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3518 /// return the least SCEV value that is known never to be less than the 3519 /// actual backedge taken count. 3520 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3521 return getBackedgeTakenInfo(L).Max; 3522 } 3523 3524 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3525 /// onto the given Worklist. 3526 static void 3527 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3528 BasicBlock *Header = L->getHeader(); 3529 3530 // Push all Loop-header PHIs onto the Worklist stack. 3531 for (BasicBlock::iterator I = Header->begin(); 3532 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3533 Worklist.push_back(PN); 3534 } 3535 3536 const ScalarEvolution::BackedgeTakenInfo & 3537 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3538 // Initially insert a CouldNotCompute for this loop. If the insertion 3539 // succeeds, proceed to actually compute a backedge-taken count and 3540 // update the value. The temporary CouldNotCompute value tells SCEV 3541 // code elsewhere that it shouldn't attempt to request a new 3542 // backedge-taken count, which could result in infinite recursion. 3543 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3544 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3545 if (Pair.second) { 3546 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3547 if (BECount.Exact != getCouldNotCompute()) { 3548 assert(BECount.Exact->isLoopInvariant(L) && 3549 BECount.Max->isLoopInvariant(L) && 3550 "Computed backedge-taken count isn't loop invariant for loop!"); 3551 ++NumTripCountsComputed; 3552 3553 // Update the value in the map. 3554 Pair.first->second = BECount; 3555 } else { 3556 if (BECount.Max != getCouldNotCompute()) 3557 // Update the value in the map. 3558 Pair.first->second = BECount; 3559 if (isa<PHINode>(L->getHeader()->begin())) 3560 // Only count loops that have phi nodes as not being computable. 3561 ++NumTripCountsNotComputed; 3562 } 3563 3564 // Now that we know more about the trip count for this loop, forget any 3565 // existing SCEV values for PHI nodes in this loop since they are only 3566 // conservative estimates made without the benefit of trip count 3567 // information. This is similar to the code in forgetLoop, except that 3568 // it handles SCEVUnknown PHI nodes specially. 3569 if (BECount.hasAnyInfo()) { 3570 SmallVector<Instruction *, 16> Worklist; 3571 PushLoopPHIs(L, Worklist); 3572 3573 SmallPtrSet<Instruction *, 8> Visited; 3574 while (!Worklist.empty()) { 3575 Instruction *I = Worklist.pop_back_val(); 3576 if (!Visited.insert(I)) continue; 3577 3578 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3579 Scalars.find(static_cast<Value *>(I)); 3580 if (It != Scalars.end()) { 3581 // SCEVUnknown for a PHI either means that it has an unrecognized 3582 // structure, or it's a PHI that's in the progress of being computed 3583 // by createNodeForPHI. In the former case, additional loop trip 3584 // count information isn't going to change anything. In the later 3585 // case, createNodeForPHI will perform the necessary updates on its 3586 // own when it gets to that point. 3587 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3588 ValuesAtScopes.erase(It->second); 3589 Scalars.erase(It); 3590 } 3591 if (PHINode *PN = dyn_cast<PHINode>(I)) 3592 ConstantEvolutionLoopExitValue.erase(PN); 3593 } 3594 3595 PushDefUseChildren(I, Worklist); 3596 } 3597 } 3598 } 3599 return Pair.first->second; 3600 } 3601 3602 /// forgetLoop - This method should be called by the client when it has 3603 /// changed a loop in a way that may effect ScalarEvolution's ability to 3604 /// compute a trip count, or if the loop is deleted. 3605 void ScalarEvolution::forgetLoop(const Loop *L) { 3606 // Drop any stored trip count value. 3607 BackedgeTakenCounts.erase(L); 3608 3609 // Drop information about expressions based on loop-header PHIs. 3610 SmallVector<Instruction *, 16> Worklist; 3611 PushLoopPHIs(L, Worklist); 3612 3613 SmallPtrSet<Instruction *, 8> Visited; 3614 while (!Worklist.empty()) { 3615 Instruction *I = Worklist.pop_back_val(); 3616 if (!Visited.insert(I)) continue; 3617 3618 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3619 Scalars.find(static_cast<Value *>(I)); 3620 if (It != Scalars.end()) { 3621 ValuesAtScopes.erase(It->second); 3622 Scalars.erase(It); 3623 if (PHINode *PN = dyn_cast<PHINode>(I)) 3624 ConstantEvolutionLoopExitValue.erase(PN); 3625 } 3626 3627 PushDefUseChildren(I, Worklist); 3628 } 3629 } 3630 3631 /// forgetValue - This method should be called by the client when it has 3632 /// changed a value in a way that may effect its value, or which may 3633 /// disconnect it from a def-use chain linking it to a loop. 3634 void ScalarEvolution::forgetValue(Value *V) { 3635 Instruction *I = dyn_cast<Instruction>(V); 3636 if (!I) return; 3637 3638 // Drop information about expressions based on loop-header PHIs. 3639 SmallVector<Instruction *, 16> Worklist; 3640 Worklist.push_back(I); 3641 3642 SmallPtrSet<Instruction *, 8> Visited; 3643 while (!Worklist.empty()) { 3644 I = Worklist.pop_back_val(); 3645 if (!Visited.insert(I)) continue; 3646 3647 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3648 Scalars.find(static_cast<Value *>(I)); 3649 if (It != Scalars.end()) { 3650 ValuesAtScopes.erase(It->second); 3651 Scalars.erase(It); 3652 if (PHINode *PN = dyn_cast<PHINode>(I)) 3653 ConstantEvolutionLoopExitValue.erase(PN); 3654 } 3655 3656 PushDefUseChildren(I, Worklist); 3657 } 3658 } 3659 3660 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3661 /// of the specified loop will execute. 3662 ScalarEvolution::BackedgeTakenInfo 3663 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3664 SmallVector<BasicBlock *, 8> ExitingBlocks; 3665 L->getExitingBlocks(ExitingBlocks); 3666 3667 // Examine all exits and pick the most conservative values. 3668 const SCEV *BECount = getCouldNotCompute(); 3669 const SCEV *MaxBECount = getCouldNotCompute(); 3670 bool CouldNotComputeBECount = false; 3671 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3672 BackedgeTakenInfo NewBTI = 3673 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3674 3675 if (NewBTI.Exact == getCouldNotCompute()) { 3676 // We couldn't compute an exact value for this exit, so 3677 // we won't be able to compute an exact value for the loop. 3678 CouldNotComputeBECount = true; 3679 BECount = getCouldNotCompute(); 3680 } else if (!CouldNotComputeBECount) { 3681 if (BECount == getCouldNotCompute()) 3682 BECount = NewBTI.Exact; 3683 else 3684 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3685 } 3686 if (MaxBECount == getCouldNotCompute()) 3687 MaxBECount = NewBTI.Max; 3688 else if (NewBTI.Max != getCouldNotCompute()) 3689 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3690 } 3691 3692 return BackedgeTakenInfo(BECount, MaxBECount); 3693 } 3694 3695 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3696 /// of the specified loop will execute if it exits via the specified block. 3697 ScalarEvolution::BackedgeTakenInfo 3698 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3699 BasicBlock *ExitingBlock) { 3700 3701 // Okay, we've chosen an exiting block. See what condition causes us to 3702 // exit at this block. 3703 // 3704 // FIXME: we should be able to handle switch instructions (with a single exit) 3705 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3706 if (ExitBr == 0) return getCouldNotCompute(); 3707 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3708 3709 // At this point, we know we have a conditional branch that determines whether 3710 // the loop is exited. However, we don't know if the branch is executed each 3711 // time through the loop. If not, then the execution count of the branch will 3712 // not be equal to the trip count of the loop. 3713 // 3714 // Currently we check for this by checking to see if the Exit branch goes to 3715 // the loop header. If so, we know it will always execute the same number of 3716 // times as the loop. We also handle the case where the exit block *is* the 3717 // loop header. This is common for un-rotated loops. 3718 // 3719 // If both of those tests fail, walk up the unique predecessor chain to the 3720 // header, stopping if there is an edge that doesn't exit the loop. If the 3721 // header is reached, the execution count of the branch will be equal to the 3722 // trip count of the loop. 3723 // 3724 // More extensive analysis could be done to handle more cases here. 3725 // 3726 if (ExitBr->getSuccessor(0) != L->getHeader() && 3727 ExitBr->getSuccessor(1) != L->getHeader() && 3728 ExitBr->getParent() != L->getHeader()) { 3729 // The simple checks failed, try climbing the unique predecessor chain 3730 // up to the header. 3731 bool Ok = false; 3732 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3733 BasicBlock *Pred = BB->getUniquePredecessor(); 3734 if (!Pred) 3735 return getCouldNotCompute(); 3736 TerminatorInst *PredTerm = Pred->getTerminator(); 3737 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3738 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3739 if (PredSucc == BB) 3740 continue; 3741 // If the predecessor has a successor that isn't BB and isn't 3742 // outside the loop, assume the worst. 3743 if (L->contains(PredSucc)) 3744 return getCouldNotCompute(); 3745 } 3746 if (Pred == L->getHeader()) { 3747 Ok = true; 3748 break; 3749 } 3750 BB = Pred; 3751 } 3752 if (!Ok) 3753 return getCouldNotCompute(); 3754 } 3755 3756 // Proceed to the next level to examine the exit condition expression. 3757 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3758 ExitBr->getSuccessor(0), 3759 ExitBr->getSuccessor(1)); 3760 } 3761 3762 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3763 /// backedge of the specified loop will execute if its exit condition 3764 /// were a conditional branch of ExitCond, TBB, and FBB. 3765 ScalarEvolution::BackedgeTakenInfo 3766 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3767 Value *ExitCond, 3768 BasicBlock *TBB, 3769 BasicBlock *FBB) { 3770 // Check if the controlling expression for this loop is an And or Or. 3771 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3772 if (BO->getOpcode() == Instruction::And) { 3773 // Recurse on the operands of the and. 3774 BackedgeTakenInfo BTI0 = 3775 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3776 BackedgeTakenInfo BTI1 = 3777 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3778 const SCEV *BECount = getCouldNotCompute(); 3779 const SCEV *MaxBECount = getCouldNotCompute(); 3780 if (L->contains(TBB)) { 3781 // Both conditions must be true for the loop to continue executing. 