1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/Analysis/AssumptionCache.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/InstructionSimplify.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetLibraryInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InstIterator.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/LLVMContext.h" 85 #include "llvm/IR/Metadata.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/MathExtras.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Support/SaveAndRestore.h" 94 #include <algorithm> 95 using namespace llvm; 96 97 #define DEBUG_TYPE "scalar-evolution" 98 99 STATISTIC(NumArrayLenItCounts, 100 "Number of trip counts computed with array length"); 101 STATISTIC(NumTripCountsComputed, 102 "Number of loops with predictable loop counts"); 103 STATISTIC(NumTripCountsNotComputed, 104 "Number of loops without predictable loop counts"); 105 STATISTIC(NumBruteForceTripCountsComputed, 106 "Number of loops with trip counts computed by force"); 107 108 static cl::opt<unsigned> 109 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 110 cl::desc("Maximum number of iterations SCEV will " 111 "symbolically execute a constant " 112 "derived loop"), 113 cl::init(100)); 114 115 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 116 static cl::opt<bool> 117 VerifySCEV("verify-scev", 118 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 119 static cl::opt<bool> 120 VerifySCEVMap("verify-scev-maps", 121 cl::desc("Verify no dangling value in ScalarEvolution's " 122 "ExprValueMap (slow)")); 123 124 static cl::opt<unsigned> MulOpsInlineThreshold( 125 "scev-mulops-inline-threshold", cl::Hidden, 126 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 127 cl::init(1000)); 128 129 //===----------------------------------------------------------------------===// 130 // SCEV class definitions 131 //===----------------------------------------------------------------------===// 132 133 //===----------------------------------------------------------------------===// 134 // Implementation of the SCEV class. 135 // 136 137 LLVM_DUMP_METHOD 138 void SCEV::dump() const { 139 print(dbgs()); 140 dbgs() << '\n'; 141 } 142 143 void SCEV::print(raw_ostream &OS) const { 144 switch (static_cast<SCEVTypes>(getSCEVType())) { 145 case scConstant: 146 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 147 return; 148 case scTruncate: { 149 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 150 const SCEV *Op = Trunc->getOperand(); 151 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 152 << *Trunc->getType() << ")"; 153 return; 154 } 155 case scZeroExtend: { 156 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 157 const SCEV *Op = ZExt->getOperand(); 158 OS << "(zext " << *Op->getType() << " " << *Op << " to " 159 << *ZExt->getType() << ")"; 160 return; 161 } 162 case scSignExtend: { 163 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 164 const SCEV *Op = SExt->getOperand(); 165 OS << "(sext " << *Op->getType() << " " << *Op << " to " 166 << *SExt->getType() << ")"; 167 return; 168 } 169 case scAddRecExpr: { 170 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 171 OS << "{" << *AR->getOperand(0); 172 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 173 OS << ",+," << *AR->getOperand(i); 174 OS << "}<"; 175 if (AR->hasNoUnsignedWrap()) 176 OS << "nuw><"; 177 if (AR->hasNoSignedWrap()) 178 OS << "nsw><"; 179 if (AR->hasNoSelfWrap() && 180 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 181 OS << "nw><"; 182 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 183 OS << ">"; 184 return; 185 } 186 case scAddExpr: 187 case scMulExpr: 188 case scUMaxExpr: 189 case scSMaxExpr: { 190 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 191 const char *OpStr = nullptr; 192 switch (NAry->getSCEVType()) { 193 case scAddExpr: OpStr = " + "; break; 194 case scMulExpr: OpStr = " * "; break; 195 case scUMaxExpr: OpStr = " umax "; break; 196 case scSMaxExpr: OpStr = " smax "; break; 197 } 198 OS << "("; 199 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 200 I != E; ++I) { 201 OS << **I; 202 if (std::next(I) != E) 203 OS << OpStr; 204 } 205 OS << ")"; 206 switch (NAry->getSCEVType()) { 207 case scAddExpr: 208 case scMulExpr: 209 if (NAry->hasNoUnsignedWrap()) 210 OS << "<nuw>"; 211 if (NAry->hasNoSignedWrap()) 212 OS << "<nsw>"; 213 } 214 return; 215 } 216 case scUDivExpr: { 217 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 218 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 219 return; 220 } 221 case scUnknown: { 222 const SCEVUnknown *U = cast<SCEVUnknown>(this); 223 Type *AllocTy; 224 if (U->isSizeOf(AllocTy)) { 225 OS << "sizeof(" << *AllocTy << ")"; 226 return; 227 } 228 if (U->isAlignOf(AllocTy)) { 229 OS << "alignof(" << *AllocTy << ")"; 230 return; 231 } 232 233 Type *CTy; 234 Constant *FieldNo; 235 if (U->isOffsetOf(CTy, FieldNo)) { 236 OS << "offsetof(" << *CTy << ", "; 237 FieldNo->printAsOperand(OS, false); 238 OS << ")"; 239 return; 240 } 241 242 // Otherwise just print it normally. 243 U->getValue()->printAsOperand(OS, false); 244 return; 245 } 246 case scCouldNotCompute: 247 OS << "***COULDNOTCOMPUTE***"; 248 return; 249 } 250 llvm_unreachable("Unknown SCEV kind!"); 251 } 252 253 Type *SCEV::getType() const { 254 switch (static_cast<SCEVTypes>(getSCEVType())) { 255 case scConstant: 256 return cast<SCEVConstant>(this)->getType(); 257 case scTruncate: 258 case scZeroExtend: 259 case scSignExtend: 260 return cast<SCEVCastExpr>(this)->getType(); 261 case scAddRecExpr: 262 case scMulExpr: 263 case scUMaxExpr: 264 case scSMaxExpr: 265 return cast<SCEVNAryExpr>(this)->getType(); 266 case scAddExpr: 267 return cast<SCEVAddExpr>(this)->getType(); 268 case scUDivExpr: 269 return cast<SCEVUDivExpr>(this)->getType(); 270 case scUnknown: 271 return cast<SCEVUnknown>(this)->getType(); 272 case scCouldNotCompute: 273 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 274 } 275 llvm_unreachable("Unknown SCEV kind!"); 276 } 277 278 bool SCEV::isZero() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isZero(); 281 return false; 282 } 283 284 bool SCEV::isOne() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isOne(); 287 return false; 288 } 289 290 bool SCEV::isAllOnesValue() const { 291 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 292 return SC->getValue()->isAllOnesValue(); 293 return false; 294 } 295 296 bool SCEV::isNonConstantNegative() const { 297 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 298 if (!Mul) return false; 299 300 // If there is a constant factor, it will be first. 301 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 302 if (!SC) return false; 303 304 // Return true if the value is negative, this matches things like (-42 * V). 305 return SC->getAPInt().isNegative(); 306 } 307 308 SCEVCouldNotCompute::SCEVCouldNotCompute() : 309 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 310 311 bool SCEVCouldNotCompute::classof(const SCEV *S) { 312 return S->getSCEVType() == scCouldNotCompute; 313 } 314 315 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 316 FoldingSetNodeID ID; 317 ID.AddInteger(scConstant); 318 ID.AddPointer(V); 319 void *IP = nullptr; 320 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 321 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 322 UniqueSCEVs.InsertNode(S, IP); 323 return S; 324 } 325 326 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 327 return getConstant(ConstantInt::get(getContext(), Val)); 328 } 329 330 const SCEV * 331 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 332 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 333 return getConstant(ConstantInt::get(ITy, V, isSigned)); 334 } 335 336 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 337 unsigned SCEVTy, const SCEV *op, Type *ty) 338 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 339 340 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scTruncate, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot truncate non-integer value!"); 346 } 347 348 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot zero extend non-integer value!"); 354 } 355 356 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 357 const SCEV *op, Type *ty) 358 : SCEVCastExpr(ID, scSignExtend, op, ty) { 359 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 360 (Ty->isIntegerTy() || Ty->isPointerTy()) && 361 "Cannot sign extend non-integer value!"); 362 } 363 364 void SCEVUnknown::deleted() { 365 // Clear this SCEVUnknown from various maps. 366 SE->forgetMemoizedResults(this); 367 368 // Remove this SCEVUnknown from the uniquing map. 369 SE->UniqueSCEVs.RemoveNode(this); 370 371 // Release the value. 372 setValPtr(nullptr); 373 } 374 375 void SCEVUnknown::allUsesReplacedWith(Value *New) { 376 // Clear this SCEVUnknown from various maps. 377 SE->forgetMemoizedResults(this); 378 379 // Remove this SCEVUnknown from the uniquing map. 380 SE->UniqueSCEVs.RemoveNode(this); 381 382 // Update this SCEVUnknown to point to the new value. This is needed 383 // because there may still be outstanding SCEVs which still point to 384 // this SCEVUnknown. 385 setValPtr(New); 386 } 387 388 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 389 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 390 if (VCE->getOpcode() == Instruction::PtrToInt) 391 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 392 if (CE->getOpcode() == Instruction::GetElementPtr && 393 CE->getOperand(0)->isNullValue() && 394 CE->getNumOperands() == 2) 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 396 if (CI->isOne()) { 397 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 398 ->getElementType(); 399 return true; 400 } 401 402 return false; 403 } 404 405 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 406 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 407 if (VCE->getOpcode() == Instruction::PtrToInt) 408 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 409 if (CE->getOpcode() == Instruction::GetElementPtr && 410 CE->getOperand(0)->isNullValue()) { 411 Type *Ty = 412 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 413 if (StructType *STy = dyn_cast<StructType>(Ty)) 414 if (!STy->isPacked() && 415 CE->getNumOperands() == 3 && 416 CE->getOperand(1)->isNullValue()) { 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 418 if (CI->isOne() && 419 STy->getNumElements() == 2 && 420 STy->getElementType(0)->isIntegerTy(1)) { 421 AllocTy = STy->getElementType(1); 422 return true; 423 } 424 } 425 } 426 427 return false; 428 } 429 430 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 431 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 432 if (VCE->getOpcode() == Instruction::PtrToInt) 433 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 434 if (CE->getOpcode() == Instruction::GetElementPtr && 435 CE->getNumOperands() == 3 && 436 CE->getOperand(0)->isNullValue() && 437 CE->getOperand(1)->isNullValue()) { 438 Type *Ty = 439 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 440 // Ignore vector types here so that ScalarEvolutionExpander doesn't 441 // emit getelementptrs that index into vectors. 442 if (Ty->isStructTy() || Ty->isArrayTy()) { 443 CTy = Ty; 444 FieldNo = CE->getOperand(2); 445 return true; 446 } 447 } 448 449 return false; 450 } 451 452 //===----------------------------------------------------------------------===// 453 // SCEV Utilities 454 //===----------------------------------------------------------------------===// 455 456 static int CompareValueComplexity(const LoopInfo *const LI, Value *LV, 457 Value *RV, unsigned DepthLeft = 2) { 458 if (DepthLeft == 0) 459 return 0; 460 461 // Order pointer values after integer values. This helps SCEVExpander form 462 // GEPs. 463 bool LIsPointer = LV->getType()->isPointerTy(), 464 RIsPointer = RV->getType()->isPointerTy(); 465 if (LIsPointer != RIsPointer) 466 return (int)LIsPointer - (int)RIsPointer; 467 468 // Compare getValueID values. 469 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 470 if (LID != RID) 471 return (int)LID - (int)RID; 472 473 // Sort arguments by their position. 474 if (const auto *LA = dyn_cast<Argument>(LV)) { 475 const auto *RA = cast<Argument>(RV); 476 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 477 return (int)LArgNo - (int)RArgNo; 478 } 479 480 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 481 const auto *RGV = cast<GlobalValue>(RV); 482 483 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 484 auto LT = GV->getLinkage(); 485 return !(GlobalValue::isPrivateLinkage(LT) || 486 GlobalValue::isInternalLinkage(LT)); 487 }; 488 489 // Use the names to distinguish the two values, but only if the 490 // names are semantically important. 491 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 492 return LGV->getName().compare(RGV->getName()); 493 } 494 495 // For instructions, compare their loop depth, and their operand count. This 496 // is pretty loose. 497 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 498 const auto *RInst = cast<Instruction>(RV); 499 500 // Compare loop depths. 501 const BasicBlock *LParent = LInst->getParent(), 502 *RParent = RInst->getParent(); 503 if (LParent != RParent) { 504 unsigned LDepth = LI->getLoopDepth(LParent), 505 RDepth = LI->getLoopDepth(RParent); 506 if (LDepth != RDepth) 507 return (int)LDepth - (int)RDepth; 508 } 509 510 // Compare the number of operands. 511 unsigned LNumOps = LInst->getNumOperands(), 512 RNumOps = RInst->getNumOperands(); 513 if (LNumOps != RNumOps || LNumOps != 1) 514 return (int)LNumOps - (int)RNumOps; 515 516 // We only bother "recursing" if we have one operand to look at (so we don't 517 // really recurse as much as we iterate). We can consider expanding this 518 // logic in the future. 519 return CompareValueComplexity(LI, LInst->getOperand(0), 520 RInst->getOperand(0), DepthLeft - 1); 521 } 522 523 return 0; 524 } 525 526 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 527 // than RHS, respectively. A three-way result allows recursive comparisons to be 528 // more efficient. 529 static int CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS, 530 const SCEV *RHS) { 531 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 532 if (LHS == RHS) 533 return 0; 534 535 // Primarily, sort the SCEVs by their getSCEVType(). 536 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 537 if (LType != RType) 538 return (int)LType - (int)RType; 539 540 // Aside from the getSCEVType() ordering, the particular ordering 541 // isn't very important except that it's beneficial to be consistent, 542 // so that (a + b) and (b + a) don't end up as different expressions. 543 switch (static_cast<SCEVTypes>(LType)) { 544 case scUnknown: { 545 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 546 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 547 548 return CompareValueComplexity(LI, LU->getValue(), RU->getValue()); 549 } 550 551 case scConstant: { 552 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 553 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 554 555 // Compare constant values. 556 const APInt &LA = LC->getAPInt(); 557 const APInt &RA = RC->getAPInt(); 558 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 559 if (LBitWidth != RBitWidth) 560 return (int)LBitWidth - (int)RBitWidth; 561 return LA.ult(RA) ? -1 : 1; 562 } 563 564 case scAddRecExpr: { 565 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 566 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 567 568 // Compare addrec loop depths. 569 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 570 if (LLoop != RLoop) { 571 unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth(); 572 if (LDepth != RDepth) 573 return (int)LDepth - (int)RDepth; 574 } 575 576 // Addrec complexity grows with operand count. 577 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 578 if (LNumOps != RNumOps) 579 return (int)LNumOps - (int)RNumOps; 580 581 // Lexicographically compare. 582 for (unsigned i = 0; i != LNumOps; ++i) { 583 long X = CompareSCEVComplexity(LI, LA->getOperand(i), RA->getOperand(i)); 584 if (X != 0) 585 return X; 586 } 587 588 return 0; 589 } 590 591 case scAddExpr: 592 case scMulExpr: 593 case scSMaxExpr: 594 case scUMaxExpr: { 595 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 596 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 597 598 // Lexicographically compare n-ary expressions. 599 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 600 if (LNumOps != RNumOps) 601 return (int)LNumOps - (int)RNumOps; 602 603 for (unsigned i = 0; i != LNumOps; ++i) { 604 if (i >= RNumOps) 605 return 1; 606 long X = CompareSCEVComplexity(LI, LC->getOperand(i), RC->getOperand(i)); 607 if (X != 0) 608 return X; 609 } 610 return (int)LNumOps - (int)RNumOps; 611 } 612 613 case scUDivExpr: { 614 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 615 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 616 617 // Lexicographically compare udiv expressions. 618 long X = CompareSCEVComplexity(LI, LC->getLHS(), RC->getLHS()); 619 if (X != 0) 620 return X; 621 return CompareSCEVComplexity(LI, LC->getRHS(), RC->getRHS()); 622 } 623 624 case scTruncate: 625 case scZeroExtend: 626 case scSignExtend: { 627 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 628 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 629 630 // Compare cast expressions by operand. 631 return CompareSCEVComplexity(LI, LC->getOperand(), RC->getOperand()); 632 } 633 634 case scCouldNotCompute: 635 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 636 } 637 llvm_unreachable("Unknown SCEV kind!"); 638 } 639 640 /// Given a list of SCEV objects, order them by their complexity, and group 641 /// objects of the same complexity together by value. When this routine is 642 /// finished, we know that any duplicates in the vector are consecutive and that 643 /// complexity is monotonically increasing. 644 /// 645 /// Note that we go take special precautions to ensure that we get deterministic 646 /// results from this routine. In other words, we don't want the results of 647 /// this to depend on where the addresses of various SCEV objects happened to 648 /// land in memory. 649 /// 650 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 651 LoopInfo *LI) { 652 if (Ops.size() < 2) return; // Noop 653 if (Ops.size() == 2) { 654 // This is the common case, which also happens to be trivially simple. 655 // Special case it. 656 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 657 if (CompareSCEVComplexity(LI, RHS, LHS) < 0) 658 std::swap(LHS, RHS); 659 return; 660 } 661 662 // Do the rough sort by complexity. 663 std::stable_sort(Ops.begin(), Ops.end(), 664 [LI](const SCEV *LHS, const SCEV *RHS) { 665 return CompareSCEVComplexity(LI, LHS, RHS) < 0; 666 }); 667 668 // Now that we are sorted by complexity, group elements of the same 669 // complexity. Note that this is, at worst, N^2, but the vector is likely to 670 // be extremely short in practice. Note that we take this approach because we 671 // do not want to depend on the addresses of the objects we are grouping. 672 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 673 const SCEV *S = Ops[i]; 674 unsigned Complexity = S->getSCEVType(); 675 676 // If there are any objects of the same complexity and same value as this 677 // one, group them. 678 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 679 if (Ops[j] == S) { // Found a duplicate. 680 // Move it to immediately after i'th element. 681 std::swap(Ops[i+1], Ops[j]); 682 ++i; // no need to rescan it. 683 if (i == e-2) return; // Done! 684 } 685 } 686 } 687 } 688 689 // Returns the size of the SCEV S. 690 static inline int sizeOfSCEV(const SCEV *S) { 691 struct FindSCEVSize { 692 int Size; 693 FindSCEVSize() : Size(0) {} 694 695 bool follow(const SCEV *S) { 696 ++Size; 697 // Keep looking at all operands of S. 698 return true; 699 } 700 bool isDone() const { 701 return false; 702 } 703 }; 704 705 FindSCEVSize F; 706 SCEVTraversal<FindSCEVSize> ST(F); 707 ST.visitAll(S); 708 return F.Size; 709 } 710 711 namespace { 712 713 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 714 public: 715 // Computes the Quotient and Remainder of the division of Numerator by 716 // Denominator. 717 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 718 const SCEV *Denominator, const SCEV **Quotient, 719 const SCEV **Remainder) { 720 assert(Numerator && Denominator && "Uninitialized SCEV"); 721 722 SCEVDivision D(SE, Numerator, Denominator); 723 724 // Check for the trivial case here to avoid having to check for it in the 725 // rest of the code. 726 if (Numerator == Denominator) { 727 *Quotient = D.One; 728 *Remainder = D.Zero; 729 return; 730 } 731 732 if (Numerator->isZero()) { 733 *Quotient = D.Zero; 734 *Remainder = D.Zero; 735 return; 736 } 737 738 // A simple case when N/1. The quotient is N. 739 if (Denominator->isOne()) { 740 *Quotient = Numerator; 741 *Remainder = D.Zero; 742 return; 743 } 744 745 // Split the Denominator when it is a product. 746 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 747 const SCEV *Q, *R; 748 *Quotient = Numerator; 749 for (const SCEV *Op : T->operands()) { 750 divide(SE, *Quotient, Op, &Q, &R); 751 *Quotient = Q; 752 753 // Bail out when the Numerator is not divisible by one of the terms of 754 // the Denominator. 755 if (!R->isZero()) { 756 *Quotient = D.Zero; 757 *Remainder = Numerator; 758 return; 759 } 760 } 761 *Remainder = D.Zero; 762 return; 763 } 764 765 D.visit(Numerator); 766 *Quotient = D.Quotient; 767 *Remainder = D.Remainder; 768 } 769 770 // Except in the trivial case described above, we do not know how to divide 771 // Expr by Denominator for the following functions with empty implementation. 772 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 773 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 774 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 775 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 776 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 777 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 778 void visitUnknown(const SCEVUnknown *Numerator) {} 779 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 780 781 void visitConstant(const SCEVConstant *Numerator) { 782 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 783 APInt NumeratorVal = Numerator->getAPInt(); 784 APInt DenominatorVal = D->getAPInt(); 785 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 786 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 787 788 if (NumeratorBW > DenominatorBW) 789 DenominatorVal = DenominatorVal.sext(NumeratorBW); 790 else if (NumeratorBW < DenominatorBW) 791 NumeratorVal = NumeratorVal.sext(DenominatorBW); 792 793 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 794 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 795 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 796 Quotient = SE.getConstant(QuotientVal); 797 Remainder = SE.getConstant(RemainderVal); 798 return; 799 } 800 } 801 802 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 803 const SCEV *StartQ, *StartR, *StepQ, *StepR; 804 if (!Numerator->isAffine()) 805 return cannotDivide(Numerator); 806 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 807 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 808 // Bail out if the types do not match. 809 Type *Ty = Denominator->getType(); 810 if (Ty != StartQ->getType() || Ty != StartR->getType() || 811 Ty != StepQ->getType() || Ty != StepR->getType()) 812 return cannotDivide(Numerator); 813 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 814 Numerator->getNoWrapFlags()); 815 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 816 Numerator->getNoWrapFlags()); 817 } 818 819 void visitAddExpr(const SCEVAddExpr *Numerator) { 820 SmallVector<const SCEV *, 2> Qs, Rs; 821 Type *Ty = Denominator->getType(); 822 823 for (const SCEV *Op : Numerator->operands()) { 824 const SCEV *Q, *R; 825 divide(SE, Op, Denominator, &Q, &R); 826 827 // Bail out if types do not match. 828 if (Ty != Q->getType() || Ty != R->getType()) 829 return cannotDivide(Numerator); 830 831 Qs.push_back(Q); 832 Rs.push_back(R); 833 } 834 835 if (Qs.size() == 1) { 836 Quotient = Qs[0]; 837 Remainder = Rs[0]; 838 return; 839 } 840 841 Quotient = SE.getAddExpr(Qs); 842 Remainder = SE.getAddExpr(Rs); 843 } 844 845 void visitMulExpr(const SCEVMulExpr *Numerator) { 846 SmallVector<const SCEV *, 2> Qs; 847 Type *Ty = Denominator->getType(); 848 849 bool FoundDenominatorTerm = false; 850 for (const SCEV *Op : Numerator->operands()) { 851 // Bail out if types do not match. 852 if (Ty != Op->getType()) 853 return cannotDivide(Numerator); 854 855 if (FoundDenominatorTerm) { 856 Qs.push_back(Op); 857 continue; 858 } 859 860 // Check whether Denominator divides one of the product operands. 861 const SCEV *Q, *R; 862 divide(SE, Op, Denominator, &Q, &R); 863 if (!R->isZero()) { 864 Qs.push_back(Op); 865 continue; 866 } 867 868 // Bail out if types do not match. 869 if (Ty != Q->getType()) 870 return cannotDivide(Numerator); 871 872 FoundDenominatorTerm = true; 873 Qs.push_back(Q); 874 } 875 876 if (FoundDenominatorTerm) { 877 Remainder = Zero; 878 if (Qs.size() == 1) 879 Quotient = Qs[0]; 880 else 881 Quotient = SE.getMulExpr(Qs); 882 return; 883 } 884 885 if (!isa<SCEVUnknown>(Denominator)) 886 return cannotDivide(Numerator); 887 888 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 889 ValueToValueMap RewriteMap; 890 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 891 cast<SCEVConstant>(Zero)->getValue(); 892 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 893 894 if (Remainder->isZero()) { 895 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 896 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 897 cast<SCEVConstant>(One)->getValue(); 898 Quotient = 899 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 900 return; 901 } 902 903 // Quotient is (Numerator - Remainder) divided by Denominator. 904 const SCEV *Q, *R; 905 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 906 // This SCEV does not seem to simplify: fail the division here. 907 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 908 return cannotDivide(Numerator); 909 divide(SE, Diff, Denominator, &Q, &R); 910 if (R != Zero) 911 return cannotDivide(Numerator); 912 Quotient = Q; 913 } 914 915 private: 916 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 917 const SCEV *Denominator) 918 : SE(S), Denominator(Denominator) { 919 Zero = SE.getZero(Denominator->getType()); 920 One = SE.getOne(Denominator->getType()); 921 922 // We generally do not know how to divide Expr by Denominator. We 923 // initialize the division to a "cannot divide" state to simplify the rest 924 // of the code. 925 cannotDivide(Numerator); 926 } 927 928 // Convenience function for giving up on the division. We set the quotient to 929 // be equal to zero and the remainder to be equal to the numerator. 930 void cannotDivide(const SCEV *Numerator) { 931 Quotient = Zero; 932 Remainder = Numerator; 933 } 934 935 ScalarEvolution &SE; 936 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 937 }; 938 939 } 940 941 //===----------------------------------------------------------------------===// 942 // Simple SCEV method implementations 943 //===----------------------------------------------------------------------===// 944 945 /// Compute BC(It, K). The result has width W. Assume, K > 0. 946 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 947 ScalarEvolution &SE, 948 Type *ResultTy) { 949 // Handle the simplest case efficiently. 950 if (K == 1) 951 return SE.getTruncateOrZeroExtend(It, ResultTy); 952 953 // We are using the following formula for BC(It, K): 954 // 955 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 956 // 957 // Suppose, W is the bitwidth of the return value. We must be prepared for 958 // overflow. Hence, we must assure that the result of our computation is 959 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 960 // safe in modular arithmetic. 961 // 962 // However, this code doesn't use exactly that formula; the formula it uses 963 // is something like the following, where T is the number of factors of 2 in 964 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 965 // exponentiation: 966 // 967 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 968 // 969 // This formula is trivially equivalent to the previous formula. However, 970 // this formula can be implemented much more efficiently. The trick is that 971 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 972 // arithmetic. To do exact division in modular arithmetic, all we have 973 // to do is multiply by the inverse. Therefore, this step can be done at 974 // width W. 975 // 976 // The next issue is how to safely do the division by 2^T. The way this 977 // is done is by doing the multiplication step at a width of at least W + T 978 // bits. This way, the bottom W+T bits of the product are accurate. Then, 979 // when we perform the division by 2^T (which is equivalent to a right shift 980 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 981 // truncated out after the division by 2^T. 982 // 983 // In comparison to just directly using the first formula, this technique 984 // is much more efficient; using the first formula requires W * K bits, 985 // but this formula less than W + K bits. Also, the first formula requires 986 // a division step, whereas this formula only requires multiplies and shifts. 987 // 988 // It doesn't matter whether the subtraction step is done in the calculation 989 // width or the input iteration count's width; if the subtraction overflows, 990 // the result must be zero anyway. We prefer here to do it in the width of 991 // the induction variable because it helps a lot for certain cases; CodeGen 992 // isn't smart enough to ignore the overflow, which leads to much less 993 // efficient code if the width of the subtraction is wider than the native 994 // register width. 995 // 996 // (It's possible to not widen at all by pulling out factors of 2 before 997 // the multiplication; for example, K=2 can be calculated as 998 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 999 // extra arithmetic, so it's not an obvious win, and it gets 1000 // much more complicated for K > 3.) 1001 1002 // Protection from insane SCEVs; this bound is conservative, 1003 // but it probably doesn't matter. 1004 if (K > 1000) 1005 return SE.getCouldNotCompute(); 1006 1007 unsigned W = SE.getTypeSizeInBits(ResultTy); 1008 1009 // Calculate K! / 2^T and T; we divide out the factors of two before 1010 // multiplying for calculating K! / 2^T to avoid overflow. 1011 // Other overflow doesn't matter because we only care about the bottom 1012 // W bits of the result. 1013 APInt OddFactorial(W, 1); 1014 unsigned T = 1; 1015 for (unsigned i = 3; i <= K; ++i) { 1016 APInt Mult(W, i); 1017 unsigned TwoFactors = Mult.countTrailingZeros(); 1018 T += TwoFactors; 1019 Mult = Mult.lshr(TwoFactors); 1020 OddFactorial *= Mult; 1021 } 1022 1023 // We need at least W + T bits for the multiplication step 1024 unsigned CalculationBits = W + T; 1025 1026 // Calculate 2^T, at width T+W. 1027 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1028 1029 // Calculate the multiplicative inverse of K! / 2^T; 1030 // this multiplication factor will perform the exact division by 1031 // K! / 2^T. 1032 APInt Mod = APInt::getSignedMinValue(W+1); 1033 APInt MultiplyFactor = OddFactorial.zext(W+1); 1034 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1035 MultiplyFactor = MultiplyFactor.trunc(W); 1036 1037 // Calculate the product, at width T+W 1038 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1039 CalculationBits); 1040 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1041 for (unsigned i = 1; i != K; ++i) { 1042 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1043 Dividend = SE.getMulExpr(Dividend, 1044 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1045 } 1046 1047 // Divide by 2^T 1048 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1049 1050 // Truncate the result, and divide by K! / 2^T. 1051 1052 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1053 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1054 } 1055 1056 /// Return the value of this chain of recurrences at the specified iteration 1057 /// number. We can evaluate this recurrence by multiplying each element in the 1058 /// chain by the binomial coefficient corresponding to it. In other words, we 1059 /// can evaluate {A,+,B,+,C,+,D} as: 1060 /// 1061 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1062 /// 1063 /// where BC(It, k) stands for binomial coefficient. 1064 /// 1065 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1066 ScalarEvolution &SE) const { 1067 const SCEV *Result = getStart(); 1068 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1069 // The computation is correct in the face of overflow provided that the 1070 // multiplication is performed _after_ the evaluation of the binomial 1071 // coefficient. 1072 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1073 if (isa<SCEVCouldNotCompute>(Coeff)) 1074 return Coeff; 1075 1076 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1077 } 1078 return Result; 1079 } 1080 1081 //===----------------------------------------------------------------------===// 1082 // SCEV Expression folder implementations 1083 //===----------------------------------------------------------------------===// 1084 1085 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1086 Type *Ty) { 1087 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1088 "This is not a truncating conversion!"); 1089 assert(isSCEVable(Ty) && 1090 "This is not a conversion to a SCEVable type!"); 1091 Ty = getEffectiveSCEVType(Ty); 1092 1093 FoldingSetNodeID ID; 1094 ID.AddInteger(scTruncate); 1095 ID.AddPointer(Op); 1096 ID.AddPointer(Ty); 1097 void *IP = nullptr; 1098 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1099 1100 // Fold if the operand is constant. 1101 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1102 return getConstant( 1103 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1104 1105 // trunc(trunc(x)) --> trunc(x) 1106 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1107 return getTruncateExpr(ST->getOperand(), Ty); 1108 1109 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1110 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1111 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1112 1113 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1114 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1115 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1116 1117 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1118 // eliminate all the truncates, or we replace other casts with truncates. 1119 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1120 SmallVector<const SCEV *, 4> Operands; 1121 bool hasTrunc = false; 1122 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1123 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1124 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1125 hasTrunc = isa<SCEVTruncateExpr>(S); 1126 Operands.push_back(S); 1127 } 1128 if (!hasTrunc) 1129 return getAddExpr(Operands); 1130 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1131 } 1132 1133 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1134 // eliminate all the truncates, or we replace other casts with truncates. 1135 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 bool hasTrunc = false; 1138 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1139 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1140 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1141 hasTrunc = isa<SCEVTruncateExpr>(S); 1142 Operands.push_back(S); 1143 } 1144 if (!hasTrunc) 1145 return getMulExpr(Operands); 1146 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1147 } 1148 1149 // If the input value is a chrec scev, truncate the chrec's operands. 1150 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1151 SmallVector<const SCEV *, 4> Operands; 1152 for (const SCEV *Op : AddRec->operands()) 1153 Operands.push_back(getTruncateExpr(Op, Ty)); 1154 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1155 } 1156 1157 // The cast wasn't folded; create an explicit cast node. We can reuse 1158 // the existing insert position since if we get here, we won't have 1159 // made any changes which would invalidate it. 1160 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1161 Op, Ty); 1162 UniqueSCEVs.InsertNode(S, IP); 1163 return S; 1164 } 1165 1166 // Get the limit of a recurrence such that incrementing by Step cannot cause 1167 // signed overflow as long as the value of the recurrence within the 1168 // loop does not exceed this limit before incrementing. 1169 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1170 ICmpInst::Predicate *Pred, 1171 ScalarEvolution *SE) { 1172 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1173 if (SE->isKnownPositive(Step)) { 1174 *Pred = ICmpInst::ICMP_SLT; 1175 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1176 SE->getSignedRange(Step).getSignedMax()); 1177 } 1178 if (SE->isKnownNegative(Step)) { 1179 *Pred = ICmpInst::ICMP_SGT; 1180 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1181 SE->getSignedRange(Step).getSignedMin()); 1182 } 1183 return nullptr; 1184 } 1185 1186 // Get the limit of a recurrence such that incrementing by Step cannot cause 1187 // unsigned overflow as long as the value of the recurrence within the loop does 1188 // not exceed this limit before incrementing. 1189 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1190 ICmpInst::Predicate *Pred, 1191 ScalarEvolution *SE) { 1192 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1193 *Pred = ICmpInst::ICMP_ULT; 1194 1195 return SE->getConstant(APInt::getMinValue(BitWidth) - 1196 SE->getUnsignedRange(Step).getUnsignedMax()); 1197 } 1198 1199 namespace { 1200 1201 struct ExtendOpTraitsBase { 1202 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1203 }; 1204 1205 // Used to make code generic over signed and unsigned overflow. 1206 template <typename ExtendOp> struct ExtendOpTraits { 1207 // Members present: 1208 // 1209 // static const SCEV::NoWrapFlags WrapType; 1210 // 1211 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1212 // 1213 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1214 // ICmpInst::Predicate *Pred, 1215 // ScalarEvolution *SE); 1216 }; 1217 1218 template <> 1219 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1220 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1221 1222 static const GetExtendExprTy GetExtendExpr; 1223 1224 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1225 ICmpInst::Predicate *Pred, 1226 ScalarEvolution *SE) { 1227 return getSignedOverflowLimitForStep(Step, Pred, SE); 1228 } 1229 }; 1230 1231 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1232 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1233 1234 template <> 1235 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1236 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1237 1238 static const GetExtendExprTy GetExtendExpr; 1239 1240 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1241 ICmpInst::Predicate *Pred, 1242 ScalarEvolution *SE) { 1243 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1244 } 1245 }; 1246 1247 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1248 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1249 } 1250 1251 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1252 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1253 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1254 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1255 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1256 // expression "Step + sext/zext(PreIncAR)" is congruent with 1257 // "sext/zext(PostIncAR)" 1258 template <typename ExtendOpTy> 1259 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1260 ScalarEvolution *SE) { 1261 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1262 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1263 1264 const Loop *L = AR->getLoop(); 1265 const SCEV *Start = AR->getStart(); 1266 const SCEV *Step = AR->getStepRecurrence(*SE); 1267 1268 // Check for a simple looking step prior to loop entry. 1269 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1270 if (!SA) 1271 return nullptr; 1272 1273 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1274 // subtraction is expensive. For this purpose, perform a quick and dirty 1275 // difference, by checking for Step in the operand list. 1276 SmallVector<const SCEV *, 4> DiffOps; 1277 for (const SCEV *Op : SA->operands()) 1278 if (Op != Step) 1279 DiffOps.push_back(Op); 1280 1281 if (DiffOps.size() == SA->getNumOperands()) 1282 return nullptr; 1283 1284 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1285 // `Step`: 1286 1287 // 1. NSW/NUW flags on the step increment. 1288 auto PreStartFlags = 1289 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1290 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1291 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1292 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1293 1294 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1295 // "S+X does not sign/unsign-overflow". 1296 // 1297 1298 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1299 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1300 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1301 return PreStart; 1302 1303 // 2. Direct overflow check on the step operation's expression. 1304 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1305 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1306 const SCEV *OperandExtendedStart = 1307 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1308 (SE->*GetExtendExpr)(Step, WideTy)); 1309 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1310 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1311 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1312 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1313 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1314 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1315 } 1316 return PreStart; 1317 } 1318 1319 // 3. Loop precondition. 1320 ICmpInst::Predicate Pred; 1321 const SCEV *OverflowLimit = 1322 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1323 1324 if (OverflowLimit && 1325 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1326 return PreStart; 1327 1328 return nullptr; 1329 } 1330 1331 // Get the normalized zero or sign extended expression for this AddRec's Start. 1332 template <typename ExtendOpTy> 1333 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1334 ScalarEvolution *SE) { 1335 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1336 1337 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1338 if (!PreStart) 1339 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1340 1341 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1342 (SE->*GetExtendExpr)(PreStart, Ty)); 1343 } 1344 1345 // Try to prove away overflow by looking at "nearby" add recurrences. A 1346 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1347 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1348 // 1349 // Formally: 1350 // 1351 // {S,+,X} == {S-T,+,X} + T 1352 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1353 // 1354 // If ({S-T,+,X} + T) does not overflow ... (1) 1355 // 1356 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1357 // 1358 // If {S-T,+,X} does not overflow ... (2) 1359 // 1360 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1361 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1362 // 1363 // If (S-T)+T does not overflow ... (3) 1364 // 1365 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1366 // == {Ext(S),+,Ext(X)} == LHS 1367 // 1368 // Thus, if (1), (2) and (3) are true for some T, then 1369 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1370 // 1371 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1372 // does not overflow" restricted to the 0th iteration. Therefore we only need 1373 // to check for (1) and (2). 1374 // 1375 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1376 // is `Delta` (defined below). 1377 // 1378 template <typename ExtendOpTy> 1379 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1380 const SCEV *Step, 1381 const Loop *L) { 1382 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1383 1384 // We restrict `Start` to a constant to prevent SCEV from spending too much 1385 // time here. It is correct (but more expensive) to continue with a 1386 // non-constant `Start` and do a general SCEV subtraction to compute 1387 // `PreStart` below. 1388 // 1389 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1390 if (!StartC) 1391 return false; 1392 1393 APInt StartAI = StartC->getAPInt(); 1394 1395 for (unsigned Delta : {-2, -1, 1, 2}) { 1396 const SCEV *PreStart = getConstant(StartAI - Delta); 1397 1398 FoldingSetNodeID ID; 1399 ID.AddInteger(scAddRecExpr); 1400 ID.AddPointer(PreStart); 1401 ID.AddPointer(Step); 1402 ID.AddPointer(L); 1403 void *IP = nullptr; 1404 const auto *PreAR = 1405 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1406 1407 // Give up if we don't already have the add recurrence we need because 1408 // actually constructing an add recurrence is relatively expensive. 1409 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1410 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1411 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1412 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1413 DeltaS, &Pred, this); 1414 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1415 return true; 1416 } 1417 } 1418 1419 return false; 1420 } 1421 1422 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1423 Type *Ty) { 1424 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1425 "This is not an extending conversion!"); 1426 assert(isSCEVable(Ty) && 1427 "This is not a conversion to a SCEVable type!"); 1428 Ty = getEffectiveSCEVType(Ty); 1429 1430 // Fold if the operand is constant. 1431 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1432 return getConstant( 1433 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1434 1435 // zext(zext(x)) --> zext(x) 1436 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1437 return getZeroExtendExpr(SZ->getOperand(), Ty); 1438 1439 // Before doing any expensive analysis, check to see if we've already 1440 // computed a SCEV for this Op and Ty. 1441 FoldingSetNodeID ID; 1442 ID.AddInteger(scZeroExtend); 1443 ID.AddPointer(Op); 1444 ID.AddPointer(Ty); 1445 void *IP = nullptr; 1446 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1447 1448 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1449 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1450 // It's possible the bits taken off by the truncate were all zero bits. If 1451 // so, we should be able to simplify this further. 