1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/DataLayout.h" 77 #include "llvm/Target/TargetLibraryInfo.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/ConstantRange.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GetElementPtrTypeIterator.h" 83 #include "llvm/Support/InstIterator.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/ADT/Statistic.h" 87 #include "llvm/ADT/STLExtras.h" 88 #include "llvm/ADT/SmallPtrSet.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 // FIXME: Enable this with XDEBUG when the test suite is clean. 109 static cl::opt<bool> 110 VerifySCEV("verify-scev", 111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 112 113 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 118 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 119 "Scalar Evolution Analysis", false, true) 120 char ScalarEvolution::ID = 0; 121 122 //===----------------------------------------------------------------------===// 123 // SCEV class definitions 124 //===----------------------------------------------------------------------===// 125 126 //===----------------------------------------------------------------------===// 127 // Implementation of the SCEV class. 128 // 129 130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 131 void SCEV::dump() const { 132 print(dbgs()); 133 dbgs() << '\n'; 134 } 135 #endif 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (getSCEVType()) { 139 case scConstant: 140 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->getNoWrapFlags(FlagNUW)) 170 OS << "nuw><"; 171 if (AR->getNoWrapFlags(FlagNSW)) 172 OS << "nsw><"; 173 if (AR->getNoWrapFlags(FlagNW) && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = 0; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (llvm::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->getNoWrapFlags(FlagNUW)) 204 OS << "<nuw>"; 205 if (NAry->getNoWrapFlags(FlagNSW)) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 WriteAsOperand(OS, FieldNo, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 WriteAsOperand(OS, U->getValue(), false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 default: break; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (getSCEVType()) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 default: 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 } 273 274 bool SCEV::isZero() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isZero(); 277 return false; 278 } 279 280 bool SCEV::isOne() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isOne(); 283 return false; 284 } 285 286 bool SCEV::isAllOnesValue() const { 287 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 288 return SC->getValue()->isAllOnesValue(); 289 return false; 290 } 291 292 /// isNonConstantNegative - Return true if the specified scev is negated, but 293 /// not a constant. 294 bool SCEV::isNonConstantNegative() const { 295 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 296 if (!Mul) return false; 297 298 // If there is a constant factor, it will be first. 299 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 300 if (!SC) return false; 301 302 // Return true if the value is negative, this matches things like (-42 * V). 303 return SC->getValue()->getValue().isNegative(); 304 } 305 306 SCEVCouldNotCompute::SCEVCouldNotCompute() : 307 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 308 309 bool SCEVCouldNotCompute::classof(const SCEV *S) { 310 return S->getSCEVType() == scCouldNotCompute; 311 } 312 313 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 314 FoldingSetNodeID ID; 315 ID.AddInteger(scConstant); 316 ID.AddPointer(V); 317 void *IP = 0; 318 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 319 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 320 UniqueSCEVs.InsertNode(S, IP); 321 return S; 322 } 323 324 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 325 return getConstant(ConstantInt::get(getContext(), Val)); 326 } 327 328 const SCEV * 329 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 330 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 331 return getConstant(ConstantInt::get(ITy, V, isSigned)); 332 } 333 334 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 335 unsigned SCEVTy, const SCEV *op, Type *ty) 336 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 337 338 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 339 const SCEV *op, Type *ty) 340 : SCEVCastExpr(ID, scTruncate, op, ty) { 341 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 342 (Ty->isIntegerTy() || Ty->isPointerTy()) && 343 "Cannot truncate non-integer value!"); 344 } 345 346 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 347 const SCEV *op, Type *ty) 348 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 349 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 350 (Ty->isIntegerTy() || Ty->isPointerTy()) && 351 "Cannot zero extend non-integer value!"); 352 } 353 354 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 355 const SCEV *op, Type *ty) 356 : SCEVCastExpr(ID, scSignExtend, op, ty) { 357 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 358 (Ty->isIntegerTy() || Ty->isPointerTy()) && 359 "Cannot sign extend non-integer value!"); 360 } 361 362 void SCEVUnknown::deleted() { 363 // Clear this SCEVUnknown from various maps. 364 SE->forgetMemoizedResults(this); 365 366 // Remove this SCEVUnknown from the uniquing map. 367 SE->UniqueSCEVs.RemoveNode(this); 368 369 // Release the value. 370 setValPtr(0); 371 } 372 373 void SCEVUnknown::allUsesReplacedWith(Value *New) { 374 // Clear this SCEVUnknown from various maps. 375 SE->forgetMemoizedResults(this); 376 377 // Remove this SCEVUnknown from the uniquing map. 378 SE->UniqueSCEVs.RemoveNode(this); 379 380 // Update this SCEVUnknown to point to the new value. This is needed 381 // because there may still be outstanding SCEVs which still point to 382 // this SCEVUnknown. 383 setValPtr(New); 384 } 385 386 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 387 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 388 if (VCE->getOpcode() == Instruction::PtrToInt) 389 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 390 if (CE->getOpcode() == Instruction::GetElementPtr && 391 CE->getOperand(0)->isNullValue() && 392 CE->getNumOperands() == 2) 393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 394 if (CI->isOne()) { 395 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 396 ->getElementType(); 397 return true; 398 } 399 400 return false; 401 } 402 403 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 404 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 405 if (VCE->getOpcode() == Instruction::PtrToInt) 406 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 407 if (CE->getOpcode() == Instruction::GetElementPtr && 408 CE->getOperand(0)->isNullValue()) { 409 Type *Ty = 410 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 411 if (StructType *STy = dyn_cast<StructType>(Ty)) 412 if (!STy->isPacked() && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(1)->isNullValue()) { 415 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 416 if (CI->isOne() && 417 STy->getNumElements() == 2 && 418 STy->getElementType(0)->isIntegerTy(1)) { 419 AllocTy = STy->getElementType(1); 420 return true; 421 } 422 } 423 } 424 425 return false; 426 } 427 428 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 429 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 430 if (VCE->getOpcode() == Instruction::PtrToInt) 431 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 432 if (CE->getOpcode() == Instruction::GetElementPtr && 433 CE->getNumOperands() == 3 && 434 CE->getOperand(0)->isNullValue() && 435 CE->getOperand(1)->isNullValue()) { 436 Type *Ty = 437 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 438 // Ignore vector types here so that ScalarEvolutionExpander doesn't 439 // emit getelementptrs that index into vectors. 440 if (Ty->isStructTy() || Ty->isArrayTy()) { 441 CTy = Ty; 442 FieldNo = CE->getOperand(2); 443 return true; 444 } 445 } 446 447 return false; 448 } 449 450 //===----------------------------------------------------------------------===// 451 // SCEV Utilities 452 //===----------------------------------------------------------------------===// 453 454 namespace { 455 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 456 /// than the complexity of the RHS. This comparator is used to canonicalize 457 /// expressions. 458 class SCEVComplexityCompare { 459 const LoopInfo *const LI; 460 public: 461 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 462 463 // Return true or false if LHS is less than, or at least RHS, respectively. 464 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 465 return compare(LHS, RHS) < 0; 466 } 467 468 // Return negative, zero, or positive, if LHS is less than, equal to, or 469 // greater than RHS, respectively. A three-way result allows recursive 470 // comparisons to be more efficient. 471 int compare(const SCEV *LHS, const SCEV *RHS) const { 472 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 473 if (LHS == RHS) 474 return 0; 475 476 // Primarily, sort the SCEVs by their getSCEVType(). 477 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 478 if (LType != RType) 479 return (int)LType - (int)RType; 480 481 // Aside from the getSCEVType() ordering, the particular ordering 482 // isn't very important except that it's beneficial to be consistent, 483 // so that (a + b) and (b + a) don't end up as different expressions. 484 switch (LType) { 485 case scUnknown: { 486 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 487 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 488 489 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 490 // not as complete as it could be. 491 const Value *LV = LU->getValue(), *RV = RU->getValue(); 492 493 // Order pointer values after integer values. This helps SCEVExpander 494 // form GEPs. 495 bool LIsPointer = LV->getType()->isPointerTy(), 496 RIsPointer = RV->getType()->isPointerTy(); 497 if (LIsPointer != RIsPointer) 498 return (int)LIsPointer - (int)RIsPointer; 499 500 // Compare getValueID values. 501 unsigned LID = LV->getValueID(), 502 RID = RV->getValueID(); 503 if (LID != RID) 504 return (int)LID - (int)RID; 505 506 // Sort arguments by their position. 507 if (const Argument *LA = dyn_cast<Argument>(LV)) { 508 const Argument *RA = cast<Argument>(RV); 509 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 510 return (int)LArgNo - (int)RArgNo; 511 } 512 513 // For instructions, compare their loop depth, and their operand 514 // count. This is pretty loose. 515 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 516 const Instruction *RInst = cast<Instruction>(RV); 517 518 // Compare loop depths. 519 const BasicBlock *LParent = LInst->getParent(), 520 *RParent = RInst->getParent(); 521 if (LParent != RParent) { 522 unsigned LDepth = LI->getLoopDepth(LParent), 523 RDepth = LI->getLoopDepth(RParent); 524 if (LDepth != RDepth) 525 return (int)LDepth - (int)RDepth; 526 } 527 528 // Compare the number of operands. 529 unsigned LNumOps = LInst->getNumOperands(), 530 RNumOps = RInst->getNumOperands(); 531 return (int)LNumOps - (int)RNumOps; 532 } 533 534 return 0; 535 } 536 537 case scConstant: { 538 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 539 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 540 541 // Compare constant values. 542 const APInt &LA = LC->getValue()->getValue(); 543 const APInt &RA = RC->getValue()->getValue(); 544 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 545 if (LBitWidth != RBitWidth) 546 return (int)LBitWidth - (int)RBitWidth; 547 return LA.ult(RA) ? -1 : 1; 548 } 549 550 case scAddRecExpr: { 551 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 552 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 553 554 // Compare addrec loop depths. 555 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 556 if (LLoop != RLoop) { 557 unsigned LDepth = LLoop->getLoopDepth(), 558 RDepth = RLoop->getLoopDepth(); 559 if (LDepth != RDepth) 560 return (int)LDepth - (int)RDepth; 561 } 562 563 // Addrec complexity grows with operand count. 564 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 565 if (LNumOps != RNumOps) 566 return (int)LNumOps - (int)RNumOps; 567 568 // Lexicographically compare. 569 for (unsigned i = 0; i != LNumOps; ++i) { 570 long X = compare(LA->getOperand(i), RA->getOperand(i)); 571 if (X != 0) 572 return X; 573 } 574 575 return 0; 576 } 577 578 case scAddExpr: 579 case scMulExpr: 580 case scSMaxExpr: 581 case scUMaxExpr: { 582 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 583 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 584 585 // Lexicographically compare n-ary expressions. 586 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 587 for (unsigned i = 0; i != LNumOps; ++i) { 588 if (i >= RNumOps) 589 return 1; 590 long X = compare(LC->getOperand(i), RC->getOperand(i)); 591 if (X != 0) 592 return X; 593 } 594 return (int)LNumOps - (int)RNumOps; 595 } 596 597 case scUDivExpr: { 598 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 599 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 600 601 // Lexicographically compare udiv expressions. 602 long X = compare(LC->getLHS(), RC->getLHS()); 603 if (X != 0) 604 return X; 605 return compare(LC->getRHS(), RC->getRHS()); 606 } 607 608 case scTruncate: 609 case scZeroExtend: 610 case scSignExtend: { 611 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 612 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 613 614 // Compare cast expressions by operand. 615 return compare(LC->getOperand(), RC->getOperand()); 616 } 617 618 default: 619 llvm_unreachable("Unknown SCEV kind!"); 620 } 621 } 622 }; 623 } 624 625 /// GroupByComplexity - Given a list of SCEV objects, order them by their 626 /// complexity, and group objects of the same complexity together by value. 627 /// When this routine is finished, we know that any duplicates in the vector are 628 /// consecutive and that complexity is monotonically increasing. 629 /// 630 /// Note that we go take special precautions to ensure that we get deterministic 631 /// results from this routine. In other words, we don't want the results of 632 /// this to depend on where the addresses of various SCEV objects happened to 633 /// land in memory. 634 /// 635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 636 LoopInfo *LI) { 637 if (Ops.size() < 2) return; // Noop 638 if (Ops.size() == 2) { 639 // This is the common case, which also happens to be trivially simple. 640 // Special case it. 641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 642 if (SCEVComplexityCompare(LI)(RHS, LHS)) 643 std::swap(LHS, RHS); 644 return; 645 } 646 647 // Do the rough sort by complexity. 648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 649 650 // Now that we are sorted by complexity, group elements of the same 651 // complexity. Note that this is, at worst, N^2, but the vector is likely to 652 // be extremely short in practice. Note that we take this approach because we 653 // do not want to depend on the addresses of the objects we are grouping. 654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 655 const SCEV *S = Ops[i]; 656 unsigned Complexity = S->getSCEVType(); 657 658 // If there are any objects of the same complexity and same value as this 659 // one, group them. 660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 661 if (Ops[j] == S) { // Found a duplicate. 662 // Move it to immediately after i'th element. 663 std::swap(Ops[i+1], Ops[j]); 664 ++i; // no need to rescan it. 665 if (i == e-2) return; // Done! 666 } 667 } 668 } 669 } 670 671 672 673 //===----------------------------------------------------------------------===// 674 // Simple SCEV method implementations 675 //===----------------------------------------------------------------------===// 676 677 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 678 /// Assume, K > 0. 679 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 680 ScalarEvolution &SE, 681 Type *ResultTy) { 682 // Handle the simplest case efficiently. 683 if (K == 1) 684 return SE.getTruncateOrZeroExtend(It, ResultTy); 685 686 // We are using the following formula for BC(It, K): 687 // 688 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 689 // 690 // Suppose, W is the bitwidth of the return value. We must be prepared for 691 // overflow. Hence, we must assure that the result of our computation is 692 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 693 // safe in modular arithmetic. 694 // 695 // However, this code doesn't use exactly that formula; the formula it uses 696 // is something like the following, where T is the number of factors of 2 in 697 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 698 // exponentiation: 699 // 700 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 701 // 702 // This formula is trivially equivalent to the previous formula. However, 703 // this formula can be implemented much more efficiently. The trick is that 704 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 705 // arithmetic. To do exact division in modular arithmetic, all we have 706 // to do is multiply by the inverse. Therefore, this step can be done at 707 // width W. 708 // 709 // The next issue is how to safely do the division by 2^T. The way this 710 // is done is by doing the multiplication step at a width of at least W + T 711 // bits. This way, the bottom W+T bits of the product are accurate. Then, 712 // when we perform the division by 2^T (which is equivalent to a right shift 713 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 714 // truncated out after the division by 2^T. 715 // 716 // In comparison to just directly using the first formula, this technique 717 // is much more efficient; using the first formula requires W * K bits, 718 // but this formula less than W + K bits. Also, the first formula requires 719 // a division step, whereas this formula only requires multiplies and shifts. 720 // 721 // It doesn't matter whether the subtraction step is done in the calculation 722 // width or the input iteration count's width; if the subtraction overflows, 723 // the result must be zero anyway. We prefer here to do it in the width of 724 // the induction variable because it helps a lot for certain cases; CodeGen 725 // isn't smart enough to ignore the overflow, which leads to much less 726 // efficient code if the width of the subtraction is wider than the native 727 // register width. 728 // 729 // (It's possible to not widen at all by pulling out factors of 2 before 730 // the multiplication; for example, K=2 can be calculated as 731 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 732 // extra arithmetic, so it's not an obvious win, and it gets 733 // much more complicated for K > 3.) 734 735 // Protection from insane SCEVs; this bound is conservative, 736 // but it probably doesn't matter. 737 if (K > 1000) 738 return SE.getCouldNotCompute(); 739 740 unsigned W = SE.getTypeSizeInBits(ResultTy); 741 742 // Calculate K! / 2^T and T; we divide out the factors of two before 743 // multiplying for calculating K! / 2^T to avoid overflow. 744 // Other overflow doesn't matter because we only care about the bottom 745 // W bits of the result. 746 APInt OddFactorial(W, 1); 747 unsigned T = 1; 748 for (unsigned i = 3; i <= K; ++i) { 749 APInt Mult(W, i); 750 unsigned TwoFactors = Mult.countTrailingZeros(); 751 T += TwoFactors; 752 Mult = Mult.lshr(TwoFactors); 753 OddFactorial *= Mult; 754 } 755 756 // We need at least W + T bits for the multiplication step 757 unsigned CalculationBits = W + T; 758 759 // Calculate 2^T, at width T+W. 760 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 761 762 // Calculate the multiplicative inverse of K! / 2^T; 763 // this multiplication factor will perform the exact division by 764 // K! / 2^T. 765 APInt Mod = APInt::getSignedMinValue(W+1); 766 APInt MultiplyFactor = OddFactorial.zext(W+1); 767 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 768 MultiplyFactor = MultiplyFactor.trunc(W); 769 770 // Calculate the product, at width T+W 771 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 772 CalculationBits); 773 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 774 for (unsigned i = 1; i != K; ++i) { 775 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 776 Dividend = SE.getMulExpr(Dividend, 777 SE.getTruncateOrZeroExtend(S, CalculationTy)); 778 } 779 780 // Divide by 2^T 781 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 782 783 // Truncate the result, and divide by K! / 2^T. 784 785 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 786 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 787 } 788 789 /// evaluateAtIteration - Return the value of this chain of recurrences at 790 /// the specified iteration number. We can evaluate this recurrence by 791 /// multiplying each element in the chain by the binomial coefficient 792 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 793 /// 794 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 795 /// 796 /// where BC(It, k) stands for binomial coefficient. 797 /// 798 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 799 ScalarEvolution &SE) const { 800 const SCEV *Result = getStart(); 801 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 802 // The computation is correct in the face of overflow provided that the 803 // multiplication is performed _after_ the evaluation of the binomial 804 // coefficient. 805 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 806 if (isa<SCEVCouldNotCompute>(Coeff)) 807 return Coeff; 808 809 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 810 } 811 return Result; 812 } 813 814 //===----------------------------------------------------------------------===// 815 // SCEV Expression folder implementations 816 //===----------------------------------------------------------------------===// 817 818 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 819 Type *Ty) { 820 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 821 "This is not a truncating conversion!"); 822 assert(isSCEVable(Ty) && 823 "This is not a conversion to a SCEVable type!"); 824 Ty = getEffectiveSCEVType(Ty); 825 826 FoldingSetNodeID ID; 827 ID.AddInteger(scTruncate); 828 ID.AddPointer(Op); 829 ID.AddPointer(Ty); 830 void *IP = 0; 831 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 832 833 // Fold if the operand is constant. 834 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 835 return getConstant( 836 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 837 838 // trunc(trunc(x)) --> trunc(x) 839 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 840 return getTruncateExpr(ST->getOperand(), Ty); 841 842 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 843 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 844 return getTruncateOrSignExtend(SS->getOperand(), Ty); 845 846 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 847 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 848 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 849 850 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 851 // eliminate all the truncates. 852 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 853 SmallVector<const SCEV *, 4> Operands; 854 bool hasTrunc = false; 855 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 856 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 857 hasTrunc = isa<SCEVTruncateExpr>(S); 858 Operands.push_back(S); 859 } 860 if (!hasTrunc) 861 return getAddExpr(Operands); 862 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 863 } 864 865 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 866 // eliminate all the truncates. 867 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 868 SmallVector<const SCEV *, 4> Operands; 869 bool hasTrunc = false; 870 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 871 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 872 hasTrunc = isa<SCEVTruncateExpr>(S); 873 Operands.push_back(S); 874 } 875 if (!hasTrunc) 876 return getMulExpr(Operands); 877 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 878 } 879 880 // If the input value is a chrec scev, truncate the chrec's operands. 881 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 882 SmallVector<const SCEV *, 4> Operands; 883 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 884 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 885 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 886 } 887 888 // The cast wasn't folded; create an explicit cast node. We can reuse 889 // the existing insert position since if we get here, we won't have 890 // made any changes which would invalidate it. 891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 892 Op, Ty); 893 UniqueSCEVs.InsertNode(S, IP); 894 return S; 895 } 896 897 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 898 Type *Ty) { 899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 900 "This is not an extending conversion!"); 901 assert(isSCEVable(Ty) && 902 "This is not a conversion to a SCEVable type!"); 903 Ty = getEffectiveSCEVType(Ty); 904 905 // Fold if the operand is constant. 906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 907 return getConstant( 908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 909 910 // zext(zext(x)) --> zext(x) 911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 912 return getZeroExtendExpr(SZ->getOperand(), Ty); 913 914 // Before doing any expensive analysis, check to see if we've already 915 // computed a SCEV for this Op and Ty. 916 FoldingSetNodeID ID; 917 ID.AddInteger(scZeroExtend); 918 ID.AddPointer(Op); 919 ID.AddPointer(Ty); 920 void *IP = 0; 921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 922 923 // zext(trunc(x)) --> zext(x) or x or trunc(x) 924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 925 // It's possible the bits taken off by the truncate were all zero bits. If 926 // so, we should be able to simplify this further. 927 const SCEV *X = ST->getOperand(); 928 ConstantRange CR = getUnsignedRange(X); 929 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 930 unsigned NewBits = getTypeSizeInBits(Ty); 931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 932 CR.zextOrTrunc(NewBits))) 933 return getTruncateOrZeroExtend(X, Ty); 934 } 935 936 // If the input value is a chrec scev, and we can prove that the value 937 // did not overflow the old, smaller, value, we can zero extend all of the 938 // operands (often constants). This allows analysis of something like 939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 941 if (AR->isAffine()) { 942 const SCEV *Start = AR->getStart(); 943 const SCEV *Step = AR->getStepRecurrence(*this); 944 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 945 const Loop *L = AR->getLoop(); 946 947 // If we have special knowledge that this addrec won't overflow, 948 // we don't need to do any further analysis. 949 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 950 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 951 getZeroExtendExpr(Step, Ty), 952 L, AR->getNoWrapFlags()); 953 954 // Check whether the backedge-taken count is SCEVCouldNotCompute. 955 // Note that this serves two purposes: It filters out loops that are 956 // simply not analyzable, and it covers the case where this code is 957 // being called from within backedge-taken count analysis, such that 958 // attempting to ask for the backedge-taken count would likely result 959 // in infinite recursion. In the later case, the analysis code will 960 // cope with a conservative value, and it will take care to purge 961 // that value once it has finished. 962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 964 // Manually compute the final value for AR, checking for 965 // overflow. 966 967 // Check whether the backedge-taken count can be losslessly casted to 968 // the addrec's type. The count is always unsigned. 969 const SCEV *CastedMaxBECount = 970 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 971 const SCEV *RecastedMaxBECount = 972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 973 if (MaxBECount == RecastedMaxBECount) { 974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 975 // Check whether Start+Step*MaxBECount has no unsigned overflow. 976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 977 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 978 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 979 const SCEV *WideMaxBECount = 980 getZeroExtendExpr(CastedMaxBECount, WideTy); 981 const SCEV *OperandExtendedAdd = 982 getAddExpr(WideStart, 983 getMulExpr(WideMaxBECount, 984 getZeroExtendExpr(Step, WideTy))); 985 if (ZAdd == OperandExtendedAdd) { 986 // Cache knowledge of AR NUW, which is propagated to this AddRec. 987 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 988 // Return the expression with the addrec on the outside. 989 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 990 getZeroExtendExpr(Step, Ty), 991 L, AR->getNoWrapFlags()); 992 } 993 // Similar to above, only this time treat the step value as signed. 994 // This covers loops that count down. 995 OperandExtendedAdd = 996 getAddExpr(WideStart, 997 getMulExpr(WideMaxBECount, 998 getSignExtendExpr(Step, WideTy))); 999 if (ZAdd == OperandExtendedAdd) { 1000 // Cache knowledge of AR NW, which is propagated to this AddRec. 1001 // Negative step causes unsigned wrap, but it still can't self-wrap. 1002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1003 // Return the expression with the addrec on the outside. 1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1005 getSignExtendExpr(Step, Ty), 1006 L, AR->getNoWrapFlags()); 1007 } 1008 } 1009 1010 // If the backedge is guarded by a comparison with the pre-inc value 1011 // the addrec is safe. Also, if the entry is guarded by a comparison 1012 // with the start value and the backedge is guarded by a comparison 1013 // with the post-inc value, the addrec is safe. 1014 if (isKnownPositive(Step)) { 1015 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1016 getUnsignedRange(Step).getUnsignedMax()); 1017 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1018 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1019 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1020 AR->getPostIncExpr(*this), N))) { 1021 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1022 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1023 // Return the expression with the addrec on the outside. 1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1025 getZeroExtendExpr(Step, Ty), 1026 L, AR->getNoWrapFlags()); 1027 } 1028 } else if (isKnownNegative(Step)) { 1029 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1030 getSignedRange(Step).getSignedMin()); 1031 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1032 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1033 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1034 AR->getPostIncExpr(*this), N))) { 1035 // Cache knowledge of AR NW, which is propagated to this AddRec. 1036 // Negative step causes unsigned wrap, but it still can't self-wrap. 1037 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1038 // Return the expression with the addrec on the outside. 1039 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1040 getSignExtendExpr(Step, Ty), 1041 L, AR->getNoWrapFlags()); 1042 } 1043 } 1044 } 1045 } 1046 1047 // The cast wasn't folded; create an explicit cast node. 1048 // Recompute the insert position, as it may have been invalidated. 1049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1050 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1051 Op, Ty); 1052 UniqueSCEVs.InsertNode(S, IP); 1053 return S; 1054 } 1055 1056 // Get the limit of a recurrence such that incrementing by Step cannot cause 1057 // signed overflow as long as the value of the recurrence within the loop does 1058 // not exceed this limit before incrementing. 