1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/EquivalenceClasses.h" 67 #include "llvm/ADT/FoldingSet.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/ScopeExit.h" 72 #include "llvm/ADT/Sequence.h" 73 #include "llvm/ADT/SetVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallSet.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/Statistic.h" 78 #include "llvm/ADT/StringRef.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/ConstantFolding.h" 81 #include "llvm/Analysis/InstructionSimplify.h" 82 #include "llvm/Analysis/LoopInfo.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/CallSite.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/KnownBits.h" 121 #include "llvm/Support/SaveAndRestore.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <climits> 126 #include <cstddef> 127 #include <cstdint> 128 #include <cstdlib> 129 #include <map> 130 #include <memory> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 using namespace llvm; 136 137 #define DEBUG_TYPE "scalar-evolution" 138 139 STATISTIC(NumArrayLenItCounts, 140 "Number of trip counts computed with array length"); 141 STATISTIC(NumTripCountsComputed, 142 "Number of loops with predictable loop counts"); 143 STATISTIC(NumTripCountsNotComputed, 144 "Number of loops without predictable loop counts"); 145 STATISTIC(NumBruteForceTripCountsComputed, 146 "Number of loops with trip counts computed by force"); 147 148 static cl::opt<unsigned> 149 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 150 cl::desc("Maximum number of iterations SCEV will " 151 "symbolically execute a constant " 152 "derived loop"), 153 cl::init(100)); 154 155 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 156 static cl::opt<bool> VerifySCEV( 157 "verify-scev", cl::Hidden, 158 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 159 static cl::opt<bool> 160 VerifySCEVMap("verify-scev-maps", cl::Hidden, 161 cl::desc("Verify no dangling value in ScalarEvolution's " 162 "ExprValueMap (slow)")); 163 164 static cl::opt<unsigned> MulOpsInlineThreshold( 165 "scev-mulops-inline-threshold", cl::Hidden, 166 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 167 cl::init(32)); 168 169 static cl::opt<unsigned> AddOpsInlineThreshold( 170 "scev-addops-inline-threshold", cl::Hidden, 171 cl::desc("Threshold for inlining addition operands into a SCEV"), 172 cl::init(500)); 173 174 static cl::opt<unsigned> MaxSCEVCompareDepth( 175 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 176 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 180 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 181 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 182 cl::init(2)); 183 184 static cl::opt<unsigned> MaxValueCompareDepth( 185 "scalar-evolution-max-value-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive value complexity comparisons"), 187 cl::init(2)); 188 189 static cl::opt<unsigned> 190 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive arithmetics"), 192 cl::init(32)); 193 194 static cl::opt<unsigned> MaxConstantEvolvingDepth( 195 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 197 198 static cl::opt<unsigned> 199 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 200 cl::desc("Maximum depth of recursive SExt/ZExt"), 201 cl::init(8)); 202 203 static cl::opt<unsigned> 204 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 205 cl::desc("Max coefficients in AddRec during evolving"), 206 cl::init(16)); 207 208 //===----------------------------------------------------------------------===// 209 // SCEV class definitions 210 //===----------------------------------------------------------------------===// 211 212 //===----------------------------------------------------------------------===// 213 // Implementation of the SCEV class. 214 // 215 216 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 217 LLVM_DUMP_METHOD void SCEV::dump() const { 218 print(dbgs()); 219 dbgs() << '\n'; 220 } 221 #endif 222 223 void SCEV::print(raw_ostream &OS) const { 224 switch (static_cast<SCEVTypes>(getSCEVType())) { 225 case scConstant: 226 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 227 return; 228 case scTruncate: { 229 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 230 const SCEV *Op = Trunc->getOperand(); 231 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 232 << *Trunc->getType() << ")"; 233 return; 234 } 235 case scZeroExtend: { 236 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 237 const SCEV *Op = ZExt->getOperand(); 238 OS << "(zext " << *Op->getType() << " " << *Op << " to " 239 << *ZExt->getType() << ")"; 240 return; 241 } 242 case scSignExtend: { 243 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 244 const SCEV *Op = SExt->getOperand(); 245 OS << "(sext " << *Op->getType() << " " << *Op << " to " 246 << *SExt->getType() << ")"; 247 return; 248 } 249 case scAddRecExpr: { 250 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 251 OS << "{" << *AR->getOperand(0); 252 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 253 OS << ",+," << *AR->getOperand(i); 254 OS << "}<"; 255 if (AR->hasNoUnsignedWrap()) 256 OS << "nuw><"; 257 if (AR->hasNoSignedWrap()) 258 OS << "nsw><"; 259 if (AR->hasNoSelfWrap() && 260 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 261 OS << "nw><"; 262 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 263 OS << ">"; 264 return; 265 } 266 case scAddExpr: 267 case scMulExpr: 268 case scUMaxExpr: 269 case scSMaxExpr: { 270 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 271 const char *OpStr = nullptr; 272 switch (NAry->getSCEVType()) { 273 case scAddExpr: OpStr = " + "; break; 274 case scMulExpr: OpStr = " * "; break; 275 case scUMaxExpr: OpStr = " umax "; break; 276 case scSMaxExpr: OpStr = " smax "; break; 277 } 278 OS << "("; 279 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 280 I != E; ++I) { 281 OS << **I; 282 if (std::next(I) != E) 283 OS << OpStr; 284 } 285 OS << ")"; 286 switch (NAry->getSCEVType()) { 287 case scAddExpr: 288 case scMulExpr: 289 if (NAry->hasNoUnsignedWrap()) 290 OS << "<nuw>"; 291 if (NAry->hasNoSignedWrap()) 292 OS << "<nsw>"; 293 } 294 return; 295 } 296 case scUDivExpr: { 297 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 298 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 299 return; 300 } 301 case scUnknown: { 302 const SCEVUnknown *U = cast<SCEVUnknown>(this); 303 Type *AllocTy; 304 if (U->isSizeOf(AllocTy)) { 305 OS << "sizeof(" << *AllocTy << ")"; 306 return; 307 } 308 if (U->isAlignOf(AllocTy)) { 309 OS << "alignof(" << *AllocTy << ")"; 310 return; 311 } 312 313 Type *CTy; 314 Constant *FieldNo; 315 if (U->isOffsetOf(CTy, FieldNo)) { 316 OS << "offsetof(" << *CTy << ", "; 317 FieldNo->printAsOperand(OS, false); 318 OS << ")"; 319 return; 320 } 321 322 // Otherwise just print it normally. 323 U->getValue()->printAsOperand(OS, false); 324 return; 325 } 326 case scCouldNotCompute: 327 OS << "***COULDNOTCOMPUTE***"; 328 return; 329 } 330 llvm_unreachable("Unknown SCEV kind!"); 331 } 332 333 Type *SCEV::getType() const { 334 switch (static_cast<SCEVTypes>(getSCEVType())) { 335 case scConstant: 336 return cast<SCEVConstant>(this)->getType(); 337 case scTruncate: 338 case scZeroExtend: 339 case scSignExtend: 340 return cast<SCEVCastExpr>(this)->getType(); 341 case scAddRecExpr: 342 case scMulExpr: 343 case scUMaxExpr: 344 case scSMaxExpr: 345 return cast<SCEVNAryExpr>(this)->getType(); 346 case scAddExpr: 347 return cast<SCEVAddExpr>(this)->getType(); 348 case scUDivExpr: 349 return cast<SCEVUDivExpr>(this)->getType(); 350 case scUnknown: 351 return cast<SCEVUnknown>(this)->getType(); 352 case scCouldNotCompute: 353 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 354 } 355 llvm_unreachable("Unknown SCEV kind!"); 356 } 357 358 bool SCEV::isZero() const { 359 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 360 return SC->getValue()->isZero(); 361 return false; 362 } 363 364 bool SCEV::isOne() const { 365 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 366 return SC->getValue()->isOne(); 367 return false; 368 } 369 370 bool SCEV::isAllOnesValue() const { 371 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 372 return SC->getValue()->isMinusOne(); 373 return false; 374 } 375 376 bool SCEV::isNonConstantNegative() const { 377 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 378 if (!Mul) return false; 379 380 // If there is a constant factor, it will be first. 381 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 382 if (!SC) return false; 383 384 // Return true if the value is negative, this matches things like (-42 * V). 385 return SC->getAPInt().isNegative(); 386 } 387 388 SCEVCouldNotCompute::SCEVCouldNotCompute() : 389 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 390 391 bool SCEVCouldNotCompute::classof(const SCEV *S) { 392 return S->getSCEVType() == scCouldNotCompute; 393 } 394 395 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 396 FoldingSetNodeID ID; 397 ID.AddInteger(scConstant); 398 ID.AddPointer(V); 399 void *IP = nullptr; 400 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 401 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 402 UniqueSCEVs.InsertNode(S, IP); 403 return S; 404 } 405 406 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 407 return getConstant(ConstantInt::get(getContext(), Val)); 408 } 409 410 const SCEV * 411 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 412 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 413 return getConstant(ConstantInt::get(ITy, V, isSigned)); 414 } 415 416 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 417 unsigned SCEVTy, const SCEV *op, Type *ty) 418 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 419 420 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 421 const SCEV *op, Type *ty) 422 : SCEVCastExpr(ID, scTruncate, op, ty) { 423 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 424 (Ty->isIntegerTy() || Ty->isPointerTy()) && 425 "Cannot truncate non-integer value!"); 426 } 427 428 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 429 const SCEV *op, Type *ty) 430 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 431 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 432 (Ty->isIntegerTy() || Ty->isPointerTy()) && 433 "Cannot zero extend non-integer value!"); 434 } 435 436 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 437 const SCEV *op, Type *ty) 438 : SCEVCastExpr(ID, scSignExtend, op, ty) { 439 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 440 (Ty->isIntegerTy() || Ty->isPointerTy()) && 441 "Cannot sign extend non-integer value!"); 442 } 443 444 void SCEVUnknown::deleted() { 445 // Clear this SCEVUnknown from various maps. 446 SE->forgetMemoizedResults(this); 447 448 // Remove this SCEVUnknown from the uniquing map. 449 SE->UniqueSCEVs.RemoveNode(this); 450 451 // Release the value. 452 setValPtr(nullptr); 453 } 454 455 void SCEVUnknown::allUsesReplacedWith(Value *New) { 456 // Remove this SCEVUnknown from the uniquing map. 457 SE->UniqueSCEVs.RemoveNode(this); 458 459 // Update this SCEVUnknown to point to the new value. This is needed 460 // because there may still be outstanding SCEVs which still point to 461 // this SCEVUnknown. 