1452 const SCEV *X = ST->getOperand(); 1453 ConstantRange CR = getUnsignedRange(X); 1454 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1455 unsigned NewBits = getTypeSizeInBits(Ty); 1456 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1457 CR.zextOrTrunc(NewBits))) 1458 return getTruncateOrZeroExtend(X, Ty); 1459 } 1460 1461 // If the input value is a chrec scev, and we can prove that the value 1462 // did not overflow the old, smaller, value, we can zero extend all of the 1463 // operands (often constants). This allows analysis of something like 1464 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1465 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1466 if (AR->isAffine()) { 1467 const SCEV *Start = AR->getStart(); 1468 const SCEV *Step = AR->getStepRecurrence(*this); 1469 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1470 const Loop *L = AR->getLoop(); 1471 1472 if (!AR->hasNoUnsignedWrap()) { 1473 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1474 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1475 } 1476 1477 // If we have special knowledge that this addrec won't overflow, 1478 // we don't need to do any further analysis. 1479 if (AR->hasNoUnsignedWrap()) 1480 return getAddRecExpr( 1481 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1482 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1483 1484 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1485 // Note that this serves two purposes: It filters out loops that are 1486 // simply not analyzable, and it covers the case where this code is 1487 // being called from within backedge-taken count analysis, such that 1488 // attempting to ask for the backedge-taken count would likely result 1489 // in infinite recursion. In the later case, the analysis code will 1490 // cope with a conservative value, and it will take care to purge 1491 // that value once it has finished. 1492 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1493 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1494 // Manually compute the final value for AR, checking for 1495 // overflow. 1496 1497 // Check whether the backedge-taken count can be losslessly casted to 1498 // the addrec's type. The count is always unsigned. 1499 const SCEV *CastedMaxBECount = 1500 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1501 const SCEV *RecastedMaxBECount = 1502 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1503 if (MaxBECount == RecastedMaxBECount) { 1504 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1505 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1506 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1507 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1508 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1509 const SCEV *WideMaxBECount = 1510 getZeroExtendExpr(CastedMaxBECount, WideTy); 1511 const SCEV *OperandExtendedAdd = 1512 getAddExpr(WideStart, 1513 getMulExpr(WideMaxBECount, 1514 getZeroExtendExpr(Step, WideTy))); 1515 if (ZAdd == OperandExtendedAdd) { 1516 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1517 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1518 // Return the expression with the addrec on the outside. 1519 return getAddRecExpr( 1520 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1521 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1522 } 1523 // Similar to above, only this time treat the step value as signed. 1524 // This covers loops that count down. 1525 OperandExtendedAdd = 1526 getAddExpr(WideStart, 1527 getMulExpr(WideMaxBECount, 1528 getSignExtendExpr(Step, WideTy))); 1529 if (ZAdd == OperandExtendedAdd) { 1530 // Cache knowledge of AR NW, which is propagated to this AddRec. 1531 // Negative step causes unsigned wrap, but it still can't self-wrap. 1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1533 // Return the expression with the addrec on the outside. 1534 return getAddRecExpr( 1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1536 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1537 } 1538 } 1539 } 1540 1541 // Normally, in the cases we can prove no-overflow via a 1542 // backedge guarding condition, we can also compute a backedge 1543 // taken count for the loop. The exceptions are assumptions and 1544 // guards present in the loop -- SCEV is not great at exploiting 1545 // these to compute max backedge taken counts, but can still use 1546 // these to prove lack of overflow. Use this fact to avoid 1547 // doing extra work that may not pay off. 1548 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1549 !AC.assumptions().empty()) { 1550 // If the backedge is guarded by a comparison with the pre-inc 1551 // value the addrec is safe. Also, if the entry is guarded by 1552 // a comparison with the start value and the backedge is 1553 // guarded by a comparison with the post-inc value, the addrec 1554 // is safe. 1555 if (isKnownPositive(Step)) { 1556 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1557 getUnsignedRange(Step).getUnsignedMax()); 1558 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1559 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1560 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1561 AR->getPostIncExpr(*this), N))) { 1562 // Cache knowledge of AR NUW, which is propagated to this 1563 // AddRec. 1564 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1565 // Return the expression with the addrec on the outside. 1566 return getAddRecExpr( 1567 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1568 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1569 } 1570 } else if (isKnownNegative(Step)) { 1571 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1572 getSignedRange(Step).getSignedMin()); 1573 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1574 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1575 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1576 AR->getPostIncExpr(*this), N))) { 1577 // Cache knowledge of AR NW, which is propagated to this 1578 // AddRec. Negative step causes unsigned wrap, but it 1579 // still can't self-wrap. 1580 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1581 // Return the expression with the addrec on the outside. 1582 return getAddRecExpr( 1583 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1584 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1585 } 1586 } 1587 } 1588 1589 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1590 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1591 return getAddRecExpr( 1592 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1593 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1594 } 1595 } 1596 1597 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1598 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1599 if (SA->hasNoUnsignedWrap()) { 1600 // If the addition does not unsign overflow then we can, by definition, 1601 // commute the zero extension with the addition operation. 1602 SmallVector<const SCEV *, 4> Ops; 1603 for (const auto *Op : SA->operands()) 1604 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1605 return getAddExpr(Ops, SCEV::FlagNUW); 1606 } 1607 } 1608 1609 // The cast wasn't folded; create an explicit cast node. 1610 // Recompute the insert position, as it may have been invalidated. 1611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1612 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1613 Op, Ty); 1614 UniqueSCEVs.InsertNode(S, IP); 1615 return S; 1616 } 1617 1618 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1619 Type *Ty) { 1620 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1621 "This is not an extending conversion!"); 1622 assert(isSCEVable(Ty) && 1623 "This is not a conversion to a SCEVable type!"); 1624 Ty = getEffectiveSCEVType(Ty); 1625 1626 // Fold if the operand is constant. 1627 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1628 return getConstant( 1629 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1630 1631 // sext(sext(x)) --> sext(x) 1632 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1633 return getSignExtendExpr(SS->getOperand(), Ty); 1634 1635 // sext(zext(x)) --> zext(x) 1636 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1637 return getZeroExtendExpr(SZ->getOperand(), Ty); 1638 1639 // Before doing any expensive analysis, check to see if we've already 1640 // computed a SCEV for this Op and Ty. 1641 FoldingSetNodeID ID; 1642 ID.AddInteger(scSignExtend); 1643 ID.AddPointer(Op); 1644 ID.AddPointer(Ty); 1645 void *IP = nullptr; 1646 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1647 1648 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1649 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1650 // It's possible the bits taken off by the truncate were all sign bits. If 1651 // so, we should be able to simplify this further. 1652 const SCEV *X = ST->getOperand(); 1653 ConstantRange CR = getSignedRange(X); 1654 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1655 unsigned NewBits = getTypeSizeInBits(Ty); 1656 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1657 CR.sextOrTrunc(NewBits))) 1658 return getTruncateOrSignExtend(X, Ty); 1659 } 1660 1661 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1662 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1663 if (SA->getNumOperands() == 2) { 1664 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1665 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1666 if (SMul && SC1) { 1667 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1668 const APInt &C1 = SC1->getAPInt(); 1669 const APInt &C2 = SC2->getAPInt(); 1670 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1671 C2.ugt(C1) && C2.isPowerOf2()) 1672 return getAddExpr(getSignExtendExpr(SC1, Ty), 1673 getSignExtendExpr(SMul, Ty)); 1674 } 1675 } 1676 } 1677 1678 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1679 if (SA->hasNoSignedWrap()) { 1680 // If the addition does not sign overflow then we can, by definition, 1681 // commute the sign extension with the addition operation. 1682 SmallVector<const SCEV *, 4> Ops; 1683 for (const auto *Op : SA->operands()) 1684 Ops.push_back(getSignExtendExpr(Op, Ty)); 1685 return getAddExpr(Ops, SCEV::FlagNSW); 1686 } 1687 } 1688 // If the input value is a chrec scev, and we can prove that the value 1689 // did not overflow the old, smaller, value, we can sign extend all of the 1690 // operands (often constants). This allows analysis of something like 1691 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1693 if (AR->isAffine()) { 1694 const SCEV *Start = AR->getStart(); 1695 const SCEV *Step = AR->getStepRecurrence(*this); 1696 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1697 const Loop *L = AR->getLoop(); 1698 1699 if (!AR->hasNoSignedWrap()) { 1700 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1701 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1702 } 1703 1704 // If we have special knowledge that this addrec won't overflow, 1705 // we don't need to do any further analysis. 1706 if (AR->hasNoSignedWrap()) 1707 return getAddRecExpr( 1708 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1709 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1710 1711 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1712 // Note that this serves two purposes: It filters out loops that are 1713 // simply not analyzable, and it covers the case where this code is 1714 // being called from within backedge-taken count analysis, such that 1715 // attempting to ask for the backedge-taken count would likely result 1716 // in infinite recursion. In the later case, the analysis code will 1717 // cope with a conservative value, and it will take care to purge 1718 // that value once it has finished. 1719 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1720 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1721 // Manually compute the final value for AR, checking for 1722 // overflow. 1723 1724 // Check whether the backedge-taken count can be losslessly casted to 1725 // the addrec's type. The count is always unsigned. 1726 const SCEV *CastedMaxBECount = 1727 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1728 const SCEV *RecastedMaxBECount = 1729 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1730 if (MaxBECount == RecastedMaxBECount) { 1731 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1732 // Check whether Start+Step*MaxBECount has no signed overflow. 1733 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1734 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1735 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1736 const SCEV *WideMaxBECount = 1737 getZeroExtendExpr(CastedMaxBECount, WideTy); 1738 const SCEV *OperandExtendedAdd = 1739 getAddExpr(WideStart, 1740 getMulExpr(WideMaxBECount, 1741 getSignExtendExpr(Step, WideTy))); 1742 if (SAdd == OperandExtendedAdd) { 1743 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1744 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1745 // Return the expression with the addrec on the outside. 1746 return getAddRecExpr( 1747 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1748 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1749 } 1750 // Similar to above, only this time treat the step value as unsigned. 1751 // This covers loops that count up with an unsigned step. 1752 OperandExtendedAdd = 1753 getAddExpr(WideStart, 1754 getMulExpr(WideMaxBECount, 1755 getZeroExtendExpr(Step, WideTy))); 1756 if (SAdd == OperandExtendedAdd) { 1757 // If AR wraps around then 1758 // 1759 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1760 // => SAdd != OperandExtendedAdd 1761 // 1762 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1763 // (SAdd == OperandExtendedAdd => AR is NW) 1764 1765 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1766 1767 // Return the expression with the addrec on the outside. 1768 return getAddRecExpr( 1769 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1770 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1771 } 1772 } 1773 } 1774 1775 // Normally, in the cases we can prove no-overflow via a 1776 // backedge guarding condition, we can also compute a backedge 1777 // taken count for the loop. The exceptions are assumptions and 1778 // guards present in the loop -- SCEV is not great at exploiting 1779 // these to compute max backedge taken counts, but can still use 1780 // these to prove lack of overflow. Use this fact to avoid 1781 // doing extra work that may not pay off. 1782 1783 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1784 !AC.assumptions().empty()) { 1785 // If the backedge is guarded by a comparison with the pre-inc 1786 // value the addrec is safe. Also, if the entry is guarded by 1787 // a comparison with the start value and the backedge is 1788 // guarded by a comparison with the post-inc value, the addrec 1789 // is safe. 1790 ICmpInst::Predicate Pred; 1791 const SCEV *OverflowLimit = 1792 getSignedOverflowLimitForStep(Step, &Pred, this); 1793 if (OverflowLimit && 1794 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1795 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1796 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1797 OverflowLimit)))) { 1798 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1799 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1800 return getAddRecExpr( 1801 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1802 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1803 } 1804 } 1805 1806 // If Start and Step are constants, check if we can apply this 1807 // transformation: 1808 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1809 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1810 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1811 if (SC1 && SC2) { 1812 const APInt &C1 = SC1->getAPInt(); 1813 const APInt &C2 = SC2->getAPInt(); 1814 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1815 C2.isPowerOf2()) { 1816 Start = getSignExtendExpr(Start, Ty); 1817 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1818 AR->getNoWrapFlags()); 1819 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1820 } 1821 } 1822 1823 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1824 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1825 return getAddRecExpr( 1826 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1827 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1828 } 1829 } 1830 1831 // If the input value is provably positive and we could not simplify 1832 // away the sext build a zext instead. 1833 if (isKnownNonNegative(Op)) 1834 return getZeroExtendExpr(Op, Ty); 1835 1836 // The cast wasn't folded; create an explicit cast node. 1837 // Recompute the insert position, as it may have been invalidated. 1838 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1839 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1840 Op, Ty); 1841 UniqueSCEVs.InsertNode(S, IP); 1842 return S; 1843 } 1844 1845 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1846 /// unspecified bits out to the given type. 1847 /// 1848 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1849 Type *Ty) { 1850 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1851 "This is not an extending conversion!"); 1852 assert(isSCEVable(Ty) && 1853 "This is not a conversion to a SCEVable type!"); 1854 Ty = getEffectiveSCEVType(Ty); 1855 1856 // Sign-extend negative constants. 1857 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1858 if (SC->getAPInt().isNegative()) 1859 return getSignExtendExpr(Op, Ty); 1860 1861 // Peel off a truncate cast. 1862 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1863 const SCEV *NewOp = T->getOperand(); 1864 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1865 return getAnyExtendExpr(NewOp, Ty); 1866 return getTruncateOrNoop(NewOp, Ty); 1867 } 1868 1869 // Next try a zext cast. If the cast is folded, use it. 1870 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1871 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1872 return ZExt; 1873 1874 // Next try a sext cast. If the cast is folded, use it. 1875 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1876 if (!isa<SCEVSignExtendExpr>(SExt)) 1877 return SExt; 1878 1879 // Force the cast to be folded into the operands of an addrec. 1880 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1881 SmallVector<const SCEV *, 4> Ops; 1882 for (const SCEV *Op : AR->operands()) 1883 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1884 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1885 } 1886 1887 // If the expression is obviously signed, use the sext cast value. 1888 if (isa<SCEVSMaxExpr>(Op)) 1889 return SExt; 1890 1891 // Absent any other information, use the zext cast value. 1892 return ZExt; 1893 } 1894 1895 /// Process the given Ops list, which is a list of operands to be added under 1896 /// the given scale, update the given map. This is a helper function for 1897 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1898 /// that would form an add expression like this: 1899 /// 1900 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1901 /// 1902 /// where A and B are constants, update the map with these values: 1903 /// 1904 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1905 /// 1906 /// and add 13 + A*B*29 to AccumulatedConstant. 1907 /// This will allow getAddRecExpr to produce this: 1908 /// 1909 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1910 /// 1911 /// This form often exposes folding opportunities that are hidden in 1912 /// the original operand list. 1913 /// 1914 /// Return true iff it appears that any interesting folding opportunities 1915 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1916 /// the common case where no interesting opportunities are present, and 1917 /// is also used as a check to avoid infinite recursion. 1918 /// 1919 static bool 1920 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1921 SmallVectorImpl<const SCEV *> &NewOps, 1922 APInt &AccumulatedConstant, 1923 const SCEV *const *Ops, size_t NumOperands, 1924 const APInt &Scale, 1925 ScalarEvolution &SE) { 1926 bool Interesting = false; 1927 1928 // Iterate over the add operands. They are sorted, with constants first. 1929 unsigned i = 0; 1930 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1931 ++i; 1932 // Pull a buried constant out to the outside. 1933 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1934 Interesting = true; 1935 AccumulatedConstant += Scale * C->getAPInt(); 1936 } 1937 1938 // Next comes everything else. We're especially interested in multiplies 1939 // here, but they're in the middle, so just visit the rest with one loop. 1940 for (; i != NumOperands; ++i) { 1941 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1942 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1943 APInt NewScale = 1944 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1945 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1946 // A multiplication of a constant with another add; recurse. 1947 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1948 Interesting |= 1949 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1950 Add->op_begin(), Add->getNumOperands(), 1951 NewScale, SE); 1952 } else { 1953 // A multiplication of a constant with some other value. Update 1954 // the map. 1955 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1956 const SCEV *Key = SE.getMulExpr(MulOps); 1957 auto Pair = M.insert({Key, NewScale}); 1958 if (Pair.second) { 1959 NewOps.push_back(Pair.first->first); 1960 } else { 1961 Pair.first->second += NewScale; 1962 // The map already had an entry for this value, which may indicate 1963 // a folding opportunity. 1964 Interesting = true; 1965 } 1966 } 1967 } else { 1968 // An ordinary operand. Update the map. 1969 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1970 M.insert({Ops[i], Scale}); 1971 if (Pair.second) { 1972 NewOps.push_back(Pair.first->first); 1973 } else { 1974 Pair.first->second += Scale; 1975 // The map already had an entry for this value, which may indicate 1976 // a folding opportunity. 1977 Interesting = true; 1978 } 1979 } 1980 } 1981 1982 return Interesting; 1983 } 1984 1985 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1986 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1987 // can't-overflow flags for the operation if possible. 1988 static SCEV::NoWrapFlags 1989 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1990 const SmallVectorImpl<const SCEV *> &Ops, 1991 SCEV::NoWrapFlags Flags) { 1992 using namespace std::placeholders; 1993 typedef OverflowingBinaryOperator OBO; 1994 1995 bool CanAnalyze = 1996 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1997 (void)CanAnalyze; 1998 assert(CanAnalyze && "don't call from other places!"); 1999 2000 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2001 SCEV::NoWrapFlags SignOrUnsignWrap = 2002 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2003 2004 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2005 auto IsKnownNonNegative = [&](const SCEV *S) { 2006 return SE->isKnownNonNegative(S); 2007 }; 2008 2009 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2010 Flags = 2011 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2012 2013 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2014 2015 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2016 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2017 2018 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2019 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2020 2021 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2022 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2023 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2024 Instruction::Add, C, OBO::NoSignedWrap); 2025 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2026 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2027 } 2028 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2029 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2030 Instruction::Add, C, OBO::NoUnsignedWrap); 2031 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2032 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2033 } 2034 } 2035 2036 return Flags; 2037 } 2038 2039 /// Get a canonical add expression, or something simpler if possible. 2040 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2041 SCEV::NoWrapFlags Flags) { 2042 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2043 "only nuw or nsw allowed"); 2044 assert(!Ops.empty() && "Cannot get empty add!"); 2045 if (Ops.size() == 1) return Ops[0]; 2046 #ifndef NDEBUG 2047 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2048 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2049 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2050 "SCEVAddExpr operand types don't match!"); 2051 #endif 2052 2053 // Sort by complexity, this groups all similar expression types together. 2054 GroupByComplexity(Ops, &LI); 2055 2056 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2057 2058 // If there are any constants, fold them together. 2059 unsigned Idx = 0; 2060 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2061 ++Idx; 2062 assert(Idx < Ops.size()); 2063 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2064 // We found two constants, fold them together! 2065 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2066 if (Ops.size() == 2) return Ops[0]; 2067 Ops.erase(Ops.begin()+1); // Erase the folded element 2068 LHSC = cast<SCEVConstant>(Ops[0]); 2069 } 2070 2071 // If we are left with a constant zero being added, strip it off. 2072 if (LHSC->getValue()->isZero()) { 2073 Ops.erase(Ops.begin()); 2074 --Idx; 2075 } 2076 2077 if (Ops.size() == 1) return Ops[0]; 2078 } 2079 2080 // Okay, check to see if the same value occurs in the operand list more than 2081 // once. If so, merge them together into an multiply expression. Since we 2082 // sorted the list, these values are required to be adjacent. 2083 Type *Ty = Ops[0]->getType(); 2084 bool FoundMatch = false; 2085 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2086 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2087 // Scan ahead to count how many equal operands there are. 2088 unsigned Count = 2; 2089 while (i+Count != e && Ops[i+Count] == Ops[i]) 2090 ++Count; 2091 // Merge the values into a multiply. 2092 const SCEV *Scale = getConstant(Ty, Count); 2093 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2094 if (Ops.size() == Count) 2095 return Mul; 2096 Ops[i] = Mul; 2097 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2098 --i; e -= Count - 1; 2099 FoundMatch = true; 2100 } 2101 if (FoundMatch) 2102 return getAddExpr(Ops, Flags); 2103 2104 // Check for truncates. If all the operands are truncated from the same 2105 // type, see if factoring out the truncate would permit the result to be 2106 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2107 // if the contents of the resulting outer trunc fold to something simple. 2108 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2109 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2110 Type *DstType = Trunc->getType(); 2111 Type *SrcType = Trunc->getOperand()->getType(); 2112 SmallVector<const SCEV *, 8> LargeOps; 2113 bool Ok = true; 2114 // Check all the operands to see if they can be represented in the 2115 // source type of the truncate. 2116 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2117 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2118 if (T->getOperand()->getType() != SrcType) { 2119 Ok = false; 2120 break; 2121 } 2122 LargeOps.push_back(T->getOperand()); 2123 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2124 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2125 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2126 SmallVector<const SCEV *, 8> LargeMulOps; 2127 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2128 if (const SCEVTruncateExpr *T = 2129 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2130 if (T->getOperand()->getType() != SrcType) { 2131 Ok = false; 2132 break; 2133 } 2134 LargeMulOps.push_back(T->getOperand()); 2135 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2136 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2137 } else { 2138 Ok = false; 2139 break; 2140 } 2141 } 2142 if (Ok) 2143 LargeOps.push_back(getMulExpr(LargeMulOps)); 2144 } else { 2145 Ok = false; 2146 break; 2147 } 2148 } 2149 if (Ok) { 2150 // Evaluate the expression in the larger type. 2151 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2152 // If it folds to something simple, use it. Otherwise, don't. 2153 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2154 return getTruncateExpr(Fold, DstType); 2155 } 2156 } 2157 2158 // Skip past any other cast SCEVs. 2159 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2160 ++Idx; 2161 2162 // If there are add operands they would be next. 2163 if (Idx < Ops.size()) { 2164 bool DeletedAdd = false; 2165 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2166 // If we have an add, expand the add operands onto the end of the operands 2167 // list. 2168 Ops.erase(Ops.begin()+Idx); 2169 Ops.append(Add->op_begin(), Add->op_end()); 2170 DeletedAdd = true; 2171 } 2172 2173 // If we deleted at least one add, we added operands to the end of the list, 2174 // and they are not necessarily sorted. Recurse to resort and resimplify 2175 // any operands we just acquired. 2176 if (DeletedAdd) 2177 return getAddExpr(Ops); 2178 } 2179 2180 // Skip over the add expression until we get to a multiply. 2181 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2182 ++Idx; 2183 2184 // Check to see if there are any folding opportunities present with 2185 // operands multiplied by constant values. 2186 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2187 uint64_t BitWidth = getTypeSizeInBits(Ty); 2188 DenseMap<const SCEV *, APInt> M; 2189 SmallVector<const SCEV *, 8> NewOps; 2190 APInt AccumulatedConstant(BitWidth, 0); 2191 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2192 Ops.data(), Ops.size(), 2193 APInt(BitWidth, 1), *this)) { 2194 struct APIntCompare { 2195 bool operator()(const APInt &LHS, const APInt &RHS) const { 2196 return LHS.ult(RHS); 2197 } 2198 }; 2199 2200 // Some interesting folding opportunity is present, so its worthwhile to 2201 // re-generate the operands list. Group the operands by constant scale, 2202 // to avoid multiplying by the same constant scale multiple times. 2203 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2204 for (const SCEV *NewOp : NewOps) 2205 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2206 // Re-generate the operands list. 2207 Ops.clear(); 2208 if (AccumulatedConstant != 0) 2209 Ops.push_back(getConstant(AccumulatedConstant)); 2210 for (auto &MulOp : MulOpLists) 2211 if (MulOp.first != 0) 2212 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2213 getAddExpr(MulOp.second))); 2214 if (Ops.empty()) 2215 return getZero(Ty); 2216 if (Ops.size() == 1) 2217 return Ops[0]; 2218 return getAddExpr(Ops); 2219 } 2220 } 2221 2222 // If we are adding something to a multiply expression, make sure the 2223 // something is not already an operand of the multiply. If so, merge it into 2224 // the multiply. 2225 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2226 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2227 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2228 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2229 if (isa<SCEVConstant>(MulOpSCEV)) 2230 continue; 2231 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2232 if (MulOpSCEV == Ops[AddOp]) { 2233 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2234 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2235 if (Mul->getNumOperands() != 2) { 2236 // If the multiply has more than two operands, we must get the 2237 // Y*Z term. 2238 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2239 Mul->op_begin()+MulOp); 2240 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2241 InnerMul = getMulExpr(MulOps); 2242 } 2243 const SCEV *One = getOne(Ty); 2244 const SCEV *AddOne = getAddExpr(One, InnerMul); 2245 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2246 if (Ops.size() == 2) return OuterMul; 2247 if (AddOp < Idx) { 2248 Ops.erase(Ops.begin()+AddOp); 2249 Ops.erase(Ops.begin()+Idx-1); 2250 } else { 2251 Ops.erase(Ops.begin()+Idx); 2252 Ops.erase(Ops.begin()+AddOp-1); 2253 } 2254 Ops.push_back(OuterMul); 2255 return getAddExpr(Ops); 2256 } 2257 2258 // Check this multiply against other multiplies being added together. 2259 for (unsigned OtherMulIdx = Idx+1; 2260 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2261 ++OtherMulIdx) { 2262 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2263 // If MulOp occurs in OtherMul, we can fold the two multiplies 2264 // together. 2265 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2266 OMulOp != e; ++OMulOp) 2267 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2268 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2269 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2270 if (Mul->getNumOperands() != 2) { 2271 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2272 Mul->op_begin()+MulOp); 2273 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2274 InnerMul1 = getMulExpr(MulOps); 2275 } 2276 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2277 if (OtherMul->getNumOperands() != 2) { 2278 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2279 OtherMul->op_begin()+OMulOp); 2280 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2281 InnerMul2 = getMulExpr(MulOps); 2282 } 2283 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2284 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2285 if (Ops.size() == 2) return OuterMul; 2286 Ops.erase(Ops.begin()+Idx); 2287 Ops.erase(Ops.begin()+OtherMulIdx-1); 2288 Ops.push_back(OuterMul); 2289 return getAddExpr(Ops); 2290 } 2291 } 2292 } 2293 } 2294 2295 // If there are any add recurrences in the operands list, see if any other 2296 // added values are loop invariant. If so, we can fold them into the 2297 // recurrence. 2298 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2299 ++Idx; 2300 2301 // Scan over all recurrences, trying to fold loop invariants into them. 2302 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2303 // Scan all of the other operands to this add and add them to the vector if 2304 // they are loop invariant w.r.t. the recurrence. 2305 SmallVector<const SCEV *, 8> LIOps; 2306 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2307 const Loop *AddRecLoop = AddRec->getLoop(); 2308 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2309 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2310 LIOps.push_back(Ops[i]); 2311 Ops.erase(Ops.begin()+i); 2312 --i; --e; 2313 } 2314 2315 // If we found some loop invariants, fold them into the recurrence. 2316 if (!LIOps.empty()) { 2317 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2318 LIOps.push_back(AddRec->getStart()); 2319 2320 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2321 AddRec->op_end()); 2322 // This follows from the fact that the no-wrap flags on the outer add 2323 // expression are applicable on the 0th iteration, when the add recurrence 2324 // will be equal to its start value. 2325 AddRecOps[0] = getAddExpr(LIOps, Flags); 2326 2327 // Build the new addrec. Propagate the NUW and NSW flags if both the 2328 // outer add and the inner addrec are guaranteed to have no overflow. 2329 // Always propagate NW. 2330 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2331 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2332 2333 // If all of the other operands were loop invariant, we are done. 2334 if (Ops.size() == 1) return NewRec; 2335 2336 // Otherwise, add the folded AddRec by the non-invariant parts. 2337 for (unsigned i = 0;; ++i) 2338 if (Ops[i] == AddRec) { 2339 Ops[i] = NewRec; 2340 break; 2341 } 2342 return getAddExpr(Ops); 2343 } 2344 2345 // Okay, if there weren't any loop invariants to be folded, check to see if 2346 // there are multiple AddRec's with the same loop induction variable being 2347 // added together. If so, we can fold them. 2348 for (unsigned OtherIdx = Idx+1; 2349 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2350 ++OtherIdx) 2351 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2352 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2353 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2354 AddRec->op_end()); 2355 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2356 ++OtherIdx) 2357 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2358 if (OtherAddRec->getLoop() == AddRecLoop) { 2359 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2360 i != e; ++i) { 2361 if (i >= AddRecOps.size()) { 2362 AddRecOps.append(OtherAddRec->op_begin()+i, 2363 OtherAddRec->op_end()); 2364 break; 2365 } 2366 AddRecOps[i] = getAddExpr(AddRecOps[i], 2367 OtherAddRec->getOperand(i)); 2368 } 2369 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2370 } 2371 // Step size has changed, so we cannot guarantee no self-wraparound. 2372 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2373 return getAddExpr(Ops); 2374 } 2375 2376 // Otherwise couldn't fold anything into this recurrence. Move onto the 2377 // next one. 2378 } 2379 2380 // Okay, it looks like we really DO need an add expr. Check to see if we 2381 // already have one, otherwise create a new one. 2382 FoldingSetNodeID ID; 2383 ID.AddInteger(scAddExpr); 2384 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2385 ID.AddPointer(Ops[i]); 2386 void *IP = nullptr; 2387 SCEVAddExpr *S = 2388 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2389 if (!S) { 2390 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2391 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2392 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2393 O, Ops.size()); 2394 UniqueSCEVs.InsertNode(S, IP); 2395 } 2396 S->setNoWrapFlags(Flags); 2397 return S; 2398 } 2399 2400 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2401 uint64_t k = i*j; 2402 if (j > 1 && k / j != i) Overflow = true; 2403 return k; 2404 } 2405 2406 /// Compute the result of "n choose k", the binomial coefficient. If an 2407 /// intermediate computation overflows, Overflow will be set and the return will 2408 /// be garbage. Overflow is not cleared on absence of overflow. 2409 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2410 // We use the multiplicative formula: 2411 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2412 // At each iteration, we take the n-th term of the numeral and divide by the 2413 // (k-n)th term of the denominator. This division will always produce an 2414 // integral result, and helps reduce the chance of overflow in the 2415 // intermediate computations. However, we can still overflow even when the 2416 // final result would fit. 2417 2418 if (n == 0 || n == k) return 1; 2419 if (k > n) return 0; 2420 2421 if (k > n/2) 2422 k = n-k; 2423 2424 uint64_t r = 1; 2425 for (uint64_t i = 1; i <= k; ++i) { 2426 r = umul_ov(r, n-(i-1), Overflow); 2427 r /= i; 2428 } 2429 return r; 2430 } 2431 2432 /// Determine if any of the operands in this SCEV are a constant or if 2433 /// any of the add or multiply expressions in this SCEV contain a constant. 2434 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2435 SmallVector<const SCEV *, 4> Ops; 2436 Ops.push_back(StartExpr); 2437 while (!Ops.empty()) { 2438 const SCEV *CurrentExpr = Ops.pop_back_val(); 2439 if (isa<SCEVConstant>(*CurrentExpr)) 2440 return true; 2441 2442 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2443 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2444 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2445 } 2446 } 2447 return false; 2448 } 2449 2450 /// Get a canonical multiply expression, or something simpler if possible. 2451 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2452 SCEV::NoWrapFlags Flags) { 2453 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2454 "only nuw or nsw allowed"); 2455 assert(!Ops.empty() && "Cannot get empty mul!"); 2456 if (Ops.size() == 1) return Ops[0]; 2457 #ifndef NDEBUG 2458 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2459 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2460 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2461 "SCEVMulExpr operand types don't match!"); 2462 #endif 2463 2464 // Sort by complexity, this groups all similar expression types together. 2465 GroupByComplexity(Ops, &LI); 2466 2467 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2468 2469 // If there are any constants, fold them together. 2470 unsigned Idx = 0; 2471 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2472 2473 // C1*(C2+V) -> C1*C2 + C1*V 2474 if (Ops.size() == 2) 2475 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2476 // If any of Add's ops are Adds or Muls with a constant, 2477 // apply this transformation as well. 2478 if (Add->getNumOperands() == 2) 2479 if (containsConstantSomewhere(Add)) 2480 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2481 getMulExpr(LHSC, Add->getOperand(1))); 2482 2483 ++Idx; 2484 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2485 // We found two constants, fold them together! 2486 ConstantInt *Fold = 2487 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2488 Ops[0] = getConstant(Fold); 2489 Ops.erase(Ops.begin()+1); // Erase the folded element 2490 if (Ops.size() == 1) return Ops[0]; 2491 LHSC = cast<SCEVConstant>(Ops[0]); 2492 } 2493 2494 // If we are left with a constant one being multiplied, strip it off. 2495 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2496 Ops.erase(Ops.begin()); 2497 --Idx; 2498 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2499 // If we have a multiply of zero, it will always be zero. 2500 return Ops[0]; 2501 } else if (Ops[0]->isAllOnesValue()) { 2502 // If we have a mul by -1 of an add, try distributing the -1 among the 2503 // add operands. 2504 if (Ops.size() == 2) { 2505 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2506 SmallVector<const SCEV *, 4> NewOps; 2507 bool AnyFolded = false; 2508 for (const SCEV *AddOp : Add->operands()) { 2509 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2510 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2511 NewOps.push_back(Mul); 2512 } 2513 if (AnyFolded) 2514 return getAddExpr(NewOps); 2515 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2516 // Negation preserves a recurrence's no self-wrap property. 2517 SmallVector<const SCEV *, 4> Operands; 2518 for (const SCEV *AddRecOp : AddRec->operands()) 2519 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2520 2521 return getAddRecExpr(Operands, AddRec->getLoop(), 2522 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2523 } 2524 } 2525 } 2526 2527 if (Ops.size() == 1) 2528 return Ops[0]; 2529 } 2530 2531 // Skip over the add expression until we get to a multiply. 2532 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2533 ++Idx; 2534 2535 // If there are mul operands inline them all into this expression. 2536 if (Idx < Ops.size()) { 2537 bool DeletedMul = false; 2538 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2539 if (Ops.size() > MulOpsInlineThreshold) 2540 break; 2541 // If we have an mul, expand the mul operands onto the end of the operands 2542 // list. 2543 Ops.erase(Ops.begin()+Idx); 2544 Ops.append(Mul->op_begin(), Mul->op_end()); 2545 DeletedMul = true; 2546 } 2547 2548 // If we deleted at least one mul, we added operands to the end of the list, 2549 // and they are not necessarily sorted. Recurse to resort and resimplify 2550 // any operands we just acquired. 2551 if (DeletedMul) 2552 return getMulExpr(Ops); 2553 } 2554 2555 // If there are any add recurrences in the operands list, see if any other 2556 // added values are loop invariant. If so, we can fold them into the 2557 // recurrence. 2558 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2559 ++Idx; 2560 2561 // Scan over all recurrences, trying to fold loop invariants into them. 2562 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2563 // Scan all of the other operands to this mul and add them to the vector if 2564 // they are loop invariant w.r.t. the recurrence. 2565 SmallVector<const SCEV *, 8> LIOps; 2566 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2567 const Loop *AddRecLoop = AddRec->getLoop(); 2568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2569 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2570 LIOps.push_back(Ops[i]); 2571 Ops.erase(Ops.begin()+i); 2572 --i; --e; 2573 } 2574 2575 // If we found some loop invariants, fold them into the recurrence. 2576 if (!LIOps.empty()) { 2577 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2578 SmallVector<const SCEV *, 4> NewOps; 2579 NewOps.reserve(AddRec->getNumOperands()); 2580 const SCEV *Scale = getMulExpr(LIOps); 2581 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2582 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2583 2584 // Build the new addrec. Propagate the NUW and NSW flags if both the 2585 // outer mul and the inner addrec are guaranteed to have no overflow. 2586 // 2587 // No self-wrap cannot be guaranteed after changing the step size, but 2588 // will be inferred if either NUW or NSW is true. 2589 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2590 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2591 2592 // If all of the other operands were loop invariant, we are done. 2593 if (Ops.size() == 1) return NewRec; 2594 2595 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2596 for (unsigned i = 0;; ++i) 2597 if (Ops[i] == AddRec) { 2598 Ops[i] = NewRec; 2599 break; 2600 } 2601 return getMulExpr(Ops); 2602 } 2603 2604 // Okay, if there weren't any loop invariants to be folded, check to see if 2605 // there are multiple AddRec's with the same loop induction variable being 2606 // multiplied together. If so, we can fold them. 2607 2608 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2609 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2610 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2611 // ]]],+,...up to x=2n}. 2612 // Note that the arguments to choose() are always integers with values 2613 // known at compile time, never SCEV objects. 2614 // 2615 // The implementation avoids pointless extra computations when the two 2616 // addrec's are of different length (mathematically, it's equivalent to 2617 // an infinite stream of zeros on the right). 