1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/GetElementPtrTypeIterator.h" 77 #include "llvm/Support/InstIterator.h" 78 #include "llvm/Support/ManagedStatic.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/ADT/Statistic.h" 82 #include "llvm/ADT/STLExtras.h" 83 #include <ostream> 84 #include <algorithm> 85 using namespace llvm; 86 87 STATISTIC(NumArrayLenItCounts, 88 "Number of trip counts computed with array length"); 89 STATISTIC(NumTripCountsComputed, 90 "Number of loops with predictable loop counts"); 91 STATISTIC(NumTripCountsNotComputed, 92 "Number of loops without predictable loop counts"); 93 STATISTIC(NumBruteForceTripCountsComputed, 94 "Number of loops with trip counts computed by force"); 95 96 static cl::opt<unsigned> 97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 98 cl::desc("Maximum number of iterations SCEV will " 99 "symbolically execute a constant derived loop"), 100 cl::init(100)); 101 102 static RegisterPass<ScalarEvolution> 103 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 104 char ScalarEvolution::ID = 0; 105 106 //===----------------------------------------------------------------------===// 107 // SCEV class definitions 108 //===----------------------------------------------------------------------===// 109 110 //===----------------------------------------------------------------------===// 111 // Implementation of the SCEV class. 112 // 113 SCEV::~SCEV() {} 114 void SCEV::dump() const { 115 print(errs()); 116 errs() << '\n'; 117 } 118 119 void SCEV::print(std::ostream &o) const { 120 raw_os_ostream OS(o); 121 print(OS); 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 131 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 132 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 133 134 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 135 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 136 return false; 137 } 138 139 const Type *SCEVCouldNotCompute::getType() const { 140 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 141 return 0; 142 } 143 144 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 146 return false; 147 } 148 149 SCEVHandle SCEVCouldNotCompute:: 150 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 151 const SCEVHandle &Conc, 152 ScalarEvolution &SE) const { 153 return this; 154 } 155 156 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 157 OS << "***COULDNOTCOMPUTE***"; 158 } 159 160 bool SCEVCouldNotCompute::classof(const SCEV *S) { 161 return S->getSCEVType() == scCouldNotCompute; 162 } 163 164 165 // SCEVConstants - Only allow the creation of one SCEVConstant for any 166 // particular value. Don't use a SCEVHandle here, or else the object will 167 // never be deleted! 168 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 169 170 171 SCEVConstant::~SCEVConstant() { 172 SCEVConstants->erase(V); 173 } 174 175 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 176 SCEVConstant *&R = (*SCEVConstants)[V]; 177 if (R == 0) R = new SCEVConstant(V); 178 return R; 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 182 return getConstant(ConstantInt::get(Val)); 183 } 184 185 const Type *SCEVConstant::getType() const { return V->getType(); } 186 187 void SCEVConstant::print(raw_ostream &OS) const { 188 WriteAsOperand(OS, V, false); 189 } 190 191 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 192 const SCEVHandle &op, const Type *ty) 193 : SCEV(SCEVTy), Op(op), Ty(ty) {} 194 195 SCEVCastExpr::~SCEVCastExpr() {} 196 197 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 198 return Op->dominates(BB, DT); 199 } 200 201 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 202 // particular input. Don't use a SCEVHandle here, or else the object will 203 // never be deleted! 204 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 205 SCEVTruncateExpr*> > SCEVTruncates; 206 207 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 208 : SCEVCastExpr(scTruncate, op, ty) { 209 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 210 (Ty->isInteger() || isa<PointerType>(Ty)) && 211 "Cannot truncate non-integer value!"); 212 } 213 214 SCEVTruncateExpr::~SCEVTruncateExpr() { 215 SCEVTruncates->erase(std::make_pair(Op, Ty)); 216 } 217 218 void SCEVTruncateExpr::print(raw_ostream &OS) const { 219 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 220 } 221 222 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 223 // particular input. Don't use a SCEVHandle here, or else the object will never 224 // be deleted! 225 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 226 SCEVZeroExtendExpr*> > SCEVZeroExtends; 227 228 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 229 : SCEVCastExpr(scZeroExtend, op, ty) { 230 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 231 (Ty->isInteger() || isa<PointerType>(Ty)) && 232 "Cannot zero extend non-integer value!"); 233 } 234 235 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 236 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 237 } 238 239 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 240 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 241 } 242 243 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 244 // particular input. Don't use a SCEVHandle here, or else the object will never 245 // be deleted! 246 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 247 SCEVSignExtendExpr*> > SCEVSignExtends; 248 249 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 250 : SCEVCastExpr(scSignExtend, op, ty) { 251 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 252 (Ty->isInteger() || isa<PointerType>(Ty)) && 253 "Cannot sign extend non-integer value!"); 254 } 255 256 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 257 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 258 } 259 260 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 261 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 262 } 263 264 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 265 // particular input. Don't use a SCEVHandle here, or else the object will never 266 // be deleted! 267 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, 268 SCEVCommutativeExpr*> > SCEVCommExprs; 269 270 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 271 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 272 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); 273 } 274 275 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 276 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 277 const char *OpStr = getOperationStr(); 278 OS << "(" << *Operands[0]; 279 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 280 OS << OpStr << *Operands[i]; 281 OS << ")"; 282 } 283 284 SCEVHandle SCEVCommutativeExpr:: 285 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 286 const SCEVHandle &Conc, 287 ScalarEvolution &SE) const { 288 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 289 SCEVHandle H = 290 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 291 if (H != getOperand(i)) { 292 std::vector<SCEVHandle> NewOps; 293 NewOps.reserve(getNumOperands()); 294 for (unsigned j = 0; j != i; ++j) 295 NewOps.push_back(getOperand(j)); 296 NewOps.push_back(H); 297 for (++i; i != e; ++i) 298 NewOps.push_back(getOperand(i)-> 299 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 300 301 if (isa<SCEVAddExpr>(this)) 302 return SE.getAddExpr(NewOps); 303 else if (isa<SCEVMulExpr>(this)) 304 return SE.getMulExpr(NewOps); 305 else if (isa<SCEVSMaxExpr>(this)) 306 return SE.getSMaxExpr(NewOps); 307 else if (isa<SCEVUMaxExpr>(this)) 308 return SE.getUMaxExpr(NewOps); 309 else 310 assert(0 && "Unknown commutative expr!"); 311 } 312 } 313 return this; 314 } 315 316 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 317 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 318 if (!getOperand(i)->dominates(BB, DT)) 319 return false; 320 } 321 return true; 322 } 323 324 325 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 326 // input. Don't use a SCEVHandle here, or else the object will never be 327 // deleted! 328 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, 329 SCEVUDivExpr*> > SCEVUDivs; 330 331 SCEVUDivExpr::~SCEVUDivExpr() { 332 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 333 } 334 335 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 336 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 337 } 338 339 void SCEVUDivExpr::print(raw_ostream &OS) const { 340 OS << "(" << *LHS << " /u " << *RHS << ")"; 341 } 342 343 const Type *SCEVUDivExpr::getType() const { 344 return LHS->getType(); 345 } 346 347 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 348 // particular input. Don't use a SCEVHandle here, or else the object will never 349 // be deleted! 350 static ManagedStatic<std::map<std::pair<const Loop *, 351 std::vector<const SCEV*> >, 352 SCEVAddRecExpr*> > SCEVAddRecExprs; 353 354 SCEVAddRecExpr::~SCEVAddRecExpr() { 355 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 356 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); 357 } 358 359 SCEVHandle SCEVAddRecExpr:: 360 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 361 const SCEVHandle &Conc, 362 ScalarEvolution &SE) const { 363 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 364 SCEVHandle H = 365 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 366 if (H != getOperand(i)) { 367 std::vector<SCEVHandle> NewOps; 368 NewOps.reserve(getNumOperands()); 369 for (unsigned j = 0; j != i; ++j) 370 NewOps.push_back(getOperand(j)); 371 NewOps.push_back(H); 372 for (++i; i != e; ++i) 373 NewOps.push_back(getOperand(i)-> 374 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 375 376 return SE.getAddRecExpr(NewOps, L); 377 } 378 } 379 return this; 380 } 381 382 383 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 384 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 385 // contain L and if the start is invariant. 386 return !QueryLoop->contains(L->getHeader()) && 387 getOperand(0)->isLoopInvariant(QueryLoop); 388 } 389 390 391 void SCEVAddRecExpr::print(raw_ostream &OS) const { 392 OS << "{" << *Operands[0]; 393 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 394 OS << ",+," << *Operands[i]; 395 OS << "}<" << L->getHeader()->getName() + ">"; 396 } 397 398 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 399 // value. Don't use a SCEVHandle here, or else the object will never be 400 // deleted! 401 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 402 403 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 404 405 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 406 // All non-instruction values are loop invariant. All instructions are loop 407 // invariant if they are not contained in the specified loop. 408 if (Instruction *I = dyn_cast<Instruction>(V)) 409 return !L->contains(I->getParent()); 410 return true; 411 } 412 413 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 414 if (Instruction *I = dyn_cast<Instruction>(getValue())) 415 return DT->dominates(I->getParent(), BB); 416 return true; 417 } 418 419 const Type *SCEVUnknown::getType() const { 420 return V->getType(); 421 } 422 423 void SCEVUnknown::print(raw_ostream &OS) const { 424 WriteAsOperand(OS, V, false); 425 } 426 427 //===----------------------------------------------------------------------===// 428 // SCEV Utilities 429 //===----------------------------------------------------------------------===// 430 431 namespace { 432 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 433 /// than the complexity of the RHS. This comparator is used to canonicalize 434 /// expressions. 435 class VISIBILITY_HIDDEN SCEVComplexityCompare { 436 LoopInfo *LI; 437 public: 438 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 439 440 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 441 // Primarily, sort the SCEVs by their getSCEVType(). 442 if (LHS->getSCEVType() != RHS->getSCEVType()) 443 return LHS->getSCEVType() < RHS->getSCEVType(); 444 445 // Aside from the getSCEVType() ordering, the particular ordering 446 // isn't very important except that it's beneficial to be consistent, 447 // so that (a + b) and (b + a) don't end up as different expressions. 448 449 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 450 // not as complete as it could be. 451 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 452 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 453 454 // Compare getValueID values. 455 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 456 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 457 458 // Sort arguments by their position. 459 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 460 const Argument *RA = cast<Argument>(RU->getValue()); 461 return LA->getArgNo() < RA->getArgNo(); 462 } 463 464 // For instructions, compare their loop depth, and their opcode. 465 // This is pretty loose. 466 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 467 Instruction *RV = cast<Instruction>(RU->getValue()); 468 469 // Compare loop depths. 470 if (LI->getLoopDepth(LV->getParent()) != 471 LI->getLoopDepth(RV->getParent())) 472 return LI->getLoopDepth(LV->getParent()) < 473 LI->getLoopDepth(RV->getParent()); 474 475 // Compare opcodes. 476 if (LV->getOpcode() != RV->getOpcode()) 477 return LV->getOpcode() < RV->getOpcode(); 478 479 // Compare the number of operands. 480 if (LV->getNumOperands() != RV->getNumOperands()) 481 return LV->getNumOperands() < RV->getNumOperands(); 482 } 483 484 return false; 485 } 486 487 // Constant sorting doesn't matter since they'll be folded. 488 if (isa<SCEVConstant>(LHS)) 489 return false; 490 491 // Lexicographically compare n-ary expressions. 492 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 493 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 494 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 495 if (i >= RC->getNumOperands()) 496 return false; 497 if (operator()(LC->getOperand(i), RC->getOperand(i))) 498 return true; 499 if (operator()(RC->getOperand(i), LC->getOperand(i))) 500 return false; 501 } 502 return LC->getNumOperands() < RC->getNumOperands(); 503 } 504 505 // Lexicographically compare udiv expressions. 506 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 507 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 508 if (operator()(LC->getLHS(), RC->getLHS())) 509 return true; 510 if (operator()(RC->getLHS(), LC->getLHS())) 511 return false; 512 if (operator()(LC->getRHS(), RC->getRHS())) 513 return true; 514 if (operator()(RC->getRHS(), LC->getRHS())) 515 return false; 516 return false; 517 } 518 519 // Compare cast expressions by operand. 520 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 521 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 522 return operator()(LC->getOperand(), RC->getOperand()); 523 } 524 525 assert(0 && "Unknown SCEV kind!"); 526 return false; 527 } 528 }; 529 } 530 531 /// GroupByComplexity - Given a list of SCEV objects, order them by their 532 /// complexity, and group objects of the same complexity together by value. 533 /// When this routine is finished, we know that any duplicates in the vector are 534 /// consecutive and that complexity is monotonically increasing. 535 /// 536 /// Note that we go take special precautions to ensure that we get determinstic 537 /// results from this routine. In other words, we don't want the results of 538 /// this to depend on where the addresses of various SCEV objects happened to 539 /// land in memory. 540 /// 541 static void GroupByComplexity(std::vector<SCEVHandle> &Ops, 542 LoopInfo *LI) { 543 if (Ops.size() < 2) return; // Noop 544 if (Ops.size() == 2) { 545 // This is the common case, which also happens to be trivially simple. 546 // Special case it. 547 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 548 std::swap(Ops[0], Ops[1]); 549 return; 550 } 551 552 // Do the rough sort by complexity. 553 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 554 555 // Now that we are sorted by complexity, group elements of the same 556 // complexity. Note that this is, at worst, N^2, but the vector is likely to 557 // be extremely short in practice. Note that we take this approach because we 558 // do not want to depend on the addresses of the objects we are grouping. 559 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 560 const SCEV *S = Ops[i]; 561 unsigned Complexity = S->getSCEVType(); 562 563 // If there are any objects of the same complexity and same value as this 564 // one, group them. 565 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 566 if (Ops[j] == S) { // Found a duplicate. 567 // Move it to immediately after i'th element. 568 std::swap(Ops[i+1], Ops[j]); 569 ++i; // no need to rescan it. 570 if (i == e-2) return; // Done! 571 } 572 } 573 } 574 } 575 576 577 578 //===----------------------------------------------------------------------===// 579 // Simple SCEV method implementations 580 //===----------------------------------------------------------------------===// 581 582 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 583 // Assume, K > 0. 584 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 585 ScalarEvolution &SE, 586 const Type* ResultTy) { 587 // Handle the simplest case efficiently. 