1059 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1060 ICmpInst::Predicate *Pred, 1061 ScalarEvolution *SE) { 1062 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1063 if (SE->isKnownPositive(Step)) { 1064 *Pred = ICmpInst::ICMP_SLT; 1065 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1066 SE->getSignedRange(Step).getSignedMax()); 1067 } 1068 if (SE->isKnownNegative(Step)) { 1069 *Pred = ICmpInst::ICMP_SGT; 1070 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1071 SE->getSignedRange(Step).getSignedMin()); 1072 } 1073 return 0; 1074 } 1075 1076 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1077 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1078 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1079 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1080 // result, the expression "Step + sext(PreIncAR)" is congruent with 1081 // "sext(PostIncAR)" 1082 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1083 Type *Ty, 1084 ScalarEvolution *SE) { 1085 const Loop *L = AR->getLoop(); 1086 const SCEV *Start = AR->getStart(); 1087 const SCEV *Step = AR->getStepRecurrence(*SE); 1088 1089 // Check for a simple looking step prior to loop entry. 1090 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1091 if (!SA) 1092 return 0; 1093 1094 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1095 // subtraction is expensive. For this purpose, perform a quick and dirty 1096 // difference, by checking for Step in the operand list. 1097 SmallVector<const SCEV *, 4> DiffOps; 1098 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1099 I != E; ++I) { 1100 if (*I != Step) 1101 DiffOps.push_back(*I); 1102 } 1103 if (DiffOps.size() == SA->getNumOperands()) 1104 return 0; 1105 1106 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1107 // same three conditions that getSignExtendedExpr checks. 1108 1109 // 1. NSW flags on the step increment. 1110 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1111 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1112 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1113 1114 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1115 return PreStart; 1116 1117 // 2. Direct overflow check on the step operation's expression. 1118 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1119 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1120 const SCEV *OperandExtendedStart = 1121 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1122 SE->getSignExtendExpr(Step, WideTy)); 1123 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1124 // Cache knowledge of PreAR NSW. 1125 if (PreAR) 1126 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1127 // FIXME: this optimization needs a unit test 1128 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1129 return PreStart; 1130 } 1131 1132 // 3. Loop precondition. 1133 ICmpInst::Predicate Pred; 1134 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1135 1136 if (OverflowLimit && 1137 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1138 return PreStart; 1139 } 1140 return 0; 1141 } 1142 1143 // Get the normalized sign-extended expression for this AddRec's Start. 1144 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1145 Type *Ty, 1146 ScalarEvolution *SE) { 1147 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1148 if (!PreStart) 1149 return SE->getSignExtendExpr(AR->getStart(), Ty); 1150 1151 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1152 SE->getSignExtendExpr(PreStart, Ty)); 1153 } 1154 1155 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1156 Type *Ty) { 1157 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1158 "This is not an extending conversion!"); 1159 assert(isSCEVable(Ty) && 1160 "This is not a conversion to a SCEVable type!"); 1161 Ty = getEffectiveSCEVType(Ty); 1162 1163 // Fold if the operand is constant. 1164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1165 return getConstant( 1166 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1167 1168 // sext(sext(x)) --> sext(x) 1169 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1170 return getSignExtendExpr(SS->getOperand(), Ty); 1171 1172 // sext(zext(x)) --> zext(x) 1173 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1174 return getZeroExtendExpr(SZ->getOperand(), Ty); 1175 1176 // Before doing any expensive analysis, check to see if we've already 1177 // computed a SCEV for this Op and Ty. 1178 FoldingSetNodeID ID; 1179 ID.AddInteger(scSignExtend); 1180 ID.AddPointer(Op); 1181 ID.AddPointer(Ty); 1182 void *IP = 0; 1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1184 1185 // If the input value is provably positive, build a zext instead. 1186 if (isKnownNonNegative(Op)) 1187 return getZeroExtendExpr(Op, Ty); 1188 1189 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1190 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1191 // It's possible the bits taken off by the truncate were all sign bits. If 1192 // so, we should be able to simplify this further. 1193 const SCEV *X = ST->getOperand(); 1194 ConstantRange CR = getSignedRange(X); 1195 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1196 unsigned NewBits = getTypeSizeInBits(Ty); 1197 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1198 CR.sextOrTrunc(NewBits))) 1199 return getTruncateOrSignExtend(X, Ty); 1200 } 1201 1202 // If the input value is a chrec scev, and we can prove that the value 1203 // did not overflow the old, smaller, value, we can sign extend all of the 1204 // operands (often constants). This allows analysis of something like 1205 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1206 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1207 if (AR->isAffine()) { 1208 const SCEV *Start = AR->getStart(); 1209 const SCEV *Step = AR->getStepRecurrence(*this); 1210 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1211 const Loop *L = AR->getLoop(); 1212 1213 // If we have special knowledge that this addrec won't overflow, 1214 // we don't need to do any further analysis. 1215 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1216 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1217 getSignExtendExpr(Step, Ty), 1218 L, SCEV::FlagNSW); 1219 1220 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1221 // Note that this serves two purposes: It filters out loops that are 1222 // simply not analyzable, and it covers the case where this code is 1223 // being called from within backedge-taken count analysis, such that 1224 // attempting to ask for the backedge-taken count would likely result 1225 // in infinite recursion. In the later case, the analysis code will 1226 // cope with a conservative value, and it will take care to purge 1227 // that value once it has finished. 1228 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1229 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1230 // Manually compute the final value for AR, checking for 1231 // overflow. 1232 1233 // Check whether the backedge-taken count can be losslessly casted to 1234 // the addrec's type. The count is always unsigned. 1235 const SCEV *CastedMaxBECount = 1236 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1237 const SCEV *RecastedMaxBECount = 1238 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1239 if (MaxBECount == RecastedMaxBECount) { 1240 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1241 // Check whether Start+Step*MaxBECount has no signed overflow. 1242 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1243 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1244 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1245 const SCEV *WideMaxBECount = 1246 getZeroExtendExpr(CastedMaxBECount, WideTy); 1247 const SCEV *OperandExtendedAdd = 1248 getAddExpr(WideStart, 1249 getMulExpr(WideMaxBECount, 1250 getSignExtendExpr(Step, WideTy))); 1251 if (SAdd == OperandExtendedAdd) { 1252 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1253 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1254 // Return the expression with the addrec on the outside. 1255 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1256 getSignExtendExpr(Step, Ty), 1257 L, AR->getNoWrapFlags()); 1258 } 1259 // Similar to above, only this time treat the step value as unsigned. 1260 // This covers loops that count up with an unsigned step. 1261 OperandExtendedAdd = 1262 getAddExpr(WideStart, 1263 getMulExpr(WideMaxBECount, 1264 getZeroExtendExpr(Step, WideTy))); 1265 if (SAdd == OperandExtendedAdd) { 1266 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1267 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1268 // Return the expression with the addrec on the outside. 1269 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1270 getZeroExtendExpr(Step, Ty), 1271 L, AR->getNoWrapFlags()); 1272 } 1273 } 1274 1275 // If the backedge is guarded by a comparison with the pre-inc value 1276 // the addrec is safe. Also, if the entry is guarded by a comparison 1277 // with the start value and the backedge is guarded by a comparison 1278 // with the post-inc value, the addrec is safe. 1279 ICmpInst::Predicate Pred; 1280 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1281 if (OverflowLimit && 1282 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1283 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1284 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1285 OverflowLimit)))) { 1286 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1289 getSignExtendExpr(Step, Ty), 1290 L, AR->getNoWrapFlags()); 1291 } 1292 } 1293 } 1294 1295 // The cast wasn't folded; create an explicit cast node. 1296 // Recompute the insert position, as it may have been invalidated. 1297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1298 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1299 Op, Ty); 1300 UniqueSCEVs.InsertNode(S, IP); 1301 return S; 1302 } 1303 1304 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1305 /// unspecified bits out to the given type. 1306 /// 1307 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1308 Type *Ty) { 1309 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1310 "This is not an extending conversion!"); 1311 assert(isSCEVable(Ty) && 1312 "This is not a conversion to a SCEVable type!"); 1313 Ty = getEffectiveSCEVType(Ty); 1314 1315 // Sign-extend negative constants. 1316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1317 if (SC->getValue()->getValue().isNegative()) 1318 return getSignExtendExpr(Op, Ty); 1319 1320 // Peel off a truncate cast. 1321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1322 const SCEV *NewOp = T->getOperand(); 1323 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1324 return getAnyExtendExpr(NewOp, Ty); 1325 return getTruncateOrNoop(NewOp, Ty); 1326 } 1327 1328 // Next try a zext cast. If the cast is folded, use it. 1329 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1330 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1331 return ZExt; 1332 1333 // Next try a sext cast. If the cast is folded, use it. 1334 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1335 if (!isa<SCEVSignExtendExpr>(SExt)) 1336 return SExt; 1337 1338 // Force the cast to be folded into the operands of an addrec. 1339 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1340 SmallVector<const SCEV *, 4> Ops; 1341 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1342 I != E; ++I) 1343 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1344 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1345 } 1346 1347 // If the expression is obviously signed, use the sext cast value. 1348 if (isa<SCEVSMaxExpr>(Op)) 1349 return SExt; 1350 1351 // Absent any other information, use the zext cast value. 1352 return ZExt; 1353 } 1354 1355 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1356 /// a list of operands to be added under the given scale, update the given 1357 /// map. This is a helper function for getAddRecExpr. As an example of 1358 /// what it does, given a sequence of operands that would form an add 1359 /// expression like this: 1360 /// 1361 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1362 /// 1363 /// where A and B are constants, update the map with these values: 1364 /// 1365 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1366 /// 1367 /// and add 13 + A*B*29 to AccumulatedConstant. 1368 /// This will allow getAddRecExpr to produce this: 1369 /// 1370 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1371 /// 1372 /// This form often exposes folding opportunities that are hidden in 1373 /// the original operand list. 1374 /// 1375 /// Return true iff it appears that any interesting folding opportunities 1376 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1377 /// the common case where no interesting opportunities are present, and 1378 /// is also used as a check to avoid infinite recursion. 1379 /// 1380 static bool 1381 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1382 SmallVector<const SCEV *, 8> &NewOps, 1383 APInt &AccumulatedConstant, 1384 const SCEV *const *Ops, size_t NumOperands, 1385 const APInt &Scale, 1386 ScalarEvolution &SE) { 1387 bool Interesting = false; 1388 1389 // Iterate over the add operands. They are sorted, with constants first. 1390 unsigned i = 0; 1391 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1392 ++i; 1393 // Pull a buried constant out to the outside. 1394 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1395 Interesting = true; 1396 AccumulatedConstant += Scale * C->getValue()->getValue(); 1397 } 1398 1399 // Next comes everything else. We're especially interested in multiplies 1400 // here, but they're in the middle, so just visit the rest with one loop. 1401 for (; i != NumOperands; ++i) { 1402 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1403 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1404 APInt NewScale = 1405 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1406 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1407 // A multiplication of a constant with another add; recurse. 1408 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1409 Interesting |= 1410 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1411 Add->op_begin(), Add->getNumOperands(), 1412 NewScale, SE); 1413 } else { 1414 // A multiplication of a constant with some other value. Update 1415 // the map. 1416 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1417 const SCEV *Key = SE.getMulExpr(MulOps); 1418 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1419 M.insert(std::make_pair(Key, NewScale)); 1420 if (Pair.second) { 1421 NewOps.push_back(Pair.first->first); 1422 } else { 1423 Pair.first->second += NewScale; 1424 // The map already had an entry for this value, which may indicate 1425 // a folding opportunity. 1426 Interesting = true; 1427 } 1428 } 1429 } else { 1430 // An ordinary operand. Update the map. 1431 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1432 M.insert(std::make_pair(Ops[i], Scale)); 1433 if (Pair.second) { 1434 NewOps.push_back(Pair.first->first); 1435 } else { 1436 Pair.first->second += Scale; 1437 // The map already had an entry for this value, which may indicate 1438 // a folding opportunity. 1439 Interesting = true; 1440 } 1441 } 1442 } 1443 1444 return Interesting; 1445 } 1446 1447 namespace { 1448 struct APIntCompare { 1449 bool operator()(const APInt &LHS, const APInt &RHS) const { 1450 return LHS.ult(RHS); 1451 } 1452 }; 1453 } 1454 1455 /// getAddExpr - Get a canonical add expression, or something simpler if 1456 /// possible. 1457 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1458 SCEV::NoWrapFlags Flags) { 1459 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1460 "only nuw or nsw allowed"); 1461 assert(!Ops.empty() && "Cannot get empty add!"); 1462 if (Ops.size() == 1) return Ops[0]; 1463 #ifndef NDEBUG 1464 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1465 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1466 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1467 "SCEVAddExpr operand types don't match!"); 1468 #endif 1469 1470 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1471 // And vice-versa. 1472 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1473 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1474 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1475 bool All = true; 1476 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1477 E = Ops.end(); I != E; ++I) 1478 if (!isKnownNonNegative(*I)) { 1479 All = false; 1480 break; 1481 } 1482 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1483 } 1484 1485 // Sort by complexity, this groups all similar expression types together. 1486 GroupByComplexity(Ops, LI); 1487 1488 // If there are any constants, fold them together. 1489 unsigned Idx = 0; 1490 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1491 ++Idx; 1492 assert(Idx < Ops.size()); 1493 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1494 // We found two constants, fold them together! 1495 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1496 RHSC->getValue()->getValue()); 1497 if (Ops.size() == 2) return Ops[0]; 1498 Ops.erase(Ops.begin()+1); // Erase the folded element 1499 LHSC = cast<SCEVConstant>(Ops[0]); 1500 } 1501 1502 // If we are left with a constant zero being added, strip it off. 1503 if (LHSC->getValue()->isZero()) { 1504 Ops.erase(Ops.begin()); 1505 --Idx; 1506 } 1507 1508 if (Ops.size() == 1) return Ops[0]; 1509 } 1510 1511 // Okay, check to see if the same value occurs in the operand list more than 1512 // once. If so, merge them together into an multiply expression. Since we 1513 // sorted the list, these values are required to be adjacent. 1514 Type *Ty = Ops[0]->getType(); 1515 bool FoundMatch = false; 1516 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1517 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1518 // Scan ahead to count how many equal operands there are. 1519 unsigned Count = 2; 1520 while (i+Count != e && Ops[i+Count] == Ops[i]) 1521 ++Count; 1522 // Merge the values into a multiply. 1523 const SCEV *Scale = getConstant(Ty, Count); 1524 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1525 if (Ops.size() == Count) 1526 return Mul; 1527 Ops[i] = Mul; 1528 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1529 --i; e -= Count - 1; 1530 FoundMatch = true; 1531 } 1532 if (FoundMatch) 1533 return getAddExpr(Ops, Flags); 1534 1535 // Check for truncates. If all the operands are truncated from the same 1536 // type, see if factoring out the truncate would permit the result to be 1537 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1538 // if the contents of the resulting outer trunc fold to something simple. 1539 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1540 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1541 Type *DstType = Trunc->getType(); 1542 Type *SrcType = Trunc->getOperand()->getType(); 1543 SmallVector<const SCEV *, 8> LargeOps; 1544 bool Ok = true; 1545 // Check all the operands to see if they can be represented in the 1546 // source type of the truncate. 1547 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1548 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1549 if (T->getOperand()->getType() != SrcType) { 1550 Ok = false; 1551 break; 1552 } 1553 LargeOps.push_back(T->getOperand()); 1554 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1555 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1556 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1557 SmallVector<const SCEV *, 8> LargeMulOps; 1558 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1559 if (const SCEVTruncateExpr *T = 1560 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1561 if (T->getOperand()->getType() != SrcType) { 1562 Ok = false; 1563 break; 1564 } 1565 LargeMulOps.push_back(T->getOperand()); 1566 } else if (const SCEVConstant *C = 1567 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1568 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1569 } else { 1570 Ok = false; 1571 break; 1572 } 1573 } 1574 if (Ok) 1575 LargeOps.push_back(getMulExpr(LargeMulOps)); 1576 } else { 1577 Ok = false; 1578 break; 1579 } 1580 } 1581 if (Ok) { 1582 // Evaluate the expression in the larger type. 1583 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1584 // If it folds to something simple, use it. Otherwise, don't. 1585 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1586 return getTruncateExpr(Fold, DstType); 1587 } 1588 } 1589 1590 // Skip past any other cast SCEVs. 1591 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1592 ++Idx; 1593 1594 // If there are add operands they would be next. 1595 if (Idx < Ops.size()) { 1596 bool DeletedAdd = false; 1597 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1598 // If we have an add, expand the add operands onto the end of the operands 1599 // list. 1600 Ops.erase(Ops.begin()+Idx); 1601 Ops.append(Add->op_begin(), Add->op_end()); 1602 DeletedAdd = true; 1603 } 1604 1605 // If we deleted at least one add, we added operands to the end of the list, 1606 // and they are not necessarily sorted. Recurse to resort and resimplify 1607 // any operands we just acquired. 1608 if (DeletedAdd) 1609 return getAddExpr(Ops); 1610 } 1611 1612 // Skip over the add expression until we get to a multiply. 1613 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1614 ++Idx; 1615 1616 // Check to see if there are any folding opportunities present with 1617 // operands multiplied by constant values. 1618 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1619 uint64_t BitWidth = getTypeSizeInBits(Ty); 1620 DenseMap<const SCEV *, APInt> M; 1621 SmallVector<const SCEV *, 8> NewOps; 1622 APInt AccumulatedConstant(BitWidth, 0); 1623 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1624 Ops.data(), Ops.size(), 1625 APInt(BitWidth, 1), *this)) { 1626 // Some interesting folding opportunity is present, so its worthwhile to 1627 // re-generate the operands list. Group the operands by constant scale, 1628 // to avoid multiplying by the same constant scale multiple times. 1629 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1630 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1631 E = NewOps.end(); I != E; ++I) 1632 MulOpLists[M.find(*I)->second].push_back(*I); 1633 // Re-generate the operands list. 1634 Ops.clear(); 1635 if (AccumulatedConstant != 0) 1636 Ops.push_back(getConstant(AccumulatedConstant)); 1637 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1638 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1639 if (I->first != 0) 1640 Ops.push_back(getMulExpr(getConstant(I->first), 1641 getAddExpr(I->second))); 1642 if (Ops.empty()) 1643 return getConstant(Ty, 0); 1644 if (Ops.size() == 1) 1645 return Ops[0]; 1646 return getAddExpr(Ops); 1647 } 1648 } 1649 1650 // If we are adding something to a multiply expression, make sure the 1651 // something is not already an operand of the multiply. If so, merge it into 1652 // the multiply. 1653 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1654 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1655 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1656 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1657 if (isa<SCEVConstant>(MulOpSCEV)) 1658 continue; 1659 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1660 if (MulOpSCEV == Ops[AddOp]) { 1661 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1662 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1663 if (Mul->getNumOperands() != 2) { 1664 // If the multiply has more than two operands, we must get the 1665 // Y*Z term. 1666 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1667 Mul->op_begin()+MulOp); 1668 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1669 InnerMul = getMulExpr(MulOps); 1670 } 1671 const SCEV *One = getConstant(Ty, 1); 1672 const SCEV *AddOne = getAddExpr(One, InnerMul); 1673 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1674 if (Ops.size() == 2) return OuterMul; 1675 if (AddOp < Idx) { 1676 Ops.erase(Ops.begin()+AddOp); 1677 Ops.erase(Ops.begin()+Idx-1); 1678 } else { 1679 Ops.erase(Ops.begin()+Idx); 1680 Ops.erase(Ops.begin()+AddOp-1); 1681 } 1682 Ops.push_back(OuterMul); 1683 return getAddExpr(Ops); 1684 } 1685 1686 // Check this multiply against other multiplies being added together. 1687 for (unsigned OtherMulIdx = Idx+1; 1688 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1689 ++OtherMulIdx) { 1690 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1691 // If MulOp occurs in OtherMul, we can fold the two multiplies 1692 // together. 1693 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1694 OMulOp != e; ++OMulOp) 1695 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1696 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1697 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1698 if (Mul->getNumOperands() != 2) { 1699 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1700 Mul->op_begin()+MulOp); 1701 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1702 InnerMul1 = getMulExpr(MulOps); 1703 } 1704 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1705 if (OtherMul->getNumOperands() != 2) { 1706 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1707 OtherMul->op_begin()+OMulOp); 1708 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1709 InnerMul2 = getMulExpr(MulOps); 1710 } 1711 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1712 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1713 if (Ops.size() == 2) return OuterMul; 1714 Ops.erase(Ops.begin()+Idx); 1715 Ops.erase(Ops.begin()+OtherMulIdx-1); 1716 Ops.push_back(OuterMul); 1717 return getAddExpr(Ops); 1718 } 1719 } 1720 } 1721 } 1722 1723 // If there are any add recurrences in the operands list, see if any other 1724 // added values are loop invariant. If so, we can fold them into the 1725 // recurrence. 1726 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1727 ++Idx; 1728 1729 // Scan over all recurrences, trying to fold loop invariants into them. 1730 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1731 // Scan all of the other operands to this add and add them to the vector if 1732 // they are loop invariant w.r.t. the recurrence. 1733 SmallVector<const SCEV *, 8> LIOps; 1734 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1735 const Loop *AddRecLoop = AddRec->getLoop(); 1736 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1737 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1738 LIOps.push_back(Ops[i]); 1739 Ops.erase(Ops.begin()+i); 1740 --i; --e; 1741 } 1742 1743 // If we found some loop invariants, fold them into the recurrence. 1744 if (!LIOps.empty()) { 1745 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1746 LIOps.push_back(AddRec->getStart()); 1747 1748 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1749 AddRec->op_end()); 1750 AddRecOps[0] = getAddExpr(LIOps); 1751 1752 // Build the new addrec. Propagate the NUW and NSW flags if both the 1753 // outer add and the inner addrec are guaranteed to have no overflow. 1754 // Always propagate NW. 1755 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1756 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1757 1758 // If all of the other operands were loop invariant, we are done. 1759 if (Ops.size() == 1) return NewRec; 1760 1761 // Otherwise, add the folded AddRec by the non-invariant parts. 1762 for (unsigned i = 0;; ++i) 1763 if (Ops[i] == AddRec) { 1764 Ops[i] = NewRec; 1765 break; 1766 } 1767 return getAddExpr(Ops); 1768 } 1769 1770 // Okay, if there weren't any loop invariants to be folded, check to see if 1771 // there are multiple AddRec's with the same loop induction variable being 1772 // added together. If so, we can fold them. 1773 for (unsigned OtherIdx = Idx+1; 1774 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1775 ++OtherIdx) 1776 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1777 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1778 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1779 AddRec->op_end()); 1780 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1781 ++OtherIdx) 1782 if (const SCEVAddRecExpr *OtherAddRec = 1783 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1784 if (OtherAddRec->getLoop() == AddRecLoop) { 1785 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1786 i != e; ++i) { 1787 if (i >= AddRecOps.size()) { 1788 AddRecOps.append(OtherAddRec->op_begin()+i, 1789 OtherAddRec->op_end()); 1790 break; 1791 } 1792 AddRecOps[i] = getAddExpr(AddRecOps[i], 1793 OtherAddRec->getOperand(i)); 1794 } 1795 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1796 } 1797 // Step size has changed, so we cannot guarantee no self-wraparound. 1798 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1799 return getAddExpr(Ops); 1800 } 1801 1802 // Otherwise couldn't fold anything into this recurrence. Move onto the 1803 // next one. 1804 } 1805 1806 // Okay, it looks like we really DO need an add expr. Check to see if we 1807 // already have one, otherwise create a new one. 1808 FoldingSetNodeID ID; 1809 ID.AddInteger(scAddExpr); 1810 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1811 ID.AddPointer(Ops[i]); 1812 void *IP = 0; 1813 SCEVAddExpr *S = 1814 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1815 if (!S) { 1816 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1817 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1818 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1819 O, Ops.size()); 1820 UniqueSCEVs.InsertNode(S, IP); 1821 } 1822 S->setNoWrapFlags(Flags); 1823 return S; 1824 } 1825 1826 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1827 uint64_t k = i*j; 1828 if (j > 1 && k / j != i) Overflow = true; 1829 return k; 1830 } 1831 1832 /// Compute the result of "n choose k", the binomial coefficient. If an 1833 /// intermediate computation overflows, Overflow will be set and the return will 1834 /// be garbage. Overflow is not cleared on absence of overflow. 1835 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1836 // We use the multiplicative formula: 1837 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1838 // At each iteration, we take the n-th term of the numeral and divide by the 1839 // (k-n)th term of the denominator. This division will always produce an 1840 // integral result, and helps reduce the chance of overflow in the 1841 // intermediate computations. However, we can still overflow even when the 1842 // final result would fit. 1843 1844 if (n == 0 || n == k) return 1; 1845 if (k > n) return 0; 1846 1847 if (k > n/2) 1848 k = n-k; 1849 1850 uint64_t r = 1; 1851 for (uint64_t i = 1; i <= k; ++i) { 1852 r = umul_ov(r, n-(i-1), Overflow); 1853 r /= i; 1854 } 1855 return r; 1856 } 1857 1858 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1859 /// possible. 1860 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1861 SCEV::NoWrapFlags Flags) { 1862 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1863 "only nuw or nsw allowed"); 1864 assert(!Ops.empty() && "Cannot get empty mul!"); 1865 if (Ops.size() == 1) return Ops[0]; 1866 #ifndef NDEBUG 1867 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1868 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1869 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1870 "SCEVMulExpr operand types don't match!"); 1871 #endif 1872 1873 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1874 // And vice-versa. 1875 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1876 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1877 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1878 bool All = true; 1879 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1880 E = Ops.end(); I != E; ++I) 1881 if (!isKnownNonNegative(*I)) { 1882 All = false; 1883 break; 1884 } 1885 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1886 } 1887 1888 // Sort by complexity, this groups all similar expression types together. 1889 GroupByComplexity(Ops, LI); 1890 1891 // If there are any constants, fold them together. 1892 unsigned Idx = 0; 1893 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1894 1895 // C1*(C2+V) -> C1*C2 + C1*V 1896 if (Ops.size() == 2) 1897 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1898 if (Add->getNumOperands() == 2 && 1899 isa<SCEVConstant>(Add->getOperand(0))) 1900 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1901 getMulExpr(LHSC, Add->getOperand(1))); 1902 1903 ++Idx; 1904 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1905 // We found two constants, fold them together! 