2618 bool OpsModified = false; 2619 for (unsigned OtherIdx = Idx+1; 2620 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2621 ++OtherIdx) { 2622 const SCEVAddRecExpr *OtherAddRec = 2623 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2624 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2625 continue; 2626 2627 bool Overflow = false; 2628 Type *Ty = AddRec->getType(); 2629 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2630 SmallVector<const SCEV*, 7> AddRecOps; 2631 for (int x = 0, xe = AddRec->getNumOperands() + 2632 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2633 const SCEV *Term = getZero(Ty); 2634 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2635 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2636 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2637 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2638 z < ze && !Overflow; ++z) { 2639 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2640 uint64_t Coeff; 2641 if (LargerThan64Bits) 2642 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2643 else 2644 Coeff = Coeff1*Coeff2; 2645 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2646 const SCEV *Term1 = AddRec->getOperand(y-z); 2647 const SCEV *Term2 = OtherAddRec->getOperand(z); 2648 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2649 } 2650 } 2651 AddRecOps.push_back(Term); 2652 } 2653 if (!Overflow) { 2654 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2655 SCEV::FlagAnyWrap); 2656 if (Ops.size() == 2) return NewAddRec; 2657 Ops[Idx] = NewAddRec; 2658 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2659 OpsModified = true; 2660 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2661 if (!AddRec) 2662 break; 2663 } 2664 } 2665 if (OpsModified) 2666 return getMulExpr(Ops); 2667 2668 // Otherwise couldn't fold anything into this recurrence. Move onto the 2669 // next one. 2670 } 2671 2672 // Okay, it looks like we really DO need an mul expr. Check to see if we 2673 // already have one, otherwise create a new one. 2674 FoldingSetNodeID ID; 2675 ID.AddInteger(scMulExpr); 2676 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2677 ID.AddPointer(Ops[i]); 2678 void *IP = nullptr; 2679 SCEVMulExpr *S = 2680 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2681 if (!S) { 2682 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2683 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2684 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2685 O, Ops.size()); 2686 UniqueSCEVs.InsertNode(S, IP); 2687 } 2688 S->setNoWrapFlags(Flags); 2689 return S; 2690 } 2691 2692 /// Get a canonical unsigned division expression, or something simpler if 2693 /// possible. 2694 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2695 const SCEV *RHS) { 2696 assert(getEffectiveSCEVType(LHS->getType()) == 2697 getEffectiveSCEVType(RHS->getType()) && 2698 "SCEVUDivExpr operand types don't match!"); 2699 2700 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2701 if (RHSC->getValue()->equalsInt(1)) 2702 return LHS; // X udiv 1 --> x 2703 // If the denominator is zero, the result of the udiv is undefined. Don't 2704 // try to analyze it, because the resolution chosen here may differ from 2705 // the resolution chosen in other parts of the compiler. 2706 if (!RHSC->getValue()->isZero()) { 2707 // Determine if the division can be folded into the operands of 2708 // its operands. 2709 // TODO: Generalize this to non-constants by using known-bits information. 2710 Type *Ty = LHS->getType(); 2711 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2712 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2713 // For non-power-of-two values, effectively round the value up to the 2714 // nearest power of two. 2715 if (!RHSC->getAPInt().isPowerOf2()) 2716 ++MaxShiftAmt; 2717 IntegerType *ExtTy = 2718 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2719 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2720 if (const SCEVConstant *Step = 2721 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2722 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2723 const APInt &StepInt = Step->getAPInt(); 2724 const APInt &DivInt = RHSC->getAPInt(); 2725 if (!StepInt.urem(DivInt) && 2726 getZeroExtendExpr(AR, ExtTy) == 2727 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2728 getZeroExtendExpr(Step, ExtTy), 2729 AR->getLoop(), SCEV::FlagAnyWrap)) { 2730 SmallVector<const SCEV *, 4> Operands; 2731 for (const SCEV *Op : AR->operands()) 2732 Operands.push_back(getUDivExpr(Op, RHS)); 2733 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2734 } 2735 /// Get a canonical UDivExpr for a recurrence. 2736 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2737 // We can currently only fold X%N if X is constant. 2738 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2739 if (StartC && !DivInt.urem(StepInt) && 2740 getZeroExtendExpr(AR, ExtTy) == 2741 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2742 getZeroExtendExpr(Step, ExtTy), 2743 AR->getLoop(), SCEV::FlagAnyWrap)) { 2744 const APInt &StartInt = StartC->getAPInt(); 2745 const APInt &StartRem = StartInt.urem(StepInt); 2746 if (StartRem != 0) 2747 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2748 AR->getLoop(), SCEV::FlagNW); 2749 } 2750 } 2751 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2752 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2753 SmallVector<const SCEV *, 4> Operands; 2754 for (const SCEV *Op : M->operands()) 2755 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2756 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2757 // Find an operand that's safely divisible. 2758 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2759 const SCEV *Op = M->getOperand(i); 2760 const SCEV *Div = getUDivExpr(Op, RHSC); 2761 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2762 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2763 M->op_end()); 2764 Operands[i] = Div; 2765 return getMulExpr(Operands); 2766 } 2767 } 2768 } 2769 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2770 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2771 SmallVector<const SCEV *, 4> Operands; 2772 for (const SCEV *Op : A->operands()) 2773 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2774 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2775 Operands.clear(); 2776 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2777 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2778 if (isa<SCEVUDivExpr>(Op) || 2779 getMulExpr(Op, RHS) != A->getOperand(i)) 2780 break; 2781 Operands.push_back(Op); 2782 } 2783 if (Operands.size() == A->getNumOperands()) 2784 return getAddExpr(Operands); 2785 } 2786 } 2787 2788 // Fold if both operands are constant. 2789 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2790 Constant *LHSCV = LHSC->getValue(); 2791 Constant *RHSCV = RHSC->getValue(); 2792 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2793 RHSCV))); 2794 } 2795 } 2796 } 2797 2798 FoldingSetNodeID ID; 2799 ID.AddInteger(scUDivExpr); 2800 ID.AddPointer(LHS); 2801 ID.AddPointer(RHS); 2802 void *IP = nullptr; 2803 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2804 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2805 LHS, RHS); 2806 UniqueSCEVs.InsertNode(S, IP); 2807 return S; 2808 } 2809 2810 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2811 APInt A = C1->getAPInt().abs(); 2812 APInt B = C2->getAPInt().abs(); 2813 uint32_t ABW = A.getBitWidth(); 2814 uint32_t BBW = B.getBitWidth(); 2815 2816 if (ABW > BBW) 2817 B = B.zext(ABW); 2818 else if (ABW < BBW) 2819 A = A.zext(BBW); 2820 2821 return APIntOps::GreatestCommonDivisor(A, B); 2822 } 2823 2824 /// Get a canonical unsigned division expression, or something simpler if 2825 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2826 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2827 /// it's not exact because the udiv may be clearing bits. 2828 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2829 const SCEV *RHS) { 2830 // TODO: we could try to find factors in all sorts of things, but for now we 2831 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2832 // end of this file for inspiration. 2833 2834 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2835 if (!Mul) 2836 return getUDivExpr(LHS, RHS); 2837 2838 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2839 // If the mulexpr multiplies by a constant, then that constant must be the 2840 // first element of the mulexpr. 2841 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2842 if (LHSCst == RHSCst) { 2843 SmallVector<const SCEV *, 2> Operands; 2844 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2845 return getMulExpr(Operands); 2846 } 2847 2848 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2849 // that there's a factor provided by one of the other terms. We need to 2850 // check. 2851 APInt Factor = gcd(LHSCst, RHSCst); 2852 if (!Factor.isIntN(1)) { 2853 LHSCst = 2854 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2855 RHSCst = 2856 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2857 SmallVector<const SCEV *, 2> Operands; 2858 Operands.push_back(LHSCst); 2859 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2860 LHS = getMulExpr(Operands); 2861 RHS = RHSCst; 2862 Mul = dyn_cast<SCEVMulExpr>(LHS); 2863 if (!Mul) 2864 return getUDivExactExpr(LHS, RHS); 2865 } 2866 } 2867 } 2868 2869 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2870 if (Mul->getOperand(i) == RHS) { 2871 SmallVector<const SCEV *, 2> Operands; 2872 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2873 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2874 return getMulExpr(Operands); 2875 } 2876 } 2877 2878 return getUDivExpr(LHS, RHS); 2879 } 2880 2881 /// Get an add recurrence expression for the specified loop. Simplify the 2882 /// expression as much as possible. 2883 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2884 const Loop *L, 2885 SCEV::NoWrapFlags Flags) { 2886 SmallVector<const SCEV *, 4> Operands; 2887 Operands.push_back(Start); 2888 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2889 if (StepChrec->getLoop() == L) { 2890 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2891 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2892 } 2893 2894 Operands.push_back(Step); 2895 return getAddRecExpr(Operands, L, Flags); 2896 } 2897 2898 /// Get an add recurrence expression for the specified loop. Simplify the 2899 /// expression as much as possible. 2900 const SCEV * 2901 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2902 const Loop *L, SCEV::NoWrapFlags Flags) { 2903 if (Operands.size() == 1) return Operands[0]; 2904 #ifndef NDEBUG 2905 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2906 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2907 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2908 "SCEVAddRecExpr operand types don't match!"); 2909 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2910 assert(isLoopInvariant(Operands[i], L) && 2911 "SCEVAddRecExpr operand is not loop-invariant!"); 2912 #endif 2913 2914 if (Operands.back()->isZero()) { 2915 Operands.pop_back(); 2916 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2917 } 2918 2919 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2920 // use that information to infer NUW and NSW flags. However, computing a 2921 // BE count requires calling getAddRecExpr, so we may not yet have a 2922 // meaningful BE count at this point (and if we don't, we'd be stuck 2923 // with a SCEVCouldNotCompute as the cached BE count). 2924 2925 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2926 2927 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2928 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2929 const Loop *NestedLoop = NestedAR->getLoop(); 2930 if (L->contains(NestedLoop) 2931 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2932 : (!NestedLoop->contains(L) && 2933 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2934 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2935 NestedAR->op_end()); 2936 Operands[0] = NestedAR->getStart(); 2937 // AddRecs require their operands be loop-invariant with respect to their 2938 // loops. Don't perform this transformation if it would break this 2939 // requirement. 2940 bool AllInvariant = all_of( 2941 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2942 2943 if (AllInvariant) { 2944 // Create a recurrence for the outer loop with the same step size. 2945 // 2946 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2947 // inner recurrence has the same property. 2948 SCEV::NoWrapFlags OuterFlags = 2949 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2950 2951 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2952 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2953 return isLoopInvariant(Op, NestedLoop); 2954 }); 2955 2956 if (AllInvariant) { 2957 // Ok, both add recurrences are valid after the transformation. 2958 // 2959 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2960 // the outer recurrence has the same property. 2961 SCEV::NoWrapFlags InnerFlags = 2962 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2963 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2964 } 2965 } 2966 // Reset Operands to its original state. 2967 Operands[0] = NestedAR; 2968 } 2969 } 2970 2971 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2972 // already have one, otherwise create a new one. 2973 FoldingSetNodeID ID; 2974 ID.AddInteger(scAddRecExpr); 2975 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2976 ID.AddPointer(Operands[i]); 2977 ID.AddPointer(L); 2978 void *IP = nullptr; 2979 SCEVAddRecExpr *S = 2980 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2981 if (!S) { 2982 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2983 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2984 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2985 O, Operands.size(), L); 2986 UniqueSCEVs.InsertNode(S, IP); 2987 } 2988 S->setNoWrapFlags(Flags); 2989 return S; 2990 } 2991 2992 const SCEV * 2993 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2994 const SmallVectorImpl<const SCEV *> &IndexExprs, 2995 bool InBounds) { 2996 // getSCEV(Base)->getType() has the same address space as Base->getType() 2997 // because SCEV::getType() preserves the address space. 2998 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2999 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3000 // instruction to its SCEV, because the Instruction may be guarded by control 3001 // flow and the no-overflow bits may not be valid for the expression in any 3002 // context. This can be fixed similarly to how these flags are handled for 3003 // adds. 3004 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3005 3006 const SCEV *TotalOffset = getZero(IntPtrTy); 3007 // The address space is unimportant. The first thing we do on CurTy is getting 3008 // its element type. 3009 Type *CurTy = PointerType::getUnqual(PointeeType); 3010 for (const SCEV *IndexExpr : IndexExprs) { 3011 // Compute the (potentially symbolic) offset in bytes for this index. 3012 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3013 // For a struct, add the member offset. 3014 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3015 unsigned FieldNo = Index->getZExtValue(); 3016 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3017 3018 // Add the field offset to the running total offset. 3019 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3020 3021 // Update CurTy to the type of the field at Index. 3022 CurTy = STy->getTypeAtIndex(Index); 3023 } else { 3024 // Update CurTy to its element type. 3025 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3026 // For an array, add the element offset, explicitly scaled. 3027 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3028 // Getelementptr indices are signed. 3029 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3030 3031 // Multiply the index by the element size to compute the element offset. 3032 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3033 3034 // Add the element offset to the running total offset. 3035 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3036 } 3037 } 3038 3039 // Add the total offset from all the GEP indices to the base. 3040 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3041 } 3042 3043 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3044 const SCEV *RHS) { 3045 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3046 return getSMaxExpr(Ops); 3047 } 3048 3049 const SCEV * 3050 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3051 assert(!Ops.empty() && "Cannot get empty smax!"); 3052 if (Ops.size() == 1) return Ops[0]; 3053 #ifndef NDEBUG 3054 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3055 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3056 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3057 "SCEVSMaxExpr operand types don't match!"); 3058 #endif 3059 3060 // Sort by complexity, this groups all similar expression types together. 3061 GroupByComplexity(Ops, &LI); 3062 3063 // If there are any constants, fold them together. 3064 unsigned Idx = 0; 3065 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3066 ++Idx; 3067 assert(Idx < Ops.size()); 3068 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3069 // We found two constants, fold them together! 3070 ConstantInt *Fold = ConstantInt::get( 3071 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3072 Ops[0] = getConstant(Fold); 3073 Ops.erase(Ops.begin()+1); // Erase the folded element 3074 if (Ops.size() == 1) return Ops[0]; 3075 LHSC = cast<SCEVConstant>(Ops[0]); 3076 } 3077 3078 // If we are left with a constant minimum-int, strip it off. 3079 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3080 Ops.erase(Ops.begin()); 3081 --Idx; 3082 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3083 // If we have an smax with a constant maximum-int, it will always be 3084 // maximum-int. 3085 return Ops[0]; 3086 } 3087 3088 if (Ops.size() == 1) return Ops[0]; 3089 } 3090 3091 // Find the first SMax 3092 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3093 ++Idx; 3094 3095 // Check to see if one of the operands is an SMax. If so, expand its operands 3096 // onto our operand list, and recurse to simplify. 3097 if (Idx < Ops.size()) { 3098 bool DeletedSMax = false; 3099 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3100 Ops.erase(Ops.begin()+Idx); 3101 Ops.append(SMax->op_begin(), SMax->op_end()); 3102 DeletedSMax = true; 3103 } 3104 3105 if (DeletedSMax) 3106 return getSMaxExpr(Ops); 3107 } 3108 3109 // Okay, check to see if the same value occurs in the operand list twice. If 3110 // so, delete one. Since we sorted the list, these values are required to 3111 // be adjacent. 3112 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3113 // X smax Y smax Y --> X smax Y 3114 // X smax Y --> X, if X is always greater than Y 3115 if (Ops[i] == Ops[i+1] || 3116 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3117 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3118 --i; --e; 3119 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3120 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3121 --i; --e; 3122 } 3123 3124 if (Ops.size() == 1) return Ops[0]; 3125 3126 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3127 3128 // Okay, it looks like we really DO need an smax expr. Check to see if we 3129 // already have one, otherwise create a new one. 3130 FoldingSetNodeID ID; 3131 ID.AddInteger(scSMaxExpr); 3132 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3133 ID.AddPointer(Ops[i]); 3134 void *IP = nullptr; 3135 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3136 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3137 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3138 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3139 O, Ops.size()); 3140 UniqueSCEVs.InsertNode(S, IP); 3141 return S; 3142 } 3143 3144 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3145 const SCEV *RHS) { 3146 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3147 return getUMaxExpr(Ops); 3148 } 3149 3150 const SCEV * 3151 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3152 assert(!Ops.empty() && "Cannot get empty umax!"); 3153 if (Ops.size() == 1) return Ops[0]; 3154 #ifndef NDEBUG 3155 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3156 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3157 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3158 "SCEVUMaxExpr operand types don't match!"); 3159 #endif 3160 3161 // Sort by complexity, this groups all similar expression types together. 3162 GroupByComplexity(Ops, &LI); 3163 3164 // If there are any constants, fold them together. 3165 unsigned Idx = 0; 3166 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3167 ++Idx; 3168 assert(Idx < Ops.size()); 3169 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3170 // We found two constants, fold them together! 3171 ConstantInt *Fold = ConstantInt::get( 3172 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3173 Ops[0] = getConstant(Fold); 3174 Ops.erase(Ops.begin()+1); // Erase the folded element 3175 if (Ops.size() == 1) return Ops[0]; 3176 LHSC = cast<SCEVConstant>(Ops[0]); 3177 } 3178 3179 // If we are left with a constant minimum-int, strip it off. 3180 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3181 Ops.erase(Ops.begin()); 3182 --Idx; 3183 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3184 // If we have an umax with a constant maximum-int, it will always be 3185 // maximum-int. 3186 return Ops[0]; 3187 } 3188 3189 if (Ops.size() == 1) return Ops[0]; 3190 } 3191 3192 // Find the first UMax 3193 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3194 ++Idx; 3195 3196 // Check to see if one of the operands is a UMax. If so, expand its operands 3197 // onto our operand list, and recurse to simplify. 3198 if (Idx < Ops.size()) { 3199 bool DeletedUMax = false; 3200 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3201 Ops.erase(Ops.begin()+Idx); 3202 Ops.append(UMax->op_begin(), UMax->op_end()); 3203 DeletedUMax = true; 3204 } 3205 3206 if (DeletedUMax) 3207 return getUMaxExpr(Ops); 3208 } 3209 3210 // Okay, check to see if the same value occurs in the operand list twice. If 3211 // so, delete one. Since we sorted the list, these values are required to 3212 // be adjacent. 3213 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3214 // X umax Y umax Y --> X umax Y 3215 // X umax Y --> X, if X is always greater than Y 3216 if (Ops[i] == Ops[i+1] || 3217 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3218 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3219 --i; --e; 3220 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3221 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3222 --i; --e; 3223 } 3224 3225 if (Ops.size() == 1) return Ops[0]; 3226 3227 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3228 3229 // Okay, it looks like we really DO need a umax expr. Check to see if we 3230 // already have one, otherwise create a new one. 3231 FoldingSetNodeID ID; 3232 ID.AddInteger(scUMaxExpr); 3233 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3234 ID.AddPointer(Ops[i]); 3235 void *IP = nullptr; 3236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3237 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3238 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3239 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3240 O, Ops.size()); 3241 UniqueSCEVs.InsertNode(S, IP); 3242 return S; 3243 } 3244 3245 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3246 const SCEV *RHS) { 3247 // ~smax(~x, ~y) == smin(x, y). 3248 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3249 } 3250 3251 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3252 const SCEV *RHS) { 3253 // ~umax(~x, ~y) == umin(x, y) 3254 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3255 } 3256 3257 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3258 // We can bypass creating a target-independent 3259 // constant expression and then folding it back into a ConstantInt. 3260 // This is just a compile-time optimization. 3261 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3262 } 3263 3264 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3265 StructType *STy, 3266 unsigned FieldNo) { 3267 // We can bypass creating a target-independent 3268 // constant expression and then folding it back into a ConstantInt. 3269 // This is just a compile-time optimization. 3270 return getConstant( 3271 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3272 } 3273 3274 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3275 // Don't attempt to do anything other than create a SCEVUnknown object 3276 // here. createSCEV only calls getUnknown after checking for all other 3277 // interesting possibilities, and any other code that calls getUnknown 3278 // is doing so in order to hide a value from SCEV canonicalization. 3279 3280 FoldingSetNodeID ID; 3281 ID.AddInteger(scUnknown); 3282 ID.AddPointer(V); 3283 void *IP = nullptr; 3284 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3285 assert(cast<SCEVUnknown>(S)->getValue() == V && 3286 "Stale SCEVUnknown in uniquing map!"); 3287 return S; 3288 } 3289 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3290 FirstUnknown); 3291 FirstUnknown = cast<SCEVUnknown>(S); 3292 UniqueSCEVs.InsertNode(S, IP); 3293 return S; 3294 } 3295 3296 //===----------------------------------------------------------------------===// 3297 // Basic SCEV Analysis and PHI Idiom Recognition Code 3298 // 3299 3300 /// Test if values of the given type are analyzable within the SCEV 3301 /// framework. This primarily includes integer types, and it can optionally 3302 /// include pointer types if the ScalarEvolution class has access to 3303 /// target-specific information. 3304 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3305 // Integers and pointers are always SCEVable. 3306 return Ty->isIntegerTy() || Ty->isPointerTy(); 3307 } 3308 3309 /// Return the size in bits of the specified type, for which isSCEVable must 3310 /// return true. 3311 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3312 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3313 return getDataLayout().getTypeSizeInBits(Ty); 3314 } 3315 3316 /// Return a type with the same bitwidth as the given type and which represents 3317 /// how SCEV will treat the given type, for which isSCEVable must return 3318 /// true. For pointer types, this is the pointer-sized integer type. 3319 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3320 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3321 3322 if (Ty->isIntegerTy()) 3323 return Ty; 3324 3325 // The only other support type is pointer. 3326 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3327 return getDataLayout().getIntPtrType(Ty); 3328 } 3329 3330 const SCEV *ScalarEvolution::getCouldNotCompute() { 3331 return CouldNotCompute.get(); 3332 } 3333 3334 3335 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3336 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3337 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3338 // is set iff if find such SCEVUnknown. 3339 // 3340 struct FindInvalidSCEVUnknown { 3341 bool FindOne; 3342 FindInvalidSCEVUnknown() { FindOne = false; } 3343 bool follow(const SCEV *S) { 3344 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3345 case scConstant: 3346 return false; 3347 case scUnknown: 3348 if (!cast<SCEVUnknown>(S)->getValue()) 3349 FindOne = true; 3350 return false; 3351 default: 3352 return true; 3353 } 3354 } 3355 bool isDone() const { return FindOne; } 3356 }; 3357 3358 FindInvalidSCEVUnknown F; 3359 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3360 ST.visitAll(S); 3361 3362 return !F.FindOne; 3363 } 3364 3365 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3366 // Helper class working with SCEVTraversal to figure out if a SCEV contains a 3367 // sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set iff 3368 // if such sub scAddRecExpr type SCEV is found. 3369 struct FindAddRecurrence { 3370 bool FoundOne; 3371 FindAddRecurrence() : FoundOne(false) {} 3372 3373 bool follow(const SCEV *S) { 3374 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3375 case scAddRecExpr: 3376 FoundOne = true; 3377 case scConstant: 3378 case scUnknown: 3379 case scCouldNotCompute: 3380 return false; 3381 default: 3382 return true; 3383 } 3384 } 3385 bool isDone() const { return FoundOne; } 3386 }; 3387 3388 HasRecMapType::iterator I = HasRecMap.find(S); 3389 if (I != HasRecMap.end()) 3390 return I->second; 3391 3392 FindAddRecurrence F; 3393 SCEVTraversal<FindAddRecurrence> ST(F); 3394 ST.visitAll(S); 3395 HasRecMap.insert({S, F.FoundOne}); 3396 return F.FoundOne; 3397 } 3398 3399 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3400 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3401 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3402 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3403 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3404 if (!Add) 3405 return {S, nullptr}; 3406 3407 if (Add->getNumOperands() != 2) 3408 return {S, nullptr}; 3409 3410 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3411 if (!ConstOp) 3412 return {S, nullptr}; 3413 3414 return {Add->getOperand(1), ConstOp->getValue()}; 3415 } 3416 3417 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3418 /// by the value and offset from any ValueOffsetPair in the set. 3419 SetVector<ScalarEvolution::ValueOffsetPair> * 3420 ScalarEvolution::getSCEVValues(const SCEV *S) { 3421 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3422 if (SI == ExprValueMap.end()) 3423 return nullptr; 3424 #ifndef NDEBUG 3425 if (VerifySCEVMap) { 3426 // Check there is no dangling Value in the set returned. 3427 for (const auto &VE : SI->second) 3428 assert(ValueExprMap.count(VE.first)); 3429 } 3430 #endif 3431 return &SI->second; 3432 } 3433 3434 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3435 /// cannot be used separately. eraseValueFromMap should be used to remove 3436 /// V from ValueExprMap and ExprValueMap at the same time. 3437 void ScalarEvolution::eraseValueFromMap(Value *V) { 3438 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3439 if (I != ValueExprMap.end()) { 3440 const SCEV *S = I->second; 3441 // Remove {V, 0} from the set of ExprValueMap[S] 3442 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3443 SV->remove({V, nullptr}); 3444 3445 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3446 const SCEV *Stripped; 3447 ConstantInt *Offset; 3448 std::tie(Stripped, Offset) = splitAddExpr(S); 3449 if (Offset != nullptr) { 3450 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3451 SV->remove({V, Offset}); 3452 } 3453 ValueExprMap.erase(V); 3454 } 3455 } 3456 3457 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3458 /// create a new one. 3459 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3460 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3461 3462 const SCEV *S = getExistingSCEV(V); 3463 if (S == nullptr) { 3464 S = createSCEV(V); 3465 // During PHI resolution, it is possible to create two SCEVs for the same 3466 // V, so it is needed to double check whether V->S is inserted into 3467 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3468 std::pair<ValueExprMapType::iterator, bool> Pair = 3469 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3470 if (Pair.second) { 3471 ExprValueMap[S].insert({V, nullptr}); 3472 3473 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3474 // ExprValueMap. 3475 const SCEV *Stripped = S; 3476 ConstantInt *Offset = nullptr; 3477 std::tie(Stripped, Offset) = splitAddExpr(S); 3478 // If stripped is SCEVUnknown, don't bother to save 3479 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3480 // increase the complexity of the expansion code. 3481 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3482 // because it may generate add/sub instead of GEP in SCEV expansion. 3483 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3484 !isa<GetElementPtrInst>(V)) 3485 ExprValueMap[Stripped].insert({V, Offset}); 3486 } 3487 } 3488 return S; 3489 } 3490 3491 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3492 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3493 3494 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3495 if (I != ValueExprMap.end()) { 3496 const SCEV *S = I->second; 3497 if (checkValidity(S)) 3498 return S; 3499 eraseValueFromMap(V); 3500 forgetMemoizedResults(S); 3501 } 3502 return nullptr; 3503 } 3504 3505 /// Return a SCEV corresponding to -V = -1*V 3506 /// 3507 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3508 SCEV::NoWrapFlags Flags) { 3509 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3510 return getConstant( 3511 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3512 3513 Type *Ty = V->getType(); 3514 Ty = getEffectiveSCEVType(Ty); 3515 return getMulExpr( 3516 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3517 } 3518 3519 /// Return a SCEV corresponding to ~V = -1-V 3520 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3521 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3522 return getConstant( 3523 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3524 3525 Type *Ty = V->getType(); 3526 Ty = getEffectiveSCEVType(Ty); 3527 const SCEV *AllOnes = 3528 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3529 return getMinusSCEV(AllOnes, V); 3530 } 3531 3532 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3533 SCEV::NoWrapFlags Flags) { 3534 // Fast path: X - X --> 0. 3535 if (LHS == RHS) 3536 return getZero(LHS->getType()); 3537 3538 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3539 // makes it so that we cannot make much use of NUW. 3540 auto AddFlags = SCEV::FlagAnyWrap; 3541 const bool RHSIsNotMinSigned = 3542 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3543 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3544 // Let M be the minimum representable signed value. Then (-1)*RHS 3545 // signed-wraps if and only if RHS is M. That can happen even for 3546 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3547 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3548 // (-1)*RHS, we need to prove that RHS != M. 3549 // 3550 // If LHS is non-negative and we know that LHS - RHS does not 3551 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3552 // either by proving that RHS > M or that LHS >= 0. 3553 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3554 AddFlags = SCEV::FlagNSW; 3555 } 3556 } 3557 3558 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3559 // RHS is NSW and LHS >= 0. 3560 // 3561 // The difficulty here is that the NSW flag may have been proven 3562 // relative to a loop that is to be found in a recurrence in LHS and 3563 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3564 // larger scope than intended. 3565 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3566 3567 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3568 } 3569 3570 const SCEV * 3571 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3572 Type *SrcTy = V->getType(); 3573 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3574 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3575 "Cannot truncate or zero extend with non-integer arguments!"); 3576 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3577 return V; // No conversion 3578 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3579 return getTruncateExpr(V, Ty); 3580 return getZeroExtendExpr(V, Ty); 3581 } 3582 3583 const SCEV * 3584 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3585 Type *Ty) { 3586 Type *SrcTy = V->getType(); 3587 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3588 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3589 "Cannot truncate or zero extend with non-integer arguments!"); 3590 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3591 return V; // No conversion 3592 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3593 return getTruncateExpr(V, Ty); 3594 return getSignExtendExpr(V, Ty); 3595 } 3596 3597 const SCEV * 3598 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3599 Type *SrcTy = V->getType(); 3600 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3601 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3602 "Cannot noop or zero extend with non-integer arguments!"); 3603 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3604 "getNoopOrZeroExtend cannot truncate!"); 3605 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3606 return V; // No conversion 3607 return getZeroExtendExpr(V, Ty); 3608 } 3609 3610 const SCEV * 3611 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3612 Type *SrcTy = V->getType(); 3613 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3614 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3615 "Cannot noop or sign extend with non-integer arguments!"); 3616 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3617 "getNoopOrSignExtend cannot truncate!"); 3618 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3619 return V; // No conversion 3620 return getSignExtendExpr(V, Ty); 3621 } 3622 3623 const SCEV * 3624 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3625 Type *SrcTy = V->getType(); 3626 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3627 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3628 "Cannot noop or any extend with non-integer arguments!"); 3629 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3630 "getNoopOrAnyExtend cannot truncate!"); 3631 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3632 return V; // No conversion 3633 return getAnyExtendExpr(V, Ty); 3634 } 3635 3636 const SCEV * 3637 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3638 Type *SrcTy = V->getType(); 3639 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3640 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3641 "Cannot truncate or noop with non-integer arguments!"); 3642 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3643 "getTruncateOrNoop cannot extend!"); 3644 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3645 return V; // No conversion 3646 return getTruncateExpr(V, Ty); 3647 } 3648 3649 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3650 const SCEV *RHS) { 3651 const SCEV *PromotedLHS = LHS; 3652 const SCEV *PromotedRHS = RHS; 3653 3654 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3655 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3656 else 3657 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3658 3659 return getUMaxExpr(PromotedLHS, PromotedRHS); 3660 } 3661 3662 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3663 const SCEV *RHS) { 3664 const SCEV *PromotedLHS = LHS; 3665 const SCEV *PromotedRHS = RHS; 3666 3667 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3668 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3669 else 3670 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3671 3672 return getUMinExpr(PromotedLHS, PromotedRHS); 3673 } 3674 3675 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3676 // A pointer operand may evaluate to a nonpointer expression, such as null. 3677 if (!V->getType()->isPointerTy()) 3678 return V; 3679 3680 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3681 return getPointerBase(Cast->getOperand()); 3682 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3683 const SCEV *PtrOp = nullptr; 3684 for (const SCEV *NAryOp : NAry->operands()) { 3685 if (NAryOp->getType()->isPointerTy()) { 3686 // Cannot find the base of an expression with multiple pointer operands. 3687 if (PtrOp) 3688 return V; 3689 PtrOp = NAryOp; 3690 } 3691 } 3692 if (!PtrOp) 3693 return V; 3694 return getPointerBase(PtrOp); 3695 } 3696 return V; 3697 } 3698 3699 /// Push users of the given Instruction onto the given Worklist. 3700 static void 3701 PushDefUseChildren(Instruction *I, 3702 SmallVectorImpl<Instruction *> &Worklist) { 3703 // Push the def-use children onto the Worklist stack. 3704 for (User *U : I->users()) 3705 Worklist.push_back(cast<Instruction>(U)); 3706 } 3707 3708 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3709 SmallVector<Instruction *, 16> Worklist; 3710 PushDefUseChildren(PN, Worklist); 3711 3712 SmallPtrSet<Instruction *, 8> Visited; 3713 Visited.insert(PN); 3714 while (!Worklist.empty()) { 3715 Instruction *I = Worklist.pop_back_val(); 3716 if (!Visited.insert(I).second) 3717 continue; 3718 3719 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3720 if (It != ValueExprMap.end()) { 3721 const SCEV *Old = It->second; 3722 3723 // Short-circuit the def-use traversal if the symbolic name 3724 // ceases to appear in expressions. 3725 if (Old != SymName && !hasOperand(Old, SymName)) 3726 continue; 3727 3728 // SCEVUnknown for a PHI either means that it has an unrecognized 3729 // structure, it's a PHI that's in the progress of being computed 3730 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3731 // additional loop trip count information isn't going to change anything. 3732 // In the second case, createNodeForPHI will perform the necessary 3733 // updates on its own when it gets to that point. In the third, we do 3734 // want to forget the SCEVUnknown. 3735 if (!isa<PHINode>(I) || 3736 !isa<SCEVUnknown>(Old) || 3737 (I != PN && Old == SymName)) { 3738 eraseValueFromMap(It->first); 3739 forgetMemoizedResults(Old); 3740 } 3741 } 3742 3743 PushDefUseChildren(I, Worklist); 3744 } 3745 } 3746 3747 namespace { 3748 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3749 public: 3750 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3751 ScalarEvolution &SE) { 3752 SCEVInitRewriter Rewriter(L, SE); 3753 const SCEV *Result = Rewriter.visit(S); 3754 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3755 } 3756 3757 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3758 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3759 3760 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3761 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3762 Valid = false; 3763 return Expr; 3764 } 3765 3766 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3767 // Only allow AddRecExprs for this loop. 3768 if (Expr->getLoop() == L) 3769 return Expr->getStart(); 3770 Valid = false; 3771 return Expr; 3772 } 3773 3774 bool isValid() { return Valid; } 3775 3776 private: 3777 const Loop *L; 3778 bool Valid; 3779 }; 3780 3781 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3782 public: 3783 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3784 ScalarEvolution &SE) { 3785 SCEVShiftRewriter Rewriter(L, SE); 3786 const SCEV *Result = Rewriter.visit(S); 3787 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3788 } 3789 3790 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3791 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3792 3793 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3794 // Only allow AddRecExprs for this loop. 3795 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3796 Valid = false; 3797 return Expr; 3798 } 3799 3800 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3801 if (Expr->getLoop() == L && Expr->isAffine()) 3802 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3803 Valid = false; 3804 return Expr; 3805 } 3806 bool isValid() { return Valid; } 3807 3808 private: 3809 const Loop *L; 3810 bool Valid; 3811 }; 3812 } // end anonymous namespace 3813 3814 SCEV::NoWrapFlags 3815 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3816 if (!AR->isAffine()) 3817 return SCEV::FlagAnyWrap; 3818 3819 typedef OverflowingBinaryOperator OBO; 3820 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3821 3822 if (!AR->hasNoSignedWrap()) { 3823 ConstantRange AddRecRange = getSignedRange(AR); 3824 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3825 3826 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3827 Instruction::Add, IncRange, OBO::NoSignedWrap); 3828 if (NSWRegion.contains(AddRecRange)) 3829 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3830 } 3831 3832 if (!AR->hasNoUnsignedWrap()) { 3833 ConstantRange AddRecRange = getUnsignedRange(AR); 3834 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3835 3836 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3837 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3838 if (NUWRegion.contains(AddRecRange)) 3839 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3840 } 3841 3842 return Result; 3843 } 3844 3845 namespace { 3846 /// Represents an abstract binary operation. This may exist as a 3847 /// normal instruction or constant expression, or may have been 3848 /// derived from an expression tree. 3849 struct BinaryOp { 3850 unsigned Opcode; 3851 Value *LHS; 3852 Value *RHS; 3853 bool IsNSW; 3854 bool IsNUW; 3855 3856 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3857 /// constant expression. 3858 Operator *Op; 3859 3860 explicit BinaryOp(Operator *Op) 3861 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3862 IsNSW(false), IsNUW(false), Op(Op) { 3863 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3864 IsNSW = OBO->hasNoSignedWrap(); 3865 IsNUW = OBO->hasNoUnsignedWrap(); 3866 } 3867 } 3868 3869 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3870 bool IsNUW = false) 3871 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3872 Op(nullptr) {} 3873 }; 3874 } 3875 3876 3877 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3878 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3879 auto *Op = dyn_cast<Operator>(V); 3880 if (!Op) 3881 return None; 3882 3883 // Implementation detail: all the cleverness here should happen without 3884 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3885 // SCEV expressions when possible, and we should not break that. 3886 3887 switch (Op->getOpcode()) { 3888 case Instruction::Add: 3889 case Instruction::Sub: 3890 case Instruction::Mul: 3891 case Instruction::UDiv: 3892 case Instruction::And: 3893 case Instruction::Or: 3894 case Instruction::AShr: 3895 case Instruction::Shl: 3896 return BinaryOp(Op); 3897 3898 case Instruction::Xor: 3899 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 3900 // If the RHS of the xor is a signbit, then this is just an add. 3901 // Instcombine turns add of signbit into xor as a strength reduction step. 3902 if (RHSC->getValue().isSignBit()) 3903 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 3904 return BinaryOp(Op); 3905 3906 case Instruction::LShr: 3907 // Turn logical shift right of a constant into a unsigned divide. 3908 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 3909 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 3910 3911 // If the shift count is not less than the bitwidth, the result of 3912 // the shift is undefined. Don't try to analyze it, because the 3913 // resolution chosen here may differ from the resolution chosen in 3914 // other parts of the compiler. 3915 if (SA->getValue().ult(BitWidth)) { 3916 Constant *X = 3917 ConstantInt::get(SA->getContext(), 3918 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3919 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 3920 } 3921 } 3922 return BinaryOp(Op); 3923 3924 case Instruction::ExtractValue: { 3925 auto *EVI = cast<ExtractValueInst>(Op); 3926 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 3927 break; 3928 3929 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 3930 if (!CI) 3931 break; 3932 3933 if (auto *F = CI->getCalledFunction()) 3934 switch (F->getIntrinsicID()) { 3935 case Intrinsic::sadd_with_overflow: 3936 case Intrinsic::uadd_with_overflow: { 3937 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 3938 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3939 CI->getArgOperand(1)); 3940 3941 // Now that we know that all uses of the arithmetic-result component of 3942 // CI are guarded by the overflow check, we can go ahead and pretend 3943 // that the arithmetic is non-overflowing. 