588 if (K == 1) 589 return SE.getTruncateOrZeroExtend(It, ResultTy); 590 591 // We are using the following formula for BC(It, K): 592 // 593 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 594 // 595 // Suppose, W is the bitwidth of the return value. We must be prepared for 596 // overflow. Hence, we must assure that the result of our computation is 597 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 598 // safe in modular arithmetic. 599 // 600 // However, this code doesn't use exactly that formula; the formula it uses 601 // is something like the following, where T is the number of factors of 2 in 602 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 603 // exponentiation: 604 // 605 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 606 // 607 // This formula is trivially equivalent to the previous formula. However, 608 // this formula can be implemented much more efficiently. The trick is that 609 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 610 // arithmetic. To do exact division in modular arithmetic, all we have 611 // to do is multiply by the inverse. Therefore, this step can be done at 612 // width W. 613 // 614 // The next issue is how to safely do the division by 2^T. The way this 615 // is done is by doing the multiplication step at a width of at least W + T 616 // bits. This way, the bottom W+T bits of the product are accurate. Then, 617 // when we perform the division by 2^T (which is equivalent to a right shift 618 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 619 // truncated out after the division by 2^T. 620 // 621 // In comparison to just directly using the first formula, this technique 622 // is much more efficient; using the first formula requires W * K bits, 623 // but this formula less than W + K bits. Also, the first formula requires 624 // a division step, whereas this formula only requires multiplies and shifts. 625 // 626 // It doesn't matter whether the subtraction step is done in the calculation 627 // width or the input iteration count's width; if the subtraction overflows, 628 // the result must be zero anyway. We prefer here to do it in the width of 629 // the induction variable because it helps a lot for certain cases; CodeGen 630 // isn't smart enough to ignore the overflow, which leads to much less 631 // efficient code if the width of the subtraction is wider than the native 632 // register width. 633 // 634 // (It's possible to not widen at all by pulling out factors of 2 before 635 // the multiplication; for example, K=2 can be calculated as 636 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 637 // extra arithmetic, so it's not an obvious win, and it gets 638 // much more complicated for K > 3.) 639 640 // Protection from insane SCEVs; this bound is conservative, 641 // but it probably doesn't matter. 642 if (K > 1000) 643 return SE.getCouldNotCompute(); 644 645 unsigned W = SE.getTypeSizeInBits(ResultTy); 646 647 // Calculate K! / 2^T and T; we divide out the factors of two before 648 // multiplying for calculating K! / 2^T to avoid overflow. 649 // Other overflow doesn't matter because we only care about the bottom 650 // W bits of the result. 651 APInt OddFactorial(W, 1); 652 unsigned T = 1; 653 for (unsigned i = 3; i <= K; ++i) { 654 APInt Mult(W, i); 655 unsigned TwoFactors = Mult.countTrailingZeros(); 656 T += TwoFactors; 657 Mult = Mult.lshr(TwoFactors); 658 OddFactorial *= Mult; 659 } 660 661 // We need at least W + T bits for the multiplication step 662 unsigned CalculationBits = W + T; 663 664 // Calcuate 2^T, at width T+W. 665 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 666 667 // Calculate the multiplicative inverse of K! / 2^T; 668 // this multiplication factor will perform the exact division by 669 // K! / 2^T. 670 APInt Mod = APInt::getSignedMinValue(W+1); 671 APInt MultiplyFactor = OddFactorial.zext(W+1); 672 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 673 MultiplyFactor = MultiplyFactor.trunc(W); 674 675 // Calculate the product, at width T+W 676 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 677 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 678 for (unsigned i = 1; i != K; ++i) { 679 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 680 Dividend = SE.getMulExpr(Dividend, 681 SE.getTruncateOrZeroExtend(S, CalculationTy)); 682 } 683 684 // Divide by 2^T 685 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 686 687 // Truncate the result, and divide by K! / 2^T. 688 689 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 690 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 691 } 692 693 /// evaluateAtIteration - Return the value of this chain of recurrences at 694 /// the specified iteration number. We can evaluate this recurrence by 695 /// multiplying each element in the chain by the binomial coefficient 696 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 697 /// 698 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 699 /// 700 /// where BC(It, k) stands for binomial coefficient. 701 /// 702 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 703 ScalarEvolution &SE) const { 704 SCEVHandle Result = getStart(); 705 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 706 // The computation is correct in the face of overflow provided that the 707 // multiplication is performed _after_ the evaluation of the binomial 708 // coefficient. 709 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 710 if (isa<SCEVCouldNotCompute>(Coeff)) 711 return Coeff; 712 713 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 714 } 715 return Result; 716 } 717 718 //===----------------------------------------------------------------------===// 719 // SCEV Expression folder implementations 720 //===----------------------------------------------------------------------===// 721 722 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 723 const Type *Ty) { 724 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 725 "This is not a truncating conversion!"); 726 assert(isSCEVable(Ty) && 727 "This is not a conversion to a SCEVable type!"); 728 Ty = getEffectiveSCEVType(Ty); 729 730 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 731 return getUnknown( 732 ConstantExpr::getTrunc(SC->getValue(), Ty)); 733 734 // trunc(trunc(x)) --> trunc(x) 735 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 736 return getTruncateExpr(ST->getOperand(), Ty); 737 738 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 739 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 740 return getTruncateOrSignExtend(SS->getOperand(), Ty); 741 742 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 743 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 744 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 745 746 // If the input value is a chrec scev made out of constants, truncate 747 // all of the constants. 748 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 749 std::vector<SCEVHandle> Operands; 750 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 751 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 752 return getAddRecExpr(Operands, AddRec->getLoop()); 753 } 754 755 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 756 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 757 return Result; 758 } 759 760 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 761 const Type *Ty) { 762 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 763 "This is not an extending conversion!"); 764 assert(isSCEVable(Ty) && 765 "This is not a conversion to a SCEVable type!"); 766 Ty = getEffectiveSCEVType(Ty); 767 768 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 769 const Type *IntTy = getEffectiveSCEVType(Ty); 770 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 771 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 772 return getUnknown(C); 773 } 774 775 // zext(zext(x)) --> zext(x) 776 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 777 return getZeroExtendExpr(SZ->getOperand(), Ty); 778 779 // If the input value is a chrec scev, and we can prove that the value 780 // did not overflow the old, smaller, value, we can zero extend all of the 781 // operands (often constants). This allows analysis of something like 782 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 783 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 784 if (AR->isAffine()) { 785 // Check whether the backedge-taken count is SCEVCouldNotCompute. 786 // Note that this serves two purposes: It filters out loops that are 787 // simply not analyzable, and it covers the case where this code is 788 // being called from within backedge-taken count analysis, such that 789 // attempting to ask for the backedge-taken count would likely result 790 // in infinite recursion. In the later case, the analysis code will 791 // cope with a conservative value, and it will take care to purge 792 // that value once it has finished. 793 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 794 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 795 // Manually compute the final value for AR, checking for 796 // overflow. 797 SCEVHandle Start = AR->getStart(); 798 SCEVHandle Step = AR->getStepRecurrence(*this); 799 800 // Check whether the backedge-taken count can be losslessly casted to 801 // the addrec's type. The count is always unsigned. 802 SCEVHandle CastedMaxBECount = 803 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 804 if (MaxBECount == 805 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) { 806 const Type *WideTy = 807 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 808 // Check whether Start+Step*MaxBECount has no unsigned overflow. 809 SCEVHandle ZMul = 810 getMulExpr(CastedMaxBECount, 811 getTruncateOrZeroExtend(Step, Start->getType())); 812 SCEVHandle Add = getAddExpr(Start, ZMul); 813 if (getZeroExtendExpr(Add, WideTy) == 814 getAddExpr(getZeroExtendExpr(Start, WideTy), 815 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 816 getZeroExtendExpr(Step, WideTy)))) 817 // Return the expression with the addrec on the outside. 818 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 819 getZeroExtendExpr(Step, Ty), 820 AR->getLoop()); 821 822 // Similar to above, only this time treat the step value as signed. 823 // This covers loops that count down. 824 SCEVHandle SMul = 825 getMulExpr(CastedMaxBECount, 826 getTruncateOrSignExtend(Step, Start->getType())); 827 Add = getAddExpr(Start, SMul); 828 if (getZeroExtendExpr(Add, WideTy) == 829 getAddExpr(getZeroExtendExpr(Start, WideTy), 830 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 831 getSignExtendExpr(Step, WideTy)))) 832 // Return the expression with the addrec on the outside. 833 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 834 getSignExtendExpr(Step, Ty), 835 AR->getLoop()); 836 } 837 } 838 } 839 840 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 841 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 842 return Result; 843 } 844 845 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 846 const Type *Ty) { 847 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 848 "This is not an extending conversion!"); 849 assert(isSCEVable(Ty) && 850 "This is not a conversion to a SCEVable type!"); 851 Ty = getEffectiveSCEVType(Ty); 852 853 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 854 const Type *IntTy = getEffectiveSCEVType(Ty); 855 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 856 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 857 return getUnknown(C); 858 } 859 860 // sext(sext(x)) --> sext(x) 861 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 862 return getSignExtendExpr(SS->getOperand(), Ty); 863 864 // If the input value is a chrec scev, and we can prove that the value 865 // did not overflow the old, smaller, value, we can sign extend all of the 866 // operands (often constants). This allows analysis of something like 867 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 868 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 869 if (AR->isAffine()) { 870 // Check whether the backedge-taken count is SCEVCouldNotCompute. 871 // Note that this serves two purposes: It filters out loops that are 872 // simply not analyzable, and it covers the case where this code is 873 // being called from within backedge-taken count analysis, such that 874 // attempting to ask for the backedge-taken count would likely result 875 // in infinite recursion. In the later case, the analysis code will 876 // cope with a conservative value, and it will take care to purge 877 // that value once it has finished. 878 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 879 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 880 // Manually compute the final value for AR, checking for 881 // overflow. 882 SCEVHandle Start = AR->getStart(); 883 SCEVHandle Step = AR->getStepRecurrence(*this); 884 885 // Check whether the backedge-taken count can be losslessly casted to 886 // the addrec's type. The count is always unsigned. 887 SCEVHandle CastedMaxBECount = 888 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 889 if (MaxBECount == 890 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) { 891 const Type *WideTy = 892 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 893 // Check whether Start+Step*MaxBECount has no signed overflow. 894 SCEVHandle SMul = 895 getMulExpr(CastedMaxBECount, 896 getTruncateOrSignExtend(Step, Start->getType())); 897 SCEVHandle Add = getAddExpr(Start, SMul); 898 if (getSignExtendExpr(Add, WideTy) == 899 getAddExpr(getSignExtendExpr(Start, WideTy), 900 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 901 getSignExtendExpr(Step, WideTy)))) 902 // Return the expression with the addrec on the outside. 903 return getAddRecExpr(getSignExtendExpr(Start, Ty), 904 getSignExtendExpr(Step, Ty), 905 AR->getLoop()); 906 } 907 } 908 } 909 910 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 911 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 912 return Result; 913 } 914 915 // get - Get a canonical add expression, or something simpler if possible. 916 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 917 assert(!Ops.empty() && "Cannot get empty add!"); 918 if (Ops.size() == 1) return Ops[0]; 919 920 // Sort by complexity, this groups all similar expression types together. 921 GroupByComplexity(Ops, LI); 922 923 // If there are any constants, fold them together. 924 unsigned Idx = 0; 925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 926 ++Idx; 927 assert(Idx < Ops.size()); 928 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 929 // We found two constants, fold them together! 930 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 931 RHSC->getValue()->getValue()); 932 Ops[0] = getConstant(Fold); 933 Ops.erase(Ops.begin()+1); // Erase the folded element 934 if (Ops.size() == 1) return Ops[0]; 935 LHSC = cast<SCEVConstant>(Ops[0]); 936 } 937 938 // If we are left with a constant zero being added, strip it off. 939 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 940 Ops.erase(Ops.begin()); 941 --Idx; 942 } 943 } 944 945 if (Ops.size() == 1) return Ops[0]; 946 947 // Okay, check to see if the same value occurs in the operand list twice. If 948 // so, merge them together into an multiply expression. Since we sorted the 949 // list, these values are required to be adjacent. 950 const Type *Ty = Ops[0]->getType(); 951 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 952 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 953 // Found a match, merge the two values into a multiply, and add any 954 // remaining values to the result. 955 SCEVHandle Two = getIntegerSCEV(2, Ty); 956 SCEVHandle Mul = getMulExpr(Ops[i], Two); 957 if (Ops.size() == 2) 958 return Mul; 959 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 960 Ops.push_back(Mul); 961 return getAddExpr(Ops); 962 } 963 964 // Check for truncates. If all the operands are truncated from the same 965 // type, see if factoring out the truncate would permit the result to be 966 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 967 // if the contents of the resulting outer trunc fold to something simple. 968 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 969 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 970 const Type *DstType = Trunc->getType(); 971 const Type *SrcType = Trunc->getOperand()->getType(); 972 std::vector<SCEVHandle> LargeOps; 973 bool Ok = true; 974 // Check all the operands to see if they can be represented in the 975 // source type of the truncate. 