3782 // Choose the less conservative count. 3783 if (BTI0.Exact == getCouldNotCompute() || 3784 BTI1.Exact == getCouldNotCompute()) 3785 BECount = getCouldNotCompute(); 3786 else 3787 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3788 if (BTI0.Max == getCouldNotCompute()) 3789 MaxBECount = BTI1.Max; 3790 else if (BTI1.Max == getCouldNotCompute()) 3791 MaxBECount = BTI0.Max; 3792 else 3793 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3794 } else { 3795 // Both conditions must be true for the loop to exit. 3796 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3797 if (BTI0.Exact != getCouldNotCompute() && 3798 BTI1.Exact != getCouldNotCompute()) 3799 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3800 if (BTI0.Max != getCouldNotCompute() && 3801 BTI1.Max != getCouldNotCompute()) 3802 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3803 } 3804 3805 return BackedgeTakenInfo(BECount, MaxBECount); 3806 } 3807 if (BO->getOpcode() == Instruction::Or) { 3808 // Recurse on the operands of the or. 3809 BackedgeTakenInfo BTI0 = 3810 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3811 BackedgeTakenInfo BTI1 = 3812 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3813 const SCEV *BECount = getCouldNotCompute(); 3814 const SCEV *MaxBECount = getCouldNotCompute(); 3815 if (L->contains(FBB)) { 3816 // Both conditions must be false for the loop to continue executing. 3817 // Choose the less conservative count. 3818 if (BTI0.Exact == getCouldNotCompute() || 3819 BTI1.Exact == getCouldNotCompute()) 3820 BECount = getCouldNotCompute(); 3821 else 3822 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3823 if (BTI0.Max == getCouldNotCompute()) 3824 MaxBECount = BTI1.Max; 3825 else if (BTI1.Max == getCouldNotCompute()) 3826 MaxBECount = BTI0.Max; 3827 else 3828 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3829 } else { 3830 // Both conditions must be false for the loop to exit. 3831 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3832 if (BTI0.Exact != getCouldNotCompute() && 3833 BTI1.Exact != getCouldNotCompute()) 3834 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3835 if (BTI0.Max != getCouldNotCompute() && 3836 BTI1.Max != getCouldNotCompute()) 3837 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3838 } 3839 3840 return BackedgeTakenInfo(BECount, MaxBECount); 3841 } 3842 } 3843 3844 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3845 // Proceed to the next level to examine the icmp. 3846 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3847 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3848 3849 // Check for a constant condition. These are normally stripped out by 3850 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3851 // preserve the CFG and is temporarily leaving constant conditions 3852 // in place. 3853 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3854 if (L->contains(FBB) == !CI->getZExtValue()) 3855 // The backedge is always taken. 3856 return getCouldNotCompute(); 3857 else 3858 // The backedge is never taken. 3859 return getConstant(CI->getType(), 0); 3860 } 3861 3862 // If it's not an integer or pointer comparison then compute it the hard way. 3863 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3864 } 3865 3866 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3867 /// backedge of the specified loop will execute if its exit condition 3868 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3869 ScalarEvolution::BackedgeTakenInfo 3870 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3871 ICmpInst *ExitCond, 3872 BasicBlock *TBB, 3873 BasicBlock *FBB) { 3874 3875 // If the condition was exit on true, convert the condition to exit on false 3876 ICmpInst::Predicate Cond; 3877 if (!L->contains(FBB)) 3878 Cond = ExitCond->getPredicate(); 3879 else 3880 Cond = ExitCond->getInversePredicate(); 3881 3882 // Handle common loops like: for (X = "string"; *X; ++X) 3883 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3884 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3885 BackedgeTakenInfo ItCnt = 3886 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3887 if (ItCnt.hasAnyInfo()) 3888 return ItCnt; 3889 } 3890 3891 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3892 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3893 3894 // Try to evaluate any dependencies out of the loop. 3895 LHS = getSCEVAtScope(LHS, L); 3896 RHS = getSCEVAtScope(RHS, L); 3897 3898 // At this point, we would like to compute how many iterations of the 3899 // loop the predicate will return true for these inputs. 3900 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3901 // If there is a loop-invariant, force it into the RHS. 3902 std::swap(LHS, RHS); 3903 Cond = ICmpInst::getSwappedPredicate(Cond); 3904 } 3905 3906 // Simplify the operands before analyzing them. 3907 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3908 3909 // If we have a comparison of a chrec against a constant, try to use value 3910 // ranges to answer this query. 3911 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3912 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3913 if (AddRec->getLoop() == L) { 3914 // Form the constant range. 3915 ConstantRange CompRange( 3916 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3917 3918 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3919 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3920 } 3921 3922 switch (Cond) { 3923 case ICmpInst::ICMP_NE: { // while (X != Y) 3924 // Convert to: while (X-Y != 0) 3925 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3926 if (BTI.hasAnyInfo()) return BTI; 3927 break; 3928 } 3929 case ICmpInst::ICMP_EQ: { // while (X == Y) 3930 // Convert to: while (X-Y == 0) 3931 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3932 if (BTI.hasAnyInfo()) return BTI; 3933 break; 3934 } 3935 case ICmpInst::ICMP_SLT: { 3936 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3937 if (BTI.hasAnyInfo()) return BTI; 3938 break; 3939 } 3940 case ICmpInst::ICMP_SGT: { 3941 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3942 getNotSCEV(RHS), L, true); 3943 if (BTI.hasAnyInfo()) return BTI; 3944 break; 3945 } 3946 case ICmpInst::ICMP_ULT: { 3947 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3948 if (BTI.hasAnyInfo()) return BTI; 3949 break; 3950 } 3951 case ICmpInst::ICMP_UGT: { 3952 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3953 getNotSCEV(RHS), L, false); 3954 if (BTI.hasAnyInfo()) return BTI; 3955 break; 3956 } 3957 default: 3958 #if 0 3959 dbgs() << "ComputeBackedgeTakenCount "; 3960 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3961 dbgs() << "[unsigned] "; 3962 dbgs() << *LHS << " " 3963 << Instruction::getOpcodeName(Instruction::ICmp) 3964 << " " << *RHS << "\n"; 3965 #endif 3966 break; 3967 } 3968 return 3969 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3970 } 3971 3972 static ConstantInt * 3973 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3974 ScalarEvolution &SE) { 3975 const SCEV *InVal = SE.getConstant(C); 3976 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3977 assert(isa<SCEVConstant>(Val) && 3978 "Evaluation of SCEV at constant didn't fold correctly?"); 3979 return cast<SCEVConstant>(Val)->getValue(); 3980 } 3981 3982 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3983 /// and a GEP expression (missing the pointer index) indexing into it, return 3984 /// the addressed element of the initializer or null if the index expression is 3985 /// invalid. 3986 static Constant * 3987 GetAddressedElementFromGlobal(GlobalVariable *GV, 3988 const std::vector<ConstantInt*> &Indices) { 3989 Constant *Init = GV->getInitializer(); 3990 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3991 uint64_t Idx = Indices[i]->getZExtValue(); 3992 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3993 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3994 Init = cast<Constant>(CS->getOperand(Idx)); 3995 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3996 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3997 Init = cast<Constant>(CA->getOperand(Idx)); 3998 } else if (isa<ConstantAggregateZero>(Init)) { 3999 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4000 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4001 Init = Constant::getNullValue(STy->getElementType(Idx)); 4002 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4003 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4004 Init = Constant::getNullValue(ATy->getElementType()); 4005 } else { 4006 llvm_unreachable("Unknown constant aggregate type!"); 4007 } 4008 return 0; 4009 } else { 4010 return 0; // Unknown initializer type 4011 } 4012 } 4013 return Init; 4014 } 4015 4016 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4017 /// 'icmp op load X, cst', try to see if we can compute the backedge 4018 /// execution count. 4019 ScalarEvolution::BackedgeTakenInfo 4020 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4021 LoadInst *LI, 4022 Constant *RHS, 4023 const Loop *L, 4024 ICmpInst::Predicate predicate) { 4025 if (LI->isVolatile()) return getCouldNotCompute(); 4026 4027 // Check to see if the loaded pointer is a getelementptr of a global. 4028 // TODO: Use SCEV instead of manually grubbing with GEPs. 4029 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4030 if (!GEP) return getCouldNotCompute(); 4031 4032 // Make sure that it is really a constant global we are gepping, with an 4033 // initializer, and make sure the first IDX is really 0. 4034 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4035 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4036 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4037 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4038 return getCouldNotCompute(); 4039 4040 // Okay, we allow one non-constant index into the GEP instruction. 4041 Value *VarIdx = 0; 4042 std::vector<ConstantInt*> Indexes; 4043 unsigned VarIdxNum = 0; 4044 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4045 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4046 Indexes.push_back(CI); 4047 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4048 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4049 VarIdx = GEP->getOperand(i); 4050 VarIdxNum = i-2; 4051 Indexes.push_back(0); 4052 } 4053 4054 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4055 // Check to see if X is a loop variant variable value now. 4056 const SCEV *Idx = getSCEV(VarIdx); 4057 Idx = getSCEVAtScope(Idx, L); 4058 4059 // We can only recognize very limited forms of loop index expressions, in 4060 // particular, only affine AddRec's like {C1,+,C2}. 