3944 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 3945 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3946 CI->getArgOperand(1), /* IsNSW = */ true, 3947 /* IsNUW = */ false); 3948 else 3949 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3950 CI->getArgOperand(1), /* IsNSW = */ false, 3951 /* IsNUW*/ true); 3952 } 3953 3954 case Intrinsic::ssub_with_overflow: 3955 case Intrinsic::usub_with_overflow: 3956 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 3957 CI->getArgOperand(1)); 3958 3959 case Intrinsic::smul_with_overflow: 3960 case Intrinsic::umul_with_overflow: 3961 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 3962 CI->getArgOperand(1)); 3963 default: 3964 break; 3965 } 3966 } 3967 3968 default: 3969 break; 3970 } 3971 3972 return None; 3973 } 3974 3975 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3976 const Loop *L = LI.getLoopFor(PN->getParent()); 3977 if (!L || L->getHeader() != PN->getParent()) 3978 return nullptr; 3979 3980 // The loop may have multiple entrances or multiple exits; we can analyze 3981 // this phi as an addrec if it has a unique entry value and a unique 3982 // backedge value. 3983 Value *BEValueV = nullptr, *StartValueV = nullptr; 3984 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3985 Value *V = PN->getIncomingValue(i); 3986 if (L->contains(PN->getIncomingBlock(i))) { 3987 if (!BEValueV) { 3988 BEValueV = V; 3989 } else if (BEValueV != V) { 3990 BEValueV = nullptr; 3991 break; 3992 } 3993 } else if (!StartValueV) { 3994 StartValueV = V; 3995 } else if (StartValueV != V) { 3996 StartValueV = nullptr; 3997 break; 3998 } 3999 } 4000 if (BEValueV && StartValueV) { 4001 // While we are analyzing this PHI node, handle its value symbolically. 4002 const SCEV *SymbolicName = getUnknown(PN); 4003 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4004 "PHI node already processed?"); 4005 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4006 4007 // Using this symbolic name for the PHI, analyze the value coming around 4008 // the back-edge. 4009 const SCEV *BEValue = getSCEV(BEValueV); 4010 4011 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4012 // has a special value for the first iteration of the loop. 4013 4014 // If the value coming around the backedge is an add with the symbolic 4015 // value we just inserted, then we found a simple induction variable! 4016 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4017 // If there is a single occurrence of the symbolic value, replace it 4018 // with a recurrence. 4019 unsigned FoundIndex = Add->getNumOperands(); 4020 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4021 if (Add->getOperand(i) == SymbolicName) 4022 if (FoundIndex == e) { 4023 FoundIndex = i; 4024 break; 4025 } 4026 4027 if (FoundIndex != Add->getNumOperands()) { 4028 // Create an add with everything but the specified operand. 4029 SmallVector<const SCEV *, 8> Ops; 4030 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4031 if (i != FoundIndex) 4032 Ops.push_back(Add->getOperand(i)); 4033 const SCEV *Accum = getAddExpr(Ops); 4034 4035 // This is not a valid addrec if the step amount is varying each 4036 // loop iteration, but is not itself an addrec in this loop. 4037 if (isLoopInvariant(Accum, L) || 4038 (isa<SCEVAddRecExpr>(Accum) && 4039 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4040 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4041 4042 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4043 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4044 if (BO->IsNUW) 4045 Flags = setFlags(Flags, SCEV::FlagNUW); 4046 if (BO->IsNSW) 4047 Flags = setFlags(Flags, SCEV::FlagNSW); 4048 } 4049 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4050 // If the increment is an inbounds GEP, then we know the address 4051 // space cannot be wrapped around. We cannot make any guarantee 4052 // about signed or unsigned overflow because pointers are 4053 // unsigned but we may have a negative index from the base 4054 // pointer. We can guarantee that no unsigned wrap occurs if the 4055 // indices form a positive value. 4056 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4057 Flags = setFlags(Flags, SCEV::FlagNW); 4058 4059 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4060 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4061 Flags = setFlags(Flags, SCEV::FlagNUW); 4062 } 4063 4064 // We cannot transfer nuw and nsw flags from subtraction 4065 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4066 // for instance. 4067 } 4068 4069 const SCEV *StartVal = getSCEV(StartValueV); 4070 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4071 4072 // Okay, for the entire analysis of this edge we assumed the PHI 4073 // to be symbolic. We now need to go back and purge all of the 4074 // entries for the scalars that use the symbolic expression. 4075 forgetSymbolicName(PN, SymbolicName); 4076 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4077 4078 // We can add Flags to the post-inc expression only if we 4079 // know that it us *undefined behavior* for BEValueV to 4080 // overflow. 4081 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4082 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4083 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4084 4085 return PHISCEV; 4086 } 4087 } 4088 } else { 4089 // Otherwise, this could be a loop like this: 4090 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4091 // In this case, j = {1,+,1} and BEValue is j. 4092 // Because the other in-value of i (0) fits the evolution of BEValue 4093 // i really is an addrec evolution. 4094 // 4095 // We can generalize this saying that i is the shifted value of BEValue 4096 // by one iteration: 4097 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4098 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4099 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4100 if (Shifted != getCouldNotCompute() && 4101 Start != getCouldNotCompute()) { 4102 const SCEV *StartVal = getSCEV(StartValueV); 4103 if (Start == StartVal) { 4104 // Okay, for the entire analysis of this edge we assumed the PHI 4105 // to be symbolic. We now need to go back and purge all of the 4106 // entries for the scalars that use the symbolic expression. 4107 forgetSymbolicName(PN, SymbolicName); 4108 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4109 return Shifted; 4110 } 4111 } 4112 } 4113 4114 // Remove the temporary PHI node SCEV that has been inserted while intending 4115 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4116 // as it will prevent later (possibly simpler) SCEV expressions to be added 4117 // to the ValueExprMap. 4118 eraseValueFromMap(PN); 4119 } 4120 4121 return nullptr; 4122 } 4123 4124 // Checks if the SCEV S is available at BB. S is considered available at BB 4125 // if S can be materialized at BB without introducing a fault. 4126 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4127 BasicBlock *BB) { 4128 struct CheckAvailable { 4129 bool TraversalDone = false; 4130 bool Available = true; 4131 4132 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4133 BasicBlock *BB = nullptr; 4134 DominatorTree &DT; 4135 4136 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4137 : L(L), BB(BB), DT(DT) {} 4138 4139 bool setUnavailable() { 4140 TraversalDone = true; 4141 Available = false; 4142 return false; 4143 } 4144 4145 bool follow(const SCEV *S) { 4146 switch (S->getSCEVType()) { 4147 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4148 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4149 // These expressions are available if their operand(s) is/are. 4150 return true; 4151 4152 case scAddRecExpr: { 4153 // We allow add recurrences that are on the loop BB is in, or some 4154 // outer loop. This guarantees availability because the value of the 4155 // add recurrence at BB is simply the "current" value of the induction 4156 // variable. We can relax this in the future; for instance an add 4157 // recurrence on a sibling dominating loop is also available at BB. 4158 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4159 if (L && (ARLoop == L || ARLoop->contains(L))) 4160 return true; 4161 4162 return setUnavailable(); 4163 } 4164 4165 case scUnknown: { 4166 // For SCEVUnknown, we check for simple dominance. 4167 const auto *SU = cast<SCEVUnknown>(S); 4168 Value *V = SU->getValue(); 4169 4170 if (isa<Argument>(V)) 4171 return false; 4172 4173 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4174 return false; 4175 4176 return setUnavailable(); 4177 } 4178 4179 case scUDivExpr: 4180 case scCouldNotCompute: 4181 // We do not try to smart about these at all. 4182 return setUnavailable(); 4183 } 4184 llvm_unreachable("switch should be fully covered!"); 4185 } 4186 4187 bool isDone() { return TraversalDone; } 4188 }; 4189 4190 CheckAvailable CA(L, BB, DT); 4191 SCEVTraversal<CheckAvailable> ST(CA); 4192 4193 ST.visitAll(S); 4194 return CA.Available; 4195 } 4196 4197 // Try to match a control flow sequence that branches out at BI and merges back 4198 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4199 // match. 4200 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4201 Value *&C, Value *&LHS, Value *&RHS) { 4202 C = BI->getCondition(); 4203 4204 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4205 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4206 4207 if (!LeftEdge.isSingleEdge()) 4208 return false; 4209 4210 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4211 4212 Use &LeftUse = Merge->getOperandUse(0); 4213 Use &RightUse = Merge->getOperandUse(1); 4214 4215 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4216 LHS = LeftUse; 4217 RHS = RightUse; 4218 return true; 4219 } 4220 4221 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4222 LHS = RightUse; 4223 RHS = LeftUse; 4224 return true; 4225 } 4226 4227 return false; 4228 } 4229 4230 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4231 auto IsReachable = 4232 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4233 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4234 const Loop *L = LI.getLoopFor(PN->getParent()); 4235 4236 // We don't want to break LCSSA, even in a SCEV expression tree. 4237 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4238 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4239 return nullptr; 4240 4241 // Try to match 4242 // 4243 // br %cond, label %left, label %right 4244 // left: 4245 // br label %merge 4246 // right: 4247 // br label %merge 4248 // merge: 4249 // V = phi [ %x, %left ], [ %y, %right ] 4250 // 4251 // as "select %cond, %x, %y" 4252 4253 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4254 assert(IDom && "At least the entry block should dominate PN"); 4255 4256 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4257 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4258 4259 if (BI && BI->isConditional() && 4260 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4261 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4262 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4263 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4264 } 4265 4266 return nullptr; 4267 } 4268 4269 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4270 if (const SCEV *S = createAddRecFromPHI(PN)) 4271 return S; 4272 4273 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4274 return S; 4275 4276 // If the PHI has a single incoming value, follow that value, unless the 4277 // PHI's incoming blocks are in a different loop, in which case doing so 4278 // risks breaking LCSSA form. Instcombine would normally zap these, but 4279 // it doesn't have DominatorTree information, so it may miss cases. 4280 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4281 if (LI.replacementPreservesLCSSAForm(PN, V)) 4282 return getSCEV(V); 4283 4284 // If it's not a loop phi, we can't handle it yet. 4285 return getUnknown(PN); 4286 } 4287 4288 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4289 Value *Cond, 4290 Value *TrueVal, 4291 Value *FalseVal) { 4292 // Handle "constant" branch or select. This can occur for instance when a 4293 // loop pass transforms an inner loop and moves on to process the outer loop. 4294 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4295 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4296 4297 // Try to match some simple smax or umax patterns. 4298 auto *ICI = dyn_cast<ICmpInst>(Cond); 4299 if (!ICI) 4300 return getUnknown(I); 4301 4302 Value *LHS = ICI->getOperand(0); 4303 Value *RHS = ICI->getOperand(1); 4304 4305 switch (ICI->getPredicate()) { 4306 case ICmpInst::ICMP_SLT: 4307 case ICmpInst::ICMP_SLE: 4308 std::swap(LHS, RHS); 4309 LLVM_FALLTHROUGH; 4310 case ICmpInst::ICMP_SGT: 4311 case ICmpInst::ICMP_SGE: 4312 // a >s b ? a+x : b+x -> smax(a, b)+x 4313 // a >s b ? b+x : a+x -> smin(a, b)+x 4314 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4315 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4316 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4317 const SCEV *LA = getSCEV(TrueVal); 4318 const SCEV *RA = getSCEV(FalseVal); 4319 const SCEV *LDiff = getMinusSCEV(LA, LS); 4320 const SCEV *RDiff = getMinusSCEV(RA, RS); 4321 if (LDiff == RDiff) 4322 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4323 LDiff = getMinusSCEV(LA, RS); 4324 RDiff = getMinusSCEV(RA, LS); 4325 if (LDiff == RDiff) 4326 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4327 } 4328 break; 4329 case ICmpInst::ICMP_ULT: 4330 case ICmpInst::ICMP_ULE: 4331 std::swap(LHS, RHS); 4332 LLVM_FALLTHROUGH; 4333 case ICmpInst::ICMP_UGT: 4334 case ICmpInst::ICMP_UGE: 4335 // a >u b ? a+x : b+x -> umax(a, b)+x 4336 // a >u b ? b+x : a+x -> umin(a, b)+x 4337 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4338 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4339 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4340 const SCEV *LA = getSCEV(TrueVal); 4341 const SCEV *RA = getSCEV(FalseVal); 4342 const SCEV *LDiff = getMinusSCEV(LA, LS); 4343 const SCEV *RDiff = getMinusSCEV(RA, RS); 4344 if (LDiff == RDiff) 4345 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4346 LDiff = getMinusSCEV(LA, RS); 4347 RDiff = getMinusSCEV(RA, LS); 4348 if (LDiff == RDiff) 4349 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4350 } 4351 break; 4352 case ICmpInst::ICMP_NE: 4353 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4354 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4355 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4356 const SCEV *One = getOne(I->getType()); 4357 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4358 const SCEV *LA = getSCEV(TrueVal); 4359 const SCEV *RA = getSCEV(FalseVal); 4360 const SCEV *LDiff = getMinusSCEV(LA, LS); 4361 const SCEV *RDiff = getMinusSCEV(RA, One); 4362 if (LDiff == RDiff) 4363 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4364 } 4365 break; 4366 case ICmpInst::ICMP_EQ: 4367 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4368 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4369 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4370 const SCEV *One = getOne(I->getType()); 4371 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4372 const SCEV *LA = getSCEV(TrueVal); 4373 const SCEV *RA = getSCEV(FalseVal); 4374 const SCEV *LDiff = getMinusSCEV(LA, One); 4375 const SCEV *RDiff = getMinusSCEV(RA, LS); 4376 if (LDiff == RDiff) 4377 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4378 } 4379 break; 4380 default: 4381 break; 4382 } 4383 4384 return getUnknown(I); 4385 } 4386 4387 /// Expand GEP instructions into add and multiply operations. This allows them 4388 /// to be analyzed by regular SCEV code. 4389 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4390 // Don't attempt to analyze GEPs over unsized objects. 4391 if (!GEP->getSourceElementType()->isSized()) 4392 return getUnknown(GEP); 4393 4394 SmallVector<const SCEV *, 4> IndexExprs; 4395 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4396 IndexExprs.push_back(getSCEV(*Index)); 4397 return getGEPExpr(GEP->getSourceElementType(), 4398 getSCEV(GEP->getPointerOperand()), 4399 IndexExprs, GEP->isInBounds()); 4400 } 4401 4402 uint32_t 4403 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4404 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4405 return C->getAPInt().countTrailingZeros(); 4406 4407 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4408 return std::min(GetMinTrailingZeros(T->getOperand()), 4409 (uint32_t)getTypeSizeInBits(T->getType())); 4410 4411 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4412 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4413 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4414 getTypeSizeInBits(E->getType()) : OpRes; 4415 } 4416 4417 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4418 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4419 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4420 getTypeSizeInBits(E->getType()) : OpRes; 4421 } 4422 4423 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4424 // The result is the min of all operands results. 4425 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4426 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4427 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4428 return MinOpRes; 4429 } 4430 4431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4432 // The result is the sum of all operands results. 4433 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4434 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4435 for (unsigned i = 1, e = M->getNumOperands(); 4436 SumOpRes != BitWidth && i != e; ++i) 4437 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4438 BitWidth); 4439 return SumOpRes; 4440 } 4441 4442 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4443 // The result is the min of all operands results. 4444 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4445 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4446 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4447 return MinOpRes; 4448 } 4449 4450 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4451 // The result is the min of all operands results. 4452 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4453 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4454 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4455 return MinOpRes; 4456 } 4457 4458 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4459 // The result is the min of all operands results. 4460 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4461 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4462 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4463 return MinOpRes; 4464 } 4465 4466 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4467 // For a SCEVUnknown, ask ValueTracking. 4468 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4469 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4470 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4471 nullptr, &DT); 4472 return Zeros.countTrailingOnes(); 4473 } 4474 4475 // SCEVUDivExpr 4476 return 0; 4477 } 4478 4479 /// Helper method to assign a range to V from metadata present in the IR. 4480 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4481 if (Instruction *I = dyn_cast<Instruction>(V)) 4482 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4483 return getConstantRangeFromMetadata(*MD); 4484 4485 return None; 4486 } 4487 4488 /// Determine the range for a particular SCEV. If SignHint is 4489 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4490 /// with a "cleaner" unsigned (resp. signed) representation. 4491 ConstantRange 4492 ScalarEvolution::getRange(const SCEV *S, 4493 ScalarEvolution::RangeSignHint SignHint) { 4494 DenseMap<const SCEV *, ConstantRange> &Cache = 4495 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4496 : SignedRanges; 4497 4498 // See if we've computed this range already. 4499 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4500 if (I != Cache.end()) 4501 return I->second; 4502 4503 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4504 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4505 4506 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4507 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4508 4509 // If the value has known zeros, the maximum value will have those known zeros 4510 // as well. 4511 uint32_t TZ = GetMinTrailingZeros(S); 4512 if (TZ != 0) { 4513 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4514 ConservativeResult = 4515 ConstantRange(APInt::getMinValue(BitWidth), 4516 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4517 else 4518 ConservativeResult = ConstantRange( 4519 APInt::getSignedMinValue(BitWidth), 4520 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4521 } 4522 4523 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4524 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4525 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4526 X = X.add(getRange(Add->getOperand(i), SignHint)); 4527 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4528 } 4529 4530 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4531 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4532 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4533 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4534 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4535 } 4536 4537 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4538 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4539 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4540 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4541 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4542 } 4543 4544 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4545 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4546 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4547 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4548 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4549 } 4550 4551 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4552 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4553 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4554 return setRange(UDiv, SignHint, 4555 ConservativeResult.intersectWith(X.udiv(Y))); 4556 } 4557 4558 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4559 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4560 return setRange(ZExt, SignHint, 4561 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4562 } 4563 4564 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4565 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4566 return setRange(SExt, SignHint, 4567 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4568 } 4569 4570 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4571 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4572 return setRange(Trunc, SignHint, 4573 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4574 } 4575 4576 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4577 // If there's no unsigned wrap, the value will never be less than its 4578 // initial value. 4579 if (AddRec->hasNoUnsignedWrap()) 4580 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4581 if (!C->getValue()->isZero()) 4582 ConservativeResult = ConservativeResult.intersectWith( 4583 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4584 4585 // If there's no signed wrap, and all the operands have the same sign or 4586 // zero, the value won't ever change sign. 4587 if (AddRec->hasNoSignedWrap()) { 4588 bool AllNonNeg = true; 4589 bool AllNonPos = true; 4590 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4591 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4592 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4593 } 4594 if (AllNonNeg) 4595 ConservativeResult = ConservativeResult.intersectWith( 4596 ConstantRange(APInt(BitWidth, 0), 4597 APInt::getSignedMinValue(BitWidth))); 4598 else if (AllNonPos) 4599 ConservativeResult = ConservativeResult.intersectWith( 4600 ConstantRange(APInt::getSignedMinValue(BitWidth), 4601 APInt(BitWidth, 1))); 4602 } 4603 4604 // TODO: non-affine addrec 4605 if (AddRec->isAffine()) { 4606 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4607 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4608 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4609 auto RangeFromAffine = getRangeForAffineAR( 4610 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4611 BitWidth); 4612 if (!RangeFromAffine.isFullSet()) 4613 ConservativeResult = 4614 ConservativeResult.intersectWith(RangeFromAffine); 4615 4616 auto RangeFromFactoring = getRangeViaFactoring( 4617 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4618 BitWidth); 4619 if (!RangeFromFactoring.isFullSet()) 4620 ConservativeResult = 4621 ConservativeResult.intersectWith(RangeFromFactoring); 4622 } 4623 } 4624 4625 return setRange(AddRec, SignHint, ConservativeResult); 4626 } 4627 4628 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4629 // Check if the IR explicitly contains !range metadata. 4630 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4631 if (MDRange.hasValue()) 4632 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4633 4634 // Split here to avoid paying the compile-time cost of calling both 4635 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4636 // if needed. 4637 const DataLayout &DL = getDataLayout(); 4638 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4639 // For a SCEVUnknown, ask ValueTracking. 4640 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4641 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4642 if (Ones != ~Zeros + 1) 4643 ConservativeResult = 4644 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4645 } else { 4646 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4647 "generalize as needed!"); 4648 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4649 if (NS > 1) 4650 ConservativeResult = ConservativeResult.intersectWith( 4651 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4652 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4653 } 4654 4655 return setRange(U, SignHint, ConservativeResult); 4656 } 4657 4658 return setRange(S, SignHint, ConservativeResult); 4659 } 4660 4661 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4662 const SCEV *Step, 4663 const SCEV *MaxBECount, 4664 unsigned BitWidth) { 4665 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4666 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4667 "Precondition!"); 4668 4669 ConstantRange Result(BitWidth, /* isFullSet = */ true); 4670 4671 // Check for overflow. This must be done with ConstantRange arithmetic 4672 // because we could be called from within the ScalarEvolution overflow 4673 // checking code. 4674 4675 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4676 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4677 ConstantRange ZExtMaxBECountRange = 4678 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4679 4680 ConstantRange StepSRange = getSignedRange(Step); 4681 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4682 4683 ConstantRange StartURange = getUnsignedRange(Start); 4684 ConstantRange EndURange = 4685 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4686 4687 // Check for unsigned overflow. 4688 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1); 4689 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4690 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4691 ZExtEndURange) { 4692 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4693 EndURange.getUnsignedMin()); 4694 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4695 EndURange.getUnsignedMax()); 4696 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4697 if (!IsFullRange) 4698 Result = 4699 Result.intersectWith(ConstantRange(Min, Max + 1)); 4700 } 4701 4702 ConstantRange StartSRange = getSignedRange(Start); 4703 ConstantRange EndSRange = 4704 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4705 4706 // Check for signed overflow. This must be done with ConstantRange 4707 // arithmetic because we could be called from within the ScalarEvolution 4708 // overflow checking code. 4709 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4710 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4711 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4712 SExtEndSRange) { 4713 APInt Min = 4714 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin()); 4715 APInt Max = 4716 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax()); 4717 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4718 if (!IsFullRange) 4719 Result = 4720 Result.intersectWith(ConstantRange(Min, Max + 1)); 4721 } 4722 4723 return Result; 4724 } 4725 4726 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4727 const SCEV *Step, 4728 const SCEV *MaxBECount, 4729 unsigned BitWidth) { 4730 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4731 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4732 4733 struct SelectPattern { 4734 Value *Condition = nullptr; 4735 APInt TrueValue; 4736 APInt FalseValue; 4737 4738 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4739 const SCEV *S) { 4740 Optional<unsigned> CastOp; 4741 APInt Offset(BitWidth, 0); 4742 4743 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4744 "Should be!"); 4745 4746 // Peel off a constant offset: 4747 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4748 // In the future we could consider being smarter here and handle 4749 // {Start+Step,+,Step} too. 4750 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4751 return; 4752 4753 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4754 S = SA->getOperand(1); 4755 } 4756 4757 // Peel off a cast operation 4758 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4759 CastOp = SCast->getSCEVType(); 4760 S = SCast->getOperand(); 4761 } 4762 4763 using namespace llvm::PatternMatch; 4764 4765 auto *SU = dyn_cast<SCEVUnknown>(S); 4766 const APInt *TrueVal, *FalseVal; 4767 if (!SU || 4768 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4769 m_APInt(FalseVal)))) { 4770 Condition = nullptr; 4771 return; 4772 } 4773 4774 TrueValue = *TrueVal; 4775 FalseValue = *FalseVal; 4776 4777 // Re-apply the cast we peeled off earlier 4778 if (CastOp.hasValue()) 4779 switch (*CastOp) { 4780 default: 4781 llvm_unreachable("Unknown SCEV cast type!"); 4782 4783 case scTruncate: 4784 TrueValue = TrueValue.trunc(BitWidth); 4785 FalseValue = FalseValue.trunc(BitWidth); 4786 break; 4787 case scZeroExtend: 4788 TrueValue = TrueValue.zext(BitWidth); 4789 FalseValue = FalseValue.zext(BitWidth); 4790 break; 4791 case scSignExtend: 4792 TrueValue = TrueValue.sext(BitWidth); 4793 FalseValue = FalseValue.sext(BitWidth); 4794 break; 4795 } 4796 4797 // Re-apply the constant offset we peeled off earlier 4798 TrueValue += Offset; 4799 FalseValue += Offset; 4800 } 4801 4802 bool isRecognized() { return Condition != nullptr; } 4803 }; 4804 4805 SelectPattern StartPattern(*this, BitWidth, Start); 4806 if (!StartPattern.isRecognized()) 4807 return ConstantRange(BitWidth, /* isFullSet = */ true); 4808 4809 SelectPattern StepPattern(*this, BitWidth, Step); 4810 if (!StepPattern.isRecognized()) 4811 return ConstantRange(BitWidth, /* isFullSet = */ true); 4812 4813 if (StartPattern.Condition != StepPattern.Condition) { 4814 // We don't handle this case today; but we could, by considering four 4815 // possibilities below instead of two. I'm not sure if there are cases where 4816 // that will help over what getRange already does, though. 4817 return ConstantRange(BitWidth, /* isFullSet = */ true); 4818 } 4819 4820 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4821 // construct arbitrary general SCEV expressions here. This function is called 4822 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4823 // say) can end up caching a suboptimal value. 4824 4825 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4826 // C2352 and C2512 (otherwise it isn't needed). 4827 4828 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4829 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4830 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4831 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4832 4833 ConstantRange TrueRange = 4834 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4835 ConstantRange FalseRange = 4836 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4837 4838 return TrueRange.unionWith(FalseRange); 4839 } 4840 4841 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4842 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4843 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4844 4845 // Return early if there are no flags to propagate to the SCEV. 4846 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4847 if (BinOp->hasNoUnsignedWrap()) 4848 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4849 if (BinOp->hasNoSignedWrap()) 4850 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4851 if (Flags == SCEV::FlagAnyWrap) 4852 return SCEV::FlagAnyWrap; 4853 4854 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 4855 } 4856 4857 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 4858 // Here we check that I is in the header of the innermost loop containing I, 4859 // since we only deal with instructions in the loop header. The actual loop we 4860 // need to check later will come from an add recurrence, but getting that 4861 // requires computing the SCEV of the operands, which can be expensive. This 4862 // check we can do cheaply to rule out some cases early. 4863 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 4864 if (InnermostContainingLoop == nullptr || 4865 InnermostContainingLoop->getHeader() != I->getParent()) 4866 return false; 4867 4868 // Only proceed if we can prove that I does not yield poison. 4869 if (!isKnownNotFullPoison(I)) return false; 4870 4871 // At this point we know that if I is executed, then it does not wrap 4872 // according to at least one of NSW or NUW. If I is not executed, then we do 4873 // not know if the calculation that I represents would wrap. Multiple 4874 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 4875 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4876 // derived from other instructions that map to the same SCEV. We cannot make 4877 // that guarantee for cases where I is not executed. So we need to find the 4878 // loop that I is considered in relation to and prove that I is executed for 4879 // every iteration of that loop. That implies that the value that I 4880 // calculates does not wrap anywhere in the loop, so then we can apply the 4881 // flags to the SCEV. 4882 // 4883 // We check isLoopInvariant to disambiguate in case we are adding recurrences 4884 // from different loops, so that we know which loop to prove that I is 4885 // executed in. 4886 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 4887 // I could be an extractvalue from a call to an overflow intrinsic. 4888 // TODO: We can do better here in some cases. 4889 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 4890 return false; 4891 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 4892 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4893 bool AllOtherOpsLoopInvariant = true; 4894 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 4895 ++OtherOpIndex) { 4896 if (OtherOpIndex != OpIndex) { 4897 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 4898 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 4899 AllOtherOpsLoopInvariant = false; 4900 break; 4901 } 4902 } 4903 } 4904 if (AllOtherOpsLoopInvariant && 4905 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 4906 return true; 4907 } 4908 } 4909 return false; 4910 } 4911 4912 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 4913 // If we know that \c I can never be poison period, then that's enough. 4914 if (isSCEVExprNeverPoison(I)) 4915 return true; 4916 4917 // For an add recurrence specifically, we assume that infinite loops without 4918 // side effects are undefined behavior, and then reason as follows: 4919 // 4920 // If the add recurrence is poison in any iteration, it is poison on all 4921 // future iterations (since incrementing poison yields poison). If the result 4922 // of the add recurrence is fed into the loop latch condition and the loop 4923 // does not contain any throws or exiting blocks other than the latch, we now 4924 // have the ability to "choose" whether the backedge is taken or not (by 4925 // choosing a sufficiently evil value for the poison feeding into the branch) 4926 // for every iteration including and after the one in which \p I first became 4927 // poison. There are two possibilities (let's call the iteration in which \p 4928 // I first became poison as K): 4929 // 4930 // 1. In the set of iterations including and after K, the loop body executes 4931 // no side effects. In this case executing the backege an infinte number 4932 // of times will yield undefined behavior. 4933 // 4934 // 2. In the set of iterations including and after K, the loop body executes 4935 // at least one side effect. In this case, that specific instance of side 4936 // effect is control dependent on poison, which also yields undefined 4937 // behavior. 4938 4939 auto *ExitingBB = L->getExitingBlock(); 4940 auto *LatchBB = L->getLoopLatch(); 4941 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 4942 return false; 4943 4944 SmallPtrSet<const Instruction *, 16> Pushed; 4945 SmallVector<const Instruction *, 8> PoisonStack; 4946 4947 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 4948 // things that are known to be fully poison under that assumption go on the 4949 // PoisonStack. 4950 Pushed.insert(I); 4951 PoisonStack.push_back(I); 4952 4953 bool LatchControlDependentOnPoison = false; 4954 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 4955 const Instruction *Poison = PoisonStack.pop_back_val(); 4956 4957 for (auto *PoisonUser : Poison->users()) { 4958 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 4959 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 4960 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 4961 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 4962 assert(BI->isConditional() && "Only possibility!"); 4963 if (BI->getParent() == LatchBB) { 4964 LatchControlDependentOnPoison = true; 4965 break; 4966 } 4967 } 4968 } 4969 } 4970 4971 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 4972 } 4973 4974 ScalarEvolution::LoopProperties 4975 ScalarEvolution::getLoopProperties(const Loop *L) { 4976 typedef ScalarEvolution::LoopProperties LoopProperties; 4977 4978 auto Itr = LoopPropertiesCache.find(L); 4979 if (Itr == LoopPropertiesCache.end()) { 4980 auto HasSideEffects = [](Instruction *I) { 4981 if (auto *SI = dyn_cast<StoreInst>(I)) 4982 return !SI->isSimple(); 4983 4984 return I->mayHaveSideEffects(); 4985 }; 4986 4987 LoopProperties LP = {/* HasNoAbnormalExits */ true, 4988 /*HasNoSideEffects*/ true}; 4989 4990 for (auto *BB : L->getBlocks()) 4991 for (auto &I : *BB) { 4992 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4993 LP.HasNoAbnormalExits = false; 4994 if (HasSideEffects(&I)) 4995 LP.HasNoSideEffects = false; 4996 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 4997 break; // We're already as pessimistic as we can get. 4998 } 4999 5000 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5001 assert(InsertPair.second && "We just checked!"); 5002 Itr = InsertPair.first; 5003 } 5004 5005 return Itr->second; 5006 } 5007 5008 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5009 if (!isSCEVable(V->getType())) 5010 return getUnknown(V); 5011 5012 if (Instruction *I = dyn_cast<Instruction>(V)) { 5013 // Don't attempt to analyze instructions in blocks that aren't 5014 // reachable. Such instructions don't matter, and they aren't required 5015 // to obey basic rules for definitions dominating uses which this 5016 // analysis depends on. 5017 if (!DT.isReachableFromEntry(I->getParent())) 5018 return getUnknown(V); 5019 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5020 return getConstant(CI); 5021 else if (isa<ConstantPointerNull>(V)) 5022 return getZero(V->getType()); 5023 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5024 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5025 else if (!isa<ConstantExpr>(V)) 5026 return getUnknown(V); 5027 5028 Operator *U = cast<Operator>(V); 5029 if (auto BO = MatchBinaryOp(U, DT)) { 5030 switch (BO->Opcode) { 5031 case Instruction::Add: { 5032 // The simple thing to do would be to just call getSCEV on both operands 5033 // and call getAddExpr with the result. However if we're looking at a 5034 // bunch of things all added together, this can be quite inefficient, 5035 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5036 // Instead, gather up all the operands and make a single getAddExpr call. 5037 // LLVM IR canonical form means we need only traverse the left operands. 5038 SmallVector<const SCEV *, 4> AddOps; 5039 do { 5040 if (BO->Op) { 5041 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5042 AddOps.push_back(OpSCEV); 5043 break; 5044 } 5045 5046 // If a NUW or NSW flag can be applied to the SCEV for this 5047 // addition, then compute the SCEV for this addition by itself 5048 // with a separate call to getAddExpr. We need to do that 5049 // instead of pushing the operands of the addition onto AddOps, 5050 // since the flags are only known to apply to this particular 5051 // addition - they may not apply to other additions that can be 5052 // formed with operands from AddOps. 5053 const SCEV *RHS = getSCEV(BO->RHS); 5054 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5055 if (Flags != SCEV::FlagAnyWrap) { 5056 const SCEV *LHS = getSCEV(BO->LHS); 5057 if (BO->Opcode == Instruction::Sub) 5058 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5059 else 5060 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5061 break; 5062 } 5063 } 5064 5065 if (BO->Opcode == Instruction::Sub) 5066 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5067 else 5068 AddOps.push_back(getSCEV(BO->RHS)); 5069 5070 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5071 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5072 NewBO->Opcode != Instruction::Sub)) { 5073 AddOps.push_back(getSCEV(BO->LHS)); 5074 break; 5075 } 5076 BO = NewBO; 5077 } while (true); 5078 5079 return getAddExpr(AddOps); 5080 } 5081 5082 case Instruction::Mul: { 5083 SmallVector<const SCEV *, 4> MulOps; 5084 do { 5085 if (BO->Op) { 5086 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5087 MulOps.push_back(OpSCEV); 5088 break; 5089 } 5090 5091 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5092 if (Flags != SCEV::FlagAnyWrap) { 5093 MulOps.push_back( 5094 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5095 break; 5096 } 5097 } 5098 5099 MulOps.push_back(getSCEV(BO->RHS)); 5100 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5101 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5102 MulOps.push_back(getSCEV(BO->LHS)); 5103 break; 5104 } 5105 BO = NewBO; 5106 } while (true); 5107 5108 return getMulExpr(MulOps); 5109 } 5110 case Instruction::UDiv: 5111 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5112 case Instruction::Sub: { 5113 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5114 if (BO->Op) 5115 Flags = getNoWrapFlagsFromUB(BO->Op); 5116 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5117 } 5118 case Instruction::And: 5119 // For an expression like x&255 that merely masks off the high bits, 5120 // use zext(trunc(x)) as the SCEV expression. 5121 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5122 if (CI->isNullValue()) 5123 return getSCEV(BO->RHS); 5124 if (CI->isAllOnesValue()) 5125 return getSCEV(BO->LHS); 5126 const APInt &A = CI->getValue(); 5127 5128 // Instcombine's ShrinkDemandedConstant may strip bits out of 5129 // constants, obscuring what would otherwise be a low-bits mask. 5130 // Use computeKnownBits to compute what ShrinkDemandedConstant 5131 // knew about to reconstruct a low-bits mask value. 5132 unsigned LZ = A.countLeadingZeros(); 5133 unsigned TZ = A.countTrailingZeros(); 5134 unsigned BitWidth = A.getBitWidth(); 5135 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5136 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5137 0, &AC, nullptr, &DT); 5138 5139 APInt EffectiveMask = 5140 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5141 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5142 const SCEV *MulCount = getConstant(ConstantInt::get( 5143 getContext(), APInt::getOneBitSet(BitWidth, TZ))); 5144 return getMulExpr( 5145 getZeroExtendExpr( 5146 getTruncateExpr( 5147 getUDivExactExpr(getSCEV(BO->LHS), MulCount), 5148 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5149 BO->LHS->getType()), 5150 MulCount); 5151 } 5152 } 5153 break; 5154 5155 case Instruction::Or: 5156 // If the RHS of the Or is a constant, we may have something like: 5157 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5158 // optimizations will transparently handle this case. 5159 // 5160 // In order for this transformation to be safe, the LHS must be of the 5161 // form X*(2^n) and the Or constant must be less than 2^n. 5162 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5163 const SCEV *LHS = getSCEV(BO->LHS); 5164 const APInt &CIVal = CI->getValue(); 5165 if (GetMinTrailingZeros(LHS) >= 5166 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5167 // Build a plain add SCEV. 5168 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5169 // If the LHS of the add was an addrec and it has no-wrap flags, 5170 // transfer the no-wrap flags, since an or won't introduce a wrap. 5171 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5172 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5173 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5174 OldAR->getNoWrapFlags()); 5175 } 5176 return S; 5177 } 5178 } 5179 break; 5180 5181 case Instruction::Xor: 5182 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5183 // If the RHS of xor is -1, then this is a not operation. 5184 if (CI->isAllOnesValue()) 5185 return getNotSCEV(getSCEV(BO->LHS)); 5186 5187 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5188 // This is a variant of the check for xor with -1, and it handles 5189 // the case where instcombine has trimmed non-demanded bits out 5190 // of an xor with -1. 5191 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5192 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5193 if (LBO->getOpcode() == Instruction::And && 5194 LCI->getValue() == CI->getValue()) 5195 if (const SCEVZeroExtendExpr *Z = 5196 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5197 Type *UTy = BO->LHS->getType(); 5198 const SCEV *Z0 = Z->getOperand(); 5199 Type *Z0Ty = Z0->getType(); 5200 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5201 5202 // If C is a low-bits mask, the zero extend is serving to 5203 // mask off the high bits. Complement the operand and 5204 // re-apply the zext. 5205 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5206 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5207 5208 // If C is a single bit, it may be in the sign-bit position 5209 // before the zero-extend. In this case, represent the xor 5210 // using an add, which is equivalent, and re-apply the zext. 5211 APInt Trunc = CI->getValue().trunc(Z0TySize); 5212 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5213 Trunc.isSignBit()) 5214 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5215 UTy); 5216 } 5217 } 5218 break; 5219 5220 case Instruction::Shl: 5221 // Turn shift left of a constant amount into a multiply. 