976 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 977 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 978 if (T->getOperand()->getType() != SrcType) { 979 Ok = false; 980 break; 981 } 982 LargeOps.push_back(T->getOperand()); 983 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 984 // This could be either sign or zero extension, but sign extension 985 // is much more likely to be foldable here. 986 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 987 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 988 std::vector<SCEVHandle> LargeMulOps; 989 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 990 if (const SCEVTruncateExpr *T = 991 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 992 if (T->getOperand()->getType() != SrcType) { 993 Ok = false; 994 break; 995 } 996 LargeMulOps.push_back(T->getOperand()); 997 } else if (const SCEVConstant *C = 998 dyn_cast<SCEVConstant>(M->getOperand(j))) { 999 // This could be either sign or zero extension, but sign extension 1000 // is much more likely to be foldable here. 1001 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1002 } else { 1003 Ok = false; 1004 break; 1005 } 1006 } 1007 if (Ok) 1008 LargeOps.push_back(getMulExpr(LargeMulOps)); 1009 } else { 1010 Ok = false; 1011 break; 1012 } 1013 } 1014 if (Ok) { 1015 // Evaluate the expression in the larger type. 1016 SCEVHandle Fold = getAddExpr(LargeOps); 1017 // If it folds to something simple, use it. Otherwise, don't. 1018 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1019 return getTruncateExpr(Fold, DstType); 1020 } 1021 } 1022 1023 // Skip past any other cast SCEVs. 1024 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1025 ++Idx; 1026 1027 // If there are add operands they would be next. 1028 if (Idx < Ops.size()) { 1029 bool DeletedAdd = false; 1030 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1031 // If we have an add, expand the add operands onto the end of the operands 1032 // list. 1033 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1034 Ops.erase(Ops.begin()+Idx); 1035 DeletedAdd = true; 1036 } 1037 1038 // If we deleted at least one add, we added operands to the end of the list, 1039 // and they are not necessarily sorted. Recurse to resort and resimplify 1040 // any operands we just aquired. 1041 if (DeletedAdd) 1042 return getAddExpr(Ops); 1043 } 1044 1045 // Skip over the add expression until we get to a multiply. 1046 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1047 ++Idx; 1048 1049 // If we are adding something to a multiply expression, make sure the 1050 // something is not already an operand of the multiply. If so, merge it into 1051 // the multiply. 1052 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1053 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1054 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1055 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1056 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1057 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 1058 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1059 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1060 if (Mul->getNumOperands() != 2) { 1061 // If the multiply has more than two operands, we must get the 1062 // Y*Z term. 1063 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 1064 MulOps.erase(MulOps.begin()+MulOp); 1065 InnerMul = getMulExpr(MulOps); 1066 } 1067 SCEVHandle One = getIntegerSCEV(1, Ty); 1068 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1069 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1070 if (Ops.size() == 2) return OuterMul; 1071 if (AddOp < Idx) { 1072 Ops.erase(Ops.begin()+AddOp); 1073 Ops.erase(Ops.begin()+Idx-1); 1074 } else { 1075 Ops.erase(Ops.begin()+Idx); 1076 Ops.erase(Ops.begin()+AddOp-1); 1077 } 1078 Ops.push_back(OuterMul); 1079 return getAddExpr(Ops); 1080 } 1081 1082 // Check this multiply against other multiplies being added together. 1083 for (unsigned OtherMulIdx = Idx+1; 1084 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1085 ++OtherMulIdx) { 1086 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1087 // If MulOp occurs in OtherMul, we can fold the two multiplies 1088 // together. 1089 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1090 OMulOp != e; ++OMulOp) 1091 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1092 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1093 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1094 if (Mul->getNumOperands() != 2) { 1095 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 1096 MulOps.erase(MulOps.begin()+MulOp); 1097 InnerMul1 = getMulExpr(MulOps); 1098 } 1099 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1100 if (OtherMul->getNumOperands() != 2) { 1101 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 1102 OtherMul->op_end()); 1103 MulOps.erase(MulOps.begin()+OMulOp); 1104 InnerMul2 = getMulExpr(MulOps); 1105 } 1106 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1107 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1108 if (Ops.size() == 2) return OuterMul; 1109 Ops.erase(Ops.begin()+Idx); 1110 Ops.erase(Ops.begin()+OtherMulIdx-1); 1111 Ops.push_back(OuterMul); 1112 return getAddExpr(Ops); 1113 } 1114 } 1115 } 1116 } 1117 1118 // If there are any add recurrences in the operands list, see if any other 1119 // added values are loop invariant. If so, we can fold them into the 1120 // recurrence. 1121 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1122 ++Idx; 1123 1124 // Scan over all recurrences, trying to fold loop invariants into them. 1125 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1126 // Scan all of the other operands to this add and add them to the vector if 1127 // they are loop invariant w.r.t. the recurrence. 1128 std::vector<SCEVHandle> LIOps; 1129 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1130 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1131 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1132 LIOps.push_back(Ops[i]); 1133 Ops.erase(Ops.begin()+i); 1134 --i; --e; 1135 } 1136 1137 // If we found some loop invariants, fold them into the recurrence. 1138 if (!LIOps.empty()) { 1139 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1140 LIOps.push_back(AddRec->getStart()); 1141 1142 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 1143 AddRecOps[0] = getAddExpr(LIOps); 1144 1145 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1146 // If all of the other operands were loop invariant, we are done. 1147 if (Ops.size() == 1) return NewRec; 1148 1149 // Otherwise, add the folded AddRec by the non-liv parts. 1150 for (unsigned i = 0;; ++i) 1151 if (Ops[i] == AddRec) { 1152 Ops[i] = NewRec; 1153 break; 1154 } 1155 return getAddExpr(Ops); 1156 } 1157 1158 // Okay, if there weren't any loop invariants to be folded, check to see if 1159 // there are multiple AddRec's with the same loop induction variable being 1160 // added together. If so, we can fold them. 1161 for (unsigned OtherIdx = Idx+1; 1162 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1163 if (OtherIdx != Idx) { 1164 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1165 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1166 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1167 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 1168 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1169 if (i >= NewOps.size()) { 1170 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1171 OtherAddRec->op_end()); 1172 break; 1173 } 1174 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1175 } 1176 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1177 1178 if (Ops.size() == 2) return NewAddRec; 1179 1180 Ops.erase(Ops.begin()+Idx); 1181 Ops.erase(Ops.begin()+OtherIdx-1); 1182 Ops.push_back(NewAddRec); 1183 return getAddExpr(Ops); 1184 } 1185 } 1186 1187 // Otherwise couldn't fold anything into this recurrence. Move onto the 1188 // next one. 1189 } 1190 1191 // Okay, it looks like we really DO need an add expr. Check to see if we 1192 // already have one, otherwise create a new one. 1193 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1194 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1195 SCEVOps)]; 1196 if (Result == 0) Result = new SCEVAddExpr(Ops); 1197 return Result; 1198 } 1199 1200 1201 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 1202 assert(!Ops.empty() && "Cannot get empty mul!"); 1203 1204 // Sort by complexity, this groups all similar expression types together. 1205 GroupByComplexity(Ops, LI); 1206 1207 // If there are any constants, fold them together. 1208 unsigned Idx = 0; 1209 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1210 1211 // C1*(C2+V) -> C1*C2 + C1*V 1212 if (Ops.size() == 2) 1213 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1214 if (Add->getNumOperands() == 2 && 1215 isa<SCEVConstant>(Add->getOperand(0))) 1216 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1217 getMulExpr(LHSC, Add->getOperand(1))); 1218 1219 1220 ++Idx; 1221 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1222 // We found two constants, fold them together! 1223 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1224 RHSC->getValue()->getValue()); 1225 Ops[0] = getConstant(Fold); 1226 Ops.erase(Ops.begin()+1); // Erase the folded element 1227 if (Ops.size() == 1) return Ops[0]; 1228 LHSC = cast<SCEVConstant>(Ops[0]); 1229 } 1230 1231 // If we are left with a constant one being multiplied, strip it off. 1232 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1233 Ops.erase(Ops.begin()); 1234 --Idx; 1235 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1236 // If we have a multiply of zero, it will always be zero. 1237 return Ops[0]; 1238 } 1239 } 1240 1241 // Skip over the add expression until we get to a multiply. 1242 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1243 ++Idx; 1244 1245 if (Ops.size() == 1) 1246 return Ops[0]; 1247 1248 // If there are mul operands inline them all into this expression. 1249 if (Idx < Ops.size()) { 1250 bool DeletedMul = false; 1251 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1252 // If we have an mul, expand the mul operands onto the end of the operands 1253 // list. 1254 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1255 Ops.erase(Ops.begin()+Idx); 1256 DeletedMul = true; 1257 } 1258 1259 // If we deleted at least one mul, we added operands to the end of the list, 1260 // and they are not necessarily sorted. Recurse to resort and resimplify 1261 // any operands we just aquired. 1262 if (DeletedMul) 1263 return getMulExpr(Ops); 1264 } 1265 1266 // If there are any add recurrences in the operands list, see if any other 1267 // added values are loop invariant. If so, we can fold them into the 1268 // recurrence. 1269 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1270 ++Idx; 1271 1272 // Scan over all recurrences, trying to fold loop invariants into them. 1273 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1274 // Scan all of the other operands to this mul and add them to the vector if 1275 // they are loop invariant w.r.t. the recurrence. 1276 std::vector<SCEVHandle> LIOps; 1277 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1278 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1279 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1280 LIOps.push_back(Ops[i]); 1281 Ops.erase(Ops.begin()+i); 1282 --i; --e; 1283 } 1284 1285 // If we found some loop invariants, fold them into the recurrence. 1286 if (!LIOps.empty()) { 1287 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1288 std::vector<SCEVHandle> NewOps; 1289 NewOps.reserve(AddRec->getNumOperands()); 1290 if (LIOps.size() == 1) { 1291 const SCEV *Scale = LIOps[0]; 1292 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1293 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1294 } else { 1295 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1296 std::vector<SCEVHandle> MulOps(LIOps); 1297 MulOps.push_back(AddRec->getOperand(i)); 1298 NewOps.push_back(getMulExpr(MulOps)); 1299 } 1300 } 1301 1302 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1303 1304 // If all of the other operands were loop invariant, we are done. 1305 if (Ops.size() == 1) return NewRec; 1306 1307 // Otherwise, multiply the folded AddRec by the non-liv parts. 1308 for (unsigned i = 0;; ++i) 1309 if (Ops[i] == AddRec) { 1310 Ops[i] = NewRec; 1311 break; 1312 } 1313 return getMulExpr(Ops); 1314 } 1315 1316 // Okay, if there weren't any loop invariants to be folded, check to see if 1317 // there are multiple AddRec's with the same loop induction variable being 1318 // multiplied together. If so, we can fold them. 1319 for (unsigned OtherIdx = Idx+1; 1320 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1321 if (OtherIdx != Idx) { 1322 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1323 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1324 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1325 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1326 SCEVHandle NewStart = getMulExpr(F->getStart(), 1327 G->getStart()); 1328 SCEVHandle B = F->getStepRecurrence(*this); 1329 SCEVHandle D = G->getStepRecurrence(*this); 1330 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1331 getMulExpr(G, B), 1332 getMulExpr(B, D)); 1333 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1334 F->getLoop()); 1335 if (Ops.size() == 2) return NewAddRec; 1336 1337 Ops.erase(Ops.begin()+Idx); 1338 Ops.erase(Ops.begin()+OtherIdx-1); 1339 Ops.push_back(NewAddRec); 1340 return getMulExpr(Ops); 1341 } 1342 } 1343 1344 // Otherwise couldn't fold anything into this recurrence. Move onto the 1345 // next one. 1346 } 1347 1348 // Okay, it looks like we really DO need an mul expr. Check to see if we 1349 // already have one, otherwise create a new one. 1350 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1351 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1352 SCEVOps)]; 1353 if (Result == 0) 1354 Result = new SCEVMulExpr(Ops); 1355 return Result; 1356 } 1357 1358 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1359 const SCEVHandle &RHS) { 1360 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1361 if (RHSC->getValue()->equalsInt(1)) 1362 return LHS; // X udiv 1 --> x 1363 if (RHSC->isZero()) 1364 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1365 1366 // Determine if the division can be folded into the operands of 1367 // its operands. 1368 // TODO: Generalize this to non-constants by using known-bits information. 1369 const Type *Ty = LHS->getType(); 1370 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1371 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1372 // For non-power-of-two values, effectively round the value up to the 1373 // nearest power of two. 1374 if (!RHSC->getValue()->getValue().isPowerOf2()) 1375 ++MaxShiftAmt; 1376 const IntegerType *ExtTy = 1377 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1378 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1379 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1380 if (const SCEVConstant *Step = 1381 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1382 if (!Step->getValue()->getValue() 1383 .urem(RHSC->getValue()->getValue()) && 1384 getTruncateExpr(getZeroExtendExpr(AR, ExtTy), Ty) == AR) { 1385 std::vector<SCEVHandle> Operands; 1386 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1387 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1388 return getAddRecExpr(Operands, AR->getLoop()); 1389 } 1390 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1391 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) 1392 if (getTruncateExpr(getZeroExtendExpr(M, ExtTy), Ty) == M) 1393 // Find an operand that's safely divisible. 1394 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1395 SCEVHandle Op = M->getOperand(i); 1396 SCEVHandle Div = getUDivExpr(Op, RHSC); 1397 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1398 std::vector<SCEVHandle> Operands = M->getOperands(); 1399 Operands[i] = Div; 1400 return getMulExpr(Operands); 1401 } 1402 } 1403 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1404 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) 1405 if (getTruncateExpr(getZeroExtendExpr(A, ExtTy), Ty) == A) { 1406 std::vector<SCEVHandle> Operands; 1407 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1408 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1409 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1410 break; 1411 Operands.push_back(Op); 1412 } 1413 if (Operands.size() == A->getNumOperands()) 1414 return getAddExpr(Operands); 1415 } 1416 1417 // Fold if both operands are constant. 1418 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1419 Constant *LHSCV = LHSC->getValue(); 1420 Constant *RHSCV = RHSC->getValue(); 1421 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1422 } 1423 } 1424 1425 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1426 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1427 return Result; 1428 } 1429 1430 1431 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1432 /// specified loop. Simplify the expression as much as possible. 1433 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1434 const SCEVHandle &Step, const Loop *L) { 1435 std::vector<SCEVHandle> Operands; 1436 Operands.push_back(Start); 1437 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1438 if (StepChrec->getLoop() == L) { 1439 Operands.insert(Operands.end(), StepChrec->op_begin(), 1440 StepChrec->op_end()); 1441 return getAddRecExpr(Operands, L); 1442 } 1443 1444 Operands.push_back(Step); 1445 return getAddRecExpr(Operands, L); 1446 } 1447 1448 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1449 /// specified loop. Simplify the expression as much as possible. 