1906 ConstantInt *Fold = ConstantInt::get(getContext(), 1907 LHSC->getValue()->getValue() * 1908 RHSC->getValue()->getValue()); 1909 Ops[0] = getConstant(Fold); 1910 Ops.erase(Ops.begin()+1); // Erase the folded element 1911 if (Ops.size() == 1) return Ops[0]; 1912 LHSC = cast<SCEVConstant>(Ops[0]); 1913 } 1914 1915 // If we are left with a constant one being multiplied, strip it off. 1916 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1917 Ops.erase(Ops.begin()); 1918 --Idx; 1919 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1920 // If we have a multiply of zero, it will always be zero. 1921 return Ops[0]; 1922 } else if (Ops[0]->isAllOnesValue()) { 1923 // If we have a mul by -1 of an add, try distributing the -1 among the 1924 // add operands. 1925 if (Ops.size() == 2) { 1926 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1927 SmallVector<const SCEV *, 4> NewOps; 1928 bool AnyFolded = false; 1929 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1930 E = Add->op_end(); I != E; ++I) { 1931 const SCEV *Mul = getMulExpr(Ops[0], *I); 1932 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1933 NewOps.push_back(Mul); 1934 } 1935 if (AnyFolded) 1936 return getAddExpr(NewOps); 1937 } 1938 else if (const SCEVAddRecExpr * 1939 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1940 // Negation preserves a recurrence's no self-wrap property. 1941 SmallVector<const SCEV *, 4> Operands; 1942 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1943 E = AddRec->op_end(); I != E; ++I) { 1944 Operands.push_back(getMulExpr(Ops[0], *I)); 1945 } 1946 return getAddRecExpr(Operands, AddRec->getLoop(), 1947 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1948 } 1949 } 1950 } 1951 1952 if (Ops.size() == 1) 1953 return Ops[0]; 1954 } 1955 1956 // Skip over the add expression until we get to a multiply. 1957 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1958 ++Idx; 1959 1960 // If there are mul operands inline them all into this expression. 1961 if (Idx < Ops.size()) { 1962 bool DeletedMul = false; 1963 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1964 // If we have an mul, expand the mul operands onto the end of the operands 1965 // list. 1966 Ops.erase(Ops.begin()+Idx); 1967 Ops.append(Mul->op_begin(), Mul->op_end()); 1968 DeletedMul = true; 1969 } 1970 1971 // If we deleted at least one mul, we added operands to the end of the list, 1972 // and they are not necessarily sorted. Recurse to resort and resimplify 1973 // any operands we just acquired. 1974 if (DeletedMul) 1975 return getMulExpr(Ops); 1976 } 1977 1978 // If there are any add recurrences in the operands list, see if any other 1979 // added values are loop invariant. If so, we can fold them into the 1980 // recurrence. 1981 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1982 ++Idx; 1983 1984 // Scan over all recurrences, trying to fold loop invariants into them. 1985 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1986 // Scan all of the other operands to this mul and add them to the vector if 1987 // they are loop invariant w.r.t. the recurrence. 1988 SmallVector<const SCEV *, 8> LIOps; 1989 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1990 const Loop *AddRecLoop = AddRec->getLoop(); 1991 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1992 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1993 LIOps.push_back(Ops[i]); 1994 Ops.erase(Ops.begin()+i); 1995 --i; --e; 1996 } 1997 1998 // If we found some loop invariants, fold them into the recurrence. 1999 if (!LIOps.empty()) { 2000 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2001 SmallVector<const SCEV *, 4> NewOps; 2002 NewOps.reserve(AddRec->getNumOperands()); 2003 const SCEV *Scale = getMulExpr(LIOps); 2004 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2005 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2006 2007 // Build the new addrec. Propagate the NUW and NSW flags if both the 2008 // outer mul and the inner addrec are guaranteed to have no overflow. 2009 // 2010 // No self-wrap cannot be guaranteed after changing the step size, but 2011 // will be inferred if either NUW or NSW is true. 2012 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2013 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2014 2015 // If all of the other operands were loop invariant, we are done. 2016 if (Ops.size() == 1) return NewRec; 2017 2018 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2019 for (unsigned i = 0;; ++i) 2020 if (Ops[i] == AddRec) { 2021 Ops[i] = NewRec; 2022 break; 2023 } 2024 return getMulExpr(Ops); 2025 } 2026 2027 // Okay, if there weren't any loop invariants to be folded, check to see if 2028 // there are multiple AddRec's with the same loop induction variable being 2029 // multiplied together. If so, we can fold them. 2030 for (unsigned OtherIdx = Idx+1; 2031 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2032 ++OtherIdx) { 2033 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2034 continue; 2035 2036 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2037 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2038 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2039 // ]]],+,...up to x=2n}. 2040 // Note that the arguments to choose() are always integers with values 2041 // known at compile time, never SCEV objects. 2042 // 2043 // The implementation avoids pointless extra computations when the two 2044 // addrec's are of different length (mathematically, it's equivalent to 2045 // an infinite stream of zeros on the right). 2046 bool OpsModified = false; 2047 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2048 ++OtherIdx) { 2049 const SCEVAddRecExpr *OtherAddRec = 2050 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2051 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2052 continue; 2053 2054 bool Overflow = false; 2055 Type *Ty = AddRec->getType(); 2056 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2057 SmallVector<const SCEV*, 7> AddRecOps; 2058 for (int x = 0, xe = AddRec->getNumOperands() + 2059 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2060 const SCEV *Term = getConstant(Ty, 0); 2061 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2062 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2063 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2064 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2065 z < ze && !Overflow; ++z) { 2066 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2067 uint64_t Coeff; 2068 if (LargerThan64Bits) 2069 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2070 else 2071 Coeff = Coeff1*Coeff2; 2072 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2073 const SCEV *Term1 = AddRec->getOperand(y-z); 2074 const SCEV *Term2 = OtherAddRec->getOperand(z); 2075 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2076 } 2077 } 2078 AddRecOps.push_back(Term); 2079 } 2080 if (!Overflow) { 2081 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2082 SCEV::FlagAnyWrap); 2083 if (Ops.size() == 2) return NewAddRec; 2084 Ops[Idx] = NewAddRec; 2085 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2086 OpsModified = true; 2087 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2088 if (!AddRec) 2089 break; 2090 } 2091 } 2092 if (OpsModified) 2093 return getMulExpr(Ops); 2094 } 2095 2096 // Otherwise couldn't fold anything into this recurrence. Move onto the 2097 // next one. 2098 } 2099 2100 // Okay, it looks like we really DO need an mul expr. Check to see if we 2101 // already have one, otherwise create a new one. 2102 FoldingSetNodeID ID; 2103 ID.AddInteger(scMulExpr); 2104 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2105 ID.AddPointer(Ops[i]); 2106 void *IP = 0; 2107 SCEVMulExpr *S = 2108 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2109 if (!S) { 2110 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2111 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2112 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2113 O, Ops.size()); 2114 UniqueSCEVs.InsertNode(S, IP); 2115 } 2116 S->setNoWrapFlags(Flags); 2117 return S; 2118 } 2119 2120 /// getUDivExpr - Get a canonical unsigned division expression, or something 2121 /// simpler if possible. 2122 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2123 const SCEV *RHS) { 2124 assert(getEffectiveSCEVType(LHS->getType()) == 2125 getEffectiveSCEVType(RHS->getType()) && 2126 "SCEVUDivExpr operand types don't match!"); 2127 2128 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2129 if (RHSC->getValue()->equalsInt(1)) 2130 return LHS; // X udiv 1 --> x 2131 // If the denominator is zero, the result of the udiv is undefined. Don't 2132 // try to analyze it, because the resolution chosen here may differ from 2133 // the resolution chosen in other parts of the compiler. 2134 if (!RHSC->getValue()->isZero()) { 2135 // Determine if the division can be folded into the operands of 2136 // its operands. 2137 // TODO: Generalize this to non-constants by using known-bits information. 2138 Type *Ty = LHS->getType(); 2139 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2140 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2141 // For non-power-of-two values, effectively round the value up to the 2142 // nearest power of two. 2143 if (!RHSC->getValue()->getValue().isPowerOf2()) 2144 ++MaxShiftAmt; 2145 IntegerType *ExtTy = 2146 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2148 if (const SCEVConstant *Step = 2149 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2150 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2151 const APInt &StepInt = Step->getValue()->getValue(); 2152 const APInt &DivInt = RHSC->getValue()->getValue(); 2153 if (!StepInt.urem(DivInt) && 2154 getZeroExtendExpr(AR, ExtTy) == 2155 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2156 getZeroExtendExpr(Step, ExtTy), 2157 AR->getLoop(), SCEV::FlagAnyWrap)) { 2158 SmallVector<const SCEV *, 4> Operands; 2159 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2160 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2161 return getAddRecExpr(Operands, AR->getLoop(), 2162 SCEV::FlagNW); 2163 } 2164 /// Get a canonical UDivExpr for a recurrence. 2165 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2166 // We can currently only fold X%N if X is constant. 2167 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2168 if (StartC && !DivInt.urem(StepInt) && 2169 getZeroExtendExpr(AR, ExtTy) == 2170 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2171 getZeroExtendExpr(Step, ExtTy), 2172 AR->getLoop(), SCEV::FlagAnyWrap)) { 2173 const APInt &StartInt = StartC->getValue()->getValue(); 2174 const APInt &StartRem = StartInt.urem(StepInt); 2175 if (StartRem != 0) 2176 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2177 AR->getLoop(), SCEV::FlagNW); 2178 } 2179 } 2180 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2181 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2182 SmallVector<const SCEV *, 4> Operands; 2183 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2184 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2185 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2186 // Find an operand that's safely divisible. 2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2188 const SCEV *Op = M->getOperand(i); 2189 const SCEV *Div = getUDivExpr(Op, RHSC); 2190 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2191 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2192 M->op_end()); 2193 Operands[i] = Div; 2194 return getMulExpr(Operands); 2195 } 2196 } 2197 } 2198 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2199 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2200 SmallVector<const SCEV *, 4> Operands; 2201 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2202 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2203 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2204 Operands.clear(); 2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2206 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2207 if (isa<SCEVUDivExpr>(Op) || 2208 getMulExpr(Op, RHS) != A->getOperand(i)) 2209 break; 2210 Operands.push_back(Op); 2211 } 2212 if (Operands.size() == A->getNumOperands()) 2213 return getAddExpr(Operands); 2214 } 2215 } 2216 2217 // Fold if both operands are constant. 2218 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2219 Constant *LHSCV = LHSC->getValue(); 2220 Constant *RHSCV = RHSC->getValue(); 2221 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2222 RHSCV))); 2223 } 2224 } 2225 } 2226 2227 FoldingSetNodeID ID; 2228 ID.AddInteger(scUDivExpr); 2229 ID.AddPointer(LHS); 2230 ID.AddPointer(RHS); 2231 void *IP = 0; 2232 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2233 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2234 LHS, RHS); 2235 UniqueSCEVs.InsertNode(S, IP); 2236 return S; 2237 } 2238 2239 2240 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2241 /// Simplify the expression as much as possible. 2242 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2243 const Loop *L, 2244 SCEV::NoWrapFlags Flags) { 2245 SmallVector<const SCEV *, 4> Operands; 2246 Operands.push_back(Start); 2247 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2248 if (StepChrec->getLoop() == L) { 2249 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2250 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2251 } 2252 2253 Operands.push_back(Step); 2254 return getAddRecExpr(Operands, L, Flags); 2255 } 2256 2257 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2258 /// Simplify the expression as much as possible. 2259 const SCEV * 2260 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2261 const Loop *L, SCEV::NoWrapFlags Flags) { 2262 if (Operands.size() == 1) return Operands[0]; 2263 #ifndef NDEBUG 2264 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2265 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2266 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2267 "SCEVAddRecExpr operand types don't match!"); 2268 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2269 assert(isLoopInvariant(Operands[i], L) && 2270 "SCEVAddRecExpr operand is not loop-invariant!"); 2271 #endif 2272 2273 if (Operands.back()->isZero()) { 2274 Operands.pop_back(); 2275 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2276 } 2277 2278 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2279 // use that information to infer NUW and NSW flags. However, computing a 2280 // BE count requires calling getAddRecExpr, so we may not yet have a 2281 // meaningful BE count at this point (and if we don't, we'd be stuck 2282 // with a SCEVCouldNotCompute as the cached BE count). 2283 2284 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2285 // And vice-versa. 2286 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2287 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2288 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2289 bool All = true; 2290 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2291 E = Operands.end(); I != E; ++I) 2292 if (!isKnownNonNegative(*I)) { 2293 All = false; 2294 break; 2295 } 2296 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2297 } 2298 2299 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2300 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2301 const Loop *NestedLoop = NestedAR->getLoop(); 2302 if (L->contains(NestedLoop) ? 2303 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2304 (!NestedLoop->contains(L) && 2305 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2306 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2307 NestedAR->op_end()); 2308 Operands[0] = NestedAR->getStart(); 2309 // AddRecs require their operands be loop-invariant with respect to their 2310 // loops. Don't perform this transformation if it would break this 2311 // requirement. 2312 bool AllInvariant = true; 2313 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2314 if (!isLoopInvariant(Operands[i], L)) { 2315 AllInvariant = false; 2316 break; 2317 } 2318 if (AllInvariant) { 2319 // Create a recurrence for the outer loop with the same step size. 2320 // 2321 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2322 // inner recurrence has the same property. 2323 SCEV::NoWrapFlags OuterFlags = 2324 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2325 2326 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2327 AllInvariant = true; 2328 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2329 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2330 AllInvariant = false; 2331 break; 2332 } 2333 if (AllInvariant) { 2334 // Ok, both add recurrences are valid after the transformation. 2335 // 2336 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2337 // the outer recurrence has the same property. 2338 SCEV::NoWrapFlags InnerFlags = 2339 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2340 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2341 } 2342 } 2343 // Reset Operands to its original state. 2344 Operands[0] = NestedAR; 2345 } 2346 } 2347 2348 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2349 // already have one, otherwise create a new one. 2350 FoldingSetNodeID ID; 2351 ID.AddInteger(scAddRecExpr); 2352 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2353 ID.AddPointer(Operands[i]); 2354 ID.AddPointer(L); 2355 void *IP = 0; 2356 SCEVAddRecExpr *S = 2357 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2358 if (!S) { 2359 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2360 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2361 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2362 O, Operands.size(), L); 2363 UniqueSCEVs.InsertNode(S, IP); 2364 } 2365 S->setNoWrapFlags(Flags); 2366 return S; 2367 } 2368 2369 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2370 const SCEV *RHS) { 2371 SmallVector<const SCEV *, 2> Ops; 2372 Ops.push_back(LHS); 2373 Ops.push_back(RHS); 2374 return getSMaxExpr(Ops); 2375 } 2376 2377 const SCEV * 2378 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2379 assert(!Ops.empty() && "Cannot get empty smax!"); 2380 if (Ops.size() == 1) return Ops[0]; 2381 #ifndef NDEBUG 2382 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2383 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2384 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2385 "SCEVSMaxExpr operand types don't match!"); 2386 #endif 2387 2388 // Sort by complexity, this groups all similar expression types together. 2389 GroupByComplexity(Ops, LI); 2390 2391 // If there are any constants, fold them together. 2392 unsigned Idx = 0; 2393 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2394 ++Idx; 2395 assert(Idx < Ops.size()); 2396 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2397 // We found two constants, fold them together! 2398 ConstantInt *Fold = ConstantInt::get(getContext(), 2399 APIntOps::smax(LHSC->getValue()->getValue(), 2400 RHSC->getValue()->getValue())); 2401 Ops[0] = getConstant(Fold); 2402 Ops.erase(Ops.begin()+1); // Erase the folded element 2403 if (Ops.size() == 1) return Ops[0]; 2404 LHSC = cast<SCEVConstant>(Ops[0]); 2405 } 2406 2407 // If we are left with a constant minimum-int, strip it off. 2408 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2409 Ops.erase(Ops.begin()); 2410 --Idx; 2411 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2412 // If we have an smax with a constant maximum-int, it will always be 2413 // maximum-int. 2414 return Ops[0]; 2415 } 2416 2417 if (Ops.size() == 1) return Ops[0]; 2418 } 2419 2420 // Find the first SMax 2421 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2422 ++Idx; 2423 2424 // Check to see if one of the operands is an SMax. If so, expand its operands 2425 // onto our operand list, and recurse to simplify. 2426 if (Idx < Ops.size()) { 2427 bool DeletedSMax = false; 2428 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2429 Ops.erase(Ops.begin()+Idx); 2430 Ops.append(SMax->op_begin(), SMax->op_end()); 2431 DeletedSMax = true; 2432 } 2433 2434 if (DeletedSMax) 2435 return getSMaxExpr(Ops); 2436 } 2437 2438 // Okay, check to see if the same value occurs in the operand list twice. If 2439 // so, delete one. Since we sorted the list, these values are required to 2440 // be adjacent. 2441 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2442 // X smax Y smax Y --> X smax Y 2443 // X smax Y --> X, if X is always greater than Y 2444 if (Ops[i] == Ops[i+1] || 2445 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2446 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2447 --i; --e; 2448 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2449 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2450 --i; --e; 2451 } 2452 2453 if (Ops.size() == 1) return Ops[0]; 2454 2455 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2456 2457 // Okay, it looks like we really DO need an smax expr. Check to see if we 2458 // already have one, otherwise create a new one. 2459 FoldingSetNodeID ID; 2460 ID.AddInteger(scSMaxExpr); 2461 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2462 ID.AddPointer(Ops[i]); 2463 void *IP = 0; 2464 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2465 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2466 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2467 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2468 O, Ops.size()); 2469 UniqueSCEVs.InsertNode(S, IP); 2470 return S; 2471 } 2472 2473 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2474 const SCEV *RHS) { 2475 SmallVector<const SCEV *, 2> Ops; 2476 Ops.push_back(LHS); 2477 Ops.push_back(RHS); 2478 return getUMaxExpr(Ops); 2479 } 2480 2481 const SCEV * 2482 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2483 assert(!Ops.empty() && "Cannot get empty umax!"); 2484 if (Ops.size() == 1) return Ops[0]; 2485 #ifndef NDEBUG 2486 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2487 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2488 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2489 "SCEVUMaxExpr operand types don't match!"); 2490 #endif 2491 2492 // Sort by complexity, this groups all similar expression types together. 2493 GroupByComplexity(Ops, LI); 2494 2495 // If there are any constants, fold them together. 2496 unsigned Idx = 0; 2497 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2498 ++Idx; 2499 assert(Idx < Ops.size()); 2500 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2501 // We found two constants, fold them together! 2502 ConstantInt *Fold = ConstantInt::get(getContext(), 2503 APIntOps::umax(LHSC->getValue()->getValue(), 2504 RHSC->getValue()->getValue())); 2505 Ops[0] = getConstant(Fold); 2506 Ops.erase(Ops.begin()+1); // Erase the folded element 2507 if (Ops.size() == 1) return Ops[0]; 2508 LHSC = cast<SCEVConstant>(Ops[0]); 2509 } 2510 2511 // If we are left with a constant minimum-int, strip it off. 2512 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2513 Ops.erase(Ops.begin()); 2514 --Idx; 2515 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2516 // If we have an umax with a constant maximum-int, it will always be 2517 // maximum-int. 2518 return Ops[0]; 2519 } 2520 2521 if (Ops.size() == 1) return Ops[0]; 2522 } 2523 2524 // Find the first UMax 2525 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2526 ++Idx; 2527 2528 // Check to see if one of the operands is a UMax. If so, expand its operands 2529 // onto our operand list, and recurse to simplify. 2530 if (Idx < Ops.size()) { 2531 bool DeletedUMax = false; 2532 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2533 Ops.erase(Ops.begin()+Idx); 2534 Ops.append(UMax->op_begin(), UMax->op_end()); 2535 DeletedUMax = true; 2536 } 2537 2538 if (DeletedUMax) 2539 return getUMaxExpr(Ops); 2540 } 2541 2542 // Okay, check to see if the same value occurs in the operand list twice. If 2543 // so, delete one. Since we sorted the list, these values are required to 2544 // be adjacent. 2545 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2546 // X umax Y umax Y --> X umax Y 2547 // X umax Y --> X, if X is always greater than Y 2548 if (Ops[i] == Ops[i+1] || 2549 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2550 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2551 --i; --e; 2552 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2553 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2554 --i; --e; 2555 } 2556 2557 if (Ops.size() == 1) return Ops[0]; 2558 2559 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2560 2561 // Okay, it looks like we really DO need a umax expr. Check to see if we 2562 // already have one, otherwise create a new one. 2563 FoldingSetNodeID ID; 2564 ID.AddInteger(scUMaxExpr); 2565 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2566 ID.AddPointer(Ops[i]); 2567 void *IP = 0; 2568 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2569 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2570 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2571 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2572 O, Ops.size()); 2573 UniqueSCEVs.InsertNode(S, IP); 2574 return S; 2575 } 2576 2577 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2578 const SCEV *RHS) { 2579 // ~smax(~x, ~y) == smin(x, y). 2580 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2581 } 2582 2583 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2584 const SCEV *RHS) { 2585 // ~umax(~x, ~y) == umin(x, y) 2586 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2587 } 2588 2589 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy, Type *IntPtrTy) { 2590 // If we have DataLayout, we can bypass creating a target-independent 2591 // constant expression and then folding it back into a ConstantInt. 2592 // This is just a compile-time optimization. 2593 if (TD) 2594 return getConstant(IntPtrTy, TD->getTypeAllocSize(AllocTy)); 2595 2596 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2597 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2598 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2599 C = Folded; 2600 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2601 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2602 } 2603 2604 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2605 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2606 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2607 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2608 C = Folded; 2609 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2610 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2611 } 2612 2613 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, Type *IntPtrTy, 2614 unsigned FieldNo) { 2615 // If we have DataLayout, we can bypass creating a target-independent 2616 // constant expression and then folding it back into a ConstantInt. 2617 // This is just a compile-time optimization. 2618 if (TD) 2619 return getConstant(IntPtrTy, 2620 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2621 2622 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2623 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2624 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2625 C = Folded; 2626 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2627 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2628 } 2629 2630 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2631 Constant *FieldNo) { 2632 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2634 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2635 C = Folded; 2636 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2637 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2638 } 2639 2640 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2641 // Don't attempt to do anything other than create a SCEVUnknown object 2642 // here. createSCEV only calls getUnknown after checking for all other 2643 // interesting possibilities, and any other code that calls getUnknown 2644 // is doing so in order to hide a value from SCEV canonicalization. 2645 2646 FoldingSetNodeID ID; 2647 ID.AddInteger(scUnknown); 2648 ID.AddPointer(V); 2649 void *IP = 0; 2650 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2651 assert(cast<SCEVUnknown>(S)->getValue() == V && 2652 "Stale SCEVUnknown in uniquing map!"); 2653 return S; 2654 } 2655 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2656 FirstUnknown); 2657 FirstUnknown = cast<SCEVUnknown>(S); 2658 UniqueSCEVs.InsertNode(S, IP); 2659 return S; 2660 } 2661 2662 //===----------------------------------------------------------------------===// 2663 // Basic SCEV Analysis and PHI Idiom Recognition Code 2664 // 2665 2666 /// isSCEVable - Test if values of the given type are analyzable within 2667 /// the SCEV framework. This primarily includes integer types, and it 2668 /// can optionally include pointer types if the ScalarEvolution class 2669 /// has access to target-specific information. 2670 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2671 // Integers and pointers are always SCEVable. 2672 return Ty->isIntegerTy() || Ty->isPointerTy(); 2673 } 2674 2675 /// getTypeSizeInBits - Return the size in bits of the specified type, 2676 /// for which isSCEVable must return true. 2677 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2678 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2679 2680 // If we have a DataLayout, use it! 2681 if (TD) 2682 return TD->getTypeSizeInBits(Ty); 2683 2684 // Integer types have fixed sizes. 2685 if (Ty->isIntegerTy()) 2686 return Ty->getPrimitiveSizeInBits(); 2687 2688 // The only other support type is pointer. Without DataLayout, conservatively 2689 // assume pointers are 64-bit. 2690 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2691 return 64; 2692 } 2693 2694 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2695 /// the given type and which represents how SCEV will treat the given 2696 /// type, for which isSCEVable must return true. For pointer types, 2697 /// this is the pointer-sized integer type. 2698 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2699 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2700 2701 if (Ty->isIntegerTy()) 2702 return Ty; 2703 2704 // The only other support type is pointer. 2705 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2706 if (TD) return TD->getIntPtrType(Ty); 2707 2708 // Without DataLayout, conservatively assume pointers are 64-bit. 2709 return Type::getInt64Ty(getContext()); 2710 } 2711 2712 const SCEV *ScalarEvolution::getCouldNotCompute() { 2713 return &CouldNotCompute; 2714 } 2715 2716 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2717 /// expression and create a new one. 2718 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2719 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2720 2721 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V); 2722 if (I != ValueExprMap.end()) return I->second; 2723 const SCEV *S = createSCEV(V); 2724 2725 // The process of creating a SCEV for V may have caused other SCEVs 2726 // to have been created, so it's necessary to insert the new entry 2727 // from scratch, rather than trying to remember the insert position 2728 // above. 2729 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2730 return S; 2731 } 2732 2733 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2734 /// 2735 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2736 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2737 return getConstant( 2738 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2739 2740 Type *Ty = V->getType(); 2741 Ty = getEffectiveSCEVType(Ty); 2742 return getMulExpr(V, 2743 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2744 } 2745 2746 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2747 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2748 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2749 return getConstant( 2750 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2751 2752 Type *Ty = V->getType(); 2753 Ty = getEffectiveSCEVType(Ty); 2754 const SCEV *AllOnes = 2755 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2756 return getMinusSCEV(AllOnes, V); 2757 } 2758 2759 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2760 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2761 SCEV::NoWrapFlags Flags) { 2762 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2763 2764 // Fast path: X - X --> 0. 