4061 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4062 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4063 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4064 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4065 return getCouldNotCompute(); 4066 4067 unsigned MaxSteps = MaxBruteForceIterations; 4068 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4069 ConstantInt *ItCst = ConstantInt::get( 4070 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4071 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4072 4073 // Form the GEP offset. 4074 Indexes[VarIdxNum] = Val; 4075 4076 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4077 if (Result == 0) break; // Cannot compute! 4078 4079 // Evaluate the condition for this iteration. 4080 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4081 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4082 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4083 #if 0 4084 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4085 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4086 << "***\n"; 4087 #endif 4088 ++NumArrayLenItCounts; 4089 return getConstant(ItCst); // Found terminating iteration! 4090 } 4091 } 4092 return getCouldNotCompute(); 4093 } 4094 4095 4096 /// CanConstantFold - Return true if we can constant fold an instruction of the 4097 /// specified type, assuming that all operands were constants. 4098 static bool CanConstantFold(const Instruction *I) { 4099 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4100 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4101 return true; 4102 4103 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4104 if (const Function *F = CI->getCalledFunction()) 4105 return canConstantFoldCallTo(F); 4106 return false; 4107 } 4108 4109 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4110 /// in the loop that V is derived from. We allow arbitrary operations along the 4111 /// way, but the operands of an operation must either be constants or a value 4112 /// derived from a constant PHI. If this expression does not fit with these 4113 /// constraints, return null. 4114 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4115 // If this is not an instruction, or if this is an instruction outside of the 4116 // loop, it can't be derived from a loop PHI. 4117 Instruction *I = dyn_cast<Instruction>(V); 4118 if (I == 0 || !L->contains(I)) return 0; 4119 4120 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4121 if (L->getHeader() == I->getParent()) 4122 return PN; 4123 else 4124 // We don't currently keep track of the control flow needed to evaluate 4125 // PHIs, so we cannot handle PHIs inside of loops. 4126 return 0; 4127 } 4128 4129 // If we won't be able to constant fold this expression even if the operands 4130 // are constants, return early. 4131 if (!CanConstantFold(I)) return 0; 4132 4133 // Otherwise, we can evaluate this instruction if all of its operands are 4134 // constant or derived from a PHI node themselves. 4135 PHINode *PHI = 0; 4136 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4137 if (!isa<Constant>(I->getOperand(Op))) { 4138 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4139 if (P == 0) return 0; // Not evolving from PHI 4140 if (PHI == 0) 4141 PHI = P; 4142 else if (PHI != P) 4143 return 0; // Evolving from multiple different PHIs. 4144 } 4145 4146 // This is a expression evolving from a constant PHI! 4147 return PHI; 4148 } 4149 4150 /// EvaluateExpression - Given an expression that passes the 4151 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4152 /// in the loop has the value PHIVal. If we can't fold this expression for some 4153 /// reason, return null. 4154 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4155 const TargetData *TD) { 4156 if (isa<PHINode>(V)) return PHIVal; 4157 if (Constant *C = dyn_cast<Constant>(V)) return C; 4158 Instruction *I = cast<Instruction>(V); 4159 4160 std::vector<Constant*> Operands(I->getNumOperands()); 4161 4162 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4163 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4164 if (Operands[i] == 0) return 0; 4165 } 4166 4167 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4168 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4169 Operands[1], TD); 4170 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4171 &Operands[0], Operands.size(), TD); 4172 } 4173 4174 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4175 /// in the header of its containing loop, we know the loop executes a 4176 /// constant number of times, and the PHI node is just a recurrence 4177 /// involving constants, fold it. 4178 Constant * 4179 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4180 const APInt &BEs, 4181 const Loop *L) { 4182 std::map<PHINode*, Constant*>::iterator I = 4183 ConstantEvolutionLoopExitValue.find(PN); 4184 if (I != ConstantEvolutionLoopExitValue.end()) 4185 return I->second; 4186 4187 if (BEs.ugt(MaxBruteForceIterations)) 4188 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4189 4190 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4191 4192 // Since the loop is canonicalized, the PHI node must have two entries. One 4193 // entry must be a constant (coming in from outside of the loop), and the 4194 // second must be derived from the same PHI. 4195 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4196 Constant *StartCST = 4197 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4198 if (StartCST == 0) 4199 return RetVal = 0; // Must be a constant. 4200 4201 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4202 if (getConstantEvolvingPHI(BEValue, L) != PN && 4203 !isa<Constant>(BEValue)) 4204 return RetVal = 0; // Not derived from same PHI. 4205 4206 // Execute the loop symbolically to determine the exit value. 4207 if (BEs.getActiveBits() >= 32) 4208 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4209 4210 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4211 unsigned IterationNum = 0; 4212 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4213 if (IterationNum == NumIterations) 4214 return RetVal = PHIVal; // Got exit value! 4215 4216 // Compute the value of the PHI node for the next iteration. 4217 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4218 if (NextPHI == PHIVal) 4219 return RetVal = NextPHI; // Stopped evolving! 4220 if (NextPHI == 0) 4221 return 0; // Couldn't evaluate! 4222 PHIVal = NextPHI; 4223 } 4224 } 4225 4226 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4227 /// constant number of times (the condition evolves only from constants), 4228 /// try to evaluate a few iterations of the loop until we get the exit 4229 /// condition gets a value of ExitWhen (true or false). If we cannot 4230 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4231 const SCEV * 4232 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4233 Value *Cond, 4234 bool ExitWhen) { 4235 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4236 if (PN == 0) return getCouldNotCompute(); 4237 4238 // If the loop is canonicalized, the PHI will have exactly two entries. 4239 // That's the only form we support here. 4240 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4241 4242 // One entry must be a constant (coming in from outside of the loop), and the 4243 // second must be derived from the same PHI. 4244 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4245 Constant *StartCST = 4246 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4247 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4248 4249 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4250 if (getConstantEvolvingPHI(BEValue, L) != PN && 4251 !isa<Constant>(BEValue)) 4252 return getCouldNotCompute(); // Not derived from same PHI. 4253 4254 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4255 // the loop symbolically to determine when the condition gets a value of 4256 // "ExitWhen". 4257 unsigned IterationNum = 0; 4258 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4259 for (Constant *PHIVal = StartCST; 4260 IterationNum != MaxIterations; ++IterationNum) { 4261 ConstantInt *CondVal = 4262 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4263 4264 // Couldn't symbolically evaluate. 4265 if (!CondVal) return getCouldNotCompute(); 4266 4267 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4268 ++NumBruteForceTripCountsComputed; 4269 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4270 } 4271 4272 // Compute the value of the PHI node for the next iteration. 4273 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4274 if (NextPHI == 0 || NextPHI == PHIVal) 4275 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4276 PHIVal = NextPHI; 4277 } 4278 4279 // Too many iterations were needed to evaluate. 4280 return getCouldNotCompute(); 4281 } 4282 4283 /// getSCEVAtScope - Return a SCEV expression for the specified value 4284 /// at the specified scope in the program. The L value specifies a loop 4285 /// nest to evaluate the expression at, where null is the top-level or a 4286 /// specified loop is immediately inside of the loop. 4287 /// 4288 /// This method can be used to compute the exit value for a variable defined 4289 /// in a loop by querying what the value will hold in the parent loop. 4290 /// 4291 /// In the case that a relevant loop exit value cannot be computed, the 4292 /// original value V is returned. 4293 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4294 // Check to see if we've folded this expression at this loop before. 4295 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4296 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4297 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4298 if (!Pair.second) 4299 return Pair.first->second ? Pair.first->second : V; 4300 4301 // Otherwise compute it. 4302 const SCEV *C = computeSCEVAtScope(V, L); 4303 ValuesAtScopes[V][L] = C; 4304 return C; 4305 } 4306 4307 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4308 if (isa<SCEVConstant>(V)) return V; 4309 4310 // If this instruction is evolved from a constant-evolving PHI, compute the 4311 // exit value from the loop without using SCEVs. 