462 setValPtr(New); 463 } 464 465 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 466 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 467 if (VCE->getOpcode() == Instruction::PtrToInt) 468 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 469 if (CE->getOpcode() == Instruction::GetElementPtr && 470 CE->getOperand(0)->isNullValue() && 471 CE->getNumOperands() == 2) 472 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 473 if (CI->isOne()) { 474 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 475 ->getElementType(); 476 return true; 477 } 478 479 return false; 480 } 481 482 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 483 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 484 if (VCE->getOpcode() == Instruction::PtrToInt) 485 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 486 if (CE->getOpcode() == Instruction::GetElementPtr && 487 CE->getOperand(0)->isNullValue()) { 488 Type *Ty = 489 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 490 if (StructType *STy = dyn_cast<StructType>(Ty)) 491 if (!STy->isPacked() && 492 CE->getNumOperands() == 3 && 493 CE->getOperand(1)->isNullValue()) { 494 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 495 if (CI->isOne() && 496 STy->getNumElements() == 2 && 497 STy->getElementType(0)->isIntegerTy(1)) { 498 AllocTy = STy->getElementType(1); 499 return true; 500 } 501 } 502 } 503 504 return false; 505 } 506 507 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 508 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 509 if (VCE->getOpcode() == Instruction::PtrToInt) 510 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 511 if (CE->getOpcode() == Instruction::GetElementPtr && 512 CE->getNumOperands() == 3 && 513 CE->getOperand(0)->isNullValue() && 514 CE->getOperand(1)->isNullValue()) { 515 Type *Ty = 516 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 517 // Ignore vector types here so that ScalarEvolutionExpander doesn't 518 // emit getelementptrs that index into vectors. 519 if (Ty->isStructTy() || Ty->isArrayTy()) { 520 CTy = Ty; 521 FieldNo = CE->getOperand(2); 522 return true; 523 } 524 } 525 526 return false; 527 } 528 529 //===----------------------------------------------------------------------===// 530 // SCEV Utilities 531 //===----------------------------------------------------------------------===// 532 533 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 534 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 535 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 536 /// have been previously deemed to be "equally complex" by this routine. It is 537 /// intended to avoid exponential time complexity in cases like: 538 /// 539 /// %a = f(%x, %y) 540 /// %b = f(%a, %a) 541 /// %c = f(%b, %b) 542 /// 543 /// %d = f(%x, %y) 544 /// %e = f(%d, %d) 545 /// %f = f(%e, %e) 546 /// 547 /// CompareValueComplexity(%f, %c) 548 /// 549 /// Since we do not continue running this routine on expression trees once we 550 /// have seen unequal values, there is no need to track them in the cache. 551 static int 552 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 553 const LoopInfo *const LI, Value *LV, Value *RV, 554 unsigned Depth) { 555 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 556 return 0; 557 558 // Order pointer values after integer values. This helps SCEVExpander form 559 // GEPs. 560 bool LIsPointer = LV->getType()->isPointerTy(), 561 RIsPointer = RV->getType()->isPointerTy(); 562 if (LIsPointer != RIsPointer) 563 return (int)LIsPointer - (int)RIsPointer; 564 565 // Compare getValueID values. 566 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 567 if (LID != RID) 568 return (int)LID - (int)RID; 569 570 // Sort arguments by their position. 571 if (const auto *LA = dyn_cast<Argument>(LV)) { 572 const auto *RA = cast<Argument>(RV); 573 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 574 return (int)LArgNo - (int)RArgNo; 575 } 576 577 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 578 const auto *RGV = cast<GlobalValue>(RV); 579 580 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 581 auto LT = GV->getLinkage(); 582 return !(GlobalValue::isPrivateLinkage(LT) || 583 GlobalValue::isInternalLinkage(LT)); 584 }; 585 586 // Use the names to distinguish the two values, but only if the 587 // names are semantically important. 588 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 589 return LGV->getName().compare(RGV->getName()); 590 } 591 592 // For instructions, compare their loop depth, and their operand count. This 593 // is pretty loose. 594 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 595 const auto *RInst = cast<Instruction>(RV); 596 597 // Compare loop depths. 598 const BasicBlock *LParent = LInst->getParent(), 599 *RParent = RInst->getParent(); 600 if (LParent != RParent) { 601 unsigned LDepth = LI->getLoopDepth(LParent), 602 RDepth = LI->getLoopDepth(RParent); 603 if (LDepth != RDepth) 604 return (int)LDepth - (int)RDepth; 605 } 606 607 // Compare the number of operands. 608 unsigned LNumOps = LInst->getNumOperands(), 609 RNumOps = RInst->getNumOperands(); 610 if (LNumOps != RNumOps) 611 return (int)LNumOps - (int)RNumOps; 612 613 for (unsigned Idx : seq(0u, LNumOps)) { 614 int Result = 615 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 616 RInst->getOperand(Idx), Depth + 1); 617 if (Result != 0) 618 return Result; 619 } 620 } 621 622 EqCacheValue.unionSets(LV, RV); 623 return 0; 624 } 625 626 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 627 // than RHS, respectively. A three-way result allows recursive comparisons to be 628 // more efficient. 629 static int CompareSCEVComplexity( 630 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 631 EquivalenceClasses<const Value *> &EqCacheValue, 632 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 633 DominatorTree &DT, unsigned Depth = 0) { 634 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 635 if (LHS == RHS) 636 return 0; 637 638 // Primarily, sort the SCEVs by their getSCEVType(). 639 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 640 if (LType != RType) 641 return (int)LType - (int)RType; 642 643 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 644 return 0; 645 // Aside from the getSCEVType() ordering, the particular ordering 646 // isn't very important except that it's beneficial to be consistent, 647 // so that (a + b) and (b + a) don't end up as different expressions. 648 switch (static_cast<SCEVTypes>(LType)) { 649 case scUnknown: { 650 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 651 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 652 653 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 654 RU->getValue(), Depth + 1); 655 if (X == 0) 656 EqCacheSCEV.unionSets(LHS, RHS); 657 return X; 658 } 659 660 case scConstant: { 661 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 662 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 663 664 // Compare constant values. 665 const APInt &LA = LC->getAPInt(); 666 const APInt &RA = RC->getAPInt(); 667 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 668 if (LBitWidth != RBitWidth) 669 return (int)LBitWidth - (int)RBitWidth; 670 return LA.ult(RA) ? -1 : 1; 671 } 672 673 case scAddRecExpr: { 674 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 675 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 676 677 // There is always a dominance between two recs that are used by one SCEV, 678 // so we can safely sort recs by loop header dominance. We require such 679 // order in getAddExpr. 680 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 681 if (LLoop != RLoop) { 682 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 683 assert(LHead != RHead && "Two loops share the same header?"); 684 if (DT.dominates(LHead, RHead)) 685 return 1; 686 else 687 assert(DT.dominates(RHead, LHead) && 688 "No dominance between recurrences used by one SCEV?"); 689 return -1; 690 } 691 692 // Addrec complexity grows with operand count. 693 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 694 if (LNumOps != RNumOps) 695 return (int)LNumOps - (int)RNumOps; 696 697 // Compare NoWrap flags. 698 if (LA->getNoWrapFlags() != RA->getNoWrapFlags()) 699 return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags(); 700 701 // Lexicographically compare. 702 for (unsigned i = 0; i != LNumOps; ++i) { 703 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 704 LA->getOperand(i), RA->getOperand(i), DT, 705 Depth + 1); 706 if (X != 0) 707 return X; 708 } 709 EqCacheSCEV.unionSets(LHS, RHS); 710 return 0; 711 } 712 713 case scAddExpr: 714 case scMulExpr: 715 case scSMaxExpr: 716 case scUMaxExpr: { 717 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 718 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 719 720 // Lexicographically compare n-ary expressions. 721 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 722 if (LNumOps != RNumOps) 723 return (int)LNumOps - (int)RNumOps; 724 725 // Compare NoWrap flags. 726 if (LC->getNoWrapFlags() != RC->getNoWrapFlags()) 727 return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags(); 728 729 for (unsigned i = 0; i != LNumOps; ++i) { 730 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 731 LC->getOperand(i), RC->getOperand(i), DT, 732 Depth + 1); 733 if (X != 0) 734 return X; 735 } 736 EqCacheSCEV.unionSets(LHS, RHS); 737 return 0; 738 } 739 740 case scUDivExpr: { 741 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 742 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 743 744 // Lexicographically compare udiv expressions. 745 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 746 RC->getLHS(), DT, Depth + 1); 747 if (X != 0) 748 return X; 749 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 750 RC->getRHS(), DT, Depth + 1); 751 if (X == 0) 752 EqCacheSCEV.unionSets(LHS, RHS); 753 return X; 754 } 755 756 case scTruncate: 757 case scZeroExtend: 758 case scSignExtend: { 759 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 760 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 761 762 // Compare cast expressions by operand. 763 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 764 LC->getOperand(), RC->getOperand(), DT, 765 Depth + 1); 766 if (X == 0) 767 EqCacheSCEV.unionSets(LHS, RHS); 768 return X; 769 } 770 771 case scCouldNotCompute: 772 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 773 } 774 llvm_unreachable("Unknown SCEV kind!"); 775 } 776 777 /// Given a list of SCEV objects, order them by their complexity, and group 778 /// objects of the same complexity together by value. When this routine is 779 /// finished, we know that any duplicates in the vector are consecutive and that 780 /// complexity is monotonically increasing. 781 /// 782 /// Note that we go take special precautions to ensure that we get deterministic 783 /// results from this routine. In other words, we don't want the results of 784 /// this to depend on where the addresses of various SCEV objects happened to 785 /// land in memory. 786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 787 LoopInfo *LI, DominatorTree &DT) { 788 if (Ops.size() < 2) return; // Noop 789 790 EquivalenceClasses<const SCEV *> EqCacheSCEV; 791 EquivalenceClasses<const Value *> EqCacheValue; 792 if (Ops.size() == 2) { 793 // This is the common case, which also happens to be trivially simple. 794 // Special case it. 795 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 796 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 797 std::swap(LHS, RHS); 798 return; 799 } 800 801 // Do the rough sort by complexity. 802 std::stable_sort(Ops.begin(), Ops.end(), 803 [&](const SCEV *LHS, const SCEV *RHS) { 804 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 805 LHS, RHS, DT) < 0; 806 }); 807 808 // Now that we are sorted by complexity, group elements of the same 809 // complexity. Note that this is, at worst, N^2, but the vector is likely to 810 // be extremely short in practice. Note that we take this approach because we 811 // do not want to depend on the addresses of the objects we are grouping. 812 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 813 const SCEV *S = Ops[i]; 814 unsigned Complexity = S->getSCEVType(); 815 816 // If there are any objects of the same complexity and same value as this 817 // one, group them. 818 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 819 if (Ops[j] == S) { // Found a duplicate. 820 // Move it to immediately after i'th element. 