1450 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1451 const Loop *L) { 1452 if (Operands.size() == 1) return Operands[0]; 1453 1454 if (Operands.back()->isZero()) { 1455 Operands.pop_back(); 1456 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1457 } 1458 1459 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1460 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1461 const Loop* NestedLoop = NestedAR->getLoop(); 1462 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1463 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1464 NestedAR->op_end()); 1465 SCEVHandle NestedARHandle(NestedAR); 1466 Operands[0] = NestedAR->getStart(); 1467 NestedOperands[0] = getAddRecExpr(Operands, L); 1468 return getAddRecExpr(NestedOperands, NestedLoop); 1469 } 1470 } 1471 1472 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1473 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; 1474 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1475 return Result; 1476 } 1477 1478 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1479 const SCEVHandle &RHS) { 1480 std::vector<SCEVHandle> Ops; 1481 Ops.push_back(LHS); 1482 Ops.push_back(RHS); 1483 return getSMaxExpr(Ops); 1484 } 1485 1486 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1487 assert(!Ops.empty() && "Cannot get empty smax!"); 1488 if (Ops.size() == 1) return Ops[0]; 1489 1490 // Sort by complexity, this groups all similar expression types together. 1491 GroupByComplexity(Ops, LI); 1492 1493 // If there are any constants, fold them together. 1494 unsigned Idx = 0; 1495 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1496 ++Idx; 1497 assert(Idx < Ops.size()); 1498 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1499 // We found two constants, fold them together! 1500 ConstantInt *Fold = ConstantInt::get( 1501 APIntOps::smax(LHSC->getValue()->getValue(), 1502 RHSC->getValue()->getValue())); 1503 Ops[0] = getConstant(Fold); 1504 Ops.erase(Ops.begin()+1); // Erase the folded element 1505 if (Ops.size() == 1) return Ops[0]; 1506 LHSC = cast<SCEVConstant>(Ops[0]); 1507 } 1508 1509 // If we are left with a constant -inf, strip it off. 1510 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1511 Ops.erase(Ops.begin()); 1512 --Idx; 1513 } 1514 } 1515 1516 if (Ops.size() == 1) return Ops[0]; 1517 1518 // Find the first SMax 1519 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1520 ++Idx; 1521 1522 // Check to see if one of the operands is an SMax. If so, expand its operands 1523 // onto our operand list, and recurse to simplify. 1524 if (Idx < Ops.size()) { 1525 bool DeletedSMax = false; 1526 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1527 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1528 Ops.erase(Ops.begin()+Idx); 1529 DeletedSMax = true; 1530 } 1531 1532 if (DeletedSMax) 1533 return getSMaxExpr(Ops); 1534 } 1535 1536 // Okay, check to see if the same value occurs in the operand list twice. If 1537 // so, delete one. Since we sorted the list, these values are required to 1538 // be adjacent. 1539 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1540 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1541 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1542 --i; --e; 1543 } 1544 1545 if (Ops.size() == 1) return Ops[0]; 1546 1547 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1548 1549 // Okay, it looks like we really DO need an smax expr. Check to see if we 1550 // already have one, otherwise create a new one. 1551 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1552 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1553 SCEVOps)]; 1554 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1555 return Result; 1556 } 1557 1558 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1559 const SCEVHandle &RHS) { 1560 std::vector<SCEVHandle> Ops; 1561 Ops.push_back(LHS); 1562 Ops.push_back(RHS); 1563 return getUMaxExpr(Ops); 1564 } 1565 1566 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1567 assert(!Ops.empty() && "Cannot get empty umax!"); 1568 if (Ops.size() == 1) return Ops[0]; 1569 1570 // Sort by complexity, this groups all similar expression types together. 1571 GroupByComplexity(Ops, LI); 1572 1573 // If there are any constants, fold them together. 1574 unsigned Idx = 0; 1575 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1576 ++Idx; 1577 assert(Idx < Ops.size()); 1578 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1579 // We found two constants, fold them together! 1580 ConstantInt *Fold = ConstantInt::get( 1581 APIntOps::umax(LHSC->getValue()->getValue(), 1582 RHSC->getValue()->getValue())); 1583 Ops[0] = getConstant(Fold); 1584 Ops.erase(Ops.begin()+1); // Erase the folded element 1585 if (Ops.size() == 1) return Ops[0]; 1586 LHSC = cast<SCEVConstant>(Ops[0]); 1587 } 1588 1589 // If we are left with a constant zero, strip it off. 1590 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1591 Ops.erase(Ops.begin()); 1592 --Idx; 1593 } 1594 } 1595 1596 if (Ops.size() == 1) return Ops[0]; 1597 1598 // Find the first UMax 1599 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1600 ++Idx; 1601 1602 // Check to see if one of the operands is a UMax. If so, expand its operands 1603 // onto our operand list, and recurse to simplify. 1604 if (Idx < Ops.size()) { 1605 bool DeletedUMax = false; 1606 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1607 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1608 Ops.erase(Ops.begin()+Idx); 1609 DeletedUMax = true; 1610 } 1611 1612 if (DeletedUMax) 1613 return getUMaxExpr(Ops); 1614 } 1615 1616 // Okay, check to see if the same value occurs in the operand list twice. If 1617 // so, delete one. Since we sorted the list, these values are required to 1618 // be adjacent. 1619 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1620 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1621 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1622 --i; --e; 1623 } 1624 1625 if (Ops.size() == 1) return Ops[0]; 1626 1627 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1628 1629 // Okay, it looks like we really DO need a umax expr. Check to see if we 1630 // already have one, otherwise create a new one. 1631 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1632 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1633 SCEVOps)]; 1634 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1635 return Result; 1636 } 1637 1638 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1639 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1640 return getConstant(CI); 1641 if (isa<ConstantPointerNull>(V)) 1642 return getIntegerSCEV(0, V->getType()); 1643 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1644 if (Result == 0) Result = new SCEVUnknown(V); 1645 return Result; 1646 } 1647 1648 //===----------------------------------------------------------------------===// 1649 // Basic SCEV Analysis and PHI Idiom Recognition Code 1650 // 1651 1652 /// isSCEVable - Test if values of the given type are analyzable within 1653 /// the SCEV framework. This primarily includes integer types, and it 1654 /// can optionally include pointer types if the ScalarEvolution class 1655 /// has access to target-specific information. 1656 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1657 // Integers are always SCEVable. 1658 if (Ty->isInteger()) 1659 return true; 1660 1661 // Pointers are SCEVable if TargetData information is available 1662 // to provide pointer size information. 1663 if (isa<PointerType>(Ty)) 1664 return TD != NULL; 1665 1666 // Otherwise it's not SCEVable. 1667 return false; 1668 } 1669 1670 /// getTypeSizeInBits - Return the size in bits of the specified type, 1671 /// for which isSCEVable must return true. 1672 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1673 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1674 1675 // If we have a TargetData, use it! 1676 if (TD) 1677 return TD->getTypeSizeInBits(Ty); 1678 1679 // Otherwise, we support only integer types. 1680 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1681 return Ty->getPrimitiveSizeInBits(); 1682 } 1683 1684 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1685 /// the given type and which represents how SCEV will treat the given 1686 /// type, for which isSCEVable must return true. For pointer types, 1687 /// this is the pointer-sized integer type. 1688 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1689 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1690 1691 if (Ty->isInteger()) 1692 return Ty; 1693 1694 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1695 return TD->getIntPtrType(); 1696 } 1697 1698 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1699 return UnknownValue; 1700 } 1701 1702 /// hasSCEV - Return true if the SCEV for this value has already been 1703 /// computed. 1704 bool ScalarEvolution::hasSCEV(Value *V) const { 1705 return Scalars.count(V); 1706 } 1707 1708 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1709 /// expression and create a new one. 1710 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1711 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1712 1713 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1714 if (I != Scalars.end()) return I->second; 1715 SCEVHandle S = createSCEV(V); 1716 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1717 return S; 1718 } 1719 1720 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1721 /// specified signed integer value and return a SCEV for the constant. 1722 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1723 Ty = getEffectiveSCEVType(Ty); 1724 Constant *C; 1725 if (Val == 0) 1726 C = Constant::getNullValue(Ty); 1727 else if (Ty->isFloatingPoint()) 1728 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1729 APFloat::IEEEdouble, Val)); 1730 else 1731 C = ConstantInt::get(Ty, Val); 1732 return getUnknown(C); 1733 } 1734 1735 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1736 /// 1737 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 1738 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1739 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 1740 1741 const Type *Ty = V->getType(); 1742 Ty = getEffectiveSCEVType(Ty); 1743 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 1744 } 1745 1746 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1747 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 1748 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1749 return getUnknown(ConstantExpr::getNot(VC->getValue())); 1750 1751 const Type *Ty = V->getType(); 1752 Ty = getEffectiveSCEVType(Ty); 1753 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 1754 return getMinusSCEV(AllOnes, V); 1755 } 1756 1757 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1758 /// 1759 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 1760 const SCEVHandle &RHS) { 1761 // X - Y --> X + -Y 1762 return getAddExpr(LHS, getNegativeSCEV(RHS)); 1763 } 1764 1765 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1766 /// input value to the specified type. If the type must be extended, it is zero 1767 /// extended. 1768 SCEVHandle 1769 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 1770 const Type *Ty) { 1771 const Type *SrcTy = V->getType(); 1772 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1773 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1774 "Cannot truncate or zero extend with non-integer arguments!"); 1775 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1776 return V; // No conversion 1777 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1778 return getTruncateExpr(V, Ty); 1779 return getZeroExtendExpr(V, Ty); 1780 } 1781 1782 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 1783 /// input value to the specified type. If the type must be extended, it is sign 1784 /// extended. 1785 SCEVHandle 1786 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 1787 const Type *Ty) { 1788 const Type *SrcTy = V->getType(); 1789 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1790 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1791 "Cannot truncate or zero extend with non-integer arguments!"); 1792 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1793 return V; // No conversion 1794 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1795 return getTruncateExpr(V, Ty); 1796 return getSignExtendExpr(V, Ty); 1797 } 1798 1799 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1800 /// the specified instruction and replaces any references to the symbolic value 1801 /// SymName with the specified value. This is used during PHI resolution. 1802 void ScalarEvolution:: 1803 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1804 const SCEVHandle &NewVal) { 1805 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 1806 Scalars.find(SCEVCallbackVH(I, this)); 1807 if (SI == Scalars.end()) return; 1808 1809 SCEVHandle NV = 1810 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 1811 if (NV == SI->second) return; // No change. 1812 1813 SI->second = NV; // Update the scalars map! 1814 1815 // Any instruction values that use this instruction might also need to be 1816 // updated! 1817 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1818 UI != E; ++UI) 1819 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1820 } 1821 1822 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1823 /// a loop header, making it a potential recurrence, or it doesn't. 1824 /// 1825 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 1826 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1827 if (const Loop *L = LI->getLoopFor(PN->getParent())) 1828 if (L->getHeader() == PN->getParent()) { 1829 // If it lives in the loop header, it has two incoming values, one 1830 // from outside the loop, and one from inside. 1831 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1832 unsigned BackEdge = IncomingEdge^1; 1833 1834 // While we are analyzing this PHI node, handle its value symbolically. 1835 SCEVHandle SymbolicName = getUnknown(PN); 1836 assert(Scalars.find(PN) == Scalars.end() && 1837 "PHI node already processed?"); 1838 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 1839 1840 // Using this symbolic name for the PHI, analyze the value coming around 1841 // the back-edge. 1842 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1843 1844 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1845 // has a special value for the first iteration of the loop. 1846 1847 // If the value coming around the backedge is an add with the symbolic 1848 // value we just inserted, then we found a simple induction variable! 1849 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1850 // If there is a single occurrence of the symbolic value, replace it 1851 // with a recurrence. 1852 unsigned FoundIndex = Add->getNumOperands(); 1853 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1854 if (Add->getOperand(i) == SymbolicName) 1855 if (FoundIndex == e) { 1856 FoundIndex = i; 1857 break; 1858 } 1859 1860 if (FoundIndex != Add->getNumOperands()) { 1861 // Create an add with everything but the specified operand. 1862 std::vector<SCEVHandle> Ops; 1863 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1864 if (i != FoundIndex) 1865 Ops.push_back(Add->getOperand(i)); 1866 SCEVHandle Accum = getAddExpr(Ops); 1867 1868 // This is not a valid addrec if the step amount is varying each 1869 // loop iteration, but is not itself an addrec in this loop. 1870 if (Accum->isLoopInvariant(L) || 1871 (isa<SCEVAddRecExpr>(Accum) && 1872 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1873 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1874 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 1875 1876 // Okay, for the entire analysis of this edge we assumed the PHI 1877 // to be symbolic. We now need to go back and update all of the 1878 // entries for the scalars that use the PHI (except for the PHI 1879 // itself) to use the new analyzed value instead of the "symbolic" 1880 // value. 1881 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1882 return PHISCEV; 1883 } 1884 } 1885 } else if (const SCEVAddRecExpr *AddRec = 1886 dyn_cast<SCEVAddRecExpr>(BEValue)) { 1887 // Otherwise, this could be a loop like this: 1888 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1889 // In this case, j = {1,+,1} and BEValue is j. 1890 // Because the other in-value of i (0) fits the evolution of BEValue 1891 // i really is an addrec evolution. 1892 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1893 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1894 1895 // If StartVal = j.start - j.stride, we can use StartVal as the 1896 // initial step of the addrec evolution. 1897 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 1898 AddRec->getOperand(1))) { 1899 SCEVHandle PHISCEV = 1900 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1901 1902 // Okay, for the entire analysis of this edge we assumed the PHI 1903 // to be symbolic. We now need to go back and update all of the 1904 // entries for the scalars that use the PHI (except for the PHI 1905 // itself) to use the new analyzed value instead of the "symbolic" 1906 // value. 