2765 if (LHS == RHS) 2766 return getConstant(LHS->getType(), 0); 2767 2768 // X - Y --> X + -Y 2769 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2770 } 2771 2772 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2773 /// input value to the specified type. If the type must be extended, it is zero 2774 /// extended. 2775 const SCEV * 2776 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2777 Type *SrcTy = V->getType(); 2778 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2779 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2780 "Cannot truncate or zero extend with non-integer arguments!"); 2781 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2782 return V; // No conversion 2783 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2784 return getTruncateExpr(V, Ty); 2785 return getZeroExtendExpr(V, Ty); 2786 } 2787 2788 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2789 /// input value to the specified type. If the type must be extended, it is sign 2790 /// extended. 2791 const SCEV * 2792 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2793 Type *Ty) { 2794 Type *SrcTy = V->getType(); 2795 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2796 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2797 "Cannot truncate or zero extend with non-integer arguments!"); 2798 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2799 return V; // No conversion 2800 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2801 return getTruncateExpr(V, Ty); 2802 return getSignExtendExpr(V, Ty); 2803 } 2804 2805 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2806 /// input value to the specified type. If the type must be extended, it is zero 2807 /// extended. The conversion must not be narrowing. 2808 const SCEV * 2809 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2810 Type *SrcTy = V->getType(); 2811 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2812 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2813 "Cannot noop or zero extend with non-integer arguments!"); 2814 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2815 "getNoopOrZeroExtend cannot truncate!"); 2816 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2817 return V; // No conversion 2818 return getZeroExtendExpr(V, Ty); 2819 } 2820 2821 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2822 /// input value to the specified type. If the type must be extended, it is sign 2823 /// extended. The conversion must not be narrowing. 2824 const SCEV * 2825 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2826 Type *SrcTy = V->getType(); 2827 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2828 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2829 "Cannot noop or sign extend with non-integer arguments!"); 2830 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2831 "getNoopOrSignExtend cannot truncate!"); 2832 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2833 return V; // No conversion 2834 return getSignExtendExpr(V, Ty); 2835 } 2836 2837 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2838 /// the input value to the specified type. If the type must be extended, 2839 /// it is extended with unspecified bits. The conversion must not be 2840 /// narrowing. 2841 const SCEV * 2842 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2843 Type *SrcTy = V->getType(); 2844 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2845 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2846 "Cannot noop or any extend with non-integer arguments!"); 2847 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2848 "getNoopOrAnyExtend cannot truncate!"); 2849 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2850 return V; // No conversion 2851 return getAnyExtendExpr(V, Ty); 2852 } 2853 2854 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2855 /// input value to the specified type. The conversion must not be widening. 2856 const SCEV * 2857 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2858 Type *SrcTy = V->getType(); 2859 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2860 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2861 "Cannot truncate or noop with non-integer arguments!"); 2862 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2863 "getTruncateOrNoop cannot extend!"); 2864 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2865 return V; // No conversion 2866 return getTruncateExpr(V, Ty); 2867 } 2868 2869 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2870 /// the types using zero-extension, and then perform a umax operation 2871 /// with them. 2872 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2873 const SCEV *RHS) { 2874 const SCEV *PromotedLHS = LHS; 2875 const SCEV *PromotedRHS = RHS; 2876 2877 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2878 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2879 else 2880 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2881 2882 return getUMaxExpr(PromotedLHS, PromotedRHS); 2883 } 2884 2885 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2886 /// the types using zero-extension, and then perform a umin operation 2887 /// with them. 2888 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2889 const SCEV *RHS) { 2890 const SCEV *PromotedLHS = LHS; 2891 const SCEV *PromotedRHS = RHS; 2892 2893 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2894 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2895 else 2896 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2897 2898 return getUMinExpr(PromotedLHS, PromotedRHS); 2899 } 2900 2901 /// getPointerBase - Transitively follow the chain of pointer-type operands 2902 /// until reaching a SCEV that does not have a single pointer operand. This 2903 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2904 /// but corner cases do exist. 2905 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2906 // A pointer operand may evaluate to a nonpointer expression, such as null. 2907 if (!V->getType()->isPointerTy()) 2908 return V; 2909 2910 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2911 return getPointerBase(Cast->getOperand()); 2912 } 2913 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2914 const SCEV *PtrOp = 0; 2915 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2916 I != E; ++I) { 2917 if ((*I)->getType()->isPointerTy()) { 2918 // Cannot find the base of an expression with multiple pointer operands. 2919 if (PtrOp) 2920 return V; 2921 PtrOp = *I; 2922 } 2923 } 2924 if (!PtrOp) 2925 return V; 2926 return getPointerBase(PtrOp); 2927 } 2928 return V; 2929 } 2930 2931 /// PushDefUseChildren - Push users of the given Instruction 2932 /// onto the given Worklist. 2933 static void 2934 PushDefUseChildren(Instruction *I, 2935 SmallVectorImpl<Instruction *> &Worklist) { 2936 // Push the def-use children onto the Worklist stack. 2937 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2938 UI != UE; ++UI) 2939 Worklist.push_back(cast<Instruction>(*UI)); 2940 } 2941 2942 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2943 /// instructions that depend on the given instruction and removes them from 2944 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2945 /// resolution. 2946 void 2947 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2948 SmallVector<Instruction *, 16> Worklist; 2949 PushDefUseChildren(PN, Worklist); 2950 2951 SmallPtrSet<Instruction *, 8> Visited; 2952 Visited.insert(PN); 2953 while (!Worklist.empty()) { 2954 Instruction *I = Worklist.pop_back_val(); 2955 if (!Visited.insert(I)) continue; 2956 2957 ValueExprMapType::iterator It = 2958 ValueExprMap.find_as(static_cast<Value *>(I)); 2959 if (It != ValueExprMap.end()) { 2960 const SCEV *Old = It->second; 2961 2962 // Short-circuit the def-use traversal if the symbolic name 2963 // ceases to appear in expressions. 2964 if (Old != SymName && !hasOperand(Old, SymName)) 2965 continue; 2966 2967 // SCEVUnknown for a PHI either means that it has an unrecognized 2968 // structure, it's a PHI that's in the progress of being computed 2969 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2970 // additional loop trip count information isn't going to change anything. 2971 // In the second case, createNodeForPHI will perform the necessary 2972 // updates on its own when it gets to that point. In the third, we do 2973 // want to forget the SCEVUnknown. 2974 if (!isa<PHINode>(I) || 2975 !isa<SCEVUnknown>(Old) || 2976 (I != PN && Old == SymName)) { 2977 forgetMemoizedResults(Old); 2978 ValueExprMap.erase(It); 2979 } 2980 } 2981 2982 PushDefUseChildren(I, Worklist); 2983 } 2984 } 2985 2986 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2987 /// a loop header, making it a potential recurrence, or it doesn't. 2988 /// 2989 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2990 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2991 if (L->getHeader() == PN->getParent()) { 2992 // The loop may have multiple entrances or multiple exits; we can analyze 2993 // this phi as an addrec if it has a unique entry value and a unique 2994 // backedge value. 2995 Value *BEValueV = 0, *StartValueV = 0; 2996 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2997 Value *V = PN->getIncomingValue(i); 2998 if (L->contains(PN->getIncomingBlock(i))) { 2999 if (!BEValueV) { 3000 BEValueV = V; 3001 } else if (BEValueV != V) { 3002 BEValueV = 0; 3003 break; 3004 } 3005 } else if (!StartValueV) { 3006 StartValueV = V; 3007 } else if (StartValueV != V) { 3008 StartValueV = 0; 3009 break; 3010 } 3011 } 3012 if (BEValueV && StartValueV) { 3013 // While we are analyzing this PHI node, handle its value symbolically. 3014 const SCEV *SymbolicName = getUnknown(PN); 3015 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3016 "PHI node already processed?"); 3017 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3018 3019 // Using this symbolic name for the PHI, analyze the value coming around 3020 // the back-edge. 3021 const SCEV *BEValue = getSCEV(BEValueV); 3022 3023 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3024 // has a special value for the first iteration of the loop. 3025 3026 // If the value coming around the backedge is an add with the symbolic 3027 // value we just inserted, then we found a simple induction variable! 3028 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3029 // If there is a single occurrence of the symbolic value, replace it 3030 // with a recurrence. 3031 unsigned FoundIndex = Add->getNumOperands(); 3032 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3033 if (Add->getOperand(i) == SymbolicName) 3034 if (FoundIndex == e) { 3035 FoundIndex = i; 3036 break; 3037 } 3038 3039 if (FoundIndex != Add->getNumOperands()) { 3040 // Create an add with everything but the specified operand. 3041 SmallVector<const SCEV *, 8> Ops; 3042 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3043 if (i != FoundIndex) 3044 Ops.push_back(Add->getOperand(i)); 3045 const SCEV *Accum = getAddExpr(Ops); 3046 3047 // This is not a valid addrec if the step amount is varying each 3048 // loop iteration, but is not itself an addrec in this loop. 3049 if (isLoopInvariant(Accum, L) || 3050 (isa<SCEVAddRecExpr>(Accum) && 3051 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3052 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3053 3054 // If the increment doesn't overflow, then neither the addrec nor 3055 // the post-increment will overflow. 3056 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3057 if (OBO->hasNoUnsignedWrap()) 3058 Flags = setFlags(Flags, SCEV::FlagNUW); 3059 if (OBO->hasNoSignedWrap()) 3060 Flags = setFlags(Flags, SCEV::FlagNSW); 3061 } else if (const GEPOperator *GEP = 3062 dyn_cast<GEPOperator>(BEValueV)) { 3063 // If the increment is an inbounds GEP, then we know the address 3064 // space cannot be wrapped around. We cannot make any guarantee 3065 // about signed or unsigned overflow because pointers are 3066 // unsigned but we may have a negative index from the base 3067 // pointer. 3068 if (GEP->isInBounds()) 3069 Flags = setFlags(Flags, SCEV::FlagNW); 3070 } 3071 3072 const SCEV *StartVal = getSCEV(StartValueV); 3073 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3074 3075 // Since the no-wrap flags are on the increment, they apply to the 3076 // post-incremented value as well. 3077 if (isLoopInvariant(Accum, L)) 3078 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3079 Accum, L, Flags); 3080 3081 // Okay, for the entire analysis of this edge we assumed the PHI 3082 // to be symbolic. We now need to go back and purge all of the 3083 // entries for the scalars that use the symbolic expression. 3084 ForgetSymbolicName(PN, SymbolicName); 3085 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3086 return PHISCEV; 3087 } 3088 } 3089 } else if (const SCEVAddRecExpr *AddRec = 3090 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3091 // Otherwise, this could be a loop like this: 3092 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3093 // In this case, j = {1,+,1} and BEValue is j. 3094 // Because the other in-value of i (0) fits the evolution of BEValue 3095 // i really is an addrec evolution. 3096 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3097 const SCEV *StartVal = getSCEV(StartValueV); 3098 3099 // If StartVal = j.start - j.stride, we can use StartVal as the 3100 // initial step of the addrec evolution. 3101 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3102 AddRec->getOperand(1))) { 3103 // FIXME: For constant StartVal, we should be able to infer 3104 // no-wrap flags. 3105 const SCEV *PHISCEV = 3106 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3107 SCEV::FlagAnyWrap); 3108 3109 // Okay, for the entire analysis of this edge we assumed the PHI 3110 // to be symbolic. We now need to go back and purge all of the 3111 // entries for the scalars that use the symbolic expression. 3112 ForgetSymbolicName(PN, SymbolicName); 3113 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3114 return PHISCEV; 3115 } 3116 } 3117 } 3118 } 3119 } 3120 3121 // If the PHI has a single incoming value, follow that value, unless the 3122 // PHI's incoming blocks are in a different loop, in which case doing so 3123 // risks breaking LCSSA form. Instcombine would normally zap these, but 3124 // it doesn't have DominatorTree information, so it may miss cases. 3125 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3126 if (LI->replacementPreservesLCSSAForm(PN, V)) 3127 return getSCEV(V); 3128 3129 // If it's not a loop phi, we can't handle it yet. 3130 return getUnknown(PN); 3131 } 3132 3133 /// createNodeForGEP - Expand GEP instructions into add and multiply 3134 /// operations. This allows them to be analyzed by regular SCEV code. 3135 /// 3136 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3137 3138 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3139 // Add expression, because the Instruction may be guarded by control flow 3140 // and the no-overflow bits may not be valid for the expression in any 3141 // context. 3142 bool isInBounds = GEP->isInBounds(); 3143 3144 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3145 Value *Base = GEP->getOperand(0); 3146 // Don't attempt to analyze GEPs over unsized objects. 3147 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3148 return getUnknown(GEP); 3149 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3150 gep_type_iterator GTI = gep_type_begin(GEP); 3151 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3152 E = GEP->op_end(); 3153 I != E; ++I) { 3154 Value *Index = *I; 3155 // Compute the (potentially symbolic) offset in bytes for this index. 3156 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3157 // For a struct, add the member offset. 3158 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3159 const SCEV *FieldOffset = getOffsetOfExpr(STy, IntPtrTy, FieldNo); 3160 3161 // Add the field offset to the running total offset. 3162 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3163 } else { 3164 // For an array, add the element offset, explicitly scaled. 3165 const SCEV *ElementSize = getSizeOfExpr(*GTI, IntPtrTy); 3166 const SCEV *IndexS = getSCEV(Index); 3167 // Getelementptr indices are signed. 3168 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3169 3170 // Multiply the index by the element size to compute the element offset. 3171 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3172 isInBounds ? SCEV::FlagNSW : 3173 SCEV::FlagAnyWrap); 3174 3175 // Add the element offset to the running total offset. 3176 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3177 } 3178 } 3179 3180 // Get the SCEV for the GEP base. 3181 const SCEV *BaseS = getSCEV(Base); 3182 3183 // Add the total offset from all the GEP indices to the base. 3184 return getAddExpr(BaseS, TotalOffset, 3185 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3186 } 3187 3188 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3189 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3190 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3191 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3192 uint32_t 3193 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3194 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3195 return C->getValue()->getValue().countTrailingZeros(); 3196 3197 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3198 return std::min(GetMinTrailingZeros(T->getOperand()), 3199 (uint32_t)getTypeSizeInBits(T->getType())); 3200 3201 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3202 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3203 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3204 getTypeSizeInBits(E->getType()) : OpRes; 3205 } 3206 3207 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3208 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3209 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3210 getTypeSizeInBits(E->getType()) : OpRes; 3211 } 3212 3213 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3214 // The result is the min of all operands results. 3215 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3216 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3217 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3218 return MinOpRes; 3219 } 3220 3221 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3222 // The result is the sum of all operands results. 3223 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3224 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3225 for (unsigned i = 1, e = M->getNumOperands(); 3226 SumOpRes != BitWidth && i != e; ++i) 3227 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3228 BitWidth); 3229 return SumOpRes; 3230 } 3231 3232 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3233 // The result is the min of all operands results. 3234 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3235 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3236 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3237 return MinOpRes; 3238 } 3239 3240 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3241 // The result is the min of all operands results. 3242 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3243 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3244 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3245 return MinOpRes; 3246 } 3247 3248 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3249 // The result is the min of all operands results. 3250 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3251 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3252 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3253 return MinOpRes; 3254 } 3255 3256 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3257 // For a SCEVUnknown, ask ValueTracking. 3258 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3259 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3260 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3261 return Zeros.countTrailingOnes(); 3262 } 3263 3264 // SCEVUDivExpr 3265 return 0; 3266 } 3267 3268 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3269 /// 3270 ConstantRange 3271 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3272 // See if we've computed this range already. 3273 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3274 if (I != UnsignedRanges.end()) 3275 return I->second; 3276 3277 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3278 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3279 3280 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3281 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3282 3283 // If the value has known zeros, the maximum unsigned value will have those 3284 // known zeros as well. 3285 uint32_t TZ = GetMinTrailingZeros(S); 3286 if (TZ != 0) 3287 ConservativeResult = 3288 ConstantRange(APInt::getMinValue(BitWidth), 3289 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3290 3291 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3292 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3293 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3294 X = X.add(getUnsignedRange(Add->getOperand(i))); 3295 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3296 } 3297 3298 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3299 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3300 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3301 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3302 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3303 } 3304 3305 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3306 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3307 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3308 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3309 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3310 } 3311 3312 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3313 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3314 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3315 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3316 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3317 } 3318 3319 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3320 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3321 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3322 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3323 } 3324 3325 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3326 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3327 return setUnsignedRange(ZExt, 3328 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3329 } 3330 3331 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3332 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3333 return setUnsignedRange(SExt, 3334 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3335 } 3336 3337 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3338 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3339 return setUnsignedRange(Trunc, 3340 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3341 } 3342 3343 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3344 // If there's no unsigned wrap, the value will never be less than its 3345 // initial value. 3346 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3347 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3348 if (!C->getValue()->isZero()) 3349 ConservativeResult = 3350 ConservativeResult.intersectWith( 3351 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3352 3353 // TODO: non-affine addrec 3354 if (AddRec->isAffine()) { 3355 Type *Ty = AddRec->getType(); 3356 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3357 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3358 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3359 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3360 3361 const SCEV *Start = AddRec->getStart(); 3362 const SCEV *Step = AddRec->getStepRecurrence(*this); 3363 3364 ConstantRange StartRange = getUnsignedRange(Start); 3365 ConstantRange StepRange = getSignedRange(Step); 3366 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3367 ConstantRange EndRange = 3368 StartRange.add(MaxBECountRange.multiply(StepRange)); 3369 3370 // Check for overflow. This must be done with ConstantRange arithmetic 3371 // because we could be called from within the ScalarEvolution overflow 3372 // checking code. 3373 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3374 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3375 ConstantRange ExtMaxBECountRange = 3376 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3377 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3378 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3379 ExtEndRange) 3380 return setUnsignedRange(AddRec, ConservativeResult); 3381 3382 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3383 EndRange.getUnsignedMin()); 3384 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3385 EndRange.getUnsignedMax()); 3386 if (Min.isMinValue() && Max.isMaxValue()) 3387 return setUnsignedRange(AddRec, ConservativeResult); 3388 return setUnsignedRange(AddRec, 3389 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3390 } 3391 } 3392 3393 return setUnsignedRange(AddRec, ConservativeResult); 3394 } 3395 3396 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3397 // For a SCEVUnknown, ask ValueTracking. 3398 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3399 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3400 if (Ones == ~Zeros + 1) 3401 return setUnsignedRange(U, ConservativeResult); 3402 return setUnsignedRange(U, 3403 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3404 } 3405 3406 return setUnsignedRange(S, ConservativeResult); 3407 } 3408 3409 /// getSignedRange - Determine the signed range for a particular SCEV. 3410 /// 3411 ConstantRange 3412 ScalarEvolution::getSignedRange(const SCEV *S) { 3413 // See if we've computed this range already. 3414 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3415 if (I != SignedRanges.end()) 3416 return I->second; 3417 3418 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3419 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3420 3421 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3422 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3423 3424 // If the value has known zeros, the maximum signed value will have those 3425 // known zeros as well. 3426 uint32_t TZ = GetMinTrailingZeros(S); 3427 if (TZ != 0) 3428 ConservativeResult = 3429 ConstantRange(APInt::getSignedMinValue(BitWidth), 3430 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3431 3432 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3433 ConstantRange X = getSignedRange(Add->getOperand(0)); 3434 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3435 X = X.add(getSignedRange(Add->getOperand(i))); 3436 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3437 } 3438 3439 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3440 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3441 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3442 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3443 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3444 } 3445 3446 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3447 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3448 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3449 X = X.smax(getSignedRange(SMax->getOperand(i))); 3450 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3451 } 3452 3453 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3454 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3455 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3456 X = X.umax(getSignedRange(UMax->getOperand(i))); 3457 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3458 } 3459 3460 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3461 ConstantRange X = getSignedRange(UDiv->getLHS()); 3462 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3463 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3464 } 3465 3466 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3467 ConstantRange X = getSignedRange(ZExt->getOperand()); 3468 return setSignedRange(ZExt, 3469 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3470 } 3471 3472 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3473 ConstantRange X = getSignedRange(SExt->getOperand()); 3474 return setSignedRange(SExt, 3475 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3476 } 3477 3478 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3479 ConstantRange X = getSignedRange(Trunc->getOperand()); 3480 return setSignedRange(Trunc, 3481 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3482 } 3483 3484 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3485 // If there's no signed wrap, and all the operands have the same sign or 3486 // zero, the value won't ever change sign. 3487 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3488 bool AllNonNeg = true; 3489 bool AllNonPos = true; 3490 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3491 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3492 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3493 } 3494 if (AllNonNeg) 3495 ConservativeResult = ConservativeResult.intersectWith( 3496 ConstantRange(APInt(BitWidth, 0), 3497 APInt::getSignedMinValue(BitWidth))); 3498 else if (AllNonPos) 3499 ConservativeResult = ConservativeResult.intersectWith( 3500 ConstantRange(APInt::getSignedMinValue(BitWidth), 3501 APInt(BitWidth, 1))); 3502 } 3503 3504 // TODO: non-affine addrec 3505 if (AddRec->isAffine()) { 3506 Type *Ty = AddRec->getType(); 3507 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3508 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3509 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3510 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3511 3512 const SCEV *Start = AddRec->getStart(); 3513 const SCEV *Step = AddRec->getStepRecurrence(*this); 3514 3515 ConstantRange StartRange = getSignedRange(Start); 3516 ConstantRange StepRange = getSignedRange(Step); 3517 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3518 ConstantRange EndRange = 3519 StartRange.add(MaxBECountRange.multiply(StepRange)); 3520 3521 // Check for overflow. This must be done with ConstantRange arithmetic 3522 // because we could be called from within the ScalarEvolution overflow 3523 // checking code. 3524 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3525 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3526 ConstantRange ExtMaxBECountRange = 3527 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3528 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3529 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3530 ExtEndRange) 3531 return setSignedRange(AddRec, ConservativeResult); 3532 3533 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3534 EndRange.getSignedMin()); 3535 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3536 EndRange.getSignedMax()); 3537 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3538 return setSignedRange(AddRec, ConservativeResult); 3539 return setSignedRange(AddRec, 3540 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3541 } 3542 } 3543 3544 return setSignedRange(AddRec, ConservativeResult); 3545 } 3546 3547 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3548 // For a SCEVUnknown, ask ValueTracking. 3549 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3550 return setSignedRange(U, ConservativeResult); 3551 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3552 if (NS == 1) 3553 return setSignedRange(U, ConservativeResult); 3554 return setSignedRange(U, ConservativeResult.intersectWith( 3555 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3556 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3557 } 3558 3559 return setSignedRange(S, ConservativeResult); 3560 } 3561 3562 /// createSCEV - We know that there is no SCEV for the specified value. 3563 /// Analyze the expression. 