4312 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4313 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4314 const Loop *LI = (*this->LI)[I->getParent()]; 4315 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4316 if (PHINode *PN = dyn_cast<PHINode>(I)) 4317 if (PN->getParent() == LI->getHeader()) { 4318 // Okay, there is no closed form solution for the PHI node. Check 4319 // to see if the loop that contains it has a known backedge-taken 4320 // count. If so, we may be able to force computation of the exit 4321 // value. 4322 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4323 if (const SCEVConstant *BTCC = 4324 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4325 // Okay, we know how many times the containing loop executes. If 4326 // this is a constant evolving PHI node, get the final value at 4327 // the specified iteration number. 4328 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4329 BTCC->getValue()->getValue(), 4330 LI); 4331 if (RV) return getSCEV(RV); 4332 } 4333 } 4334 4335 // Okay, this is an expression that we cannot symbolically evaluate 4336 // into a SCEV. Check to see if it's possible to symbolically evaluate 4337 // the arguments into constants, and if so, try to constant propagate the 4338 // result. This is particularly useful for computing loop exit values. 4339 if (CanConstantFold(I)) { 4340 std::vector<Constant*> Operands; 4341 Operands.reserve(I->getNumOperands()); 4342 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4343 Value *Op = I->getOperand(i); 4344 if (Constant *C = dyn_cast<Constant>(Op)) { 4345 Operands.push_back(C); 4346 } else { 4347 // If any of the operands is non-constant and if they are 4348 // non-integer and non-pointer, don't even try to analyze them 4349 // with scev techniques. 4350 if (!isSCEVable(Op->getType())) 4351 return V; 4352 4353 const SCEV *OpV = getSCEVAtScope(Op, L); 4354 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 4355 Constant *C = SC->getValue(); 4356 if (C->getType() != Op->getType()) 4357 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4358 Op->getType(), 4359 false), 4360 C, Op->getType()); 4361 Operands.push_back(C); 4362 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 4363 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 4364 if (C->getType() != Op->getType()) 4365 C = 4366 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4367 Op->getType(), 4368 false), 4369 C, Op->getType()); 4370 Operands.push_back(C); 4371 } else 4372 return V; 4373 } else { 4374 return V; 4375 } 4376 } 4377 } 4378 4379 Constant *C = 0; 4380 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4381 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4382 Operands[0], Operands[1], TD); 4383 else 4384 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4385 &Operands[0], Operands.size(), TD); 4386 if (C) 4387 return getSCEV(C); 4388 } 4389 } 4390 4391 // This is some other type of SCEVUnknown, just return it. 4392 return V; 4393 } 4394 4395 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4396 // Avoid performing the look-up in the common case where the specified 4397 // expression has no loop-variant portions. 4398 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4399 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4400 if (OpAtScope != Comm->getOperand(i)) { 4401 // Okay, at least one of these operands is loop variant but might be 4402 // foldable. Build a new instance of the folded commutative expression. 4403 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4404 Comm->op_begin()+i); 4405 NewOps.push_back(OpAtScope); 4406 4407 for (++i; i != e; ++i) { 4408 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4409 NewOps.push_back(OpAtScope); 4410 } 4411 if (isa<SCEVAddExpr>(Comm)) 4412 return getAddExpr(NewOps); 4413 if (isa<SCEVMulExpr>(Comm)) 4414 return getMulExpr(NewOps); 4415 if (isa<SCEVSMaxExpr>(Comm)) 4416 return getSMaxExpr(NewOps); 4417 if (isa<SCEVUMaxExpr>(Comm)) 4418 return getUMaxExpr(NewOps); 4419 llvm_unreachable("Unknown commutative SCEV type!"); 4420 } 4421 } 4422 // If we got here, all operands are loop invariant. 4423 return Comm; 4424 } 4425 4426 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4427 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4428 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4429 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4430 return Div; // must be loop invariant 4431 return getUDivExpr(LHS, RHS); 4432 } 4433 4434 // If this is a loop recurrence for a loop that does not contain L, then we 4435 // are dealing with the final value computed by the loop. 4436 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4437 if (!L || !AddRec->getLoop()->contains(L)) { 4438 // To evaluate this recurrence, we need to know how many times the AddRec 4439 // loop iterates. Compute this now. 4440 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4441 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4442 4443 // Then, evaluate the AddRec. 4444 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4445 } 4446 return AddRec; 4447 } 4448 4449 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4450 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4451 if (Op == Cast->getOperand()) 4452 return Cast; // must be loop invariant 4453 return getZeroExtendExpr(Op, Cast->getType()); 4454 } 4455 4456 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4457 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4458 if (Op == Cast->getOperand()) 4459 return Cast; // must be loop invariant 4460 return getSignExtendExpr(Op, Cast->getType()); 4461 } 4462 4463 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4464 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4465 if (Op == Cast->getOperand()) 4466 return Cast; // must be loop invariant 4467 return getTruncateExpr(Op, Cast->getType()); 4468 } 4469 4470 llvm_unreachable("Unknown SCEV type!"); 4471 return 0; 4472 } 4473 4474 /// getSCEVAtScope - This is a convenience function which does 4475 /// getSCEVAtScope(getSCEV(V), L). 4476 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4477 return getSCEVAtScope(getSCEV(V), L); 4478 } 4479 4480 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4481 /// following equation: 4482 /// 4483 /// A * X = B (mod N) 4484 /// 4485 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4486 /// A and B isn't important. 4487 /// 4488 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4489 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4490 ScalarEvolution &SE) { 4491 uint32_t BW = A.getBitWidth(); 4492 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4493 assert(A != 0 && "A must be non-zero."); 4494 4495 // 1. D = gcd(A, N) 4496 // 4497 // The gcd of A and N may have only one prime factor: 2. The number of 4498 // trailing zeros in A is its multiplicity 4499 uint32_t Mult2 = A.countTrailingZeros(); 4500 // D = 2^Mult2 4501 4502 // 2. Check if B is divisible by D. 4503 // 4504 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4505 // is not less than multiplicity of this prime factor for D. 4506 if (B.countTrailingZeros() < Mult2) 4507 return SE.getCouldNotCompute(); 4508 4509 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4510 // modulo (N / D). 4511 // 4512 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4513 // bit width during computations. 4514 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4515 APInt Mod(BW + 1, 0); 4516 Mod.set(BW - Mult2); // Mod = N / D 4517 APInt I = AD.multiplicativeInverse(Mod); 4518 4519 // 4. Compute the minimum unsigned root of the equation: 4520 // I * (B / D) mod (N / D) 4521 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4522 4523 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4524 // bits. 4525 return SE.getConstant(Result.trunc(BW)); 4526 } 4527 4528 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4529 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4530 /// might be the same) or two SCEVCouldNotCompute objects. 4531 /// 4532 static std::pair<const SCEV *,const SCEV *> 4533 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4534 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4535 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4536 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4537 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4538 4539 // We currently can only solve this if the coefficients are constants. 4540 if (!LC || !MC || !NC) { 4541 const SCEV *CNC = SE.getCouldNotCompute(); 4542 return std::make_pair(CNC, CNC); 4543 } 4544 4545 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4546 const APInt &L = LC->getValue()->getValue(); 4547 const APInt &M = MC->getValue()->getValue(); 4548 const APInt &N = NC->getValue()->getValue(); 4549 APInt Two(BitWidth, 2); 4550 APInt Four(BitWidth, 4); 4551 4552 { 4553 using namespace APIntOps; 4554 const APInt& C = L; 4555 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4556 // The B coefficient is M-N/2 4557 APInt B(M); 4558 B -= sdiv(N,Two); 4559 4560 // The A coefficient is N/2 4561 APInt A(N.sdiv(Two)); 4562 4563 // Compute the B^2-4ac term. 4564 APInt SqrtTerm(B); 4565 SqrtTerm *= B; 4566 SqrtTerm -= Four * (A * C); 4567 4568 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4569 // integer value or else APInt::sqrt() will assert. 4570 APInt SqrtVal(SqrtTerm.sqrt()); 4571 4572 // Compute the two solutions for the quadratic formula. 4573 // The divisions must be performed as signed divisions. 4574 APInt NegB(-B); 4575 APInt TwoA( A << 1 ); 4576 if (TwoA.isMinValue()) { 4577 const SCEV *CNC = SE.getCouldNotCompute(); 4578 return std::make_pair(CNC, CNC); 4579 } 4580 4581 LLVMContext &Context = SE.getContext(); 4582 4583 ConstantInt *Solution1 = 4584 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4585 ConstantInt *Solution2 = 4586 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4587 4588 return std::make_pair(SE.getConstant(Solution1), 4589 SE.getConstant(Solution2)); 4590 } // end APIntOps namespace 4591 } 4592 4593 /// HowFarToZero - Return the number of times a backedge comparing the specified 4594 /// value to zero will execute. If not computable, return CouldNotCompute. 4595 ScalarEvolution::BackedgeTakenInfo 4596 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4597 // If the value is a constant 4598 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4599 // If the value is already zero, the branch will execute zero times. 