821 std::swap(Ops[i+1], Ops[j]); 822 ++i; // no need to rescan it. 823 if (i == e-2) return; // Done! 824 } 825 } 826 } 827 } 828 829 // Returns the size of the SCEV S. 830 static inline int sizeOfSCEV(const SCEV *S) { 831 struct FindSCEVSize { 832 int Size = 0; 833 834 FindSCEVSize() = default; 835 836 bool follow(const SCEV *S) { 837 ++Size; 838 // Keep looking at all operands of S. 839 return true; 840 } 841 842 bool isDone() const { 843 return false; 844 } 845 }; 846 847 FindSCEVSize F; 848 SCEVTraversal<FindSCEVSize> ST(F); 849 ST.visitAll(S); 850 return F.Size; 851 } 852 853 namespace { 854 855 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 856 public: 857 // Computes the Quotient and Remainder of the division of Numerator by 858 // Denominator. 859 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 860 const SCEV *Denominator, const SCEV **Quotient, 861 const SCEV **Remainder) { 862 assert(Numerator && Denominator && "Uninitialized SCEV"); 863 864 SCEVDivision D(SE, Numerator, Denominator); 865 866 // Check for the trivial case here to avoid having to check for it in the 867 // rest of the code. 868 if (Numerator == Denominator) { 869 *Quotient = D.One; 870 *Remainder = D.Zero; 871 return; 872 } 873 874 if (Numerator->isZero()) { 875 *Quotient = D.Zero; 876 *Remainder = D.Zero; 877 return; 878 } 879 880 // A simple case when N/1. The quotient is N. 881 if (Denominator->isOne()) { 882 *Quotient = Numerator; 883 *Remainder = D.Zero; 884 return; 885 } 886 887 // Split the Denominator when it is a product. 888 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 889 const SCEV *Q, *R; 890 *Quotient = Numerator; 891 for (const SCEV *Op : T->operands()) { 892 divide(SE, *Quotient, Op, &Q, &R); 893 *Quotient = Q; 894 895 // Bail out when the Numerator is not divisible by one of the terms of 896 // the Denominator. 897 if (!R->isZero()) { 898 *Quotient = D.Zero; 899 *Remainder = Numerator; 900 return; 901 } 902 } 903 *Remainder = D.Zero; 904 return; 905 } 906 907 D.visit(Numerator); 908 *Quotient = D.Quotient; 909 *Remainder = D.Remainder; 910 } 911 912 // Except in the trivial case described above, we do not know how to divide 913 // Expr by Denominator for the following functions with empty implementation. 914 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 915 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 916 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 917 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 918 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 919 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 920 void visitUnknown(const SCEVUnknown *Numerator) {} 921 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 922 923 void visitConstant(const SCEVConstant *Numerator) { 924 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 925 APInt NumeratorVal = Numerator->getAPInt(); 926 APInt DenominatorVal = D->getAPInt(); 927 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 928 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 929 930 if (NumeratorBW > DenominatorBW) 931 DenominatorVal = DenominatorVal.sext(NumeratorBW); 932 else if (NumeratorBW < DenominatorBW) 933 NumeratorVal = NumeratorVal.sext(DenominatorBW); 934 935 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 936 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 937 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 938 Quotient = SE.getConstant(QuotientVal); 939 Remainder = SE.getConstant(RemainderVal); 940 return; 941 } 942 } 943 944 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 945 const SCEV *StartQ, *StartR, *StepQ, *StepR; 946 if (!Numerator->isAffine()) 947 return cannotDivide(Numerator); 948 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 949 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 950 // Bail out if the types do not match. 951 Type *Ty = Denominator->getType(); 952 if (Ty != StartQ->getType() || Ty != StartR->getType() || 953 Ty != StepQ->getType() || Ty != StepR->getType()) 954 return cannotDivide(Numerator); 955 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 956 Numerator->getNoWrapFlags()); 957 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 958 Numerator->getNoWrapFlags()); 959 } 960 961 void visitAddExpr(const SCEVAddExpr *Numerator) { 962 SmallVector<const SCEV *, 2> Qs, Rs; 963 Type *Ty = Denominator->getType(); 964 965 for (const SCEV *Op : Numerator->operands()) { 966 const SCEV *Q, *R; 967 divide(SE, Op, Denominator, &Q, &R); 968 969 // Bail out if types do not match. 970 if (Ty != Q->getType() || Ty != R->getType()) 971 return cannotDivide(Numerator); 972 973 Qs.push_back(Q); 974 Rs.push_back(R); 975 } 976 977 if (Qs.size() == 1) { 978 Quotient = Qs[0]; 979 Remainder = Rs[0]; 980 return; 981 } 982 983 Quotient = SE.getAddExpr(Qs); 984 Remainder = SE.getAddExpr(Rs); 985 } 986 987 void visitMulExpr(const SCEVMulExpr *Numerator) { 988 SmallVector<const SCEV *, 2> Qs; 989 Type *Ty = Denominator->getType(); 990 991 bool FoundDenominatorTerm = false; 992 for (const SCEV *Op : Numerator->operands()) { 993 // Bail out if types do not match. 994 if (Ty != Op->getType()) 995 return cannotDivide(Numerator); 996 997 if (FoundDenominatorTerm) { 998 Qs.push_back(Op); 999 continue; 1000 } 1001 1002 // Check whether Denominator divides one of the product operands. 1003 const SCEV *Q, *R; 1004 divide(SE, Op, Denominator, &Q, &R); 1005 if (!R->isZero()) { 1006 Qs.push_back(Op); 1007 continue; 1008 } 1009 1010 // Bail out if types do not match. 1011 if (Ty != Q->getType()) 1012 return cannotDivide(Numerator); 1013 1014 FoundDenominatorTerm = true; 1015 Qs.push_back(Q); 1016 } 1017 1018 if (FoundDenominatorTerm) { 1019 Remainder = Zero; 1020 if (Qs.size() == 1) 1021 Quotient = Qs[0]; 1022 else 1023 Quotient = SE.getMulExpr(Qs); 1024 return; 1025 } 1026 1027 if (!isa<SCEVUnknown>(Denominator)) 1028 return cannotDivide(Numerator); 1029 1030 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1031 ValueToValueMap RewriteMap; 1032 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1033 cast<SCEVConstant>(Zero)->getValue(); 1034 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1035 1036 if (Remainder->isZero()) { 1037 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1038 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1039 cast<SCEVConstant>(One)->getValue(); 1040 Quotient = 1041 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1042 return; 1043 } 1044 1045 // Quotient is (Numerator - Remainder) divided by Denominator. 1046 const SCEV *Q, *R; 1047 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1048 // This SCEV does not seem to simplify: fail the division here. 1049 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1050 return cannotDivide(Numerator); 1051 divide(SE, Diff, Denominator, &Q, &R); 1052 if (R != Zero) 1053 return cannotDivide(Numerator); 1054 Quotient = Q; 1055 } 1056 1057 private: 1058 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1059 const SCEV *Denominator) 1060 : SE(S), Denominator(Denominator) { 1061 Zero = SE.getZero(Denominator->getType()); 1062 One = SE.getOne(Denominator->getType()); 1063 1064 // We generally do not know how to divide Expr by Denominator. We 1065 // initialize the division to a "cannot divide" state to simplify the rest 1066 // of the code. 1067 cannotDivide(Numerator); 1068 } 1069 1070 // Convenience function for giving up on the division. We set the quotient to 1071 // be equal to zero and the remainder to be equal to the numerator. 1072 void cannotDivide(const SCEV *Numerator) { 1073 Quotient = Zero; 1074 Remainder = Numerator; 1075 } 1076 1077 ScalarEvolution &SE; 1078 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1079 }; 1080 1081 } // end anonymous namespace 1082 1083 //===----------------------------------------------------------------------===// 1084 // Simple SCEV method implementations 1085 //===----------------------------------------------------------------------===// 1086 1087 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1088 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1089 ScalarEvolution &SE, 1090 Type *ResultTy) { 1091 // Handle the simplest case efficiently. 1092 if (K == 1) 1093 return SE.getTruncateOrZeroExtend(It, ResultTy); 1094 1095 // We are using the following formula for BC(It, K): 1096 // 1097 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1098 // 1099 // Suppose, W is the bitwidth of the return value. We must be prepared for 1100 // overflow. Hence, we must assure that the result of our computation is 1101 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1102 // safe in modular arithmetic. 1103 // 1104 // However, this code doesn't use exactly that formula; the formula it uses 1105 // is something like the following, where T is the number of factors of 2 in 1106 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1107 // exponentiation: 1108 // 1109 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1110 // 1111 // This formula is trivially equivalent to the previous formula. However, 1112 // this formula can be implemented much more efficiently. The trick is that 1113 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1114 // arithmetic. To do exact division in modular arithmetic, all we have 1115 // to do is multiply by the inverse. Therefore, this step can be done at 1116 // width W. 1117 // 1118 // The next issue is how to safely do the division by 2^T. The way this 1119 // is done is by doing the multiplication step at a width of at least W + T 1120 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1121 // when we perform the division by 2^T (which is equivalent to a right shift 1122 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1123 // truncated out after the division by 2^T. 1124 // 1125 // In comparison to just directly using the first formula, this technique 1126 // is much more efficient; using the first formula requires W * K bits, 1127 // but this formula less than W + K bits. Also, the first formula requires 1128 // a division step, whereas this formula only requires multiplies and shifts. 1129 // 1130 // It doesn't matter whether the subtraction step is done in the calculation 1131 // width or the input iteration count's width; if the subtraction overflows, 1132 // the result must be zero anyway. We prefer here to do it in the width of 1133 // the induction variable because it helps a lot for certain cases; CodeGen 1134 // isn't smart enough to ignore the overflow, which leads to much less 1135 // efficient code if the width of the subtraction is wider than the native 1136 // register width. 1137 // 1138 // (It's possible to not widen at all by pulling out factors of 2 before 1139 // the multiplication; for example, K=2 can be calculated as 1140 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1141 // extra arithmetic, so it's not an obvious win, and it gets 1142 // much more complicated for K > 3.) 1143 1144 // Protection from insane SCEVs; this bound is conservative, 1145 // but it probably doesn't matter. 1146 if (K > 1000) 1147 return SE.getCouldNotCompute(); 1148 1149 unsigned W = SE.getTypeSizeInBits(ResultTy); 1150 1151 // Calculate K! / 2^T and T; we divide out the factors of two before 1152 // multiplying for calculating K! / 2^T to avoid overflow. 1153 // Other overflow doesn't matter because we only care about the bottom 1154 // W bits of the result. 