3564 /// 3565 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3566 if (!isSCEVable(V->getType())) 3567 return getUnknown(V); 3568 3569 unsigned Opcode = Instruction::UserOp1; 3570 if (Instruction *I = dyn_cast<Instruction>(V)) { 3571 Opcode = I->getOpcode(); 3572 3573 // Don't attempt to analyze instructions in blocks that aren't 3574 // reachable. Such instructions don't matter, and they aren't required 3575 // to obey basic rules for definitions dominating uses which this 3576 // analysis depends on. 3577 if (!DT->isReachableFromEntry(I->getParent())) 3578 return getUnknown(V); 3579 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3580 Opcode = CE->getOpcode(); 3581 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3582 return getConstant(CI); 3583 else if (isa<ConstantPointerNull>(V)) 3584 return getConstant(V->getType(), 0); 3585 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3586 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3587 else 3588 return getUnknown(V); 3589 3590 Operator *U = cast<Operator>(V); 3591 switch (Opcode) { 3592 case Instruction::Add: { 3593 // The simple thing to do would be to just call getSCEV on both operands 3594 // and call getAddExpr with the result. However if we're looking at a 3595 // bunch of things all added together, this can be quite inefficient, 3596 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3597 // Instead, gather up all the operands and make a single getAddExpr call. 3598 // LLVM IR canonical form means we need only traverse the left operands. 3599 // 3600 // Don't apply this instruction's NSW or NUW flags to the new 3601 // expression. The instruction may be guarded by control flow that the 3602 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3603 // mapped to the same SCEV expression, and it would be incorrect to transfer 3604 // NSW/NUW semantics to those operations. 3605 SmallVector<const SCEV *, 4> AddOps; 3606 AddOps.push_back(getSCEV(U->getOperand(1))); 3607 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3608 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3609 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3610 break; 3611 U = cast<Operator>(Op); 3612 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3613 if (Opcode == Instruction::Sub) 3614 AddOps.push_back(getNegativeSCEV(Op1)); 3615 else 3616 AddOps.push_back(Op1); 3617 } 3618 AddOps.push_back(getSCEV(U->getOperand(0))); 3619 return getAddExpr(AddOps); 3620 } 3621 case Instruction::Mul: { 3622 // Don't transfer NSW/NUW for the same reason as AddExpr. 3623 SmallVector<const SCEV *, 4> MulOps; 3624 MulOps.push_back(getSCEV(U->getOperand(1))); 3625 for (Value *Op = U->getOperand(0); 3626 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3627 Op = U->getOperand(0)) { 3628 U = cast<Operator>(Op); 3629 MulOps.push_back(getSCEV(U->getOperand(1))); 3630 } 3631 MulOps.push_back(getSCEV(U->getOperand(0))); 3632 return getMulExpr(MulOps); 3633 } 3634 case Instruction::UDiv: 3635 return getUDivExpr(getSCEV(U->getOperand(0)), 3636 getSCEV(U->getOperand(1))); 3637 case Instruction::Sub: 3638 return getMinusSCEV(getSCEV(U->getOperand(0)), 3639 getSCEV(U->getOperand(1))); 3640 case Instruction::And: 3641 // For an expression like x&255 that merely masks off the high bits, 3642 // use zext(trunc(x)) as the SCEV expression. 3643 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3644 if (CI->isNullValue()) 3645 return getSCEV(U->getOperand(1)); 3646 if (CI->isAllOnesValue()) 3647 return getSCEV(U->getOperand(0)); 3648 const APInt &A = CI->getValue(); 3649 3650 // Instcombine's ShrinkDemandedConstant may strip bits out of 3651 // constants, obscuring what would otherwise be a low-bits mask. 3652 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3653 // knew about to reconstruct a low-bits mask value. 3654 unsigned LZ = A.countLeadingZeros(); 3655 unsigned BitWidth = A.getBitWidth(); 3656 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3657 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3658 3659 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3660 3661 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3662 return 3663 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3664 IntegerType::get(getContext(), BitWidth - LZ)), 3665 U->getType()); 3666 } 3667 break; 3668 3669 case Instruction::Or: 3670 // If the RHS of the Or is a constant, we may have something like: 3671 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3672 // optimizations will transparently handle this case. 3673 // 3674 // In order for this transformation to be safe, the LHS must be of the 3675 // form X*(2^n) and the Or constant must be less than 2^n. 3676 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3677 const SCEV *LHS = getSCEV(U->getOperand(0)); 3678 const APInt &CIVal = CI->getValue(); 3679 if (GetMinTrailingZeros(LHS) >= 3680 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3681 // Build a plain add SCEV. 3682 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3683 // If the LHS of the add was an addrec and it has no-wrap flags, 3684 // transfer the no-wrap flags, since an or won't introduce a wrap. 3685 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3686 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3687 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3688 OldAR->getNoWrapFlags()); 3689 } 3690 return S; 3691 } 3692 } 3693 break; 3694 case Instruction::Xor: 3695 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3696 // If the RHS of the xor is a signbit, then this is just an add. 3697 // Instcombine turns add of signbit into xor as a strength reduction step. 3698 if (CI->getValue().isSignBit()) 3699 return getAddExpr(getSCEV(U->getOperand(0)), 3700 getSCEV(U->getOperand(1))); 3701 3702 // If the RHS of xor is -1, then this is a not operation. 3703 if (CI->isAllOnesValue()) 3704 return getNotSCEV(getSCEV(U->getOperand(0))); 3705 3706 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3707 // This is a variant of the check for xor with -1, and it handles 3708 // the case where instcombine has trimmed non-demanded bits out 3709 // of an xor with -1. 3710 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3711 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3712 if (BO->getOpcode() == Instruction::And && 3713 LCI->getValue() == CI->getValue()) 3714 if (const SCEVZeroExtendExpr *Z = 3715 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3716 Type *UTy = U->getType(); 3717 const SCEV *Z0 = Z->getOperand(); 3718 Type *Z0Ty = Z0->getType(); 3719 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3720 3721 // If C is a low-bits mask, the zero extend is serving to 3722 // mask off the high bits. Complement the operand and 3723 // re-apply the zext. 3724 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3725 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3726 3727 // If C is a single bit, it may be in the sign-bit position 3728 // before the zero-extend. In this case, represent the xor 3729 // using an add, which is equivalent, and re-apply the zext. 3730 APInt Trunc = CI->getValue().trunc(Z0TySize); 3731 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3732 Trunc.isSignBit()) 3733 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3734 UTy); 3735 } 3736 } 3737 break; 3738 3739 case Instruction::Shl: 3740 // Turn shift left of a constant amount into a multiply. 3741 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3742 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3743 3744 // If the shift count is not less than the bitwidth, the result of 3745 // the shift is undefined. Don't try to analyze it, because the 3746 // resolution chosen here may differ from the resolution chosen in 3747 // other parts of the compiler. 3748 if (SA->getValue().uge(BitWidth)) 3749 break; 3750 3751 Constant *X = ConstantInt::get(getContext(), 3752 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3753 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3754 } 3755 break; 3756 3757 case Instruction::LShr: 3758 // Turn logical shift right of a constant into a unsigned divide. 3759 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3760 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3761 3762 // If the shift count is not less than the bitwidth, the result of 3763 // the shift is undefined. Don't try to analyze it, because the 3764 // resolution chosen here may differ from the resolution chosen in 3765 // other parts of the compiler. 3766 if (SA->getValue().uge(BitWidth)) 3767 break; 3768 3769 Constant *X = ConstantInt::get(getContext(), 3770 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3771 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3772 } 3773 break; 3774 3775 case Instruction::AShr: 3776 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3777 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3778 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3779 if (L->getOpcode() == Instruction::Shl && 3780 L->getOperand(1) == U->getOperand(1)) { 3781 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3782 3783 // If the shift count is not less than the bitwidth, the result of 3784 // the shift is undefined. Don't try to analyze it, because the 3785 // resolution chosen here may differ from the resolution chosen in 3786 // other parts of the compiler. 3787 if (CI->getValue().uge(BitWidth)) 3788 break; 3789 3790 uint64_t Amt = BitWidth - CI->getZExtValue(); 3791 if (Amt == BitWidth) 3792 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3793 return 3794 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3795 IntegerType::get(getContext(), 3796 Amt)), 3797 U->getType()); 3798 } 3799 break; 3800 3801 case Instruction::Trunc: 3802 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3803 3804 case Instruction::ZExt: 3805 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3806 3807 case Instruction::SExt: 3808 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3809 3810 case Instruction::BitCast: 3811 // BitCasts are no-op casts so we just eliminate the cast. 3812 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3813 return getSCEV(U->getOperand(0)); 3814 break; 3815 3816 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3817 // lead to pointer expressions which cannot safely be expanded to GEPs, 3818 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3819 // simplifying integer expressions. 3820 3821 case Instruction::GetElementPtr: 3822 return createNodeForGEP(cast<GEPOperator>(U)); 3823 3824 case Instruction::PHI: 3825 return createNodeForPHI(cast<PHINode>(U)); 3826 3827 case Instruction::Select: 3828 // This could be a smax or umax that was lowered earlier. 3829 // Try to recover it. 3830 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3831 Value *LHS = ICI->getOperand(0); 3832 Value *RHS = ICI->getOperand(1); 3833 switch (ICI->getPredicate()) { 3834 case ICmpInst::ICMP_SLT: 3835 case ICmpInst::ICMP_SLE: 3836 std::swap(LHS, RHS); 3837 // fall through 3838 case ICmpInst::ICMP_SGT: 3839 case ICmpInst::ICMP_SGE: 3840 // a >s b ? a+x : b+x -> smax(a, b)+x 3841 // a >s b ? b+x : a+x -> smin(a, b)+x 3842 if (LHS->getType() == U->getType()) { 3843 const SCEV *LS = getSCEV(LHS); 3844 const SCEV *RS = getSCEV(RHS); 3845 const SCEV *LA = getSCEV(U->getOperand(1)); 3846 const SCEV *RA = getSCEV(U->getOperand(2)); 3847 const SCEV *LDiff = getMinusSCEV(LA, LS); 3848 const SCEV *RDiff = getMinusSCEV(RA, RS); 3849 if (LDiff == RDiff) 3850 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3851 LDiff = getMinusSCEV(LA, RS); 3852 RDiff = getMinusSCEV(RA, LS); 3853 if (LDiff == RDiff) 3854 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3855 } 3856 break; 3857 case ICmpInst::ICMP_ULT: 3858 case ICmpInst::ICMP_ULE: 3859 std::swap(LHS, RHS); 3860 // fall through 3861 case ICmpInst::ICMP_UGT: 3862 case ICmpInst::ICMP_UGE: 3863 // a >u b ? a+x : b+x -> umax(a, b)+x 3864 // a >u b ? b+x : a+x -> umin(a, b)+x 3865 if (LHS->getType() == U->getType()) { 3866 const SCEV *LS = getSCEV(LHS); 3867 const SCEV *RS = getSCEV(RHS); 3868 const SCEV *LA = getSCEV(U->getOperand(1)); 3869 const SCEV *RA = getSCEV(U->getOperand(2)); 3870 const SCEV *LDiff = getMinusSCEV(LA, LS); 3871 const SCEV *RDiff = getMinusSCEV(RA, RS); 3872 if (LDiff == RDiff) 3873 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3874 LDiff = getMinusSCEV(LA, RS); 3875 RDiff = getMinusSCEV(RA, LS); 3876 if (LDiff == RDiff) 3877 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3878 } 3879 break; 3880 case ICmpInst::ICMP_NE: 3881 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3882 if (LHS->getType() == U->getType() && 3883 isa<ConstantInt>(RHS) && 3884 cast<ConstantInt>(RHS)->isZero()) { 3885 const SCEV *One = getConstant(LHS->getType(), 1); 3886 const SCEV *LS = getSCEV(LHS); 3887 const SCEV *LA = getSCEV(U->getOperand(1)); 3888 const SCEV *RA = getSCEV(U->getOperand(2)); 3889 const SCEV *LDiff = getMinusSCEV(LA, LS); 3890 const SCEV *RDiff = getMinusSCEV(RA, One); 3891 if (LDiff == RDiff) 3892 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3893 } 3894 break; 3895 case ICmpInst::ICMP_EQ: 3896 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3897 if (LHS->getType() == U->getType() && 3898 isa<ConstantInt>(RHS) && 3899 cast<ConstantInt>(RHS)->isZero()) { 3900 const SCEV *One = getConstant(LHS->getType(), 1); 3901 const SCEV *LS = getSCEV(LHS); 3902 const SCEV *LA = getSCEV(U->getOperand(1)); 3903 const SCEV *RA = getSCEV(U->getOperand(2)); 3904 const SCEV *LDiff = getMinusSCEV(LA, One); 3905 const SCEV *RDiff = getMinusSCEV(RA, LS); 3906 if (LDiff == RDiff) 3907 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3908 } 3909 break; 3910 default: 3911 break; 3912 } 3913 } 3914 3915 default: // We cannot analyze this expression. 3916 break; 3917 } 3918 3919 return getUnknown(V); 3920 } 3921 3922 3923 3924 //===----------------------------------------------------------------------===// 3925 // Iteration Count Computation Code 3926 // 3927 3928 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3929 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3930 /// constant. Will also return 0 if the maximum trip count is very large (>= 3931 /// 2^32). 3932 /// 3933 /// This "trip count" assumes that control exits via ExitingBlock. More 3934 /// precisely, it is the number of times that control may reach ExitingBlock 3935 /// before taking the branch. For loops with multiple exits, it may not be the 3936 /// number times that the loop header executes because the loop may exit 3937 /// prematurely via another branch. 3938 unsigned ScalarEvolution:: 3939 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) { 3940 const SCEVConstant *ExitCount = 3941 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 3942 if (!ExitCount) 3943 return 0; 3944 3945 ConstantInt *ExitConst = ExitCount->getValue(); 3946 3947 // Guard against huge trip counts. 3948 if (ExitConst->getValue().getActiveBits() > 32) 3949 return 0; 3950 3951 // In case of integer overflow, this returns 0, which is correct. 3952 return ((unsigned)ExitConst->getZExtValue()) + 1; 3953 } 3954 3955 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3956 /// trip count of this loop as a normal unsigned value, if possible. This 3957 /// means that the actual trip count is always a multiple of the returned 3958 /// value (don't forget the trip count could very well be zero as well!). 3959 /// 3960 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3961 /// multiple of a constant (which is also the case if the trip count is simply 3962 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3963 /// if the trip count is very large (>= 2^32). 3964 /// 3965 /// As explained in the comments for getSmallConstantTripCount, this assumes 3966 /// that control exits the loop via ExitingBlock. 3967 unsigned ScalarEvolution:: 3968 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) { 3969 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 3970 if (ExitCount == getCouldNotCompute()) 3971 return 1; 3972 3973 // Get the trip count from the BE count by adding 1. 3974 const SCEV *TCMul = getAddExpr(ExitCount, 3975 getConstant(ExitCount->getType(), 1)); 3976 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3977 // to factor simple cases. 3978 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3979 TCMul = Mul->getOperand(0); 3980 3981 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3982 if (!MulC) 3983 return 1; 3984 3985 ConstantInt *Result = MulC->getValue(); 3986 3987 // Guard against huge trip counts (this requires checking 3988 // for zero to handle the case where the trip count == -1 and the 3989 // addition wraps). 3990 if (!Result || Result->getValue().getActiveBits() > 32 || 3991 Result->getValue().getActiveBits() == 0) 3992 return 1; 3993 3994 return (unsigned)Result->getZExtValue(); 3995 } 3996 3997 // getExitCount - Get the expression for the number of loop iterations for which 3998 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 3999 // SCEVCouldNotCompute. 4000 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4001 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4002 } 4003 4004 /// getBackedgeTakenCount - If the specified loop has a predictable 4005 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4006 /// object. The backedge-taken count is the number of times the loop header 4007 /// will be branched to from within the loop. This is one less than the 4008 /// trip count of the loop, since it doesn't count the first iteration, 4009 /// when the header is branched to from outside the loop. 4010 /// 4011 /// Note that it is not valid to call this method on a loop without a 4012 /// loop-invariant backedge-taken count (see 4013 /// hasLoopInvariantBackedgeTakenCount). 4014 /// 4015 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4016 return getBackedgeTakenInfo(L).getExact(this); 4017 } 4018 4019 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4020 /// return the least SCEV value that is known never to be less than the 4021 /// actual backedge taken count. 4022 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4023 return getBackedgeTakenInfo(L).getMax(this); 4024 } 4025 4026 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4027 /// onto the given Worklist. 4028 static void 4029 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4030 BasicBlock *Header = L->getHeader(); 4031 4032 // Push all Loop-header PHIs onto the Worklist stack. 4033 for (BasicBlock::iterator I = Header->begin(); 4034 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4035 Worklist.push_back(PN); 4036 } 4037 4038 const ScalarEvolution::BackedgeTakenInfo & 4039 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4040 // Initially insert an invalid entry for this loop. If the insertion 4041 // succeeds, proceed to actually compute a backedge-taken count and 4042 // update the value. The temporary CouldNotCompute value tells SCEV 4043 // code elsewhere that it shouldn't attempt to request a new 4044 // backedge-taken count, which could result in infinite recursion. 4045 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4046 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4047 if (!Pair.second) 4048 return Pair.first->second; 4049 4050 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4051 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4052 // must be cleared in this scope. 4053 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4054 4055 if (Result.getExact(this) != getCouldNotCompute()) { 4056 assert(isLoopInvariant(Result.getExact(this), L) && 4057 isLoopInvariant(Result.getMax(this), L) && 4058 "Computed backedge-taken count isn't loop invariant for loop!"); 4059 ++NumTripCountsComputed; 4060 } 4061 else if (Result.getMax(this) == getCouldNotCompute() && 4062 isa<PHINode>(L->getHeader()->begin())) { 4063 // Only count loops that have phi nodes as not being computable. 4064 ++NumTripCountsNotComputed; 4065 } 4066 4067 // Now that we know more about the trip count for this loop, forget any 4068 // existing SCEV values for PHI nodes in this loop since they are only 4069 // conservative estimates made without the benefit of trip count 4070 // information. This is similar to the code in forgetLoop, except that 4071 // it handles SCEVUnknown PHI nodes specially. 4072 if (Result.hasAnyInfo()) { 4073 SmallVector<Instruction *, 16> Worklist; 4074 PushLoopPHIs(L, Worklist); 4075 4076 SmallPtrSet<Instruction *, 8> Visited; 4077 while (!Worklist.empty()) { 4078 Instruction *I = Worklist.pop_back_val(); 4079 if (!Visited.insert(I)) continue; 4080 4081 ValueExprMapType::iterator It = 4082 ValueExprMap.find_as(static_cast<Value *>(I)); 4083 if (It != ValueExprMap.end()) { 4084 const SCEV *Old = It->second; 4085 4086 // SCEVUnknown for a PHI either means that it has an unrecognized 4087 // structure, or it's a PHI that's in the progress of being computed 4088 // by createNodeForPHI. In the former case, additional loop trip 4089 // count information isn't going to change anything. In the later 4090 // case, createNodeForPHI will perform the necessary updates on its 4091 // own when it gets to that point. 4092 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4093 forgetMemoizedResults(Old); 4094 ValueExprMap.erase(It); 4095 } 4096 if (PHINode *PN = dyn_cast<PHINode>(I)) 4097 ConstantEvolutionLoopExitValue.erase(PN); 4098 } 4099 4100 PushDefUseChildren(I, Worklist); 4101 } 4102 } 4103 4104 // Re-lookup the insert position, since the call to 4105 // ComputeBackedgeTakenCount above could result in a 4106 // recusive call to getBackedgeTakenInfo (on a different 4107 // loop), which would invalidate the iterator computed 4108 // earlier. 4109 return BackedgeTakenCounts.find(L)->second = Result; 4110 } 4111 4112 /// forgetLoop - This method should be called by the client when it has 4113 /// changed a loop in a way that may effect ScalarEvolution's ability to 4114 /// compute a trip count, or if the loop is deleted. 4115 void ScalarEvolution::forgetLoop(const Loop *L) { 4116 // Drop any stored trip count value. 4117 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4118 BackedgeTakenCounts.find(L); 4119 if (BTCPos != BackedgeTakenCounts.end()) { 4120 BTCPos->second.clear(); 4121 BackedgeTakenCounts.erase(BTCPos); 4122 } 4123 4124 // Drop information about expressions based on loop-header PHIs. 4125 SmallVector<Instruction *, 16> Worklist; 4126 PushLoopPHIs(L, Worklist); 4127 4128 SmallPtrSet<Instruction *, 8> Visited; 4129 while (!Worklist.empty()) { 4130 Instruction *I = Worklist.pop_back_val(); 4131 if (!Visited.insert(I)) continue; 4132 4133 ValueExprMapType::iterator It = 4134 ValueExprMap.find_as(static_cast<Value *>(I)); 4135 if (It != ValueExprMap.end()) { 4136 forgetMemoizedResults(It->second); 4137 ValueExprMap.erase(It); 4138 if (PHINode *PN = dyn_cast<PHINode>(I)) 4139 ConstantEvolutionLoopExitValue.erase(PN); 4140 } 4141 4142 PushDefUseChildren(I, Worklist); 4143 } 4144 4145 // Forget all contained loops too, to avoid dangling entries in the 4146 // ValuesAtScopes map. 4147 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4148 forgetLoop(*I); 4149 } 4150 4151 /// forgetValue - This method should be called by the client when it has 4152 /// changed a value in a way that may effect its value, or which may 4153 /// disconnect it from a def-use chain linking it to a loop. 4154 void ScalarEvolution::forgetValue(Value *V) { 4155 Instruction *I = dyn_cast<Instruction>(V); 4156 if (!I) return; 4157 4158 // Drop information about expressions based on loop-header PHIs. 4159 SmallVector<Instruction *, 16> Worklist; 4160 Worklist.push_back(I); 4161 4162 SmallPtrSet<Instruction *, 8> Visited; 4163 while (!Worklist.empty()) { 4164 I = Worklist.pop_back_val(); 4165 if (!Visited.insert(I)) continue; 4166 4167 ValueExprMapType::iterator It = 4168 ValueExprMap.find_as(static_cast<Value *>(I)); 4169 if (It != ValueExprMap.end()) { 4170 forgetMemoizedResults(It->second); 4171 ValueExprMap.erase(It); 4172 if (PHINode *PN = dyn_cast<PHINode>(I)) 4173 ConstantEvolutionLoopExitValue.erase(PN); 4174 } 4175 4176 PushDefUseChildren(I, Worklist); 4177 } 4178 } 4179 4180 /// getExact - Get the exact loop backedge taken count considering all loop 4181 /// exits. A computable result can only be return for loops with a single exit. 4182 /// Returning the minimum taken count among all exits is incorrect because one 4183 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4184 /// the limit of each loop test is never skipped. This is a valid assumption as 4185 /// long as the loop exits via that test. For precise results, it is the 4186 /// caller's responsibility to specify the relevant loop exit using 4187 /// getExact(ExitingBlock, SE). 4188 const SCEV * 4189 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4190 // If any exits were not computable, the loop is not computable. 4191 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4192 4193 // We need exactly one computable exit. 4194 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4195 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4196 4197 const SCEV *BECount = 0; 4198 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4199 ENT != 0; ENT = ENT->getNextExit()) { 4200 4201 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4202 4203 if (!BECount) 4204 BECount = ENT->ExactNotTaken; 4205 else if (BECount != ENT->ExactNotTaken) 4206 return SE->getCouldNotCompute(); 4207 } 4208 assert(BECount && "Invalid not taken count for loop exit"); 4209 return BECount; 4210 } 4211 4212 /// getExact - Get the exact not taken count for this loop exit. 4213 const SCEV * 4214 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4215 ScalarEvolution *SE) const { 4216 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4217 ENT != 0; ENT = ENT->getNextExit()) { 4218 4219 if (ENT->ExitingBlock == ExitingBlock) 4220 return ENT->ExactNotTaken; 4221 } 4222 return SE->getCouldNotCompute(); 4223 } 4224 4225 /// getMax - Get the max backedge taken count for the loop. 4226 const SCEV * 4227 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4228 return Max ? Max : SE->getCouldNotCompute(); 4229 } 4230 4231 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4232 /// computable exit into a persistent ExitNotTakenInfo array. 4233 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4234 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4235 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4236 4237 if (!Complete) 4238 ExitNotTaken.setIncomplete(); 4239 4240 unsigned NumExits = ExitCounts.size(); 4241 if (NumExits == 0) return; 4242 4243 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4244 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4245 if (NumExits == 1) return; 4246 4247 // Handle the rare case of multiple computable exits. 4248 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4249 4250 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4251 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4252 PrevENT->setNextExit(ENT); 4253 ENT->ExitingBlock = ExitCounts[i].first; 4254 ENT->ExactNotTaken = ExitCounts[i].second; 4255 } 4256 } 4257 4258 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4259 void ScalarEvolution::BackedgeTakenInfo::clear() { 4260 ExitNotTaken.ExitingBlock = 0; 4261 ExitNotTaken.ExactNotTaken = 0; 4262 delete[] ExitNotTaken.getNextExit(); 4263 } 4264 4265 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4266 /// of the specified loop will execute. 4267 ScalarEvolution::BackedgeTakenInfo 4268 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4269 SmallVector<BasicBlock *, 8> ExitingBlocks; 4270 L->getExitingBlocks(ExitingBlocks); 4271 4272 // Examine all exits and pick the most conservative values. 4273 const SCEV *MaxBECount = getCouldNotCompute(); 4274 bool CouldComputeBECount = true; 4275 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4276 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4277 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4278 if (EL.Exact == getCouldNotCompute()) 4279 // We couldn't compute an exact value for this exit, so 4280 // we won't be able to compute an exact value for the loop. 4281 CouldComputeBECount = false; 4282 else 4283 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4284 4285 if (MaxBECount == getCouldNotCompute()) 4286 MaxBECount = EL.Max; 4287 else if (EL.Max != getCouldNotCompute()) { 4288 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4289 // skip some loop tests. Taking the max over the exits is sufficiently 4290 // conservative. TODO: We could do better taking into consideration 4291 // that (1) the loop has unit stride (2) the last loop test is 4292 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4293 // falls-through some constant times less then the other tests. 4294 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4295 } 4296 } 4297 4298 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4299 } 4300 4301 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4302 /// loop will execute if it exits via the specified block. 4303 ScalarEvolution::ExitLimit 4304 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4305 4306 // Okay, we've chosen an exiting block. See what condition causes us to 4307 // exit at this block. 4308 // 4309 // FIXME: we should be able to handle switch instructions (with a single exit) 4310 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4311 if (ExitBr == 0) return getCouldNotCompute(); 4312 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4313 4314 // At this point, we know we have a conditional branch that determines whether 4315 // the loop is exited. However, we don't know if the branch is executed each 4316 // time through the loop. If not, then the execution count of the branch will 4317 // not be equal to the trip count of the loop. 4318 // 4319 // Currently we check for this by checking to see if the Exit branch goes to 4320 // the loop header. If so, we know it will always execute the same number of 4321 // times as the loop. We also handle the case where the exit block *is* the 4322 // loop header. This is common for un-rotated loops. 4323 // 4324 // If both of those tests fail, walk up the unique predecessor chain to the 4325 // header, stopping if there is an edge that doesn't exit the loop. If the 4326 // header is reached, the execution count of the branch will be equal to the 4327 // trip count of the loop. 4328 // 4329 // More extensive analysis could be done to handle more cases here. 4330 // 4331 if (ExitBr->getSuccessor(0) != L->getHeader() && 4332 ExitBr->getSuccessor(1) != L->getHeader() && 4333 ExitBr->getParent() != L->getHeader()) { 4334 // The simple checks failed, try climbing the unique predecessor chain 4335 // up to the header. 4336 bool Ok = false; 4337 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4338 BasicBlock *Pred = BB->getUniquePredecessor(); 4339 if (!Pred) 4340 return getCouldNotCompute(); 4341 TerminatorInst *PredTerm = Pred->getTerminator(); 4342 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4343 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4344 if (PredSucc == BB) 4345 continue; 4346 // If the predecessor has a successor that isn't BB and isn't 4347 // outside the loop, assume the worst. 4348 if (L->contains(PredSucc)) 4349 return getCouldNotCompute(); 4350 } 4351 if (Pred == L->getHeader()) { 4352 Ok = true; 4353 break; 4354 } 4355 BB = Pred; 4356 } 4357 if (!Ok) 4358 return getCouldNotCompute(); 4359 } 4360 4361 // Proceed to the next level to examine the exit condition expression. 4362 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4363 ExitBr->getSuccessor(0), 4364 ExitBr->getSuccessor(1)); 4365 } 4366 4367 /// ComputeExitLimitFromCond - Compute the number of times the 4368 /// backedge of the specified loop will execute if its exit condition 4369 /// were a conditional branch of ExitCond, TBB, and FBB. 4370 ScalarEvolution::ExitLimit 4371 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4372 Value *ExitCond, 4373 BasicBlock *TBB, 4374 BasicBlock *FBB) { 4375 // Check if the controlling expression for this loop is an And or Or. 4376 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4377 if (BO->getOpcode() == Instruction::And) { 4378 // Recurse on the operands of the and. 4379 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4380 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4381 const SCEV *BECount = getCouldNotCompute(); 4382 const SCEV *MaxBECount = getCouldNotCompute(); 4383 if (L->contains(TBB)) { 4384 // Both conditions must be true for the loop to continue executing. 