xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 2e55cc5a4ae5e3d394afca69a8b9db2b38aaaadc)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle.  These classes are reference counted, managed by the SCEVHandle
18 // class.  We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
20 //
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
26 //
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression.  These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
31 //
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
35 //
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
38 //
39 //===----------------------------------------------------------------------===//
40 //
41 // There are several good references for the techniques used in this analysis.
42 //
43 //  Chains of recurrences -- a method to expedite the evaluation
44 //  of closed-form functions
45 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 //
47 //  On computational properties of chains of recurrences
48 //  Eugene V. Zima
49 //
50 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 //  Robert A. van Engelen
52 //
53 //  Efficient Symbolic Analysis for Optimizing Compilers
54 //  Robert A. van Engelen
55 //
56 //  Using the chains of recurrences algebra for data dependence testing and
57 //  induction variable substitution
58 //  MS Thesis, Johnie Birch
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Assembly/Writer.h"
72 #include "llvm/Target/TargetData.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ConstantRange.h"
76 #include "llvm/Support/GetElementPtrTypeIterator.h"
77 #include "llvm/Support/InstIterator.h"
78 #include "llvm/Support/ManagedStatic.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/ADT/Statistic.h"
82 #include "llvm/ADT/STLExtras.h"
83 #include <ostream>
84 #include <algorithm>
85 using namespace llvm;
86 
87 STATISTIC(NumArrayLenItCounts,
88           "Number of trip counts computed with array length");
89 STATISTIC(NumTripCountsComputed,
90           "Number of loops with predictable loop counts");
91 STATISTIC(NumTripCountsNotComputed,
92           "Number of loops without predictable loop counts");
93 STATISTIC(NumBruteForceTripCountsComputed,
94           "Number of loops with trip counts computed by force");
95 
96 static cl::opt<unsigned>
97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                         cl::desc("Maximum number of iterations SCEV will "
99                                  "symbolically execute a constant derived loop"),
100                         cl::init(100));
101 
102 static RegisterPass<ScalarEvolution>
103 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104 char ScalarEvolution::ID = 0;
105 
106 //===----------------------------------------------------------------------===//
107 //                           SCEV class definitions
108 //===----------------------------------------------------------------------===//
109 
110 //===----------------------------------------------------------------------===//
111 // Implementation of the SCEV class.
112 //
113 SCEV::~SCEV() {}
114 void SCEV::dump() const {
115   print(errs());
116   errs() << '\n';
117 }
118 
119 void SCEV::print(std::ostream &o) const {
120   raw_os_ostream OS(o);
121   print(OS);
122 }
123 
124 bool SCEV::isZero() const {
125   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126     return SC->getValue()->isZero();
127   return false;
128 }
129 
130 
131 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
132 SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
133 
134 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
135   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
136   return false;
137 }
138 
139 const Type *SCEVCouldNotCompute::getType() const {
140   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141   return 0;
142 }
143 
144 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
145   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146   return false;
147 }
148 
149 SCEVHandle SCEVCouldNotCompute::
150 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
151                                   const SCEVHandle &Conc,
152                                   ScalarEvolution &SE) const {
153   return this;
154 }
155 
156 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
157   OS << "***COULDNOTCOMPUTE***";
158 }
159 
160 bool SCEVCouldNotCompute::classof(const SCEV *S) {
161   return S->getSCEVType() == scCouldNotCompute;
162 }
163 
164 
165 // SCEVConstants - Only allow the creation of one SCEVConstant for any
166 // particular value.  Don't use a SCEVHandle here, or else the object will
167 // never be deleted!
168 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
169 
170 
171 SCEVConstant::~SCEVConstant() {
172   SCEVConstants->erase(V);
173 }
174 
175 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
176   SCEVConstant *&R = (*SCEVConstants)[V];
177   if (R == 0) R = new SCEVConstant(V);
178   return R;
179 }
180 
181 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
182   return getConstant(ConstantInt::get(Val));
183 }
184 
185 const Type *SCEVConstant::getType() const { return V->getType(); }
186 
187 void SCEVConstant::print(raw_ostream &OS) const {
188   WriteAsOperand(OS, V, false);
189 }
190 
191 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
192                            const SCEVHandle &op, const Type *ty)
193   : SCEV(SCEVTy), Op(op), Ty(ty) {}
194 
195 SCEVCastExpr::~SCEVCastExpr() {}
196 
197 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
198   return Op->dominates(BB, DT);
199 }
200 
201 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202 // particular input.  Don't use a SCEVHandle here, or else the object will
203 // never be deleted!
204 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
205                      SCEVTruncateExpr*> > SCEVTruncates;
206 
207 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208   : SCEVCastExpr(scTruncate, op, ty) {
209   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
210          (Ty->isInteger() || isa<PointerType>(Ty)) &&
211          "Cannot truncate non-integer value!");
212 }
213 
214 SCEVTruncateExpr::~SCEVTruncateExpr() {
215   SCEVTruncates->erase(std::make_pair(Op, Ty));
216 }
217 
218 void SCEVTruncateExpr::print(raw_ostream &OS) const {
219   OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
220 }
221 
222 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223 // particular input.  Don't use a SCEVHandle here, or else the object will never
224 // be deleted!
225 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
226                      SCEVZeroExtendExpr*> > SCEVZeroExtends;
227 
228 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229   : SCEVCastExpr(scZeroExtend, op, ty) {
230   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231          (Ty->isInteger() || isa<PointerType>(Ty)) &&
232          "Cannot zero extend non-integer value!");
233 }
234 
235 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236   SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237 }
238 
239 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
240   OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
241 }
242 
243 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
244 // particular input.  Don't use a SCEVHandle here, or else the object will never
245 // be deleted!
246 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
247                      SCEVSignExtendExpr*> > SCEVSignExtends;
248 
249 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
250   : SCEVCastExpr(scSignExtend, op, ty) {
251   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
252          (Ty->isInteger() || isa<PointerType>(Ty)) &&
253          "Cannot sign extend non-integer value!");
254 }
255 
256 SCEVSignExtendExpr::~SCEVSignExtendExpr() {
257   SCEVSignExtends->erase(std::make_pair(Op, Ty));
258 }
259 
260 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
261   OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
262 }
263 
264 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
265 // particular input.  Don't use a SCEVHandle here, or else the object will never
266 // be deleted!
267 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
268                      SCEVCommutativeExpr*> > SCEVCommExprs;
269 
270 SCEVCommutativeExpr::~SCEVCommutativeExpr() {
271   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
272   SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
273 }
274 
275 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
276   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
277   const char *OpStr = getOperationStr();
278   OS << "(" << *Operands[0];
279   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
280     OS << OpStr << *Operands[i];
281   OS << ")";
282 }
283 
284 SCEVHandle SCEVCommutativeExpr::
285 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
286                                   const SCEVHandle &Conc,
287                                   ScalarEvolution &SE) const {
288   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
289     SCEVHandle H =
290       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
291     if (H != getOperand(i)) {
292       std::vector<SCEVHandle> NewOps;
293       NewOps.reserve(getNumOperands());
294       for (unsigned j = 0; j != i; ++j)
295         NewOps.push_back(getOperand(j));
296       NewOps.push_back(H);
297       for (++i; i != e; ++i)
298         NewOps.push_back(getOperand(i)->
299                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
300 
301       if (isa<SCEVAddExpr>(this))
302         return SE.getAddExpr(NewOps);
303       else if (isa<SCEVMulExpr>(this))
304         return SE.getMulExpr(NewOps);
305       else if (isa<SCEVSMaxExpr>(this))
306         return SE.getSMaxExpr(NewOps);
307       else if (isa<SCEVUMaxExpr>(this))
308         return SE.getUMaxExpr(NewOps);
309       else
310         assert(0 && "Unknown commutative expr!");
311     }
312   }
313   return this;
314 }
315 
316 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
317   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
318     if (!getOperand(i)->dominates(BB, DT))
319       return false;
320   }
321   return true;
322 }
323 
324 
325 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
326 // input.  Don't use a SCEVHandle here, or else the object will never be
327 // deleted!
328 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
329                      SCEVUDivExpr*> > SCEVUDivs;
330 
331 SCEVUDivExpr::~SCEVUDivExpr() {
332   SCEVUDivs->erase(std::make_pair(LHS, RHS));
333 }
334 
335 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
336   return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
337 }
338 
339 void SCEVUDivExpr::print(raw_ostream &OS) const {
340   OS << "(" << *LHS << " /u " << *RHS << ")";
341 }
342 
343 const Type *SCEVUDivExpr::getType() const {
344   return LHS->getType();
345 }
346 
347 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
348 // particular input.  Don't use a SCEVHandle here, or else the object will never
349 // be deleted!
350 static ManagedStatic<std::map<std::pair<const Loop *,
351                                         std::vector<const SCEV*> >,
352                      SCEVAddRecExpr*> > SCEVAddRecExprs;
353 
354 SCEVAddRecExpr::~SCEVAddRecExpr() {
355   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
356   SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
357 }
358 
359 SCEVHandle SCEVAddRecExpr::
360 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
361                                   const SCEVHandle &Conc,
362                                   ScalarEvolution &SE) const {
363   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
364     SCEVHandle H =
365       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
366     if (H != getOperand(i)) {
367       std::vector<SCEVHandle> NewOps;
368       NewOps.reserve(getNumOperands());
369       for (unsigned j = 0; j != i; ++j)
370         NewOps.push_back(getOperand(j));
371       NewOps.push_back(H);
372       for (++i; i != e; ++i)
373         NewOps.push_back(getOperand(i)->
374                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
375 
376       return SE.getAddRecExpr(NewOps, L);
377     }
378   }
379   return this;
380 }
381 
382 
383 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
384   // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
385   // contain L and if the start is invariant.
386   return !QueryLoop->contains(L->getHeader()) &&
387          getOperand(0)->isLoopInvariant(QueryLoop);
388 }
389 
390 
391 void SCEVAddRecExpr::print(raw_ostream &OS) const {
392   OS << "{" << *Operands[0];
393   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
394     OS << ",+," << *Operands[i];
395   OS << "}<" << L->getHeader()->getName() + ">";
396 }
397 
398 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
399 // value.  Don't use a SCEVHandle here, or else the object will never be
400 // deleted!
401 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
402 
403 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
404 
405 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
406   // All non-instruction values are loop invariant.  All instructions are loop
407   // invariant if they are not contained in the specified loop.
408   if (Instruction *I = dyn_cast<Instruction>(V))
409     return !L->contains(I->getParent());
410   return true;
411 }
412 
413 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414   if (Instruction *I = dyn_cast<Instruction>(getValue()))
415     return DT->dominates(I->getParent(), BB);
416   return true;
417 }
418 
419 const Type *SCEVUnknown::getType() const {
420   return V->getType();
421 }
422 
423 void SCEVUnknown::print(raw_ostream &OS) const {
424   WriteAsOperand(OS, V, false);
425 }
426 
427 //===----------------------------------------------------------------------===//
428 //                               SCEV Utilities
429 //===----------------------------------------------------------------------===//
430 
431 namespace {
432   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
433   /// than the complexity of the RHS.  This comparator is used to canonicalize
434   /// expressions.
435   class VISIBILITY_HIDDEN SCEVComplexityCompare {
436     LoopInfo *LI;
437   public:
438     explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
439 
440     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
441       // Primarily, sort the SCEVs by their getSCEVType().
442       if (LHS->getSCEVType() != RHS->getSCEVType())
443         return LHS->getSCEVType() < RHS->getSCEVType();
444 
445       // Aside from the getSCEVType() ordering, the particular ordering
446       // isn't very important except that it's beneficial to be consistent,
447       // so that (a + b) and (b + a) don't end up as different expressions.
448 
449       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
450       // not as complete as it could be.
451       if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
452         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
453 
454         // Compare getValueID values.
455         if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
456           return LU->getValue()->getValueID() < RU->getValue()->getValueID();
457 
458         // Sort arguments by their position.
459         if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
460           const Argument *RA = cast<Argument>(RU->getValue());
461           return LA->getArgNo() < RA->getArgNo();
462         }
463 
464         // For instructions, compare their loop depth, and their opcode.
465         // This is pretty loose.
466         if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
467           Instruction *RV = cast<Instruction>(RU->getValue());
468 
469           // Compare loop depths.
470           if (LI->getLoopDepth(LV->getParent()) !=
471               LI->getLoopDepth(RV->getParent()))
472             return LI->getLoopDepth(LV->getParent()) <
473                    LI->getLoopDepth(RV->getParent());
474 
475           // Compare opcodes.
476           if (LV->getOpcode() != RV->getOpcode())
477             return LV->getOpcode() < RV->getOpcode();
478 
479           // Compare the number of operands.
480           if (LV->getNumOperands() != RV->getNumOperands())
481             return LV->getNumOperands() < RV->getNumOperands();
482         }
483 
484         return false;
485       }
486 
487       // Constant sorting doesn't matter since they'll be folded.
488       if (isa<SCEVConstant>(LHS))
489         return false;
490 
491       // Lexicographically compare n-ary expressions.
492       if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
493         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
494         for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
495           if (i >= RC->getNumOperands())
496             return false;
497           if (operator()(LC->getOperand(i), RC->getOperand(i)))
498             return true;
499           if (operator()(RC->getOperand(i), LC->getOperand(i)))
500             return false;
501         }
502         return LC->getNumOperands() < RC->getNumOperands();
503       }
504 
505       // Lexicographically compare udiv expressions.
506       if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
507         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
508         if (operator()(LC->getLHS(), RC->getLHS()))
509           return true;
510         if (operator()(RC->getLHS(), LC->getLHS()))
511           return false;
512         if (operator()(LC->getRHS(), RC->getRHS()))
513           return true;
514         if (operator()(RC->getRHS(), LC->getRHS()))
515           return false;
516         return false;
517       }
518 
519       // Compare cast expressions by operand.
520       if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
521         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
522         return operator()(LC->getOperand(), RC->getOperand());
523       }
524 
525       assert(0 && "Unknown SCEV kind!");
526       return false;
527     }
528   };
529 }
530 
531 /// GroupByComplexity - Given a list of SCEV objects, order them by their
532 /// complexity, and group objects of the same complexity together by value.
533 /// When this routine is finished, we know that any duplicates in the vector are
534 /// consecutive and that complexity is monotonically increasing.
535 ///
536 /// Note that we go take special precautions to ensure that we get determinstic
537 /// results from this routine.  In other words, we don't want the results of
538 /// this to depend on where the addresses of various SCEV objects happened to
539 /// land in memory.
540 ///
541 static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
542                               LoopInfo *LI) {
543   if (Ops.size() < 2) return;  // Noop
544   if (Ops.size() == 2) {
545     // This is the common case, which also happens to be trivially simple.
546     // Special case it.