1155 APInt OddFactorial(W, 1); 1156 unsigned T = 1; 1157 for (unsigned i = 3; i <= K; ++i) { 1158 APInt Mult(W, i); 1159 unsigned TwoFactors = Mult.countTrailingZeros(); 1160 T += TwoFactors; 1161 Mult.lshrInPlace(TwoFactors); 1162 OddFactorial *= Mult; 1163 } 1164 1165 // We need at least W + T bits for the multiplication step 1166 unsigned CalculationBits = W + T; 1167 1168 // Calculate 2^T, at width T+W. 1169 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1170 1171 // Calculate the multiplicative inverse of K! / 2^T; 1172 // this multiplication factor will perform the exact division by 1173 // K! / 2^T. 1174 APInt Mod = APInt::getSignedMinValue(W+1); 1175 APInt MultiplyFactor = OddFactorial.zext(W+1); 1176 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1177 MultiplyFactor = MultiplyFactor.trunc(W); 1178 1179 // Calculate the product, at width T+W 1180 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1181 CalculationBits); 1182 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1183 for (unsigned i = 1; i != K; ++i) { 1184 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1185 Dividend = SE.getMulExpr(Dividend, 1186 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1187 } 1188 1189 // Divide by 2^T 1190 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1191 1192 // Truncate the result, and divide by K! / 2^T. 1193 1194 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1195 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1196 } 1197 1198 /// Return the value of this chain of recurrences at the specified iteration 1199 /// number. We can evaluate this recurrence by multiplying each element in the 1200 /// chain by the binomial coefficient corresponding to it. In other words, we 1201 /// can evaluate {A,+,B,+,C,+,D} as: 1202 /// 1203 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1204 /// 1205 /// where BC(It, k) stands for binomial coefficient. 1206 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1207 ScalarEvolution &SE) const { 1208 const SCEV *Result = getStart(); 1209 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1210 // The computation is correct in the face of overflow provided that the 1211 // multiplication is performed _after_ the evaluation of the binomial 1212 // coefficient. 1213 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1214 if (isa<SCEVCouldNotCompute>(Coeff)) 1215 return Coeff; 1216 1217 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1218 } 1219 return Result; 1220 } 1221 1222 //===----------------------------------------------------------------------===// 1223 // SCEV Expression folder implementations 1224 //===----------------------------------------------------------------------===// 1225 1226 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1227 Type *Ty) { 1228 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1229 "This is not a truncating conversion!"); 1230 assert(isSCEVable(Ty) && 1231 "This is not a conversion to a SCEVable type!"); 1232 Ty = getEffectiveSCEVType(Ty); 1233 1234 FoldingSetNodeID ID; 1235 ID.AddInteger(scTruncate); 1236 ID.AddPointer(Op); 1237 ID.AddPointer(Ty); 1238 void *IP = nullptr; 1239 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1240 1241 // Fold if the operand is constant. 1242 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1243 return getConstant( 1244 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1245 1246 // trunc(trunc(x)) --> trunc(x) 1247 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1248 return getTruncateExpr(ST->getOperand(), Ty); 1249 1250 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1251 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1252 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1253 1254 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1255 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1256 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1257 1258 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1259 // eliminate all the truncates, or we replace other casts with truncates. 1260 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1261 SmallVector<const SCEV *, 4> Operands; 1262 bool hasTrunc = false; 1263 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1264 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1265 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1266 hasTrunc = isa<SCEVTruncateExpr>(S); 1267 Operands.push_back(S); 1268 } 1269 if (!hasTrunc) 1270 return getAddExpr(Operands); 1271 // In spite we checked in the beginning that ID is not in the cache, 1272 // it is possible that during recursion and different modification 1273 // ID came to cache, so if we found it, just return it. 1274 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1275 return S; 1276 } 1277 1278 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1279 // eliminate all the truncates, or we replace other casts with truncates. 1280 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1281 SmallVector<const SCEV *, 4> Operands; 1282 bool hasTrunc = false; 1283 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1284 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1285 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1286 hasTrunc = isa<SCEVTruncateExpr>(S); 1287 Operands.push_back(S); 1288 } 1289 if (!hasTrunc) 1290 return getMulExpr(Operands); 1291 // In spite we checked in the beginning that ID is not in the cache, 1292 // it is possible that during recursion and different modification 1293 // ID came to cache, so if we found it, just return it. 1294 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1295 return S; 1296 } 1297 1298 // If the input value is a chrec scev, truncate the chrec's operands. 1299 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1300 SmallVector<const SCEV *, 4> Operands; 1301 for (const SCEV *Op : AddRec->operands()) 1302 Operands.push_back(getTruncateExpr(Op, Ty)); 1303 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1304 } 1305 1306 // The cast wasn't folded; create an explicit cast node. We can reuse 1307 // the existing insert position since if we get here, we won't have 1308 // made any changes which would invalidate it. 1309 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1310 Op, Ty); 1311 UniqueSCEVs.InsertNode(S, IP); 1312 addToLoopUseLists(S); 1313 return S; 1314 } 1315 1316 // Get the limit of a recurrence such that incrementing by Step cannot cause 1317 // signed overflow as long as the value of the recurrence within the 1318 // loop does not exceed this limit before incrementing. 1319 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1320 ICmpInst::Predicate *Pred, 1321 ScalarEvolution *SE) { 1322 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1323 if (SE->isKnownPositive(Step)) { 1324 *Pred = ICmpInst::ICMP_SLT; 1325 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1326 SE->getSignedRangeMax(Step)); 1327 } 1328 if (SE->isKnownNegative(Step)) { 1329 *Pred = ICmpInst::ICMP_SGT; 1330 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1331 SE->getSignedRangeMin(Step)); 1332 } 1333 return nullptr; 1334 } 1335 1336 // Get the limit of a recurrence such that incrementing by Step cannot cause 1337 // unsigned overflow as long as the value of the recurrence within the loop does 1338 // not exceed this limit before incrementing. 1339 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1340 ICmpInst::Predicate *Pred, 1341 ScalarEvolution *SE) { 1342 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1343 *Pred = ICmpInst::ICMP_ULT; 1344 1345 return SE->getConstant(APInt::getMinValue(BitWidth) - 1346 SE->getUnsignedRangeMax(Step)); 1347 } 1348 1349 namespace { 1350 1351 struct ExtendOpTraitsBase { 1352 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1353 unsigned); 1354 }; 1355 1356 // Used to make code generic over signed and unsigned overflow. 1357 template <typename ExtendOp> struct ExtendOpTraits { 1358 // Members present: 1359 // 1360 // static const SCEV::NoWrapFlags WrapType; 1361 // 1362 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1363 // 1364 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1365 // ICmpInst::Predicate *Pred, 1366 // ScalarEvolution *SE); 1367 }; 1368 1369 template <> 1370 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1371 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1372 1373 static const GetExtendExprTy GetExtendExpr; 1374 1375 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1376 ICmpInst::Predicate *Pred, 1377 ScalarEvolution *SE) { 1378 return getSignedOverflowLimitForStep(Step, Pred, SE); 1379 } 1380 }; 1381 1382 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1383 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1384 1385 template <> 1386 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1387 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1388 1389 static const GetExtendExprTy GetExtendExpr; 1390 1391 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1392 ICmpInst::Predicate *Pred, 1393 ScalarEvolution *SE) { 1394 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1395 } 1396 }; 1397 1398 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1399 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1400 1401 } // end anonymous namespace 1402 1403 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1404 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1405 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1406 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1407 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1408 // expression "Step + sext/zext(PreIncAR)" is congruent with 1409 // "sext/zext(PostIncAR)" 1410 template <typename ExtendOpTy> 1411 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1412 ScalarEvolution *SE, unsigned Depth) { 1413 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1414 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1415 1416 const Loop *L = AR->getLoop(); 1417 const SCEV *Start = AR->getStart(); 1418 const SCEV *Step = AR->getStepRecurrence(*SE); 1419 1420 // Check for a simple looking step prior to loop entry. 1421 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1422 if (!SA) 1423 return nullptr; 1424 1425 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1426 // subtraction is expensive. For this purpose, perform a quick and dirty 1427 // difference, by checking for Step in the operand list. 1428 SmallVector<const SCEV *, 4> DiffOps; 1429 for (const SCEV *Op : SA->operands()) 1430 if (Op != Step) 1431 DiffOps.push_back(Op); 1432 1433 if (DiffOps.size() == SA->getNumOperands()) 1434 return nullptr; 1435 1436 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1437 // `Step`: 1438 1439 // 1. NSW/NUW flags on the step increment. 1440 auto PreStartFlags = 1441 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1442 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1443 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1444 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1445 1446 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1447 // "S+X does not sign/unsign-overflow". 1448 // 1449 1450 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1451 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1452 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1453 return PreStart; 1454 1455 // 2. Direct overflow check on the step operation's expression. 1456 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1457 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1458 const SCEV *OperandExtendedStart = 1459 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1460 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1461 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1462 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1463 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1464 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1465 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1466 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1467 } 1468 return PreStart; 1469 } 1470 1471 // 3. Loop precondition. 1472 ICmpInst::Predicate Pred; 1473 const SCEV *OverflowLimit = 1474 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1475 1476 if (OverflowLimit && 1477 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1478 return PreStart; 1479 1480 return nullptr; 1481 } 1482 1483 // Get the normalized zero or sign extended expression for this AddRec's Start. 