5222 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5223 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5224 5225 // If the shift count is not less than the bitwidth, the result of 5226 // the shift is undefined. Don't try to analyze it, because the 5227 // resolution chosen here may differ from the resolution chosen in 5228 // other parts of the compiler. 5229 if (SA->getValue().uge(BitWidth)) 5230 break; 5231 5232 // It is currently not resolved how to interpret NSW for left 5233 // shift by BitWidth - 1, so we avoid applying flags in that 5234 // case. Remove this check (or this comment) once the situation 5235 // is resolved. See 5236 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5237 // and http://reviews.llvm.org/D8890 . 5238 auto Flags = SCEV::FlagAnyWrap; 5239 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5240 Flags = getNoWrapFlagsFromUB(BO->Op); 5241 5242 Constant *X = ConstantInt::get(getContext(), 5243 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5244 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5245 } 5246 break; 5247 5248 case Instruction::AShr: 5249 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5250 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5251 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5252 if (L->getOpcode() == Instruction::Shl && 5253 L->getOperand(1) == BO->RHS) { 5254 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5255 5256 // If the shift count is not less than the bitwidth, the result of 5257 // the shift is undefined. Don't try to analyze it, because the 5258 // resolution chosen here may differ from the resolution chosen in 5259 // other parts of the compiler. 5260 if (CI->getValue().uge(BitWidth)) 5261 break; 5262 5263 uint64_t Amt = BitWidth - CI->getZExtValue(); 5264 if (Amt == BitWidth) 5265 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5266 return getSignExtendExpr( 5267 getTruncateExpr(getSCEV(L->getOperand(0)), 5268 IntegerType::get(getContext(), Amt)), 5269 BO->LHS->getType()); 5270 } 5271 break; 5272 } 5273 } 5274 5275 switch (U->getOpcode()) { 5276 case Instruction::Trunc: 5277 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5278 5279 case Instruction::ZExt: 5280 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5281 5282 case Instruction::SExt: 5283 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5284 5285 case Instruction::BitCast: 5286 // BitCasts are no-op casts so we just eliminate the cast. 5287 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5288 return getSCEV(U->getOperand(0)); 5289 break; 5290 5291 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5292 // lead to pointer expressions which cannot safely be expanded to GEPs, 5293 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5294 // simplifying integer expressions. 5295 5296 case Instruction::GetElementPtr: 5297 return createNodeForGEP(cast<GEPOperator>(U)); 5298 5299 case Instruction::PHI: 5300 return createNodeForPHI(cast<PHINode>(U)); 5301 5302 case Instruction::Select: 5303 // U can also be a select constant expr, which let fall through. Since 5304 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5305 // constant expressions cannot have instructions as operands, we'd have 5306 // returned getUnknown for a select constant expressions anyway. 5307 if (isa<Instruction>(U)) 5308 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5309 U->getOperand(1), U->getOperand(2)); 5310 break; 5311 5312 case Instruction::Call: 5313 case Instruction::Invoke: 5314 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5315 return getSCEV(RV); 5316 break; 5317 } 5318 5319 return getUnknown(V); 5320 } 5321 5322 5323 5324 //===----------------------------------------------------------------------===// 5325 // Iteration Count Computation Code 5326 // 5327 5328 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5329 if (!ExitCount) 5330 return 0; 5331 5332 ConstantInt *ExitConst = ExitCount->getValue(); 5333 5334 // Guard against huge trip counts. 5335 if (ExitConst->getValue().getActiveBits() > 32) 5336 return 0; 5337 5338 // In case of integer overflow, this returns 0, which is correct. 5339 return ((unsigned)ExitConst->getZExtValue()) + 1; 5340 } 5341 5342 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 5343 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5344 return getSmallConstantTripCount(L, ExitingBB); 5345 5346 // No trip count information for multiple exits. 5347 return 0; 5348 } 5349 5350 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 5351 BasicBlock *ExitingBlock) { 5352 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5353 assert(L->isLoopExiting(ExitingBlock) && 5354 "Exiting block must actually branch out of the loop!"); 5355 const SCEVConstant *ExitCount = 5356 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5357 return getConstantTripCount(ExitCount); 5358 } 5359 5360 unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) { 5361 const auto *MaxExitCount = 5362 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5363 return getConstantTripCount(MaxExitCount); 5364 } 5365 5366 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 5367 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5368 return getSmallConstantTripMultiple(L, ExitingBB); 5369 5370 // No trip multiple information for multiple exits. 5371 return 0; 5372 } 5373 5374 /// Returns the largest constant divisor of the trip count of this loop as a 5375 /// normal unsigned value, if possible. This means that the actual trip count is 5376 /// always a multiple of the returned value (don't forget the trip count could 5377 /// very well be zero as well!). 5378 /// 5379 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5380 /// multiple of a constant (which is also the case if the trip count is simply 5381 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5382 /// if the trip count is very large (>= 2^32). 5383 /// 5384 /// As explained in the comments for getSmallConstantTripCount, this assumes 5385 /// that control exits the loop via ExitingBlock. 5386 unsigned 5387 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 5388 BasicBlock *ExitingBlock) { 5389 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5390 assert(L->isLoopExiting(ExitingBlock) && 5391 "Exiting block must actually branch out of the loop!"); 5392 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5393 if (ExitCount == getCouldNotCompute()) 5394 return 1; 5395 5396 // Get the trip count from the BE count by adding 1. 5397 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5398 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 5399 // to factor simple cases. 5400 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 5401 TCMul = Mul->getOperand(0); 5402 5403 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 5404 if (!MulC) 5405 return 1; 5406 5407 ConstantInt *Result = MulC->getValue(); 5408 5409 // Guard against huge trip counts (this requires checking 5410 // for zero to handle the case where the trip count == -1 and the 5411 // addition wraps). 5412 if (!Result || Result->getValue().getActiveBits() > 32 || 5413 Result->getValue().getActiveBits() == 0) 5414 return 1; 5415 5416 return (unsigned)Result->getZExtValue(); 5417 } 5418 5419 /// Get the expression for the number of loop iterations for which this loop is 5420 /// guaranteed not to exit via ExitingBlock. Otherwise return 5421 /// SCEVCouldNotCompute. 5422 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 5423 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5424 } 5425 5426 const SCEV * 5427 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5428 SCEVUnionPredicate &Preds) { 5429 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5430 } 5431 5432 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5433 return getBackedgeTakenInfo(L).getExact(this); 5434 } 5435 5436 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5437 /// known never to be less than the actual backedge taken count. 5438 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5439 return getBackedgeTakenInfo(L).getMax(this); 5440 } 5441 5442 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 5443 return getBackedgeTakenInfo(L).isMaxOrZero(this); 5444 } 5445 5446 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5447 static void 5448 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5449 BasicBlock *Header = L->getHeader(); 5450 5451 // Push all Loop-header PHIs onto the Worklist stack. 5452 for (BasicBlock::iterator I = Header->begin(); 5453 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5454 Worklist.push_back(PN); 5455 } 5456 5457 const ScalarEvolution::BackedgeTakenInfo & 5458 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5459 auto &BTI = getBackedgeTakenInfo(L); 5460 if (BTI.hasFullInfo()) 5461 return BTI; 5462 5463 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5464 5465 if (!Pair.second) 5466 return Pair.first->second; 5467 5468 BackedgeTakenInfo Result = 5469 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5470 5471 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5472 } 5473 5474 const ScalarEvolution::BackedgeTakenInfo & 5475 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5476 // Initially insert an invalid entry for this loop. If the insertion 5477 // succeeds, proceed to actually compute a backedge-taken count and 5478 // update the value. The temporary CouldNotCompute value tells SCEV 5479 // code elsewhere that it shouldn't attempt to request a new 5480 // backedge-taken count, which could result in infinite recursion. 5481 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5482 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5483 if (!Pair.second) 5484 return Pair.first->second; 5485 5486 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5487 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5488 // must be cleared in this scope. 5489 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5490 5491 if (Result.getExact(this) != getCouldNotCompute()) { 5492 assert(isLoopInvariant(Result.getExact(this), L) && 5493 isLoopInvariant(Result.getMax(this), L) && 5494 "Computed backedge-taken count isn't loop invariant for loop!"); 5495 ++NumTripCountsComputed; 5496 } 5497 else if (Result.getMax(this) == getCouldNotCompute() && 5498 isa<PHINode>(L->getHeader()->begin())) { 5499 // Only count loops that have phi nodes as not being computable. 5500 ++NumTripCountsNotComputed; 5501 } 5502 5503 // Now that we know more about the trip count for this loop, forget any 5504 // existing SCEV values for PHI nodes in this loop since they are only 5505 // conservative estimates made without the benefit of trip count 5506 // information. This is similar to the code in forgetLoop, except that 5507 // it handles SCEVUnknown PHI nodes specially. 5508 if (Result.hasAnyInfo()) { 5509 SmallVector<Instruction *, 16> Worklist; 5510 PushLoopPHIs(L, Worklist); 5511 5512 SmallPtrSet<Instruction *, 8> Visited; 5513 while (!Worklist.empty()) { 5514 Instruction *I = Worklist.pop_back_val(); 5515 if (!Visited.insert(I).second) 5516 continue; 5517 5518 ValueExprMapType::iterator It = 5519 ValueExprMap.find_as(static_cast<Value *>(I)); 5520 if (It != ValueExprMap.end()) { 5521 const SCEV *Old = It->second; 5522 5523 // SCEVUnknown for a PHI either means that it has an unrecognized 5524 // structure, or it's a PHI that's in the progress of being computed 5525 // by createNodeForPHI. In the former case, additional loop trip 5526 // count information isn't going to change anything. In the later 5527 // case, createNodeForPHI will perform the necessary updates on its 5528 // own when it gets to that point. 5529 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5530 eraseValueFromMap(It->first); 5531 forgetMemoizedResults(Old); 5532 } 5533 if (PHINode *PN = dyn_cast<PHINode>(I)) 5534 ConstantEvolutionLoopExitValue.erase(PN); 5535 } 5536 5537 PushDefUseChildren(I, Worklist); 5538 } 5539 } 5540 5541 // Re-lookup the insert position, since the call to 5542 // computeBackedgeTakenCount above could result in a 5543 // recusive call to getBackedgeTakenInfo (on a different 5544 // loop), which would invalidate the iterator computed 5545 // earlier. 5546 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5547 } 5548 5549 void ScalarEvolution::forgetLoop(const Loop *L) { 5550 // Drop any stored trip count value. 5551 auto RemoveLoopFromBackedgeMap = 5552 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5553 auto BTCPos = Map.find(L); 5554 if (BTCPos != Map.end()) { 5555 BTCPos->second.clear(); 5556 Map.erase(BTCPos); 5557 } 5558 }; 5559 5560 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5561 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5562 5563 // Drop information about expressions based on loop-header PHIs. 5564 SmallVector<Instruction *, 16> Worklist; 5565 PushLoopPHIs(L, Worklist); 5566 5567 SmallPtrSet<Instruction *, 8> Visited; 5568 while (!Worklist.empty()) { 5569 Instruction *I = Worklist.pop_back_val(); 5570 if (!Visited.insert(I).second) 5571 continue; 5572 5573 ValueExprMapType::iterator It = 5574 ValueExprMap.find_as(static_cast<Value *>(I)); 5575 if (It != ValueExprMap.end()) { 5576 eraseValueFromMap(It->first); 5577 forgetMemoizedResults(It->second); 5578 if (PHINode *PN = dyn_cast<PHINode>(I)) 5579 ConstantEvolutionLoopExitValue.erase(PN); 5580 } 5581 5582 PushDefUseChildren(I, Worklist); 5583 } 5584 5585 // Forget all contained loops too, to avoid dangling entries in the 5586 // ValuesAtScopes map. 5587 for (Loop *I : *L) 5588 forgetLoop(I); 5589 5590 LoopPropertiesCache.erase(L); 5591 } 5592 5593 void ScalarEvolution::forgetValue(Value *V) { 5594 Instruction *I = dyn_cast<Instruction>(V); 5595 if (!I) return; 5596 5597 // Drop information about expressions based on loop-header PHIs. 5598 SmallVector<Instruction *, 16> Worklist; 5599 Worklist.push_back(I); 5600 5601 SmallPtrSet<Instruction *, 8> Visited; 5602 while (!Worklist.empty()) { 5603 I = Worklist.pop_back_val(); 5604 if (!Visited.insert(I).second) 5605 continue; 5606 5607 ValueExprMapType::iterator It = 5608 ValueExprMap.find_as(static_cast<Value *>(I)); 5609 if (It != ValueExprMap.end()) { 5610 eraseValueFromMap(It->first); 5611 forgetMemoizedResults(It->second); 5612 if (PHINode *PN = dyn_cast<PHINode>(I)) 5613 ConstantEvolutionLoopExitValue.erase(PN); 5614 } 5615 5616 PushDefUseChildren(I, Worklist); 5617 } 5618 } 5619 5620 /// Get the exact loop backedge taken count considering all loop exits. A 5621 /// computable result can only be returned for loops with a single exit. 5622 /// Returning the minimum taken count among all exits is incorrect because one 5623 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5624 /// the limit of each loop test is never skipped. This is a valid assumption as 5625 /// long as the loop exits via that test. For precise results, it is the 5626 /// caller's responsibility to specify the relevant loop exit using 5627 /// getExact(ExitingBlock, SE). 5628 const SCEV * 5629 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5630 SCEVUnionPredicate *Preds) const { 5631 // If any exits were not computable, the loop is not computable. 5632 if (!isComplete() || ExitNotTaken.empty()) 5633 return SE->getCouldNotCompute(); 5634 5635 const SCEV *BECount = nullptr; 5636 for (auto &ENT : ExitNotTaken) { 5637 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5638 5639 if (!BECount) 5640 BECount = ENT.ExactNotTaken; 5641 else if (BECount != ENT.ExactNotTaken) 5642 return SE->getCouldNotCompute(); 5643 if (Preds && !ENT.hasAlwaysTruePredicate()) 5644 Preds->add(ENT.Predicate.get()); 5645 5646 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5647 "Predicate should be always true!"); 5648 } 5649 5650 assert(BECount && "Invalid not taken count for loop exit"); 5651 return BECount; 5652 } 5653 5654 /// Get the exact not taken count for this loop exit. 5655 const SCEV * 5656 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5657 ScalarEvolution *SE) const { 5658 for (auto &ENT : ExitNotTaken) 5659 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5660 return ENT.ExactNotTaken; 5661 5662 return SE->getCouldNotCompute(); 5663 } 5664 5665 /// getMax - Get the max backedge taken count for the loop. 5666 const SCEV * 5667 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5668 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5669 return !ENT.hasAlwaysTruePredicate(); 5670 }; 5671 5672 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5673 return SE->getCouldNotCompute(); 5674 5675 return getMax(); 5676 } 5677 5678 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 5679 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5680 return !ENT.hasAlwaysTruePredicate(); 5681 }; 5682 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 5683 } 5684 5685 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5686 ScalarEvolution *SE) const { 5687 if (getMax() && getMax() != SE->getCouldNotCompute() && 5688 SE->hasOperand(getMax(), S)) 5689 return true; 5690 5691 for (auto &ENT : ExitNotTaken) 5692 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5693 SE->hasOperand(ENT.ExactNotTaken, S)) 5694 return true; 5695 5696 return false; 5697 } 5698 5699 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5700 /// computable exit into a persistent ExitNotTakenInfo array. 5701 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5702 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 5703 &&ExitCounts, 5704 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 5705 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 5706 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5707 ExitNotTaken.reserve(ExitCounts.size()); 5708 std::transform( 5709 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 5710 [&](const EdgeExitInfo &EEI) { 5711 BasicBlock *ExitBB = EEI.first; 5712 const ExitLimit &EL = EEI.second; 5713 if (EL.Predicates.empty()) 5714 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 5715 5716 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 5717 for (auto *Pred : EL.Predicates) 5718 Predicate->add(Pred); 5719 5720 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 5721 }); 5722 } 5723 5724 /// Invalidate this result and free the ExitNotTakenInfo array. 5725 void ScalarEvolution::BackedgeTakenInfo::clear() { 5726 ExitNotTaken.clear(); 5727 } 5728 5729 /// Compute the number of times the backedge of the specified loop will execute. 5730 ScalarEvolution::BackedgeTakenInfo 5731 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5732 bool AllowPredicates) { 5733 SmallVector<BasicBlock *, 8> ExitingBlocks; 5734 L->getExitingBlocks(ExitingBlocks); 5735 5736 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5737 5738 SmallVector<EdgeExitInfo, 4> ExitCounts; 5739 bool CouldComputeBECount = true; 5740 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5741 const SCEV *MustExitMaxBECount = nullptr; 5742 const SCEV *MayExitMaxBECount = nullptr; 5743 bool MustExitMaxOrZero = false; 5744 5745 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5746 // and compute maxBECount. 5747 // Do a union of all the predicates here. 5748 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5749 BasicBlock *ExitBB = ExitingBlocks[i]; 5750 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5751 5752 assert((AllowPredicates || EL.Predicates.empty()) && 5753 "Predicated exit limit when predicates are not allowed!"); 5754 5755 // 1. For each exit that can be computed, add an entry to ExitCounts. 5756 // CouldComputeBECount is true only if all exits can be computed. 5757 if (EL.ExactNotTaken == getCouldNotCompute()) 5758 // We couldn't compute an exact value for this exit, so 5759 // we won't be able to compute an exact value for the loop. 5760 CouldComputeBECount = false; 5761 else 5762 ExitCounts.emplace_back(ExitBB, EL); 5763 5764 // 2. Derive the loop's MaxBECount from each exit's max number of 5765 // non-exiting iterations. Partition the loop exits into two kinds: 5766 // LoopMustExits and LoopMayExits. 5767 // 5768 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5769 // is a LoopMayExit. If any computable LoopMustExit is found, then 5770 // MaxBECount is the minimum EL.MaxNotTaken of computable 5771 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 5772 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 5773 // computable EL.MaxNotTaken. 5774 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 5775 DT.dominates(ExitBB, Latch)) { 5776 if (!MustExitMaxBECount) { 5777 MustExitMaxBECount = EL.MaxNotTaken; 5778 MustExitMaxOrZero = EL.MaxOrZero; 5779 } else { 5780 MustExitMaxBECount = 5781 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 5782 } 5783 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5784 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 5785 MayExitMaxBECount = EL.MaxNotTaken; 5786 else { 5787 MayExitMaxBECount = 5788 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 5789 } 5790 } 5791 } 5792 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5793 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5794 // The loop backedge will be taken the maximum or zero times if there's 5795 // a single exit that must be taken the maximum or zero times. 5796 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 5797 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 5798 MaxBECount, MaxOrZero); 5799 } 5800 5801 ScalarEvolution::ExitLimit 5802 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 5803 bool AllowPredicates) { 5804 5805 // Okay, we've chosen an exiting block. See what condition causes us to exit 5806 // at this block and remember the exit block and whether all other targets 5807 // lead to the loop header. 5808 bool MustExecuteLoopHeader = true; 5809 BasicBlock *Exit = nullptr; 5810 for (auto *SBB : successors(ExitingBlock)) 5811 if (!L->contains(SBB)) { 5812 if (Exit) // Multiple exit successors. 5813 return getCouldNotCompute(); 5814 Exit = SBB; 5815 } else if (SBB != L->getHeader()) { 5816 MustExecuteLoopHeader = false; 5817 } 5818 5819 // At this point, we know we have a conditional branch that determines whether 5820 // the loop is exited. However, we don't know if the branch is executed each 5821 // time through the loop. If not, then the execution count of the branch will 5822 // not be equal to the trip count of the loop. 5823 // 5824 // Currently we check for this by checking to see if the Exit branch goes to 5825 // the loop header. If so, we know it will always execute the same number of 5826 // times as the loop. We also handle the case where the exit block *is* the 5827 // loop header. This is common for un-rotated loops. 5828 // 5829 // If both of those tests fail, walk up the unique predecessor chain to the 5830 // header, stopping if there is an edge that doesn't exit the loop. If the 5831 // header is reached, the execution count of the branch will be equal to the 5832 // trip count of the loop. 5833 // 5834 // More extensive analysis could be done to handle more cases here. 5835 // 5836 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5837 // The simple checks failed, try climbing the unique predecessor chain 5838 // up to the header. 5839 bool Ok = false; 5840 for (BasicBlock *BB = ExitingBlock; BB; ) { 5841 BasicBlock *Pred = BB->getUniquePredecessor(); 5842 if (!Pred) 5843 return getCouldNotCompute(); 5844 TerminatorInst *PredTerm = Pred->getTerminator(); 5845 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5846 if (PredSucc == BB) 5847 continue; 5848 // If the predecessor has a successor that isn't BB and isn't 5849 // outside the loop, assume the worst. 5850 if (L->contains(PredSucc)) 5851 return getCouldNotCompute(); 5852 } 5853 if (Pred == L->getHeader()) { 5854 Ok = true; 5855 break; 5856 } 5857 BB = Pred; 5858 } 5859 if (!Ok) 5860 return getCouldNotCompute(); 5861 } 5862 5863 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5864 TerminatorInst *Term = ExitingBlock->getTerminator(); 5865 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5866 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5867 // Proceed to the next level to examine the exit condition expression. 5868 return computeExitLimitFromCond( 5869 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 5870 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 5871 } 5872 5873 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5874 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5875 /*ControlsExit=*/IsOnlyExit); 5876 5877 return getCouldNotCompute(); 5878 } 5879 5880 ScalarEvolution::ExitLimit 5881 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5882 Value *ExitCond, 5883 BasicBlock *TBB, 5884 BasicBlock *FBB, 5885 bool ControlsExit, 5886 bool AllowPredicates) { 5887 // Check if the controlling expression for this loop is an And or Or. 5888 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5889 if (BO->getOpcode() == Instruction::And) { 5890 // Recurse on the operands of the and. 5891 bool EitherMayExit = L->contains(TBB); 5892 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5893 ControlsExit && !EitherMayExit, 5894 AllowPredicates); 5895 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5896 ControlsExit && !EitherMayExit, 5897 AllowPredicates); 5898 const SCEV *BECount = getCouldNotCompute(); 5899 const SCEV *MaxBECount = getCouldNotCompute(); 5900 if (EitherMayExit) { 5901 // Both conditions must be true for the loop to continue executing. 5902 // Choose the less conservative count. 5903 if (EL0.ExactNotTaken == getCouldNotCompute() || 5904 EL1.ExactNotTaken == getCouldNotCompute()) 5905 BECount = getCouldNotCompute(); 5906 else 5907 BECount = 5908 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5909 if (EL0.MaxNotTaken == getCouldNotCompute()) 5910 MaxBECount = EL1.MaxNotTaken; 5911 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5912 MaxBECount = EL0.MaxNotTaken; 5913 else 5914 MaxBECount = 5915 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5916 } else { 5917 // Both conditions must be true at the same time for the loop to exit. 5918 // For now, be conservative. 5919 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5920 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5921 MaxBECount = EL0.MaxNotTaken; 5922 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5923 BECount = EL0.ExactNotTaken; 5924 } 5925 5926 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5927 // to be more aggressive when computing BECount than when computing 5928 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 5929 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 5930 // to not. 5931 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5932 !isa<SCEVCouldNotCompute>(BECount)) 5933 MaxBECount = BECount; 5934 5935 return ExitLimit(BECount, MaxBECount, false, 5936 {&EL0.Predicates, &EL1.Predicates}); 5937 } 5938 if (BO->getOpcode() == Instruction::Or) { 5939 // Recurse on the operands of the or. 5940 bool EitherMayExit = L->contains(FBB); 5941 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5942 ControlsExit && !EitherMayExit, 5943 AllowPredicates); 5944 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5945 ControlsExit && !EitherMayExit, 5946 AllowPredicates); 5947 const SCEV *BECount = getCouldNotCompute(); 5948 const SCEV *MaxBECount = getCouldNotCompute(); 5949 if (EitherMayExit) { 5950 // Both conditions must be false for the loop to continue executing. 5951 // Choose the less conservative count. 5952 if (EL0.ExactNotTaken == getCouldNotCompute() || 5953 EL1.ExactNotTaken == getCouldNotCompute()) 5954 BECount = getCouldNotCompute(); 5955 else 5956 BECount = 5957 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5958 if (EL0.MaxNotTaken == getCouldNotCompute()) 5959 MaxBECount = EL1.MaxNotTaken; 5960 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5961 MaxBECount = EL0.MaxNotTaken; 5962 else 5963 MaxBECount = 5964 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5965 } else { 5966 // Both conditions must be false at the same time for the loop to exit. 5967 // For now, be conservative. 5968 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5969 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5970 MaxBECount = EL0.MaxNotTaken; 5971 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5972 BECount = EL0.ExactNotTaken; 5973 } 5974 5975 return ExitLimit(BECount, MaxBECount, false, 5976 {&EL0.Predicates, &EL1.Predicates}); 5977 } 5978 } 5979 5980 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5981 // Proceed to the next level to examine the icmp. 5982 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 5983 ExitLimit EL = 5984 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5985 if (EL.hasFullInfo() || !AllowPredicates) 5986 return EL; 5987 5988 // Try again, but use SCEV predicates this time. 5989 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 5990 /*AllowPredicates=*/true); 5991 } 5992 5993 // Check for a constant condition. These are normally stripped out by 5994 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5995 // preserve the CFG and is temporarily leaving constant conditions 5996 // in place. 5997 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5998 if (L->contains(FBB) == !CI->getZExtValue()) 5999 // The backedge is always taken. 6000 return getCouldNotCompute(); 6001 else 6002 // The backedge is never taken. 6003 return getZero(CI->getType()); 6004 } 6005 6006 // If it's not an integer or pointer comparison then compute it the hard way. 6007 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6008 } 6009 6010 ScalarEvolution::ExitLimit 6011 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6012 ICmpInst *ExitCond, 6013 BasicBlock *TBB, 6014 BasicBlock *FBB, 6015 bool ControlsExit, 6016 bool AllowPredicates) { 6017 6018 // If the condition was exit on true, convert the condition to exit on false 6019 ICmpInst::Predicate Cond; 6020 if (!L->contains(FBB)) 6021 Cond = ExitCond->getPredicate(); 6022 else 6023 Cond = ExitCond->getInversePredicate(); 6024 6025 // Handle common loops like: for (X = "string"; *X; ++X) 6026 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6027 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6028 ExitLimit ItCnt = 6029 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6030 if (ItCnt.hasAnyInfo()) 6031 return ItCnt; 6032 } 6033 6034 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6035 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6036 6037 // Try to evaluate any dependencies out of the loop. 6038 LHS = getSCEVAtScope(LHS, L); 6039 RHS = getSCEVAtScope(RHS, L); 6040 6041 // At this point, we would like to compute how many iterations of the 6042 // loop the predicate will return true for these inputs. 6043 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6044 // If there is a loop-invariant, force it into the RHS. 6045 std::swap(LHS, RHS); 6046 Cond = ICmpInst::getSwappedPredicate(Cond); 6047 } 6048 6049 // Simplify the operands before analyzing them. 6050 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6051 6052 // If we have a comparison of a chrec against a constant, try to use value 6053 // ranges to answer this query. 6054 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6055 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6056 if (AddRec->getLoop() == L) { 6057 // Form the constant range. 6058 ConstantRange CompRange = 6059 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6060 6061 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6062 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6063 } 6064 6065 switch (Cond) { 6066 case ICmpInst::ICMP_NE: { // while (X != Y) 6067 // Convert to: while (X-Y != 0) 6068 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6069 AllowPredicates); 6070 if (EL.hasAnyInfo()) return EL; 6071 break; 6072 } 6073 case ICmpInst::ICMP_EQ: { // while (X == Y) 6074 // Convert to: while (X-Y == 0) 6075 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6076 if (EL.hasAnyInfo()) return EL; 6077 break; 6078 } 6079 case ICmpInst::ICMP_SLT: 6080 case ICmpInst::ICMP_ULT: { // while (X < Y) 6081 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6082 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6083 AllowPredicates); 6084 if (EL.hasAnyInfo()) return EL; 6085 break; 6086 } 6087 case ICmpInst::ICMP_SGT: 6088 case ICmpInst::ICMP_UGT: { // while (X > Y) 6089 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6090 ExitLimit EL = 6091 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6092 AllowPredicates); 6093 if (EL.hasAnyInfo()) return EL; 6094 break; 6095 } 6096 default: 6097 break; 6098 } 6099 6100 auto *ExhaustiveCount = 6101 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6102 6103 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6104 return ExhaustiveCount; 6105 6106 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6107 ExitCond->getOperand(1), L, Cond); 6108 } 6109 6110 ScalarEvolution::ExitLimit 6111 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6112 SwitchInst *Switch, 6113 BasicBlock *ExitingBlock, 6114 bool ControlsExit) { 6115 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6116 6117 // Give up if the exit is the default dest of a switch. 6118 if (Switch->getDefaultDest() == ExitingBlock) 6119 return getCouldNotCompute(); 6120 6121 assert(L->contains(Switch->getDefaultDest()) && 6122 "Default case must not exit the loop!"); 6123 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6124 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6125 6126 // while (X != Y) --> while (X-Y != 0) 6127 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6128 if (EL.hasAnyInfo()) 6129 return EL; 6130 6131 return getCouldNotCompute(); 6132 } 6133 6134 static ConstantInt * 6135 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6136 ScalarEvolution &SE) { 6137 const SCEV *InVal = SE.getConstant(C); 6138 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6139 assert(isa<SCEVConstant>(Val) && 6140 "Evaluation of SCEV at constant didn't fold correctly?"); 6141 return cast<SCEVConstant>(Val)->getValue(); 6142 } 6143 6144 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6145 /// compute the backedge execution count. 6146 ScalarEvolution::ExitLimit 6147 ScalarEvolution::computeLoadConstantCompareExitLimit( 6148 LoadInst *LI, 6149 Constant *RHS, 6150 const Loop *L, 6151 ICmpInst::Predicate predicate) { 6152 6153 if (LI->isVolatile()) return getCouldNotCompute(); 6154 6155 // Check to see if the loaded pointer is a getelementptr of a global. 6156 // TODO: Use SCEV instead of manually grubbing with GEPs. 6157 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6158 if (!GEP) return getCouldNotCompute(); 6159 6160 // Make sure that it is really a constant global we are gepping, with an 6161 // initializer, and make sure the first IDX is really 0. 6162 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6163 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6164 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6165 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6166 return getCouldNotCompute(); 6167 6168 // Okay, we allow one non-constant index into the GEP instruction. 6169 Value *VarIdx = nullptr; 6170 std::vector<Constant*> Indexes; 6171 unsigned VarIdxNum = 0; 6172 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6173 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6174 Indexes.push_back(CI); 6175 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6176 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6177 VarIdx = GEP->getOperand(i); 6178 VarIdxNum = i-2; 6179 Indexes.push_back(nullptr); 6180 } 6181 6182 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6183 if (!VarIdx) 6184 return getCouldNotCompute(); 6185 6186 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6187 // Check to see if X is a loop variant variable value now. 6188 const SCEV *Idx = getSCEV(VarIdx); 6189 Idx = getSCEVAtScope(Idx, L); 6190 6191 // We can only recognize very limited forms of loop index expressions, in 6192 // particular, only affine AddRec's like {C1,+,C2}. 6193 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6194 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6195 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6196 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6197 return getCouldNotCompute(); 6198 6199 unsigned MaxSteps = MaxBruteForceIterations; 6200 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6201 ConstantInt *ItCst = ConstantInt::get( 6202 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6203 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6204 6205 // Form the GEP offset. 6206 Indexes[VarIdxNum] = Val; 6207 6208 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6209 Indexes); 6210 if (!Result) break; // Cannot compute! 6211 6212 // Evaluate the condition for this iteration. 6213 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6214 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6215 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6216 ++NumArrayLenItCounts; 6217 return getConstant(ItCst); // Found terminating iteration! 6218 } 6219 } 6220 return getCouldNotCompute(); 6221 } 6222 6223 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6224 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6225 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6226 if (!RHS) 6227 return getCouldNotCompute(); 6228 6229 const BasicBlock *Latch = L->getLoopLatch(); 6230 if (!Latch) 6231 return getCouldNotCompute(); 6232 6233 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6234 if (!Predecessor) 6235 return getCouldNotCompute(); 6236 6237 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6238 // Return LHS in OutLHS and shift_opt in OutOpCode. 6239 auto MatchPositiveShift = 6240 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6241 6242 using namespace PatternMatch; 6243 6244 ConstantInt *ShiftAmt; 6245 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6246 OutOpCode = Instruction::LShr; 6247 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6248 OutOpCode = Instruction::AShr; 6249 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6250 OutOpCode = Instruction::Shl; 6251 else 6252 return false; 6253 6254 return ShiftAmt->getValue().isStrictlyPositive(); 6255 }; 6256 6257 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6258 // 6259 // loop: 6260 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6261 // %iv.shifted = lshr i32 %iv, <positive constant> 6262 // 6263 // Return true on a succesful match. Return the corresponding PHI node (%iv 6264 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6265 auto MatchShiftRecurrence = 6266 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6267 Optional<Instruction::BinaryOps> PostShiftOpCode; 6268 6269 { 6270 Instruction::BinaryOps OpC; 6271 Value *V; 6272 6273 // If we encounter a shift instruction, "peel off" the shift operation, 6274 // and remember that we did so. Later when we inspect %iv's backedge 6275 // value, we will make sure that the backedge value uses the same 6276 // operation. 6277 // 6278 // Note: the peeled shift operation does not have to be the same 6279 // instruction as the one feeding into the PHI's backedge value. We only 6280 // really care about it being the same *kind* of shift instruction -- 6281 // that's all that is required for our later inferences to hold. 6282 if (MatchPositiveShift(LHS, V, OpC)) { 6283 PostShiftOpCode = OpC; 6284 LHS = V; 6285 } 6286 } 6287 6288 PNOut = dyn_cast<PHINode>(LHS); 6289 if (!PNOut || PNOut->getParent() != L->getHeader()) 6290 return false; 6291 6292 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6293 Value *OpLHS; 6294 6295 return 6296 // The backedge value for the PHI node must be a shift by a positive 6297 // amount 6298 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6299 6300 // of the PHI node itself 6301 OpLHS == PNOut && 6302 6303 // and the kind of shift should be match the kind of shift we peeled 6304 // off, if any. 6305 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6306 }; 6307 6308 PHINode *PN; 6309 Instruction::BinaryOps OpCode; 6310 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6311 return getCouldNotCompute(); 6312 6313 const DataLayout &DL = getDataLayout(); 6314 6315 // The key rationale for this optimization is that for some kinds of shift 6316 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6317 // within a finite number of iterations. If the condition guarding the 6318 // backedge (in the sense that the backedge is taken if the condition is true) 6319 // is false for the value the shift recurrence stabilizes to, then we know 6320 // that the backedge is taken only a finite number of times. 6321 6322 ConstantInt *StableValue = nullptr; 6323 switch (OpCode) { 6324 default: 6325 llvm_unreachable("Impossible case!"); 6326 6327 case Instruction::AShr: { 6328 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6329 // bitwidth(K) iterations. 6330 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6331 bool KnownZero, KnownOne; 6332 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6333 Predecessor->getTerminator(), &DT); 6334 auto *Ty = cast<IntegerType>(RHS->getType()); 6335 if (KnownZero) 6336 StableValue = ConstantInt::get(Ty, 0); 6337 else if (KnownOne) 6338 StableValue = ConstantInt::get(Ty, -1, true); 6339 else 6340 return getCouldNotCompute(); 6341 6342 break; 6343 } 6344 case Instruction::LShr: 6345 case Instruction::Shl: 6346 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6347 // stabilize to 0 in at most bitwidth(K) iterations. 6348 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6349 break; 6350 } 6351 6352 auto *Result = 6353 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6354 assert(Result->getType()->isIntegerTy(1) && 6355 "Otherwise cannot be an operand to a branch instruction"); 6356 6357 if (Result->isZeroValue()) { 6358 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6359 const SCEV *UpperBound = 6360 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6361 return ExitLimit(getCouldNotCompute(), UpperBound, false); 6362 } 6363 6364 return getCouldNotCompute(); 6365 } 6366 6367 /// Return true if we can constant fold an instruction of the specified type, 6368 /// assuming that all operands were constants. 6369 static bool CanConstantFold(const Instruction *I) { 6370 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6371 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6372 isa<LoadInst>(I)) 6373 return true; 6374 6375 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6376 if (const Function *F = CI->getCalledFunction()) 6377 return canConstantFoldCallTo(F); 6378 return false; 6379 } 6380 6381 /// Determine whether this instruction can constant evolve within this loop 6382 /// assuming its operands can all constant evolve. 6383 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6384 // An instruction outside of the loop can't be derived from a loop PHI. 6385 if (!L->contains(I)) return false; 6386 6387 if (isa<PHINode>(I)) { 6388 // We don't currently keep track of the control flow needed to evaluate 6389 // PHIs, so we cannot handle PHIs inside of loops. 6390 return L->getHeader() == I->getParent(); 6391 } 6392 6393 // If we won't be able to constant fold this expression even if the operands 6394 // are constants, bail early. 6395 return CanConstantFold(I); 6396 } 6397 6398 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6399 /// recursing through each instruction operand until reaching a loop header phi. 6400 static PHINode * 6401 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6402 DenseMap<Instruction *, PHINode *> &PHIMap) { 6403 6404 // Otherwise, we can evaluate this instruction if all of its operands are 6405 // constant or derived from a PHI node themselves. 6406 PHINode *PHI = nullptr; 6407 for (Value *Op : UseInst->operands()) { 6408 if (isa<Constant>(Op)) continue; 6409 6410 Instruction *OpInst = dyn_cast<Instruction>(Op); 6411 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6412 6413 PHINode *P = dyn_cast<PHINode>(OpInst); 6414 if (!P) 6415 // If this operand is already visited, reuse the prior result. 6416 // We may have P != PHI if this is the deepest point at which the 6417 // inconsistent paths meet. 6418 P = PHIMap.lookup(OpInst); 6419 if (!P) { 6420 // Recurse and memoize the results, whether a phi is found or not. 6421 // This recursive call invalidates pointers into PHIMap. 6422 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 6423 PHIMap[OpInst] = P; 6424 } 6425 if (!P) 6426 return nullptr; // Not evolving from PHI 6427 if (PHI && PHI != P) 6428 return nullptr; // Evolving from multiple different PHIs. 6429 PHI = P; 6430 } 6431 // This is a expression evolving from a constant PHI! 6432 return PHI; 6433 } 6434 6435 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6436 /// in the loop that V is derived from. We allow arbitrary operations along the 6437 /// way, but the operands of an operation must either be constants or a value 6438 /// derived from a constant PHI. If this expression does not fit with these 6439 /// constraints, return null. 6440 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6441 Instruction *I = dyn_cast<Instruction>(V); 6442 if (!I || !canConstantEvolve(I, L)) return nullptr; 6443 6444 if (PHINode *PN = dyn_cast<PHINode>(I)) 6445 return PN; 6446 6447 // Record non-constant instructions contained by the loop. 6448 DenseMap<Instruction *, PHINode *> PHIMap; 6449 return getConstantEvolvingPHIOperands(I, L, PHIMap); 6450 } 6451 6452 /// EvaluateExpression - Given an expression that passes the 6453 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6454 /// in the loop has the value PHIVal. If we can't fold this expression for some 6455 /// reason, return null. 6456 static Constant *EvaluateExpression(Value *V, const Loop *L, 6457 DenseMap<Instruction *, Constant *> &Vals, 6458 const DataLayout &DL, 6459 const TargetLibraryInfo *TLI) { 6460 // Convenient constant check, but redundant for recursive calls. 