4600 if (C->getValue()->isZero()) return C; 4601 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4602 } 4603 4604 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4605 if (!AddRec || AddRec->getLoop() != L) 4606 return getCouldNotCompute(); 4607 4608 if (AddRec->isAffine()) { 4609 // If this is an affine expression, the execution count of this branch is 4610 // the minimum unsigned root of the following equation: 4611 // 4612 // Start + Step*N = 0 (mod 2^BW) 4613 // 4614 // equivalent to: 4615 // 4616 // Step*N = -Start (mod 2^BW) 4617 // 4618 // where BW is the common bit width of Start and Step. 4619 4620 // Get the initial value for the loop. 4621 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4622 L->getParentLoop()); 4623 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4624 L->getParentLoop()); 4625 4626 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4627 // For now we handle only constant steps. 4628 4629 // First, handle unitary steps. 4630 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4631 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4632 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4633 return Start; // N = Start (as unsigned) 4634 4635 // Then, try to solve the above equation provided that Start is constant. 4636 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4637 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4638 -StartC->getValue()->getValue(), 4639 *this); 4640 } 4641 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4642 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4643 // the quadratic equation to solve it. 4644 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4645 *this); 4646 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4647 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4648 if (R1) { 4649 #if 0 4650 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4651 << " sol#2: " << *R2 << "\n"; 4652 #endif 4653 // Pick the smallest positive root value. 4654 if (ConstantInt *CB = 4655 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4656 R1->getValue(), R2->getValue()))) { 4657 if (CB->getZExtValue() == false) 4658 std::swap(R1, R2); // R1 is the minimum root now. 4659 4660 // We can only use this value if the chrec ends up with an exact zero 4661 // value at this index. When solving for "X*X != 5", for example, we 4662 // should not accept a root of 2. 4663 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4664 if (Val->isZero()) 4665 return R1; // We found a quadratic root! 4666 } 4667 } 4668 } 4669 4670 return getCouldNotCompute(); 4671 } 4672 4673 /// HowFarToNonZero - Return the number of times a backedge checking the 4674 /// specified value for nonzero will execute. If not computable, return 4675 /// CouldNotCompute 4676 ScalarEvolution::BackedgeTakenInfo 4677 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4678 // Loops that look like: while (X == 0) are very strange indeed. We don't 4679 // handle them yet except for the trivial case. This could be expanded in the 4680 // future as needed. 4681 4682 // If the value is a constant, check to see if it is known to be non-zero 4683 // already. If so, the backedge will execute zero times. 4684 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4685 if (!C->getValue()->isNullValue()) 4686 return getConstant(C->getType(), 0); 4687 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4688 } 4689 4690 // We could implement others, but I really doubt anyone writes loops like 4691 // this, and if they did, they would already be constant folded. 4692 return getCouldNotCompute(); 4693 } 4694 4695 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4696 /// (which may not be an immediate predecessor) which has exactly one 4697 /// successor from which BB is reachable, or null if no such block is 4698 /// found. 4699 /// 4700 std::pair<BasicBlock *, BasicBlock *> 4701 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4702 // If the block has a unique predecessor, then there is no path from the 4703 // predecessor to the block that does not go through the direct edge 4704 // from the predecessor to the block. 4705 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4706 return std::make_pair(Pred, BB); 4707 4708 // A loop's header is defined to be a block that dominates the loop. 4709 // If the header has a unique predecessor outside the loop, it must be 4710 // a block that has exactly one successor that can reach the loop. 4711 if (Loop *L = LI->getLoopFor(BB)) 4712 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4713 4714 return std::pair<BasicBlock *, BasicBlock *>(); 4715 } 4716 4717 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4718 /// testing whether two expressions are equal, however for the purposes of 4719 /// looking for a condition guarding a loop, it can be useful to be a little 4720 /// more general, since a front-end may have replicated the controlling 4721 /// expression. 4722 /// 4723 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4724 // Quick check to see if they are the same SCEV. 4725 if (A == B) return true; 4726 4727 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4728 // two different instructions with the same value. Check for this case. 4729 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4730 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4731 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4732 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4733 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4734 return true; 4735 4736 // Otherwise assume they may have a different value. 4737 return false; 4738 } 4739 4740 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4741 /// predicate Pred. Return true iff any changes were made. 4742 /// 4743 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4744 const SCEV *&LHS, const SCEV *&RHS) { 4745 bool Changed = false; 4746 4747 // Canonicalize a constant to the right side. 4748 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4749 // Check for both operands constant. 4750 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4751 if (ConstantExpr::getICmp(Pred, 4752 LHSC->getValue(), 4753 RHSC->getValue())->isNullValue()) 4754 goto trivially_false; 4755 else 4756 goto trivially_true; 4757 } 4758 // Otherwise swap the operands to put the constant on the right. 4759 std::swap(LHS, RHS); 4760 Pred = ICmpInst::getSwappedPredicate(Pred); 4761 Changed = true; 4762 } 4763 4764 // If we're comparing an addrec with a value which is loop-invariant in the 4765 // addrec's loop, put the addrec on the left. Also make a dominance check, 4766 // as both operands could be addrecs loop-invariant in each other's loop. 4767 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4768 const Loop *L = AR->getLoop(); 4769 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4770 std::swap(LHS, RHS); 4771 Pred = ICmpInst::getSwappedPredicate(Pred); 4772 Changed = true; 4773 } 4774 } 4775 4776 // If there's a constant operand, canonicalize comparisons with boundary 4777 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4778 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4779 const APInt &RA = RC->getValue()->getValue(); 4780 switch (Pred) { 4781 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4782 case ICmpInst::ICMP_EQ: 4783 case ICmpInst::ICMP_NE: 4784 break; 4785 case ICmpInst::ICMP_UGE: 4786 if ((RA - 1).isMinValue()) { 4787 Pred = ICmpInst::ICMP_NE; 4788 RHS = getConstant(RA - 1); 4789 Changed = true; 4790 break; 4791 } 4792 if (RA.isMaxValue()) { 4793 Pred = ICmpInst::ICMP_EQ; 4794 Changed = true; 4795 break; 4796 } 4797 if (RA.isMinValue()) goto trivially_true; 4798 4799 Pred = ICmpInst::ICMP_UGT; 4800 RHS = getConstant(RA - 1); 4801 Changed = true; 4802 break; 4803 case ICmpInst::ICMP_ULE: 4804 if ((RA + 1).isMaxValue()) { 4805 Pred = ICmpInst::ICMP_NE; 4806 RHS = getConstant(RA + 1); 4807 Changed = true; 4808 break; 4809 } 4810 if (RA.isMinValue()) { 4811 Pred = ICmpInst::ICMP_EQ; 4812 Changed = true; 4813 break; 4814 } 4815 if (RA.isMaxValue()) goto trivially_true; 4816 4817 Pred = ICmpInst::ICMP_ULT; 4818 RHS = getConstant(RA + 1); 4819 Changed = true; 4820 break; 4821 case ICmpInst::ICMP_SGE: 4822 if ((RA - 1).isMinSignedValue()) { 4823 Pred = ICmpInst::ICMP_NE; 4824 RHS = getConstant(RA - 1); 4825 Changed = true; 4826 break; 4827 } 4828 if (RA.isMaxSignedValue()) { 4829 Pred = ICmpInst::ICMP_EQ; 4830 Changed = true; 4831 break; 4832 } 4833 if (RA.isMinSignedValue()) goto trivially_true; 4834 4835 Pred = ICmpInst::ICMP_SGT; 4836 RHS = getConstant(RA - 1); 4837 Changed = true; 4838 break; 4839 case ICmpInst::ICMP_SLE: 4840 if ((RA + 1).isMaxSignedValue()) { 4841 Pred = ICmpInst::ICMP_NE; 4842 RHS = getConstant(RA + 1); 4843 Changed = true; 4844 break; 4845 } 4846 if (RA.isMinSignedValue()) { 4847 Pred = ICmpInst::ICMP_EQ; 4848 Changed = true; 4849 break; 4850 } 4851 if (RA.isMaxSignedValue()) goto trivially_true; 4852 4853 Pred = ICmpInst::ICMP_SLT; 4854 RHS = getConstant(RA + 1); 4855 Changed = true; 4856 break; 4857 case ICmpInst::ICMP_UGT: 4858 if (RA.isMinValue()) { 4859 Pred = ICmpInst::ICMP_NE; 4860 Changed = true; 4861 break; 4862 } 4863 if ((RA + 1).isMaxValue()) { 4864 Pred = ICmpInst::ICMP_EQ; 4865 RHS = getConstant(RA + 1); 4866 Changed = true; 4867 break; 4868 } 4869 if (RA.isMaxValue()) goto trivially_false; 4870 break; 4871 case ICmpInst::ICMP_ULT: 4872 if (RA.isMaxValue()) { 4873 Pred = ICmpInst::ICMP_NE; 4874 Changed = true; 4875 break; 4876 } 4877 if ((RA - 1).isMinValue()) { 4878 Pred = ICmpInst::ICMP_EQ; 4879 RHS = getConstant(RA - 1); 4880 Changed = true; 4881 break; 4882 } 4883 if (RA.isMinValue()) goto trivially_false; 4884 break; 4885 case ICmpInst::ICMP_SGT: 4886 if (RA.isMinSignedValue()) { 4887 Pred = ICmpInst::ICMP_NE; 4888 Changed = true; 4889 break; 4890 } 4891 if ((RA + 1).isMaxSignedValue()) { 4892 Pred = ICmpInst::ICMP_EQ; 4893 RHS = getConstant(RA + 1); 4894 Changed = true; 4895 break; 4896 } 4897 if (RA.isMaxSignedValue()) goto trivially_false; 4898 break; 4899 case ICmpInst::ICMP_SLT: 4900 if (RA.isMaxSignedValue()) { 4901 Pred = ICmpInst::ICMP_NE; 4902 Changed = true; 4903 break; 4904 } 4905 if ((RA - 1).isMinSignedValue()) { 4906 Pred = ICmpInst::ICMP_EQ; 4907 RHS = getConstant(RA - 1); 4908 Changed = true; 4909 break; 4910 } 4911 if (RA.isMinSignedValue()) goto trivially_false; 4912 break; 4913 } 4914 } 4915 4916 // Check for obvious equality. 4917 if (HasSameValue(LHS, RHS)) { 4918 if (ICmpInst::isTrueWhenEqual(Pred)) 4919 goto trivially_true; 4920 if (ICmpInst::isFalseWhenEqual(Pred)) 4921 goto trivially_false; 4922 } 4923 4924 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 4925 // adding or subtracting 1 from one of the operands. 