1484 template <typename ExtendOpTy> 1485 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1486 ScalarEvolution *SE, 1487 unsigned Depth) { 1488 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1489 1490 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1491 if (!PreStart) 1492 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1493 1494 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1495 Depth), 1496 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1497 } 1498 1499 // Try to prove away overflow by looking at "nearby" add recurrences. A 1500 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1501 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1502 // 1503 // Formally: 1504 // 1505 // {S,+,X} == {S-T,+,X} + T 1506 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1507 // 1508 // If ({S-T,+,X} + T) does not overflow ... (1) 1509 // 1510 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1511 // 1512 // If {S-T,+,X} does not overflow ... (2) 1513 // 1514 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1515 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1516 // 1517 // If (S-T)+T does not overflow ... (3) 1518 // 1519 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1520 // == {Ext(S),+,Ext(X)} == LHS 1521 // 1522 // Thus, if (1), (2) and (3) are true for some T, then 1523 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1524 // 1525 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1526 // does not overflow" restricted to the 0th iteration. Therefore we only need 1527 // to check for (1) and (2). 1528 // 1529 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1530 // is `Delta` (defined below). 1531 template <typename ExtendOpTy> 1532 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1533 const SCEV *Step, 1534 const Loop *L) { 1535 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1536 1537 // We restrict `Start` to a constant to prevent SCEV from spending too much 1538 // time here. It is correct (but more expensive) to continue with a 1539 // non-constant `Start` and do a general SCEV subtraction to compute 1540 // `PreStart` below. 1541 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1542 if (!StartC) 1543 return false; 1544 1545 APInt StartAI = StartC->getAPInt(); 1546 1547 for (unsigned Delta : {-2, -1, 1, 2}) { 1548 const SCEV *PreStart = getConstant(StartAI - Delta); 1549 1550 FoldingSetNodeID ID; 1551 ID.AddInteger(scAddRecExpr); 1552 ID.AddPointer(PreStart); 1553 ID.AddPointer(Step); 1554 ID.AddPointer(L); 1555 void *IP = nullptr; 1556 const auto *PreAR = 1557 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1558 1559 // Give up if we don't already have the add recurrence we need because 1560 // actually constructing an add recurrence is relatively expensive. 1561 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1562 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1563 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1564 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1565 DeltaS, &Pred, this); 1566 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1567 return true; 1568 } 1569 } 1570 1571 return false; 1572 } 1573 1574 const SCEV * 1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1576 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1577 "This is not an extending conversion!"); 1578 assert(isSCEVable(Ty) && 1579 "This is not a conversion to a SCEVable type!"); 1580 Ty = getEffectiveSCEVType(Ty); 1581 1582 // Fold if the operand is constant. 1583 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1584 return getConstant( 1585 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1586 1587 // zext(zext(x)) --> zext(x) 1588 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1589 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1590 1591 // Before doing any expensive analysis, check to see if we've already 1592 // computed a SCEV for this Op and Ty. 1593 FoldingSetNodeID ID; 1594 ID.AddInteger(scZeroExtend); 1595 ID.AddPointer(Op); 1596 ID.AddPointer(Ty); 1597 void *IP = nullptr; 1598 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1599 if (Depth > MaxExtDepth) { 1600 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1601 Op, Ty); 1602 UniqueSCEVs.InsertNode(S, IP); 1603 addToLoopUseLists(S); 1604 return S; 1605 } 1606 1607 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1608 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1609 // It's possible the bits taken off by the truncate were all zero bits. If 1610 // so, we should be able to simplify this further. 1611 const SCEV *X = ST->getOperand(); 1612 ConstantRange CR = getUnsignedRange(X); 1613 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1614 unsigned NewBits = getTypeSizeInBits(Ty); 1615 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1616 CR.zextOrTrunc(NewBits))) 1617 return getTruncateOrZeroExtend(X, Ty); 1618 } 1619 1620 // If the input value is a chrec scev, and we can prove that the value 1621 // did not overflow the old, smaller, value, we can zero extend all of the 1622 // operands (often constants). This allows analysis of something like 1623 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1625 if (AR->isAffine()) { 1626 const SCEV *Start = AR->getStart(); 1627 const SCEV *Step = AR->getStepRecurrence(*this); 1628 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1629 const Loop *L = AR->getLoop(); 1630 1631 if (!AR->hasNoUnsignedWrap()) { 1632 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1633 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1634 } 1635 1636 // If we have special knowledge that this addrec won't overflow, 1637 // we don't need to do any further analysis. 1638 if (AR->hasNoUnsignedWrap()) 1639 return getAddRecExpr( 1640 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1641 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1642 1643 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1644 // Note that this serves two purposes: It filters out loops that are 1645 // simply not analyzable, and it covers the case where this code is 1646 // being called from within backedge-taken count analysis, such that 1647 // attempting to ask for the backedge-taken count would likely result 1648 // in infinite recursion. In the later case, the analysis code will 1649 // cope with a conservative value, and it will take care to purge 1650 // that value once it has finished. 1651 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1652 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1653 // Manually compute the final value for AR, checking for 1654 // overflow. 1655 1656 // Check whether the backedge-taken count can be losslessly casted to 1657 // the addrec's type. The count is always unsigned. 1658 const SCEV *CastedMaxBECount = 1659 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1660 const SCEV *RecastedMaxBECount = 1661 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1662 if (MaxBECount == RecastedMaxBECount) { 1663 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1664 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1665 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1666 SCEV::FlagAnyWrap, Depth + 1); 1667 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1668 SCEV::FlagAnyWrap, 1669 Depth + 1), 1670 WideTy, Depth + 1); 1671 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1672 const SCEV *WideMaxBECount = 1673 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1674 const SCEV *OperandExtendedAdd = 1675 getAddExpr(WideStart, 1676 getMulExpr(WideMaxBECount, 1677 getZeroExtendExpr(Step, WideTy, Depth + 1), 1678 SCEV::FlagAnyWrap, Depth + 1), 1679 SCEV::FlagAnyWrap, Depth + 1); 1680 if (ZAdd == OperandExtendedAdd) { 1681 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1682 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1683 // Return the expression with the addrec on the outside. 1684 return getAddRecExpr( 1685 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1686 Depth + 1), 1687 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1688 AR->getNoWrapFlags()); 1689 } 1690 // Similar to above, only this time treat the step value as signed. 1691 // This covers loops that count down. 1692 OperandExtendedAdd = 1693 getAddExpr(WideStart, 1694 getMulExpr(WideMaxBECount, 1695 getSignExtendExpr(Step, WideTy, Depth + 1), 1696 SCEV::FlagAnyWrap, Depth + 1), 1697 SCEV::FlagAnyWrap, Depth + 1); 1698 if (ZAdd == OperandExtendedAdd) { 1699 // Cache knowledge of AR NW, which is propagated to this AddRec. 1700 // Negative step causes unsigned wrap, but it still can't self-wrap. 1701 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1702 // Return the expression with the addrec on the outside. 1703 return getAddRecExpr( 1704 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1705 Depth + 1), 1706 getSignExtendExpr(Step, Ty, Depth + 1), L, 1707 AR->getNoWrapFlags()); 1708 } 1709 } 1710 } 1711 1712 // Normally, in the cases we can prove no-overflow via a 1713 // backedge guarding condition, we can also compute a backedge 1714 // taken count for the loop. The exceptions are assumptions and 1715 // guards present in the loop -- SCEV is not great at exploiting 1716 // these to compute max backedge taken counts, but can still use 1717 // these to prove lack of overflow. Use this fact to avoid 1718 // doing extra work that may not pay off. 1719 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1720 !AC.assumptions().empty()) { 1721 // If the backedge is guarded by a comparison with the pre-inc 1722 // value the addrec is safe. Also, if the entry is guarded by 1723 // a comparison with the start value and the backedge is 1724 // guarded by a comparison with the post-inc value, the addrec 1725 // is safe. 1726 if (isKnownPositive(Step)) { 1727 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1728 getUnsignedRangeMax(Step)); 1729 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1730 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1731 // Cache knowledge of AR NUW, which is propagated to this 1732 // AddRec. 1733 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1734 // Return the expression with the addrec on the outside. 1735 return getAddRecExpr( 1736 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1737 Depth + 1), 1738 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1739 AR->getNoWrapFlags()); 1740 } 1741 } else if (isKnownNegative(Step)) { 1742 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1743 getSignedRangeMin(Step)); 1744 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1745 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1746 // Cache knowledge of AR NW, which is propagated to this 1747 // AddRec. Negative step causes unsigned wrap, but it 1748 // still can't self-wrap. 1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1750 // Return the expression with the addrec on the outside. 1751 return getAddRecExpr( 1752 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1753 Depth + 1), 1754 getSignExtendExpr(Step, Ty, Depth + 1), L, 1755 AR->getNoWrapFlags()); 1756 } 1757 } 1758 } 1759 1760 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1761 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1762 return getAddRecExpr( 1763 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1764 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1765 } 1766 } 1767 1768 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1769 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1770 if (SA->hasNoUnsignedWrap()) { 1771 // If the addition does not unsign overflow then we can, by definition, 1772 // commute the zero extension with the addition operation. 1773 SmallVector<const SCEV *, 4> Ops; 1774 for (const auto *Op : SA->operands()) 1775 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1776 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1777 } 1778 } 1779 1780 // The cast wasn't folded; create an explicit cast node. 1781 // Recompute the insert position, as it may have been invalidated. 