1907 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1908 return PHISCEV; 1909 } 1910 } 1911 } 1912 1913 return SymbolicName; 1914 } 1915 1916 // If it's not a loop phi, we can't handle it yet. 1917 return getUnknown(PN); 1918 } 1919 1920 /// createNodeForGEP - Expand GEP instructions into add and multiply 1921 /// operations. This allows them to be analyzed by regular SCEV code. 1922 /// 1923 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 1924 1925 const Type *IntPtrTy = TD->getIntPtrType(); 1926 Value *Base = GEP->getOperand(0); 1927 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 1928 gep_type_iterator GTI = gep_type_begin(GEP); 1929 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 1930 E = GEP->op_end(); 1931 I != E; ++I) { 1932 Value *Index = *I; 1933 // Compute the (potentially symbolic) offset in bytes for this index. 1934 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 1935 // For a struct, add the member offset. 1936 const StructLayout &SL = *TD->getStructLayout(STy); 1937 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 1938 uint64_t Offset = SL.getElementOffset(FieldNo); 1939 TotalOffset = getAddExpr(TotalOffset, 1940 getIntegerSCEV(Offset, IntPtrTy)); 1941 } else { 1942 // For an array, add the element offset, explicitly scaled. 1943 SCEVHandle LocalOffset = getSCEV(Index); 1944 if (!isa<PointerType>(LocalOffset->getType())) 1945 // Getelementptr indicies are signed. 1946 LocalOffset = getTruncateOrSignExtend(LocalOffset, 1947 IntPtrTy); 1948 LocalOffset = 1949 getMulExpr(LocalOffset, 1950 getIntegerSCEV(TD->getTypePaddedSize(*GTI), 1951 IntPtrTy)); 1952 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 1953 } 1954 } 1955 return getAddExpr(getSCEV(Base), TotalOffset); 1956 } 1957 1958 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1959 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1960 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1961 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1962 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { 1963 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1964 return C->getValue()->getValue().countTrailingZeros(); 1965 1966 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1967 return std::min(GetMinTrailingZeros(T->getOperand(), SE), 1968 (uint32_t)SE.getTypeSizeInBits(T->getType())); 1969 1970 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1971 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 1972 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 1973 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1974 } 1975 1976 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1977 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 1978 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 1979 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1980 } 1981 1982 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1983 // The result is the min of all operands results. 1984 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 1985 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1986 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 1987 return MinOpRes; 1988 } 1989 1990 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1991 // The result is the sum of all operands results. 1992 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1993 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); 1994 for (unsigned i = 1, e = M->getNumOperands(); 1995 SumOpRes != BitWidth && i != e; ++i) 1996 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), 1997 BitWidth); 1998 return SumOpRes; 1999 } 2000 2001 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2002 // The result is the min of all operands results. 2003 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2004 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2005 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2006 return MinOpRes; 2007 } 2008 2009 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2010 // The result is the min of all operands results. 2011 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2012 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2013 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2014 return MinOpRes; 2015 } 2016 2017 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2018 // The result is the min of all operands results. 2019 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2020 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2021 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2022 return MinOpRes; 2023 } 2024 2025 // SCEVUDivExpr, SCEVUnknown 2026 return 0; 2027 } 2028 2029 /// createSCEV - We know that there is no SCEV for the specified value. 2030 /// Analyze the expression. 2031 /// 2032 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2033 if (!isSCEVable(V->getType())) 2034 return getUnknown(V); 2035 2036 unsigned Opcode = Instruction::UserOp1; 2037 if (Instruction *I = dyn_cast<Instruction>(V)) 2038 Opcode = I->getOpcode(); 2039 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2040 Opcode = CE->getOpcode(); 2041 else 2042 return getUnknown(V); 2043 2044 User *U = cast<User>(V); 2045 switch (Opcode) { 2046 case Instruction::Add: 2047 return getAddExpr(getSCEV(U->getOperand(0)), 2048 getSCEV(U->getOperand(1))); 2049 case Instruction::Mul: 2050 return getMulExpr(getSCEV(U->getOperand(0)), 2051 getSCEV(U->getOperand(1))); 2052 case Instruction::UDiv: 2053 return getUDivExpr(getSCEV(U->getOperand(0)), 2054 getSCEV(U->getOperand(1))); 2055 case Instruction::Sub: 2056 return getMinusSCEV(getSCEV(U->getOperand(0)), 2057 getSCEV(U->getOperand(1))); 2058 case Instruction::And: 2059 // For an expression like x&255 that merely masks off the high bits, 2060 // use zext(trunc(x)) as the SCEV expression. 2061 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2062 if (CI->isNullValue()) 2063 return getSCEV(U->getOperand(1)); 2064 if (CI->isAllOnesValue()) 2065 return getSCEV(U->getOperand(0)); 2066 const APInt &A = CI->getValue(); 2067 unsigned Ones = A.countTrailingOnes(); 2068 if (APIntOps::isMask(Ones, A)) 2069 return 2070 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2071 IntegerType::get(Ones)), 2072 U->getType()); 2073 } 2074 break; 2075 case Instruction::Or: 2076 // If the RHS of the Or is a constant, we may have something like: 2077 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2078 // optimizations will transparently handle this case. 2079 // 2080 // In order for this transformation to be safe, the LHS must be of the 2081 // form X*(2^n) and the Or constant must be less than 2^n. 2082 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2083 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2084 const APInt &CIVal = CI->getValue(); 2085 if (GetMinTrailingZeros(LHS, *this) >= 2086 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2087 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2088 } 2089 break; 2090 case Instruction::Xor: 2091 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2092 // If the RHS of the xor is a signbit, then this is just an add. 2093 // Instcombine turns add of signbit into xor as a strength reduction step. 2094 if (CI->getValue().isSignBit()) 2095 return getAddExpr(getSCEV(U->getOperand(0)), 2096 getSCEV(U->getOperand(1))); 2097 2098 // If the RHS of xor is -1, then this is a not operation. 2099 else if (CI->isAllOnesValue()) 2100 return getNotSCEV(getSCEV(U->getOperand(0))); 2101 } 2102 break; 2103 2104 case Instruction::Shl: 2105 // Turn shift left of a constant amount into a multiply. 2106 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2107 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2108 Constant *X = ConstantInt::get( 2109 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2110 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2111 } 2112 break; 2113 2114 case Instruction::LShr: 2115 // Turn logical shift right of a constant into a unsigned divide. 2116 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2117 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2118 Constant *X = ConstantInt::get( 2119 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2120 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2121 } 2122 break; 2123 2124 case Instruction::AShr: 2125 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2126 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2127 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2128 if (L->getOpcode() == Instruction::Shl && 2129 L->getOperand(1) == U->getOperand(1)) { 2130 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2131 uint64_t Amt = BitWidth - CI->getZExtValue(); 2132 if (Amt == BitWidth) 2133 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2134 if (Amt > BitWidth) 2135 return getIntegerSCEV(0, U->getType()); // value is undefined 2136 return 2137 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2138 IntegerType::get(Amt)), 2139 U->getType()); 2140 } 2141 break; 2142 2143 case Instruction::Trunc: 2144 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2145 2146 case Instruction::ZExt: 2147 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2148 2149 case Instruction::SExt: 2150 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2151 2152 case Instruction::BitCast: 2153 // BitCasts are no-op casts so we just eliminate the cast. 2154 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2155 return getSCEV(U->getOperand(0)); 2156 break; 2157 2158 case Instruction::IntToPtr: 2159 if (!TD) break; // Without TD we can't analyze pointers. 2160 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2161 TD->getIntPtrType()); 2162 2163 case Instruction::PtrToInt: 2164 if (!TD) break; // Without TD we can't analyze pointers. 2165 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2166 U->getType()); 2167 2168 case Instruction::GetElementPtr: 2169 if (!TD) break; // Without TD we can't analyze pointers. 2170 return createNodeForGEP(U); 2171 2172 case Instruction::PHI: 2173 return createNodeForPHI(cast<PHINode>(U)); 2174 2175 case Instruction::Select: 2176 // This could be a smax or umax that was lowered earlier. 2177 // Try to recover it. 2178 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2179 Value *LHS = ICI->getOperand(0); 2180 Value *RHS = ICI->getOperand(1); 2181 switch (ICI->getPredicate()) { 2182 case ICmpInst::ICMP_SLT: 2183 case ICmpInst::ICMP_SLE: 2184 std::swap(LHS, RHS); 2185 // fall through 2186 case ICmpInst::ICMP_SGT: 2187 case ICmpInst::ICMP_SGE: 2188 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2189 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2190 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2191 // ~smax(~x, ~y) == smin(x, y). 2192 return getNotSCEV(getSMaxExpr( 2193 getNotSCEV(getSCEV(LHS)), 2194 getNotSCEV(getSCEV(RHS)))); 2195 break; 2196 case ICmpInst::ICMP_ULT: 2197 case ICmpInst::ICMP_ULE: 2198 std::swap(LHS, RHS); 2199 // fall through 2200 case ICmpInst::ICMP_UGT: 2201 case ICmpInst::ICMP_UGE: 2202 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2203 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2204 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2205 // ~umax(~x, ~y) == umin(x, y) 2206 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2207 getNotSCEV(getSCEV(RHS)))); 2208 break; 2209 default: 2210 break; 2211 } 2212 } 2213 2214 default: // We cannot analyze this expression. 2215 break; 2216 } 2217 2218 return getUnknown(V); 2219 } 2220 2221 2222 2223 //===----------------------------------------------------------------------===// 2224 // Iteration Count Computation Code 2225 // 2226 2227 /// getBackedgeTakenCount - If the specified loop has a predictable 2228 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2229 /// object. The backedge-taken count is the number of times the loop header 2230 /// will be branched to from within the loop. This is one less than the 2231 /// trip count of the loop, since it doesn't count the first iteration, 2232 /// when the header is branched to from outside the loop. 2233 /// 2234 /// Note that it is not valid to call this method on a loop without a 2235 /// loop-invariant backedge-taken count (see 2236 /// hasLoopInvariantBackedgeTakenCount). 2237 /// 2238 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2239 return getBackedgeTakenInfo(L).Exact; 2240 } 2241 2242 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2243 /// return the least SCEV value that is known never to be less than the 2244 /// actual backedge taken count. 2245 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2246 return getBackedgeTakenInfo(L).Max; 2247 } 2248 2249 const ScalarEvolution::BackedgeTakenInfo & 2250 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2251 // Initially insert a CouldNotCompute for this loop. If the insertion 2252 // succeeds, procede to actually compute a backedge-taken count and 2253 // update the value. The temporary CouldNotCompute value tells SCEV 2254 // code elsewhere that it shouldn't attempt to request a new 2255 // backedge-taken count, which could result in infinite recursion. 2256 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2257 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2258 if (Pair.second) { 2259 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2260 if (ItCount.Exact != UnknownValue) { 2261 assert(ItCount.Exact->isLoopInvariant(L) && 2262 ItCount.Max->isLoopInvariant(L) && 2263 "Computed trip count isn't loop invariant for loop!"); 2264 ++NumTripCountsComputed; 2265 2266 // Update the value in the map. 2267 Pair.first->second = ItCount; 2268 } else if (isa<PHINode>(L->getHeader()->begin())) { 2269 // Only count loops that have phi nodes as not being computable. 2270 ++NumTripCountsNotComputed; 2271 } 2272 2273 // Now that we know more about the trip count for this loop, forget any 2274 // existing SCEV values for PHI nodes in this loop since they are only 2275 // conservative estimates made without the benefit 2276 // of trip count information. 2277 if (ItCount.hasAnyInfo()) 2278 forgetLoopPHIs(L); 2279 } 2280 return Pair.first->second; 2281 } 2282 2283 /// forgetLoopBackedgeTakenCount - This method should be called by the 2284 /// client when it has changed a loop in a way that may effect 2285 /// ScalarEvolution's ability to compute a trip count, or if the loop 2286 /// is deleted. 2287 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2288 BackedgeTakenCounts.erase(L); 2289 forgetLoopPHIs(L); 2290 } 2291 2292 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2293 /// PHI nodes in the given loop. This is used when the trip count of 2294 /// the loop may have changed. 2295 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2296 BasicBlock *Header = L->getHeader(); 2297 2298 SmallVector<Instruction *, 16> Worklist; 2299 for (BasicBlock::iterator I = Header->begin(); 2300 PHINode *PN = dyn_cast<PHINode>(I); ++I) 2301 Worklist.push_back(PN); 2302 2303 while (!Worklist.empty()) { 2304 Instruction *I = Worklist.pop_back_val(); 2305 if (Scalars.erase(I)) 2306 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2307 UI != UE; ++UI) 2308 Worklist.push_back(cast<Instruction>(UI)); 2309 } 2310 } 2311 2312 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2313 /// of the specified loop will execute. 2314 ScalarEvolution::BackedgeTakenInfo 2315 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2316 // If the loop has a non-one exit block count, we can't analyze it. 2317 SmallVector<BasicBlock*, 8> ExitBlocks; 2318 L->getExitBlocks(ExitBlocks); 2319 if (ExitBlocks.size() != 1) return UnknownValue; 2320 2321 // Okay, there is one exit block. Try to find the condition that causes the 2322 // loop to be exited. 2323 BasicBlock *ExitBlock = ExitBlocks[0]; 2324 2325 BasicBlock *ExitingBlock = 0; 2326 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 2327 PI != E; ++PI) 2328 if (L->contains(*PI)) { 2329 if (ExitingBlock == 0) 2330 ExitingBlock = *PI; 2331 else 2332 return UnknownValue; // More than one block exiting! 2333 } 2334 assert(ExitingBlock && "No exits from loop, something is broken!"); 2335 2336 // Okay, we've computed the exiting block. See what condition causes us to 2337 // exit. 2338 // 2339 // FIXME: we should be able to handle switch instructions (with a single exit) 2340 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2341 if (ExitBr == 0) return UnknownValue; 2342 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2343 2344 // At this point, we know we have a conditional branch that determines whether 2345 // the loop is exited. However, we don't know if the branch is executed each 2346 // time through the loop. If not, then the execution count of the branch will 2347 // not be equal to the trip count of the loop. 2348 // 2349 // Currently we check for this by checking to see if the Exit branch goes to 2350 // the loop header. If so, we know it will always execute the same number of 2351 // times as the loop. We also handle the case where the exit block *is* the 2352 // loop header. This is common for un-rotated loops. More extensive analysis 2353 // could be done to handle more cases here. 2354 if (ExitBr->getSuccessor(0) != L->getHeader() && 2355 ExitBr->getSuccessor(1) != L->getHeader() && 2356 ExitBr->getParent() != L->getHeader()) 2357 return UnknownValue; 2358 2359 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2360 2361 // If it's not an integer comparison then compute it the hard way. 2362 // Note that ICmpInst deals with pointer comparisons too so we must check 2363 // the type of the operand. 