4926 switch (Pred) { 4927 case ICmpInst::ICMP_SLE: 4928 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 4929 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 4930 /*HasNUW=*/false, /*HasNSW=*/true); 4931 Pred = ICmpInst::ICMP_SLT; 4932 Changed = true; 4933 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 4934 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 4935 /*HasNUW=*/false, /*HasNSW=*/true); 4936 Pred = ICmpInst::ICMP_SLT; 4937 Changed = true; 4938 } 4939 break; 4940 case ICmpInst::ICMP_SGE: 4941 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 4942 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 4943 /*HasNUW=*/false, /*HasNSW=*/true); 4944 Pred = ICmpInst::ICMP_SGT; 4945 Changed = true; 4946 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 4947 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 4948 /*HasNUW=*/false, /*HasNSW=*/true); 4949 Pred = ICmpInst::ICMP_SGT; 4950 Changed = true; 4951 } 4952 break; 4953 case ICmpInst::ICMP_ULE: 4954 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 4955 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 4956 /*HasNUW=*/true, /*HasNSW=*/false); 4957 Pred = ICmpInst::ICMP_ULT; 4958 Changed = true; 4959 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 4960 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 4961 /*HasNUW=*/true, /*HasNSW=*/false); 4962 Pred = ICmpInst::ICMP_ULT; 4963 Changed = true; 4964 } 4965 break; 4966 case ICmpInst::ICMP_UGE: 4967 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 4968 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 4969 /*HasNUW=*/true, /*HasNSW=*/false); 4970 Pred = ICmpInst::ICMP_UGT; 4971 Changed = true; 4972 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 4973 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 4974 /*HasNUW=*/true, /*HasNSW=*/false); 4975 Pred = ICmpInst::ICMP_UGT; 4976 Changed = true; 4977 } 4978 break; 4979 default: 4980 break; 4981 } 4982 4983 // TODO: More simplifications are possible here. 4984 4985 return Changed; 4986 4987 trivially_true: 4988 // Return 0 == 0. 4989 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 4990 Pred = ICmpInst::ICMP_EQ; 4991 return true; 4992 4993 trivially_false: 4994 // Return 0 != 0. 4995 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 4996 Pred = ICmpInst::ICMP_NE; 4997 return true; 4998 } 4999 5000 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5001 return getSignedRange(S).getSignedMax().isNegative(); 5002 } 5003 5004 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5005 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5006 } 5007 5008 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5009 return !getSignedRange(S).getSignedMin().isNegative(); 5010 } 5011 5012 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5013 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5014 } 5015 5016 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5017 return isKnownNegative(S) || isKnownPositive(S); 5018 } 5019 5020 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5021 const SCEV *LHS, const SCEV *RHS) { 5022 // Canonicalize the inputs first. 5023 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5024 5025 // If LHS or RHS is an addrec, check to see if the condition is true in 5026 // every iteration of the loop. 5027 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5028 if (isLoopEntryGuardedByCond( 5029 AR->getLoop(), Pred, AR->getStart(), RHS) && 5030 isLoopBackedgeGuardedByCond( 5031 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5032 return true; 5033 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5034 if (isLoopEntryGuardedByCond( 5035 AR->getLoop(), Pred, LHS, AR->getStart()) && 5036 isLoopBackedgeGuardedByCond( 5037 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5038 return true; 5039 5040 // Otherwise see what can be done with known constant ranges. 5041 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5042 } 5043 5044 bool 5045 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5046 const SCEV *LHS, const SCEV *RHS) { 5047 if (HasSameValue(LHS, RHS)) 5048 return ICmpInst::isTrueWhenEqual(Pred); 5049 5050 // This code is split out from isKnownPredicate because it is called from 5051 // within isLoopEntryGuardedByCond. 5052 switch (Pred) { 5053 default: 5054 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5055 break; 5056 case ICmpInst::ICMP_SGT: 5057 Pred = ICmpInst::ICMP_SLT; 5058 std::swap(LHS, RHS); 5059 case ICmpInst::ICMP_SLT: { 5060 ConstantRange LHSRange = getSignedRange(LHS); 5061 ConstantRange RHSRange = getSignedRange(RHS); 5062 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5063 return true; 5064 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5065 return false; 5066 break; 5067 } 5068 case ICmpInst::ICMP_SGE: 5069 Pred = ICmpInst::ICMP_SLE; 5070 std::swap(LHS, RHS); 5071 case ICmpInst::ICMP_SLE: { 5072 ConstantRange LHSRange = getSignedRange(LHS); 5073 ConstantRange RHSRange = getSignedRange(RHS); 5074 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5075 return true; 5076 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5077 return false; 5078 break; 5079 } 5080 case ICmpInst::ICMP_UGT: 5081 Pred = ICmpInst::ICMP_ULT; 5082 std::swap(LHS, RHS); 5083 case ICmpInst::ICMP_ULT: { 5084 ConstantRange LHSRange = getUnsignedRange(LHS); 5085 ConstantRange RHSRange = getUnsignedRange(RHS); 5086 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5087 return true; 5088 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5089 return false; 5090 break; 5091 } 5092 case ICmpInst::ICMP_UGE: 5093 Pred = ICmpInst::ICMP_ULE; 5094 std::swap(LHS, RHS); 5095 case ICmpInst::ICMP_ULE: { 5096 ConstantRange LHSRange = getUnsignedRange(LHS); 5097 ConstantRange RHSRange = getUnsignedRange(RHS); 5098 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5099 return true; 5100 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5101 return false; 5102 break; 5103 } 5104 case ICmpInst::ICMP_NE: { 5105 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5106 return true; 5107 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5108 return true; 5109 5110 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5111 if (isKnownNonZero(Diff)) 5112 return true; 5113 break; 5114 } 5115 case ICmpInst::ICMP_EQ: 5116 // The check at the top of the function catches the case where 5117 // the values are known to be equal. 5118 break; 5119 } 5120 return false; 5121 } 5122 5123 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5124 /// protected by a conditional between LHS and RHS. This is used to 5125 /// to eliminate casts. 5126 bool 5127 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5128 ICmpInst::Predicate Pred, 5129 const SCEV *LHS, const SCEV *RHS) { 5130 // Interpret a null as meaning no loop, where there is obviously no guard 5131 // (interprocedural conditions notwithstanding). 5132 if (!L) return true; 5133 5134 BasicBlock *Latch = L->getLoopLatch(); 5135 if (!Latch) 5136 return false; 5137 5138 BranchInst *LoopContinuePredicate = 5139 dyn_cast<BranchInst>(Latch->getTerminator()); 5140 if (!LoopContinuePredicate || 5141 LoopContinuePredicate->isUnconditional()) 5142 return false; 5143 5144 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 5145 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5146 } 5147 5148 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5149 /// by a conditional between LHS and RHS. This is used to help avoid max 5150 /// expressions in loop trip counts, and to eliminate casts. 5151 bool 5152 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5153 ICmpInst::Predicate Pred, 5154 const SCEV *LHS, const SCEV *RHS) { 5155 // Interpret a null as meaning no loop, where there is obviously no guard 5156 // (interprocedural conditions notwithstanding). 5157 if (!L) return false; 5158 5159 // Starting at the loop predecessor, climb up the predecessor chain, as long 5160 // as there are predecessors that can be found that have unique successors 5161 // leading to the original header. 5162 for (std::pair<BasicBlock *, BasicBlock *> 5163 Pair(L->getLoopPredecessor(), L->getHeader()); 5164 Pair.first; 5165 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5166 5167 BranchInst *LoopEntryPredicate = 5168 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5169 if (!LoopEntryPredicate || 5170 LoopEntryPredicate->isUnconditional()) 5171 continue; 5172 5173 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 5174 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5175 return true; 5176 } 5177 5178 return false; 5179 } 5180 5181 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5182 /// and RHS is true whenever the given Cond value evaluates to true. 5183 bool ScalarEvolution::isImpliedCond(Value *CondValue, 5184 ICmpInst::Predicate Pred, 5185 const SCEV *LHS, const SCEV *RHS, 5186 bool Inverse) { 5187 // Recursively handle And and Or conditions. 5188 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 5189 if (BO->getOpcode() == Instruction::And) { 5190 if (!Inverse) 5191 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5192 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5193 } else if (BO->getOpcode() == Instruction::Or) { 5194 if (Inverse) 5195 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5196 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5197 } 5198 } 5199 5200 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 5201 if (!ICI) return false; 5202 5203 // Bail if the ICmp's operands' types are wider than the needed type 5204 // before attempting to call getSCEV on them. This avoids infinite 5205 // recursion, since the analysis of widening casts can require loop 5206 // exit condition information for overflow checking, which would 5207 // lead back here. 5208 if (getTypeSizeInBits(LHS->getType()) < 5209 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5210 return false; 5211 5212 // Now that we found a conditional branch that dominates the loop, check to 5213 // see if it is the comparison we are looking for. 5214 ICmpInst::Predicate FoundPred; 5215 if (Inverse) 5216 FoundPred = ICI->getInversePredicate(); 5217 else 5218 FoundPred = ICI->getPredicate(); 5219 5220 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5221 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5222 5223 // Balance the types. The case where FoundLHS' type is wider than 5224 // LHS' type is checked for above. 