1782 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1783 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1784 Op, Ty); 1785 UniqueSCEVs.InsertNode(S, IP); 1786 addToLoopUseLists(S); 1787 return S; 1788 } 1789 1790 const SCEV * 1791 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1792 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1793 "This is not an extending conversion!"); 1794 assert(isSCEVable(Ty) && 1795 "This is not a conversion to a SCEVable type!"); 1796 Ty = getEffectiveSCEVType(Ty); 1797 1798 // Fold if the operand is constant. 1799 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1800 return getConstant( 1801 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1802 1803 // sext(sext(x)) --> sext(x) 1804 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1805 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1806 1807 // sext(zext(x)) --> zext(x) 1808 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1809 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1810 1811 // Before doing any expensive analysis, check to see if we've already 1812 // computed a SCEV for this Op and Ty. 1813 FoldingSetNodeID ID; 1814 ID.AddInteger(scSignExtend); 1815 ID.AddPointer(Op); 1816 ID.AddPointer(Ty); 1817 void *IP = nullptr; 1818 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1819 // Limit recursion depth. 1820 if (Depth > MaxExtDepth) { 1821 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1822 Op, Ty); 1823 UniqueSCEVs.InsertNode(S, IP); 1824 addToLoopUseLists(S); 1825 return S; 1826 } 1827 1828 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1830 // It's possible the bits taken off by the truncate were all sign bits. If 1831 // so, we should be able to simplify this further. 1832 const SCEV *X = ST->getOperand(); 1833 ConstantRange CR = getSignedRange(X); 1834 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1835 unsigned NewBits = getTypeSizeInBits(Ty); 1836 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1837 CR.sextOrTrunc(NewBits))) 1838 return getTruncateOrSignExtend(X, Ty); 1839 } 1840 1841 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1842 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1843 if (SA->getNumOperands() == 2) { 1844 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1845 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1846 if (SMul && SC1) { 1847 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1848 const APInt &C1 = SC1->getAPInt(); 1849 const APInt &C2 = SC2->getAPInt(); 1850 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1851 C2.ugt(C1) && C2.isPowerOf2()) 1852 return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1), 1853 getSignExtendExpr(SMul, Ty, Depth + 1), 1854 SCEV::FlagAnyWrap, Depth + 1); 1855 } 1856 } 1857 } 1858 1859 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1860 if (SA->hasNoSignedWrap()) { 1861 // If the addition does not sign overflow then we can, by definition, 1862 // commute the sign extension with the addition operation. 1863 SmallVector<const SCEV *, 4> Ops; 1864 for (const auto *Op : SA->operands()) 1865 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1866 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1867 } 1868 } 1869 // If the input value is a chrec scev, and we can prove that the value 1870 // did not overflow the old, smaller, value, we can sign extend all of the 1871 // operands (often constants). This allows analysis of something like 1872 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1874 if (AR->isAffine()) { 1875 const SCEV *Start = AR->getStart(); 1876 const SCEV *Step = AR->getStepRecurrence(*this); 1877 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1878 const Loop *L = AR->getLoop(); 1879 1880 if (!AR->hasNoSignedWrap()) { 1881 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1882 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1883 } 1884 1885 // If we have special knowledge that this addrec won't overflow, 1886 // we don't need to do any further analysis. 1887 if (AR->hasNoSignedWrap()) 1888 return getAddRecExpr( 1889 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1890 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1891 1892 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1893 // Note that this serves two purposes: It filters out loops that are 1894 // simply not analyzable, and it covers the case where this code is 1895 // being called from within backedge-taken count analysis, such that 1896 // attempting to ask for the backedge-taken count would likely result 1897 // in infinite recursion. In the later case, the analysis code will 1898 // cope with a conservative value, and it will take care to purge 1899 // that value once it has finished. 1900 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1901 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1902 // Manually compute the final value for AR, checking for 1903 // overflow. 1904 1905 // Check whether the backedge-taken count can be losslessly casted to 1906 // the addrec's type. The count is always unsigned. 1907 const SCEV *CastedMaxBECount = 1908 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1909 const SCEV *RecastedMaxBECount = 1910 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1911 if (MaxBECount == RecastedMaxBECount) { 1912 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1913 // Check whether Start+Step*MaxBECount has no signed overflow. 1914 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1915 SCEV::FlagAnyWrap, Depth + 1); 1916 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1917 SCEV::FlagAnyWrap, 1918 Depth + 1), 1919 WideTy, Depth + 1); 1920 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1921 const SCEV *WideMaxBECount = 1922 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1923 const SCEV *OperandExtendedAdd = 1924 getAddExpr(WideStart, 1925 getMulExpr(WideMaxBECount, 1926 getSignExtendExpr(Step, WideTy, Depth + 1), 1927 SCEV::FlagAnyWrap, Depth + 1), 1928 SCEV::FlagAnyWrap, Depth + 1); 1929 if (SAdd == OperandExtendedAdd) { 1930 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1931 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1932 // Return the expression with the addrec on the outside. 1933 return getAddRecExpr( 1934 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1935 Depth + 1), 1936 getSignExtendExpr(Step, Ty, Depth + 1), L, 1937 AR->getNoWrapFlags()); 1938 } 1939 // Similar to above, only this time treat the step value as unsigned. 1940 // This covers loops that count up with an unsigned step. 1941 OperandExtendedAdd = 1942 getAddExpr(WideStart, 1943 getMulExpr(WideMaxBECount, 1944 getZeroExtendExpr(Step, WideTy, Depth + 1), 1945 SCEV::FlagAnyWrap, Depth + 1), 1946 SCEV::FlagAnyWrap, Depth + 1); 1947 if (SAdd == OperandExtendedAdd) { 1948 // If AR wraps around then 1949 // 1950 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1951 // => SAdd != OperandExtendedAdd 1952 // 1953 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1954 // (SAdd == OperandExtendedAdd => AR is NW) 1955 1956 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1957 1958 // Return the expression with the addrec on the outside. 1959 return getAddRecExpr( 1960 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1961 Depth + 1), 1962 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1963 AR->getNoWrapFlags()); 1964 } 1965 } 1966 } 1967 1968 // Normally, in the cases we can prove no-overflow via a 1969 // backedge guarding condition, we can also compute a backedge 1970 // taken count for the loop. The exceptions are assumptions and 1971 // guards present in the loop -- SCEV is not great at exploiting 1972 // these to compute max backedge taken counts, but can still use 1973 // these to prove lack of overflow. Use this fact to avoid 1974 // doing extra work that may not pay off. 1975 1976 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1977 !AC.assumptions().empty()) { 1978 // If the backedge is guarded by a comparison with the pre-inc 1979 // value the addrec is safe. Also, if the entry is guarded by 1980 // a comparison with the start value and the backedge is 1981 // guarded by a comparison with the post-inc value, the addrec 1982 // is safe. 1983 ICmpInst::Predicate Pred; 1984 const SCEV *OverflowLimit = 1985 getSignedOverflowLimitForStep(Step, &Pred, this); 1986 if (OverflowLimit && 1987 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1988 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1989 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1991 return getAddRecExpr( 1992 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1993 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1994 } 1995 } 1996 1997 // If Start and Step are constants, check if we can apply this 1998 // transformation: 1999 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 2000 auto *SC1 = dyn_cast<SCEVConstant>(Start); 2001 auto *SC2 = dyn_cast<SCEVConstant>(Step); 2002 if (SC1 && SC2) { 2003 const APInt &C1 = SC1->getAPInt(); 2004 const APInt &C2 = SC2->getAPInt(); 2005 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 2006 C2.isPowerOf2()) { 2007 Start = getSignExtendExpr(Start, Ty, Depth + 1); 2008 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 2009 AR->getNoWrapFlags()); 2010 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1), 2011 SCEV::FlagAnyWrap, Depth + 1); 2012 } 2013 } 2014 2015 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2016 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2017 return getAddRecExpr( 2018 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2019 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2020 } 2021 } 2022 2023 // If the input value is provably positive and we could not simplify 2024 // away the sext build a zext instead. 2025 if (isKnownNonNegative(Op)) 2026 return getZeroExtendExpr(Op, Ty, Depth + 1); 2027 2028 // The cast wasn't folded; create an explicit cast node. 2029 // Recompute the insert position, as it may have been invalidated. 2030 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2031 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2032 Op, Ty); 2033 UniqueSCEVs.InsertNode(S, IP); 2034 addToLoopUseLists(S); 2035 return S; 2036 } 2037 2038 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2039 /// unspecified bits out to the given type. 2040 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2041 Type *Ty) { 2042 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2043 "This is not an extending conversion!"); 2044 assert(isSCEVable(Ty) && 2045 "This is not a conversion to a SCEVable type!"); 2046 Ty = getEffectiveSCEVType(Ty); 2047 2048 // Sign-extend negative constants. 2049 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2050 if (SC->getAPInt().isNegative()) 2051 return getSignExtendExpr(Op, Ty); 2052 2053 // Peel off a truncate cast. 2054 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2055 const SCEV *NewOp = T->getOperand(); 2056 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2057 return getAnyExtendExpr(NewOp, Ty); 2058 return getTruncateOrNoop(NewOp, Ty); 2059 } 2060 2061 // Next try a zext cast. If the cast is folded, use it. 2062 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2063 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2064 return ZExt; 2065 2066 // Next try a sext cast. If the cast is folded, use it. 2067 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2068 if (!isa<SCEVSignExtendExpr>(SExt)) 2069 return SExt; 2070 2071 // Force the cast to be folded into the operands of an addrec. 2072 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2073 SmallVector<const SCEV *, 4> Ops; 2074 for (const SCEV *Op : AR->operands()) 2075 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2076 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2077 } 2078 2079 // If the expression is obviously signed, use the sext cast value. 