2364 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2365 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2366 ExitBr->getSuccessor(0) == ExitBlock); 2367 2368 // If the condition was exit on true, convert the condition to exit on false 2369 ICmpInst::Predicate Cond; 2370 if (ExitBr->getSuccessor(1) == ExitBlock) 2371 Cond = ExitCond->getPredicate(); 2372 else 2373 Cond = ExitCond->getInversePredicate(); 2374 2375 // Handle common loops like: for (X = "string"; *X; ++X) 2376 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2377 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2378 SCEVHandle ItCnt = 2379 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2380 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2381 } 2382 2383 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2384 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2385 2386 // Try to evaluate any dependencies out of the loop. 2387 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2388 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2389 Tmp = getSCEVAtScope(RHS, L); 2390 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2391 2392 // At this point, we would like to compute how many iterations of the 2393 // loop the predicate will return true for these inputs. 2394 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2395 // If there is a loop-invariant, force it into the RHS. 2396 std::swap(LHS, RHS); 2397 Cond = ICmpInst::getSwappedPredicate(Cond); 2398 } 2399 2400 // If we have a comparison of a chrec against a constant, try to use value 2401 // ranges to answer this query. 2402 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2403 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2404 if (AddRec->getLoop() == L) { 2405 // Form the comparison range using the constant of the correct type so 2406 // that the ConstantRange class knows to do a signed or unsigned 2407 // comparison. 2408 ConstantInt *CompVal = RHSC->getValue(); 2409 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2410 CompVal = dyn_cast<ConstantInt>( 2411 ConstantExpr::getBitCast(CompVal, RealTy)); 2412 if (CompVal) { 2413 // Form the constant range. 2414 ConstantRange CompRange( 2415 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2416 2417 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2418 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2419 } 2420 } 2421 2422 switch (Cond) { 2423 case ICmpInst::ICMP_NE: { // while (X != Y) 2424 // Convert to: while (X-Y != 0) 2425 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2426 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2427 break; 2428 } 2429 case ICmpInst::ICMP_EQ: { 2430 // Convert to: while (X-Y == 0) // while (X == Y) 2431 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2432 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2433 break; 2434 } 2435 case ICmpInst::ICMP_SLT: { 2436 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 2437 if (BTI.hasAnyInfo()) return BTI; 2438 break; 2439 } 2440 case ICmpInst::ICMP_SGT: { 2441 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2442 getNotSCEV(RHS), L, true); 2443 if (BTI.hasAnyInfo()) return BTI; 2444 break; 2445 } 2446 case ICmpInst::ICMP_ULT: { 2447 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 2448 if (BTI.hasAnyInfo()) return BTI; 2449 break; 2450 } 2451 case ICmpInst::ICMP_UGT: { 2452 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2453 getNotSCEV(RHS), L, false); 2454 if (BTI.hasAnyInfo()) return BTI; 2455 break; 2456 } 2457 default: 2458 #if 0 2459 errs() << "ComputeBackedgeTakenCount "; 2460 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2461 errs() << "[unsigned] "; 2462 errs() << *LHS << " " 2463 << Instruction::getOpcodeName(Instruction::ICmp) 2464 << " " << *RHS << "\n"; 2465 #endif 2466 break; 2467 } 2468 return 2469 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2470 ExitBr->getSuccessor(0) == ExitBlock); 2471 } 2472 2473 static ConstantInt * 2474 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2475 ScalarEvolution &SE) { 2476 SCEVHandle InVal = SE.getConstant(C); 2477 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2478 assert(isa<SCEVConstant>(Val) && 2479 "Evaluation of SCEV at constant didn't fold correctly?"); 2480 return cast<SCEVConstant>(Val)->getValue(); 2481 } 2482 2483 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2484 /// and a GEP expression (missing the pointer index) indexing into it, return 2485 /// the addressed element of the initializer or null if the index expression is 2486 /// invalid. 2487 static Constant * 2488 GetAddressedElementFromGlobal(GlobalVariable *GV, 2489 const std::vector<ConstantInt*> &Indices) { 2490 Constant *Init = GV->getInitializer(); 2491 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2492 uint64_t Idx = Indices[i]->getZExtValue(); 2493 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2494 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2495 Init = cast<Constant>(CS->getOperand(Idx)); 2496 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2497 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2498 Init = cast<Constant>(CA->getOperand(Idx)); 2499 } else if (isa<ConstantAggregateZero>(Init)) { 2500 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2501 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2502 Init = Constant::getNullValue(STy->getElementType(Idx)); 2503 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2504 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2505 Init = Constant::getNullValue(ATy->getElementType()); 2506 } else { 2507 assert(0 && "Unknown constant aggregate type!"); 2508 } 2509 return 0; 2510 } else { 2511 return 0; // Unknown initializer type 2512 } 2513 } 2514 return Init; 2515 } 2516 2517 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2518 /// 'icmp op load X, cst', try to see if we can compute the backedge 2519 /// execution count. 2520 SCEVHandle ScalarEvolution:: 2521 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2522 const Loop *L, 2523 ICmpInst::Predicate predicate) { 2524 if (LI->isVolatile()) return UnknownValue; 2525 2526 // Check to see if the loaded pointer is a getelementptr of a global. 2527 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2528 if (!GEP) return UnknownValue; 2529 2530 // Make sure that it is really a constant global we are gepping, with an 2531 // initializer, and make sure the first IDX is really 0. 2532 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2533 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2534 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2535 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2536 return UnknownValue; 2537 2538 // Okay, we allow one non-constant index into the GEP instruction. 2539 Value *VarIdx = 0; 2540 std::vector<ConstantInt*> Indexes; 2541 unsigned VarIdxNum = 0; 2542 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2543 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2544 Indexes.push_back(CI); 2545 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2546 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2547 VarIdx = GEP->getOperand(i); 2548 VarIdxNum = i-2; 2549 Indexes.push_back(0); 2550 } 2551 2552 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2553 // Check to see if X is a loop variant variable value now. 2554 SCEVHandle Idx = getSCEV(VarIdx); 2555 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2556 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2557 2558 // We can only recognize very limited forms of loop index expressions, in 2559 // particular, only affine AddRec's like {C1,+,C2}. 2560 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2561 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2562 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2563 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2564 return UnknownValue; 2565 2566 unsigned MaxSteps = MaxBruteForceIterations; 2567 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2568 ConstantInt *ItCst = 2569 ConstantInt::get(IdxExpr->getType(), IterationNum); 2570 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 2571 2572 // Form the GEP offset. 2573 Indexes[VarIdxNum] = Val; 2574 2575 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2576 if (Result == 0) break; // Cannot compute! 2577 2578 // Evaluate the condition for this iteration. 2579 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2580 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2581 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2582 #if 0 2583 errs() << "\n***\n*** Computed loop count " << *ItCst 2584 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2585 << "***\n"; 2586 #endif 2587 ++NumArrayLenItCounts; 2588 return getConstant(ItCst); // Found terminating iteration! 2589 } 2590 } 2591 return UnknownValue; 2592 } 2593 2594 2595 /// CanConstantFold - Return true if we can constant fold an instruction of the 2596 /// specified type, assuming that all operands were constants. 2597 static bool CanConstantFold(const Instruction *I) { 2598 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2599 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2600 return true; 2601 2602 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2603 if (const Function *F = CI->getCalledFunction()) 2604 return canConstantFoldCallTo(F); 2605 return false; 2606 } 2607 2608 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2609 /// in the loop that V is derived from. We allow arbitrary operations along the 2610 /// way, but the operands of an operation must either be constants or a value 2611 /// derived from a constant PHI. If this expression does not fit with these 2612 /// constraints, return null. 2613 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2614 // If this is not an instruction, or if this is an instruction outside of the 2615 // loop, it can't be derived from a loop PHI. 2616 Instruction *I = dyn_cast<Instruction>(V); 2617 if (I == 0 || !L->contains(I->getParent())) return 0; 2618 2619 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2620 if (L->getHeader() == I->getParent()) 2621 return PN; 2622 else 2623 // We don't currently keep track of the control flow needed to evaluate 2624 // PHIs, so we cannot handle PHIs inside of loops. 2625 return 0; 2626 } 2627 2628 // If we won't be able to constant fold this expression even if the operands 2629 // are constants, return early. 2630 if (!CanConstantFold(I)) return 0; 2631 2632 // Otherwise, we can evaluate this instruction if all of its operands are 2633 // constant or derived from a PHI node themselves. 2634 PHINode *PHI = 0; 2635 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2636 if (!(isa<Constant>(I->getOperand(Op)) || 2637 isa<GlobalValue>(I->getOperand(Op)))) { 2638 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2639 if (P == 0) return 0; // Not evolving from PHI 2640 if (PHI == 0) 2641 PHI = P; 2642 else if (PHI != P) 2643 return 0; // Evolving from multiple different PHIs. 2644 } 2645 2646 // This is a expression evolving from a constant PHI! 2647 return PHI; 2648 } 2649 2650 /// EvaluateExpression - Given an expression that passes the 2651 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2652 /// in the loop has the value PHIVal. If we can't fold this expression for some 2653 /// reason, return null. 2654 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2655 if (isa<PHINode>(V)) return PHIVal; 2656 if (Constant *C = dyn_cast<Constant>(V)) return C; 2657 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2658 Instruction *I = cast<Instruction>(V); 2659 2660 std::vector<Constant*> Operands; 2661 Operands.resize(I->getNumOperands()); 2662 2663 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2664 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2665 if (Operands[i] == 0) return 0; 2666 } 2667 2668 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2669 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2670 &Operands[0], Operands.size()); 2671 else 2672 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2673 &Operands[0], Operands.size()); 2674 } 2675 2676 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2677 /// in the header of its containing loop, we know the loop executes a 2678 /// constant number of times, and the PHI node is just a recurrence 2679 /// involving constants, fold it. 2680 Constant *ScalarEvolution:: 2681 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 2682 std::map<PHINode*, Constant*>::iterator I = 2683 ConstantEvolutionLoopExitValue.find(PN); 2684 if (I != ConstantEvolutionLoopExitValue.end()) 2685 return I->second; 2686 2687 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 2688 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2689 2690 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2691 2692 // Since the loop is canonicalized, the PHI node must have two entries. One 2693 // entry must be a constant (coming in from outside of the loop), and the 2694 // second must be derived from the same PHI. 2695 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2696 Constant *StartCST = 2697 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2698 if (StartCST == 0) 2699 return RetVal = 0; // Must be a constant. 2700 2701 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2702 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2703 if (PN2 != PN) 2704 return RetVal = 0; // Not derived from same PHI. 2705 2706 // Execute the loop symbolically to determine the exit value. 2707 if (BEs.getActiveBits() >= 32) 2708 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2709 2710 unsigned NumIterations = BEs.getZExtValue(); // must be in range 2711 unsigned IterationNum = 0; 2712 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2713 if (IterationNum == NumIterations) 2714 return RetVal = PHIVal; // Got exit value! 2715 2716 // Compute the value of the PHI node for the next iteration. 2717 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2718 if (NextPHI == PHIVal) 2719 return RetVal = NextPHI; // Stopped evolving! 2720 if (NextPHI == 0) 2721 return 0; // Couldn't evaluate! 2722 PHIVal = NextPHI; 2723 } 2724 } 2725 2726 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 2727 /// constant number of times (the condition evolves only from constants), 2728 /// try to evaluate a few iterations of the loop until we get the exit 2729 /// condition gets a value of ExitWhen (true or false). If we cannot 2730 /// evaluate the trip count of the loop, return UnknownValue. 2731 SCEVHandle ScalarEvolution:: 2732 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2733 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2734 if (PN == 0) return UnknownValue; 2735 2736 // Since the loop is canonicalized, the PHI node must have two entries. One 2737 // entry must be a constant (coming in from outside of the loop), and the 2738 // second must be derived from the same PHI. 2739 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2740 Constant *StartCST = 2741 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2742 if (StartCST == 0) return UnknownValue; // Must be a constant. 2743 2744 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2745 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2746 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2747 2748 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2749 // the loop symbolically to determine when the condition gets a value of 2750 // "ExitWhen". 2751 unsigned IterationNum = 0; 2752 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2753 for (Constant *PHIVal = StartCST; 2754 IterationNum != MaxIterations; ++IterationNum) { 2755 ConstantInt *CondVal = 2756 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2757 2758 // Couldn't symbolically evaluate. 2759 if (!CondVal) return UnknownValue; 2760 2761 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2762 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2763 ++NumBruteForceTripCountsComputed; 2764 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2765 } 2766 2767 // Compute the value of the PHI node for the next iteration. 2768 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2769 if (NextPHI == 0 || NextPHI == PHIVal) 2770 return UnknownValue; // Couldn't evaluate or not making progress... 2771 PHIVal = NextPHI; 2772 } 2773 2774 // Too many iterations were needed to evaluate. 