547     if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
548       std::swap(Ops[0], Ops[1]);
549     return;
550   }
551 
552   // Do the rough sort by complexity.
553   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
554 
555   // Now that we are sorted by complexity, group elements of the same
556   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
557   // be extremely short in practice.  Note that we take this approach because we
558   // do not want to depend on the addresses of the objects we are grouping.
559   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
560     const SCEV *S = Ops[i];
561     unsigned Complexity = S->getSCEVType();
562 
563     // If there are any objects of the same complexity and same value as this
564     // one, group them.
565     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
566       if (Ops[j] == S) { // Found a duplicate.
567         // Move it to immediately after i'th element.
568         std::swap(Ops[i+1], Ops[j]);
569         ++i;   // no need to rescan it.
570         if (i == e-2) return;  // Done!
571       }
572     }
573   }
574 }
575 
576 
577 
578 //===----------------------------------------------------------------------===//
579 //                      Simple SCEV method implementations
580 //===----------------------------------------------------------------------===//
581 
582 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
583 // Assume, K > 0.
584 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
585                                       ScalarEvolution &SE,
586                                       const Type* ResultTy) {
587   // Handle the simplest case efficiently.
588   if (K == 1)
589     return SE.getTruncateOrZeroExtend(It, ResultTy);
590 
591   // We are using the following formula for BC(It, K):
592   //
593   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
594   //
595   // Suppose, W is the bitwidth of the return value.  We must be prepared for
596   // overflow.  Hence, we must assure that the result of our computation is
597   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
598   // safe in modular arithmetic.
599   //
600   // However, this code doesn't use exactly that formula; the formula it uses
601   // is something like the following, where T is the number of factors of 2 in
602   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
603   // exponentiation:
604   //
605   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
606   //
607   // This formula is trivially equivalent to the previous formula.  However,
608   // this formula can be implemented much more efficiently.  The trick is that
609   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
610   // arithmetic.  To do exact division in modular arithmetic, all we have
611   // to do is multiply by the inverse.  Therefore, this step can be done at
612   // width W.
613   //
614   // The next issue is how to safely do the division by 2^T.  The way this
615   // is done is by doing the multiplication step at a width of at least W + T
616   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
617   // when we perform the division by 2^T (which is equivalent to a right shift
618   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
619   // truncated out after the division by 2^T.
620   //
621   // In comparison to just directly using the first formula, this technique
622   // is much more efficient; using the first formula requires W * K bits,
623   // but this formula less than W + K bits. Also, the first formula requires
624   // a division step, whereas this formula only requires multiplies and shifts.
625   //
626   // It doesn't matter whether the subtraction step is done in the calculation
627   // width or the input iteration count's width; if the subtraction overflows,
628   // the result must be zero anyway.  We prefer here to do it in the width of
629   // the induction variable because it helps a lot for certain cases; CodeGen
630   // isn't smart enough to ignore the overflow, which leads to much less
631   // efficient code if the width of the subtraction is wider than the native
632   // register width.
633   //
634   // (It's possible to not widen at all by pulling out factors of 2 before
635   // the multiplication; for example, K=2 can be calculated as
636   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
637   // extra arithmetic, so it's not an obvious win, and it gets
638   // much more complicated for K > 3.)
639 
640   // Protection from insane SCEVs; this bound is conservative,
641   // but it probably doesn't matter.
642   if (K > 1000)
643     return SE.getCouldNotCompute();
644 
645   unsigned W = SE.getTypeSizeInBits(ResultTy);
646 
647   // Calculate K! / 2^T and T; we divide out the factors of two before
648   // multiplying for calculating K! / 2^T to avoid overflow.
649   // Other overflow doesn't matter because we only care about the bottom
650   // W bits of the result.
651   APInt OddFactorial(W, 1);
652   unsigned T = 1;
653   for (unsigned i = 3; i <= K; ++i) {
654     APInt Mult(W, i);
655     unsigned TwoFactors = Mult.countTrailingZeros();
656     T += TwoFactors;
657     Mult = Mult.lshr(TwoFactors);
658     OddFactorial *= Mult;
659   }
660 
661   // We need at least W + T bits for the multiplication step
662   unsigned CalculationBits = W + T;
663 
664   // Calcuate 2^T, at width T+W.
665   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
666 
667   // Calculate the multiplicative inverse of K! / 2^T;
668   // this multiplication factor will perform the exact division by
669   // K! / 2^T.
670   APInt Mod = APInt::getSignedMinValue(W+1);
671   APInt MultiplyFactor = OddFactorial.zext(W+1);
672   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
673   MultiplyFactor = MultiplyFactor.trunc(W);
674 
675   // Calculate the product, at width T+W
676   const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
677   SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
678   for (unsigned i = 1; i != K; ++i) {
679     SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
680     Dividend = SE.getMulExpr(Dividend,
681                              SE.getTruncateOrZeroExtend(S, CalculationTy));
682   }
683 
684   // Divide by 2^T
685   SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
686 
687   // Truncate the result, and divide by K! / 2^T.
688 
689   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
690                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
691 }
692 
693 /// evaluateAtIteration - Return the value of this chain of recurrences at
694 /// the specified iteration number.  We can evaluate this recurrence by
695 /// multiplying each element in the chain by the binomial coefficient
696 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
697 ///
698 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
699 ///
700 /// where BC(It, k) stands for binomial coefficient.
701 ///
702 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
703                                                ScalarEvolution &SE) const {
704   SCEVHandle Result = getStart();
705   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
706     // The computation is correct in the face of overflow provided that the
707     // multiplication is performed _after_ the evaluation of the binomial
708     // coefficient.
709     SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
710     if (isa<SCEVCouldNotCompute>(Coeff))
711       return Coeff;
712 
713     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
714   }
715   return Result;
716 }
717 
718 //===----------------------------------------------------------------------===//
719 //                    SCEV Expression folder implementations
720 //===----------------------------------------------------------------------===//
721 
722 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
723                                             const Type *Ty) {
724   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
725          "This is not a truncating conversion!");
726   assert(isSCEVable(Ty) &&
727          "This is not a conversion to a SCEVable type!");
728   Ty = getEffectiveSCEVType(Ty);
729 
730   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
731     return getUnknown(
732         ConstantExpr::getTrunc(SC->getValue(), Ty));
733 
734   // trunc(trunc(x)) --> trunc(x)
735   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
736     return getTruncateExpr(ST->getOperand(), Ty);
737 
738   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
739   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
740     return getTruncateOrSignExtend(SS->getOperand(), Ty);
741 
742   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
743   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
744     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
745 
746   // If the input value is a chrec scev made out of constants, truncate
747   // all of the constants.
748   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
749     std::vector<SCEVHandle> Operands;
750     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
751       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
752     return getAddRecExpr(Operands, AddRec->getLoop());
753   }
754 
755   SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
756   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
757   return Result;
758 }
759 
760 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
761                                               const Type *Ty) {
762   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
763          "This is not an extending conversion!");
764   assert(isSCEVable(Ty) &&
765          "This is not a conversion to a SCEVable type!");
766   Ty = getEffectiveSCEVType(Ty);
767 
768   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
769     const Type *IntTy = getEffectiveSCEVType(Ty);
770     Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
771     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
772     return getUnknown(C);
773   }
774 
775   // zext(zext(x)) --> zext(x)
776   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
777     return getZeroExtendExpr(SZ->getOperand(), Ty);
778 
779   // If the input value is a chrec scev, and we can prove that the value
780   // did not overflow the old, smaller, value, we can zero extend all of the
781   // operands (often constants).  This allows analysis of something like
782   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
783   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
784     if (AR->isAffine()) {
785       // Check whether the backedge-taken count is SCEVCouldNotCompute.
786       // Note that this serves two purposes: It filters out loops that are
787       // simply not analyzable, and it covers the case where this code is
788       // being called from within backedge-taken count analysis, such that
789       // attempting to ask for the backedge-taken count would likely result
790       // in infinite recursion. In the later case, the analysis code will
791       // cope with a conservative value, and it will take care to purge
792       // that value once it has finished.
793       SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
794       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
795         // Manually compute the final value for AR, checking for
796         // overflow.
797         SCEVHandle Start = AR->getStart();
798         SCEVHandle Step = AR->getStepRecurrence(*this);
799 
800         // Check whether the backedge-taken count can be losslessly casted to
801         // the addrec's type. The count is always unsigned.
802         SCEVHandle CastedMaxBECount =
803           getTruncateOrZeroExtend(MaxBECount, Start->getType());
804         if (MaxBECount ==
805             getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
806           const Type *WideTy =
807             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
808           // Check whether Start+Step*MaxBECount has no unsigned overflow.
809           SCEVHandle ZMul =
810             getMulExpr(CastedMaxBECount,
811                        getTruncateOrZeroExtend(Step, Start->getType()));
812           SCEVHandle Add = getAddExpr(Start, ZMul);
813           if (getZeroExtendExpr(Add, WideTy) ==
814               getAddExpr(getZeroExtendExpr(Start, WideTy),
815                          getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
816                                     getZeroExtendExpr(Step, WideTy))))
817             // Return the expression with the addrec on the outside.
818             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
819                                  getZeroExtendExpr(Step, Ty),
820                                  AR->getLoop());
821 
822           // Similar to above, only this time treat the step value as signed.
823           // This covers loops that count down.
824           SCEVHandle SMul =
825             getMulExpr(CastedMaxBECount,
826                        getTruncateOrSignExtend(Step, Start->getType()));
827           Add = getAddExpr(Start, SMul);
828           if (getZeroExtendExpr(Add, WideTy) ==
829               getAddExpr(getZeroExtendExpr(Start, WideTy),
830                          getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
831                                     getSignExtendExpr(Step, WideTy))))
832             // Return the expression with the addrec on the outside.
833             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
834                                  getSignExtendExpr(Step, Ty),
835                                  AR->getLoop());
836         }
837       }
838     }
839 
840   SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
841   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
842   return Result;
843 }
844 
845 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
846                                               const Type *Ty) {
847   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
848          "This is not an extending conversion!");
849   assert(isSCEVable(Ty) &&
850          "This is not a conversion to a SCEVable type!");
851   Ty = getEffectiveSCEVType(Ty);
852 
853   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
854     const Type *IntTy = getEffectiveSCEVType(Ty);
855     Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
856     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
857     return getUnknown(C);
858   }
859 
860   // sext(sext(x)) --> sext(x)
861   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
862     return getSignExtendExpr(SS->getOperand(), Ty);
863 
864   // If the input value is a chrec scev, and we can prove that the value
865   // did not overflow the old, smaller, value, we can sign extend all of the
866   // operands (often constants).  This allows analysis of something like
867   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
868   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
869     if (AR->isAffine()) {
870       // Check whether the backedge-taken count is SCEVCouldNotCompute.
871       // Note that this serves two purposes: It filters out loops that are
872       // simply not analyzable, and it covers the case where this code is
873       // being called from within backedge-taken count analysis, such that
874       // attempting to ask for the backedge-taken count would likely result
875       // in infinite recursion. In the later case, the analysis code will
876       // cope with a conservative value, and it will take care to purge
877       // that value once it has finished.
878       SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
879       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
880         // Manually compute the final value for AR, checking for
881         // overflow.
882         SCEVHandle Start = AR->getStart();
883         SCEVHandle Step = AR->getStepRecurrence(*this);
884 
885         // Check whether the backedge-taken count can be losslessly casted to
886         // the addrec's type. The count is always unsigned.
887         SCEVHandle CastedMaxBECount =
888           getTruncateOrZeroExtend(MaxBECount, Start->getType());
889         if (MaxBECount ==
890             getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
891           const Type *WideTy =
892             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
893           // Check whether Start+Step*MaxBECount has no signed overflow.
894           SCEVHandle SMul =
895             getMulExpr(CastedMaxBECount,
896                        getTruncateOrSignExtend(Step, Start->getType()));
897           SCEVHandle Add = getAddExpr(Start, SMul);
898           if (getSignExtendExpr(Add, WideTy) ==
899               getAddExpr(getSignExtendExpr(Start, WideTy),
900                          getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
901                                     getSignExtendExpr(Step, WideTy))))
902             // Return the expression with the addrec on the outside.
903             return getAddRecExpr(getSignExtendExpr(Start, Ty),
904                                  getSignExtendExpr(Step, Ty),
905                                  AR->getLoop());
906         }
907       }
908     }
909 
910   SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
911   if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
912   return Result;
913 }
914 
915 // get - Get a canonical add expression, or something simpler if possible.
916 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
917   assert(!Ops.empty() && "Cannot get empty add!");
918   if (Ops.size() == 1) return Ops[0];
919 
920   // Sort by complexity, this groups all similar expression types together.
921   GroupByComplexity(Ops, LI);
922 
923   // If there are any constants, fold them together.
924   unsigned Idx = 0;
925   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
926     ++Idx;
927     assert(Idx < Ops.size());
928     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
929       // We found two constants, fold them together!
930       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
931                                            RHSC->getValue()->getValue());
932       Ops[0] = getConstant(Fold);
933       Ops.erase(Ops.begin()+1);  // Erase the folded element
934       if (Ops.size() == 1) return Ops[0];
935       LHSC = cast<SCEVConstant>(Ops[0]);
936     }
937 
938     // If we are left with a constant zero being added, strip it off.
939     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
940       Ops.erase(Ops.begin());
941       --Idx;
942     }
943   }
944 
945   if (Ops.size() == 1) return Ops[0];
946 
947   // Okay, check to see if the same value occurs in the operand list twice.  If
948   // so, merge them together into an multiply expression.  Since we sorted the
949   // list, these values are required to be adjacent.
950   const Type *Ty = Ops[0]->getType();
951   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
952     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
953       // Found a match, merge the two values into a multiply, and add any
954       // remaining values to the result.
955       SCEVHandle Two = getIntegerSCEV(2, Ty);
956       SCEVHandle Mul = getMulExpr(Ops[i], Two);
957       if (Ops.size() == 2)
958         return Mul;
959       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
960       Ops.push_back(Mul);
961       return getAddExpr(Ops);
962     }
963 
964   // Check for truncates. If all the operands are truncated from the same
965   // type, see if factoring out the truncate would permit the result to be
966   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
967   // if the contents of the resulting outer trunc fold to something simple.
968   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
969     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
970     const Type *DstType = Trunc->getType();
971     const Type *SrcType = Trunc->getOperand()->getType();
972     std::vector<SCEVHandle> LargeOps;
973     bool Ok = true;
974     // Check all the operands to see if they can be represented in the
975     // source type of the truncate.
976     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
977       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
978         if (T->getOperand()->getType() != SrcType) {
979           Ok = false;
980           break;
981         }
982         LargeOps.push_back(T->getOperand());
983       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
984         // This could be either sign or zero extension, but sign extension
985         // is much more likely to be foldable here.