2080 if (isa<SCEVSMaxExpr>(Op)) 2081 return SExt; 2082 2083 // Absent any other information, use the zext cast value. 2084 return ZExt; 2085 } 2086 2087 /// Process the given Ops list, which is a list of operands to be added under 2088 /// the given scale, update the given map. This is a helper function for 2089 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2090 /// that would form an add expression like this: 2091 /// 2092 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2093 /// 2094 /// where A and B are constants, update the map with these values: 2095 /// 2096 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2097 /// 2098 /// and add 13 + A*B*29 to AccumulatedConstant. 2099 /// This will allow getAddRecExpr to produce this: 2100 /// 2101 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2102 /// 2103 /// This form often exposes folding opportunities that are hidden in 2104 /// the original operand list. 2105 /// 2106 /// Return true iff it appears that any interesting folding opportunities 2107 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2108 /// the common case where no interesting opportunities are present, and 2109 /// is also used as a check to avoid infinite recursion. 2110 static bool 2111 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2112 SmallVectorImpl<const SCEV *> &NewOps, 2113 APInt &AccumulatedConstant, 2114 const SCEV *const *Ops, size_t NumOperands, 2115 const APInt &Scale, 2116 ScalarEvolution &SE) { 2117 bool Interesting = false; 2118 2119 // Iterate over the add operands. They are sorted, with constants first. 2120 unsigned i = 0; 2121 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2122 ++i; 2123 // Pull a buried constant out to the outside. 2124 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2125 Interesting = true; 2126 AccumulatedConstant += Scale * C->getAPInt(); 2127 } 2128 2129 // Next comes everything else. We're especially interested in multiplies 2130 // here, but they're in the middle, so just visit the rest with one loop. 2131 for (; i != NumOperands; ++i) { 2132 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2133 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2134 APInt NewScale = 2135 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2136 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2137 // A multiplication of a constant with another add; recurse. 2138 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2139 Interesting |= 2140 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2141 Add->op_begin(), Add->getNumOperands(), 2142 NewScale, SE); 2143 } else { 2144 // A multiplication of a constant with some other value. Update 2145 // the map. 2146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2147 const SCEV *Key = SE.getMulExpr(MulOps); 2148 auto Pair = M.insert({Key, NewScale}); 2149 if (Pair.second) { 2150 NewOps.push_back(Pair.first->first); 2151 } else { 2152 Pair.first->second += NewScale; 2153 // The map already had an entry for this value, which may indicate 2154 // a folding opportunity. 2155 Interesting = true; 2156 } 2157 } 2158 } else { 2159 // An ordinary operand. Update the map. 2160 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2161 M.insert({Ops[i], Scale}); 2162 if (Pair.second) { 2163 NewOps.push_back(Pair.first->first); 2164 } else { 2165 Pair.first->second += Scale; 2166 // The map already had an entry for this value, which may indicate 2167 // a folding opportunity. 2168 Interesting = true; 2169 } 2170 } 2171 } 2172 2173 return Interesting; 2174 } 2175 2176 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2177 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2178 // can't-overflow flags for the operation if possible. 2179 static SCEV::NoWrapFlags 2180 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2181 const SmallVectorImpl<const SCEV *> &Ops, 2182 SCEV::NoWrapFlags Flags) { 2183 using namespace std::placeholders; 2184 2185 using OBO = OverflowingBinaryOperator; 2186 2187 bool CanAnalyze = 2188 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2189 (void)CanAnalyze; 2190 assert(CanAnalyze && "don't call from other places!"); 2191 2192 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2193 SCEV::NoWrapFlags SignOrUnsignWrap = 2194 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2195 2196 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2197 auto IsKnownNonNegative = [&](const SCEV *S) { 2198 return SE->isKnownNonNegative(S); 2199 }; 2200 2201 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2202 Flags = 2203 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2204 2205 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2206 2207 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2208 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2209 2210 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2211 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2212 2213 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2214 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2215 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2216 Instruction::Add, C, OBO::NoSignedWrap); 2217 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2218 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2219 } 2220 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2221 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2222 Instruction::Add, C, OBO::NoUnsignedWrap); 2223 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2224 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2225 } 2226 } 2227 2228 return Flags; 2229 } 2230 2231 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2232 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2233 } 2234 2235 /// Get a canonical add expression, or something simpler if possible. 2236 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2237 SCEV::NoWrapFlags Flags, 2238 unsigned Depth) { 2239 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2240 "only nuw or nsw allowed"); 2241 assert(!Ops.empty() && "Cannot get empty add!"); 2242 if (Ops.size() == 1) return Ops[0]; 2243 #ifndef NDEBUG 2244 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2245 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2246 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2247 "SCEVAddExpr operand types don't match!"); 2248 #endif 2249 2250 // Sort by complexity, this groups all similar expression types together. 2251 GroupByComplexity(Ops, &LI, DT); 2252 2253 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2254 2255 // If there are any constants, fold them together. 2256 unsigned Idx = 0; 2257 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2258 ++Idx; 2259 assert(Idx < Ops.size()); 2260 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2261 // We found two constants, fold them together! 2262 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2263 if (Ops.size() == 2) return Ops[0]; 2264 Ops.erase(Ops.begin()+1); // Erase the folded element 2265 LHSC = cast<SCEVConstant>(Ops[0]); 2266 } 2267 2268 // If we are left with a constant zero being added, strip it off. 2269 if (LHSC->getValue()->isZero()) { 2270 Ops.erase(Ops.begin()); 2271 --Idx; 2272 } 2273 2274 if (Ops.size() == 1) return Ops[0]; 2275 } 2276 2277 // Limit recursion calls depth. 2278 if (Depth > MaxArithDepth) 2279 return getOrCreateAddExpr(Ops, Flags); 2280 2281 // Okay, check to see if the same value occurs in the operand list more than 2282 // once. If so, merge them together into an multiply expression. Since we 2283 // sorted the list, these values are required to be adjacent. 2284 Type *Ty = Ops[0]->getType(); 2285 bool FoundMatch = false; 2286 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2287 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2288 // Scan ahead to count how many equal operands there are. 2289 unsigned Count = 2; 2290 while (i+Count != e && Ops[i+Count] == Ops[i]) 2291 ++Count; 2292 // Merge the values into a multiply. 2293 const SCEV *Scale = getConstant(Ty, Count); 2294 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2295 if (Ops.size() == Count) 2296 return Mul; 2297 Ops[i] = Mul; 2298 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2299 --i; e -= Count - 1; 2300 FoundMatch = true; 2301 } 2302 if (FoundMatch) 2303 return getAddExpr(Ops, Flags, Depth + 1); 2304 2305 // Check for truncates. If all the operands are truncated from the same 2306 // type, see if factoring out the truncate would permit the result to be 2307 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2308 // if the contents of the resulting outer trunc fold to something simple. 2309 auto FindTruncSrcType = [&]() -> Type * { 2310 // We're ultimately looking to fold an addrec of truncs and muls of only 2311 // constants and truncs, so if we find any other types of SCEV 2312 // as operands of the addrec then we bail and return nullptr here. 2313 // Otherwise, we return the type of the operand of a trunc that we find. 2314 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2315 return T->getOperand()->getType(); 2316 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2317 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2318 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2319 return T->getOperand()->getType(); 2320 } 2321 return nullptr; 2322 }; 2323 if (auto *SrcType = FindTruncSrcType()) { 2324 SmallVector<const SCEV *, 8> LargeOps; 2325 bool Ok = true; 2326 // Check all the operands to see if they can be represented in the 2327 // source type of the truncate. 2328 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2329 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2330 if (T->getOperand()->getType() != SrcType) { 2331 Ok = false; 2332 break; 2333 } 2334 LargeOps.push_back(T->getOperand()); 2335 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2336 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2337 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2338 SmallVector<const SCEV *, 8> LargeMulOps; 2339 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2340 if (const SCEVTruncateExpr *T = 2341 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2342 if (T->getOperand()->getType() != SrcType) { 2343 Ok = false; 2344 break; 2345 } 2346 LargeMulOps.push_back(T->getOperand()); 2347 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2348 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2349 } else { 2350 Ok = false; 2351 break; 2352 } 2353 } 2354 if (Ok) 2355 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2356 } else { 2357 Ok = false; 2358 break; 2359 } 2360 } 2361 if (Ok) { 2362 // Evaluate the expression in the larger type. 2363 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2364 // If it folds to something simple, use it. Otherwise, don't. 2365 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2366 return getTruncateExpr(Fold, Ty); 2367 } 2368 } 2369 2370 // Skip past any other cast SCEVs. 2371 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2372 ++Idx; 2373 2374 // If there are add operands they would be next. 2375 if (Idx < Ops.size()) { 2376 bool DeletedAdd = false; 2377 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2378 if (Ops.size() > AddOpsInlineThreshold || 2379 Add->getNumOperands() > AddOpsInlineThreshold) 2380 break; 2381 // If we have an add, expand the add operands onto the end of the operands 2382 // list. 2383 Ops.erase(Ops.begin()+Idx); 2384 Ops.append(Add->op_begin(), Add->op_end()); 2385 DeletedAdd = true; 2386 } 2387 2388 // If we deleted at least one add, we added operands to the end of the list, 2389 // and they are not necessarily sorted. Recurse to resort and resimplify 2390 // any operands we just acquired. 