2775 return UnknownValue; 2776 } 2777 2778 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 2779 /// at the specified scope in the program. The L value specifies a loop 2780 /// nest to evaluate the expression at, where null is the top-level or a 2781 /// specified loop is immediately inside of the loop. 2782 /// 2783 /// This method can be used to compute the exit value for a variable defined 2784 /// in a loop by querying what the value will hold in the parent loop. 2785 /// 2786 /// If this value is not computable at this scope, a SCEVCouldNotCompute 2787 /// object is returned. 2788 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 2789 // FIXME: this should be turned into a virtual method on SCEV! 2790 2791 if (isa<SCEVConstant>(V)) return V; 2792 2793 // If this instruction is evolved from a constant-evolving PHI, compute the 2794 // exit value from the loop without using SCEVs. 2795 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2796 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2797 const Loop *LI = (*this->LI)[I->getParent()]; 2798 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2799 if (PHINode *PN = dyn_cast<PHINode>(I)) 2800 if (PN->getParent() == LI->getHeader()) { 2801 // Okay, there is no closed form solution for the PHI node. Check 2802 // to see if the loop that contains it has a known backedge-taken 2803 // count. If so, we may be able to force computation of the exit 2804 // value. 2805 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 2806 if (const SCEVConstant *BTCC = 2807 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 2808 // Okay, we know how many times the containing loop executes. If 2809 // this is a constant evolving PHI node, get the final value at 2810 // the specified iteration number. 2811 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2812 BTCC->getValue()->getValue(), 2813 LI); 2814 if (RV) return getUnknown(RV); 2815 } 2816 } 2817 2818 // Okay, this is an expression that we cannot symbolically evaluate 2819 // into a SCEV. Check to see if it's possible to symbolically evaluate 2820 // the arguments into constants, and if so, try to constant propagate the 2821 // result. This is particularly useful for computing loop exit values. 2822 if (CanConstantFold(I)) { 2823 // Check to see if we've folded this instruction at this loop before. 2824 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 2825 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 2826 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 2827 if (!Pair.second) 2828 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 2829 2830 std::vector<Constant*> Operands; 2831 Operands.reserve(I->getNumOperands()); 2832 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2833 Value *Op = I->getOperand(i); 2834 if (Constant *C = dyn_cast<Constant>(Op)) { 2835 Operands.push_back(C); 2836 } else { 2837 // If any of the operands is non-constant and if they are 2838 // non-integer and non-pointer, don't even try to analyze them 2839 // with scev techniques. 2840 if (!isSCEVable(Op->getType())) 2841 return V; 2842 2843 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2844 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 2845 Constant *C = SC->getValue(); 2846 if (C->getType() != Op->getType()) 2847 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 2848 Op->getType(), 2849 false), 2850 C, Op->getType()); 2851 Operands.push_back(C); 2852 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2853 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 2854 if (C->getType() != Op->getType()) 2855 C = 2856 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 2857 Op->getType(), 2858 false), 2859 C, Op->getType()); 2860 Operands.push_back(C); 2861 } else 2862 return V; 2863 } else { 2864 return V; 2865 } 2866 } 2867 } 2868 2869 Constant *C; 2870 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2871 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2872 &Operands[0], Operands.size()); 2873 else 2874 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2875 &Operands[0], Operands.size()); 2876 Pair.first->second = C; 2877 return getUnknown(C); 2878 } 2879 } 2880 2881 // This is some other type of SCEVUnknown, just return it. 2882 return V; 2883 } 2884 2885 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2886 // Avoid performing the look-up in the common case where the specified 2887 // expression has no loop-variant portions. 2888 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2889 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2890 if (OpAtScope != Comm->getOperand(i)) { 2891 if (OpAtScope == UnknownValue) return UnknownValue; 2892 // Okay, at least one of these operands is loop variant but might be 2893 // foldable. Build a new instance of the folded commutative expression. 2894 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2895 NewOps.push_back(OpAtScope); 2896 2897 for (++i; i != e; ++i) { 2898 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2899 if (OpAtScope == UnknownValue) return UnknownValue; 2900 NewOps.push_back(OpAtScope); 2901 } 2902 if (isa<SCEVAddExpr>(Comm)) 2903 return getAddExpr(NewOps); 2904 if (isa<SCEVMulExpr>(Comm)) 2905 return getMulExpr(NewOps); 2906 if (isa<SCEVSMaxExpr>(Comm)) 2907 return getSMaxExpr(NewOps); 2908 if (isa<SCEVUMaxExpr>(Comm)) 2909 return getUMaxExpr(NewOps); 2910 assert(0 && "Unknown commutative SCEV type!"); 2911 } 2912 } 2913 // If we got here, all operands are loop invariant. 2914 return Comm; 2915 } 2916 2917 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2918 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2919 if (LHS == UnknownValue) return LHS; 2920 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2921 if (RHS == UnknownValue) return RHS; 2922 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2923 return Div; // must be loop invariant 2924 return getUDivExpr(LHS, RHS); 2925 } 2926 2927 // If this is a loop recurrence for a loop that does not contain L, then we 2928 // are dealing with the final value computed by the loop. 2929 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2930 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2931 // To evaluate this recurrence, we need to know how many times the AddRec 2932 // loop iterates. Compute this now. 2933 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 2934 if (BackedgeTakenCount == UnknownValue) return UnknownValue; 2935 2936 // Then, evaluate the AddRec. 2937 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 2938 } 2939 return UnknownValue; 2940 } 2941 2942 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 2943 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 2944 if (Op == UnknownValue) return Op; 2945 if (Op == Cast->getOperand()) 2946 return Cast; // must be loop invariant 2947 return getZeroExtendExpr(Op, Cast->getType()); 2948 } 2949 2950 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 2951 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 2952 if (Op == UnknownValue) return Op; 2953 if (Op == Cast->getOperand()) 2954 return Cast; // must be loop invariant 2955 return getSignExtendExpr(Op, Cast->getType()); 2956 } 2957 2958 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 2959 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 2960 if (Op == UnknownValue) return Op; 2961 if (Op == Cast->getOperand()) 2962 return Cast; // must be loop invariant 2963 return getTruncateExpr(Op, Cast->getType()); 2964 } 2965 2966 assert(0 && "Unknown SCEV type!"); 2967 } 2968 2969 /// getSCEVAtScope - This is a convenience function which does 2970 /// getSCEVAtScope(getSCEV(V), L). 2971 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 2972 return getSCEVAtScope(getSCEV(V), L); 2973 } 2974 2975 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2976 /// following equation: 2977 /// 2978 /// A * X = B (mod N) 2979 /// 2980 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2981 /// A and B isn't important. 2982 /// 2983 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2984 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2985 ScalarEvolution &SE) { 2986 uint32_t BW = A.getBitWidth(); 2987 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2988 assert(A != 0 && "A must be non-zero."); 2989 2990 // 1. D = gcd(A, N) 2991 // 2992 // The gcd of A and N may have only one prime factor: 2. The number of 2993 // trailing zeros in A is its multiplicity 2994 uint32_t Mult2 = A.countTrailingZeros(); 2995 // D = 2^Mult2 2996 2997 // 2. Check if B is divisible by D. 2998 // 2999 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3000 // is not less than multiplicity of this prime factor for D. 3001 if (B.countTrailingZeros() < Mult2) 3002 return SE.getCouldNotCompute(); 3003 3004 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3005 // modulo (N / D). 3006 // 3007 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3008 // bit width during computations. 3009 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3010 APInt Mod(BW + 1, 0); 3011 Mod.set(BW - Mult2); // Mod = N / D 3012 APInt I = AD.multiplicativeInverse(Mod); 3013 3014 // 4. Compute the minimum unsigned root of the equation: 3015 // I * (B / D) mod (N / D) 3016 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3017 3018 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3019 // bits. 3020 return SE.getConstant(Result.trunc(BW)); 3021 } 3022 3023 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3024 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3025 /// might be the same) or two SCEVCouldNotCompute objects. 3026 /// 3027 static std::pair<SCEVHandle,SCEVHandle> 3028 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3029 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3030 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3031 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3032 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3033 3034 // We currently can only solve this if the coefficients are constants. 3035 if (!LC || !MC || !NC) { 3036 const SCEV *CNC = SE.getCouldNotCompute(); 3037 return std::make_pair(CNC, CNC); 3038 } 3039 3040 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3041 const APInt &L = LC->getValue()->getValue(); 3042 const APInt &M = MC->getValue()->getValue(); 3043 const APInt &N = NC->getValue()->getValue(); 3044 APInt Two(BitWidth, 2); 3045 APInt Four(BitWidth, 4); 3046 3047 { 3048 using namespace APIntOps; 3049 const APInt& C = L; 3050 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3051 // The B coefficient is M-N/2 3052 APInt B(M); 3053 B -= sdiv(N,Two); 3054 3055 // The A coefficient is N/2 3056 APInt A(N.sdiv(Two)); 3057 3058 // Compute the B^2-4ac term. 3059 APInt SqrtTerm(B); 3060 SqrtTerm *= B; 3061 SqrtTerm -= Four * (A * C); 3062 3063 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3064 // integer value or else APInt::sqrt() will assert. 3065 APInt SqrtVal(SqrtTerm.sqrt()); 3066 3067 // Compute the two solutions for the quadratic formula. 3068 // The divisions must be performed as signed divisions. 3069 APInt NegB(-B); 3070 APInt TwoA( A << 1 ); 3071 if (TwoA.isMinValue()) { 3072 const SCEV *CNC = SE.getCouldNotCompute(); 3073 return std::make_pair(CNC, CNC); 3074 } 3075 3076 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3077 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3078 3079 return std::make_pair(SE.getConstant(Solution1), 3080 SE.getConstant(Solution2)); 3081 } // end APIntOps namespace 3082 } 3083 3084 /// HowFarToZero - Return the number of times a backedge comparing the specified 3085 /// value to zero will execute. If not computable, return UnknownValue 3086 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3087 // If the value is a constant 3088 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3089 // If the value is already zero, the branch will execute zero times. 3090 if (C->getValue()->isZero()) return C; 3091 return UnknownValue; // Otherwise it will loop infinitely. 3092 } 3093 3094 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3095 if (!AddRec || AddRec->getLoop() != L) 3096 return UnknownValue; 3097 3098 if (AddRec->isAffine()) { 3099 // If this is an affine expression, the execution count of this branch is 3100 // the minimum unsigned root of the following equation: 3101 // 3102 // Start + Step*N = 0 (mod 2^BW) 3103 // 3104 // equivalent to: 3105 // 3106 // Step*N = -Start (mod 2^BW) 3107 // 3108 // where BW is the common bit width of Start and Step. 3109 3110 // Get the initial value for the loop. 3111 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3112 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 3113 3114 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3115 3116 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3117 // For now we handle only constant steps. 3118 3119 // First, handle unitary steps. 3120 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3121 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3122 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3123 return Start; // N = Start (as unsigned) 3124 3125 // Then, try to solve the above equation provided that Start is constant. 3126 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3127 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3128 -StartC->getValue()->getValue(), 3129 *this); 3130 } 3131 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3132 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3133 // the quadratic equation to solve it. 3134 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3135 *this); 3136 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3137 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3138 if (R1) { 3139 #if 0 3140 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3141 << " sol#2: " << *R2 << "\n"; 3142 #endif 3143 // Pick the smallest positive root value. 3144 if (ConstantInt *CB = 3145 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3146 R1->getValue(), R2->getValue()))) { 3147 if (CB->getZExtValue() == false) 3148 std::swap(R1, R2); // R1 is the minimum root now. 3149 3150 // We can only use this value if the chrec ends up with an exact zero 3151 // value at this index. When solving for "X*X != 5", for example, we 3152 // should not accept a root of 2. 3153 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3154 if (Val->isZero()) 3155 return R1; // We found a quadratic root! 3156 } 3157 } 3158 } 3159 3160 return UnknownValue; 3161 } 3162 3163 /// HowFarToNonZero - Return the number of times a backedge checking the 3164 /// specified value for nonzero will execute. If not computable, return 3165 /// UnknownValue 3166 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3167 // Loops that look like: while (X == 0) are very strange indeed. We don't 3168 // handle them yet except for the trivial case. This could be expanded in the 3169 // future as needed. 3170 3171 // If the value is a constant, check to see if it is known to be non-zero 3172 // already. If so, the backedge will execute zero times. 3173 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3174 if (!C->getValue()->isNullValue()) 3175 return getIntegerSCEV(0, C->getType()); 3176 return UnknownValue; // Otherwise it will loop infinitely. 3177 } 3178 3179 // We could implement others, but I really doubt anyone writes loops like 3180 // this, and if they did, they would already be constant folded. 3181 return UnknownValue; 3182 } 3183 3184 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3185 /// (which may not be an immediate predecessor) which has exactly one 3186 /// successor from which BB is reachable, or null if no such block is 3187 /// found. 3188 /// 3189 BasicBlock * 3190 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3191 // If the block has a unique predecessor, then there is no path from the 3192 // predecessor to the block that does not go through the direct edge 3193 // from the predecessor to the block. 3194 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3195 return Pred; 3196 3197 // A loop's header is defined to be a block that dominates the loop. 3198 // If the loop has a preheader, it must be a block that has exactly 3199 // one successor that can reach BB. This is slightly more strict 3200 // than necessary, but works if critical edges are split. 3201 if (Loop *L = LI->getLoopFor(BB)) 3202 return L->getLoopPreheader(); 3203 3204 return 0; 3205 } 3206 3207 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3208 /// a conditional between LHS and RHS. This is used to help avoid max 3209 /// expressions in loop trip counts. 3210 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3211 ICmpInst::Predicate Pred, 3212 const SCEV *LHS, const SCEV *RHS) { 3213 BasicBlock *Preheader = L->getLoopPreheader(); 3214 BasicBlock *PreheaderDest = L->getHeader(); 3215 3216 // Starting at the preheader, climb up the predecessor chain, as long as 3217 // there are predecessors that can be found that have unique successors 3218 // leading to the original header. 