986         LargeOps.push_back(getSignExtendExpr(C, SrcType));
987       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
988         std::vector<SCEVHandle> LargeMulOps;
989         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
990           if (const SCEVTruncateExpr *T =
991                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
992             if (T->getOperand()->getType() != SrcType) {
993               Ok = false;
994               break;
995             }
996             LargeMulOps.push_back(T->getOperand());
997           } else if (const SCEVConstant *C =
998                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
999             // This could be either sign or zero extension, but sign extension
1000             // is much more likely to be foldable here.
1001             LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1002           } else {
1003             Ok = false;
1004             break;
1005           }
1006         }
1007         if (Ok)
1008           LargeOps.push_back(getMulExpr(LargeMulOps));
1009       } else {
1010         Ok = false;
1011         break;
1012       }
1013     }
1014     if (Ok) {
1015       // Evaluate the expression in the larger type.
1016       SCEVHandle Fold = getAddExpr(LargeOps);
1017       // If it folds to something simple, use it. Otherwise, don't.
1018       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1019         return getTruncateExpr(Fold, DstType);
1020     }
1021   }
1022 
1023   // Skip past any other cast SCEVs.
1024   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1025     ++Idx;
1026 
1027   // If there are add operands they would be next.
1028   if (Idx < Ops.size()) {
1029     bool DeletedAdd = false;
1030     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1031       // If we have an add, expand the add operands onto the end of the operands
1032       // list.
1033       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1034       Ops.erase(Ops.begin()+Idx);
1035       DeletedAdd = true;
1036     }
1037 
1038     // If we deleted at least one add, we added operands to the end of the list,
1039     // and they are not necessarily sorted.  Recurse to resort and resimplify
1040     // any operands we just aquired.
1041     if (DeletedAdd)
1042       return getAddExpr(Ops);
1043   }
1044 
1045   // Skip over the add expression until we get to a multiply.
1046   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1047     ++Idx;
1048 
1049   // If we are adding something to a multiply expression, make sure the
1050   // something is not already an operand of the multiply.  If so, merge it into
1051   // the multiply.
1052   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1053     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1054     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1055       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1056       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1057         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1058           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1059           SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1060           if (Mul->getNumOperands() != 2) {
1061             // If the multiply has more than two operands, we must get the
1062             // Y*Z term.
1063             std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1064             MulOps.erase(MulOps.begin()+MulOp);
1065             InnerMul = getMulExpr(MulOps);
1066           }
1067           SCEVHandle One = getIntegerSCEV(1, Ty);
1068           SCEVHandle AddOne = getAddExpr(InnerMul, One);
1069           SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1070           if (Ops.size() == 2) return OuterMul;
1071           if (AddOp < Idx) {
1072             Ops.erase(Ops.begin()+AddOp);
1073             Ops.erase(Ops.begin()+Idx-1);
1074           } else {
1075             Ops.erase(Ops.begin()+Idx);
1076             Ops.erase(Ops.begin()+AddOp-1);
1077           }
1078           Ops.push_back(OuterMul);
1079           return getAddExpr(Ops);
1080         }
1081 
1082       // Check this multiply against other multiplies being added together.
1083       for (unsigned OtherMulIdx = Idx+1;
1084            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1085            ++OtherMulIdx) {
1086         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1087         // If MulOp occurs in OtherMul, we can fold the two multiplies
1088         // together.
1089         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1090              OMulOp != e; ++OMulOp)
1091           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1092             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1093             SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1094             if (Mul->getNumOperands() != 2) {
1095               std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1096               MulOps.erase(MulOps.begin()+MulOp);
1097               InnerMul1 = getMulExpr(MulOps);
1098             }
1099             SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1100             if (OtherMul->getNumOperands() != 2) {
1101               std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1102                                              OtherMul->op_end());
1103               MulOps.erase(MulOps.begin()+OMulOp);
1104               InnerMul2 = getMulExpr(MulOps);
1105             }
1106             SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1107             SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1108             if (Ops.size() == 2) return OuterMul;
1109             Ops.erase(Ops.begin()+Idx);
1110             Ops.erase(Ops.begin()+OtherMulIdx-1);
1111             Ops.push_back(OuterMul);
1112             return getAddExpr(Ops);
1113           }
1114       }
1115     }
1116   }
1117 
1118   // If there are any add recurrences in the operands list, see if any other
1119   // added values are loop invariant.  If so, we can fold them into the
1120   // recurrence.
1121   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1122     ++Idx;
1123 
1124   // Scan over all recurrences, trying to fold loop invariants into them.
1125   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1126     // Scan all of the other operands to this add and add them to the vector if
1127     // they are loop invariant w.r.t. the recurrence.
1128     std::vector<SCEVHandle> LIOps;
1129     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1130     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1131       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1132         LIOps.push_back(Ops[i]);
1133         Ops.erase(Ops.begin()+i);
1134         --i; --e;
1135       }
1136 
1137     // If we found some loop invariants, fold them into the recurrence.
1138     if (!LIOps.empty()) {
1139       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1140       LIOps.push_back(AddRec->getStart());
1141 
1142       std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1143       AddRecOps[0] = getAddExpr(LIOps);
1144 
1145       SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1146       // If all of the other operands were loop invariant, we are done.
1147       if (Ops.size() == 1) return NewRec;
1148 
1149       // Otherwise, add the folded AddRec by the non-liv parts.
1150       for (unsigned i = 0;; ++i)
1151         if (Ops[i] == AddRec) {
1152           Ops[i] = NewRec;
1153           break;
1154         }
1155       return getAddExpr(Ops);
1156     }
1157 
1158     // Okay, if there weren't any loop invariants to be folded, check to see if
1159     // there are multiple AddRec's with the same loop induction variable being
1160     // added together.  If so, we can fold them.
1161     for (unsigned OtherIdx = Idx+1;
1162          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1163       if (OtherIdx != Idx) {
1164         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1165         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1166           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1167           std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1168           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1169             if (i >= NewOps.size()) {
1170               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1171                             OtherAddRec->op_end());
1172               break;
1173             }
1174             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1175           }
1176           SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1177 
1178           if (Ops.size() == 2) return NewAddRec;
1179 
1180           Ops.erase(Ops.begin()+Idx);
1181           Ops.erase(Ops.begin()+OtherIdx-1);
1182           Ops.push_back(NewAddRec);
1183           return getAddExpr(Ops);
1184         }
1185       }
1186 
1187     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1188     // next one.
1189   }
1190 
1191   // Okay, it looks like we really DO need an add expr.  Check to see if we
1192   // already have one, otherwise create a new one.
1193   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1194   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1195                                                                  SCEVOps)];
1196   if (Result == 0) Result = new SCEVAddExpr(Ops);
1197   return Result;
1198 }
1199 
1200 
1201 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1202   assert(!Ops.empty() && "Cannot get empty mul!");
1203 
1204   // Sort by complexity, this groups all similar expression types together.
1205   GroupByComplexity(Ops, LI);
1206 
1207   // If there are any constants, fold them together.
1208   unsigned Idx = 0;
1209   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1210 
1211     // C1*(C2+V) -> C1*C2 + C1*V
1212     if (Ops.size() == 2)
1213       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1214         if (Add->getNumOperands() == 2 &&
1215             isa<SCEVConstant>(Add->getOperand(0)))
1216           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1217                             getMulExpr(LHSC, Add->getOperand(1)));
1218 
1219 
1220     ++Idx;
1221     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1222       // We found two constants, fold them together!
1223       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1224                                            RHSC->getValue()->getValue());
1225       Ops[0] = getConstant(Fold);
1226       Ops.erase(Ops.begin()+1);  // Erase the folded element
1227       if (Ops.size() == 1) return Ops[0];
1228       LHSC = cast<SCEVConstant>(Ops[0]);
1229     }
1230 
1231     // If we are left with a constant one being multiplied, strip it off.
1232     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1233       Ops.erase(Ops.begin());
1234       --Idx;
1235     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1236       // If we have a multiply of zero, it will always be zero.
1237       return Ops[0];
1238     }
1239   }
1240 
1241   // Skip over the add expression until we get to a multiply.
1242   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1243     ++Idx;
1244 
1245   if (Ops.size() == 1)
1246     return Ops[0];
1247 
1248   // If there are mul operands inline them all into this expression.
1249   if (Idx < Ops.size()) {
1250     bool DeletedMul = false;
1251     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1252       // If we have an mul, expand the mul operands onto the end of the operands
1253       // list.
1254       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1255       Ops.erase(Ops.begin()+Idx);
1256       DeletedMul = true;
1257     }
1258 
1259     // If we deleted at least one mul, we added operands to the end of the list,
1260     // and they are not necessarily sorted.  Recurse to resort and resimplify
1261     // any operands we just aquired.
1262     if (DeletedMul)
1263       return getMulExpr(Ops);
1264   }
1265 
1266   // If there are any add recurrences in the operands list, see if any other
1267   // added values are loop invariant.  If so, we can fold them into the
1268   // recurrence.
1269   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1270     ++Idx;
1271 
1272   // Scan over all recurrences, trying to fold loop invariants into them.
1273   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1274     // Scan all of the other operands to this mul and add them to the vector if
1275     // they are loop invariant w.r.t. the recurrence.
1276     std::vector<SCEVHandle> LIOps;
1277     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1278     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1279       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1280         LIOps.push_back(Ops[i]);
1281         Ops.erase(Ops.begin()+i);
1282         --i; --e;
1283       }
1284 
1285     // If we found some loop invariants, fold them into the recurrence.
1286     if (!LIOps.empty()) {
1287       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1288       std::vector<SCEVHandle> NewOps;
1289       NewOps.reserve(AddRec->getNumOperands());
1290       if (LIOps.size() == 1) {
1291         const SCEV *Scale = LIOps[0];
1292         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1293           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1294       } else {
1295         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1296           std::vector<SCEVHandle> MulOps(LIOps);
1297           MulOps.push_back(AddRec->getOperand(i));
1298           NewOps.push_back(getMulExpr(MulOps));
1299         }
1300       }
1301 
1302       SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1303 
1304       // If all of the other operands were loop invariant, we are done.
1305       if (Ops.size() == 1) return NewRec;
1306 
1307       // Otherwise, multiply the folded AddRec by the non-liv parts.
1308       for (unsigned i = 0;; ++i)
1309         if (Ops[i] == AddRec) {
1310           Ops[i] = NewRec;
1311           break;
1312         }
1313       return getMulExpr(Ops);
1314     }
1315 
1316     // Okay, if there weren't any loop invariants to be folded, check to see if
1317     // there are multiple AddRec's with the same loop induction variable being
1318     // multiplied together.  If so, we can fold them.
1319     for (unsigned OtherIdx = Idx+1;
1320          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1321       if (OtherIdx != Idx) {
1322         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1323         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1324           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1325           const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1326           SCEVHandle NewStart = getMulExpr(F->getStart(),
1327                                                  G->getStart());
1328           SCEVHandle B = F->getStepRecurrence(*this);
1329           SCEVHandle D = G->getStepRecurrence(*this);
1330           SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1331                                           getMulExpr(G, B),
1332                                           getMulExpr(B, D));
1333           SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1334                                                F->getLoop());
1335           if (Ops.size() == 2) return NewAddRec;
1336 
1337           Ops.erase(Ops.begin()+Idx);
1338           Ops.erase(Ops.begin()+OtherIdx-1);
1339           Ops.push_back(NewAddRec);
1340           return getMulExpr(Ops);
1341         }
1342       }
1343 
1344     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1345     // next one.
1346   }
1347 
1348   // Okay, it looks like we really DO need an mul expr.  Check to see if we
1349   // already have one, otherwise create a new one.
1350   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1351   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1352                                                                  SCEVOps)];
1353   if (Result == 0)
1354     Result = new SCEVMulExpr(Ops);
1355   return Result;
1356 }
1357 
1358 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1359                                         const SCEVHandle &RHS) {
1360   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1361     if (RHSC->getValue()->equalsInt(1))
1362       return LHS;                            // X udiv 1 --> x
1363     if (RHSC->isZero())
1364       return getIntegerSCEV(0, LHS->getType()); // value is undefined
1365 
1366     // Determine if the division can be folded into the operands of
1367     // its operands.
1368     // TODO: Generalize this to non-constants by using known-bits information.
1369     const Type *Ty = LHS->getType();
1370     unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1371     unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1372     // For non-power-of-two values, effectively round the value up to the
1373     // nearest power of two.
1374     if (!RHSC->getValue()->getValue().isPowerOf2())
1375       ++MaxShiftAmt;
1376     const IntegerType *ExtTy =
1377       IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1378     // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1379     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1380       if (const SCEVConstant *Step =
1381             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1382         if (!Step->getValue()->getValue()
1383               .urem(RHSC->getValue()->getValue()) &&
1384             getTruncateExpr(getZeroExtendExpr(AR, ExtTy), Ty) == AR) {
1385           std::vector<SCEVHandle> Operands;
1386           for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1387             Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1388           return getAddRecExpr(Operands, AR->getLoop());
1389         }
1390     // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1391     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS))
1392       if (getTruncateExpr(getZeroExtendExpr(M, ExtTy), Ty) == M)
1393         // Find an operand that's safely divisible.
1394         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1395           SCEVHandle Op = M->getOperand(i);
1396           SCEVHandle Div = getUDivExpr(Op, RHSC);
1397           if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1398             std::vector<SCEVHandle> Operands = M->getOperands();
1399             Operands[i] = Div;
1400             return getMulExpr(Operands);
1401           }
1402         }
1403     // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1404     if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS))
1405       if (getTruncateExpr(getZeroExtendExpr(A, ExtTy), Ty) == A) {
1406         std::vector<SCEVHandle> Operands;
1407         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1408           SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1409           if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1410             break;
1411           Operands.push_back(Op);
1412         }
1413         if (Operands.size() == A->getNumOperands())
1414           return getAddExpr(Operands);
1415       }
1416 
1417     // Fold if both operands are constant.
1418     if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1419       Constant *LHSCV = LHSC->getValue();
1420       Constant *RHSCV = RHSC->getValue();
1421       return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1422     }
1423   }
1424 
1425   SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1426   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1427   return Result;
1428 }
1429 
1430 
1431 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1432 /// specified loop.  Simplify the expression as much as possible.
1433 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1434                                const SCEVHandle &Step, const Loop *L) {
1435   std::vector<SCEVHandle> Operands;
1436   Operands.push_back(Start);
1437   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1438     if (StepChrec->getLoop() == L) {
1439       Operands.insert(Operands.end(), StepChrec->op_begin(),
1440                       StepChrec->op_end());
1441       return getAddRecExpr(Operands, L);
1442     }
1443 
1444   Operands.push_back(Step);
1445   return getAddRecExpr(Operands, L);
1446 }
1447 
1448 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1449 /// specified loop.  Simplify the expression as much as possible.