4385 // Choose the less conservative count. 4386 if (EL0.Exact == getCouldNotCompute() || 4387 EL1.Exact == getCouldNotCompute()) 4388 BECount = getCouldNotCompute(); 4389 else 4390 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4391 if (EL0.Max == getCouldNotCompute()) 4392 MaxBECount = EL1.Max; 4393 else if (EL1.Max == getCouldNotCompute()) 4394 MaxBECount = EL0.Max; 4395 else 4396 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4397 } else { 4398 // Both conditions must be true at the same time for the loop to exit. 4399 // For now, be conservative. 4400 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4401 if (EL0.Max == EL1.Max) 4402 MaxBECount = EL0.Max; 4403 if (EL0.Exact == EL1.Exact) 4404 BECount = EL0.Exact; 4405 } 4406 4407 return ExitLimit(BECount, MaxBECount); 4408 } 4409 if (BO->getOpcode() == Instruction::Or) { 4410 // Recurse on the operands of the or. 4411 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4412 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4413 const SCEV *BECount = getCouldNotCompute(); 4414 const SCEV *MaxBECount = getCouldNotCompute(); 4415 if (L->contains(FBB)) { 4416 // Both conditions must be false for the loop to continue executing. 4417 // Choose the less conservative count. 4418 if (EL0.Exact == getCouldNotCompute() || 4419 EL1.Exact == getCouldNotCompute()) 4420 BECount = getCouldNotCompute(); 4421 else 4422 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4423 if (EL0.Max == getCouldNotCompute()) 4424 MaxBECount = EL1.Max; 4425 else if (EL1.Max == getCouldNotCompute()) 4426 MaxBECount = EL0.Max; 4427 else 4428 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4429 } else { 4430 // Both conditions must be false at the same time for the loop to exit. 4431 // For now, be conservative. 4432 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4433 if (EL0.Max == EL1.Max) 4434 MaxBECount = EL0.Max; 4435 if (EL0.Exact == EL1.Exact) 4436 BECount = EL0.Exact; 4437 } 4438 4439 return ExitLimit(BECount, MaxBECount); 4440 } 4441 } 4442 4443 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4444 // Proceed to the next level to examine the icmp. 4445 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4446 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4447 4448 // Check for a constant condition. These are normally stripped out by 4449 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4450 // preserve the CFG and is temporarily leaving constant conditions 4451 // in place. 4452 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4453 if (L->contains(FBB) == !CI->getZExtValue()) 4454 // The backedge is always taken. 4455 return getCouldNotCompute(); 4456 else 4457 // The backedge is never taken. 4458 return getConstant(CI->getType(), 0); 4459 } 4460 4461 // If it's not an integer or pointer comparison then compute it the hard way. 4462 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4463 } 4464 4465 /// ComputeExitLimitFromICmp - Compute the number of times the 4466 /// backedge of the specified loop will execute if its exit condition 4467 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4468 ScalarEvolution::ExitLimit 4469 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4470 ICmpInst *ExitCond, 4471 BasicBlock *TBB, 4472 BasicBlock *FBB) { 4473 4474 // If the condition was exit on true, convert the condition to exit on false 4475 ICmpInst::Predicate Cond; 4476 if (!L->contains(FBB)) 4477 Cond = ExitCond->getPredicate(); 4478 else 4479 Cond = ExitCond->getInversePredicate(); 4480 4481 // Handle common loops like: for (X = "string"; *X; ++X) 4482 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4483 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4484 ExitLimit ItCnt = 4485 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4486 if (ItCnt.hasAnyInfo()) 4487 return ItCnt; 4488 } 4489 4490 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4491 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4492 4493 // Try to evaluate any dependencies out of the loop. 4494 LHS = getSCEVAtScope(LHS, L); 4495 RHS = getSCEVAtScope(RHS, L); 4496 4497 // At this point, we would like to compute how many iterations of the 4498 // loop the predicate will return true for these inputs. 4499 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4500 // If there is a loop-invariant, force it into the RHS. 4501 std::swap(LHS, RHS); 4502 Cond = ICmpInst::getSwappedPredicate(Cond); 4503 } 4504 4505 // Simplify the operands before analyzing them. 4506 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4507 4508 // If we have a comparison of a chrec against a constant, try to use value 4509 // ranges to answer this query. 4510 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4511 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4512 if (AddRec->getLoop() == L) { 4513 // Form the constant range. 4514 ConstantRange CompRange( 4515 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4516 4517 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4518 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4519 } 4520 4521 switch (Cond) { 4522 case ICmpInst::ICMP_NE: { // while (X != Y) 4523 // Convert to: while (X-Y != 0) 4524 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4525 if (EL.hasAnyInfo()) return EL; 4526 break; 4527 } 4528 case ICmpInst::ICMP_EQ: { // while (X == Y) 4529 // Convert to: while (X-Y == 0) 4530 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4531 if (EL.hasAnyInfo()) return EL; 4532 break; 4533 } 4534 case ICmpInst::ICMP_SLT: { 4535 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4536 if (EL.hasAnyInfo()) return EL; 4537 break; 4538 } 4539 case ICmpInst::ICMP_SGT: { 4540 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4541 getNotSCEV(RHS), L, true); 4542 if (EL.hasAnyInfo()) return EL; 4543 break; 4544 } 4545 case ICmpInst::ICMP_ULT: { 4546 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4547 if (EL.hasAnyInfo()) return EL; 4548 break; 4549 } 4550 case ICmpInst::ICMP_UGT: { 4551 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4552 getNotSCEV(RHS), L, false); 4553 if (EL.hasAnyInfo()) return EL; 4554 break; 4555 } 4556 default: 4557 #if 0 4558 dbgs() << "ComputeBackedgeTakenCount "; 4559 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4560 dbgs() << "[unsigned] "; 4561 dbgs() << *LHS << " " 4562 << Instruction::getOpcodeName(Instruction::ICmp) 4563 << " " << *RHS << "\n"; 4564 #endif 4565 break; 4566 } 4567 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4568 } 4569 4570 static ConstantInt * 4571 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4572 ScalarEvolution &SE) { 4573 const SCEV *InVal = SE.getConstant(C); 4574 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4575 assert(isa<SCEVConstant>(Val) && 4576 "Evaluation of SCEV at constant didn't fold correctly?"); 4577 return cast<SCEVConstant>(Val)->getValue(); 4578 } 4579 4580 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4581 /// 'icmp op load X, cst', try to see if we can compute the backedge 4582 /// execution count. 4583 ScalarEvolution::ExitLimit 4584 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4585 LoadInst *LI, 4586 Constant *RHS, 4587 const Loop *L, 4588 ICmpInst::Predicate predicate) { 4589 4590 if (LI->isVolatile()) return getCouldNotCompute(); 4591 4592 // Check to see if the loaded pointer is a getelementptr of a global. 4593 // TODO: Use SCEV instead of manually grubbing with GEPs. 4594 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4595 if (!GEP) return getCouldNotCompute(); 4596 4597 // Make sure that it is really a constant global we are gepping, with an 4598 // initializer, and make sure the first IDX is really 0. 4599 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4600 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4601 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4602 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4603 return getCouldNotCompute(); 4604 4605 // Okay, we allow one non-constant index into the GEP instruction. 4606 Value *VarIdx = 0; 4607 std::vector<Constant*> Indexes; 4608 unsigned VarIdxNum = 0; 4609 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4610 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4611 Indexes.push_back(CI); 4612 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4613 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4614 VarIdx = GEP->getOperand(i); 4615 VarIdxNum = i-2; 4616 Indexes.push_back(0); 4617 } 4618 4619 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4620 if (!VarIdx) 4621 return getCouldNotCompute(); 4622 4623 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4624 // Check to see if X is a loop variant variable value now. 4625 const SCEV *Idx = getSCEV(VarIdx); 4626 Idx = getSCEVAtScope(Idx, L); 4627 4628 // We can only recognize very limited forms of loop index expressions, in 4629 // particular, only affine AddRec's like {C1,+,C2}. 4630 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4631 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4632 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4633 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4634 return getCouldNotCompute(); 4635 4636 unsigned MaxSteps = MaxBruteForceIterations; 4637 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4638 ConstantInt *ItCst = ConstantInt::get( 4639 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4640 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4641 4642 // Form the GEP offset. 4643 Indexes[VarIdxNum] = Val; 4644 4645 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4646 Indexes); 4647 if (Result == 0) break; // Cannot compute! 4648 4649 // Evaluate the condition for this iteration. 4650 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4651 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4652 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4653 #if 0 4654 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4655 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4656 << "***\n"; 4657 #endif 4658 ++NumArrayLenItCounts; 4659 return getConstant(ItCst); // Found terminating iteration! 4660 } 4661 } 4662 return getCouldNotCompute(); 4663 } 4664 4665 4666 /// CanConstantFold - Return true if we can constant fold an instruction of the 4667 /// specified type, assuming that all operands were constants. 4668 static bool CanConstantFold(const Instruction *I) { 4669 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4670 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4671 isa<LoadInst>(I)) 4672 return true; 4673 4674 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4675 if (const Function *F = CI->getCalledFunction()) 4676 return canConstantFoldCallTo(F); 4677 return false; 4678 } 4679 4680 /// Determine whether this instruction can constant evolve within this loop 4681 /// assuming its operands can all constant evolve. 4682 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4683 // An instruction outside of the loop can't be derived from a loop PHI. 4684 if (!L->contains(I)) return false; 4685 4686 if (isa<PHINode>(I)) { 4687 if (L->getHeader() == I->getParent()) 4688 return true; 4689 else 4690 // We don't currently keep track of the control flow needed to evaluate 4691 // PHIs, so we cannot handle PHIs inside of loops. 4692 return false; 4693 } 4694 4695 // If we won't be able to constant fold this expression even if the operands 4696 // are constants, bail early. 4697 return CanConstantFold(I); 4698 } 4699 4700 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4701 /// recursing through each instruction operand until reaching a loop header phi. 4702 static PHINode * 4703 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4704 DenseMap<Instruction *, PHINode *> &PHIMap) { 4705 4706 // Otherwise, we can evaluate this instruction if all of its operands are 4707 // constant or derived from a PHI node themselves. 4708 PHINode *PHI = 0; 4709 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4710 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4711 4712 if (isa<Constant>(*OpI)) continue; 4713 4714 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4715 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4716 4717 PHINode *P = dyn_cast<PHINode>(OpInst); 4718 if (!P) 4719 // If this operand is already visited, reuse the prior result. 4720 // We may have P != PHI if this is the deepest point at which the 4721 // inconsistent paths meet. 4722 P = PHIMap.lookup(OpInst); 4723 if (!P) { 4724 // Recurse and memoize the results, whether a phi is found or not. 4725 // This recursive call invalidates pointers into PHIMap. 4726 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4727 PHIMap[OpInst] = P; 4728 } 4729 if (P == 0) return 0; // Not evolving from PHI 4730 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4731 PHI = P; 4732 } 4733 // This is a expression evolving from a constant PHI! 4734 return PHI; 4735 } 4736 4737 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4738 /// in the loop that V is derived from. We allow arbitrary operations along the 4739 /// way, but the operands of an operation must either be constants or a value 4740 /// derived from a constant PHI. If this expression does not fit with these 4741 /// constraints, return null. 4742 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4743 Instruction *I = dyn_cast<Instruction>(V); 4744 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4745 4746 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4747 return PN; 4748 } 4749 4750 // Record non-constant instructions contained by the loop. 4751 DenseMap<Instruction *, PHINode *> PHIMap; 4752 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4753 } 4754 4755 /// EvaluateExpression - Given an expression that passes the 4756 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4757 /// in the loop has the value PHIVal. If we can't fold this expression for some 4758 /// reason, return null. 4759 static Constant *EvaluateExpression(Value *V, const Loop *L, 4760 DenseMap<Instruction *, Constant *> &Vals, 4761 const DataLayout *TD, 4762 const TargetLibraryInfo *TLI) { 4763 // Convenient constant check, but redundant for recursive calls. 4764 if (Constant *C = dyn_cast<Constant>(V)) return C; 4765 Instruction *I = dyn_cast<Instruction>(V); 4766 if (!I) return 0; 4767 4768 if (Constant *C = Vals.lookup(I)) return C; 4769 4770 // An instruction inside the loop depends on a value outside the loop that we 4771 // weren't given a mapping for, or a value such as a call inside the loop. 4772 if (!canConstantEvolve(I, L)) return 0; 4773 4774 // An unmapped PHI can be due to a branch or another loop inside this loop, 4775 // or due to this not being the initial iteration through a loop where we 4776 // couldn't compute the evolution of this particular PHI last time. 4777 if (isa<PHINode>(I)) return 0; 4778 4779 std::vector<Constant*> Operands(I->getNumOperands()); 4780 4781 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4782 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4783 if (!Operand) { 4784 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4785 if (!Operands[i]) return 0; 4786 continue; 4787 } 4788 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4789 Vals[Operand] = C; 4790 if (!C) return 0; 4791 Operands[i] = C; 4792 } 4793 4794 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4795 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4796 Operands[1], TD, TLI); 4797 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4798 if (!LI->isVolatile()) 4799 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4800 } 4801 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4802 TLI); 4803 } 4804 4805 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4806 /// in the header of its containing loop, we know the loop executes a 4807 /// constant number of times, and the PHI node is just a recurrence 4808 /// involving constants, fold it. 4809 Constant * 4810 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4811 const APInt &BEs, 4812 const Loop *L) { 4813 DenseMap<PHINode*, Constant*>::const_iterator I = 4814 ConstantEvolutionLoopExitValue.find(PN); 4815 if (I != ConstantEvolutionLoopExitValue.end()) 4816 return I->second; 4817 4818 if (BEs.ugt(MaxBruteForceIterations)) 4819 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4820 4821 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4822 4823 DenseMap<Instruction *, Constant *> CurrentIterVals; 4824 BasicBlock *Header = L->getHeader(); 4825 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4826 4827 // Since the loop is canonicalized, the PHI node must have two entries. One 4828 // entry must be a constant (coming in from outside of the loop), and the 4829 // second must be derived from the same PHI. 4830 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4831 PHINode *PHI = 0; 4832 for (BasicBlock::iterator I = Header->begin(); 4833 (PHI = dyn_cast<PHINode>(I)); ++I) { 4834 Constant *StartCST = 4835 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4836 if (StartCST == 0) continue; 4837 CurrentIterVals[PHI] = StartCST; 4838 } 4839 if (!CurrentIterVals.count(PN)) 4840 return RetVal = 0; 4841 4842 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4843 4844 // Execute the loop symbolically to determine the exit value. 4845 if (BEs.getActiveBits() >= 32) 4846 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4847 4848 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4849 unsigned IterationNum = 0; 4850 for (; ; ++IterationNum) { 4851 if (IterationNum == NumIterations) 4852 return RetVal = CurrentIterVals[PN]; // Got exit value! 4853 4854 // Compute the value of the PHIs for the next iteration. 4855 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4856 DenseMap<Instruction *, Constant *> NextIterVals; 4857 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4858 TLI); 4859 if (NextPHI == 0) 4860 return 0; // Couldn't evaluate! 4861 NextIterVals[PN] = NextPHI; 4862 4863 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4864 4865 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4866 // cease to be able to evaluate one of them or if they stop evolving, 4867 // because that doesn't necessarily prevent us from computing PN. 4868 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4869 for (DenseMap<Instruction *, Constant *>::const_iterator 4870 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4871 PHINode *PHI = dyn_cast<PHINode>(I->first); 4872 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4873 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4874 } 4875 // We use two distinct loops because EvaluateExpression may invalidate any 4876 // iterators into CurrentIterVals. 4877 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4878 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4879 PHINode *PHI = I->first; 4880 Constant *&NextPHI = NextIterVals[PHI]; 4881 if (!NextPHI) { // Not already computed. 4882 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4883 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4884 } 4885 if (NextPHI != I->second) 4886 StoppedEvolving = false; 4887 } 4888 4889 // If all entries in CurrentIterVals == NextIterVals then we can stop 4890 // iterating, the loop can't continue to change. 4891 if (StoppedEvolving) 4892 return RetVal = CurrentIterVals[PN]; 4893 4894 CurrentIterVals.swap(NextIterVals); 4895 } 4896 } 4897 4898 /// ComputeExitCountExhaustively - If the loop is known to execute a 4899 /// constant number of times (the condition evolves only from constants), 4900 /// try to evaluate a few iterations of the loop until we get the exit 4901 /// condition gets a value of ExitWhen (true or false). If we cannot 4902 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4903 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4904 Value *Cond, 4905 bool ExitWhen) { 4906 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4907 if (PN == 0) return getCouldNotCompute(); 4908 4909 // If the loop is canonicalized, the PHI will have exactly two entries. 4910 // That's the only form we support here. 4911 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4912 4913 DenseMap<Instruction *, Constant *> CurrentIterVals; 4914 BasicBlock *Header = L->getHeader(); 4915 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4916 4917 // One entry must be a constant (coming in from outside of the loop), and the 4918 // second must be derived from the same PHI. 4919 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4920 PHINode *PHI = 0; 4921 for (BasicBlock::iterator I = Header->begin(); 4922 (PHI = dyn_cast<PHINode>(I)); ++I) { 4923 Constant *StartCST = 4924 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4925 if (StartCST == 0) continue; 4926 CurrentIterVals[PHI] = StartCST; 4927 } 4928 if (!CurrentIterVals.count(PN)) 4929 return getCouldNotCompute(); 4930 4931 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4932 // the loop symbolically to determine when the condition gets a value of 4933 // "ExitWhen". 4934 4935 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4936 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 4937 ConstantInt *CondVal = 4938 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 4939 TD, TLI)); 4940 4941 // Couldn't symbolically evaluate. 4942 if (!CondVal) return getCouldNotCompute(); 4943 4944 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4945 ++NumBruteForceTripCountsComputed; 4946 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4947 } 4948 4949 // Update all the PHI nodes for the next iteration. 4950 DenseMap<Instruction *, Constant *> NextIterVals; 4951 4952 // Create a list of which PHIs we need to compute. We want to do this before 4953 // calling EvaluateExpression on them because that may invalidate iterators 4954 // into CurrentIterVals. 4955 SmallVector<PHINode *, 8> PHIsToCompute; 4956 for (DenseMap<Instruction *, Constant *>::const_iterator 4957 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4958 PHINode *PHI = dyn_cast<PHINode>(I->first); 4959 if (!PHI || PHI->getParent() != Header) continue; 4960 PHIsToCompute.push_back(PHI); 4961 } 4962 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 4963 E = PHIsToCompute.end(); I != E; ++I) { 4964 PHINode *PHI = *I; 4965 Constant *&NextPHI = NextIterVals[PHI]; 4966 if (NextPHI) continue; // Already computed! 4967 4968 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4969 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4970 } 4971 CurrentIterVals.swap(NextIterVals); 4972 } 4973 4974 // Too many iterations were needed to evaluate. 4975 return getCouldNotCompute(); 4976 } 4977 4978 /// getSCEVAtScope - Return a SCEV expression for the specified value 4979 /// at the specified scope in the program. The L value specifies a loop 4980 /// nest to evaluate the expression at, where null is the top-level or a 4981 /// specified loop is immediately inside of the loop. 4982 /// 4983 /// This method can be used to compute the exit value for a variable defined 4984 /// in a loop by querying what the value will hold in the parent loop. 4985 /// 4986 /// In the case that a relevant loop exit value cannot be computed, the 4987 /// original value V is returned. 4988 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4989 // Check to see if we've folded this expression at this loop before. 4990 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4991 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4992 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4993 if (!Pair.second) 4994 return Pair.first->second ? Pair.first->second : V; 4995 4996 // Otherwise compute it. 4997 const SCEV *C = computeSCEVAtScope(V, L); 4998 ValuesAtScopes[V][L] = C; 4999 return C; 5000 } 5001 5002 /// This builds up a Constant using the ConstantExpr interface. That way, we 5003 /// will return Constants for objects which aren't represented by a 5004 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5005 /// Returns NULL if the SCEV isn't representable as a Constant. 5006 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5007 switch (V->getSCEVType()) { 5008 default: // TODO: smax, umax. 5009 case scCouldNotCompute: 5010 case scAddRecExpr: 5011 break; 5012 case scConstant: 5013 return cast<SCEVConstant>(V)->getValue(); 5014 case scUnknown: 5015 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5016 case scSignExtend: { 5017 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5018 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5019 return ConstantExpr::getSExt(CastOp, SS->getType()); 5020 break; 5021 } 5022 case scZeroExtend: { 5023 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5024 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5025 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5026 break; 5027 } 5028 case scTruncate: { 5029 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5030 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5031 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5032 break; 5033 } 5034 case scAddExpr: { 5035 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5036 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5037 if (C->getType()->isPointerTy()) 5038 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5039 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5040 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5041 if (!C2) return 0; 5042 5043 // First pointer! 5044 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5045 std::swap(C, C2); 5046 // The offsets have been converted to bytes. We can add bytes to an 5047 // i8* by GEP with the byte count in the first index. 5048 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5049 } 5050 5051 // Don't bother trying to sum two pointers. We probably can't 5052 // statically compute a load that results from it anyway. 5053 if (C2->getType()->isPointerTy()) 5054 return 0; 5055 5056 if (C->getType()->isPointerTy()) { 5057 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5058 C2 = ConstantExpr::getIntegerCast( 5059 C2, Type::getInt32Ty(C->getContext()), true); 5060 C = ConstantExpr::getGetElementPtr(C, C2); 5061 } else 5062 C = ConstantExpr::getAdd(C, C2); 5063 } 5064 return C; 5065 } 5066 break; 5067 } 5068 case scMulExpr: { 5069 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5070 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5071 // Don't bother with pointers at all. 5072 if (C->getType()->isPointerTy()) return 0; 5073 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5074 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5075 if (!C2 || C2->getType()->isPointerTy()) return 0; 5076 C = ConstantExpr::getMul(C, C2); 5077 } 5078 return C; 5079 } 5080 break; 5081 } 5082 case scUDivExpr: { 5083 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5084 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5085 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5086 if (LHS->getType() == RHS->getType()) 5087 return ConstantExpr::getUDiv(LHS, RHS); 5088 break; 5089 } 5090 } 5091 return 0; 5092 } 5093 5094 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5095 if (isa<SCEVConstant>(V)) return V; 5096 5097 // If this instruction is evolved from a constant-evolving PHI, compute the 5098 // exit value from the loop without using SCEVs. 5099 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5100 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5101 const Loop *LI = (*this->LI)[I->getParent()]; 5102 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5103 if (PHINode *PN = dyn_cast<PHINode>(I)) 5104 if (PN->getParent() == LI->getHeader()) { 5105 // Okay, there is no closed form solution for the PHI node. Check 5106 // to see if the loop that contains it has a known backedge-taken 5107 // count. If so, we may be able to force computation of the exit 5108 // value. 5109 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5110 if (const SCEVConstant *BTCC = 5111 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5112 // Okay, we know how many times the containing loop executes. If 5113 // this is a constant evolving PHI node, get the final value at 5114 // the specified iteration number. 5115 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5116 BTCC->getValue()->getValue(), 5117 LI); 5118 if (RV) return getSCEV(RV); 5119 } 5120 } 5121 5122 // Okay, this is an expression that we cannot symbolically evaluate 5123 // into a SCEV. Check to see if it's possible to symbolically evaluate 5124 // the arguments into constants, and if so, try to constant propagate the 5125 // result. This is particularly useful for computing loop exit values. 5126 if (CanConstantFold(I)) { 5127 SmallVector<Constant *, 4> Operands; 5128 bool MadeImprovement = false; 5129 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5130 Value *Op = I->getOperand(i); 5131 if (Constant *C = dyn_cast<Constant>(Op)) { 5132 Operands.push_back(C); 5133 continue; 5134 } 5135 5136 // If any of the operands is non-constant and if they are 5137 // non-integer and non-pointer, don't even try to analyze them 5138 // with scev techniques. 5139 if (!isSCEVable(Op->getType())) 5140 return V; 5141 5142 const SCEV *OrigV = getSCEV(Op); 5143 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5144 MadeImprovement |= OrigV != OpV; 5145 5146 Constant *C = BuildConstantFromSCEV(OpV); 5147 if (!C) return V; 5148 if (C->getType() != Op->getType()) 5149 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5150 Op->getType(), 5151 false), 5152 C, Op->getType()); 5153 Operands.push_back(C); 5154 } 5155 5156 // Check to see if getSCEVAtScope actually made an improvement. 5157 if (MadeImprovement) { 5158 Constant *C = 0; 5159 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5160 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5161 Operands[0], Operands[1], TD, 5162 TLI); 5163 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5164 if (!LI->isVolatile()) 5165 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5166 } else 5167 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5168 Operands, TD, TLI); 5169 if (!C) return V; 5170 return getSCEV(C); 5171 } 5172 } 5173 } 5174 5175 // This is some other type of SCEVUnknown, just return it. 5176 return V; 5177 } 5178 5179 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5180 // Avoid performing the look-up in the common case where the specified 5181 // expression has no loop-variant portions. 5182 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5183 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5184 if (OpAtScope != Comm->getOperand(i)) { 5185 // Okay, at least one of these operands is loop variant but might be 5186 // foldable. Build a new instance of the folded commutative expression. 5187 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5188 Comm->op_begin()+i); 5189 NewOps.push_back(OpAtScope); 5190 5191 for (++i; i != e; ++i) { 5192 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5193 NewOps.push_back(OpAtScope); 5194 } 5195 if (isa<SCEVAddExpr>(Comm)) 5196 return getAddExpr(NewOps); 5197 if (isa<SCEVMulExpr>(Comm)) 5198 return getMulExpr(NewOps); 5199 if (isa<SCEVSMaxExpr>(Comm)) 5200 return getSMaxExpr(NewOps); 5201 if (isa<SCEVUMaxExpr>(Comm)) 5202 return getUMaxExpr(NewOps); 5203 llvm_unreachable("Unknown commutative SCEV type!"); 5204 } 5205 } 5206 // If we got here, all operands are loop invariant. 5207 return Comm; 5208 } 5209 5210 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5211 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5212 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5213 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5214 return Div; // must be loop invariant 5215 return getUDivExpr(LHS, RHS); 5216 } 5217 5218 // If this is a loop recurrence for a loop that does not contain L, then we 5219 // are dealing with the final value computed by the loop. 5220 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5221 // First, attempt to evaluate each operand. 