5225 if (getTypeSizeInBits(LHS->getType()) > 5226 getTypeSizeInBits(FoundLHS->getType())) { 5227 if (CmpInst::isSigned(Pred)) { 5228 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5229 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5230 } else { 5231 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5232 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5233 } 5234 } 5235 5236 // Canonicalize the query to match the way instcombine will have 5237 // canonicalized the comparison. 5238 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5239 if (LHS == RHS) 5240 return CmpInst::isTrueWhenEqual(Pred); 5241 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5242 if (FoundLHS == FoundRHS) 5243 return CmpInst::isFalseWhenEqual(Pred); 5244 5245 // Check to see if we can make the LHS or RHS match. 5246 if (LHS == FoundRHS || RHS == FoundLHS) { 5247 if (isa<SCEVConstant>(RHS)) { 5248 std::swap(FoundLHS, FoundRHS); 5249 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5250 } else { 5251 std::swap(LHS, RHS); 5252 Pred = ICmpInst::getSwappedPredicate(Pred); 5253 } 5254 } 5255 5256 // Check whether the found predicate is the same as the desired predicate. 5257 if (FoundPred == Pred) 5258 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5259 5260 // Check whether swapping the found predicate makes it the same as the 5261 // desired predicate. 5262 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5263 if (isa<SCEVConstant>(RHS)) 5264 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5265 else 5266 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5267 RHS, LHS, FoundLHS, FoundRHS); 5268 } 5269 5270 // Check whether the actual condition is beyond sufficient. 5271 if (FoundPred == ICmpInst::ICMP_EQ) 5272 if (ICmpInst::isTrueWhenEqual(Pred)) 5273 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5274 return true; 5275 if (Pred == ICmpInst::ICMP_NE) 5276 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5277 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5278 return true; 5279 5280 // Otherwise assume the worst. 5281 return false; 5282 } 5283 5284 /// isImpliedCondOperands - Test whether the condition described by Pred, 5285 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5286 /// and FoundRHS is true. 5287 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5288 const SCEV *LHS, const SCEV *RHS, 5289 const SCEV *FoundLHS, 5290 const SCEV *FoundRHS) { 5291 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5292 FoundLHS, FoundRHS) || 5293 // ~x < ~y --> x > y 5294 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5295 getNotSCEV(FoundRHS), 5296 getNotSCEV(FoundLHS)); 5297 } 5298 5299 /// isImpliedCondOperandsHelper - Test whether the condition described by 5300 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5301 /// FoundLHS, and FoundRHS is true. 5302 bool 5303 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5304 const SCEV *LHS, const SCEV *RHS, 5305 const SCEV *FoundLHS, 5306 const SCEV *FoundRHS) { 5307 switch (Pred) { 5308 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5309 case ICmpInst::ICMP_EQ: 5310 case ICmpInst::ICMP_NE: 5311 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5312 return true; 5313 break; 5314 case ICmpInst::ICMP_SLT: 5315 case ICmpInst::ICMP_SLE: 5316 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5317 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5318 return true; 5319 break; 5320 case ICmpInst::ICMP_SGT: 5321 case ICmpInst::ICMP_SGE: 5322 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5323 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5324 return true; 5325 break; 5326 case ICmpInst::ICMP_ULT: 5327 case ICmpInst::ICMP_ULE: 5328 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5329 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5330 return true; 5331 break; 5332 case ICmpInst::ICMP_UGT: 5333 case ICmpInst::ICMP_UGE: 5334 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5335 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5336 return true; 5337 break; 5338 } 5339 5340 return false; 5341 } 5342 5343 /// getBECount - Subtract the end and start values and divide by the step, 5344 /// rounding up, to get the number of times the backedge is executed. Return 5345 /// CouldNotCompute if an intermediate computation overflows. 5346 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5347 const SCEV *End, 5348 const SCEV *Step, 5349 bool NoWrap) { 5350 assert(!isKnownNegative(Step) && 5351 "This code doesn't handle negative strides yet!"); 5352 5353 const Type *Ty = Start->getType(); 5354 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5355 const SCEV *Diff = getMinusSCEV(End, Start); 5356 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5357 5358 // Add an adjustment to the difference between End and Start so that 5359 // the division will effectively round up. 5360 const SCEV *Add = getAddExpr(Diff, RoundUp); 5361 5362 if (!NoWrap) { 5363 // Check Add for unsigned overflow. 5364 // TODO: More sophisticated things could be done here. 5365 const Type *WideTy = IntegerType::get(getContext(), 5366 getTypeSizeInBits(Ty) + 1); 5367 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5368 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5369 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5370 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5371 return getCouldNotCompute(); 5372 } 5373 5374 return getUDivExpr(Add, Step); 5375 } 5376 5377 /// HowManyLessThans - Return the number of times a backedge containing the 5378 /// specified less-than comparison will execute. If not computable, return 5379 /// CouldNotCompute. 5380 ScalarEvolution::BackedgeTakenInfo 5381 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5382 const Loop *L, bool isSigned) { 5383 // Only handle: "ADDREC < LoopInvariant". 5384 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5385 5386 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5387 if (!AddRec || AddRec->getLoop() != L) 5388 return getCouldNotCompute(); 5389 5390 // Check to see if we have a flag which makes analysis easy. 5391 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5392 AddRec->hasNoUnsignedWrap(); 5393 5394 if (AddRec->isAffine()) { 5395 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5396 const SCEV *Step = AddRec->getStepRecurrence(*this); 5397 5398 if (Step->isZero()) 5399 return getCouldNotCompute(); 5400 if (Step->isOne()) { 5401 // With unit stride, the iteration never steps past the limit value. 5402 } else if (isKnownPositive(Step)) { 5403 // Test whether a positive iteration can step past the limit 5404 // value and past the maximum value for its type in a single step. 5405 // Note that it's not sufficient to check NoWrap here, because even 5406 // though the value after a wrap is undefined, it's not undefined 5407 // behavior, so if wrap does occur, the loop could either terminate or 5408 // loop infinitely, but in either case, the loop is guaranteed to 5409 // iterate at least until the iteration where the wrapping occurs. 5410 const SCEV *One = getConstant(Step->getType(), 1); 5411 if (isSigned) { 5412 APInt Max = APInt::getSignedMaxValue(BitWidth); 5413 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5414 .slt(getSignedRange(RHS).getSignedMax())) 5415 return getCouldNotCompute(); 5416 } else { 5417 APInt Max = APInt::getMaxValue(BitWidth); 5418 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5419 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5420 return getCouldNotCompute(); 5421 } 5422 } else 5423 // TODO: Handle negative strides here and below. 5424 return getCouldNotCompute(); 5425 5426 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5427 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5428 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5429 // treat m-n as signed nor unsigned due to overflow possibility. 5430 5431 // First, we get the value of the LHS in the first iteration: n 5432 const SCEV *Start = AddRec->getOperand(0); 5433 5434 // Determine the minimum constant start value. 5435 const SCEV *MinStart = getConstant(isSigned ? 5436 getSignedRange(Start).getSignedMin() : 5437 getUnsignedRange(Start).getUnsignedMin()); 5438 5439 // If we know that the condition is true in order to enter the loop, 5440 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5441 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5442 // the division must round up. 5443 const SCEV *End = RHS; 5444 if (!isLoopEntryGuardedByCond(L, 5445 isSigned ? ICmpInst::ICMP_SLT : 5446 ICmpInst::ICMP_ULT, 5447 getMinusSCEV(Start, Step), RHS)) 5448 End = isSigned ? getSMaxExpr(RHS, Start) 5449 : getUMaxExpr(RHS, Start); 5450 5451 // Determine the maximum constant end value. 5452 const SCEV *MaxEnd = getConstant(isSigned ? 5453 getSignedRange(End).getSignedMax() : 5454 getUnsignedRange(End).getUnsignedMax()); 5455 5456 // If MaxEnd is within a step of the maximum integer value in its type, 5457 // adjust it down to the minimum value which would produce the same effect. 5458 // This allows the subsequent ceiling division of (N+(step-1))/step to 5459 // compute the correct value. 5460 const SCEV *StepMinusOne = getMinusSCEV(Step, 5461 getConstant(Step->getType(), 1)); 5462 MaxEnd = isSigned ? 5463 getSMinExpr(MaxEnd, 5464 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5465 StepMinusOne)) : 5466 getUMinExpr(MaxEnd, 5467 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5468 StepMinusOne)); 5469 5470 // Finally, we subtract these two values and divide, rounding up, to get 5471 // the number of times the backedge is executed. 5472 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5473 5474 // The maximum backedge count is similar, except using the minimum start 5475 // value and the maximum end value. 5476 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5477 5478 return BackedgeTakenInfo(BECount, MaxBECount); 5479 } 5480 5481 return getCouldNotCompute(); 5482 } 5483 5484 /// getNumIterationsInRange - Return the number of iterations of this loop that 5485 /// produce values in the specified constant range. Another way of looking at 5486 /// this is that it returns the first iteration number where the value is not in 5487 /// the condition, thus computing the exit count. If the iteration count can't 5488 /// be computed, an instance of SCEVCouldNotCompute is returned. 5489 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5490 ScalarEvolution &SE) const { 5491 if (Range.isFullSet()) // Infinite loop. 5492 return SE.getCouldNotCompute(); 5493 5494 // If the start is a non-zero constant, shift the range to simplify things. 