1450 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1451                                           const Loop *L) {
1452   if (Operands.size() == 1) return Operands[0];
1453 
1454   if (Operands.back()->isZero()) {
1455     Operands.pop_back();
1456     return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1457   }
1458 
1459   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1460   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1461     const Loop* NestedLoop = NestedAR->getLoop();
1462     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1463       std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1464                                              NestedAR->op_end());
1465       SCEVHandle NestedARHandle(NestedAR);
1466       Operands[0] = NestedAR->getStart();
1467       NestedOperands[0] = getAddRecExpr(Operands, L);
1468       return getAddRecExpr(NestedOperands, NestedLoop);
1469     }
1470   }
1471 
1472   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1473   SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1474   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1475   return Result;
1476 }
1477 
1478 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1479                                         const SCEVHandle &RHS) {
1480   std::vector<SCEVHandle> Ops;
1481   Ops.push_back(LHS);
1482   Ops.push_back(RHS);
1483   return getSMaxExpr(Ops);
1484 }
1485 
1486 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1487   assert(!Ops.empty() && "Cannot get empty smax!");
1488   if (Ops.size() == 1) return Ops[0];
1489 
1490   // Sort by complexity, this groups all similar expression types together.
1491   GroupByComplexity(Ops, LI);
1492 
1493   // If there are any constants, fold them together.
1494   unsigned Idx = 0;
1495   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1496     ++Idx;
1497     assert(Idx < Ops.size());
1498     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1499       // We found two constants, fold them together!
1500       ConstantInt *Fold = ConstantInt::get(
1501                               APIntOps::smax(LHSC->getValue()->getValue(),
1502                                              RHSC->getValue()->getValue()));
1503       Ops[0] = getConstant(Fold);
1504       Ops.erase(Ops.begin()+1);  // Erase the folded element
1505       if (Ops.size() == 1) return Ops[0];
1506       LHSC = cast<SCEVConstant>(Ops[0]);
1507     }
1508 
1509     // If we are left with a constant -inf, strip it off.
1510     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1511       Ops.erase(Ops.begin());
1512       --Idx;
1513     }
1514   }
1515 
1516   if (Ops.size() == 1) return Ops[0];
1517 
1518   // Find the first SMax
1519   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1520     ++Idx;
1521 
1522   // Check to see if one of the operands is an SMax. If so, expand its operands
1523   // onto our operand list, and recurse to simplify.
1524   if (Idx < Ops.size()) {
1525     bool DeletedSMax = false;
1526     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1527       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1528       Ops.erase(Ops.begin()+Idx);
1529       DeletedSMax = true;
1530     }
1531 
1532     if (DeletedSMax)
1533       return getSMaxExpr(Ops);
1534   }
1535 
1536   // Okay, check to see if the same value occurs in the operand list twice.  If
1537   // so, delete one.  Since we sorted the list, these values are required to
1538   // be adjacent.
1539   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1540     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1541       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1542       --i; --e;
1543     }
1544 
1545   if (Ops.size() == 1) return Ops[0];
1546 
1547   assert(!Ops.empty() && "Reduced smax down to nothing!");
1548 
1549   // Okay, it looks like we really DO need an smax expr.  Check to see if we
1550   // already have one, otherwise create a new one.
1551   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1552   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1553                                                                  SCEVOps)];
1554   if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1555   return Result;
1556 }
1557 
1558 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1559                                         const SCEVHandle &RHS) {
1560   std::vector<SCEVHandle> Ops;
1561   Ops.push_back(LHS);
1562   Ops.push_back(RHS);
1563   return getUMaxExpr(Ops);
1564 }
1565 
1566 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1567   assert(!Ops.empty() && "Cannot get empty umax!");
1568   if (Ops.size() == 1) return Ops[0];
1569 
1570   // Sort by complexity, this groups all similar expression types together.
1571   GroupByComplexity(Ops, LI);
1572 
1573   // If there are any constants, fold them together.
1574   unsigned Idx = 0;
1575   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1576     ++Idx;
1577     assert(Idx < Ops.size());
1578     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1579       // We found two constants, fold them together!
1580       ConstantInt *Fold = ConstantInt::get(
1581                               APIntOps::umax(LHSC->getValue()->getValue(),
1582                                              RHSC->getValue()->getValue()));
1583       Ops[0] = getConstant(Fold);
1584       Ops.erase(Ops.begin()+1);  // Erase the folded element
1585       if (Ops.size() == 1) return Ops[0];
1586       LHSC = cast<SCEVConstant>(Ops[0]);
1587     }
1588 
1589     // If we are left with a constant zero, strip it off.
1590     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1591       Ops.erase(Ops.begin());
1592       --Idx;
1593     }
1594   }
1595 
1596   if (Ops.size() == 1) return Ops[0];
1597 
1598   // Find the first UMax
1599   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1600     ++Idx;
1601 
1602   // Check to see if one of the operands is a UMax. If so, expand its operands
1603   // onto our operand list, and recurse to simplify.
1604   if (Idx < Ops.size()) {
1605     bool DeletedUMax = false;
1606     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1607       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1608       Ops.erase(Ops.begin()+Idx);
1609       DeletedUMax = true;
1610     }
1611 
1612     if (DeletedUMax)
1613       return getUMaxExpr(Ops);
1614   }
1615 
1616   // Okay, check to see if the same value occurs in the operand list twice.  If
1617   // so, delete one.  Since we sorted the list, these values are required to
1618   // be adjacent.
1619   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1620     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1621       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1622       --i; --e;
1623     }
1624 
1625   if (Ops.size() == 1) return Ops[0];
1626 
1627   assert(!Ops.empty() && "Reduced umax down to nothing!");
1628 
1629   // Okay, it looks like we really DO need a umax expr.  Check to see if we
1630   // already have one, otherwise create a new one.
1631   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1632   SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1633                                                                  SCEVOps)];
1634   if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1635   return Result;
1636 }
1637 
1638 SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1639   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1640     return getConstant(CI);
1641   if (isa<ConstantPointerNull>(V))
1642     return getIntegerSCEV(0, V->getType());
1643   SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1644   if (Result == 0) Result = new SCEVUnknown(V);
1645   return Result;
1646 }
1647 
1648 //===----------------------------------------------------------------------===//
1649 //            Basic SCEV Analysis and PHI Idiom Recognition Code
1650 //
1651 
1652 /// isSCEVable - Test if values of the given type are analyzable within
1653 /// the SCEV framework. This primarily includes integer types, and it
1654 /// can optionally include pointer types if the ScalarEvolution class
1655 /// has access to target-specific information.
1656 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1657   // Integers are always SCEVable.
1658   if (Ty->isInteger())
1659     return true;
1660 
1661   // Pointers are SCEVable if TargetData information is available
1662   // to provide pointer size information.
1663   if (isa<PointerType>(Ty))
1664     return TD != NULL;
1665 
1666   // Otherwise it's not SCEVable.
1667   return false;
1668 }
1669 
1670 /// getTypeSizeInBits - Return the size in bits of the specified type,
1671 /// for which isSCEVable must return true.
1672 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1673   assert(isSCEVable(Ty) && "Type is not SCEVable!");
1674 
1675   // If we have a TargetData, use it!
1676   if (TD)
1677     return TD->getTypeSizeInBits(Ty);
1678 
1679   // Otherwise, we support only integer types.
1680   assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1681   return Ty->getPrimitiveSizeInBits();
1682 }
1683 
1684 /// getEffectiveSCEVType - Return a type with the same bitwidth as
1685 /// the given type and which represents how SCEV will treat the given
1686 /// type, for which isSCEVable must return true. For pointer types,
1687 /// this is the pointer-sized integer type.
1688 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1689   assert(isSCEVable(Ty) && "Type is not SCEVable!");
1690 
1691   if (Ty->isInteger())
1692     return Ty;
1693 
1694   assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1695   return TD->getIntPtrType();
1696 }
1697 
1698 SCEVHandle ScalarEvolution::getCouldNotCompute() {
1699   return UnknownValue;
1700 }
1701 
1702 /// hasSCEV - Return true if the SCEV for this value has already been
1703 /// computed.
1704 bool ScalarEvolution::hasSCEV(Value *V) const {
1705   return Scalars.count(V);
1706 }
1707 
1708 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1709 /// expression and create a new one.
1710 SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1711   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1712 
1713   std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1714   if (I != Scalars.end()) return I->second;
1715   SCEVHandle S = createSCEV(V);
1716   Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1717   return S;
1718 }
1719 
1720 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1721 /// specified signed integer value and return a SCEV for the constant.
1722 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1723   Ty = getEffectiveSCEVType(Ty);
1724   Constant *C;
1725   if (Val == 0)
1726     C = Constant::getNullValue(Ty);
1727   else if (Ty->isFloatingPoint())
1728     C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1729                                 APFloat::IEEEdouble, Val));
1730   else
1731     C = ConstantInt::get(Ty, Val);
1732   return getUnknown(C);
1733 }
1734 
1735 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1736 ///
1737 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1738   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1739     return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1740 
1741   const Type *Ty = V->getType();
1742   Ty = getEffectiveSCEVType(Ty);
1743   return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1744 }
1745 
1746 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1747 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1748   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1749     return getUnknown(ConstantExpr::getNot(VC->getValue()));
1750 
1751   const Type *Ty = V->getType();
1752   Ty = getEffectiveSCEVType(Ty);
1753   SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1754   return getMinusSCEV(AllOnes, V);
1755 }
1756 
1757 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1758 ///
1759 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1760                                          const SCEVHandle &RHS) {
1761   // X - Y --> X + -Y
1762   return getAddExpr(LHS, getNegativeSCEV(RHS));
1763 }
1764 
1765 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1766 /// input value to the specified type.  If the type must be extended, it is zero
1767 /// extended.
1768 SCEVHandle
1769 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1770                                          const Type *Ty) {
1771   const Type *SrcTy = V->getType();
1772   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1773          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1774          "Cannot truncate or zero extend with non-integer arguments!");
1775   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1776     return V;  // No conversion
1777   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1778     return getTruncateExpr(V, Ty);
1779   return getZeroExtendExpr(V, Ty);
1780 }
1781 
1782 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1783 /// input value to the specified type.  If the type must be extended, it is sign
1784 /// extended.
1785 SCEVHandle
1786 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1787                                          const Type *Ty) {
1788   const Type *SrcTy = V->getType();
1789   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1790          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1791          "Cannot truncate or zero extend with non-integer arguments!");
1792   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1793     return V;  // No conversion
1794   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1795     return getTruncateExpr(V, Ty);
1796   return getSignExtendExpr(V, Ty);
1797 }
1798 
1799 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1800 /// the specified instruction and replaces any references to the symbolic value
1801 /// SymName with the specified value.  This is used during PHI resolution.
1802 void ScalarEvolution::
1803 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1804                                  const SCEVHandle &NewVal) {
1805   std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1806     Scalars.find(SCEVCallbackVH(I, this));
1807   if (SI == Scalars.end()) return;
1808 
1809   SCEVHandle NV =
1810     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1811   if (NV == SI->second) return;  // No change.
1812 
1813   SI->second = NV;       // Update the scalars map!
1814 
1815   // Any instruction values that use this instruction might also need to be
1816   // updated!
1817   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1818        UI != E; ++UI)
1819     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1820 }
1821 
1822 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1823 /// a loop header, making it a potential recurrence, or it doesn't.
1824 ///
1825 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1826   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1827     if (const Loop *L = LI->getLoopFor(PN->getParent()))
1828       if (L->getHeader() == PN->getParent()) {
1829         // If it lives in the loop header, it has two incoming values, one
1830         // from outside the loop, and one from inside.
1831         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1832         unsigned BackEdge     = IncomingEdge^1;
1833 
1834         // While we are analyzing this PHI node, handle its value symbolically.
1835         SCEVHandle SymbolicName = getUnknown(PN);
1836         assert(Scalars.find(PN) == Scalars.end() &&
1837                "PHI node already processed?");
1838         Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1839 
1840         // Using this symbolic name for the PHI, analyze the value coming around
1841         // the back-edge.
1842         SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1843 
1844         // NOTE: If BEValue is loop invariant, we know that the PHI node just
1845         // has a special value for the first iteration of the loop.
1846 
1847         // If the value coming around the backedge is an add with the symbolic
1848         // value we just inserted, then we found a simple induction variable!
1849         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1850           // If there is a single occurrence of the symbolic value, replace it
1851           // with a recurrence.
1852           unsigned FoundIndex = Add->getNumOperands();
1853           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1854             if (Add->getOperand(i) == SymbolicName)
1855               if (FoundIndex == e) {
1856                 FoundIndex = i;
1857                 break;
1858               }
1859 
1860           if (FoundIndex != Add->getNumOperands()) {
1861             // Create an add with everything but the specified operand.
1862             std::vector<SCEVHandle> Ops;
1863             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1864               if (i != FoundIndex)
1865                 Ops.push_back(Add->getOperand(i));
1866             SCEVHandle Accum = getAddExpr(Ops);
1867 
1868             // This is not a valid addrec if the step amount is varying each
1869             // loop iteration, but is not itself an addrec in this loop.
1870             if (Accum->isLoopInvariant(L) ||
1871                 (isa<SCEVAddRecExpr>(Accum) &&
1872                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1873               SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1874               SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1875 
1876               // Okay, for the entire analysis of this edge we assumed the PHI
1877               // to be symbolic.  We now need to go back and update all of the
1878               // entries for the scalars that use the PHI (except for the PHI
1879               // itself) to use the new analyzed value instead of the "symbolic"
1880               // value.
1881               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1882               return PHISCEV;
1883             }
1884           }
1885         } else if (const SCEVAddRecExpr *AddRec =
1886                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
1887           // Otherwise, this could be a loop like this:
1888           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1889           // In this case, j = {1,+,1}  and BEValue is j.
1890           // Because the other in-value of i (0) fits the evolution of BEValue
1891           // i really is an addrec evolution.
1892           if (AddRec->getLoop() == L && AddRec->isAffine()) {
1893             SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1894 
1895             // If StartVal = j.start - j.stride, we can use StartVal as the
1896             // initial step of the addrec evolution.
1897             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1898                                             AddRec->getOperand(1))) {
1899               SCEVHandle PHISCEV =
1900                  getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1901 
1902               // Okay, for the entire analysis of this edge we assumed the PHI
1903               // to be symbolic.  We now need to go back and update all of the
1904               // entries for the scalars that use the PHI (except for the PHI
1905               // itself) to use the new analyzed value instead of the "symbolic"
1906               // value.
1907               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1908               return PHISCEV;
1909             }
1910           }
1911         }
1912 
1913         return SymbolicName;
1914       }
1915 
1916   // If it's not a loop phi, we can't handle it yet.
1917   return getUnknown(PN);
1918 }
1919 
1920 /// createNodeForGEP - Expand GEP instructions into add and multiply
1921 /// operations. This allows them to be analyzed by regular SCEV code.