5222 // Avoid performing the look-up in the common case where the specified 5223 // expression has no loop-variant portions. 5224 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5225 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5226 if (OpAtScope == AddRec->getOperand(i)) 5227 continue; 5228 5229 // Okay, at least one of these operands is loop variant but might be 5230 // foldable. Build a new instance of the folded commutative expression. 5231 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5232 AddRec->op_begin()+i); 5233 NewOps.push_back(OpAtScope); 5234 for (++i; i != e; ++i) 5235 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5236 5237 const SCEV *FoldedRec = 5238 getAddRecExpr(NewOps, AddRec->getLoop(), 5239 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5240 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5241 // The addrec may be folded to a nonrecurrence, for example, if the 5242 // induction variable is multiplied by zero after constant folding. Go 5243 // ahead and return the folded value. 5244 if (!AddRec) 5245 return FoldedRec; 5246 break; 5247 } 5248 5249 // If the scope is outside the addrec's loop, evaluate it by using the 5250 // loop exit value of the addrec. 5251 if (!AddRec->getLoop()->contains(L)) { 5252 // To evaluate this recurrence, we need to know how many times the AddRec 5253 // loop iterates. Compute this now. 5254 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5255 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5256 5257 // Then, evaluate the AddRec. 5258 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5259 } 5260 5261 return AddRec; 5262 } 5263 5264 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5265 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5266 if (Op == Cast->getOperand()) 5267 return Cast; // must be loop invariant 5268 return getZeroExtendExpr(Op, Cast->getType()); 5269 } 5270 5271 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5272 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5273 if (Op == Cast->getOperand()) 5274 return Cast; // must be loop invariant 5275 return getSignExtendExpr(Op, Cast->getType()); 5276 } 5277 5278 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5279 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5280 if (Op == Cast->getOperand()) 5281 return Cast; // must be loop invariant 5282 return getTruncateExpr(Op, Cast->getType()); 5283 } 5284 5285 llvm_unreachable("Unknown SCEV type!"); 5286 } 5287 5288 /// getSCEVAtScope - This is a convenience function which does 5289 /// getSCEVAtScope(getSCEV(V), L). 5290 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5291 return getSCEVAtScope(getSCEV(V), L); 5292 } 5293 5294 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5295 /// following equation: 5296 /// 5297 /// A * X = B (mod N) 5298 /// 5299 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5300 /// A and B isn't important. 5301 /// 5302 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5303 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5304 ScalarEvolution &SE) { 5305 uint32_t BW = A.getBitWidth(); 5306 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5307 assert(A != 0 && "A must be non-zero."); 5308 5309 // 1. D = gcd(A, N) 5310 // 5311 // The gcd of A and N may have only one prime factor: 2. The number of 5312 // trailing zeros in A is its multiplicity 5313 uint32_t Mult2 = A.countTrailingZeros(); 5314 // D = 2^Mult2 5315 5316 // 2. Check if B is divisible by D. 5317 // 5318 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5319 // is not less than multiplicity of this prime factor for D. 5320 if (B.countTrailingZeros() < Mult2) 5321 return SE.getCouldNotCompute(); 5322 5323 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5324 // modulo (N / D). 5325 // 5326 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5327 // bit width during computations. 5328 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5329 APInt Mod(BW + 1, 0); 5330 Mod.setBit(BW - Mult2); // Mod = N / D 5331 APInt I = AD.multiplicativeInverse(Mod); 5332 5333 // 4. Compute the minimum unsigned root of the equation: 5334 // I * (B / D) mod (N / D) 5335 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5336 5337 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5338 // bits. 5339 return SE.getConstant(Result.trunc(BW)); 5340 } 5341 5342 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5343 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5344 /// might be the same) or two SCEVCouldNotCompute objects. 5345 /// 5346 static std::pair<const SCEV *,const SCEV *> 5347 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5348 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5349 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5350 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5351 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5352 5353 // We currently can only solve this if the coefficients are constants. 5354 if (!LC || !MC || !NC) { 5355 const SCEV *CNC = SE.getCouldNotCompute(); 5356 return std::make_pair(CNC, CNC); 5357 } 5358 5359 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5360 const APInt &L = LC->getValue()->getValue(); 5361 const APInt &M = MC->getValue()->getValue(); 5362 const APInt &N = NC->getValue()->getValue(); 5363 APInt Two(BitWidth, 2); 5364 APInt Four(BitWidth, 4); 5365 5366 { 5367 using namespace APIntOps; 5368 const APInt& C = L; 5369 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5370 // The B coefficient is M-N/2 5371 APInt B(M); 5372 B -= sdiv(N,Two); 5373 5374 // The A coefficient is N/2 5375 APInt A(N.sdiv(Two)); 5376 5377 // Compute the B^2-4ac term. 5378 APInt SqrtTerm(B); 5379 SqrtTerm *= B; 5380 SqrtTerm -= Four * (A * C); 5381 5382 if (SqrtTerm.isNegative()) { 5383 // The loop is provably infinite. 5384 const SCEV *CNC = SE.getCouldNotCompute(); 5385 return std::make_pair(CNC, CNC); 5386 } 5387 5388 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5389 // integer value or else APInt::sqrt() will assert. 5390 APInt SqrtVal(SqrtTerm.sqrt()); 5391 5392 // Compute the two solutions for the quadratic formula. 5393 // The divisions must be performed as signed divisions. 5394 APInt NegB(-B); 5395 APInt TwoA(A << 1); 5396 if (TwoA.isMinValue()) { 5397 const SCEV *CNC = SE.getCouldNotCompute(); 5398 return std::make_pair(CNC, CNC); 5399 } 5400 5401 LLVMContext &Context = SE.getContext(); 5402 5403 ConstantInt *Solution1 = 5404 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5405 ConstantInt *Solution2 = 5406 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5407 5408 return std::make_pair(SE.getConstant(Solution1), 5409 SE.getConstant(Solution2)); 5410 } // end APIntOps namespace 5411 } 5412 5413 /// HowFarToZero - Return the number of times a backedge comparing the specified 5414 /// value to zero will execute. If not computable, return CouldNotCompute. 5415 /// 5416 /// This is only used for loops with a "x != y" exit test. The exit condition is 5417 /// now expressed as a single expression, V = x-y. So the exit test is 5418 /// effectively V != 0. We know and take advantage of the fact that this 5419 /// expression only being used in a comparison by zero context. 5420 ScalarEvolution::ExitLimit 5421 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5422 // If the value is a constant 5423 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5424 // If the value is already zero, the branch will execute zero times. 5425 if (C->getValue()->isZero()) return C; 5426 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5427 } 5428 5429 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5430 if (!AddRec || AddRec->getLoop() != L) 5431 return getCouldNotCompute(); 5432 5433 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5434 // the quadratic equation to solve it. 5435 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5436 std::pair<const SCEV *,const SCEV *> Roots = 5437 SolveQuadraticEquation(AddRec, *this); 5438 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5439 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5440 if (R1 && R2) { 5441 #if 0 5442 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5443 << " sol#2: " << *R2 << "\n"; 5444 #endif 5445 // Pick the smallest positive root value. 5446 if (ConstantInt *CB = 5447 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5448 R1->getValue(), 5449 R2->getValue()))) { 5450 if (CB->getZExtValue() == false) 5451 std::swap(R1, R2); // R1 is the minimum root now. 5452 5453 // We can only use this value if the chrec ends up with an exact zero 5454 // value at this index. When solving for "X*X != 5", for example, we 5455 // should not accept a root of 2. 5456 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5457 if (Val->isZero()) 5458 return R1; // We found a quadratic root! 5459 } 5460 } 5461 return getCouldNotCompute(); 5462 } 5463 5464 // Otherwise we can only handle this if it is affine. 5465 if (!AddRec->isAffine()) 5466 return getCouldNotCompute(); 5467 5468 // If this is an affine expression, the execution count of this branch is 5469 // the minimum unsigned root of the following equation: 5470 // 5471 // Start + Step*N = 0 (mod 2^BW) 5472 // 5473 // equivalent to: 5474 // 5475 // Step*N = -Start (mod 2^BW) 5476 // 5477 // where BW is the common bit width of Start and Step. 5478 5479 // Get the initial value for the loop. 5480 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5481 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5482 5483 // For now we handle only constant steps. 5484 // 5485 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5486 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5487 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5488 // We have not yet seen any such cases. 5489 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5490 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5491 return getCouldNotCompute(); 5492 5493 // For positive steps (counting up until unsigned overflow): 5494 // N = -Start/Step (as unsigned) 5495 // For negative steps (counting down to zero): 5496 // N = Start/-Step 5497 // First compute the unsigned distance from zero in the direction of Step. 5498 bool CountDown = StepC->getValue()->getValue().isNegative(); 5499 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5500 5501 // Handle unitary steps, which cannot wraparound. 5502 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5503 // N = Distance (as unsigned) 5504 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5505 ConstantRange CR = getUnsignedRange(Start); 5506 const SCEV *MaxBECount; 5507 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5508 // When counting up, the worst starting value is 1, not 0. 5509 MaxBECount = CR.getUnsignedMax().isMinValue() 5510 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5511 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5512 else 5513 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5514 : -CR.getUnsignedMin()); 5515 return ExitLimit(Distance, MaxBECount); 5516 } 5517 5518 // If the recurrence is known not to wraparound, unsigned divide computes the 5519 // back edge count. We know that the value will either become zero (and thus 5520 // the loop terminates), that the loop will terminate through some other exit 5521 // condition first, or that the loop has undefined behavior. This means 5522 // we can't "miss" the exit value, even with nonunit stride. 5523 // 5524 // FIXME: Prove that loops always exhibits *acceptable* undefined 5525 // behavior. Loops must exhibit defined behavior until a wrapped value is 5526 // actually used. So the trip count computed by udiv could be smaller than the 5527 // number of well-defined iterations. 5528 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5529 // FIXME: We really want an "isexact" bit for udiv. 5530 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5531 } 5532 // Then, try to solve the above equation provided that Start is constant. 5533 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5534 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5535 -StartC->getValue()->getValue(), 5536 *this); 5537 return getCouldNotCompute(); 5538 } 5539 5540 /// HowFarToNonZero - Return the number of times a backedge checking the 5541 /// specified value for nonzero will execute. If not computable, return 5542 /// CouldNotCompute 5543 ScalarEvolution::ExitLimit 5544 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5545 // Loops that look like: while (X == 0) are very strange indeed. We don't 5546 // handle them yet except for the trivial case. This could be expanded in the 5547 // future as needed. 5548 5549 // If the value is a constant, check to see if it is known to be non-zero 5550 // already. If so, the backedge will execute zero times. 5551 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5552 if (!C->getValue()->isNullValue()) 5553 return getConstant(C->getType(), 0); 5554 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5555 } 5556 5557 // We could implement others, but I really doubt anyone writes loops like 5558 // this, and if they did, they would already be constant folded. 5559 return getCouldNotCompute(); 5560 } 5561 5562 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5563 /// (which may not be an immediate predecessor) which has exactly one 5564 /// successor from which BB is reachable, or null if no such block is 5565 /// found. 5566 /// 5567 std::pair<BasicBlock *, BasicBlock *> 5568 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5569 // If the block has a unique predecessor, then there is no path from the 5570 // predecessor to the block that does not go through the direct edge 5571 // from the predecessor to the block. 5572 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5573 return std::make_pair(Pred, BB); 5574 5575 // A loop's header is defined to be a block that dominates the loop. 5576 // If the header has a unique predecessor outside the loop, it must be 5577 // a block that has exactly one successor that can reach the loop. 5578 if (Loop *L = LI->getLoopFor(BB)) 5579 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5580 5581 return std::pair<BasicBlock *, BasicBlock *>(); 5582 } 5583 5584 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5585 /// testing whether two expressions are equal, however for the purposes of 5586 /// looking for a condition guarding a loop, it can be useful to be a little 5587 /// more general, since a front-end may have replicated the controlling 5588 /// expression. 5589 /// 5590 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5591 // Quick check to see if they are the same SCEV. 5592 if (A == B) return true; 5593 5594 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5595 // two different instructions with the same value. Check for this case. 5596 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5597 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5598 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5599 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5600 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5601 return true; 5602 5603 // Otherwise assume they may have a different value. 5604 return false; 5605 } 5606 5607 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5608 /// predicate Pred. Return true iff any changes were made. 5609 /// 5610 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5611 const SCEV *&LHS, const SCEV *&RHS, 5612 unsigned Depth) { 5613 bool Changed = false; 5614 5615 // If we hit the max recursion limit bail out. 5616 if (Depth >= 3) 5617 return false; 5618 5619 // Canonicalize a constant to the right side. 5620 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5621 // Check for both operands constant. 5622 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5623 if (ConstantExpr::getICmp(Pred, 5624 LHSC->getValue(), 5625 RHSC->getValue())->isNullValue()) 5626 goto trivially_false; 5627 else 5628 goto trivially_true; 5629 } 5630 // Otherwise swap the operands to put the constant on the right. 5631 std::swap(LHS, RHS); 5632 Pred = ICmpInst::getSwappedPredicate(Pred); 5633 Changed = true; 5634 } 5635 5636 // If we're comparing an addrec with a value which is loop-invariant in the 5637 // addrec's loop, put the addrec on the left. Also make a dominance check, 5638 // as both operands could be addrecs loop-invariant in each other's loop. 5639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5640 const Loop *L = AR->getLoop(); 5641 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5642 std::swap(LHS, RHS); 5643 Pred = ICmpInst::getSwappedPredicate(Pred); 5644 Changed = true; 5645 } 5646 } 5647 5648 // If there's a constant operand, canonicalize comparisons with boundary 5649 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5650 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5651 const APInt &RA = RC->getValue()->getValue(); 5652 switch (Pred) { 5653 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5654 case ICmpInst::ICMP_EQ: 5655 case ICmpInst::ICMP_NE: 5656 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5657 if (!RA) 5658 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5659 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5660 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5661 ME->getOperand(0)->isAllOnesValue()) { 5662 RHS = AE->getOperand(1); 5663 LHS = ME->getOperand(1); 5664 Changed = true; 5665 } 5666 break; 5667 case ICmpInst::ICMP_UGE: 5668 if ((RA - 1).isMinValue()) { 5669 Pred = ICmpInst::ICMP_NE; 5670 RHS = getConstant(RA - 1); 5671 Changed = true; 5672 break; 5673 } 5674 if (RA.isMaxValue()) { 5675 Pred = ICmpInst::ICMP_EQ; 5676 Changed = true; 5677 break; 5678 } 5679 if (RA.isMinValue()) goto trivially_true; 5680 5681 Pred = ICmpInst::ICMP_UGT; 5682 RHS = getConstant(RA - 1); 5683 Changed = true; 5684 break; 5685 case ICmpInst::ICMP_ULE: 5686 if ((RA + 1).isMaxValue()) { 5687 Pred = ICmpInst::ICMP_NE; 5688 RHS = getConstant(RA + 1); 5689 Changed = true; 5690 break; 5691 } 5692 if (RA.isMinValue()) { 5693 Pred = ICmpInst::ICMP_EQ; 5694 Changed = true; 5695 break; 5696 } 5697 if (RA.isMaxValue()) goto trivially_true; 5698 5699 Pred = ICmpInst::ICMP_ULT; 5700 RHS = getConstant(RA + 1); 5701 Changed = true; 5702 break; 5703 case ICmpInst::ICMP_SGE: 5704 if ((RA - 1).isMinSignedValue()) { 5705 Pred = ICmpInst::ICMP_NE; 5706 RHS = getConstant(RA - 1); 5707 Changed = true; 5708 break; 5709 } 5710 if (RA.isMaxSignedValue()) { 5711 Pred = ICmpInst::ICMP_EQ; 5712 Changed = true; 5713 break; 5714 } 5715 if (RA.isMinSignedValue()) goto trivially_true; 5716 5717 Pred = ICmpInst::ICMP_SGT; 5718 RHS = getConstant(RA - 1); 5719 Changed = true; 5720 break; 5721 case ICmpInst::ICMP_SLE: 5722 if ((RA + 1).isMaxSignedValue()) { 5723 Pred = ICmpInst::ICMP_NE; 5724 RHS = getConstant(RA + 1); 5725 Changed = true; 5726 break; 5727 } 5728 if (RA.isMinSignedValue()) { 5729 Pred = ICmpInst::ICMP_EQ; 5730 Changed = true; 5731 break; 5732 } 5733 if (RA.isMaxSignedValue()) goto trivially_true; 5734 5735 Pred = ICmpInst::ICMP_SLT; 5736 RHS = getConstant(RA + 1); 5737 Changed = true; 5738 break; 5739 case ICmpInst::ICMP_UGT: 5740 if (RA.isMinValue()) { 5741 Pred = ICmpInst::ICMP_NE; 5742 Changed = true; 5743 break; 5744 } 5745 if ((RA + 1).isMaxValue()) { 5746 Pred = ICmpInst::ICMP_EQ; 5747 RHS = getConstant(RA + 1); 5748 Changed = true; 5749 break; 5750 } 5751 if (RA.isMaxValue()) goto trivially_false; 5752 break; 5753 case ICmpInst::ICMP_ULT: 5754 if (RA.isMaxValue()) { 5755 Pred = ICmpInst::ICMP_NE; 5756 Changed = true; 5757 break; 5758 } 5759 if ((RA - 1).isMinValue()) { 5760 Pred = ICmpInst::ICMP_EQ; 5761 RHS = getConstant(RA - 1); 5762 Changed = true; 5763 break; 5764 } 5765 if (RA.isMinValue()) goto trivially_false; 5766 break; 5767 case ICmpInst::ICMP_SGT: 5768 if (RA.isMinSignedValue()) { 5769 Pred = ICmpInst::ICMP_NE; 5770 Changed = true; 5771 break; 5772 } 5773 if ((RA + 1).isMaxSignedValue()) { 5774 Pred = ICmpInst::ICMP_EQ; 5775 RHS = getConstant(RA + 1); 5776 Changed = true; 5777 break; 5778 } 5779 if (RA.isMaxSignedValue()) goto trivially_false; 5780 break; 5781 case ICmpInst::ICMP_SLT: 5782 if (RA.isMaxSignedValue()) { 5783 Pred = ICmpInst::ICMP_NE; 5784 Changed = true; 5785 break; 5786 } 5787 if ((RA - 1).isMinSignedValue()) { 5788 Pred = ICmpInst::ICMP_EQ; 5789 RHS = getConstant(RA - 1); 5790 Changed = true; 5791 break; 5792 } 5793 if (RA.isMinSignedValue()) goto trivially_false; 5794 break; 5795 } 5796 } 5797 5798 // Check for obvious equality. 5799 if (HasSameValue(LHS, RHS)) { 5800 if (ICmpInst::isTrueWhenEqual(Pred)) 5801 goto trivially_true; 5802 if (ICmpInst::isFalseWhenEqual(Pred)) 5803 goto trivially_false; 5804 } 5805 5806 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5807 // adding or subtracting 1 from one of the operands. 5808 switch (Pred) { 5809 case ICmpInst::ICMP_SLE: 5810 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5811 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5812 SCEV::FlagNSW); 5813 Pred = ICmpInst::ICMP_SLT; 5814 Changed = true; 5815 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5816 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5817 SCEV::FlagNSW); 5818 Pred = ICmpInst::ICMP_SLT; 5819 Changed = true; 5820 } 5821 break; 5822 case ICmpInst::ICMP_SGE: 5823 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5824 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5825 SCEV::FlagNSW); 5826 Pred = ICmpInst::ICMP_SGT; 5827 Changed = true; 5828 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5829 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5830 SCEV::FlagNSW); 5831 Pred = ICmpInst::ICMP_SGT; 5832 Changed = true; 5833 } 5834 break; 5835 case ICmpInst::ICMP_ULE: 5836 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5837 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5838 SCEV::FlagNUW); 5839 Pred = ICmpInst::ICMP_ULT; 5840 Changed = true; 5841 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5842 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5843 SCEV::FlagNUW); 5844 Pred = ICmpInst::ICMP_ULT; 5845 Changed = true; 5846 } 5847 break; 5848 case ICmpInst::ICMP_UGE: 5849 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5850 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5851 SCEV::FlagNUW); 5852 Pred = ICmpInst::ICMP_UGT; 5853 Changed = true; 5854 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5855 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5856 SCEV::FlagNUW); 5857 Pred = ICmpInst::ICMP_UGT; 5858 Changed = true; 5859 } 5860 break; 5861 default: 5862 break; 5863 } 5864 5865 // TODO: More simplifications are possible here. 5866 5867 // Recursively simplify until we either hit a recursion limit or nothing 5868 // changes. 5869 if (Changed) 5870 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 5871 5872 return Changed; 5873 5874 trivially_true: 5875 // Return 0 == 0. 5876 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5877 Pred = ICmpInst::ICMP_EQ; 5878 return true; 5879 5880 trivially_false: 5881 // Return 0 != 0. 5882 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5883 Pred = ICmpInst::ICMP_NE; 5884 return true; 5885 } 5886 5887 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5888 return getSignedRange(S).getSignedMax().isNegative(); 5889 } 5890 5891 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5892 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5893 } 5894 5895 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5896 return !getSignedRange(S).getSignedMin().isNegative(); 5897 } 5898 5899 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5900 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5901 } 5902 5903 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5904 return isKnownNegative(S) || isKnownPositive(S); 5905 } 5906 5907 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5908 const SCEV *LHS, const SCEV *RHS) { 5909 // Canonicalize the inputs first. 5910 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5911 5912 // If LHS or RHS is an addrec, check to see if the condition is true in 5913 // every iteration of the loop. 5914 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5915 if (isLoopEntryGuardedByCond( 5916 AR->getLoop(), Pred, AR->getStart(), RHS) && 5917 isLoopBackedgeGuardedByCond( 5918 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5919 return true; 5920 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5921 if (isLoopEntryGuardedByCond( 5922 AR->getLoop(), Pred, LHS, AR->getStart()) && 5923 isLoopBackedgeGuardedByCond( 5924 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5925 return true; 5926 5927 // Otherwise see what can be done with known constant ranges. 5928 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5929 } 5930 5931 bool 5932 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5933 const SCEV *LHS, const SCEV *RHS) { 5934 if (HasSameValue(LHS, RHS)) 5935 return ICmpInst::isTrueWhenEqual(Pred); 5936 5937 // This code is split out from isKnownPredicate because it is called from 5938 // within isLoopEntryGuardedByCond. 5939 switch (Pred) { 5940 default: 5941 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5942 case ICmpInst::ICMP_SGT: 5943 Pred = ICmpInst::ICMP_SLT; 5944 std::swap(LHS, RHS); 5945 case ICmpInst::ICMP_SLT: { 5946 ConstantRange LHSRange = getSignedRange(LHS); 5947 ConstantRange RHSRange = getSignedRange(RHS); 5948 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5949 return true; 5950 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5951 return false; 5952 break; 5953 } 5954 case ICmpInst::ICMP_SGE: 5955 Pred = ICmpInst::ICMP_SLE; 5956 std::swap(LHS, RHS); 5957 case ICmpInst::ICMP_SLE: { 5958 ConstantRange LHSRange = getSignedRange(LHS); 5959 ConstantRange RHSRange = getSignedRange(RHS); 5960 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5961 return true; 5962 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5963 return false; 5964 break; 5965 } 5966 case ICmpInst::ICMP_UGT: 5967 Pred = ICmpInst::ICMP_ULT; 5968 std::swap(LHS, RHS); 5969 case ICmpInst::ICMP_ULT: { 5970 ConstantRange LHSRange = getUnsignedRange(LHS); 5971 ConstantRange RHSRange = getUnsignedRange(RHS); 5972 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5973 return true; 5974 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5975 return false; 5976 break; 5977 } 5978 case ICmpInst::ICMP_UGE: 5979 Pred = ICmpInst::ICMP_ULE; 5980 std::swap(LHS, RHS); 5981 case ICmpInst::ICMP_ULE: { 5982 ConstantRange LHSRange = getUnsignedRange(LHS); 5983 ConstantRange RHSRange = getUnsignedRange(RHS); 5984 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5985 return true; 5986 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5987 return false; 5988 break; 5989 } 5990 case ICmpInst::ICMP_NE: { 5991 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5992 return true; 5993 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5994 return true; 5995 5996 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5997 if (isKnownNonZero(Diff)) 5998 return true; 5999 break; 6000 } 6001 case ICmpInst::ICMP_EQ: 6002 // The check at the top of the function catches the case where 6003 // the values are known to be equal. 6004 break; 6005 } 6006 return false; 6007 } 6008 6009 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6010 /// protected by a conditional between LHS and RHS. This is used to 6011 /// to eliminate casts. 6012 bool 6013 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6014 ICmpInst::Predicate Pred, 6015 const SCEV *LHS, const SCEV *RHS) { 6016 // Interpret a null as meaning no loop, where there is obviously no guard 6017 // (interprocedural conditions notwithstanding). 6018 if (!L) return true; 6019 6020 BasicBlock *Latch = L->getLoopLatch(); 6021 if (!Latch) 6022 return false; 6023 6024 BranchInst *LoopContinuePredicate = 6025 dyn_cast<BranchInst>(Latch->getTerminator()); 6026 if (!LoopContinuePredicate || 6027 LoopContinuePredicate->isUnconditional()) 6028 return false; 6029 6030 return isImpliedCond(Pred, LHS, RHS, 6031 LoopContinuePredicate->getCondition(), 6032 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6033 } 6034 6035 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6036 /// by a conditional between LHS and RHS. This is used to help avoid max 6037 /// expressions in loop trip counts, and to eliminate casts. 6038 bool 6039 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6040 ICmpInst::Predicate Pred, 6041 const SCEV *LHS, const SCEV *RHS) { 6042 // Interpret a null as meaning no loop, where there is obviously no guard 6043 // (interprocedural conditions notwithstanding). 6044 if (!L) return false; 6045 6046 // Starting at the loop predecessor, climb up the predecessor chain, as long 6047 // as there are predecessors that can be found that have unique successors 6048 // leading to the original header. 6049 for (std::pair<BasicBlock *, BasicBlock *> 6050 Pair(L->getLoopPredecessor(), L->getHeader()); 6051 Pair.first; 6052 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6053 6054 BranchInst *LoopEntryPredicate = 6055 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6056 if (!LoopEntryPredicate || 6057 LoopEntryPredicate->isUnconditional()) 6058 continue; 6059 6060 if (isImpliedCond(Pred, LHS, RHS, 6061 LoopEntryPredicate->getCondition(), 6062 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6063 return true; 6064 } 6065 6066 return false; 6067 } 6068 6069 /// RAII wrapper to prevent recursive application of isImpliedCond. 6070 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6071 /// currently evaluating isImpliedCond. 6072 struct MarkPendingLoopPredicate { 6073 Value *Cond; 6074 DenseSet<Value*> &LoopPreds; 6075 bool Pending; 6076 6077 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6078 : Cond(C), LoopPreds(LP) { 6079 Pending = !LoopPreds.insert(Cond).second; 6080 } 6081 ~MarkPendingLoopPredicate() { 6082 if (!Pending) 6083 LoopPreds.erase(Cond); 6084 } 6085 }; 6086 6087 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6088 /// and RHS is true whenever the given Cond value evaluates to true. 6089 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6090 const SCEV *LHS, const SCEV *RHS, 6091 Value *FoundCondValue, 6092 bool Inverse) { 6093 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6094 if (Mark.Pending) 6095 return false; 6096 6097 // Recursively handle And and Or conditions. 6098 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6099 if (BO->getOpcode() == Instruction::And) { 6100 if (!Inverse) 6101 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6102 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6103 } else if (BO->getOpcode() == Instruction::Or) { 6104 if (Inverse) 6105 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6106 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6107 } 6108 } 6109 6110 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6111 if (!ICI) return false; 6112 6113 // Bail if the ICmp's operands' types are wider than the needed type 6114 // before attempting to call getSCEV on them. This avoids infinite 6115 // recursion, since the analysis of widening casts can require loop 6116 // exit condition information for overflow checking, which would 6117 // lead back here. 6118 if (getTypeSizeInBits(LHS->getType()) < 6119 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6120 return false; 6121 6122 // Now that we found a conditional branch that dominates the loop, check to 6123 // see if it is the comparison we are looking for. 6124 ICmpInst::Predicate FoundPred; 6125 if (Inverse) 6126 FoundPred = ICI->getInversePredicate(); 6127 else 6128 FoundPred = ICI->getPredicate(); 6129 6130 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6131 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6132 6133 // Balance the types. The case where FoundLHS' type is wider than 6134 // LHS' type is checked for above. 