3219 for (; Preheader; 3220 PreheaderDest = Preheader, 3221 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 3222 3223 BranchInst *LoopEntryPredicate = 3224 dyn_cast<BranchInst>(Preheader->getTerminator()); 3225 if (!LoopEntryPredicate || 3226 LoopEntryPredicate->isUnconditional()) 3227 continue; 3228 3229 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3230 if (!ICI) continue; 3231 3232 // Now that we found a conditional branch that dominates the loop, check to 3233 // see if it is the comparison we are looking for. 3234 Value *PreCondLHS = ICI->getOperand(0); 3235 Value *PreCondRHS = ICI->getOperand(1); 3236 ICmpInst::Predicate Cond; 3237 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 3238 Cond = ICI->getPredicate(); 3239 else 3240 Cond = ICI->getInversePredicate(); 3241 3242 if (Cond == Pred) 3243 ; // An exact match. 3244 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3245 ; // The actual condition is beyond sufficient. 3246 else 3247 // Check a few special cases. 3248 switch (Cond) { 3249 case ICmpInst::ICMP_UGT: 3250 if (Pred == ICmpInst::ICMP_ULT) { 3251 std::swap(PreCondLHS, PreCondRHS); 3252 Cond = ICmpInst::ICMP_ULT; 3253 break; 3254 } 3255 continue; 3256 case ICmpInst::ICMP_SGT: 3257 if (Pred == ICmpInst::ICMP_SLT) { 3258 std::swap(PreCondLHS, PreCondRHS); 3259 Cond = ICmpInst::ICMP_SLT; 3260 break; 3261 } 3262 continue; 3263 case ICmpInst::ICMP_NE: 3264 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3265 // so check for this case by checking if the NE is comparing against 3266 // a minimum or maximum constant. 3267 if (!ICmpInst::isTrueWhenEqual(Pred)) 3268 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3269 const APInt &A = CI->getValue(); 3270 switch (Pred) { 3271 case ICmpInst::ICMP_SLT: 3272 if (A.isMaxSignedValue()) break; 3273 continue; 3274 case ICmpInst::ICMP_SGT: 3275 if (A.isMinSignedValue()) break; 3276 continue; 3277 case ICmpInst::ICMP_ULT: 3278 if (A.isMaxValue()) break; 3279 continue; 3280 case ICmpInst::ICMP_UGT: 3281 if (A.isMinValue()) break; 3282 continue; 3283 default: 3284 continue; 3285 } 3286 Cond = ICmpInst::ICMP_NE; 3287 // NE is symmetric but the original comparison may not be. Swap 3288 // the operands if necessary so that they match below. 3289 if (isa<SCEVConstant>(LHS)) 3290 std::swap(PreCondLHS, PreCondRHS); 3291 break; 3292 } 3293 continue; 3294 default: 3295 // We weren't able to reconcile the condition. 3296 continue; 3297 } 3298 3299 if (!PreCondLHS->getType()->isInteger()) continue; 3300 3301 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3302 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3303 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3304 (LHS == getNotSCEV(PreCondRHSSCEV) && 3305 RHS == getNotSCEV(PreCondLHSSCEV))) 3306 return true; 3307 } 3308 3309 return false; 3310 } 3311 3312 /// HowManyLessThans - Return the number of times a backedge containing the 3313 /// specified less-than comparison will execute. If not computable, return 3314 /// UnknownValue. 3315 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3316 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 3317 const Loop *L, bool isSigned) { 3318 // Only handle: "ADDREC < LoopInvariant". 3319 if (!RHS->isLoopInvariant(L)) return UnknownValue; 3320 3321 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3322 if (!AddRec || AddRec->getLoop() != L) 3323 return UnknownValue; 3324 3325 if (AddRec->isAffine()) { 3326 // FORNOW: We only support unit strides. 3327 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 3328 SCEVHandle Step = AddRec->getStepRecurrence(*this); 3329 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); 3330 3331 // TODO: handle non-constant strides. 3332 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 3333 if (!CStep || CStep->isZero()) 3334 return UnknownValue; 3335 if (CStep->getValue()->getValue() == 1) { 3336 // With unit stride, the iteration never steps past the limit value. 3337 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 3338 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 3339 // Test whether a positive iteration iteration can step past the limit 3340 // value and past the maximum value for its type in a single step. 3341 if (isSigned) { 3342 APInt Max = APInt::getSignedMaxValue(BitWidth); 3343 if ((Max - CStep->getValue()->getValue()) 3344 .slt(CLimit->getValue()->getValue())) 3345 return UnknownValue; 3346 } else { 3347 APInt Max = APInt::getMaxValue(BitWidth); 3348 if ((Max - CStep->getValue()->getValue()) 3349 .ult(CLimit->getValue()->getValue())) 3350 return UnknownValue; 3351 } 3352 } else 3353 // TODO: handle non-constant limit values below. 3354 return UnknownValue; 3355 } else 3356 // TODO: handle negative strides below. 3357 return UnknownValue; 3358 3359 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 3360 // m. So, we count the number of iterations in which {n,+,s} < m is true. 3361 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 3362 // treat m-n as signed nor unsigned due to overflow possibility. 3363 3364 // First, we get the value of the LHS in the first iteration: n 3365 SCEVHandle Start = AddRec->getOperand(0); 3366 3367 // Determine the minimum constant start value. 3368 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 3369 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 3370 APInt::getMinValue(BitWidth)); 3371 3372 // If we know that the condition is true in order to enter the loop, 3373 // then we know that it will run exactly (m-n)/s times. Otherwise, we 3374 // only know if will execute (max(m,n)-n)/s times. In both cases, the 3375 // division must round up. 3376 SCEVHandle End = RHS; 3377 if (!isLoopGuardedByCond(L, 3378 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3379 getMinusSCEV(Start, Step), RHS)) 3380 End = isSigned ? getSMaxExpr(RHS, Start) 3381 : getUMaxExpr(RHS, Start); 3382 3383 // Determine the maximum constant end value. 3384 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : 3385 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : 3386 APInt::getMaxValue(BitWidth)); 3387 3388 // Finally, we subtract these two values and divide, rounding up, to get 3389 // the number of times the backedge is executed. 3390 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), 3391 getAddExpr(Step, NegOne)), 3392 Step); 3393 3394 // The maximum backedge count is similar, except using the minimum start 3395 // value and the maximum end value. 3396 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, 3397 MinStart), 3398 getAddExpr(Step, NegOne)), 3399 Step); 3400 3401 return BackedgeTakenInfo(BECount, MaxBECount); 3402 } 3403 3404 return UnknownValue; 3405 } 3406 3407 /// getNumIterationsInRange - Return the number of iterations of this loop that 3408 /// produce values in the specified constant range. Another way of looking at 3409 /// this is that it returns the first iteration number where the value is not in 3410 /// the condition, thus computing the exit count. If the iteration count can't 3411 /// be computed, an instance of SCEVCouldNotCompute is returned. 3412 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3413 ScalarEvolution &SE) const { 3414 if (Range.isFullSet()) // Infinite loop. 3415 return SE.getCouldNotCompute(); 3416 3417 // If the start is a non-zero constant, shift the range to simplify things. 3418 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3419 if (!SC->getValue()->isZero()) { 3420 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3421 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3422 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3423 if (const SCEVAddRecExpr *ShiftedAddRec = 3424 dyn_cast<SCEVAddRecExpr>(Shifted)) 3425 return ShiftedAddRec->getNumIterationsInRange( 3426 Range.subtract(SC->getValue()->getValue()), SE); 3427 // This is strange and shouldn't happen. 3428 return SE.getCouldNotCompute(); 3429 } 3430 3431 // The only time we can solve this is when we have all constant indices. 3432 // Otherwise, we cannot determine the overflow conditions. 3433 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3434 if (!isa<SCEVConstant>(getOperand(i))) 3435 return SE.getCouldNotCompute(); 3436 3437 3438 // Okay at this point we know that all elements of the chrec are constants and 3439 // that the start element is zero. 3440 3441 // First check to see if the range contains zero. If not, the first 3442 // iteration exits. 3443 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3444 if (!Range.contains(APInt(BitWidth, 0))) 3445 return SE.getConstant(ConstantInt::get(getType(),0)); 3446 3447 if (isAffine()) { 3448 // If this is an affine expression then we have this situation: 3449 // Solve {0,+,A} in Range === Ax in Range 3450 3451 // We know that zero is in the range. If A is positive then we know that 3452 // the upper value of the range must be the first possible exit value. 3453 // If A is negative then the lower of the range is the last possible loop 3454 // value. Also note that we already checked for a full range. 3455 APInt One(BitWidth,1); 3456 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3457 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3458 3459 // The exit value should be (End+A)/A. 3460 APInt ExitVal = (End + A).udiv(A); 3461 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3462 3463 // Evaluate at the exit value. If we really did fall out of the valid 3464 // range, then we computed our trip count, otherwise wrap around or other 3465 // things must have happened. 3466 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3467 if (Range.contains(Val->getValue())) 3468 return SE.getCouldNotCompute(); // Something strange happened 3469 3470 // Ensure that the previous value is in the range. This is a sanity check. 3471 assert(Range.contains( 3472 EvaluateConstantChrecAtConstant(this, 3473 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3474 "Linear scev computation is off in a bad way!"); 3475 return SE.getConstant(ExitValue); 3476 } else if (isQuadratic()) { 3477 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3478 // quadratic equation to solve it. To do this, we must frame our problem in 3479 // terms of figuring out when zero is crossed, instead of when 3480 // Range.getUpper() is crossed. 3481 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3482 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3483 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3484 3485 // Next, solve the constructed addrec 3486 std::pair<SCEVHandle,SCEVHandle> Roots = 3487 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3488 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3489 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3490 if (R1) { 3491 // Pick the smallest positive root value. 3492 if (ConstantInt *CB = 3493 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3494 R1->getValue(), R2->getValue()))) { 3495 if (CB->getZExtValue() == false) 3496 std::swap(R1, R2); // R1 is the minimum root now. 3497 3498 // Make sure the root is not off by one. The returned iteration should 3499 // not be in the range, but the previous one should be. When solving 3500 // for "X*X < 5", for example, we should not return a root of 2. 3501 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3502 R1->getValue(), 3503 SE); 3504 if (Range.contains(R1Val->getValue())) { 3505 // The next iteration must be out of the range... 3506 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3507 3508 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3509 if (!Range.contains(R1Val->getValue())) 3510 return SE.getConstant(NextVal); 3511 return SE.getCouldNotCompute(); // Something strange happened 3512 } 3513 3514 // If R1 was not in the range, then it is a good return value. Make 3515 // sure that R1-1 WAS in the range though, just in case. 3516 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3517 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3518 if (Range.contains(R1Val->getValue())) 3519 return R1; 3520 return SE.getCouldNotCompute(); // Something strange happened 3521 } 3522 } 3523 } 3524 3525 return SE.getCouldNotCompute(); 3526 } 3527 3528 3529 3530 //===----------------------------------------------------------------------===// 3531 // SCEVCallbackVH Class Implementation 3532 //===----------------------------------------------------------------------===// 3533 3534 void SCEVCallbackVH::deleted() { 3535 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3536 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 3537 SE->ConstantEvolutionLoopExitValue.erase(PN); 3538 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 3539 SE->ValuesAtScopes.erase(I); 3540 SE->Scalars.erase(getValPtr()); 3541 // this now dangles! 3542 } 3543 3544 void SCEVCallbackVH::allUsesReplacedWith(Value *) { 3545 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3546 3547 // Forget all the expressions associated with users of the old value, 3548 // so that future queries will recompute the expressions using the new 3549 // value. 3550 SmallVector<User *, 16> Worklist; 3551 Value *Old = getValPtr(); 3552 bool DeleteOld = false; 3553 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 3554 UI != UE; ++UI) 3555 Worklist.push_back(*UI); 3556 while (!Worklist.empty()) { 3557 User *U = Worklist.pop_back_val(); 3558 // Deleting the Old value will cause this to dangle. Postpone 3559 // that until everything else is done. 3560 if (U == Old) { 3561 DeleteOld = true; 3562 continue; 3563 } 3564 if (PHINode *PN = dyn_cast<PHINode>(U)) 3565 SE->ConstantEvolutionLoopExitValue.erase(PN); 3566 if (Instruction *I = dyn_cast<Instruction>(U)) 3567 SE->ValuesAtScopes.erase(I); 3568 if (SE->Scalars.erase(U)) 3569 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 3570 UI != UE; ++UI) 3571 Worklist.push_back(*UI); 3572 } 3573 if (DeleteOld) { 3574 if (PHINode *PN = dyn_cast<PHINode>(Old)) 3575 SE->ConstantEvolutionLoopExitValue.erase(PN); 3576 if (Instruction *I = dyn_cast<Instruction>(Old)) 3577 SE->ValuesAtScopes.erase(I); 3578 SE->Scalars.erase(Old); 3579 // this now dangles! 3580 } 3581 // this may dangle! 3582 } 3583 3584 SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 3585 : CallbackVH(V), SE(se) {} 3586 3587 //===----------------------------------------------------------------------===// 3588 // ScalarEvolution Class Implementation 3589 //===----------------------------------------------------------------------===// 3590 3591 ScalarEvolution::ScalarEvolution() 3592 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) { 3593 } 3594 3595 bool ScalarEvolution::runOnFunction(Function &F) { 3596 this->F = &F; 3597 LI = &getAnalysis<LoopInfo>(); 3598 TD = getAnalysisIfAvailable<TargetData>(); 3599 return false; 3600 } 3601 3602 void ScalarEvolution::releaseMemory() { 3603 Scalars.clear(); 3604 BackedgeTakenCounts.clear(); 3605 ConstantEvolutionLoopExitValue.clear(); 3606 ValuesAtScopes.clear(); 3607 } 3608 3609 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3610 AU.setPreservesAll(); 3611 AU.addRequiredTransitive<LoopInfo>(); 3612 } 3613 3614 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 3615 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3616 } 3617 3618 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 3619 const Loop *L) { 3620 // Print all inner loops first 3621 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3622 PrintLoopInfo(OS, SE, *I); 3623 3624 OS << "Loop " << L->getHeader()->getName() << ": "; 3625 3626 SmallVector<BasicBlock*, 8> ExitBlocks; 3627 L->getExitBlocks(ExitBlocks); 3628 if (ExitBlocks.size() != 1) 3629 OS << "<multiple exits> "; 3630 3631 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3632 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3633 } else { 3634 OS << "Unpredictable backedge-taken count. "; 3635 } 3636 3637 OS << "\n"; 3638 } 3639 3640 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 3641 // ScalarEvolution's implementaiton of the print method is to print 3642 // out SCEV values of all instructions that are interesting. Doing 3643 // this potentially causes it to create new SCEV objects though, 3644 // which technically conflicts with the const qualifier. This isn't 3645 // observable from outside the class though (the hasSCEV function 3646 // notwithstanding), so casting away the const isn't dangerous. 3647 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 3648 3649 OS << "Classifying expressions for: " << F->getName() << "\n"; 3650 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3651 if (isSCEVable(I->getType())) { 3652 OS << *I; 3653 OS << " --> "; 3654 SCEVHandle SV = SE.getSCEV(&*I); 3655 SV->print(OS); 3656 OS << "\t\t"; 3657 3658 if (const Loop *L = LI->getLoopFor((*I).getParent())) { 3659 OS << "Exits: "; 3660 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); 3661 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3662 OS << "<<Unknown>>"; 3663 } else { 3664 OS << *ExitValue; 3665 } 3666 } 3667 3668 3669 OS << "\n"; 3670 } 3671 3672 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 3673 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 3674 PrintLoopInfo(OS, &SE, *I); 3675 } 3676 3677 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 3678 raw_os_ostream OS(o); 3679 print(OS, M); 3680 } 3681