1922 ///
1923 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
1924 
1925   const Type *IntPtrTy = TD->getIntPtrType();
1926   Value *Base = GEP->getOperand(0);
1927   SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1928   gep_type_iterator GTI = gep_type_begin(GEP);
1929   for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
1930                                       E = GEP->op_end();
1931        I != E; ++I) {
1932     Value *Index = *I;
1933     // Compute the (potentially symbolic) offset in bytes for this index.
1934     if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1935       // For a struct, add the member offset.
1936       const StructLayout &SL = *TD->getStructLayout(STy);
1937       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1938       uint64_t Offset = SL.getElementOffset(FieldNo);
1939       TotalOffset = getAddExpr(TotalOffset,
1940                                   getIntegerSCEV(Offset, IntPtrTy));
1941     } else {
1942       // For an array, add the element offset, explicitly scaled.
1943       SCEVHandle LocalOffset = getSCEV(Index);
1944       if (!isa<PointerType>(LocalOffset->getType()))
1945         // Getelementptr indicies are signed.
1946         LocalOffset = getTruncateOrSignExtend(LocalOffset,
1947                                               IntPtrTy);
1948       LocalOffset =
1949         getMulExpr(LocalOffset,
1950                    getIntegerSCEV(TD->getTypePaddedSize(*GTI),
1951                                   IntPtrTy));
1952       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
1953     }
1954   }
1955   return getAddExpr(getSCEV(Base), TotalOffset);
1956 }
1957 
1958 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1959 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
1960 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1961 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1962 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1963   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1964     return C->getValue()->getValue().countTrailingZeros();
1965 
1966   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1967     return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1968                     (uint32_t)SE.getTypeSizeInBits(T->getType()));
1969 
1970   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1971     uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1972     return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1973              SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1974   }
1975 
1976   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1977     uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1978     return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1979              SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1980   }
1981 
1982   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1983     // The result is the min of all operands results.
1984     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1985     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1986       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1987     return MinOpRes;
1988   }
1989 
1990   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1991     // The result is the sum of all operands results.
1992     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1993     uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1994     for (unsigned i = 1, e = M->getNumOperands();
1995          SumOpRes != BitWidth && i != e; ++i)
1996       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1997                           BitWidth);
1998     return SumOpRes;
1999   }
2000 
2001   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2002     // The result is the min of all operands results.
2003     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
2004     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2005       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
2006     return MinOpRes;
2007   }
2008 
2009   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2010     // The result is the min of all operands results.
2011     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2012     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2013       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2014     return MinOpRes;
2015   }
2016 
2017   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2018     // The result is the min of all operands results.
2019     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2020     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2021       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
2022     return MinOpRes;
2023   }
2024 
2025   // SCEVUDivExpr, SCEVUnknown
2026   return 0;
2027 }
2028 
2029 /// createSCEV - We know that there is no SCEV for the specified value.
2030 /// Analyze the expression.
2031 ///
2032 SCEVHandle ScalarEvolution::createSCEV(Value *V) {
2033   if (!isSCEVable(V->getType()))
2034     return getUnknown(V);
2035 
2036   unsigned Opcode = Instruction::UserOp1;
2037   if (Instruction *I = dyn_cast<Instruction>(V))
2038     Opcode = I->getOpcode();
2039   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2040     Opcode = CE->getOpcode();
2041   else
2042     return getUnknown(V);
2043 
2044   User *U = cast<User>(V);
2045   switch (Opcode) {
2046   case Instruction::Add:
2047     return getAddExpr(getSCEV(U->getOperand(0)),
2048                       getSCEV(U->getOperand(1)));
2049   case Instruction::Mul:
2050     return getMulExpr(getSCEV(U->getOperand(0)),
2051                       getSCEV(U->getOperand(1)));
2052   case Instruction::UDiv:
2053     return getUDivExpr(getSCEV(U->getOperand(0)),
2054                        getSCEV(U->getOperand(1)));
2055   case Instruction::Sub:
2056     return getMinusSCEV(getSCEV(U->getOperand(0)),
2057                         getSCEV(U->getOperand(1)));
2058   case Instruction::And:
2059     // For an expression like x&255 that merely masks off the high bits,
2060     // use zext(trunc(x)) as the SCEV expression.
2061     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2062       if (CI->isNullValue())
2063         return getSCEV(U->getOperand(1));
2064       if (CI->isAllOnesValue())
2065         return getSCEV(U->getOperand(0));
2066       const APInt &A = CI->getValue();
2067       unsigned Ones = A.countTrailingOnes();
2068       if (APIntOps::isMask(Ones, A))
2069         return
2070           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2071                                             IntegerType::get(Ones)),
2072                             U->getType());
2073     }
2074     break;
2075   case Instruction::Or:
2076     // If the RHS of the Or is a constant, we may have something like:
2077     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2078     // optimizations will transparently handle this case.
2079     //
2080     // In order for this transformation to be safe, the LHS must be of the
2081     // form X*(2^n) and the Or constant must be less than 2^n.
2082     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2083       SCEVHandle LHS = getSCEV(U->getOperand(0));
2084       const APInt &CIVal = CI->getValue();
2085       if (GetMinTrailingZeros(LHS, *this) >=
2086           (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2087         return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2088     }
2089     break;
2090   case Instruction::Xor:
2091     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2092       // If the RHS of the xor is a signbit, then this is just an add.
2093       // Instcombine turns add of signbit into xor as a strength reduction step.
2094       if (CI->getValue().isSignBit())
2095         return getAddExpr(getSCEV(U->getOperand(0)),
2096                           getSCEV(U->getOperand(1)));
2097 
2098       // If the RHS of xor is -1, then this is a not operation.
2099       else if (CI->isAllOnesValue())
2100         return getNotSCEV(getSCEV(U->getOperand(0)));
2101     }
2102     break;
2103 
2104   case Instruction::Shl:
2105     // Turn shift left of a constant amount into a multiply.
2106     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2107       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2108       Constant *X = ConstantInt::get(
2109         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2110       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2111     }
2112     break;
2113 
2114   case Instruction::LShr:
2115     // Turn logical shift right of a constant into a unsigned divide.
2116     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2117       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2118       Constant *X = ConstantInt::get(
2119         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2120       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2121     }
2122     break;
2123 
2124   case Instruction::AShr:
2125     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2126     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2127       if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2128         if (L->getOpcode() == Instruction::Shl &&
2129             L->getOperand(1) == U->getOperand(1)) {
2130           unsigned BitWidth = getTypeSizeInBits(U->getType());
2131           uint64_t Amt = BitWidth - CI->getZExtValue();
2132           if (Amt == BitWidth)
2133             return getSCEV(L->getOperand(0));       // shift by zero --> noop
2134           if (Amt > BitWidth)
2135             return getIntegerSCEV(0, U->getType()); // value is undefined
2136           return
2137             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2138                                                       IntegerType::get(Amt)),
2139                                  U->getType());
2140         }
2141     break;
2142 
2143   case Instruction::Trunc:
2144     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2145 
2146   case Instruction::ZExt:
2147     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2148 
2149   case Instruction::SExt:
2150     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2151 
2152   case Instruction::BitCast:
2153     // BitCasts are no-op casts so we just eliminate the cast.
2154     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2155       return getSCEV(U->getOperand(0));
2156     break;
2157 
2158   case Instruction::IntToPtr:
2159     if (!TD) break; // Without TD we can't analyze pointers.
2160     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2161                                    TD->getIntPtrType());
2162 
2163   case Instruction::PtrToInt:
2164     if (!TD) break; // Without TD we can't analyze pointers.
2165     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2166                                    U->getType());
2167 
2168   case Instruction::GetElementPtr:
2169     if (!TD) break; // Without TD we can't analyze pointers.
2170     return createNodeForGEP(U);
2171 
2172   case Instruction::PHI:
2173     return createNodeForPHI(cast<PHINode>(U));
2174 
2175   case Instruction::Select:
2176     // This could be a smax or umax that was lowered earlier.
2177     // Try to recover it.
2178     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2179       Value *LHS = ICI->getOperand(0);
2180       Value *RHS = ICI->getOperand(1);
2181       switch (ICI->getPredicate()) {
2182       case ICmpInst::ICMP_SLT:
2183       case ICmpInst::ICMP_SLE:
2184         std::swap(LHS, RHS);
2185         // fall through
2186       case ICmpInst::ICMP_SGT:
2187       case ICmpInst::ICMP_SGE:
2188         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2189           return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2190         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2191           // ~smax(~x, ~y) == smin(x, y).
2192           return getNotSCEV(getSMaxExpr(
2193                                    getNotSCEV(getSCEV(LHS)),
2194                                    getNotSCEV(getSCEV(RHS))));
2195         break;
2196       case ICmpInst::ICMP_ULT:
2197       case ICmpInst::ICMP_ULE:
2198         std::swap(LHS, RHS);
2199         // fall through
2200       case ICmpInst::ICMP_UGT:
2201       case ICmpInst::ICMP_UGE:
2202         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2203           return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2204         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2205           // ~umax(~x, ~y) == umin(x, y)
2206           return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2207                                         getNotSCEV(getSCEV(RHS))));
2208         break;
2209       default:
2210         break;
2211       }
2212     }
2213 
2214   default: // We cannot analyze this expression.
2215     break;
2216   }
2217 
2218   return getUnknown(V);
2219 }
2220 
2221 
2222 
2223 //===----------------------------------------------------------------------===//
2224 //                   Iteration Count Computation Code
2225 //
2226 
2227 /// getBackedgeTakenCount - If the specified loop has a predictable
2228 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2229 /// object. The backedge-taken count is the number of times the loop header
2230 /// will be branched to from within the loop. This is one less than the
2231 /// trip count of the loop, since it doesn't count the first iteration,
2232 /// when the header is branched to from outside the loop.
2233 ///
2234 /// Note that it is not valid to call this method on a loop without a
2235 /// loop-invariant backedge-taken count (see
2236 /// hasLoopInvariantBackedgeTakenCount).
2237 ///
2238 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2239   return getBackedgeTakenInfo(L).Exact;
2240 }
2241 
2242 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2243 /// return the least SCEV value that is known never to be less than the
2244 /// actual backedge taken count.
2245 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2246   return getBackedgeTakenInfo(L).Max;
2247 }
2248 
2249 const ScalarEvolution::BackedgeTakenInfo &
2250 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2251   // Initially insert a CouldNotCompute for this loop. If the insertion
2252   // succeeds, procede to actually compute a backedge-taken count and
2253   // update the value. The temporary CouldNotCompute value tells SCEV
2254   // code elsewhere that it shouldn't attempt to request a new
2255   // backedge-taken count, which could result in infinite recursion.
2256   std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2257     BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2258   if (Pair.second) {
2259     BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2260     if (ItCount.Exact != UnknownValue) {
2261       assert(ItCount.Exact->isLoopInvariant(L) &&
2262              ItCount.Max->isLoopInvariant(L) &&
2263              "Computed trip count isn't loop invariant for loop!");
2264       ++NumTripCountsComputed;
2265 
2266       // Update the value in the map.
2267       Pair.first->second = ItCount;
2268     } else if (isa<PHINode>(L->getHeader()->begin())) {
2269       // Only count loops that have phi nodes as not being computable.
2270       ++NumTripCountsNotComputed;
2271     }
2272 
2273     // Now that we know more about the trip count for this loop, forget any
2274     // existing SCEV values for PHI nodes in this loop since they are only
2275     // conservative estimates made without the benefit
2276     // of trip count information.
2277     if (ItCount.hasAnyInfo())
2278       forgetLoopPHIs(L);
2279   }
2280   return Pair.first->second;
2281 }
2282 
2283 /// forgetLoopBackedgeTakenCount - This method should be called by the
2284 /// client when it has changed a loop in a way that may effect
2285 /// ScalarEvolution's ability to compute a trip count, or if the loop
2286 /// is deleted.
2287 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2288   BackedgeTakenCounts.erase(L);
2289   forgetLoopPHIs(L);
2290 }
2291 
2292 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2293 /// PHI nodes in the given loop. This is used when the trip count of
2294 /// the loop may have changed.
2295 void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2296   BasicBlock *Header = L->getHeader();
2297 
2298   SmallVector<Instruction *, 16> Worklist;
2299   for (BasicBlock::iterator I = Header->begin();
2300        PHINode *PN = dyn_cast<PHINode>(I); ++I)
2301     Worklist.push_back(PN);
2302 
2303   while (!Worklist.empty()) {
2304     Instruction *I = Worklist.pop_back_val();
2305     if (Scalars.erase(I))
2306       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2307            UI != UE; ++UI)
2308         Worklist.push_back(cast<Instruction>(UI));
2309   }
2310 }
2311 
2312 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2313 /// of the specified loop will execute.
2314 ScalarEvolution::BackedgeTakenInfo
2315 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2316   // If the loop has a non-one exit block count, we can't analyze it.
2317   SmallVector<BasicBlock*, 8> ExitBlocks;
2318   L->getExitBlocks(ExitBlocks);
2319   if (ExitBlocks.size() != 1) return UnknownValue;
2320 
2321   // Okay, there is one exit block.  Try to find the condition that causes the
2322   // loop to be exited.
2323   BasicBlock *ExitBlock = ExitBlocks[0];
2324 
2325   BasicBlock *ExitingBlock = 0;
2326   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2327        PI != E; ++PI)
2328     if (L->contains(*PI)) {
2329       if (ExitingBlock == 0)
2330         ExitingBlock = *PI;
2331       else
2332         return UnknownValue;   // More than one block exiting!
2333     }
2334   assert(ExitingBlock && "No exits from loop, something is broken!");
2335 
2336   // Okay, we've computed the exiting block.  See what condition causes us to
2337   // exit.
2338   //
2339   // FIXME: we should be able to handle switch instructions (with a single exit)
2340   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2341   if (ExitBr == 0) return UnknownValue;
2342   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2343 
2344   // At this point, we know we have a conditional branch that determines whether
2345   // the loop is exited.  However, we don't know if the branch is executed each
2346   // time through the loop.  If not, then the execution count of the branch will
2347   // not be equal to the trip count of the loop.
2348   //
2349   // Currently we check for this by checking to see if the Exit branch goes to
2350   // the loop header.  If so, we know it will always execute the same number of
2351   // times as the loop.  We also handle the case where the exit block *is* the
2352   // loop header.  This is common for un-rotated loops.  More extensive analysis
2353   // could be done to handle more cases here.
2354   if (ExitBr->getSuccessor(0) != L->getHeader() &&
2355       ExitBr->getSuccessor(1) != L->getHeader() &&
2356       ExitBr->getParent() != L->getHeader())
2357     return UnknownValue;
2358 
2359   ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2360 
2361   // If it's not an integer comparison then compute it the hard way.