6135 if (getTypeSizeInBits(LHS->getType()) > 6136 getTypeSizeInBits(FoundLHS->getType())) { 6137 if (CmpInst::isSigned(Pred)) { 6138 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6139 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6140 } else { 6141 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6142 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6143 } 6144 } 6145 6146 // Canonicalize the query to match the way instcombine will have 6147 // canonicalized the comparison. 6148 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6149 if (LHS == RHS) 6150 return CmpInst::isTrueWhenEqual(Pred); 6151 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6152 if (FoundLHS == FoundRHS) 6153 return CmpInst::isFalseWhenEqual(Pred); 6154 6155 // Check to see if we can make the LHS or RHS match. 6156 if (LHS == FoundRHS || RHS == FoundLHS) { 6157 if (isa<SCEVConstant>(RHS)) { 6158 std::swap(FoundLHS, FoundRHS); 6159 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6160 } else { 6161 std::swap(LHS, RHS); 6162 Pred = ICmpInst::getSwappedPredicate(Pred); 6163 } 6164 } 6165 6166 // Check whether the found predicate is the same as the desired predicate. 6167 if (FoundPred == Pred) 6168 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6169 6170 // Check whether swapping the found predicate makes it the same as the 6171 // desired predicate. 6172 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6173 if (isa<SCEVConstant>(RHS)) 6174 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6175 else 6176 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6177 RHS, LHS, FoundLHS, FoundRHS); 6178 } 6179 6180 // Check whether the actual condition is beyond sufficient. 6181 if (FoundPred == ICmpInst::ICMP_EQ) 6182 if (ICmpInst::isTrueWhenEqual(Pred)) 6183 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6184 return true; 6185 if (Pred == ICmpInst::ICMP_NE) 6186 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6187 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6188 return true; 6189 6190 // Otherwise assume the worst. 6191 return false; 6192 } 6193 6194 /// isImpliedCondOperands - Test whether the condition described by Pred, 6195 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6196 /// and FoundRHS is true. 6197 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6198 const SCEV *LHS, const SCEV *RHS, 6199 const SCEV *FoundLHS, 6200 const SCEV *FoundRHS) { 6201 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6202 FoundLHS, FoundRHS) || 6203 // ~x < ~y --> x > y 6204 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6205 getNotSCEV(FoundRHS), 6206 getNotSCEV(FoundLHS)); 6207 } 6208 6209 /// isImpliedCondOperandsHelper - Test whether the condition described by 6210 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6211 /// FoundLHS, and FoundRHS is true. 6212 bool 6213 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6214 const SCEV *LHS, const SCEV *RHS, 6215 const SCEV *FoundLHS, 6216 const SCEV *FoundRHS) { 6217 switch (Pred) { 6218 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6219 case ICmpInst::ICMP_EQ: 6220 case ICmpInst::ICMP_NE: 6221 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6222 return true; 6223 break; 6224 case ICmpInst::ICMP_SLT: 6225 case ICmpInst::ICMP_SLE: 6226 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6227 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6228 return true; 6229 break; 6230 case ICmpInst::ICMP_SGT: 6231 case ICmpInst::ICMP_SGE: 6232 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6233 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6234 return true; 6235 break; 6236 case ICmpInst::ICMP_ULT: 6237 case ICmpInst::ICMP_ULE: 6238 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6239 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6240 return true; 6241 break; 6242 case ICmpInst::ICMP_UGT: 6243 case ICmpInst::ICMP_UGE: 6244 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6245 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6246 return true; 6247 break; 6248 } 6249 6250 return false; 6251 } 6252 6253 /// getBECount - Subtract the end and start values and divide by the step, 6254 /// rounding up, to get the number of times the backedge is executed. Return 6255 /// CouldNotCompute if an intermediate computation overflows. 6256 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6257 const SCEV *End, 6258 const SCEV *Step, 6259 bool NoWrap) { 6260 assert(!isKnownNegative(Step) && 6261 "This code doesn't handle negative strides yet!"); 6262 6263 Type *Ty = Start->getType(); 6264 6265 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6266 // here because SCEV may not be able to determine that the unsigned division 6267 // after rounding is zero. 6268 if (Start == End) 6269 return getConstant(Ty, 0); 6270 6271 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6272 const SCEV *Diff = getMinusSCEV(End, Start); 6273 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6274 6275 // Add an adjustment to the difference between End and Start so that 6276 // the division will effectively round up. 6277 const SCEV *Add = getAddExpr(Diff, RoundUp); 6278 6279 if (!NoWrap) { 6280 // Check Add for unsigned overflow. 6281 // TODO: More sophisticated things could be done here. 6282 Type *WideTy = IntegerType::get(getContext(), 6283 getTypeSizeInBits(Ty) + 1); 6284 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6285 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6286 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6287 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6288 return getCouldNotCompute(); 6289 } 6290 6291 return getUDivExpr(Add, Step); 6292 } 6293 6294 /// HowManyLessThans - Return the number of times a backedge containing the 6295 /// specified less-than comparison will execute. If not computable, return 6296 /// CouldNotCompute. 6297 ScalarEvolution::ExitLimit 6298 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6299 const Loop *L, bool isSigned) { 6300 // Only handle: "ADDREC < LoopInvariant". 6301 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6302 6303 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6304 if (!AddRec || AddRec->getLoop() != L) 6305 return getCouldNotCompute(); 6306 6307 // Check to see if we have a flag which makes analysis easy. 6308 bool NoWrap = isSigned ? 6309 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) : 6310 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW)); 6311 6312 if (AddRec->isAffine()) { 6313 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6314 const SCEV *Step = AddRec->getStepRecurrence(*this); 6315 6316 if (Step->isZero()) 6317 return getCouldNotCompute(); 6318 if (Step->isOne()) { 6319 // With unit stride, the iteration never steps past the limit value. 6320 } else if (isKnownPositive(Step)) { 6321 // Test whether a positive iteration can step past the limit 6322 // value and past the maximum value for its type in a single step. 6323 // Note that it's not sufficient to check NoWrap here, because even 6324 // though the value after a wrap is undefined, it's not undefined 6325 // behavior, so if wrap does occur, the loop could either terminate or 6326 // loop infinitely, but in either case, the loop is guaranteed to 6327 // iterate at least until the iteration where the wrapping occurs. 6328 const SCEV *One = getConstant(Step->getType(), 1); 6329 if (isSigned) { 6330 APInt Max = APInt::getSignedMaxValue(BitWidth); 6331 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6332 .slt(getSignedRange(RHS).getSignedMax())) 6333 return getCouldNotCompute(); 6334 } else { 6335 APInt Max = APInt::getMaxValue(BitWidth); 6336 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6337 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6338 return getCouldNotCompute(); 6339 } 6340 } else 6341 // TODO: Handle negative strides here and below. 6342 return getCouldNotCompute(); 6343 6344 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6345 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6346 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6347 // treat m-n as signed nor unsigned due to overflow possibility. 6348 6349 // First, we get the value of the LHS in the first iteration: n 6350 const SCEV *Start = AddRec->getOperand(0); 6351 6352 // Determine the minimum constant start value. 6353 const SCEV *MinStart = getConstant(isSigned ? 6354 getSignedRange(Start).getSignedMin() : 6355 getUnsignedRange(Start).getUnsignedMin()); 6356 6357 // If we know that the condition is true in order to enter the loop, 6358 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6359 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6360 // the division must round up. 6361 const SCEV *End = RHS; 6362 if (!isLoopEntryGuardedByCond(L, 6363 isSigned ? ICmpInst::ICMP_SLT : 6364 ICmpInst::ICMP_ULT, 6365 getMinusSCEV(Start, Step), RHS)) 6366 End = isSigned ? getSMaxExpr(RHS, Start) 6367 : getUMaxExpr(RHS, Start); 6368 6369 // Determine the maximum constant end value. 6370 const SCEV *MaxEnd = getConstant(isSigned ? 6371 getSignedRange(End).getSignedMax() : 6372 getUnsignedRange(End).getUnsignedMax()); 6373 6374 // If MaxEnd is within a step of the maximum integer value in its type, 6375 // adjust it down to the minimum value which would produce the same effect. 6376 // This allows the subsequent ceiling division of (N+(step-1))/step to 6377 // compute the correct value. 6378 const SCEV *StepMinusOne = getMinusSCEV(Step, 6379 getConstant(Step->getType(), 1)); 6380 MaxEnd = isSigned ? 6381 getSMinExpr(MaxEnd, 6382 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6383 StepMinusOne)) : 6384 getUMinExpr(MaxEnd, 6385 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6386 StepMinusOne)); 6387 6388 // Finally, we subtract these two values and divide, rounding up, to get 6389 // the number of times the backedge is executed. 6390 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6391 6392 // The maximum backedge count is similar, except using the minimum start 6393 // value and the maximum end value. 6394 // If we already have an exact constant BECount, use it instead. 6395 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6396 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6397 6398 // If the stride is nonconstant, and NoWrap == true, then 6399 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6400 // exact BECount and invalid MaxBECount, which should be avoided to catch 6401 // more optimization opportunities. 6402 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6403 MaxBECount = BECount; 6404 6405 return ExitLimit(BECount, MaxBECount); 6406 } 6407 6408 return getCouldNotCompute(); 6409 } 6410 6411 /// getNumIterationsInRange - Return the number of iterations of this loop that 6412 /// produce values in the specified constant range. Another way of looking at 6413 /// this is that it returns the first iteration number where the value is not in 6414 /// the condition, thus computing the exit count. If the iteration count can't 6415 /// be computed, an instance of SCEVCouldNotCompute is returned. 6416 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6417 ScalarEvolution &SE) const { 6418 if (Range.isFullSet()) // Infinite loop. 6419 return SE.getCouldNotCompute(); 6420 6421 // If the start is a non-zero constant, shift the range to simplify things. 6422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6423 if (!SC->getValue()->isZero()) { 6424 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6425 Operands[0] = SE.getConstant(SC->getType(), 0); 6426 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6427 getNoWrapFlags(FlagNW)); 6428 if (const SCEVAddRecExpr *ShiftedAddRec = 6429 dyn_cast<SCEVAddRecExpr>(Shifted)) 6430 return ShiftedAddRec->getNumIterationsInRange( 6431 Range.subtract(SC->getValue()->getValue()), SE); 6432 // This is strange and shouldn't happen. 6433 return SE.getCouldNotCompute(); 6434 } 6435 6436 // The only time we can solve this is when we have all constant indices. 6437 // Otherwise, we cannot determine the overflow conditions. 6438 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6439 if (!isa<SCEVConstant>(getOperand(i))) 6440 return SE.getCouldNotCompute(); 6441 6442 6443 // Okay at this point we know that all elements of the chrec are constants and 6444 // that the start element is zero. 6445 6446 // First check to see if the range contains zero. If not, the first 6447 // iteration exits. 6448 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6449 if (!Range.contains(APInt(BitWidth, 0))) 6450 return SE.getConstant(getType(), 0); 6451 6452 if (isAffine()) { 6453 // If this is an affine expression then we have this situation: 6454 // Solve {0,+,A} in Range === Ax in Range 6455 6456 // We know that zero is in the range. If A is positive then we know that 6457 // the upper value of the range must be the first possible exit value. 6458 // If A is negative then the lower of the range is the last possible loop 6459 // value. Also note that we already checked for a full range. 6460 APInt One(BitWidth,1); 6461 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6462 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6463 6464 // The exit value should be (End+A)/A. 6465 APInt ExitVal = (End + A).udiv(A); 6466 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6467 6468 // Evaluate at the exit value. If we really did fall out of the valid 6469 // range, then we computed our trip count, otherwise wrap around or other 6470 // things must have happened. 6471 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6472 if (Range.contains(Val->getValue())) 6473 return SE.getCouldNotCompute(); // Something strange happened 6474 6475 // Ensure that the previous value is in the range. This is a sanity check. 6476 assert(Range.contains( 6477 EvaluateConstantChrecAtConstant(this, 6478 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6479 "Linear scev computation is off in a bad way!"); 6480 return SE.getConstant(ExitValue); 6481 } else if (isQuadratic()) { 6482 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6483 // quadratic equation to solve it. To do this, we must frame our problem in 6484 // terms of figuring out when zero is crossed, instead of when 6485 // Range.getUpper() is crossed. 6486 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6487 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6488 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6489 // getNoWrapFlags(FlagNW) 6490 FlagAnyWrap); 6491 6492 // Next, solve the constructed addrec 6493 std::pair<const SCEV *,const SCEV *> Roots = 6494 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6495 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6496 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6497 if (R1) { 6498 // Pick the smallest positive root value. 6499 if (ConstantInt *CB = 6500 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6501 R1->getValue(), R2->getValue()))) { 6502 if (CB->getZExtValue() == false) 6503 std::swap(R1, R2); // R1 is the minimum root now. 6504 6505 // Make sure the root is not off by one. The returned iteration should 6506 // not be in the range, but the previous one should be. When solving 6507 // for "X*X < 5", for example, we should not return a root of 2. 6508 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6509 R1->getValue(), 6510 SE); 6511 if (Range.contains(R1Val->getValue())) { 6512 // The next iteration must be out of the range... 6513 ConstantInt *NextVal = 6514 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6515 6516 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6517 if (!Range.contains(R1Val->getValue())) 6518 return SE.getConstant(NextVal); 6519 return SE.getCouldNotCompute(); // Something strange happened 6520 } 6521 6522 // If R1 was not in the range, then it is a good return value. Make 6523 // sure that R1-1 WAS in the range though, just in case. 6524 ConstantInt *NextVal = 6525 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6526 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6527 if (Range.contains(R1Val->getValue())) 6528 return R1; 6529 return SE.getCouldNotCompute(); // Something strange happened 6530 } 6531 } 6532 } 6533 6534 return SE.getCouldNotCompute(); 6535 } 6536 6537 6538 6539 //===----------------------------------------------------------------------===// 6540 // SCEVCallbackVH Class Implementation 6541 //===----------------------------------------------------------------------===// 6542 6543 void ScalarEvolution::SCEVCallbackVH::deleted() { 6544 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6545 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6546 SE->ConstantEvolutionLoopExitValue.erase(PN); 6547 SE->ValueExprMap.erase(getValPtr()); 6548 // this now dangles! 6549 } 6550 6551 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6552 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6553 6554 // Forget all the expressions associated with users of the old value, 6555 // so that future queries will recompute the expressions using the new 6556 // value. 6557 Value *Old = getValPtr(); 6558 SmallVector<User *, 16> Worklist; 6559 SmallPtrSet<User *, 8> Visited; 6560 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6561 UI != UE; ++UI) 6562 Worklist.push_back(*UI); 6563 while (!Worklist.empty()) { 6564 User *U = Worklist.pop_back_val(); 6565 // Deleting the Old value will cause this to dangle. Postpone 6566 // that until everything else is done. 6567 if (U == Old) 6568 continue; 6569 if (!Visited.insert(U)) 6570 continue; 6571 if (PHINode *PN = dyn_cast<PHINode>(U)) 6572 SE->ConstantEvolutionLoopExitValue.erase(PN); 6573 SE->ValueExprMap.erase(U); 6574 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6575 UI != UE; ++UI) 6576 Worklist.push_back(*UI); 6577 } 6578 // Delete the Old value. 6579 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6580 SE->ConstantEvolutionLoopExitValue.erase(PN); 6581 SE->ValueExprMap.erase(Old); 6582 // this now dangles! 6583 } 6584 6585 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6586 : CallbackVH(V), SE(se) {} 6587 6588 //===----------------------------------------------------------------------===// 6589 // ScalarEvolution Class Implementation 6590 //===----------------------------------------------------------------------===// 6591 6592 ScalarEvolution::ScalarEvolution() 6593 : FunctionPass(ID), FirstUnknown(0) { 6594 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6595 } 6596 6597 bool ScalarEvolution::runOnFunction(Function &F) { 6598 this->F = &F; 6599 LI = &getAnalysis<LoopInfo>(); 6600 TD = getAnalysisIfAvailable<DataLayout>(); 6601 TLI = &getAnalysis<TargetLibraryInfo>(); 6602 DT = &getAnalysis<DominatorTree>(); 6603 return false; 6604 } 6605 6606 void ScalarEvolution::releaseMemory() { 6607 // Iterate through all the SCEVUnknown instances and call their 6608 // destructors, so that they release their references to their values. 6609 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6610 U->~SCEVUnknown(); 6611 FirstUnknown = 0; 6612 6613 ValueExprMap.clear(); 6614 6615 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6616 // that a loop had multiple computable exits. 6617 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6618 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6619 I != E; ++I) { 6620 I->second.clear(); 6621 } 6622 6623 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 6624 6625 BackedgeTakenCounts.clear(); 6626 ConstantEvolutionLoopExitValue.clear(); 6627 ValuesAtScopes.clear(); 6628 LoopDispositions.clear(); 6629 BlockDispositions.clear(); 6630 UnsignedRanges.clear(); 6631 SignedRanges.clear(); 6632 UniqueSCEVs.clear(); 6633 SCEVAllocator.Reset(); 6634 } 6635 6636 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6637 AU.setPreservesAll(); 6638 AU.addRequiredTransitive<LoopInfo>(); 6639 AU.addRequiredTransitive<DominatorTree>(); 6640 AU.addRequired<TargetLibraryInfo>(); 6641 } 6642 6643 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6644 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6645 } 6646 6647 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6648 const Loop *L) { 6649 // Print all inner loops first 6650 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6651 PrintLoopInfo(OS, SE, *I); 6652 6653 OS << "Loop "; 6654 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6655 OS << ": "; 6656 6657 SmallVector<BasicBlock *, 8> ExitBlocks; 6658 L->getExitBlocks(ExitBlocks); 6659 if (ExitBlocks.size() != 1) 6660 OS << "<multiple exits> "; 6661 6662 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6663 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6664 } else { 6665 OS << "Unpredictable backedge-taken count. "; 6666 } 6667 6668 OS << "\n" 6669 "Loop "; 6670 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6671 OS << ": "; 6672 6673 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6674 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6675 } else { 6676 OS << "Unpredictable max backedge-taken count. "; 6677 } 6678 6679 OS << "\n"; 6680 } 6681 6682 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6683 // ScalarEvolution's implementation of the print method is to print 6684 // out SCEV values of all instructions that are interesting. Doing 6685 // this potentially causes it to create new SCEV objects though, 6686 // which technically conflicts with the const qualifier. This isn't 6687 // observable from outside the class though, so casting away the 6688 // const isn't dangerous. 6689 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6690 6691 OS << "Classifying expressions for: "; 6692 WriteAsOperand(OS, F, /*PrintType=*/false); 6693 OS << "\n"; 6694 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6695 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6696 OS << *I << '\n'; 6697 OS << " --> "; 6698 const SCEV *SV = SE.getSCEV(&*I); 6699 SV->print(OS); 6700 6701 const Loop *L = LI->getLoopFor((*I).getParent()); 6702 6703 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6704 if (AtUse != SV) { 6705 OS << " --> "; 6706 AtUse->print(OS); 6707 } 6708 6709 if (L) { 6710 OS << "\t\t" "Exits: "; 6711 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6712 if (!SE.isLoopInvariant(ExitValue, L)) { 6713 OS << "<<Unknown>>"; 6714 } else { 6715 OS << *ExitValue; 6716 } 6717 } 6718 6719 OS << "\n"; 6720 } 6721 6722 OS << "Determining loop execution counts for: "; 6723 WriteAsOperand(OS, F, /*PrintType=*/false); 6724 OS << "\n"; 6725 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6726 PrintLoopInfo(OS, &SE, *I); 6727 } 6728 6729 ScalarEvolution::LoopDisposition 6730 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6731 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6732 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6733 Values.insert(std::make_pair(L, LoopVariant)); 6734 if (!Pair.second) 6735 return Pair.first->second; 6736 6737 LoopDisposition D = computeLoopDisposition(S, L); 6738 return LoopDispositions[S][L] = D; 6739 } 6740 6741 ScalarEvolution::LoopDisposition 6742 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6743 switch (S->getSCEVType()) { 6744 case scConstant: 6745 return LoopInvariant; 6746 case scTruncate: 6747 case scZeroExtend: 6748 case scSignExtend: 6749 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6750 case scAddRecExpr: { 6751 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6752 6753 // If L is the addrec's loop, it's computable. 6754 if (AR->getLoop() == L) 6755 return LoopComputable; 6756 6757 // Add recurrences are never invariant in the function-body (null loop). 6758 if (!L) 6759 return LoopVariant; 6760 6761 // This recurrence is variant w.r.t. L if L contains AR's loop. 6762 if (L->contains(AR->getLoop())) 6763 return LoopVariant; 6764 6765 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6766 if (AR->getLoop()->contains(L)) 6767 return LoopInvariant; 6768 6769 // This recurrence is variant w.r.t. L if any of its operands 6770 // are variant. 6771 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6772 I != E; ++I) 6773 if (!isLoopInvariant(*I, L)) 6774 return LoopVariant; 6775 6776 // Otherwise it's loop-invariant. 6777 return LoopInvariant; 6778 } 6779 case scAddExpr: 6780 case scMulExpr: 6781 case scUMaxExpr: 6782 case scSMaxExpr: { 6783 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6784 bool HasVarying = false; 6785 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6786 I != E; ++I) { 6787 LoopDisposition D = getLoopDisposition(*I, L); 6788 if (D == LoopVariant) 6789 return LoopVariant; 6790 if (D == LoopComputable) 6791 HasVarying = true; 6792 } 6793 return HasVarying ? LoopComputable : LoopInvariant; 6794 } 6795 case scUDivExpr: { 6796 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6797 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6798 if (LD == LoopVariant) 6799 return LoopVariant; 6800 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6801 if (RD == LoopVariant) 6802 return LoopVariant; 6803 return (LD == LoopInvariant && RD == LoopInvariant) ? 6804 LoopInvariant : LoopComputable; 6805 } 6806 case scUnknown: 6807 // All non-instruction values are loop invariant. All instructions are loop 6808 // invariant if they are not contained in the specified loop. 6809 // Instructions are never considered invariant in the function body 6810 // (null loop) because they are defined within the "loop". 6811 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6812 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6813 return LoopInvariant; 6814 case scCouldNotCompute: 6815 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6816 default: llvm_unreachable("Unknown SCEV kind!"); 6817 } 6818 } 6819 6820 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6821 return getLoopDisposition(S, L) == LoopInvariant; 6822 } 6823 6824 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6825 return getLoopDisposition(S, L) == LoopComputable; 6826 } 6827 6828 ScalarEvolution::BlockDisposition 6829 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6830 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6831 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6832 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6833 if (!Pair.second) 6834 return Pair.first->second; 6835 6836 BlockDisposition D = computeBlockDisposition(S, BB); 6837 return BlockDispositions[S][BB] = D; 6838 } 6839 6840 ScalarEvolution::BlockDisposition 6841 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6842 switch (S->getSCEVType()) { 6843 case scConstant: 6844 return ProperlyDominatesBlock; 6845 case scTruncate: 6846 case scZeroExtend: 6847 case scSignExtend: 6848 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6849 case scAddRecExpr: { 6850 // This uses a "dominates" query instead of "properly dominates" query 6851 // to test for proper dominance too, because the instruction which 6852 // produces the addrec's value is a PHI, and a PHI effectively properly 6853 // dominates its entire containing block. 6854 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6855 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6856 return DoesNotDominateBlock; 6857 } 6858 // FALL THROUGH into SCEVNAryExpr handling. 6859 case scAddExpr: 6860 case scMulExpr: 6861 case scUMaxExpr: 6862 case scSMaxExpr: { 6863 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6864 bool Proper = true; 6865 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6866 I != E; ++I) { 6867 BlockDisposition D = getBlockDisposition(*I, BB); 6868 if (D == DoesNotDominateBlock) 6869 return DoesNotDominateBlock; 6870 if (D == DominatesBlock) 6871 Proper = false; 6872 } 6873 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6874 } 6875 case scUDivExpr: { 6876 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6877 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6878 BlockDisposition LD = getBlockDisposition(LHS, BB); 6879 if (LD == DoesNotDominateBlock) 6880 return DoesNotDominateBlock; 6881 BlockDisposition RD = getBlockDisposition(RHS, BB); 6882 if (RD == DoesNotDominateBlock) 6883 return DoesNotDominateBlock; 6884 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6885 ProperlyDominatesBlock : DominatesBlock; 6886 } 6887 case scUnknown: 6888 if (Instruction *I = 6889 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6890 if (I->getParent() == BB) 6891 return DominatesBlock; 6892 if (DT->properlyDominates(I->getParent(), BB)) 6893 return ProperlyDominatesBlock; 6894 return DoesNotDominateBlock; 6895 } 6896 return ProperlyDominatesBlock; 6897 case scCouldNotCompute: 6898 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6899 default: 6900 llvm_unreachable("Unknown SCEV kind!"); 6901 } 6902 } 6903 6904 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6905 return getBlockDisposition(S, BB) >= DominatesBlock; 6906 } 6907 6908 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6909 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6910 } 6911 6912 namespace { 6913 // Search for a SCEV expression node within an expression tree. 6914 // Implements SCEVTraversal::Visitor. 6915 struct SCEVSearch { 6916 const SCEV *Node; 6917 bool IsFound; 6918 6919 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 6920 6921 bool follow(const SCEV *S) { 6922 IsFound |= (S == Node); 6923 return !IsFound; 6924 } 6925 bool isDone() const { return IsFound; } 6926 }; 6927 } 6928 6929 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6930 SCEVSearch Search(Op); 6931 visitAll(S, Search); 6932 return Search.IsFound; 6933 } 6934 6935 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6936 ValuesAtScopes.erase(S); 6937 LoopDispositions.erase(S); 6938 BlockDispositions.erase(S); 6939 UnsignedRanges.erase(S); 6940 SignedRanges.erase(S); 6941 } 6942 6943 typedef DenseMap<const Loop *, std::string> VerifyMap; 6944 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 6945 static void 6946 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 6947 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 6948 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 6949 6950 std::string &S = Map[L]; 6951 if (S.empty()) { 6952 raw_string_ostream OS(S); 6953 SE.getBackedgeTakenCount(L)->print(OS); 6954 } 6955 } 6956 } 6957 6958 void ScalarEvolution::verifyAnalysis() const { 6959 if (!VerifySCEV) 6960 return; 6961 6962 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6963 6964 // Gather stringified backedge taken counts for all loops using SCEV's caches. 6965 // FIXME: It would be much better to store actual values instead of strings, 6966 // but SCEV pointers will change if we drop the caches. 6967 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 6968 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 6969 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 6970 6971 // Gather stringified backedge taken counts for all loops without using 6972 // SCEV's caches. 6973 SE.releaseMemory(); 6974 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 6975 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 6976 6977 // Now compare whether they're the same with and without caches. This allows 6978 // verifying that no pass changed the cache. 6979 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 6980 "New loops suddenly appeared!"); 6981 6982 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 6983 OldE = BackedgeDumpsOld.end(), 6984 NewI = BackedgeDumpsNew.begin(); 6985 OldI != OldE; ++OldI, ++NewI) { 6986 assert(OldI->first == NewI->first && "Loop order changed!"); 6987 6988 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 6989 // changes. 6990 // FIXME: We currently ignore SCEV changes towards CouldNotCompute. This 6991 // means that a pass is buggy or SCEV has to learn a new pattern but is 6992 // usually not harmful. 6993 if (OldI->second != NewI->second && 6994 OldI->second.find("undef") == std::string::npos && 6995 NewI->second != "***COULDNOTCOMPUTE***") { 6996 dbgs() << "SCEVValidator: SCEV for Loop '" 6997 << OldI->first->getHeader()->getName() 6998 << "' from '" << OldI->second << "' to '" << NewI->second << "'!"; 6999 std::abort(); 7000 } 7001 } 7002 7003 // TODO: Verify more things. 7004 } 7005