6461 if (Constant *C = dyn_cast<Constant>(V)) return C; 6462 Instruction *I = dyn_cast<Instruction>(V); 6463 if (!I) return nullptr; 6464 6465 if (Constant *C = Vals.lookup(I)) return C; 6466 6467 // An instruction inside the loop depends on a value outside the loop that we 6468 // weren't given a mapping for, or a value such as a call inside the loop. 6469 if (!canConstantEvolve(I, L)) return nullptr; 6470 6471 // An unmapped PHI can be due to a branch or another loop inside this loop, 6472 // or due to this not being the initial iteration through a loop where we 6473 // couldn't compute the evolution of this particular PHI last time. 6474 if (isa<PHINode>(I)) return nullptr; 6475 6476 std::vector<Constant*> Operands(I->getNumOperands()); 6477 6478 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6479 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6480 if (!Operand) { 6481 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6482 if (!Operands[i]) return nullptr; 6483 continue; 6484 } 6485 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6486 Vals[Operand] = C; 6487 if (!C) return nullptr; 6488 Operands[i] = C; 6489 } 6490 6491 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6492 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6493 Operands[1], DL, TLI); 6494 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6495 if (!LI->isVolatile()) 6496 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6497 } 6498 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6499 } 6500 6501 6502 // If every incoming value to PN except the one for BB is a specific Constant, 6503 // return that, else return nullptr. 6504 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6505 Constant *IncomingVal = nullptr; 6506 6507 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6508 if (PN->getIncomingBlock(i) == BB) 6509 continue; 6510 6511 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6512 if (!CurrentVal) 6513 return nullptr; 6514 6515 if (IncomingVal != CurrentVal) { 6516 if (IncomingVal) 6517 return nullptr; 6518 IncomingVal = CurrentVal; 6519 } 6520 } 6521 6522 return IncomingVal; 6523 } 6524 6525 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6526 /// in the header of its containing loop, we know the loop executes a 6527 /// constant number of times, and the PHI node is just a recurrence 6528 /// involving constants, fold it. 6529 Constant * 6530 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6531 const APInt &BEs, 6532 const Loop *L) { 6533 auto I = ConstantEvolutionLoopExitValue.find(PN); 6534 if (I != ConstantEvolutionLoopExitValue.end()) 6535 return I->second; 6536 6537 if (BEs.ugt(MaxBruteForceIterations)) 6538 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6539 6540 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6541 6542 DenseMap<Instruction *, Constant *> CurrentIterVals; 6543 BasicBlock *Header = L->getHeader(); 6544 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6545 6546 BasicBlock *Latch = L->getLoopLatch(); 6547 if (!Latch) 6548 return nullptr; 6549 6550 for (auto &I : *Header) { 6551 PHINode *PHI = dyn_cast<PHINode>(&I); 6552 if (!PHI) break; 6553 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6554 if (!StartCST) continue; 6555 CurrentIterVals[PHI] = StartCST; 6556 } 6557 if (!CurrentIterVals.count(PN)) 6558 return RetVal = nullptr; 6559 6560 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6561 6562 // Execute the loop symbolically to determine the exit value. 6563 if (BEs.getActiveBits() >= 32) 6564 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6565 6566 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6567 unsigned IterationNum = 0; 6568 const DataLayout &DL = getDataLayout(); 6569 for (; ; ++IterationNum) { 6570 if (IterationNum == NumIterations) 6571 return RetVal = CurrentIterVals[PN]; // Got exit value! 6572 6573 // Compute the value of the PHIs for the next iteration. 6574 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6575 DenseMap<Instruction *, Constant *> NextIterVals; 6576 Constant *NextPHI = 6577 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6578 if (!NextPHI) 6579 return nullptr; // Couldn't evaluate! 6580 NextIterVals[PN] = NextPHI; 6581 6582 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6583 6584 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6585 // cease to be able to evaluate one of them or if they stop evolving, 6586 // because that doesn't necessarily prevent us from computing PN. 6587 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6588 for (const auto &I : CurrentIterVals) { 6589 PHINode *PHI = dyn_cast<PHINode>(I.first); 6590 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6591 PHIsToCompute.emplace_back(PHI, I.second); 6592 } 6593 // We use two distinct loops because EvaluateExpression may invalidate any 6594 // iterators into CurrentIterVals. 6595 for (const auto &I : PHIsToCompute) { 6596 PHINode *PHI = I.first; 6597 Constant *&NextPHI = NextIterVals[PHI]; 6598 if (!NextPHI) { // Not already computed. 6599 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6600 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6601 } 6602 if (NextPHI != I.second) 6603 StoppedEvolving = false; 6604 } 6605 6606 // If all entries in CurrentIterVals == NextIterVals then we can stop 6607 // iterating, the loop can't continue to change. 6608 if (StoppedEvolving) 6609 return RetVal = CurrentIterVals[PN]; 6610 6611 CurrentIterVals.swap(NextIterVals); 6612 } 6613 } 6614 6615 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6616 Value *Cond, 6617 bool ExitWhen) { 6618 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6619 if (!PN) return getCouldNotCompute(); 6620 6621 // If the loop is canonicalized, the PHI will have exactly two entries. 6622 // That's the only form we support here. 6623 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6624 6625 DenseMap<Instruction *, Constant *> CurrentIterVals; 6626 BasicBlock *Header = L->getHeader(); 6627 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6628 6629 BasicBlock *Latch = L->getLoopLatch(); 6630 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6631 6632 for (auto &I : *Header) { 6633 PHINode *PHI = dyn_cast<PHINode>(&I); 6634 if (!PHI) 6635 break; 6636 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6637 if (!StartCST) continue; 6638 CurrentIterVals[PHI] = StartCST; 6639 } 6640 if (!CurrentIterVals.count(PN)) 6641 return getCouldNotCompute(); 6642 6643 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6644 // the loop symbolically to determine when the condition gets a value of 6645 // "ExitWhen". 6646 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6647 const DataLayout &DL = getDataLayout(); 6648 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6649 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6650 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6651 6652 // Couldn't symbolically evaluate. 6653 if (!CondVal) return getCouldNotCompute(); 6654 6655 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6656 ++NumBruteForceTripCountsComputed; 6657 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6658 } 6659 6660 // Update all the PHI nodes for the next iteration. 6661 DenseMap<Instruction *, Constant *> NextIterVals; 6662 6663 // Create a list of which PHIs we need to compute. We want to do this before 6664 // calling EvaluateExpression on them because that may invalidate iterators 6665 // into CurrentIterVals. 6666 SmallVector<PHINode *, 8> PHIsToCompute; 6667 for (const auto &I : CurrentIterVals) { 6668 PHINode *PHI = dyn_cast<PHINode>(I.first); 6669 if (!PHI || PHI->getParent() != Header) continue; 6670 PHIsToCompute.push_back(PHI); 6671 } 6672 for (PHINode *PHI : PHIsToCompute) { 6673 Constant *&NextPHI = NextIterVals[PHI]; 6674 if (NextPHI) continue; // Already computed! 6675 6676 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6677 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6678 } 6679 CurrentIterVals.swap(NextIterVals); 6680 } 6681 6682 // Too many iterations were needed to evaluate. 6683 return getCouldNotCompute(); 6684 } 6685 6686 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6687 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6688 ValuesAtScopes[V]; 6689 // Check to see if we've folded this expression at this loop before. 6690 for (auto &LS : Values) 6691 if (LS.first == L) 6692 return LS.second ? LS.second : V; 6693 6694 Values.emplace_back(L, nullptr); 6695 6696 // Otherwise compute it. 6697 const SCEV *C = computeSCEVAtScope(V, L); 6698 for (auto &LS : reverse(ValuesAtScopes[V])) 6699 if (LS.first == L) { 6700 LS.second = C; 6701 break; 6702 } 6703 return C; 6704 } 6705 6706 /// This builds up a Constant using the ConstantExpr interface. That way, we 6707 /// will return Constants for objects which aren't represented by a 6708 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6709 /// Returns NULL if the SCEV isn't representable as a Constant. 6710 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6711 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6712 case scCouldNotCompute: 6713 case scAddRecExpr: 6714 break; 6715 case scConstant: 6716 return cast<SCEVConstant>(V)->getValue(); 6717 case scUnknown: 6718 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6719 case scSignExtend: { 6720 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6721 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6722 return ConstantExpr::getSExt(CastOp, SS->getType()); 6723 break; 6724 } 6725 case scZeroExtend: { 6726 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6727 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6728 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6729 break; 6730 } 6731 case scTruncate: { 6732 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6733 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6734 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6735 break; 6736 } 6737 case scAddExpr: { 6738 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6739 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6740 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6741 unsigned AS = PTy->getAddressSpace(); 6742 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6743 C = ConstantExpr::getBitCast(C, DestPtrTy); 6744 } 6745 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6746 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6747 if (!C2) return nullptr; 6748 6749 // First pointer! 6750 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6751 unsigned AS = C2->getType()->getPointerAddressSpace(); 6752 std::swap(C, C2); 6753 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6754 // The offsets have been converted to bytes. We can add bytes to an 6755 // i8* by GEP with the byte count in the first index. 6756 C = ConstantExpr::getBitCast(C, DestPtrTy); 6757 } 6758 6759 // Don't bother trying to sum two pointers. We probably can't 6760 // statically compute a load that results from it anyway. 6761 if (C2->getType()->isPointerTy()) 6762 return nullptr; 6763 6764 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6765 if (PTy->getElementType()->isStructTy()) 6766 C2 = ConstantExpr::getIntegerCast( 6767 C2, Type::getInt32Ty(C->getContext()), true); 6768 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6769 } else 6770 C = ConstantExpr::getAdd(C, C2); 6771 } 6772 return C; 6773 } 6774 break; 6775 } 6776 case scMulExpr: { 6777 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6778 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6779 // Don't bother with pointers at all. 6780 if (C->getType()->isPointerTy()) return nullptr; 6781 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6782 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6783 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6784 C = ConstantExpr::getMul(C, C2); 6785 } 6786 return C; 6787 } 6788 break; 6789 } 6790 case scUDivExpr: { 6791 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6792 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6793 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6794 if (LHS->getType() == RHS->getType()) 6795 return ConstantExpr::getUDiv(LHS, RHS); 6796 break; 6797 } 6798 case scSMaxExpr: 6799 case scUMaxExpr: 6800 break; // TODO: smax, umax. 6801 } 6802 return nullptr; 6803 } 6804 6805 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6806 if (isa<SCEVConstant>(V)) return V; 6807 6808 // If this instruction is evolved from a constant-evolving PHI, compute the 6809 // exit value from the loop without using SCEVs. 6810 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6811 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6812 const Loop *LI = this->LI[I->getParent()]; 6813 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6814 if (PHINode *PN = dyn_cast<PHINode>(I)) 6815 if (PN->getParent() == LI->getHeader()) { 6816 // Okay, there is no closed form solution for the PHI node. Check 6817 // to see if the loop that contains it has a known backedge-taken 6818 // count. If so, we may be able to force computation of the exit 6819 // value. 6820 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6821 if (const SCEVConstant *BTCC = 6822 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6823 // Okay, we know how many times the containing loop executes. If 6824 // this is a constant evolving PHI node, get the final value at 6825 // the specified iteration number. 6826 Constant *RV = 6827 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6828 if (RV) return getSCEV(RV); 6829 } 6830 } 6831 6832 // Okay, this is an expression that we cannot symbolically evaluate 6833 // into a SCEV. Check to see if it's possible to symbolically evaluate 6834 // the arguments into constants, and if so, try to constant propagate the 6835 // result. This is particularly useful for computing loop exit values. 6836 if (CanConstantFold(I)) { 6837 SmallVector<Constant *, 4> Operands; 6838 bool MadeImprovement = false; 6839 for (Value *Op : I->operands()) { 6840 if (Constant *C = dyn_cast<Constant>(Op)) { 6841 Operands.push_back(C); 6842 continue; 6843 } 6844 6845 // If any of the operands is non-constant and if they are 6846 // non-integer and non-pointer, don't even try to analyze them 6847 // with scev techniques. 6848 if (!isSCEVable(Op->getType())) 6849 return V; 6850 6851 const SCEV *OrigV = getSCEV(Op); 6852 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6853 MadeImprovement |= OrigV != OpV; 6854 6855 Constant *C = BuildConstantFromSCEV(OpV); 6856 if (!C) return V; 6857 if (C->getType() != Op->getType()) 6858 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6859 Op->getType(), 6860 false), 6861 C, Op->getType()); 6862 Operands.push_back(C); 6863 } 6864 6865 // Check to see if getSCEVAtScope actually made an improvement. 6866 if (MadeImprovement) { 6867 Constant *C = nullptr; 6868 const DataLayout &DL = getDataLayout(); 6869 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6870 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6871 Operands[1], DL, &TLI); 6872 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6873 if (!LI->isVolatile()) 6874 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6875 } else 6876 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6877 if (!C) return V; 6878 return getSCEV(C); 6879 } 6880 } 6881 } 6882 6883 // This is some other type of SCEVUnknown, just return it. 6884 return V; 6885 } 6886 6887 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6888 // Avoid performing the look-up in the common case where the specified 6889 // expression has no loop-variant portions. 6890 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6891 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6892 if (OpAtScope != Comm->getOperand(i)) { 6893 // Okay, at least one of these operands is loop variant but might be 6894 // foldable. Build a new instance of the folded commutative expression. 6895 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6896 Comm->op_begin()+i); 6897 NewOps.push_back(OpAtScope); 6898 6899 for (++i; i != e; ++i) { 6900 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6901 NewOps.push_back(OpAtScope); 6902 } 6903 if (isa<SCEVAddExpr>(Comm)) 6904 return getAddExpr(NewOps); 6905 if (isa<SCEVMulExpr>(Comm)) 6906 return getMulExpr(NewOps); 6907 if (isa<SCEVSMaxExpr>(Comm)) 6908 return getSMaxExpr(NewOps); 6909 if (isa<SCEVUMaxExpr>(Comm)) 6910 return getUMaxExpr(NewOps); 6911 llvm_unreachable("Unknown commutative SCEV type!"); 6912 } 6913 } 6914 // If we got here, all operands are loop invariant. 6915 return Comm; 6916 } 6917 6918 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6919 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6920 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6921 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6922 return Div; // must be loop invariant 6923 return getUDivExpr(LHS, RHS); 6924 } 6925 6926 // If this is a loop recurrence for a loop that does not contain L, then we 6927 // are dealing with the final value computed by the loop. 6928 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6929 // First, attempt to evaluate each operand. 6930 // Avoid performing the look-up in the common case where the specified 6931 // expression has no loop-variant portions. 6932 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6933 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6934 if (OpAtScope == AddRec->getOperand(i)) 6935 continue; 6936 6937 // Okay, at least one of these operands is loop variant but might be 6938 // foldable. Build a new instance of the folded commutative expression. 6939 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6940 AddRec->op_begin()+i); 6941 NewOps.push_back(OpAtScope); 6942 for (++i; i != e; ++i) 6943 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6944 6945 const SCEV *FoldedRec = 6946 getAddRecExpr(NewOps, AddRec->getLoop(), 6947 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6948 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6949 // The addrec may be folded to a nonrecurrence, for example, if the 6950 // induction variable is multiplied by zero after constant folding. Go 6951 // ahead and return the folded value. 6952 if (!AddRec) 6953 return FoldedRec; 6954 break; 6955 } 6956 6957 // If the scope is outside the addrec's loop, evaluate it by using the 6958 // loop exit value of the addrec. 6959 if (!AddRec->getLoop()->contains(L)) { 6960 // To evaluate this recurrence, we need to know how many times the AddRec 6961 // loop iterates. Compute this now. 6962 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6963 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6964 6965 // Then, evaluate the AddRec. 6966 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6967 } 6968 6969 return AddRec; 6970 } 6971 6972 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6973 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6974 if (Op == Cast->getOperand()) 6975 return Cast; // must be loop invariant 6976 return getZeroExtendExpr(Op, Cast->getType()); 6977 } 6978 6979 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6980 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6981 if (Op == Cast->getOperand()) 6982 return Cast; // must be loop invariant 6983 return getSignExtendExpr(Op, Cast->getType()); 6984 } 6985 6986 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6987 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6988 if (Op == Cast->getOperand()) 6989 return Cast; // must be loop invariant 6990 return getTruncateExpr(Op, Cast->getType()); 6991 } 6992 6993 llvm_unreachable("Unknown SCEV type!"); 6994 } 6995 6996 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6997 return getSCEVAtScope(getSCEV(V), L); 6998 } 6999 7000 /// Finds the minimum unsigned root of the following equation: 7001 /// 7002 /// A * X = B (mod N) 7003 /// 7004 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7005 /// A and B isn't important. 7006 /// 7007 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7008 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 7009 ScalarEvolution &SE) { 7010 uint32_t BW = A.getBitWidth(); 7011 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 7012 assert(A != 0 && "A must be non-zero."); 7013 7014 // 1. D = gcd(A, N) 7015 // 7016 // The gcd of A and N may have only one prime factor: 2. The number of 7017 // trailing zeros in A is its multiplicity 7018 uint32_t Mult2 = A.countTrailingZeros(); 7019 // D = 2^Mult2 7020 7021 // 2. Check if B is divisible by D. 7022 // 7023 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7024 // is not less than multiplicity of this prime factor for D. 7025 if (B.countTrailingZeros() < Mult2) 7026 return SE.getCouldNotCompute(); 7027 7028 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7029 // modulo (N / D). 7030 // 7031 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 7032 // bit width during computations. 7033 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7034 APInt Mod(BW + 1, 0); 7035 Mod.setBit(BW - Mult2); // Mod = N / D 7036 APInt I = AD.multiplicativeInverse(Mod); 7037 7038 // 4. Compute the minimum unsigned root of the equation: 7039 // I * (B / D) mod (N / D) 7040 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 7041 7042 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 7043 // bits. 7044 return SE.getConstant(Result.trunc(BW)); 7045 } 7046 7047 /// Find the roots of the quadratic equation for the given quadratic chrec 7048 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7049 /// two SCEVCouldNotCompute objects. 7050 /// 7051 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7052 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7053 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7054 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7055 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7056 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7057 7058 // We currently can only solve this if the coefficients are constants. 7059 if (!LC || !MC || !NC) 7060 return None; 7061 7062 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7063 const APInt &L = LC->getAPInt(); 7064 const APInt &M = MC->getAPInt(); 7065 const APInt &N = NC->getAPInt(); 7066 APInt Two(BitWidth, 2); 7067 APInt Four(BitWidth, 4); 7068 7069 { 7070 using namespace APIntOps; 7071 const APInt& C = L; 7072 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7073 // The B coefficient is M-N/2 7074 APInt B(M); 7075 B -= sdiv(N,Two); 7076 7077 // The A coefficient is N/2 7078 APInt A(N.sdiv(Two)); 7079 7080 // Compute the B^2-4ac term. 7081 APInt SqrtTerm(B); 7082 SqrtTerm *= B; 7083 SqrtTerm -= Four * (A * C); 7084 7085 if (SqrtTerm.isNegative()) { 7086 // The loop is provably infinite. 7087 return None; 7088 } 7089 7090 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7091 // integer value or else APInt::sqrt() will assert. 7092 APInt SqrtVal(SqrtTerm.sqrt()); 7093 7094 // Compute the two solutions for the quadratic formula. 7095 // The divisions must be performed as signed divisions. 7096 APInt NegB(-B); 7097 APInt TwoA(A << 1); 7098 if (TwoA.isMinValue()) 7099 return None; 7100 7101 LLVMContext &Context = SE.getContext(); 7102 7103 ConstantInt *Solution1 = 7104 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7105 ConstantInt *Solution2 = 7106 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7107 7108 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7109 cast<SCEVConstant>(SE.getConstant(Solution2))); 7110 } // end APIntOps namespace 7111 } 7112 7113 ScalarEvolution::ExitLimit 7114 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7115 bool AllowPredicates) { 7116 7117 // This is only used for loops with a "x != y" exit test. The exit condition 7118 // is now expressed as a single expression, V = x-y. So the exit test is 7119 // effectively V != 0. We know and take advantage of the fact that this 7120 // expression only being used in a comparison by zero context. 7121 7122 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7123 // If the value is a constant 7124 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7125 // If the value is already zero, the branch will execute zero times. 7126 if (C->getValue()->isZero()) return C; 7127 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7128 } 7129 7130 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7131 if (!AddRec && AllowPredicates) 7132 // Try to make this an AddRec using runtime tests, in the first X 7133 // iterations of this loop, where X is the SCEV expression found by the 7134 // algorithm below. 7135 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7136 7137 if (!AddRec || AddRec->getLoop() != L) 7138 return getCouldNotCompute(); 7139 7140 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7141 // the quadratic equation to solve it. 7142 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7143 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7144 const SCEVConstant *R1 = Roots->first; 7145 const SCEVConstant *R2 = Roots->second; 7146 // Pick the smallest positive root value. 7147 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7148 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7149 if (!CB->getZExtValue()) 7150 std::swap(R1, R2); // R1 is the minimum root now. 7151 7152 // We can only use this value if the chrec ends up with an exact zero 7153 // value at this index. When solving for "X*X != 5", for example, we 7154 // should not accept a root of 2. 7155 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7156 if (Val->isZero()) 7157 // We found a quadratic root! 7158 return ExitLimit(R1, R1, false, Predicates); 7159 } 7160 } 7161 return getCouldNotCompute(); 7162 } 7163 7164 // Otherwise we can only handle this if it is affine. 7165 if (!AddRec->isAffine()) 7166 return getCouldNotCompute(); 7167 7168 // If this is an affine expression, the execution count of this branch is 7169 // the minimum unsigned root of the following equation: 7170 // 7171 // Start + Step*N = 0 (mod 2^BW) 7172 // 7173 // equivalent to: 7174 // 7175 // Step*N = -Start (mod 2^BW) 7176 // 7177 // where BW is the common bit width of Start and Step. 7178 7179 // Get the initial value for the loop. 7180 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7181 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7182 7183 // For now we handle only constant steps. 7184 // 7185 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7186 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7187 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7188 // We have not yet seen any such cases. 7189 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7190 if (!StepC || StepC->getValue()->equalsInt(0)) 7191 return getCouldNotCompute(); 7192 7193 // For positive steps (counting up until unsigned overflow): 7194 // N = -Start/Step (as unsigned) 7195 // For negative steps (counting down to zero): 7196 // N = Start/-Step 7197 // First compute the unsigned distance from zero in the direction of Step. 7198 bool CountDown = StepC->getAPInt().isNegative(); 7199 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7200 7201 // Handle unitary steps, which cannot wraparound. 7202 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7203 // N = Distance (as unsigned) 7204 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7205 ConstantRange CR = getUnsignedRange(Start); 7206 const SCEV *MaxBECount; 7207 if (!CountDown && CR.getUnsignedMin().isMinValue()) 7208 // When counting up, the worst starting value is 1, not 0. 7209 MaxBECount = CR.getUnsignedMax().isMinValue() 7210 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 7211 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 7212 else 7213 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 7214 : -CR.getUnsignedMin()); 7215 return ExitLimit(Distance, MaxBECount, false, Predicates); 7216 } 7217 7218 // As a special case, handle the instance where Step is a positive power of 7219 // two. In this case, determining whether Step divides Distance evenly can be 7220 // done by counting and comparing the number of trailing zeros of Step and 7221 // Distance. 7222 if (!CountDown) { 7223 const APInt &StepV = StepC->getAPInt(); 7224 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 7225 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 7226 // case is not handled as this code is guarded by !CountDown. 7227 if (StepV.isPowerOf2() && 7228 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 7229 // Here we've constrained the equation to be of the form 7230 // 7231 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 7232 // 7233 // where we're operating on a W bit wide integer domain and k is 7234 // non-negative. The smallest unsigned solution for X is the trip count. 7235 // 7236 // (0) is equivalent to: 7237 // 7238 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 7239 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 7240 // <=> 2^k * Distance' - X = L * 2^(W - N) 7241 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 7242 // 7243 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 7244 // by 2^(W - N). 7245 // 7246 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 7247 // 7248 // E.g. say we're solving 7249 // 7250 // 2 * Val = 2 * X (in i8) ... (3) 7251 // 7252 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 7253 // 7254 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 7255 // necessarily the smallest unsigned value of X that satisfies (3). 7256 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 7257 // is i8 1, not i8 -127 7258 7259 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 7260 7261 // Since SCEV does not have a URem node, we construct one using a truncate 7262 // and a zero extend. 7263 7264 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 7265 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 7266 auto *WideTy = Distance->getType(); 7267 7268 const SCEV *Limit = 7269 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 7270 return ExitLimit(Limit, Limit, false, Predicates); 7271 } 7272 } 7273 7274 // If the condition controls loop exit (the loop exits only if the expression 7275 // is true) and the addition is no-wrap we can use unsigned divide to 7276 // compute the backedge count. In this case, the step may not divide the 7277 // distance, but we don't care because if the condition is "missed" the loop 7278 // will have undefined behavior due to wrapping. 7279 if (ControlsExit && AddRec->hasNoSelfWrap() && 7280 loopHasNoAbnormalExits(AddRec->getLoop())) { 7281 const SCEV *Exact = 7282 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7283 return ExitLimit(Exact, Exact, false, Predicates); 7284 } 7285 7286 // Then, try to solve the above equation provided that Start is constant. 7287 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 7288 const SCEV *E = SolveLinEquationWithOverflow( 7289 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this); 7290 return ExitLimit(E, E, false, Predicates); 7291 } 7292 return getCouldNotCompute(); 7293 } 7294 7295 ScalarEvolution::ExitLimit 7296 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7297 // Loops that look like: while (X == 0) are very strange indeed. We don't 7298 // handle them yet except for the trivial case. This could be expanded in the 7299 // future as needed. 7300 7301 // If the value is a constant, check to see if it is known to be non-zero 7302 // already. If so, the backedge will execute zero times. 7303 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7304 if (!C->getValue()->isNullValue()) 7305 return getZero(C->getType()); 7306 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7307 } 7308 7309 // We could implement others, but I really doubt anyone writes loops like 7310 // this, and if they did, they would already be constant folded. 7311 return getCouldNotCompute(); 7312 } 7313 7314 std::pair<BasicBlock *, BasicBlock *> 7315 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7316 // If the block has a unique predecessor, then there is no path from the 7317 // predecessor to the block that does not go through the direct edge 7318 // from the predecessor to the block. 7319 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7320 return {Pred, BB}; 7321 7322 // A loop's header is defined to be a block that dominates the loop. 7323 // If the header has a unique predecessor outside the loop, it must be 7324 // a block that has exactly one successor that can reach the loop. 7325 if (Loop *L = LI.getLoopFor(BB)) 7326 return {L->getLoopPredecessor(), L->getHeader()}; 7327 7328 return {nullptr, nullptr}; 7329 } 7330 7331 /// SCEV structural equivalence is usually sufficient for testing whether two 7332 /// expressions are equal, however for the purposes of looking for a condition 7333 /// guarding a loop, it can be useful to be a little more general, since a 7334 /// front-end may have replicated the controlling expression. 7335 /// 7336 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7337 // Quick check to see if they are the same SCEV. 7338 if (A == B) return true; 7339 7340 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7341 // Not all instructions that are "identical" compute the same value. For 7342 // instance, two distinct alloca instructions allocating the same type are 7343 // identical and do not read memory; but compute distinct values. 7344 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7345 }; 7346 7347 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7348 // two different instructions with the same value. Check for this case. 7349 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7350 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7351 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7352 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7353 if (ComputesEqualValues(AI, BI)) 7354 return true; 7355 7356 // Otherwise assume they may have a different value. 7357 return false; 7358 } 7359 7360 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7361 const SCEV *&LHS, const SCEV *&RHS, 7362 unsigned Depth) { 7363 bool Changed = false; 7364 7365 // If we hit the max recursion limit bail out. 7366 if (Depth >= 3) 7367 return false; 7368 7369 // Canonicalize a constant to the right side. 7370 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7371 // Check for both operands constant. 7372 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7373 if (ConstantExpr::getICmp(Pred, 7374 LHSC->getValue(), 7375 RHSC->getValue())->isNullValue()) 7376 goto trivially_false; 7377 else 7378 goto trivially_true; 7379 } 7380 // Otherwise swap the operands to put the constant on the right. 7381 std::swap(LHS, RHS); 7382 Pred = ICmpInst::getSwappedPredicate(Pred); 7383 Changed = true; 7384 } 7385 7386 // If we're comparing an addrec with a value which is loop-invariant in the 7387 // addrec's loop, put the addrec on the left. Also make a dominance check, 7388 // as both operands could be addrecs loop-invariant in each other's loop. 7389 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7390 const Loop *L = AR->getLoop(); 7391 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7392 std::swap(LHS, RHS); 7393 Pred = ICmpInst::getSwappedPredicate(Pred); 7394 Changed = true; 7395 } 7396 } 7397 7398 // If there's a constant operand, canonicalize comparisons with boundary 7399 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7400 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7401 const APInt &RA = RC->getAPInt(); 7402 7403 bool SimplifiedByConstantRange = false; 7404 7405 if (!ICmpInst::isEquality(Pred)) { 7406 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7407 if (ExactCR.isFullSet()) 7408 goto trivially_true; 7409 else if (ExactCR.isEmptySet()) 7410 goto trivially_false; 7411 7412 APInt NewRHS; 7413 CmpInst::Predicate NewPred; 7414 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7415 ICmpInst::isEquality(NewPred)) { 7416 // We were able to convert an inequality to an equality. 7417 Pred = NewPred; 7418 RHS = getConstant(NewRHS); 7419 Changed = SimplifiedByConstantRange = true; 7420 } 7421 } 7422 7423 if (!SimplifiedByConstantRange) { 7424 switch (Pred) { 7425 default: 7426 break; 7427 case ICmpInst::ICMP_EQ: 7428 case ICmpInst::ICMP_NE: 7429 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7430 if (!RA) 7431 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7432 if (const SCEVMulExpr *ME = 7433 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7434 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7435 ME->getOperand(0)->isAllOnesValue()) { 7436 RHS = AE->getOperand(1); 7437 LHS = ME->getOperand(1); 7438 Changed = true; 7439 } 7440 break; 7441 7442 7443 // The "Should have been caught earlier!" messages refer to the fact 7444 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7445 // should have fired on the corresponding cases, and canonicalized the 7446 // check to trivially_true or trivially_false. 7447 7448 case ICmpInst::ICMP_UGE: 7449 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7450 Pred = ICmpInst::ICMP_UGT; 7451 RHS = getConstant(RA - 1); 7452 Changed = true; 7453 break; 7454 case ICmpInst::ICMP_ULE: 7455 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7456 Pred = ICmpInst::ICMP_ULT; 7457 RHS = getConstant(RA + 1); 7458 Changed = true; 7459 break; 7460 case ICmpInst::ICMP_SGE: 7461 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7462 Pred = ICmpInst::ICMP_SGT; 7463 RHS = getConstant(RA - 1); 7464 Changed = true; 7465 break; 7466 case ICmpInst::ICMP_SLE: 7467 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7468 Pred = ICmpInst::ICMP_SLT; 7469 RHS = getConstant(RA + 1); 7470 Changed = true; 7471 break; 7472 } 7473 } 7474 } 7475 7476 // Check for obvious equality. 7477 if (HasSameValue(LHS, RHS)) { 7478 if (ICmpInst::isTrueWhenEqual(Pred)) 7479 goto trivially_true; 7480 if (ICmpInst::isFalseWhenEqual(Pred)) 7481 goto trivially_false; 7482 } 7483 7484 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7485 // adding or subtracting 1 from one of the operands. 7486 switch (Pred) { 7487 case ICmpInst::ICMP_SLE: 7488 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7489 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7490 SCEV::FlagNSW); 7491 Pred = ICmpInst::ICMP_SLT; 7492 Changed = true; 7493 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7494 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7495 SCEV::FlagNSW); 7496 Pred = ICmpInst::ICMP_SLT; 7497 Changed = true; 7498 } 7499 break; 7500 case ICmpInst::ICMP_SGE: 7501 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7502 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7503 SCEV::FlagNSW); 7504 Pred = ICmpInst::ICMP_SGT; 7505 Changed = true; 7506 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7507 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7508 SCEV::FlagNSW); 7509 Pred = ICmpInst::ICMP_SGT; 7510 Changed = true; 7511 } 7512 break; 7513 case ICmpInst::ICMP_ULE: 7514 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7515 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7516 SCEV::FlagNUW); 7517 Pred = ICmpInst::ICMP_ULT; 7518 Changed = true; 7519 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7520 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7521 Pred = ICmpInst::ICMP_ULT; 7522 Changed = true; 7523 } 7524 break; 7525 case ICmpInst::ICMP_UGE: 7526 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7527 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7528 Pred = ICmpInst::ICMP_UGT; 7529 Changed = true; 7530 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7531 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7532 SCEV::FlagNUW); 7533 Pred = ICmpInst::ICMP_UGT; 7534 Changed = true; 7535 } 7536 break; 7537 default: 7538 break; 7539 } 7540 7541 // TODO: More simplifications are possible here. 7542 7543 // Recursively simplify until we either hit a recursion limit or nothing 7544 // changes. 7545 if (Changed) 7546 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7547 7548 return Changed; 7549 7550 trivially_true: 7551 // Return 0 == 0. 7552 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7553 Pred = ICmpInst::ICMP_EQ; 7554 return true; 7555 7556 trivially_false: 7557 // Return 0 != 0. 7558 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7559 Pred = ICmpInst::ICMP_NE; 7560 return true; 7561 } 7562 7563 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7564 return getSignedRange(S).getSignedMax().isNegative(); 7565 } 7566 7567 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7568 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7569 } 7570 7571 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7572 return !getSignedRange(S).getSignedMin().isNegative(); 7573 } 7574 7575 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7576 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7577 } 7578 7579 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7580 return isKnownNegative(S) || isKnownPositive(S); 7581 } 7582 7583 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7584 const SCEV *LHS, const SCEV *RHS) { 7585 // Canonicalize the inputs first. 7586 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7587 7588 // If LHS or RHS is an addrec, check to see if the condition is true in 7589 // every iteration of the loop. 7590 // If LHS and RHS are both addrec, both conditions must be true in 7591 // every iteration of the loop. 7592 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7593 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7594 bool LeftGuarded = false; 7595 bool RightGuarded = false; 7596 if (LAR) { 7597 const Loop *L = LAR->getLoop(); 7598 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7599 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7600 if (!RAR) return true; 7601 LeftGuarded = true; 7602 } 7603 } 7604 if (RAR) { 7605 const Loop *L = RAR->getLoop(); 7606 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7607 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7608 if (!LAR) return true; 7609 RightGuarded = true; 7610 } 7611 } 7612 if (LeftGuarded && RightGuarded) 7613 return true; 7614 7615 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7616 return true; 7617 7618 // Otherwise see what can be done with known constant ranges. 7619 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7620 } 7621 7622 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7623 ICmpInst::Predicate Pred, 7624 bool &Increasing) { 7625 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7626 7627 #ifndef NDEBUG 7628 // Verify an invariant: inverting the predicate should turn a monotonically 7629 // increasing change to a monotonically decreasing one, and vice versa. 7630 bool IncreasingSwapped; 7631 bool ResultSwapped = isMonotonicPredicateImpl( 7632 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7633 7634 assert(Result == ResultSwapped && "should be able to analyze both!"); 7635 if (ResultSwapped) 7636 assert(Increasing == !IncreasingSwapped && 7637 "monotonicity should flip as we flip the predicate"); 7638 #endif 7639 7640 return Result; 7641 } 7642 7643 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7644 ICmpInst::Predicate Pred, 7645 bool &Increasing) { 7646 7647 // A zero step value for LHS means the induction variable is essentially a 7648 // loop invariant value. We don't really depend on the predicate actually 7649 // flipping from false to true (for increasing predicates, and the other way 7650 // around for decreasing predicates), all we care about is that *if* the 7651 // predicate changes then it only changes from false to true. 7652 // 7653 // A zero step value in itself is not very useful, but there may be places 7654 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7655 // as general as possible. 7656 7657 switch (Pred) { 7658 default: 7659 return false; // Conservative answer 7660 7661 case ICmpInst::ICMP_UGT: 7662 case ICmpInst::ICMP_UGE: 7663 case ICmpInst::ICMP_ULT: 7664 case ICmpInst::ICMP_ULE: 7665 if (!LHS->hasNoUnsignedWrap()) 7666 return false; 7667 7668 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7669 return true; 7670 7671 case ICmpInst::ICMP_SGT: 7672 case ICmpInst::ICMP_SGE: 7673 case ICmpInst::ICMP_SLT: 7674 case ICmpInst::ICMP_SLE: { 7675 if (!LHS->hasNoSignedWrap()) 7676 return false; 7677 7678 const SCEV *Step = LHS->getStepRecurrence(*this); 7679 7680 if (isKnownNonNegative(Step)) { 7681 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7682 return true; 7683 } 7684 7685 if (isKnownNonPositive(Step)) { 7686 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7687 return true; 7688 } 7689 7690 return false; 7691 } 7692 7693 } 7694 7695 llvm_unreachable("switch has default clause!"); 7696 } 7697 7698 bool ScalarEvolution::isLoopInvariantPredicate( 7699 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7700 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7701 const SCEV *&InvariantRHS) { 7702 7703 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7704 if (!isLoopInvariant(RHS, L)) { 7705 if (!isLoopInvariant(LHS, L)) 7706 return false; 7707 7708 std::swap(LHS, RHS); 7709 Pred = ICmpInst::getSwappedPredicate(Pred); 7710 } 7711 7712 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7713 if (!ArLHS || ArLHS->getLoop() != L) 7714 return false; 7715 7716 bool Increasing; 7717 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7718 return false; 7719 7720 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7721 // true as the loop iterates, and the backedge is control dependent on 7722 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7723 // 7724 // * if the predicate was false in the first iteration then the predicate 7725 // is never evaluated again, since the loop exits without taking the 7726 // backedge. 7727 // * if the predicate was true in the first iteration then it will 7728 // continue to be true for all future iterations since it is 7729 // monotonically increasing. 7730 // 7731 // For both the above possibilities, we can replace the loop varying 7732 // predicate with its value on the first iteration of the loop (which is 7733 // loop invariant). 7734 // 7735 // A similar reasoning applies for a monotonically decreasing predicate, by 7736 // replacing true with false and false with true in the above two bullets. 7737 7738 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7739 7740 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7741 return false; 7742 7743 InvariantPred = Pred; 7744 InvariantLHS = ArLHS->getStart(); 7745 InvariantRHS = RHS; 7746 return true; 7747 } 7748 7749 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7750 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7751 if (HasSameValue(LHS, RHS)) 7752 return ICmpInst::isTrueWhenEqual(Pred); 7753 7754 // This code is split out from isKnownPredicate because it is called from 7755 // within isLoopEntryGuardedByCond. 7756 7757 auto CheckRanges = 7758 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7759 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7760 .contains(RangeLHS); 7761 }; 7762 7763 // The check at the top of the function catches the case where the values are 7764 // known to be equal. 