2362   // Note that ICmpInst deals with pointer comparisons too so we must check
2363   // the type of the operand.
2364   if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2365     return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2366                                           ExitBr->getSuccessor(0) == ExitBlock);
2367 
2368   // If the condition was exit on true, convert the condition to exit on false
2369   ICmpInst::Predicate Cond;
2370   if (ExitBr->getSuccessor(1) == ExitBlock)
2371     Cond = ExitCond->getPredicate();
2372   else
2373     Cond = ExitCond->getInversePredicate();
2374 
2375   // Handle common loops like: for (X = "string"; *X; ++X)
2376   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2377     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2378       SCEVHandle ItCnt =
2379         ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2380       if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2381     }
2382 
2383   SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2384   SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2385 
2386   // Try to evaluate any dependencies out of the loop.
2387   SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2388   if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2389   Tmp = getSCEVAtScope(RHS, L);
2390   if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2391 
2392   // At this point, we would like to compute how many iterations of the
2393   // loop the predicate will return true for these inputs.
2394   if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2395     // If there is a loop-invariant, force it into the RHS.
2396     std::swap(LHS, RHS);
2397     Cond = ICmpInst::getSwappedPredicate(Cond);
2398   }
2399 
2400   // If we have a comparison of a chrec against a constant, try to use value
2401   // ranges to answer this query.
2402   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2403     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2404       if (AddRec->getLoop() == L) {
2405         // Form the comparison range using the constant of the correct type so
2406         // that the ConstantRange class knows to do a signed or unsigned
2407         // comparison.
2408         ConstantInt *CompVal = RHSC->getValue();
2409         const Type *RealTy = ExitCond->getOperand(0)->getType();
2410         CompVal = dyn_cast<ConstantInt>(
2411           ConstantExpr::getBitCast(CompVal, RealTy));
2412         if (CompVal) {
2413           // Form the constant range.
2414           ConstantRange CompRange(
2415               ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2416 
2417           SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2418           if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2419         }
2420       }
2421 
2422   switch (Cond) {
2423   case ICmpInst::ICMP_NE: {                     // while (X != Y)
2424     // Convert to: while (X-Y != 0)
2425     SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2426     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2427     break;
2428   }
2429   case ICmpInst::ICMP_EQ: {
2430     // Convert to: while (X-Y == 0)           // while (X == Y)
2431     SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2432     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2433     break;
2434   }
2435   case ICmpInst::ICMP_SLT: {
2436     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2437     if (BTI.hasAnyInfo()) return BTI;
2438     break;
2439   }
2440   case ICmpInst::ICMP_SGT: {
2441     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2442                                              getNotSCEV(RHS), L, true);
2443     if (BTI.hasAnyInfo()) return BTI;
2444     break;
2445   }
2446   case ICmpInst::ICMP_ULT: {
2447     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2448     if (BTI.hasAnyInfo()) return BTI;
2449     break;
2450   }
2451   case ICmpInst::ICMP_UGT: {
2452     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2453                                              getNotSCEV(RHS), L, false);
2454     if (BTI.hasAnyInfo()) return BTI;
2455     break;
2456   }
2457   default:
2458 #if 0
2459     errs() << "ComputeBackedgeTakenCount ";
2460     if (ExitCond->getOperand(0)->getType()->isUnsigned())
2461       errs() << "[unsigned] ";
2462     errs() << *LHS << "   "
2463          << Instruction::getOpcodeName(Instruction::ICmp)
2464          << "   " << *RHS << "\n";
2465 #endif
2466     break;
2467   }
2468   return
2469     ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2470                                           ExitBr->getSuccessor(0) == ExitBlock);
2471 }
2472 
2473 static ConstantInt *
2474 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2475                                 ScalarEvolution &SE) {
2476   SCEVHandle InVal = SE.getConstant(C);
2477   SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2478   assert(isa<SCEVConstant>(Val) &&
2479          "Evaluation of SCEV at constant didn't fold correctly?");
2480   return cast<SCEVConstant>(Val)->getValue();
2481 }
2482 
2483 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
2484 /// and a GEP expression (missing the pointer index) indexing into it, return
2485 /// the addressed element of the initializer or null if the index expression is
2486 /// invalid.
2487 static Constant *
2488 GetAddressedElementFromGlobal(GlobalVariable *GV,
2489                               const std::vector<ConstantInt*> &Indices) {
2490   Constant *Init = GV->getInitializer();
2491   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2492     uint64_t Idx = Indices[i]->getZExtValue();
2493     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2494       assert(Idx < CS->getNumOperands() && "Bad struct index!");
2495       Init = cast<Constant>(CS->getOperand(Idx));
2496     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2497       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2498       Init = cast<Constant>(CA->getOperand(Idx));
2499     } else if (isa<ConstantAggregateZero>(Init)) {
2500       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2501         assert(Idx < STy->getNumElements() && "Bad struct index!");
2502         Init = Constant::getNullValue(STy->getElementType(Idx));
2503       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2504         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2505         Init = Constant::getNullValue(ATy->getElementType());
2506       } else {
2507         assert(0 && "Unknown constant aggregate type!");
2508       }
2509       return 0;
2510     } else {
2511       return 0; // Unknown initializer type
2512     }
2513   }
2514   return Init;
2515 }
2516 
2517 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2518 /// 'icmp op load X, cst', try to see if we can compute the backedge
2519 /// execution count.
2520 SCEVHandle ScalarEvolution::
2521 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2522                                              const Loop *L,
2523                                              ICmpInst::Predicate predicate) {
2524   if (LI->isVolatile()) return UnknownValue;
2525 
2526   // Check to see if the loaded pointer is a getelementptr of a global.
2527   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2528   if (!GEP) return UnknownValue;
2529 
2530   // Make sure that it is really a constant global we are gepping, with an
2531   // initializer, and make sure the first IDX is really 0.
2532   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2533   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2534       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2535       !cast<Constant>(GEP->getOperand(1))->isNullValue())
2536     return UnknownValue;
2537 
2538   // Okay, we allow one non-constant index into the GEP instruction.
2539   Value *VarIdx = 0;
2540   std::vector<ConstantInt*> Indexes;
2541   unsigned VarIdxNum = 0;
2542   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2543     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2544       Indexes.push_back(CI);
2545     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2546       if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2547       VarIdx = GEP->getOperand(i);
2548       VarIdxNum = i-2;
2549       Indexes.push_back(0);
2550     }
2551 
2552   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2553   // Check to see if X is a loop variant variable value now.
2554   SCEVHandle Idx = getSCEV(VarIdx);
2555   SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2556   if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2557 
2558   // We can only recognize very limited forms of loop index expressions, in
2559   // particular, only affine AddRec's like {C1,+,C2}.
2560   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2561   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2562       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2563       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2564     return UnknownValue;
2565 
2566   unsigned MaxSteps = MaxBruteForceIterations;
2567   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2568     ConstantInt *ItCst =
2569       ConstantInt::get(IdxExpr->getType(), IterationNum);
2570     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2571 
2572     // Form the GEP offset.
2573     Indexes[VarIdxNum] = Val;
2574 
2575     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2576     if (Result == 0) break;  // Cannot compute!
2577 
2578     // Evaluate the condition for this iteration.
2579     Result = ConstantExpr::getICmp(predicate, Result, RHS);
2580     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2581     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2582 #if 0
2583       errs() << "\n***\n*** Computed loop count " << *ItCst
2584              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2585              << "***\n";
2586 #endif
2587       ++NumArrayLenItCounts;
2588       return getConstant(ItCst);   // Found terminating iteration!
2589     }
2590   }
2591   return UnknownValue;
2592 }
2593 
2594 
2595 /// CanConstantFold - Return true if we can constant fold an instruction of the
2596 /// specified type, assuming that all operands were constants.
2597 static bool CanConstantFold(const Instruction *I) {
2598   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2599       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2600     return true;
2601 
2602   if (const CallInst *CI = dyn_cast<CallInst>(I))
2603     if (const Function *F = CI->getCalledFunction())
2604       return canConstantFoldCallTo(F);
2605   return false;
2606 }
2607 
2608 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2609 /// in the loop that V is derived from.  We allow arbitrary operations along the
2610 /// way, but the operands of an operation must either be constants or a value
2611 /// derived from a constant PHI.  If this expression does not fit with these
2612 /// constraints, return null.
2613 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2614   // If this is not an instruction, or if this is an instruction outside of the
2615   // loop, it can't be derived from a loop PHI.
2616   Instruction *I = dyn_cast<Instruction>(V);
2617   if (I == 0 || !L->contains(I->getParent())) return 0;
2618 
2619   if (PHINode *PN = dyn_cast<PHINode>(I)) {
2620     if (L->getHeader() == I->getParent())
2621       return PN;
2622     else
2623       // We don't currently keep track of the control flow needed to evaluate
2624       // PHIs, so we cannot handle PHIs inside of loops.
2625       return 0;
2626   }
2627 
2628   // If we won't be able to constant fold this expression even if the operands
2629   // are constants, return early.
2630   if (!CanConstantFold(I)) return 0;
2631 
2632   // Otherwise, we can evaluate this instruction if all of its operands are
2633   // constant or derived from a PHI node themselves.
2634   PHINode *PHI = 0;
2635   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2636     if (!(isa<Constant>(I->getOperand(Op)) ||
2637           isa<GlobalValue>(I->getOperand(Op)))) {
2638       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2639       if (P == 0) return 0;  // Not evolving from PHI
2640       if (PHI == 0)
2641         PHI = P;
2642       else if (PHI != P)
2643         return 0;  // Evolving from multiple different PHIs.
2644     }
2645 
2646   // This is a expression evolving from a constant PHI!
2647   return PHI;
2648 }
2649 
2650 /// EvaluateExpression - Given an expression that passes the
2651 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2652 /// in the loop has the value PHIVal.  If we can't fold this expression for some
2653 /// reason, return null.
2654 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2655   if (isa<PHINode>(V)) return PHIVal;
2656   if (Constant *C = dyn_cast<Constant>(V)) return C;
2657   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2658   Instruction *I = cast<Instruction>(V);
2659 
2660   std::vector<Constant*> Operands;
2661   Operands.resize(I->getNumOperands());
2662 
2663   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2664     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2665     if (Operands[i] == 0) return 0;
2666   }
2667 
2668   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2669     return ConstantFoldCompareInstOperands(CI->getPredicate(),
2670                                            &Operands[0], Operands.size());
2671   else
2672     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2673                                     &Operands[0], Operands.size());
2674 }
2675 
2676 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2677 /// in the header of its containing loop, we know the loop executes a
2678 /// constant number of times, and the PHI node is just a recurrence
2679 /// involving constants, fold it.
2680 Constant *ScalarEvolution::
2681 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2682   std::map<PHINode*, Constant*>::iterator I =
2683     ConstantEvolutionLoopExitValue.find(PN);
2684   if (I != ConstantEvolutionLoopExitValue.end())
2685     return I->second;
2686 
2687   if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2688     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2689 
2690   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2691 
2692   // Since the loop is canonicalized, the PHI node must have two entries.  One
2693   // entry must be a constant (coming in from outside of the loop), and the
2694   // second must be derived from the same PHI.
2695   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2696   Constant *StartCST =
2697     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2698   if (StartCST == 0)
2699     return RetVal = 0;  // Must be a constant.
2700 
2701   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2702   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2703   if (PN2 != PN)
2704     return RetVal = 0;  // Not derived from same PHI.
2705 
2706   // Execute the loop symbolically to determine the exit value.
2707   if (BEs.getActiveBits() >= 32)
2708     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2709 
2710   unsigned NumIterations = BEs.getZExtValue(); // must be in range
2711   unsigned IterationNum = 0;
2712   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2713     if (IterationNum == NumIterations)
2714       return RetVal = PHIVal;  // Got exit value!
2715 
2716     // Compute the value of the PHI node for the next iteration.
2717     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2718     if (NextPHI == PHIVal)
2719       return RetVal = NextPHI;  // Stopped evolving!
2720     if (NextPHI == 0)
2721       return 0;        // Couldn't evaluate!
2722     PHIVal = NextPHI;
2723   }
2724 }
2725 
2726 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2727 /// constant number of times (the condition evolves only from constants),
2728 /// try to evaluate a few iterations of the loop until we get the exit
2729 /// condition gets a value of ExitWhen (true or false).  If we cannot
2730 /// evaluate the trip count of the loop, return UnknownValue.
2731 SCEVHandle ScalarEvolution::
2732 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2733   PHINode *PN = getConstantEvolvingPHI(Cond, L);
2734   if (PN == 0) return UnknownValue;
2735 
2736   // Since the loop is canonicalized, the PHI node must have two entries.  One
2737   // entry must be a constant (coming in from outside of the loop), and the
2738   // second must be derived from the same PHI.
2739   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2740   Constant *StartCST =
2741     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2742   if (StartCST == 0) return UnknownValue;  // Must be a constant.
2743 
2744   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2745   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2746   if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2747 
2748   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2749   // the loop symbolically to determine when the condition gets a value of
2750   // "ExitWhen".
2751   unsigned IterationNum = 0;
2752   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2753   for (Constant *PHIVal = StartCST;
2754        IterationNum != MaxIterations; ++IterationNum) {
2755     ConstantInt *CondVal =
2756       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2757 
2758     // Couldn't symbolically evaluate.
2759     if (!CondVal) return UnknownValue;
2760 
2761     if (CondVal->getValue() == uint64_t(ExitWhen)) {
2762       ConstantEvolutionLoopExitValue[PN] = PHIVal;
2763       ++NumBruteForceTripCountsComputed;
2764       return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2765     }
2766 
2767     // Compute the value of the PHI node for the next iteration.
2768     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2769     if (NextPHI == 0 || NextPHI == PHIVal)
2770       return UnknownValue;  // Couldn't evaluate or not making progress...
2771     PHIVal = NextPHI;
2772   }
2773 
2774   // Too many iterations were needed to evaluate.
2775   return UnknownValue;
2776 }
2777 
2778 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
2779 /// at the specified scope in the program.  The L value specifies a loop
2780 /// nest to evaluate the expression at, where null is the top-level or a
2781 /// specified loop is immediately inside of the loop.
2782 ///
2783 /// This method can be used to compute the exit value for a variable defined
2784 /// in a loop by querying what the value will hold in the parent loop.
2785 ///
2786 /// If this value is not computable at this scope, a SCEVCouldNotCompute
2787 /// object is returned.
2788 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2789   // FIXME: this should be turned into a virtual method on SCEV!
2790 
2791   if (isa<SCEVConstant>(V)) return V;
2792 
2793   // If this instruction is evolved from a constant-evolving PHI, compute the
2794   // exit value from the loop without using SCEVs.