5495 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5496 if (!SC->getValue()->isZero()) { 5497 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5498 Operands[0] = SE.getConstant(SC->getType(), 0); 5499 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5500 if (const SCEVAddRecExpr *ShiftedAddRec = 5501 dyn_cast<SCEVAddRecExpr>(Shifted)) 5502 return ShiftedAddRec->getNumIterationsInRange( 5503 Range.subtract(SC->getValue()->getValue()), SE); 5504 // This is strange and shouldn't happen. 5505 return SE.getCouldNotCompute(); 5506 } 5507 5508 // The only time we can solve this is when we have all constant indices. 5509 // Otherwise, we cannot determine the overflow conditions. 5510 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5511 if (!isa<SCEVConstant>(getOperand(i))) 5512 return SE.getCouldNotCompute(); 5513 5514 5515 // Okay at this point we know that all elements of the chrec are constants and 5516 // that the start element is zero. 5517 5518 // First check to see if the range contains zero. If not, the first 5519 // iteration exits. 5520 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5521 if (!Range.contains(APInt(BitWidth, 0))) 5522 return SE.getConstant(getType(), 0); 5523 5524 if (isAffine()) { 5525 // If this is an affine expression then we have this situation: 5526 // Solve {0,+,A} in Range === Ax in Range 5527 5528 // We know that zero is in the range. If A is positive then we know that 5529 // the upper value of the range must be the first possible exit value. 5530 // If A is negative then the lower of the range is the last possible loop 5531 // value. Also note that we already checked for a full range. 5532 APInt One(BitWidth,1); 5533 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5534 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5535 5536 // The exit value should be (End+A)/A. 5537 APInt ExitVal = (End + A).udiv(A); 5538 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5539 5540 // Evaluate at the exit value. If we really did fall out of the valid 5541 // range, then we computed our trip count, otherwise wrap around or other 5542 // things must have happened. 5543 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5544 if (Range.contains(Val->getValue())) 5545 return SE.getCouldNotCompute(); // Something strange happened 5546 5547 // Ensure that the previous value is in the range. This is a sanity check. 5548 assert(Range.contains( 5549 EvaluateConstantChrecAtConstant(this, 5550 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5551 "Linear scev computation is off in a bad way!"); 5552 return SE.getConstant(ExitValue); 5553 } else if (isQuadratic()) { 5554 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5555 // quadratic equation to solve it. To do this, we must frame our problem in 5556 // terms of figuring out when zero is crossed, instead of when 5557 // Range.getUpper() is crossed. 5558 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5559 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5560 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5561 5562 // Next, solve the constructed addrec 5563 std::pair<const SCEV *,const SCEV *> Roots = 5564 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5565 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5566 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5567 if (R1) { 5568 // Pick the smallest positive root value. 5569 if (ConstantInt *CB = 5570 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5571 R1->getValue(), R2->getValue()))) { 5572 if (CB->getZExtValue() == false) 5573 std::swap(R1, R2); // R1 is the minimum root now. 5574 5575 // Make sure the root is not off by one. The returned iteration should 5576 // not be in the range, but the previous one should be. When solving 5577 // for "X*X < 5", for example, we should not return a root of 2. 5578 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5579 R1->getValue(), 5580 SE); 5581 if (Range.contains(R1Val->getValue())) { 5582 // The next iteration must be out of the range... 5583 ConstantInt *NextVal = 5584 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5585 5586 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5587 if (!Range.contains(R1Val->getValue())) 5588 return SE.getConstant(NextVal); 5589 return SE.getCouldNotCompute(); // Something strange happened 5590 } 5591 5592 // If R1 was not in the range, then it is a good return value. Make 5593 // sure that R1-1 WAS in the range though, just in case. 5594 ConstantInt *NextVal = 5595 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5596 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5597 if (Range.contains(R1Val->getValue())) 5598 return R1; 5599 return SE.getCouldNotCompute(); // Something strange happened 5600 } 5601 } 5602 } 5603 5604 return SE.getCouldNotCompute(); 5605 } 5606 5607 5608 5609 //===----------------------------------------------------------------------===// 5610 // SCEVCallbackVH Class Implementation 5611 //===----------------------------------------------------------------------===// 5612 5613 void ScalarEvolution::SCEVCallbackVH::deleted() { 5614 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5615 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5616 SE->ConstantEvolutionLoopExitValue.erase(PN); 5617 SE->Scalars.erase(getValPtr()); 5618 // this now dangles! 5619 } 5620 5621 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5622 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5623 5624 // Forget all the expressions associated with users of the old value, 5625 // so that future queries will recompute the expressions using the new 5626 // value. 5627 SmallVector<User *, 16> Worklist; 5628 SmallPtrSet<User *, 8> Visited; 5629 Value *Old = getValPtr(); 5630 bool DeleteOld = false; 5631 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5632 UI != UE; ++UI) 5633 Worklist.push_back(*UI); 5634 while (!Worklist.empty()) { 5635 User *U = Worklist.pop_back_val(); 5636 // Deleting the Old value will cause this to dangle. Postpone 5637 // that until everything else is done. 5638 if (U == Old) { 5639 DeleteOld = true; 5640 continue; 5641 } 5642 if (!Visited.insert(U)) 5643 continue; 5644 if (PHINode *PN = dyn_cast<PHINode>(U)) 5645 SE->ConstantEvolutionLoopExitValue.erase(PN); 5646 SE->Scalars.erase(U); 5647 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5648 UI != UE; ++UI) 5649 Worklist.push_back(*UI); 5650 } 5651 // Delete the Old value if it (indirectly) references itself. 5652 if (DeleteOld) { 5653 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5654 SE->ConstantEvolutionLoopExitValue.erase(PN); 5655 SE->Scalars.erase(Old); 5656 // this now dangles! 5657 } 5658 // this may dangle! 5659 } 5660 5661 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5662 : CallbackVH(V), SE(se) {} 5663 5664 //===----------------------------------------------------------------------===// 5665 // ScalarEvolution Class Implementation 5666 //===----------------------------------------------------------------------===// 5667 5668 ScalarEvolution::ScalarEvolution() 5669 : FunctionPass(&ID) { 5670 } 5671 5672 bool ScalarEvolution::runOnFunction(Function &F) { 5673 this->F = &F; 5674 LI = &getAnalysis<LoopInfo>(); 5675 TD = getAnalysisIfAvailable<TargetData>(); 5676 DT = &getAnalysis<DominatorTree>(); 5677 return false; 5678 } 5679 5680 void ScalarEvolution::releaseMemory() { 5681 Scalars.clear(); 5682 BackedgeTakenCounts.clear(); 5683 ConstantEvolutionLoopExitValue.clear(); 5684 ValuesAtScopes.clear(); 5685 UniqueSCEVs.clear(); 5686 SCEVAllocator.Reset(); 5687 } 5688 5689 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5690 AU.setPreservesAll(); 5691 AU.addRequiredTransitive<LoopInfo>(); 5692 AU.addRequiredTransitive<DominatorTree>(); 5693 } 5694 5695 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5696 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5697 } 5698 5699 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5700 const Loop *L) { 5701 // Print all inner loops first 5702 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5703 PrintLoopInfo(OS, SE, *I); 5704 5705 OS << "Loop "; 5706 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5707 OS << ": "; 5708 5709 SmallVector<BasicBlock *, 8> ExitBlocks; 5710 L->getExitBlocks(ExitBlocks); 5711 if (ExitBlocks.size() != 1) 5712 OS << "<multiple exits> "; 5713 5714 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5715 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5716 } else { 5717 OS << "Unpredictable backedge-taken count. "; 5718 } 5719 5720 OS << "\n" 5721 "Loop "; 5722 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5723 OS << ": "; 5724 5725 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5726 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5727 } else { 5728 OS << "Unpredictable max backedge-taken count. "; 5729 } 5730 5731 OS << "\n"; 5732 } 5733 5734 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5735 // ScalarEvolution's implementation of the print method is to print 5736 // out SCEV values of all instructions that are interesting. Doing 5737 // this potentially causes it to create new SCEV objects though, 5738 // which technically conflicts with the const qualifier. This isn't 5739 // observable from outside the class though, so casting away the 5740 // const isn't dangerous. 5741 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5742 5743 OS << "Classifying expressions for: "; 5744 WriteAsOperand(OS, F, /*PrintType=*/false); 5745 OS << "\n"; 5746 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5747 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5748 OS << *I << '\n'; 5749 OS << " --> "; 5750 const SCEV *SV = SE.getSCEV(&*I); 5751 SV->print(OS); 5752 5753 const Loop *L = LI->getLoopFor((*I).getParent()); 5754 5755 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5756 if (AtUse != SV) { 5757 OS << " --> "; 5758 AtUse->print(OS); 5759 } 5760 5761 if (L) { 5762 OS << "\t\t" "Exits: "; 5763 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5764 if (!ExitValue->isLoopInvariant(L)) { 5765 OS << "<<Unknown>>"; 5766 } else { 5767 OS << *ExitValue; 5768 } 5769 } 5770 5771 OS << "\n"; 5772 } 5773 5774 OS << "Determining loop execution counts for: "; 5775 WriteAsOperand(OS, F, /*PrintType=*/false); 5776 OS << "\n"; 5777 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5778 PrintLoopInfo(OS, &SE, *I); 5779 } 5780 5781