7765 if (Pred == CmpInst::ICMP_EQ) 7766 return false; 7767 7768 if (Pred == CmpInst::ICMP_NE) 7769 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7770 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7771 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7772 7773 if (CmpInst::isSigned(Pred)) 7774 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7775 7776 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7777 } 7778 7779 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7780 const SCEV *LHS, 7781 const SCEV *RHS) { 7782 7783 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7784 // Return Y via OutY. 7785 auto MatchBinaryAddToConst = 7786 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7787 SCEV::NoWrapFlags ExpectedFlags) { 7788 const SCEV *NonConstOp, *ConstOp; 7789 SCEV::NoWrapFlags FlagsPresent; 7790 7791 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7792 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7793 return false; 7794 7795 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7796 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7797 }; 7798 7799 APInt C; 7800 7801 switch (Pred) { 7802 default: 7803 break; 7804 7805 case ICmpInst::ICMP_SGE: 7806 std::swap(LHS, RHS); 7807 case ICmpInst::ICMP_SLE: 7808 // X s<= (X + C)<nsw> if C >= 0 7809 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7810 return true; 7811 7812 // (X + C)<nsw> s<= X if C <= 0 7813 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7814 !C.isStrictlyPositive()) 7815 return true; 7816 break; 7817 7818 case ICmpInst::ICMP_SGT: 7819 std::swap(LHS, RHS); 7820 case ICmpInst::ICMP_SLT: 7821 // X s< (X + C)<nsw> if C > 0 7822 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7823 C.isStrictlyPositive()) 7824 return true; 7825 7826 // (X + C)<nsw> s< X if C < 0 7827 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7828 return true; 7829 break; 7830 } 7831 7832 return false; 7833 } 7834 7835 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7836 const SCEV *LHS, 7837 const SCEV *RHS) { 7838 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7839 return false; 7840 7841 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7842 // the stack can result in exponential time complexity. 7843 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7844 7845 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7846 // 7847 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7848 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7849 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7850 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7851 // use isKnownPredicate later if needed. 7852 return isKnownNonNegative(RHS) && 7853 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7854 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7855 } 7856 7857 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 7858 ICmpInst::Predicate Pred, 7859 const SCEV *LHS, const SCEV *RHS) { 7860 // No need to even try if we know the module has no guards. 7861 if (!HasGuards) 7862 return false; 7863 7864 return any_of(*BB, [&](Instruction &I) { 7865 using namespace llvm::PatternMatch; 7866 7867 Value *Condition; 7868 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 7869 m_Value(Condition))) && 7870 isImpliedCond(Pred, LHS, RHS, Condition, false); 7871 }); 7872 } 7873 7874 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7875 /// protected by a conditional between LHS and RHS. This is used to 7876 /// to eliminate casts. 7877 bool 7878 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7879 ICmpInst::Predicate Pred, 7880 const SCEV *LHS, const SCEV *RHS) { 7881 // Interpret a null as meaning no loop, where there is obviously no guard 7882 // (interprocedural conditions notwithstanding). 7883 if (!L) return true; 7884 7885 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7886 return true; 7887 7888 BasicBlock *Latch = L->getLoopLatch(); 7889 if (!Latch) 7890 return false; 7891 7892 BranchInst *LoopContinuePredicate = 7893 dyn_cast<BranchInst>(Latch->getTerminator()); 7894 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7895 isImpliedCond(Pred, LHS, RHS, 7896 LoopContinuePredicate->getCondition(), 7897 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7898 return true; 7899 7900 // We don't want more than one activation of the following loops on the stack 7901 // -- that can lead to O(n!) time complexity. 7902 if (WalkingBEDominatingConds) 7903 return false; 7904 7905 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7906 7907 // See if we can exploit a trip count to prove the predicate. 7908 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7909 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7910 if (LatchBECount != getCouldNotCompute()) { 7911 // We know that Latch branches back to the loop header exactly 7912 // LatchBECount times. This means the backdege condition at Latch is 7913 // equivalent to "{0,+,1} u< LatchBECount". 7914 Type *Ty = LatchBECount->getType(); 7915 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7916 const SCEV *LoopCounter = 7917 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7918 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7919 LatchBECount)) 7920 return true; 7921 } 7922 7923 // Check conditions due to any @llvm.assume intrinsics. 7924 for (auto &AssumeVH : AC.assumptions()) { 7925 if (!AssumeVH) 7926 continue; 7927 auto *CI = cast<CallInst>(AssumeVH); 7928 if (!DT.dominates(CI, Latch->getTerminator())) 7929 continue; 7930 7931 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7932 return true; 7933 } 7934 7935 // If the loop is not reachable from the entry block, we risk running into an 7936 // infinite loop as we walk up into the dom tree. These loops do not matter 7937 // anyway, so we just return a conservative answer when we see them. 7938 if (!DT.isReachableFromEntry(L->getHeader())) 7939 return false; 7940 7941 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 7942 return true; 7943 7944 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7945 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7946 7947 assert(DTN && "should reach the loop header before reaching the root!"); 7948 7949 BasicBlock *BB = DTN->getBlock(); 7950 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 7951 return true; 7952 7953 BasicBlock *PBB = BB->getSinglePredecessor(); 7954 if (!PBB) 7955 continue; 7956 7957 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7958 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7959 continue; 7960 7961 Value *Condition = ContinuePredicate->getCondition(); 7962 7963 // If we have an edge `E` within the loop body that dominates the only 7964 // latch, the condition guarding `E` also guards the backedge. This 7965 // reasoning works only for loops with a single latch. 7966 7967 BasicBlockEdge DominatingEdge(PBB, BB); 7968 if (DominatingEdge.isSingleEdge()) { 7969 // We're constructively (and conservatively) enumerating edges within the 7970 // loop body that dominate the latch. The dominator tree better agree 7971 // with us on this: 7972 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7973 7974 if (isImpliedCond(Pred, LHS, RHS, Condition, 7975 BB != ContinuePredicate->getSuccessor(0))) 7976 return true; 7977 } 7978 } 7979 7980 return false; 7981 } 7982 7983 bool 7984 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7985 ICmpInst::Predicate Pred, 7986 const SCEV *LHS, const SCEV *RHS) { 7987 // Interpret a null as meaning no loop, where there is obviously no guard 7988 // (interprocedural conditions notwithstanding). 7989 if (!L) return false; 7990 7991 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7992 return true; 7993 7994 // Starting at the loop predecessor, climb up the predecessor chain, as long 7995 // as there are predecessors that can be found that have unique successors 7996 // leading to the original header. 7997 for (std::pair<BasicBlock *, BasicBlock *> 7998 Pair(L->getLoopPredecessor(), L->getHeader()); 7999 Pair.first; 8000 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8001 8002 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8003 return true; 8004 8005 BranchInst *LoopEntryPredicate = 8006 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8007 if (!LoopEntryPredicate || 8008 LoopEntryPredicate->isUnconditional()) 8009 continue; 8010 8011 if (isImpliedCond(Pred, LHS, RHS, 8012 LoopEntryPredicate->getCondition(), 8013 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8014 return true; 8015 } 8016 8017 // Check conditions due to any @llvm.assume intrinsics. 8018 for (auto &AssumeVH : AC.assumptions()) { 8019 if (!AssumeVH) 8020 continue; 8021 auto *CI = cast<CallInst>(AssumeVH); 8022 if (!DT.dominates(CI, L->getHeader())) 8023 continue; 8024 8025 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8026 return true; 8027 } 8028 8029 return false; 8030 } 8031 8032 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8033 const SCEV *LHS, const SCEV *RHS, 8034 Value *FoundCondValue, 8035 bool Inverse) { 8036 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8037 return false; 8038 8039 auto ClearOnExit = 8040 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8041 8042 // Recursively handle And and Or conditions. 8043 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8044 if (BO->getOpcode() == Instruction::And) { 8045 if (!Inverse) 8046 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8047 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8048 } else if (BO->getOpcode() == Instruction::Or) { 8049 if (Inverse) 8050 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8051 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8052 } 8053 } 8054 8055 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8056 if (!ICI) return false; 8057 8058 // Now that we found a conditional branch that dominates the loop or controls 8059 // the loop latch. Check to see if it is the comparison we are looking for. 8060 ICmpInst::Predicate FoundPred; 8061 if (Inverse) 8062 FoundPred = ICI->getInversePredicate(); 8063 else 8064 FoundPred = ICI->getPredicate(); 8065 8066 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8067 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8068 8069 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8070 } 8071 8072 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8073 const SCEV *RHS, 8074 ICmpInst::Predicate FoundPred, 8075 const SCEV *FoundLHS, 8076 const SCEV *FoundRHS) { 8077 // Balance the types. 8078 if (getTypeSizeInBits(LHS->getType()) < 8079 getTypeSizeInBits(FoundLHS->getType())) { 8080 if (CmpInst::isSigned(Pred)) { 8081 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8082 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8083 } else { 8084 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8085 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8086 } 8087 } else if (getTypeSizeInBits(LHS->getType()) > 8088 getTypeSizeInBits(FoundLHS->getType())) { 8089 if (CmpInst::isSigned(FoundPred)) { 8090 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8091 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8092 } else { 8093 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8094 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8095 } 8096 } 8097 8098 // Canonicalize the query to match the way instcombine will have 8099 // canonicalized the comparison. 8100 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8101 if (LHS == RHS) 8102 return CmpInst::isTrueWhenEqual(Pred); 8103 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8104 if (FoundLHS == FoundRHS) 8105 return CmpInst::isFalseWhenEqual(FoundPred); 8106 8107 // Check to see if we can make the LHS or RHS match. 8108 if (LHS == FoundRHS || RHS == FoundLHS) { 8109 if (isa<SCEVConstant>(RHS)) { 8110 std::swap(FoundLHS, FoundRHS); 8111 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8112 } else { 8113 std::swap(LHS, RHS); 8114 Pred = ICmpInst::getSwappedPredicate(Pred); 8115 } 8116 } 8117 8118 // Check whether the found predicate is the same as the desired predicate. 8119 if (FoundPred == Pred) 8120 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8121 8122 // Check whether swapping the found predicate makes it the same as the 8123 // desired predicate. 8124 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8125 if (isa<SCEVConstant>(RHS)) 8126 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8127 else 8128 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8129 RHS, LHS, FoundLHS, FoundRHS); 8130 } 8131 8132 // Unsigned comparison is the same as signed comparison when both the operands 8133 // are non-negative. 8134 if (CmpInst::isUnsigned(FoundPred) && 8135 CmpInst::getSignedPredicate(FoundPred) == Pred && 8136 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8137 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8138 8139 // Check if we can make progress by sharpening ranges. 8140 if (FoundPred == ICmpInst::ICMP_NE && 8141 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8142 8143 const SCEVConstant *C = nullptr; 8144 const SCEV *V = nullptr; 8145 8146 if (isa<SCEVConstant>(FoundLHS)) { 8147 C = cast<SCEVConstant>(FoundLHS); 8148 V = FoundRHS; 8149 } else { 8150 C = cast<SCEVConstant>(FoundRHS); 8151 V = FoundLHS; 8152 } 8153 8154 // The guarding predicate tells us that C != V. If the known range 8155 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8156 // range we consider has to correspond to same signedness as the 8157 // predicate we're interested in folding. 8158 8159 APInt Min = ICmpInst::isSigned(Pred) ? 8160 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8161 8162 if (Min == C->getAPInt()) { 8163 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8164 // This is true even if (Min + 1) wraps around -- in case of 8165 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8166 8167 APInt SharperMin = Min + 1; 8168 8169 switch (Pred) { 8170 case ICmpInst::ICMP_SGE: 8171 case ICmpInst::ICMP_UGE: 8172 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8173 // RHS, we're done. 8174 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8175 getConstant(SharperMin))) 8176 return true; 8177 8178 case ICmpInst::ICMP_SGT: 8179 case ICmpInst::ICMP_UGT: 8180 // We know from the range information that (V `Pred` Min || 8181 // V == Min). We know from the guarding condition that !(V 8182 // == Min). This gives us 8183 // 8184 // V `Pred` Min || V == Min && !(V == Min) 8185 // => V `Pred` Min 8186 // 8187 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8188 8189 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8190 return true; 8191 8192 default: 8193 // No change 8194 break; 8195 } 8196 } 8197 } 8198 8199 // Check whether the actual condition is beyond sufficient. 8200 if (FoundPred == ICmpInst::ICMP_EQ) 8201 if (ICmpInst::isTrueWhenEqual(Pred)) 8202 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8203 return true; 8204 if (Pred == ICmpInst::ICMP_NE) 8205 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8206 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8207 return true; 8208 8209 // Otherwise assume the worst. 8210 return false; 8211 } 8212 8213 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8214 const SCEV *&L, const SCEV *&R, 8215 SCEV::NoWrapFlags &Flags) { 8216 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8217 if (!AE || AE->getNumOperands() != 2) 8218 return false; 8219 8220 L = AE->getOperand(0); 8221 R = AE->getOperand(1); 8222 Flags = AE->getNoWrapFlags(); 8223 return true; 8224 } 8225 8226 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8227 const SCEV *Less) { 8228 // We avoid subtracting expressions here because this function is usually 8229 // fairly deep in the call stack (i.e. is called many times). 8230 8231 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8232 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8233 const auto *MAR = cast<SCEVAddRecExpr>(More); 8234 8235 if (LAR->getLoop() != MAR->getLoop()) 8236 return None; 8237 8238 // We look at affine expressions only; not for correctness but to keep 8239 // getStepRecurrence cheap. 8240 if (!LAR->isAffine() || !MAR->isAffine()) 8241 return None; 8242 8243 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8244 return None; 8245 8246 Less = LAR->getStart(); 8247 More = MAR->getStart(); 8248 8249 // fall through 8250 } 8251 8252 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8253 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8254 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8255 return M - L; 8256 } 8257 8258 const SCEV *L, *R; 8259 SCEV::NoWrapFlags Flags; 8260 if (splitBinaryAdd(Less, L, R, Flags)) 8261 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8262 if (R == More) 8263 return -(LC->getAPInt()); 8264 8265 if (splitBinaryAdd(More, L, R, Flags)) 8266 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8267 if (R == Less) 8268 return LC->getAPInt(); 8269 8270 return None; 8271 } 8272 8273 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8274 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8275 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8276 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8277 return false; 8278 8279 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8280 if (!AddRecLHS) 8281 return false; 8282 8283 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8284 if (!AddRecFoundLHS) 8285 return false; 8286 8287 // We'd like to let SCEV reason about control dependencies, so we constrain 8288 // both the inequalities to be about add recurrences on the same loop. This 8289 // way we can use isLoopEntryGuardedByCond later. 8290 8291 const Loop *L = AddRecFoundLHS->getLoop(); 8292 if (L != AddRecLHS->getLoop()) 8293 return false; 8294 8295 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8296 // 8297 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8298 // ... (2) 8299 // 8300 // Informal proof for (2), assuming (1) [*]: 8301 // 8302 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8303 // 8304 // Then 8305 // 8306 // FoundLHS s< FoundRHS s< INT_MIN - C 8307 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8308 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8309 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8310 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8311 // <=> FoundLHS + C s< FoundRHS + C 8312 // 8313 // [*]: (1) can be proved by ruling out overflow. 8314 // 8315 // [**]: This can be proved by analyzing all the four possibilities: 8316 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8317 // (A s>= 0, B s>= 0). 8318 // 8319 // Note: 8320 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8321 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8322 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8323 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8324 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8325 // C)". 8326 8327 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8328 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8329 if (!LDiff || !RDiff || *LDiff != *RDiff) 8330 return false; 8331 8332 if (LDiff->isMinValue()) 8333 return true; 8334 8335 APInt FoundRHSLimit; 8336 8337 if (Pred == CmpInst::ICMP_ULT) { 8338 FoundRHSLimit = -(*RDiff); 8339 } else { 8340 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8341 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8342 } 8343 8344 // Try to prove (1) or (2), as needed. 8345 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8346 getConstant(FoundRHSLimit)); 8347 } 8348 8349 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8350 const SCEV *LHS, const SCEV *RHS, 8351 const SCEV *FoundLHS, 8352 const SCEV *FoundRHS) { 8353 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8354 return true; 8355 8356 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8357 return true; 8358 8359 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8360 FoundLHS, FoundRHS) || 8361 // ~x < ~y --> x > y 8362 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8363 getNotSCEV(FoundRHS), 8364 getNotSCEV(FoundLHS)); 8365 } 8366 8367 8368 /// If Expr computes ~A, return A else return nullptr 8369 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8370 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8371 if (!Add || Add->getNumOperands() != 2 || 8372 !Add->getOperand(0)->isAllOnesValue()) 8373 return nullptr; 8374 8375 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8376 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8377 !AddRHS->getOperand(0)->isAllOnesValue()) 8378 return nullptr; 8379 8380 return AddRHS->getOperand(1); 8381 } 8382 8383 8384 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8385 template<typename MaxExprType> 8386 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8387 const SCEV *Candidate) { 8388 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8389 if (!MaxExpr) return false; 8390 8391 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8392 } 8393 8394 8395 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8396 template<typename MaxExprType> 8397 static bool IsMinConsistingOf(ScalarEvolution &SE, 8398 const SCEV *MaybeMinExpr, 8399 const SCEV *Candidate) { 8400 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8401 if (!MaybeMaxExpr) 8402 return false; 8403 8404 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8405 } 8406 8407 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8408 ICmpInst::Predicate Pred, 8409 const SCEV *LHS, const SCEV *RHS) { 8410 8411 // If both sides are affine addrecs for the same loop, with equal 8412 // steps, and we know the recurrences don't wrap, then we only 8413 // need to check the predicate on the starting values. 8414 8415 if (!ICmpInst::isRelational(Pred)) 8416 return false; 8417 8418 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8419 if (!LAR) 8420 return false; 8421 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8422 if (!RAR) 8423 return false; 8424 if (LAR->getLoop() != RAR->getLoop()) 8425 return false; 8426 if (!LAR->isAffine() || !RAR->isAffine()) 8427 return false; 8428 8429 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8430 return false; 8431 8432 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8433 SCEV::FlagNSW : SCEV::FlagNUW; 8434 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8435 return false; 8436 8437 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8438 } 8439 8440 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8441 /// expression? 8442 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8443 ICmpInst::Predicate Pred, 8444 const SCEV *LHS, const SCEV *RHS) { 8445 switch (Pred) { 8446 default: 8447 return false; 8448 8449 case ICmpInst::ICMP_SGE: 8450 std::swap(LHS, RHS); 8451 LLVM_FALLTHROUGH; 8452 case ICmpInst::ICMP_SLE: 8453 return 8454 // min(A, ...) <= A 8455 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8456 // A <= max(A, ...) 8457 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8458 8459 case ICmpInst::ICMP_UGE: 8460 std::swap(LHS, RHS); 8461 LLVM_FALLTHROUGH; 8462 case ICmpInst::ICMP_ULE: 8463 return 8464 // min(A, ...) <= A 8465 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8466 // A <= max(A, ...) 8467 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8468 } 8469 8470 llvm_unreachable("covered switch fell through?!"); 8471 } 8472 8473 bool 8474 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8475 const SCEV *LHS, const SCEV *RHS, 8476 const SCEV *FoundLHS, 8477 const SCEV *FoundRHS) { 8478 auto IsKnownPredicateFull = 8479 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8480 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8481 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8482 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8483 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8484 }; 8485 8486 switch (Pred) { 8487 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8488 case ICmpInst::ICMP_EQ: 8489 case ICmpInst::ICMP_NE: 8490 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8491 return true; 8492 break; 8493 case ICmpInst::ICMP_SLT: 8494 case ICmpInst::ICMP_SLE: 8495 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8496 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8497 return true; 8498 break; 8499 case ICmpInst::ICMP_SGT: 8500 case ICmpInst::ICMP_SGE: 8501 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8502 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8503 return true; 8504 break; 8505 case ICmpInst::ICMP_ULT: 8506 case ICmpInst::ICMP_ULE: 8507 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8508 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8509 return true; 8510 break; 8511 case ICmpInst::ICMP_UGT: 8512 case ICmpInst::ICMP_UGE: 8513 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8514 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8515 return true; 8516 break; 8517 } 8518 8519 return false; 8520 } 8521 8522 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8523 const SCEV *LHS, 8524 const SCEV *RHS, 8525 const SCEV *FoundLHS, 8526 const SCEV *FoundRHS) { 8527 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8528 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8529 // reduce the compile time impact of this optimization. 8530 return false; 8531 8532 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 8533 if (!Addend) 8534 return false; 8535 8536 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8537 8538 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8539 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8540 ConstantRange FoundLHSRange = 8541 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8542 8543 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 8544 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 8545 8546 // We can also compute the range of values for `LHS` that satisfy the 8547 // consequent, "`LHS` `Pred` `RHS`": 8548 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8549 ConstantRange SatisfyingLHSRange = 8550 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8551 8552 // The antecedent implies the consequent if every value of `LHS` that 8553 // satisfies the antecedent also satisfies the consequent. 8554 return SatisfyingLHSRange.contains(LHSRange); 8555 } 8556 8557 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8558 bool IsSigned, bool NoWrap) { 8559 assert(isKnownPositive(Stride) && "Positive stride expected!"); 8560 8561 if (NoWrap) return false; 8562 8563 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8564 const SCEV *One = getOne(Stride->getType()); 8565 8566 if (IsSigned) { 8567 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8568 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8569 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8570 .getSignedMax(); 8571 8572 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8573 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8574 } 8575 8576 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8577 APInt MaxValue = APInt::getMaxValue(BitWidth); 8578 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8579 .getUnsignedMax(); 8580 8581 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8582 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8583 } 8584 8585 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8586 bool IsSigned, bool NoWrap) { 8587 if (NoWrap) return false; 8588 8589 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8590 const SCEV *One = getOne(Stride->getType()); 8591 8592 if (IsSigned) { 8593 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8594 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8595 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8596 .getSignedMax(); 8597 8598 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8599 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8600 } 8601 8602 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8603 APInt MinValue = APInt::getMinValue(BitWidth); 8604 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8605 .getUnsignedMax(); 8606 8607 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8608 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8609 } 8610 8611 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8612 bool Equality) { 8613 const SCEV *One = getOne(Step->getType()); 8614 Delta = Equality ? getAddExpr(Delta, Step) 8615 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8616 return getUDivExpr(Delta, Step); 8617 } 8618 8619 ScalarEvolution::ExitLimit 8620 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 8621 const Loop *L, bool IsSigned, 8622 bool ControlsExit, bool AllowPredicates) { 8623 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8624 // We handle only IV < Invariant 8625 if (!isLoopInvariant(RHS, L)) 8626 return getCouldNotCompute(); 8627 8628 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8629 bool PredicatedIV = false; 8630 8631 if (!IV && AllowPredicates) { 8632 // Try to make this an AddRec using runtime tests, in the first X 8633 // iterations of this loop, where X is the SCEV expression found by the 8634 // algorithm below. 8635 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8636 PredicatedIV = true; 8637 } 8638 8639 // Avoid weird loops 8640 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8641 return getCouldNotCompute(); 8642 8643 bool NoWrap = ControlsExit && 8644 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8645 8646 const SCEV *Stride = IV->getStepRecurrence(*this); 8647 8648 bool PositiveStride = isKnownPositive(Stride); 8649 8650 // Avoid negative or zero stride values. 8651 if (!PositiveStride) { 8652 // We can compute the correct backedge taken count for loops with unknown 8653 // strides if we can prove that the loop is not an infinite loop with side 8654 // effects. Here's the loop structure we are trying to handle - 8655 // 8656 // i = start 8657 // do { 8658 // A[i] = i; 8659 // i += s; 8660 // } while (i < end); 8661 // 8662 // The backedge taken count for such loops is evaluated as - 8663 // (max(end, start + stride) - start - 1) /u stride 8664 // 8665 // The additional preconditions that we need to check to prove correctness 8666 // of the above formula is as follows - 8667 // 8668 // a) IV is either nuw or nsw depending upon signedness (indicated by the 8669 // NoWrap flag). 8670 // b) loop is single exit with no side effects. 8671 // 8672 // 8673 // Precondition a) implies that if the stride is negative, this is a single 8674 // trip loop. The backedge taken count formula reduces to zero in this case. 8675 // 8676 // Precondition b) implies that the unknown stride cannot be zero otherwise 8677 // we have UB. 8678 // 8679 // The positive stride case is the same as isKnownPositive(Stride) returning 8680 // true (original behavior of the function). 8681 // 8682 // We want to make sure that the stride is truly unknown as there are edge 8683 // cases where ScalarEvolution propagates no wrap flags to the 8684 // post-increment/decrement IV even though the increment/decrement operation 8685 // itself is wrapping. The computed backedge taken count may be wrong in 8686 // such cases. This is prevented by checking that the stride is not known to 8687 // be either positive or non-positive. For example, no wrap flags are 8688 // propagated to the post-increment IV of this loop with a trip count of 2 - 8689 // 8690 // unsigned char i; 8691 // for(i=127; i<128; i+=129) 8692 // A[i] = i; 8693 // 8694 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 8695 !loopHasNoSideEffects(L)) 8696 return getCouldNotCompute(); 8697 8698 } else if (!Stride->isOne() && 8699 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8700 // Avoid proven overflow cases: this will ensure that the backedge taken 8701 // count will not generate any unsigned overflow. Relaxed no-overflow 8702 // conditions exploit NoWrapFlags, allowing to optimize in presence of 8703 // undefined behaviors like the case of C language. 8704 return getCouldNotCompute(); 8705 8706 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8707 : ICmpInst::ICMP_ULT; 8708 const SCEV *Start = IV->getStart(); 8709 const SCEV *End = RHS; 8710 // If the backedge is taken at least once, then it will be taken 8711 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 8712 // is the LHS value of the less-than comparison the first time it is evaluated 8713 // and End is the RHS. 8714 const SCEV *BECountIfBackedgeTaken = 8715 computeBECount(getMinusSCEV(End, Start), Stride, false); 8716 // If the loop entry is guarded by the result of the backedge test of the 8717 // first loop iteration, then we know the backedge will be taken at least 8718 // once and so the backedge taken count is as above. If not then we use the 8719 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 8720 // as if the backedge is taken at least once max(End,Start) is End and so the 8721 // result is as above, and if not max(End,Start) is Start so we get a backedge 8722 // count of zero. 8723 const SCEV *BECount; 8724 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 8725 BECount = BECountIfBackedgeTaken; 8726 else { 8727 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 8728 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8729 } 8730 8731 const SCEV *MaxBECount; 8732 bool MaxOrZero = false; 8733 if (isa<SCEVConstant>(BECount)) 8734 MaxBECount = BECount; 8735 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 8736 // If we know exactly how many times the backedge will be taken if it's 8737 // taken at least once, then the backedge count will either be that or 8738 // zero. 8739 MaxBECount = BECountIfBackedgeTaken; 8740 MaxOrZero = true; 8741 } else { 8742 // Calculate the maximum backedge count based on the range of values 8743 // permitted by Start, End, and Stride. 8744 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8745 : getUnsignedRange(Start).getUnsignedMin(); 8746 8747 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8748 8749 APInt StrideForMaxBECount; 8750 8751 if (PositiveStride) 8752 StrideForMaxBECount = 8753 IsSigned ? getSignedRange(Stride).getSignedMin() 8754 : getUnsignedRange(Stride).getUnsignedMin(); 8755 else 8756 // Using a stride of 1 is safe when computing max backedge taken count for 8757 // a loop with unknown stride. 8758 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 8759 8760 APInt Limit = 8761 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 8762 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 8763 8764 // Although End can be a MAX expression we estimate MaxEnd considering only 8765 // the case End = RHS. This is safe because in the other case (End - Start) 8766 // is zero, leading to a zero maximum backedge taken count. 8767 APInt MaxEnd = 8768 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8769 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8770 8771 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8772 getConstant(StrideForMaxBECount), false); 8773 } 8774 8775 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8776 MaxBECount = BECount; 8777 8778 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 8779 } 8780 8781 ScalarEvolution::ExitLimit 8782 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8783 const Loop *L, bool IsSigned, 8784 bool ControlsExit, bool AllowPredicates) { 8785 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8786 // We handle only IV > Invariant 8787 if (!isLoopInvariant(RHS, L)) 8788 return getCouldNotCompute(); 8789 8790 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8791 if (!IV && AllowPredicates) 8792 // Try to make this an AddRec using runtime tests, in the first X 8793 // iterations of this loop, where X is the SCEV expression found by the 8794 // algorithm below. 8795 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8796 8797 // Avoid weird loops 8798 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8799 return getCouldNotCompute(); 8800 8801 bool NoWrap = ControlsExit && 8802 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8803 8804 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8805 8806 // Avoid negative or zero stride values 8807 if (!isKnownPositive(Stride)) 8808 return getCouldNotCompute(); 8809 8810 // Avoid proven overflow cases: this will ensure that the backedge taken count 8811 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8812 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8813 // behaviors like the case of C language. 8814 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8815 return getCouldNotCompute(); 8816 8817 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8818 : ICmpInst::ICMP_UGT; 8819 8820 const SCEV *Start = IV->getStart(); 8821 const SCEV *End = RHS; 8822 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 8823 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 8824 8825 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8826 8827 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8828 : getUnsignedRange(Start).getUnsignedMax(); 8829 8830 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8831 : getUnsignedRange(Stride).getUnsignedMin(); 8832 8833 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8834 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8835 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8836 8837 // Although End can be a MIN expression we estimate MinEnd considering only 8838 // the case End = RHS. This is safe because in the other case (Start - End) 8839 // is zero, leading to a zero maximum backedge taken count. 8840 APInt MinEnd = 8841 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8842 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8843 8844 8845 const SCEV *MaxBECount = getCouldNotCompute(); 8846 if (isa<SCEVConstant>(BECount)) 8847 MaxBECount = BECount; 8848 else 8849 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8850 getConstant(MinStride), false); 8851 8852 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8853 MaxBECount = BECount; 8854 8855 return ExitLimit(BECount, MaxBECount, false, Predicates); 8856 } 8857 8858 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 8859 ScalarEvolution &SE) const { 8860 if (Range.isFullSet()) // Infinite loop. 8861 return SE.getCouldNotCompute(); 8862 8863 // If the start is a non-zero constant, shift the range to simplify things. 8864 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8865 if (!SC->getValue()->isZero()) { 8866 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8867 Operands[0] = SE.getZero(SC->getType()); 8868 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8869 getNoWrapFlags(FlagNW)); 8870 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8871 return ShiftedAddRec->getNumIterationsInRange( 8872 Range.subtract(SC->getAPInt()), SE); 8873 // This is strange and shouldn't happen. 8874 return SE.getCouldNotCompute(); 8875 } 8876 8877 // The only time we can solve this is when we have all constant indices. 8878 // Otherwise, we cannot determine the overflow conditions. 8879 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8880 return SE.getCouldNotCompute(); 8881 8882 // Okay at this point we know that all elements of the chrec are constants and 8883 // that the start element is zero. 8884 8885 // First check to see if the range contains zero. If not, the first 8886 // iteration exits. 8887 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8888 if (!Range.contains(APInt(BitWidth, 0))) 8889 return SE.getZero(getType()); 8890 8891 if (isAffine()) { 8892 // If this is an affine expression then we have this situation: 8893 // Solve {0,+,A} in Range === Ax in Range 8894 8895 // We know that zero is in the range. If A is positive then we know that 8896 // the upper value of the range must be the first possible exit value. 8897 // If A is negative then the lower of the range is the last possible loop 8898 // value. Also note that we already checked for a full range. 8899 APInt One(BitWidth,1); 8900 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8901 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8902 8903 // The exit value should be (End+A)/A. 8904 APInt ExitVal = (End + A).udiv(A); 8905 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8906 8907 // Evaluate at the exit value. If we really did fall out of the valid 8908 // range, then we computed our trip count, otherwise wrap around or other 8909 // things must have happened. 8910 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8911 if (Range.contains(Val->getValue())) 8912 return SE.getCouldNotCompute(); // Something strange happened 8913 8914 // Ensure that the previous value is in the range. This is a sanity check. 8915 assert(Range.contains( 8916 EvaluateConstantChrecAtConstant(this, 8917 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8918 "Linear scev computation is off in a bad way!"); 8919 return SE.getConstant(ExitValue); 8920 } else if (isQuadratic()) { 8921 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8922 // quadratic equation to solve it. To do this, we must frame our problem in 8923 // terms of figuring out when zero is crossed, instead of when 8924 // Range.getUpper() is crossed. 8925 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8926 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8927 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 8928 8929 // Next, solve the constructed addrec 8930 if (auto Roots = 8931 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 8932 const SCEVConstant *R1 = Roots->first; 8933 const SCEVConstant *R2 = Roots->second; 8934 // Pick the smallest positive root value. 8935 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8936 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8937 if (!CB->getZExtValue()) 8938 std::swap(R1, R2); // R1 is the minimum root now. 8939 8940 // Make sure the root is not off by one. The returned iteration should 8941 // not be in the range, but the previous one should be. When solving 8942 // for "X*X < 5", for example, we should not return a root of 2. 8943 ConstantInt *R1Val = 8944 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 8945 if (Range.contains(R1Val->getValue())) { 8946 // The next iteration must be out of the range... 8947 ConstantInt *NextVal = 8948 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8949 8950 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8951 if (!Range.contains(R1Val->getValue())) 8952 return SE.getConstant(NextVal); 8953 return SE.getCouldNotCompute(); // Something strange happened 8954 } 8955 8956 // If R1 was not in the range, then it is a good return value. Make 8957 // sure that R1-1 WAS in the range though, just in case. 8958 ConstantInt *NextVal = 8959 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8960 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8961 if (Range.contains(R1Val->getValue())) 8962 return R1; 8963 return SE.getCouldNotCompute(); // Something strange happened 8964 } 8965 } 8966 } 8967 8968 return SE.getCouldNotCompute(); 8969 } 8970 8971 namespace { 8972 struct FindUndefs { 8973 bool Found; 8974 FindUndefs() : Found(false) {} 8975 8976 bool follow(const SCEV *S) { 8977 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8978 if (isa<UndefValue>(C->getValue())) 8979 Found = true; 8980 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8981 if (isa<UndefValue>(C->getValue())) 8982 Found = true; 8983 } 8984 8985 // Keep looking if we haven't found it yet. 8986 return !Found; 8987 } 8988 bool isDone() const { 8989 // Stop recursion if we have found an undef. 8990 return Found; 8991 } 8992 }; 8993 } 8994 8995 // Return true when S contains at least an undef value. 8996 static inline bool 8997 containsUndefs(const SCEV *S) { 8998 FindUndefs F; 8999 SCEVTraversal<FindUndefs> ST(F); 9000 ST.visitAll(S); 9001 9002 return F.Found; 9003 } 9004 9005 namespace { 9006 // Collect all steps of SCEV expressions. 9007 struct SCEVCollectStrides { 9008 ScalarEvolution &SE; 9009 SmallVectorImpl<const SCEV *> &Strides; 9010 9011 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9012 : SE(SE), Strides(S) {} 9013 9014 bool follow(const SCEV *S) { 9015 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9016 Strides.push_back(AR->getStepRecurrence(SE)); 9017 return true; 9018 } 9019 bool isDone() const { return false; } 9020 }; 9021 9022 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9023 struct SCEVCollectTerms { 9024 SmallVectorImpl<const SCEV *> &Terms; 9025 9026 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9027 : Terms(T) {} 9028 9029 bool follow(const SCEV *S) { 9030 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9031 isa<SCEVSignExtendExpr>(S)) { 9032 if (!containsUndefs(S)) 9033 Terms.push_back(S); 9034 9035 // Stop recursion: once we collected a term, do not walk its operands. 9036 return false; 9037 } 9038 9039 // Keep looking. 9040 return true; 9041 } 9042 bool isDone() const { return false; } 9043 }; 9044 9045 // Check if a SCEV contains an AddRecExpr. 9046 struct SCEVHasAddRec { 9047 bool &ContainsAddRec; 9048 9049 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9050 ContainsAddRec = false; 9051 } 9052 9053 bool follow(const SCEV *S) { 9054 if (isa<SCEVAddRecExpr>(S)) { 9055 ContainsAddRec = true; 9056 9057 // Stop recursion: once we collected a term, do not walk its operands. 9058 return false; 9059 } 9060 9061 // Keep looking. 9062 return true; 9063 } 9064 bool isDone() const { return false; } 9065 }; 9066 9067 // Find factors that are multiplied with an expression that (possibly as a 9068 // subexpression) contains an AddRecExpr. In the expression: 9069 // 9070 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9071 // 9072 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9073 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9074 // parameters as they form a product with an induction variable. 9075 // 9076 // This collector expects all array size parameters to be in the same MulExpr. 9077 // It might be necessary to later add support for collecting parameters that are 9078 // spread over different nested MulExpr. 9079 struct SCEVCollectAddRecMultiplies { 9080 SmallVectorImpl<const SCEV *> &Terms; 9081 ScalarEvolution &SE; 9082 9083 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9084 : Terms(T), SE(SE) {} 9085 9086 bool follow(const SCEV *S) { 9087 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9088 bool HasAddRec = false; 9089 SmallVector<const SCEV *, 0> Operands; 9090 for (auto Op : Mul->operands()) { 9091 if (isa<SCEVUnknown>(Op)) { 9092 Operands.push_back(Op); 9093 } else { 9094 bool ContainsAddRec; 9095 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9096 visitAll(Op, ContiansAddRec); 9097 HasAddRec |= ContainsAddRec; 9098 } 9099 } 9100 if (Operands.size() == 0) 9101 return true; 9102 9103 if (!HasAddRec) 9104 return false; 9105 9106 Terms.push_back(SE.getMulExpr(Operands)); 9107 // Stop recursion: once we collected a term, do not walk its operands. 9108 return false; 9109 } 9110 9111 // Keep looking. 9112 return true; 9113 } 9114 bool isDone() const { return false; } 9115 }; 9116 } 9117 9118 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9119 /// two places: 9120 /// 1) The strides of AddRec expressions. 9121 /// 2) Unknowns that are multiplied with AddRec expressions. 