2795   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2796     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2797       const Loop *LI = (*this->LI)[I->getParent()];
2798       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2799         if (PHINode *PN = dyn_cast<PHINode>(I))
2800           if (PN->getParent() == LI->getHeader()) {
2801             // Okay, there is no closed form solution for the PHI node.  Check
2802             // to see if the loop that contains it has a known backedge-taken
2803             // count.  If so, we may be able to force computation of the exit
2804             // value.
2805             SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2806             if (const SCEVConstant *BTCC =
2807                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2808               // Okay, we know how many times the containing loop executes.  If
2809               // this is a constant evolving PHI node, get the final value at
2810               // the specified iteration number.
2811               Constant *RV = getConstantEvolutionLoopExitValue(PN,
2812                                                    BTCC->getValue()->getValue(),
2813                                                                LI);
2814               if (RV) return getUnknown(RV);
2815             }
2816           }
2817 
2818       // Okay, this is an expression that we cannot symbolically evaluate
2819       // into a SCEV.  Check to see if it's possible to symbolically evaluate
2820       // the arguments into constants, and if so, try to constant propagate the
2821       // result.  This is particularly useful for computing loop exit values.
2822       if (CanConstantFold(I)) {
2823         // Check to see if we've folded this instruction at this loop before.
2824         std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
2825         std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
2826           Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
2827         if (!Pair.second)
2828           return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
2829 
2830         std::vector<Constant*> Operands;
2831         Operands.reserve(I->getNumOperands());
2832         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2833           Value *Op = I->getOperand(i);
2834           if (Constant *C = dyn_cast<Constant>(Op)) {
2835             Operands.push_back(C);
2836           } else {
2837             // If any of the operands is non-constant and if they are
2838             // non-integer and non-pointer, don't even try to analyze them
2839             // with scev techniques.
2840             if (!isSCEVable(Op->getType()))
2841               return V;
2842 
2843             SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2844             if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2845               Constant *C = SC->getValue();
2846               if (C->getType() != Op->getType())
2847                 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2848                                                                   Op->getType(),
2849                                                                   false),
2850                                           C, Op->getType());
2851               Operands.push_back(C);
2852             } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2853               if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2854                 if (C->getType() != Op->getType())
2855                   C =
2856                     ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2857                                                                   Op->getType(),
2858                                                                   false),
2859                                           C, Op->getType());
2860                 Operands.push_back(C);
2861               } else
2862                 return V;
2863             } else {
2864               return V;
2865             }
2866           }
2867         }
2868 
2869         Constant *C;
2870         if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2871           C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2872                                               &Operands[0], Operands.size());
2873         else
2874           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2875                                        &Operands[0], Operands.size());
2876         Pair.first->second = C;
2877         return getUnknown(C);
2878       }
2879     }
2880 
2881     // This is some other type of SCEVUnknown, just return it.
2882     return V;
2883   }
2884 
2885   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2886     // Avoid performing the look-up in the common case where the specified
2887     // expression has no loop-variant portions.
2888     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2889       SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2890       if (OpAtScope != Comm->getOperand(i)) {
2891         if (OpAtScope == UnknownValue) return UnknownValue;
2892         // Okay, at least one of these operands is loop variant but might be
2893         // foldable.  Build a new instance of the folded commutative expression.
2894         std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2895         NewOps.push_back(OpAtScope);
2896 
2897         for (++i; i != e; ++i) {
2898           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2899           if (OpAtScope == UnknownValue) return UnknownValue;
2900           NewOps.push_back(OpAtScope);
2901         }
2902         if (isa<SCEVAddExpr>(Comm))
2903           return getAddExpr(NewOps);
2904         if (isa<SCEVMulExpr>(Comm))
2905           return getMulExpr(NewOps);
2906         if (isa<SCEVSMaxExpr>(Comm))
2907           return getSMaxExpr(NewOps);
2908         if (isa<SCEVUMaxExpr>(Comm))
2909           return getUMaxExpr(NewOps);
2910         assert(0 && "Unknown commutative SCEV type!");
2911       }
2912     }
2913     // If we got here, all operands are loop invariant.
2914     return Comm;
2915   }
2916 
2917   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2918     SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2919     if (LHS == UnknownValue) return LHS;
2920     SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2921     if (RHS == UnknownValue) return RHS;
2922     if (LHS == Div->getLHS() && RHS == Div->getRHS())
2923       return Div;   // must be loop invariant
2924     return getUDivExpr(LHS, RHS);
2925   }
2926 
2927   // If this is a loop recurrence for a loop that does not contain L, then we
2928   // are dealing with the final value computed by the loop.
2929   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2930     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2931       // To evaluate this recurrence, we need to know how many times the AddRec
2932       // loop iterates.  Compute this now.
2933       SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2934       if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2935 
2936       // Then, evaluate the AddRec.
2937       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2938     }
2939     return UnknownValue;
2940   }
2941 
2942   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2943     SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2944     if (Op == UnknownValue) return Op;
2945     if (Op == Cast->getOperand())
2946       return Cast;  // must be loop invariant
2947     return getZeroExtendExpr(Op, Cast->getType());
2948   }
2949 
2950   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2951     SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2952     if (Op == UnknownValue) return Op;
2953     if (Op == Cast->getOperand())
2954       return Cast;  // must be loop invariant
2955     return getSignExtendExpr(Op, Cast->getType());
2956   }
2957 
2958   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2959     SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2960     if (Op == UnknownValue) return Op;
2961     if (Op == Cast->getOperand())
2962       return Cast;  // must be loop invariant
2963     return getTruncateExpr(Op, Cast->getType());
2964   }
2965 
2966   assert(0 && "Unknown SCEV type!");
2967 }
2968 
2969 /// getSCEVAtScope - This is a convenience function which does
2970 /// getSCEVAtScope(getSCEV(V), L).
2971 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2972   return getSCEVAtScope(getSCEV(V), L);
2973 }
2974 
2975 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2976 /// following equation:
2977 ///
2978 ///     A * X = B (mod N)
2979 ///
2980 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2981 /// A and B isn't important.
2982 ///
2983 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2984 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2985                                                ScalarEvolution &SE) {
2986   uint32_t BW = A.getBitWidth();
2987   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2988   assert(A != 0 && "A must be non-zero.");
2989 
2990   // 1. D = gcd(A, N)
2991   //
2992   // The gcd of A and N may have only one prime factor: 2. The number of
2993   // trailing zeros in A is its multiplicity
2994   uint32_t Mult2 = A.countTrailingZeros();
2995   // D = 2^Mult2
2996 
2997   // 2. Check if B is divisible by D.
2998   //
2999   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3000   // is not less than multiplicity of this prime factor for D.
3001   if (B.countTrailingZeros() < Mult2)
3002     return SE.getCouldNotCompute();
3003 
3004   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3005   // modulo (N / D).
3006   //
3007   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3008   // bit width during computations.
3009   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3010   APInt Mod(BW + 1, 0);
3011   Mod.set(BW - Mult2);  // Mod = N / D
3012   APInt I = AD.multiplicativeInverse(Mod);
3013 
3014   // 4. Compute the minimum unsigned root of the equation:
3015   // I * (B / D) mod (N / D)
3016   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3017 
3018   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3019   // bits.
3020   return SE.getConstant(Result.trunc(BW));
3021 }
3022 
3023 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3024 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3025 /// might be the same) or two SCEVCouldNotCompute objects.
3026 ///
3027 static std::pair<SCEVHandle,SCEVHandle>
3028 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3029   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3030   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3031   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3032   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3033 
3034   // We currently can only solve this if the coefficients are constants.
3035   if (!LC || !MC || !NC) {
3036     const SCEV *CNC = SE.getCouldNotCompute();
3037     return std::make_pair(CNC, CNC);
3038   }
3039 
3040   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3041   const APInt &L = LC->getValue()->getValue();
3042   const APInt &M = MC->getValue()->getValue();
3043   const APInt &N = NC->getValue()->getValue();
3044   APInt Two(BitWidth, 2);
3045   APInt Four(BitWidth, 4);
3046 
3047   {
3048     using namespace APIntOps;
3049     const APInt& C = L;
3050     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3051     // The B coefficient is M-N/2
3052     APInt B(M);
3053     B -= sdiv(N,Two);
3054 
3055     // The A coefficient is N/2
3056     APInt A(N.sdiv(Two));
3057 
3058     // Compute the B^2-4ac term.
3059     APInt SqrtTerm(B);
3060     SqrtTerm *= B;
3061     SqrtTerm -= Four * (A * C);
3062 
3063     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3064     // integer value or else APInt::sqrt() will assert.
3065     APInt SqrtVal(SqrtTerm.sqrt());
3066 
3067     // Compute the two solutions for the quadratic formula.
3068     // The divisions must be performed as signed divisions.
3069     APInt NegB(-B);
3070     APInt TwoA( A << 1 );
3071     if (TwoA.isMinValue()) {
3072       const SCEV *CNC = SE.getCouldNotCompute();
3073       return std::make_pair(CNC, CNC);
3074     }
3075 
3076     ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3077     ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3078 
3079     return std::make_pair(SE.getConstant(Solution1),
3080                           SE.getConstant(Solution2));
3081     } // end APIntOps namespace
3082 }
3083 
3084 /// HowFarToZero - Return the number of times a backedge comparing the specified
3085 /// value to zero will execute.  If not computable, return UnknownValue
3086 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3087   // If the value is a constant
3088   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3089     // If the value is already zero, the branch will execute zero times.
3090     if (C->getValue()->isZero()) return C;
3091     return UnknownValue;  // Otherwise it will loop infinitely.
3092   }
3093 
3094   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3095   if (!AddRec || AddRec->getLoop() != L)
3096     return UnknownValue;
3097 
3098   if (AddRec->isAffine()) {
3099     // If this is an affine expression, the execution count of this branch is
3100     // the minimum unsigned root of the following equation:
3101     //
3102     //     Start + Step*N = 0 (mod 2^BW)
3103     //
3104     // equivalent to:
3105     //
3106     //             Step*N = -Start (mod 2^BW)
3107     //
3108     // where BW is the common bit width of Start and Step.
3109 
3110     // Get the initial value for the loop.
3111     SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3112     if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3113 
3114     SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3115 
3116     if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3117       // For now we handle only constant steps.
3118 
3119       // First, handle unitary steps.
3120       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3121         return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3122       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3123         return Start;                           //    N = Start (as unsigned)
3124 
3125       // Then, try to solve the above equation provided that Start is constant.
3126       if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3127         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3128                                             -StartC->getValue()->getValue(),
3129                                             *this);
3130     }
3131   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3132     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3133     // the quadratic equation to solve it.
3134     std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3135                                                                     *this);
3136     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3137     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3138     if (R1) {
3139 #if 0
3140       errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3141              << "  sol#2: " << *R2 << "\n";
3142 #endif
3143       // Pick the smallest positive root value.
3144       if (ConstantInt *CB =
3145           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3146                                    R1->getValue(), R2->getValue()))) {
3147         if (CB->getZExtValue() == false)
3148           std::swap(R1, R2);   // R1 is the minimum root now.
3149 
3150         // We can only use this value if the chrec ends up with an exact zero
3151         // value at this index.  When solving for "X*X != 5", for example, we
3152         // should not accept a root of 2.
3153         SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3154         if (Val->isZero())
3155           return R1;  // We found a quadratic root!
3156       }
3157     }
3158   }
3159 
3160   return UnknownValue;
3161 }
3162 
3163 /// HowFarToNonZero - Return the number of times a backedge checking the
3164 /// specified value for nonzero will execute.  If not computable, return
3165 /// UnknownValue
3166 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3167   // Loops that look like: while (X == 0) are very strange indeed.  We don't
3168   // handle them yet except for the trivial case.  This could be expanded in the
3169   // future as needed.
3170 
3171   // If the value is a constant, check to see if it is known to be non-zero
3172   // already.  If so, the backedge will execute zero times.
3173   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3174     if (!C->getValue()->isNullValue())
3175       return getIntegerSCEV(0, C->getType());
3176     return UnknownValue;  // Otherwise it will loop infinitely.
3177   }
3178 
3179   // We could implement others, but I really doubt anyone writes loops like
3180   // this, and if they did, they would already be constant folded.
3181   return UnknownValue;
3182 }
3183 
3184 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3185 /// (which may not be an immediate predecessor) which has exactly one
3186 /// successor from which BB is reachable, or null if no such block is
3187 /// found.
3188 ///
3189 BasicBlock *
3190 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3191   // If the block has a unique predecessor, then there is no path from the
3192   // predecessor to the block that does not go through the direct edge
3193   // from the predecessor to the block.
3194   if (BasicBlock *Pred = BB->getSinglePredecessor())
3195     return Pred;
3196 
3197   // A loop's header is defined to be a block that dominates the loop.
3198   // If the loop has a preheader, it must be a block that has exactly
3199   // one successor that can reach BB. This is slightly more strict
3200   // than necessary, but works if critical edges are split.
3201   if (Loop *L = LI->getLoopFor(BB))
3202     return L->getLoopPreheader();
3203 
3204   return 0;
3205 }
3206 
3207 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
3208 /// a conditional between LHS and RHS.  This is used to help avoid max
3209 /// expressions in loop trip counts.
3210 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3211                                           ICmpInst::Predicate Pred,
3212                                           const SCEV *LHS, const SCEV *RHS) {
3213   BasicBlock *Preheader = L->getLoopPreheader();
3214   BasicBlock *PreheaderDest = L->getHeader();
3215 
3216   // Starting at the preheader, climb up the predecessor chain, as long as
3217   // there are predecessors that can be found that have unique successors
3218   // leading to the original header.
3219   for (; Preheader;
3220        PreheaderDest = Preheader,
3221        Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3222 
3223     BranchInst *LoopEntryPredicate =
3224       dyn_cast<BranchInst>(Preheader->getTerminator());
3225     if (!LoopEntryPredicate ||
3226         LoopEntryPredicate->isUnconditional())
3227       continue;
3228 
3229     ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3230     if (!ICI) continue;
3231 
3232     // Now that we found a conditional branch that dominates the loop, check to
3233     // see if it is the comparison we are looking for.
3234     Value *PreCondLHS = ICI->getOperand(0);
3235     Value *PreCondRHS = ICI->getOperand(1);
3236     ICmpInst::Predicate Cond;
3237     if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3238       Cond = ICI->getPredicate();
3239     else
3240       Cond = ICI->getInversePredicate();
3241 
3242     if (Cond == Pred)
3243       ; // An exact match.
3244     else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3245       ; // The actual condition is beyond sufficient.
3246     else
3247       // Check a few special cases.
3248       switch (Cond) {
3249       case ICmpInst::ICMP_UGT:
3250         if (Pred == ICmpInst::ICMP_ULT) {
3251           std::swap(PreCondLHS, PreCondRHS);
3252           Cond = ICmpInst::ICMP_ULT;
3253           break;
3254         }
3255         continue;
3256       case ICmpInst::ICMP_SGT:
3257         if (Pred == ICmpInst::ICMP_SLT) {
3258           std::swap(PreCondLHS, PreCondRHS);
3259           Cond = ICmpInst::ICMP_SLT;
3260           break;
3261         }
3262         continue;
3263       case ICmpInst::ICMP_NE:
3264         // Expressions like (x >u 0) are often canonicalized to (x != 0),
3265         // so check for this case by checking if the NE is comparing against
3266         // a minimum or maximum constant.
3267         if (!ICmpInst::isTrueWhenEqual(Pred))
3268           if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3269             const APInt &A = CI->getValue();
3270             switch (Pred) {
3271             case ICmpInst::ICMP_SLT:
3272               if (A.isMaxSignedValue()) break;
3273               continue;
3274             case ICmpInst::ICMP_SGT:
3275               if (A.isMinSignedValue()) break;
3276               continue;
3277             case ICmpInst::ICMP_ULT:
3278               if (A.isMaxValue()) break;
3279               continue;
3280             case ICmpInst::ICMP_UGT:
3281               if (A.isMinValue()) break;
3282               continue;
3283             default:
3284               continue;
3285             }
3286             Cond = ICmpInst::ICMP_NE;
3287             // NE is symmetric but the original comparison may not be. Swap
3288             // the operands if necessary so that they match below.
3289             if (isa<SCEVConstant>(LHS))
3290               std::swap(PreCondLHS, PreCondRHS);
3291             break;
3292           }
3293         continue;
3294       default:
3295         // We weren't able to reconcile the condition.
3296         continue;
3297       }
3298 
3299     if (!PreCondLHS->getType()->isInteger()) continue;
3300 
3301     SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3302     SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3303     if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3304         (LHS == getNotSCEV(PreCondRHSSCEV) &&
3305          RHS == getNotSCEV(PreCondLHSSCEV)))
3306       return true;
3307   }
3308 
3309   return false;
3310 }
3311 
3312 /// HowManyLessThans - Return the number of times a backedge containing the
3313 /// specified less-than comparison will execute.  If not computable, return
3314 /// UnknownValue.
3315 ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3316 HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3317                  const Loop *L, bool isSigned) {
3318   // Only handle:  "ADDREC < LoopInvariant".
3319   if (!RHS->isLoopInvariant(L)) return UnknownValue;
3320 
3321   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3322   if (!AddRec || AddRec->getLoop() != L)
3323     return UnknownValue;
3324 
3325   if (AddRec->isAffine()) {
3326     // FORNOW: We only support unit strides.
3327     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3328     SCEVHandle Step = AddRec->getStepRecurrence(*this);
3329     SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3330 
3331     // TODO: handle non-constant strides.
3332     const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3333     if (!CStep || CStep->isZero())
3334       return UnknownValue;
3335     if (CStep->getValue()->getValue() == 1) {
3336       // With unit stride, the iteration never steps past the limit value.
3337     } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3338       if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3339         // Test whether a positive iteration iteration can step past the limit
3340         // value and past the maximum value for its type in a single step.
3341         if (isSigned) {
3342           APInt Max = APInt::getSignedMaxValue(BitWidth);
3343           if ((Max - CStep->getValue()->getValue())
3344                 .slt(CLimit->getValue()->getValue()))
3345             return UnknownValue;
3346         } else {
3347           APInt Max = APInt::getMaxValue(BitWidth);
3348           if ((Max - CStep->getValue()->getValue())
3349                 .ult(CLimit->getValue()->getValue()))
3350             return UnknownValue;
3351         }
3352       } else
3353         // TODO: handle non-constant limit values below.
3354         return UnknownValue;
3355     } else
3356       // TODO: handle negative strides below.
3357       return UnknownValue;
3358 
3359     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3360     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3361     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3362     // treat m-n as signed nor unsigned due to overflow possibility.
3363 
3364     // First, we get the value of the LHS in the first iteration: n
3365     SCEVHandle Start = AddRec->getOperand(0);
3366 
3367     // Determine the minimum constant start value.
3368     SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3369       getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3370                              APInt::getMinValue(BitWidth));
3371 
3372     // If we know that the condition is true in order to enter the loop,
3373     // then we know that it will run exactly (m-n)/s times. Otherwise, we
3374     // only know if will execute (max(m,n)-n)/s times. In both cases, the
3375     // division must round up.
3376     SCEVHandle End = RHS;
3377     if (!isLoopGuardedByCond(L,
3378                              isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3379                              getMinusSCEV(Start, Step), RHS))
3380       End = isSigned ? getSMaxExpr(RHS, Start)
3381                      : getUMaxExpr(RHS, Start);
3382 
3383     // Determine the maximum constant end value.
3384     SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3385       getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3386                              APInt::getMaxValue(BitWidth));
3387 
3388     // Finally, we subtract these two values and divide, rounding up, to get
3389     // the number of times the backedge is executed.
3390     SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3391                                                 getAddExpr(Step, NegOne)),
3392                                      Step);
3393 
3394     // The maximum backedge count is similar, except using the minimum start
3395     // value and the maximum end value.
3396     SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3397                                                                 MinStart),
3398                                                    getAddExpr(Step, NegOne)),
3399                                         Step);
3400 
3401     return BackedgeTakenInfo(BECount, MaxBECount);
3402   }
3403 
3404   return UnknownValue;
3405 }
3406 
3407 /// getNumIterationsInRange - Return the number of iterations of this loop that
3408 /// produce values in the specified constant range.  Another way of looking at
3409 /// this is that it returns the first iteration number where the value is not in
3410 /// the condition, thus computing the exit count. If the iteration count can't
3411 /// be computed, an instance of SCEVCouldNotCompute is returned.
3412 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3413                                                    ScalarEvolution &SE) const {
3414   if (Range.isFullSet())  // Infinite loop.
3415     return SE.getCouldNotCompute();
3416 
3417   // If the start is a non-zero constant, shift the range to simplify things.
3418   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3419     if (!SC->getValue()->isZero()) {
3420       std::vector<SCEVHandle> Operands(op_begin(), op_end());
3421       Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3422       SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3423       if (const SCEVAddRecExpr *ShiftedAddRec =
3424             dyn_cast<SCEVAddRecExpr>(Shifted))
3425         return ShiftedAddRec->getNumIterationsInRange(
3426                            Range.subtract(SC->getValue()->getValue()), SE);
3427       // This is strange and shouldn't happen.
3428       return SE.getCouldNotCompute();
3429     }
3430 
3431   // The only time we can solve this is when we have all constant indices.
3432   // Otherwise, we cannot determine the overflow conditions.
3433   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3434     if (!isa<SCEVConstant>(getOperand(i)))
3435       return SE.getCouldNotCompute();
3436 
3437 
3438   // Okay at this point we know that all elements of the chrec are constants and
3439   // that the start element is zero.
3440 
3441   // First check to see if the range contains zero.  If not, the first
3442   // iteration exits.
3443   unsigned BitWidth = SE.getTypeSizeInBits(getType());
3444   if (!Range.contains(APInt(BitWidth, 0)))
3445     return SE.getConstant(ConstantInt::get(getType(),0));
3446 
3447   if (isAffine()) {
3448     // If this is an affine expression then we have this situation:
3449     //   Solve {0,+,A} in Range  ===  Ax in Range
3450 
3451     // We know that zero is in the range.  If A is positive then we know that
3452     // the upper value of the range must be the first possible exit value.
3453     // If A is negative then the lower of the range is the last possible loop
3454     // value.  Also note that we already checked for a full range.
3455     APInt One(BitWidth,1);
3456     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3457     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3458 
3459     // The exit value should be (End+A)/A.
3460     APInt ExitVal = (End + A).udiv(A);
3461     ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3462 
3463     // Evaluate at the exit value.  If we really did fall out of the valid
3464     // range, then we computed our trip count, otherwise wrap around or other
3465     // things must have happened.
3466     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3467     if (Range.contains(Val->getValue()))
3468       return SE.getCouldNotCompute();  // Something strange happened
3469 
3470     // Ensure that the previous value is in the range.  This is a sanity check.
3471     assert(Range.contains(
3472            EvaluateConstantChrecAtConstant(this,
3473            ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3474            "Linear scev computation is off in a bad way!");
3475     return SE.getConstant(ExitValue);
3476   } else if (isQuadratic()) {
3477     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3478     // quadratic equation to solve it.  To do this, we must frame our problem in
3479     // terms of figuring out when zero is crossed, instead of when
3480     // Range.getUpper() is crossed.
3481     std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3482     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3483     SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3484 
3485     // Next, solve the constructed addrec
3486     std::pair<SCEVHandle,SCEVHandle> Roots =
3487       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3488     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3489     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3490     if (R1) {
3491       // Pick the smallest positive root value.
3492       if (ConstantInt *CB =
3493           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3494                                    R1->getValue(), R2->getValue()))) {
3495         if (CB->getZExtValue() == false)
3496           std::swap(R1, R2);   // R1 is the minimum root now.
3497 
3498         // Make sure the root is not off by one.  The returned iteration should
3499         // not be in the range, but the previous one should be.  When solving
3500         // for "X*X < 5", for example, we should not return a root of 2.
3501         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3502                                                              R1->getValue(),
3503                                                              SE);
3504         if (Range.contains(R1Val->getValue())) {
3505           // The next iteration must be out of the range...
3506           ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3507 
3508           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3509           if (!Range.contains(R1Val->getValue()))
3510             return SE.getConstant(NextVal);
3511           return SE.getCouldNotCompute();  // Something strange happened
3512         }
3513 
3514         // If R1 was not in the range, then it is a good return value.  Make
3515         // sure that R1-1 WAS in the range though, just in case.
3516         ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3517         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3518         if (Range.contains(R1Val->getValue()))
3519           return R1;
3520         return SE.getCouldNotCompute();  // Something strange happened
3521       }
3522     }
3523   }
3524 
3525   return SE.getCouldNotCompute();
3526 }
3527 
3528 
3529 
3530 //===----------------------------------------------------------------------===//
3531 //                   SCEVCallbackVH Class Implementation
3532 //===----------------------------------------------------------------------===//
3533 
3534 void SCEVCallbackVH::deleted() {
3535   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3536   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3537     SE->ConstantEvolutionLoopExitValue.erase(PN);
3538   if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3539     SE->ValuesAtScopes.erase(I);
3540   SE->Scalars.erase(getValPtr());
3541   // this now dangles!
3542 }
3543 
3544 void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3545   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3546 
3547   // Forget all the expressions associated with users of the old value,
3548   // so that future queries will recompute the expressions using the new
3549   // value.
3550   SmallVector<User *, 16> Worklist;
3551   Value *Old = getValPtr();
3552   bool DeleteOld = false;
3553   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3554        UI != UE; ++UI)
3555     Worklist.push_back(*UI);
3556   while (!Worklist.empty()) {
3557     User *U = Worklist.pop_back_val();
3558     // Deleting the Old value will cause this to dangle. Postpone
3559     // that until everything else is done.
3560     if (U == Old) {
3561       DeleteOld = true;
3562       continue;
3563     }
3564     if (PHINode *PN = dyn_cast<PHINode>(U))
3565       SE->ConstantEvolutionLoopExitValue.erase(PN);
3566     if (Instruction *I = dyn_cast<Instruction>(U))
3567       SE->ValuesAtScopes.erase(I);
3568     if (SE->Scalars.erase(U))
3569       for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3570            UI != UE; ++UI)
3571         Worklist.push_back(*UI);
3572   }
3573   if (DeleteOld) {
3574     if (PHINode *PN = dyn_cast<PHINode>(Old))
3575       SE->ConstantEvolutionLoopExitValue.erase(PN);
3576     if (Instruction *I = dyn_cast<Instruction>(Old))
3577       SE->ValuesAtScopes.erase(I);
3578     SE->Scalars.erase(Old);
3579     // this now dangles!
3580   }
3581   // this may dangle!
3582 }
3583 
3584 SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3585   : CallbackVH(V), SE(se) {}
3586 
3587 //===----------------------------------------------------------------------===//
3588 //                   ScalarEvolution Class Implementation
3589 //===----------------------------------------------------------------------===//
3590 
3591 ScalarEvolution::ScalarEvolution()
3592   : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3593 }
3594 
3595 bool ScalarEvolution::runOnFunction(Function &F) {
3596   this->F = &F;
3597   LI = &getAnalysis<LoopInfo>();
3598   TD = getAnalysisIfAvailable<TargetData>();
3599   return false;
3600 }
3601 
3602 void ScalarEvolution::releaseMemory() {
3603   Scalars.clear();
3604   BackedgeTakenCounts.clear();
3605   ConstantEvolutionLoopExitValue.clear();
3606   ValuesAtScopes.clear();
3607 }
3608 
3609 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3610   AU.setPreservesAll();
3611   AU.addRequiredTransitive<LoopInfo>();
3612 }
3613 
3614 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3615   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3616 }
3617 
3618 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3619                           const Loop *L) {
3620   // Print all inner loops first
3621   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3622     PrintLoopInfo(OS, SE, *I);
3623 
3624   OS << "Loop " << L->getHeader()->getName() << ": ";
3625 
3626   SmallVector<BasicBlock*, 8> ExitBlocks;
3627   L->getExitBlocks(ExitBlocks);
3628   if (ExitBlocks.size() != 1)
3629     OS << "<multiple exits> ";
3630 
3631   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3632     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3633   } else {
3634     OS << "Unpredictable backedge-taken count. ";
3635   }
3636 
3637   OS << "\n";
3638 }
3639 
3640 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3641   // ScalarEvolution's implementaiton of the print method is to print
3642   // out SCEV values of all instructions that are interesting. Doing
3643   // this potentially causes it to create new SCEV objects though,
3644   // which technically conflicts with the const qualifier. This isn't
3645   // observable from outside the class though (the hasSCEV function
3646   // notwithstanding), so casting away the const isn't dangerous.
3647   ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3648 
3649   OS << "Classifying expressions for: " << F->getName() << "\n";
3650   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3651     if (isSCEVable(I->getType())) {
3652       OS << *I;
3653       OS << "  -->  ";
3654       SCEVHandle SV = SE.getSCEV(&*I);
3655       SV->print(OS);
3656       OS << "\t\t";
3657 
3658       if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3659         OS << "Exits: ";
3660         SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3661         if (isa<SCEVCouldNotCompute>(ExitValue)) {
3662           OS << "<<Unknown>>";
3663         } else {
3664           OS << *ExitValue;
3665         }
3666       }
3667 
3668 
3669       OS << "\n";
3670     }
3671 
3672   OS << "Determining loop execution counts for: " << F->getName() << "\n";
3673   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3674     PrintLoopInfo(OS, &SE, *I);
3675 }
3676 
3677 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3678   raw_os_ostream OS(o);
3679   print(OS, M);
3680 }
3681