9122 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9123 SmallVectorImpl<const SCEV *> &Terms) { 9124 SmallVector<const SCEV *, 4> Strides; 9125 SCEVCollectStrides StrideCollector(*this, Strides); 9126 visitAll(Expr, StrideCollector); 9127 9128 DEBUG({ 9129 dbgs() << "Strides:\n"; 9130 for (const SCEV *S : Strides) 9131 dbgs() << *S << "\n"; 9132 }); 9133 9134 for (const SCEV *S : Strides) { 9135 SCEVCollectTerms TermCollector(Terms); 9136 visitAll(S, TermCollector); 9137 } 9138 9139 DEBUG({ 9140 dbgs() << "Terms:\n"; 9141 for (const SCEV *T : Terms) 9142 dbgs() << *T << "\n"; 9143 }); 9144 9145 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9146 visitAll(Expr, MulCollector); 9147 } 9148 9149 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9150 SmallVectorImpl<const SCEV *> &Terms, 9151 SmallVectorImpl<const SCEV *> &Sizes) { 9152 int Last = Terms.size() - 1; 9153 const SCEV *Step = Terms[Last]; 9154 9155 // End of recursion. 9156 if (Last == 0) { 9157 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9158 SmallVector<const SCEV *, 2> Qs; 9159 for (const SCEV *Op : M->operands()) 9160 if (!isa<SCEVConstant>(Op)) 9161 Qs.push_back(Op); 9162 9163 Step = SE.getMulExpr(Qs); 9164 } 9165 9166 Sizes.push_back(Step); 9167 return true; 9168 } 9169 9170 for (const SCEV *&Term : Terms) { 9171 // Normalize the terms before the next call to findArrayDimensionsRec. 9172 const SCEV *Q, *R; 9173 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9174 9175 // Bail out when GCD does not evenly divide one of the terms. 9176 if (!R->isZero()) 9177 return false; 9178 9179 Term = Q; 9180 } 9181 9182 // Remove all SCEVConstants. 9183 Terms.erase( 9184 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9185 Terms.end()); 9186 9187 if (Terms.size() > 0) 9188 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9189 return false; 9190 9191 Sizes.push_back(Step); 9192 return true; 9193 } 9194 9195 // Returns true when S contains at least a SCEVUnknown parameter. 9196 static inline bool 9197 containsParameters(const SCEV *S) { 9198 struct FindParameter { 9199 bool FoundParameter; 9200 FindParameter() : FoundParameter(false) {} 9201 9202 bool follow(const SCEV *S) { 9203 if (isa<SCEVUnknown>(S)) { 9204 FoundParameter = true; 9205 // Stop recursion: we found a parameter. 9206 return false; 9207 } 9208 // Keep looking. 9209 return true; 9210 } 9211 bool isDone() const { 9212 // Stop recursion if we have found a parameter. 9213 return FoundParameter; 9214 } 9215 }; 9216 9217 FindParameter F; 9218 SCEVTraversal<FindParameter> ST(F); 9219 ST.visitAll(S); 9220 9221 return F.FoundParameter; 9222 } 9223 9224 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9225 static inline bool 9226 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9227 for (const SCEV *T : Terms) 9228 if (containsParameters(T)) 9229 return true; 9230 return false; 9231 } 9232 9233 // Return the number of product terms in S. 9234 static inline int numberOfTerms(const SCEV *S) { 9235 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9236 return Expr->getNumOperands(); 9237 return 1; 9238 } 9239 9240 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9241 if (isa<SCEVConstant>(T)) 9242 return nullptr; 9243 9244 if (isa<SCEVUnknown>(T)) 9245 return T; 9246 9247 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9248 SmallVector<const SCEV *, 2> Factors; 9249 for (const SCEV *Op : M->operands()) 9250 if (!isa<SCEVConstant>(Op)) 9251 Factors.push_back(Op); 9252 9253 return SE.getMulExpr(Factors); 9254 } 9255 9256 return T; 9257 } 9258 9259 /// Return the size of an element read or written by Inst. 9260 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9261 Type *Ty; 9262 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9263 Ty = Store->getValueOperand()->getType(); 9264 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9265 Ty = Load->getType(); 9266 else 9267 return nullptr; 9268 9269 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9270 return getSizeOfExpr(ETy, Ty); 9271 } 9272 9273 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9274 SmallVectorImpl<const SCEV *> &Sizes, 9275 const SCEV *ElementSize) const { 9276 if (Terms.size() < 1 || !ElementSize) 9277 return; 9278 9279 // Early return when Terms do not contain parameters: we do not delinearize 9280 // non parametric SCEVs. 9281 if (!containsParameters(Terms)) 9282 return; 9283 9284 DEBUG({ 9285 dbgs() << "Terms:\n"; 9286 for (const SCEV *T : Terms) 9287 dbgs() << *T << "\n"; 9288 }); 9289 9290 // Remove duplicates. 9291 std::sort(Terms.begin(), Terms.end()); 9292 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9293 9294 // Put larger terms first. 9295 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9296 return numberOfTerms(LHS) > numberOfTerms(RHS); 9297 }); 9298 9299 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9300 9301 // Try to divide all terms by the element size. If term is not divisible by 9302 // element size, proceed with the original term. 9303 for (const SCEV *&Term : Terms) { 9304 const SCEV *Q, *R; 9305 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9306 if (!Q->isZero()) 9307 Term = Q; 9308 } 9309 9310 SmallVector<const SCEV *, 4> NewTerms; 9311 9312 // Remove constant factors. 9313 for (const SCEV *T : Terms) 9314 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9315 NewTerms.push_back(NewT); 9316 9317 DEBUG({ 9318 dbgs() << "Terms after sorting:\n"; 9319 for (const SCEV *T : NewTerms) 9320 dbgs() << *T << "\n"; 9321 }); 9322 9323 if (NewTerms.empty() || 9324 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9325 Sizes.clear(); 9326 return; 9327 } 9328 9329 // The last element to be pushed into Sizes is the size of an element. 9330 Sizes.push_back(ElementSize); 9331 9332 DEBUG({ 9333 dbgs() << "Sizes:\n"; 9334 for (const SCEV *S : Sizes) 9335 dbgs() << *S << "\n"; 9336 }); 9337 } 9338 9339 void ScalarEvolution::computeAccessFunctions( 9340 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9341 SmallVectorImpl<const SCEV *> &Sizes) { 9342 9343 // Early exit in case this SCEV is not an affine multivariate function. 9344 if (Sizes.empty()) 9345 return; 9346 9347 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9348 if (!AR->isAffine()) 9349 return; 9350 9351 const SCEV *Res = Expr; 9352 int Last = Sizes.size() - 1; 9353 for (int i = Last; i >= 0; i--) { 9354 const SCEV *Q, *R; 9355 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9356 9357 DEBUG({ 9358 dbgs() << "Res: " << *Res << "\n"; 9359 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9360 dbgs() << "Res divided by Sizes[i]:\n"; 9361 dbgs() << "Quotient: " << *Q << "\n"; 9362 dbgs() << "Remainder: " << *R << "\n"; 9363 }); 9364 9365 Res = Q; 9366 9367 // Do not record the last subscript corresponding to the size of elements in 9368 // the array. 9369 if (i == Last) { 9370 9371 // Bail out if the remainder is too complex. 9372 if (isa<SCEVAddRecExpr>(R)) { 9373 Subscripts.clear(); 9374 Sizes.clear(); 9375 return; 9376 } 9377 9378 continue; 9379 } 9380 9381 // Record the access function for the current subscript. 9382 Subscripts.push_back(R); 9383 } 9384 9385 // Also push in last position the remainder of the last division: it will be 9386 // the access function of the innermost dimension. 9387 Subscripts.push_back(Res); 9388 9389 std::reverse(Subscripts.begin(), Subscripts.end()); 9390 9391 DEBUG({ 9392 dbgs() << "Subscripts:\n"; 9393 for (const SCEV *S : Subscripts) 9394 dbgs() << *S << "\n"; 9395 }); 9396 } 9397 9398 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9399 /// sizes of an array access. Returns the remainder of the delinearization that 9400 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9401 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9402 /// expressions in the stride and base of a SCEV corresponding to the 9403 /// computation of a GCD (greatest common divisor) of base and stride. When 9404 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9405 /// 9406 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9407 /// 9408 /// void foo(long n, long m, long o, double A[n][m][o]) { 9409 /// 9410 /// for (long i = 0; i < n; i++) 9411 /// for (long j = 0; j < m; j++) 9412 /// for (long k = 0; k < o; k++) 9413 /// A[i][j][k] = 1.0; 9414 /// } 9415 /// 9416 /// the delinearization input is the following AddRec SCEV: 9417 /// 9418 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9419 /// 9420 /// From this SCEV, we are able to say that the base offset of the access is %A 9421 /// because it appears as an offset that does not divide any of the strides in 9422 /// the loops: 9423 /// 9424 /// CHECK: Base offset: %A 9425 /// 9426 /// and then SCEV->delinearize determines the size of some of the dimensions of 9427 /// the array as these are the multiples by which the strides are happening: 9428 /// 9429 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9430 /// 9431 /// Note that the outermost dimension remains of UnknownSize because there are 9432 /// no strides that would help identifying the size of the last dimension: when 9433 /// the array has been statically allocated, one could compute the size of that 9434 /// dimension by dividing the overall size of the array by the size of the known 9435 /// dimensions: %m * %o * 8. 9436 /// 9437 /// Finally delinearize provides the access functions for the array reference 9438 /// that does correspond to A[i][j][k] of the above C testcase: 9439 /// 9440 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9441 /// 9442 /// The testcases are checking the output of a function pass: 9443 /// DelinearizationPass that walks through all loads and stores of a function 9444 /// asking for the SCEV of the memory access with respect to all enclosing 9445 /// loops, calling SCEV->delinearize on that and printing the results. 9446 9447 void ScalarEvolution::delinearize(const SCEV *Expr, 9448 SmallVectorImpl<const SCEV *> &Subscripts, 9449 SmallVectorImpl<const SCEV *> &Sizes, 9450 const SCEV *ElementSize) { 9451 // First step: collect parametric terms. 9452 SmallVector<const SCEV *, 4> Terms; 9453 collectParametricTerms(Expr, Terms); 9454 9455 if (Terms.empty()) 9456 return; 9457 9458 // Second step: find subscript sizes. 9459 findArrayDimensions(Terms, Sizes, ElementSize); 9460 9461 if (Sizes.empty()) 9462 return; 9463 9464 // Third step: compute the access functions for each subscript. 9465 computeAccessFunctions(Expr, Subscripts, Sizes); 9466 9467 if (Subscripts.empty()) 9468 return; 9469 9470 DEBUG({ 9471 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9472 dbgs() << "ArrayDecl[UnknownSize]"; 9473 for (const SCEV *S : Sizes) 9474 dbgs() << "[" << *S << "]"; 9475 9476 dbgs() << "\nArrayRef"; 9477 for (const SCEV *S : Subscripts) 9478 dbgs() << "[" << *S << "]"; 9479 dbgs() << "\n"; 9480 }); 9481 } 9482 9483 //===----------------------------------------------------------------------===// 9484 // SCEVCallbackVH Class Implementation 9485 //===----------------------------------------------------------------------===// 9486 9487 void ScalarEvolution::SCEVCallbackVH::deleted() { 9488 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9489 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9490 SE->ConstantEvolutionLoopExitValue.erase(PN); 9491 SE->eraseValueFromMap(getValPtr()); 9492 // this now dangles! 9493 } 9494 9495 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9496 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9497 9498 // Forget all the expressions associated with users of the old value, 9499 // so that future queries will recompute the expressions using the new 9500 // value. 9501 Value *Old = getValPtr(); 9502 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9503 SmallPtrSet<User *, 8> Visited; 9504 while (!Worklist.empty()) { 9505 User *U = Worklist.pop_back_val(); 9506 // Deleting the Old value will cause this to dangle. Postpone 9507 // that until everything else is done. 9508 if (U == Old) 9509 continue; 9510 if (!Visited.insert(U).second) 9511 continue; 9512 if (PHINode *PN = dyn_cast<PHINode>(U)) 9513 SE->ConstantEvolutionLoopExitValue.erase(PN); 9514 SE->eraseValueFromMap(U); 9515 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9516 } 9517 // Delete the Old value. 9518 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9519 SE->ConstantEvolutionLoopExitValue.erase(PN); 9520 SE->eraseValueFromMap(Old); 9521 // this now dangles! 9522 } 9523 9524 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9525 : CallbackVH(V), SE(se) {} 9526 9527 //===----------------------------------------------------------------------===// 9528 // ScalarEvolution Class Implementation 9529 //===----------------------------------------------------------------------===// 9530 9531 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9532 AssumptionCache &AC, DominatorTree &DT, 9533 LoopInfo &LI) 9534 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9535 CouldNotCompute(new SCEVCouldNotCompute()), 9536 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9537 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9538 FirstUnknown(nullptr) { 9539 9540 // To use guards for proving predicates, we need to scan every instruction in 9541 // relevant basic blocks, and not just terminators. Doing this is a waste of 9542 // time if the IR does not actually contain any calls to 9543 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9544 // 9545 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9546 // to _add_ guards to the module when there weren't any before, and wants 9547 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9548 // efficient in lieu of being smart in that rather obscure case. 9549 9550 auto *GuardDecl = F.getParent()->getFunction( 9551 Intrinsic::getName(Intrinsic::experimental_guard)); 9552 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9553 } 9554 9555 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9556 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9557 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9558 ValueExprMap(std::move(Arg.ValueExprMap)), 9559 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 9560 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9561 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9562 PredicatedBackedgeTakenCounts( 9563 std::move(Arg.PredicatedBackedgeTakenCounts)), 9564 ConstantEvolutionLoopExitValue( 9565 std::move(Arg.ConstantEvolutionLoopExitValue)), 9566 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9567 LoopDispositions(std::move(Arg.LoopDispositions)), 9568 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9569 BlockDispositions(std::move(Arg.BlockDispositions)), 9570 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9571 SignedRanges(std::move(Arg.SignedRanges)), 9572 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9573 UniquePreds(std::move(Arg.UniquePreds)), 9574 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9575 FirstUnknown(Arg.FirstUnknown) { 9576 Arg.FirstUnknown = nullptr; 9577 } 9578 9579 ScalarEvolution::~ScalarEvolution() { 9580 // Iterate through all the SCEVUnknown instances and call their 9581 // destructors, so that they release their references to their values. 9582 for (SCEVUnknown *U = FirstUnknown; U;) { 9583 SCEVUnknown *Tmp = U; 9584 U = U->Next; 9585 Tmp->~SCEVUnknown(); 9586 } 9587 FirstUnknown = nullptr; 9588 9589 ExprValueMap.clear(); 9590 ValueExprMap.clear(); 9591 HasRecMap.clear(); 9592 9593 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9594 // that a loop had multiple computable exits. 9595 for (auto &BTCI : BackedgeTakenCounts) 9596 BTCI.second.clear(); 9597 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9598 BTCI.second.clear(); 9599 9600 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9601 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9602 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9603 } 9604 9605 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9606 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9607 } 9608 9609 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9610 const Loop *L) { 9611 // Print all inner loops first 9612 for (Loop *I : *L) 9613 PrintLoopInfo(OS, SE, I); 9614 9615 OS << "Loop "; 9616 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9617 OS << ": "; 9618 9619 SmallVector<BasicBlock *, 8> ExitBlocks; 9620 L->getExitBlocks(ExitBlocks); 9621 if (ExitBlocks.size() != 1) 9622 OS << "<multiple exits> "; 9623 9624 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9625 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9626 } else { 9627 OS << "Unpredictable backedge-taken count. "; 9628 } 9629 9630 OS << "\n" 9631 "Loop "; 9632 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9633 OS << ": "; 9634 9635 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9636 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9637 if (SE->isBackedgeTakenCountMaxOrZero(L)) 9638 OS << ", actual taken count either this or zero."; 9639 } else { 9640 OS << "Unpredictable max backedge-taken count. "; 9641 } 9642 9643 OS << "\n" 9644 "Loop "; 9645 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9646 OS << ": "; 9647 9648 SCEVUnionPredicate Pred; 9649 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9650 if (!isa<SCEVCouldNotCompute>(PBT)) { 9651 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9652 OS << " Predicates:\n"; 9653 Pred.print(OS, 4); 9654 } else { 9655 OS << "Unpredictable predicated backedge-taken count. "; 9656 } 9657 OS << "\n"; 9658 } 9659 9660 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9661 switch (LD) { 9662 case ScalarEvolution::LoopVariant: 9663 return "Variant"; 9664 case ScalarEvolution::LoopInvariant: 9665 return "Invariant"; 9666 case ScalarEvolution::LoopComputable: 9667 return "Computable"; 9668 } 9669 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9670 } 9671 9672 void ScalarEvolution::print(raw_ostream &OS) const { 9673 // ScalarEvolution's implementation of the print method is to print 9674 // out SCEV values of all instructions that are interesting. Doing 9675 // this potentially causes it to create new SCEV objects though, 9676 // which technically conflicts with the const qualifier. This isn't 9677 // observable from outside the class though, so casting away the 9678 // const isn't dangerous. 9679 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9680 9681 OS << "Classifying expressions for: "; 9682 F.printAsOperand(OS, /*PrintType=*/false); 9683 OS << "\n"; 9684 for (Instruction &I : instructions(F)) 9685 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9686 OS << I << '\n'; 9687 OS << " --> "; 9688 const SCEV *SV = SE.getSCEV(&I); 9689 SV->print(OS); 9690 if (!isa<SCEVCouldNotCompute>(SV)) { 9691 OS << " U: "; 9692 SE.getUnsignedRange(SV).print(OS); 9693 OS << " S: "; 9694 SE.getSignedRange(SV).print(OS); 9695 } 9696 9697 const Loop *L = LI.getLoopFor(I.getParent()); 9698 9699 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9700 if (AtUse != SV) { 9701 OS << " --> "; 9702 AtUse->print(OS); 9703 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9704 OS << " U: "; 9705 SE.getUnsignedRange(AtUse).print(OS); 9706 OS << " S: "; 9707 SE.getSignedRange(AtUse).print(OS); 9708 } 9709 } 9710 9711 if (L) { 9712 OS << "\t\t" "Exits: "; 9713 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9714 if (!SE.isLoopInvariant(ExitValue, L)) { 9715 OS << "<<Unknown>>"; 9716 } else { 9717 OS << *ExitValue; 9718 } 9719 9720 bool First = true; 9721 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9722 if (First) { 9723 OS << "\t\t" "LoopDispositions: { "; 9724 First = false; 9725 } else { 9726 OS << ", "; 9727 } 9728 9729 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9730 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9731 } 9732 9733 for (auto *InnerL : depth_first(L)) { 9734 if (InnerL == L) 9735 continue; 9736 if (First) { 9737 OS << "\t\t" "LoopDispositions: { "; 9738 First = false; 9739 } else { 9740 OS << ", "; 9741 } 9742 9743 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9744 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 9745 } 9746 9747 OS << " }"; 9748 } 9749 9750 OS << "\n"; 9751 } 9752 9753 OS << "Determining loop execution counts for: "; 9754 F.printAsOperand(OS, /*PrintType=*/false); 9755 OS << "\n"; 9756 for (Loop *I : LI) 9757 PrintLoopInfo(OS, &SE, I); 9758 } 9759 9760 ScalarEvolution::LoopDisposition 9761 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9762 auto &Values = LoopDispositions[S]; 9763 for (auto &V : Values) { 9764 if (V.getPointer() == L) 9765 return V.getInt(); 9766 } 9767 Values.emplace_back(L, LoopVariant); 9768 LoopDisposition D = computeLoopDisposition(S, L); 9769 auto &Values2 = LoopDispositions[S]; 9770 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9771 if (V.getPointer() == L) { 9772 V.setInt(D); 9773 break; 9774 } 9775 } 9776 return D; 9777 } 9778 9779 ScalarEvolution::LoopDisposition 9780 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9781 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9782 case scConstant: 9783 return LoopInvariant; 9784 case scTruncate: 9785 case scZeroExtend: 9786 case scSignExtend: 9787 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9788 case scAddRecExpr: { 9789 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9790 9791 // If L is the addrec's loop, it's computable. 9792 if (AR->getLoop() == L) 9793 return LoopComputable; 9794 9795 // Add recurrences are never invariant in the function-body (null loop). 9796 if (!L) 9797 return LoopVariant; 9798 9799 // This recurrence is variant w.r.t. L if L contains AR's loop. 9800 if (L->contains(AR->getLoop())) 9801 return LoopVariant; 9802 9803 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9804 if (AR->getLoop()->contains(L)) 9805 return LoopInvariant; 9806 9807 // This recurrence is variant w.r.t. L if any of its operands 9808 // are variant. 9809 for (auto *Op : AR->operands()) 9810 if (!isLoopInvariant(Op, L)) 9811 return LoopVariant; 9812 9813 // Otherwise it's loop-invariant. 9814 return LoopInvariant; 9815 } 9816 case scAddExpr: 9817 case scMulExpr: 9818 case scUMaxExpr: 9819 case scSMaxExpr: { 9820 bool HasVarying = false; 9821 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9822 LoopDisposition D = getLoopDisposition(Op, L); 9823 if (D == LoopVariant) 9824 return LoopVariant; 9825 if (D == LoopComputable) 9826 HasVarying = true; 9827 } 9828 return HasVarying ? LoopComputable : LoopInvariant; 9829 } 9830 case scUDivExpr: { 9831 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9832 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9833 if (LD == LoopVariant) 9834 return LoopVariant; 9835 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9836 if (RD == LoopVariant) 9837 return LoopVariant; 9838 return (LD == LoopInvariant && RD == LoopInvariant) ? 9839 LoopInvariant : LoopComputable; 9840 } 9841 case scUnknown: 9842 // All non-instruction values are loop invariant. All instructions are loop 9843 // invariant if they are not contained in the specified loop. 9844 // Instructions are never considered invariant in the function body 9845 // (null loop) because they are defined within the "loop". 9846 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9847 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9848 return LoopInvariant; 9849 case scCouldNotCompute: 9850 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9851 } 9852 llvm_unreachable("Unknown SCEV kind!"); 9853 } 9854 9855 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9856 return getLoopDisposition(S, L) == LoopInvariant; 9857 } 9858 9859 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9860 return getLoopDisposition(S, L) == LoopComputable; 9861 } 9862 9863 ScalarEvolution::BlockDisposition 9864 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9865 auto &Values = BlockDispositions[S]; 9866 for (auto &V : Values) { 9867 if (V.getPointer() == BB) 9868 return V.getInt(); 9869 } 9870 Values.emplace_back(BB, DoesNotDominateBlock); 9871 BlockDisposition D = computeBlockDisposition(S, BB); 9872 auto &Values2 = BlockDispositions[S]; 9873 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9874 if (V.getPointer() == BB) { 9875 V.setInt(D); 9876 break; 9877 } 9878 } 9879 return D; 9880 } 9881 9882 ScalarEvolution::BlockDisposition 9883 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9884 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9885 case scConstant: 9886 return ProperlyDominatesBlock; 9887 case scTruncate: 9888 case scZeroExtend: 9889 case scSignExtend: 9890 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9891 case scAddRecExpr: { 9892 // This uses a "dominates" query instead of "properly dominates" query 9893 // to test for proper dominance too, because the instruction which 9894 // produces the addrec's value is a PHI, and a PHI effectively properly 9895 // dominates its entire containing block. 9896 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9897 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9898 return DoesNotDominateBlock; 9899 9900 // Fall through into SCEVNAryExpr handling. 9901 LLVM_FALLTHROUGH; 9902 } 9903 case scAddExpr: 9904 case scMulExpr: 9905 case scUMaxExpr: 9906 case scSMaxExpr: { 9907 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9908 bool Proper = true; 9909 for (const SCEV *NAryOp : NAry->operands()) { 9910 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9911 if (D == DoesNotDominateBlock) 9912 return DoesNotDominateBlock; 9913 if (D == DominatesBlock) 9914 Proper = false; 9915 } 9916 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9917 } 9918 case scUDivExpr: { 9919 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9920 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9921 BlockDisposition LD = getBlockDisposition(LHS, BB); 9922 if (LD == DoesNotDominateBlock) 9923 return DoesNotDominateBlock; 9924 BlockDisposition RD = getBlockDisposition(RHS, BB); 9925 if (RD == DoesNotDominateBlock) 9926 return DoesNotDominateBlock; 9927 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9928 ProperlyDominatesBlock : DominatesBlock; 9929 } 9930 case scUnknown: 9931 if (Instruction *I = 9932 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9933 if (I->getParent() == BB) 9934 return DominatesBlock; 9935 if (DT.properlyDominates(I->getParent(), BB)) 9936 return ProperlyDominatesBlock; 9937 return DoesNotDominateBlock; 9938 } 9939 return ProperlyDominatesBlock; 9940 case scCouldNotCompute: 9941 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9942 } 9943 llvm_unreachable("Unknown SCEV kind!"); 9944 } 9945 9946 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9947 return getBlockDisposition(S, BB) >= DominatesBlock; 9948 } 9949 9950 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9951 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9952 } 9953 9954 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9955 // Search for a SCEV expression node within an expression tree. 9956 // Implements SCEVTraversal::Visitor. 9957 struct SCEVSearch { 9958 const SCEV *Node; 9959 bool IsFound; 9960 9961 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9962 9963 bool follow(const SCEV *S) { 9964 IsFound |= (S == Node); 9965 return !IsFound; 9966 } 9967 bool isDone() const { return IsFound; } 9968 }; 9969 9970 SCEVSearch Search(Op); 9971 visitAll(S, Search); 9972 return Search.IsFound; 9973 } 9974 9975 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9976 ValuesAtScopes.erase(S); 9977 LoopDispositions.erase(S); 9978 BlockDispositions.erase(S); 9979 UnsignedRanges.erase(S); 9980 SignedRanges.erase(S); 9981 ExprValueMap.erase(S); 9982 HasRecMap.erase(S); 9983 9984 auto RemoveSCEVFromBackedgeMap = 9985 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 9986 for (auto I = Map.begin(), E = Map.end(); I != E;) { 9987 BackedgeTakenInfo &BEInfo = I->second; 9988 if (BEInfo.hasOperand(S, this)) { 9989 BEInfo.clear(); 9990 Map.erase(I++); 9991 } else 9992 ++I; 9993 } 9994 }; 9995 9996 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 9997 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 9998 } 9999 10000 typedef DenseMap<const Loop *, std::string> VerifyMap; 10001 10002 /// replaceSubString - Replaces all occurrences of From in Str with To. 10003 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 10004 size_t Pos = 0; 10005 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 10006 Str.replace(Pos, From.size(), To.data(), To.size()); 10007 Pos += To.size(); 10008 } 10009 } 10010 10011 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 10012 static void 10013 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 10014 std::string &S = Map[L]; 10015 if (S.empty()) { 10016 raw_string_ostream OS(S); 10017 SE.getBackedgeTakenCount(L)->print(OS); 10018 10019 // false and 0 are semantically equivalent. This can happen in dead loops. 10020 replaceSubString(OS.str(), "false", "0"); 10021 // Remove wrap flags, their use in SCEV is highly fragile. 10022 // FIXME: Remove this when SCEV gets smarter about them. 10023 replaceSubString(OS.str(), "<nw>", ""); 10024 replaceSubString(OS.str(), "<nsw>", ""); 10025 replaceSubString(OS.str(), "<nuw>", ""); 10026 } 10027 10028 for (auto *R : reverse(*L)) 10029 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 10030 } 10031 10032 void ScalarEvolution::verify() const { 10033 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10034 10035 // Gather stringified backedge taken counts for all loops using SCEV's caches. 10036 // FIXME: It would be much better to store actual values instead of strings, 10037 // but SCEV pointers will change if we drop the caches. 10038 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 10039 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10040 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 10041 10042 // Gather stringified backedge taken counts for all loops using a fresh 10043 // ScalarEvolution object. 10044 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10045 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10046 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10047 10048 // Now compare whether they're the same with and without caches. This allows 10049 // verifying that no pass changed the cache. 10050 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10051 "New loops suddenly appeared!"); 10052 10053 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10054 OldE = BackedgeDumpsOld.end(), 10055 NewI = BackedgeDumpsNew.begin(); 10056 OldI != OldE; ++OldI, ++NewI) { 10057 assert(OldI->first == NewI->first && "Loop order changed!"); 10058 10059 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10060 // changes. 10061 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10062 // means that a pass is buggy or SCEV has to learn a new pattern but is 10063 // usually not harmful. 10064 if (OldI->second != NewI->second && 10065 OldI->second.find("undef") == std::string::npos && 10066 NewI->second.find("undef") == std::string::npos && 10067 OldI->second != "***COULDNOTCOMPUTE***" && 10068 NewI->second != "***COULDNOTCOMPUTE***") { 10069 dbgs() << "SCEVValidator: SCEV for loop '" 10070 << OldI->first->getHeader()->getName() 10071 << "' changed from '" << OldI->second 10072 << "' to '" << NewI->second << "'!\n"; 10073 std::abort(); 10074 } 10075 } 10076 10077 // TODO: Verify more things. 10078 } 10079 10080 char ScalarEvolutionAnalysis::PassID; 10081 10082 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10083 FunctionAnalysisManager &AM) { 10084 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10085 AM.getResult<AssumptionAnalysis>(F), 10086 AM.getResult<DominatorTreeAnalysis>(F), 10087 AM.getResult<LoopAnalysis>(F)); 10088 } 10089 10090 PreservedAnalyses 10091 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10092 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10093 return PreservedAnalyses::all(); 10094 } 10095 10096 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10097 "Scalar Evolution Analysis", false, true) 10098 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10099 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10100 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10101 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10102 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10103 "Scalar Evolution Analysis", false, true) 10104 char ScalarEvolutionWrapperPass::ID = 0; 10105 10106 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10107 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10108 } 10109 10110 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10111 SE.reset(new ScalarEvolution( 10112 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10113 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10114 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10115 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10116 return false; 10117 } 10118 10119 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10120 10121 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10122 SE->print(OS); 10123 } 10124 10125 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10126 if (!VerifySCEV) 10127 return; 10128 10129 SE->verify(); 10130 } 10131 10132 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10133 AU.setPreservesAll(); 10134 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10135 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10136 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10137 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10138 } 10139 10140 const SCEVPredicate * 10141 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10142 const SCEVConstant *RHS) { 10143 FoldingSetNodeID ID; 10144 // Unique this node based on the arguments 10145 ID.AddInteger(SCEVPredicate::P_Equal); 10146 ID.AddPointer(LHS); 10147 ID.AddPointer(RHS); 10148 void *IP = nullptr; 10149 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10150 return S; 10151 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10152 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10153 UniquePreds.InsertNode(Eq, IP); 10154 return Eq; 10155 } 10156 10157 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10158 const SCEVAddRecExpr *AR, 10159 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10160 FoldingSetNodeID ID; 10161 // Unique this node based on the arguments 10162 ID.AddInteger(SCEVPredicate::P_Wrap); 10163 ID.AddPointer(AR); 10164 ID.AddInteger(AddedFlags); 10165 void *IP = nullptr; 10166 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10167 return S; 10168 auto *OF = new (SCEVAllocator) 10169 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10170 UniquePreds.InsertNode(OF, IP); 10171 return OF; 10172 } 10173 10174 namespace { 10175 10176 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10177 public: 10178 /// Rewrites \p S in the context of a loop L and the SCEV predication 10179 /// infrastructure. 10180 /// 10181 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10182 /// equivalences present in \p Pred. 10183 /// 10184 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10185 /// \p NewPreds such that the result will be an AddRecExpr. 10186 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10187 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10188 SCEVUnionPredicate *Pred) { 10189 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10190 return Rewriter.visit(S); 10191 } 10192 10193 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10194 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10195 SCEVUnionPredicate *Pred) 10196 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10197 10198 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10199 if (Pred) { 10200 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10201 for (auto *Pred : ExprPreds) 10202 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10203 if (IPred->getLHS() == Expr) 10204 return IPred->getRHS(); 10205 } 10206 10207 return Expr; 10208 } 10209 10210 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10211 const SCEV *Operand = visit(Expr->getOperand()); 10212 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10213 if (AR && AR->getLoop() == L && AR->isAffine()) { 10214 // This couldn't be folded because the operand didn't have the nuw 10215 // flag. Add the nusw flag as an assumption that we could make. 10216 const SCEV *Step = AR->getStepRecurrence(SE); 10217 Type *Ty = Expr->getType(); 10218 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10219 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10220 SE.getSignExtendExpr(Step, Ty), L, 10221 AR->getNoWrapFlags()); 10222 } 10223 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10224 } 10225 10226 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10227 const SCEV *Operand = visit(Expr->getOperand()); 10228 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10229 if (AR && AR->getLoop() == L && AR->isAffine()) { 10230 // This couldn't be folded because the operand didn't have the nsw 10231 // flag. Add the nssw flag as an assumption that we could make. 10232 const SCEV *Step = AR->getStepRecurrence(SE); 10233 Type *Ty = Expr->getType(); 10234 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10235 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10236 SE.getSignExtendExpr(Step, Ty), L, 10237 AR->getNoWrapFlags()); 10238 } 10239 return SE.getSignExtendExpr(Operand, Expr->getType()); 10240 } 10241 10242 private: 10243 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10244 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10245 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10246 if (!NewPreds) { 10247 // Check if we've already made this assumption. 10248 return Pred && Pred->implies(A); 10249 } 10250 NewPreds->insert(A); 10251 return true; 10252 } 10253 10254 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10255 SCEVUnionPredicate *Pred; 10256 const Loop *L; 10257 }; 10258 } // end anonymous namespace 10259 10260 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10261 SCEVUnionPredicate &Preds) { 10262 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10263 } 10264 10265 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10266 const SCEV *S, const Loop *L, 10267 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10268 10269 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10270 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10271 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10272 10273 if (!AddRec) 10274 return nullptr; 10275 10276 // Since the transformation was successful, we can now transfer the SCEV 10277 // predicates. 10278 for (auto *P : TransformPreds) 10279 Preds.insert(P); 10280 10281 return AddRec; 10282 } 10283 10284 /// SCEV predicates 10285 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10286 SCEVPredicateKind Kind) 10287 : FastID(ID), Kind(Kind) {} 10288 10289 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10290 const SCEVUnknown *LHS, 10291 const SCEVConstant *RHS) 10292 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10293 10294 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10295 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10296 10297 if (!Op) 10298 return false; 10299 10300 return Op->LHS == LHS && Op->RHS == RHS; 10301 } 10302 10303 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10304 10305 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10306 10307 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10308 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10309 } 10310 10311 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10312 const SCEVAddRecExpr *AR, 10313 IncrementWrapFlags Flags) 10314 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10315 10316 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10317 10318 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10319 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10320 10321 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10322 } 10323 10324 bool SCEVWrapPredicate::isAlwaysTrue() const { 10325 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10326 IncrementWrapFlags IFlags = Flags; 10327 10328 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10329 IFlags = clearFlags(IFlags, IncrementNSSW); 10330 10331 return IFlags == IncrementAnyWrap; 10332 } 10333 10334 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10335 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10336 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10337 OS << "<nusw>"; 10338 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10339 OS << "<nssw>"; 10340 OS << "\n"; 10341 } 10342 10343 SCEVWrapPredicate::IncrementWrapFlags 10344 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10345 ScalarEvolution &SE) { 10346 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10347 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10348 10349 // We can safely transfer the NSW flag as NSSW. 10350 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10351 ImpliedFlags = IncrementNSSW; 10352 10353 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10354 // If the increment is positive, the SCEV NUW flag will also imply the 10355 // WrapPredicate NUSW flag. 10356 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10357 if (Step->getValue()->getValue().isNonNegative()) 10358 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10359 } 10360 10361 return ImpliedFlags; 10362 } 10363 10364 /// Union predicates don't get cached so create a dummy set ID for it. 10365 SCEVUnionPredicate::SCEVUnionPredicate() 10366 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10367 10368 bool SCEVUnionPredicate::isAlwaysTrue() const { 10369 return all_of(Preds, 10370 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10371 } 10372 10373 ArrayRef<const SCEVPredicate *> 10374 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10375 auto I = SCEVToPreds.find(Expr); 10376 if (I == SCEVToPreds.end()) 10377 return ArrayRef<const SCEVPredicate *>(); 10378 return I->second; 10379 } 10380 10381 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10382 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10383 return all_of(Set->Preds, 10384 [this](const SCEVPredicate *I) { return this->implies(I); }); 10385 10386 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10387 if (ScevPredsIt == SCEVToPreds.end()) 10388 return false; 10389 auto &SCEVPreds = ScevPredsIt->second; 10390 10391 return any_of(SCEVPreds, 10392 [N](const SCEVPredicate *I) { return I->implies(N); }); 10393 } 10394 10395 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10396 10397 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10398 for (auto Pred : Preds) 10399 Pred->print(OS, Depth); 10400 } 10401 10402 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10403 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10404 for (auto Pred : Set->Preds) 10405 add(Pred); 10406 return; 10407 } 10408 10409 if (implies(N)) 10410 return; 10411 10412 const SCEV *Key = N->getExpr(); 10413 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10414 " associated expression!"); 10415 10416 SCEVToPreds[Key].push_back(N); 10417 Preds.push_back(N); 10418 } 10419 10420 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10421 Loop &L) 10422 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10423 10424 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10425 const SCEV *Expr = SE.getSCEV(V); 10426 RewriteEntry &Entry = RewriteMap[Expr]; 10427 10428 // If we already have an entry and the version matches, return it. 10429 if (Entry.second && Generation == Entry.first) 10430 return Entry.second; 10431 10432 // We found an entry but it's stale. Rewrite the stale entry 10433 // acording to the current predicate. 10434 if (Entry.second) 10435 Expr = Entry.second; 10436 10437 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10438 Entry = {Generation, NewSCEV}; 10439 10440 return NewSCEV; 10441 } 10442 10443 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10444 if (!BackedgeCount) { 10445 SCEVUnionPredicate BackedgePred; 10446 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10447 addPredicate(BackedgePred); 10448 } 10449 return BackedgeCount; 10450 } 10451 10452 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10453 if (Preds.implies(&Pred)) 10454 return; 10455 Preds.add(&Pred); 10456 updateGeneration(); 10457 } 10458 10459 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10460 return Preds; 10461 } 10462 10463 void PredicatedScalarEvolution::updateGeneration() { 10464 // If the generation number wrapped recompute everything. 10465 if (++Generation == 0) { 10466 for (auto &II : RewriteMap) { 10467 const SCEV *Rewritten = II.second.second; 10468 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10469 } 10470 } 10471 } 10472 10473 void PredicatedScalarEvolution::setNoOverflow( 10474 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10475 const SCEV *Expr = getSCEV(V); 10476 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10477 10478 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10479 10480 // Clear the statically implied flags. 10481 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10482 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10483 10484 auto II = FlagsMap.insert({V, Flags}); 10485 if (!II.second) 10486 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10487 } 10488 10489 bool PredicatedScalarEvolution::hasNoOverflow( 10490 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10491 const SCEV *Expr = getSCEV(V); 10492 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10493 10494 Flags = SCEVWrapPredicate::clearFlags( 10495 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10496 10497 auto II = FlagsMap.find(V); 10498 10499 if (II != FlagsMap.end()) 10500 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10501 10502 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10503 } 10504 10505 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10506 const SCEV *Expr = this->getSCEV(V); 10507 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10508 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10509 10510 if (!New) 10511 return nullptr; 10512 10513 for (auto *P : NewPreds) 10514 Preds.add(P); 10515 10516 updateGeneration(); 10517 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10518 return New; 10519 } 10520 10521 PredicatedScalarEvolution::PredicatedScalarEvolution( 10522 const PredicatedScalarEvolution &Init) 10523 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10524 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10525 for (const auto &I : Init.FlagsMap) 10526 FlagsMap.insert(I); 10527 } 10528 10529 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10530 // For each block. 10531 for (auto *BB : L.getBlocks()) 10532 for (auto &I : *BB) { 10533 if (!SE.isSCEVable(I.getType())) 10534 continue; 10535 10536 auto *Expr = SE.getSCEV(&I); 10537 auto II = RewriteMap.find(Expr); 10538 10539 if (II == RewriteMap.end()) 10540 continue; 10541 10542 // Don't print things that are not interesting. 10543 if (II->second.second == Expr) 10544 continue; 10545 10546 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10547 OS.indent(Depth + 2) << *Expr << "\n"; 10548 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10549 } 10550 } 10551