2391 if (DeletedAdd) 2392 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2393 } 2394 2395 // Skip over the add expression until we get to a multiply. 2396 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2397 ++Idx; 2398 2399 // Check to see if there are any folding opportunities present with 2400 // operands multiplied by constant values. 2401 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2402 uint64_t BitWidth = getTypeSizeInBits(Ty); 2403 DenseMap<const SCEV *, APInt> M; 2404 SmallVector<const SCEV *, 8> NewOps; 2405 APInt AccumulatedConstant(BitWidth, 0); 2406 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2407 Ops.data(), Ops.size(), 2408 APInt(BitWidth, 1), *this)) { 2409 struct APIntCompare { 2410 bool operator()(const APInt &LHS, const APInt &RHS) const { 2411 return LHS.ult(RHS); 2412 } 2413 }; 2414 2415 // Some interesting folding opportunity is present, so its worthwhile to 2416 // re-generate the operands list. Group the operands by constant scale, 2417 // to avoid multiplying by the same constant scale multiple times. 2418 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2419 for (const SCEV *NewOp : NewOps) 2420 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2421 // Re-generate the operands list. 2422 Ops.clear(); 2423 if (AccumulatedConstant != 0) 2424 Ops.push_back(getConstant(AccumulatedConstant)); 2425 for (auto &MulOp : MulOpLists) 2426 if (MulOp.first != 0) 2427 Ops.push_back(getMulExpr( 2428 getConstant(MulOp.first), 2429 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2430 SCEV::FlagAnyWrap, Depth + 1)); 2431 if (Ops.empty()) 2432 return getZero(Ty); 2433 if (Ops.size() == 1) 2434 return Ops[0]; 2435 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2436 } 2437 } 2438 2439 // If we are adding something to a multiply expression, make sure the 2440 // something is not already an operand of the multiply. If so, merge it into 2441 // the multiply. 2442 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2443 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2444 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2445 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2446 if (isa<SCEVConstant>(MulOpSCEV)) 2447 continue; 2448 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2449 if (MulOpSCEV == Ops[AddOp]) { 2450 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2451 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2452 if (Mul->getNumOperands() != 2) { 2453 // If the multiply has more than two operands, we must get the 2454 // Y*Z term. 2455 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2456 Mul->op_begin()+MulOp); 2457 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2458 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2459 } 2460 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2461 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2462 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2463 SCEV::FlagAnyWrap, Depth + 1); 2464 if (Ops.size() == 2) return OuterMul; 2465 if (AddOp < Idx) { 2466 Ops.erase(Ops.begin()+AddOp); 2467 Ops.erase(Ops.begin()+Idx-1); 2468 } else { 2469 Ops.erase(Ops.begin()+Idx); 2470 Ops.erase(Ops.begin()+AddOp-1); 2471 } 2472 Ops.push_back(OuterMul); 2473 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2474 } 2475 2476 // Check this multiply against other multiplies being added together. 2477 for (unsigned OtherMulIdx = Idx+1; 2478 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2479 ++OtherMulIdx) { 2480 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2481 // If MulOp occurs in OtherMul, we can fold the two multiplies 2482 // together. 2483 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2484 OMulOp != e; ++OMulOp) 2485 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2486 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2487 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2488 if (Mul->getNumOperands() != 2) { 2489 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2490 Mul->op_begin()+MulOp); 2491 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2492 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2493 } 2494 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2495 if (OtherMul->getNumOperands() != 2) { 2496 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2497 OtherMul->op_begin()+OMulOp); 2498 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2499 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2500 } 2501 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2502 const SCEV *InnerMulSum = 2503 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2504 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2505 SCEV::FlagAnyWrap, Depth + 1); 2506 if (Ops.size() == 2) return OuterMul; 2507 Ops.erase(Ops.begin()+Idx); 2508 Ops.erase(Ops.begin()+OtherMulIdx-1); 2509 Ops.push_back(OuterMul); 2510 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2511 } 2512 } 2513 } 2514 } 2515 2516 // If there are any add recurrences in the operands list, see if any other 2517 // added values are loop invariant. If so, we can fold them into the 2518 // recurrence. 2519 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2520 ++Idx; 2521 2522 // Scan over all recurrences, trying to fold loop invariants into them. 2523 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2524 // Scan all of the other operands to this add and add them to the vector if 2525 // they are loop invariant w.r.t. the recurrence. 2526 SmallVector<const SCEV *, 8> LIOps; 2527 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2528 const Loop *AddRecLoop = AddRec->getLoop(); 2529 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2530 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2531 LIOps.push_back(Ops[i]); 2532 Ops.erase(Ops.begin()+i); 2533 --i; --e; 2534 } 2535 2536 // If we found some loop invariants, fold them into the recurrence. 2537 if (!LIOps.empty()) { 2538 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2539 LIOps.push_back(AddRec->getStart()); 2540 2541 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2542 AddRec->op_end()); 2543 // This follows from the fact that the no-wrap flags on the outer add 2544 // expression are applicable on the 0th iteration, when the add recurrence 2545 // will be equal to its start value. 2546 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2547 2548 // Build the new addrec. Propagate the NUW and NSW flags if both the 2549 // outer add and the inner addrec are guaranteed to have no overflow. 2550 // Always propagate NW. 2551 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2552 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2553 2554 // If all of the other operands were loop invariant, we are done. 2555 if (Ops.size() == 1) return NewRec; 2556 2557 // Otherwise, add the folded AddRec by the non-invariant parts. 2558 for (unsigned i = 0;; ++i) 2559 if (Ops[i] == AddRec) { 2560 Ops[i] = NewRec; 2561 break; 2562 } 2563 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2564 } 2565 2566 // Okay, if there weren't any loop invariants to be folded, check to see if 2567 // there are multiple AddRec's with the same loop induction variable being 2568 // added together. If so, we can fold them. 2569 for (unsigned OtherIdx = Idx+1; 2570 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2571 ++OtherIdx) { 2572 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2573 // so that the 1st found AddRecExpr is dominated by all others. 2574 assert(DT.dominates( 2575 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2576 AddRec->getLoop()->getHeader()) && 2577 "AddRecExprs are not sorted in reverse dominance order?"); 2578 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2579 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2580 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2581 AddRec->op_end()); 2582 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2583 ++OtherIdx) { 2584 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2585 if (OtherAddRec->getLoop() == AddRecLoop) { 2586 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2587 i != e; ++i) { 2588 if (i >= AddRecOps.size()) { 2589 AddRecOps.append(OtherAddRec->op_begin()+i, 2590 OtherAddRec->op_end()); 2591 break; 2592 } 2593 SmallVector<const SCEV *, 2> TwoOps = { 2594 AddRecOps[i], OtherAddRec->getOperand(i)}; 2595 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2596 } 2597 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2598 } 2599 } 2600 // Step size has changed, so we cannot guarantee no self-wraparound. 2601 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2602 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2603 } 2604 } 2605 2606 // Otherwise couldn't fold anything into this recurrence. Move onto the 2607 // next one. 2608 } 2609 2610 // Okay, it looks like we really DO need an add expr. Check to see if we 2611 // already have one, otherwise create a new one. 2612 return getOrCreateAddExpr(Ops, Flags); 2613 } 2614 2615 const SCEV * 2616 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2617 SCEV::NoWrapFlags Flags) { 2618 FoldingSetNodeID ID; 2619 ID.AddInteger(scAddExpr); 2620 for (const SCEV *Op : Ops) 2621 ID.AddPointer(Op); 2622 void *IP = nullptr; 2623 SCEVAddExpr *S = 2624 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2625 if (!S) { 2626 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2627 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2628 S = new (SCEVAllocator) 2629 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2630 UniqueSCEVs.InsertNode(S, IP); 2631 addToLoopUseLists(S); 2632 } 2633 S->setNoWrapFlags(Flags); 2634 return S; 2635 } 2636 2637 const SCEV * 2638 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2639 SCEV::NoWrapFlags Flags) { 2640 FoldingSetNodeID ID; 2641 ID.AddInteger(scMulExpr); 2642 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2643 ID.AddPointer(Ops[i]); 2644 void *IP = nullptr; 2645 SCEVMulExpr *S = 2646 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2647 if (!S) { 2648 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2649 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2650 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2651 O, Ops.size()); 2652 UniqueSCEVs.InsertNode(S, IP); 2653 addToLoopUseLists(S); 2654 } 2655 S->setNoWrapFlags(Flags); 2656 return S; 2657 } 2658 2659 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2660 uint64_t k = i*j; 2661 if (j > 1 && k / j != i) Overflow = true; 2662 return k; 2663 } 2664 2665 /// Compute the result of "n choose k", the binomial coefficient. If an 2666 /// intermediate computation overflows, Overflow will be set and the return will 2667 /// be garbage. Overflow is not cleared on absence of overflow. 2668 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2669 // We use the multiplicative formula: 2670 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2671 // At each iteration, we take the n-th term of the numeral and divide by the 2672 // (k-n)th term of the denominator. This division will always produce an 2673 // integral result, and helps reduce the chance of overflow in the 2674 // intermediate computations. However, we can still overflow even when the 2675 // final result would fit. 2676 2677 if (n == 0 || n == k) return 1; 2678 if (k > n) return 0; 2679 2680 if (k > n/2) 2681 k = n-k; 2682 2683 uint64_t r = 1; 2684 for (uint64_t i = 1; i <= k; ++i) { 2685 r = umul_ov(r, n-(i-1), Overflow); 2686 r /= i; 2687 } 2688 return r; 2689 } 2690 2691 /// Determine if any of the operands in this SCEV are a constant or if 2692 /// any of the add or multiply expressions in this SCEV contain a constant. 2693 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2694 struct FindConstantInAddMulChain { 2695 bool FoundConstant = false; 2696 2697 bool follow(const SCEV *S) { 2698 FoundConstant |= isa<SCEVConstant>(S); 2699 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2700 } 2701 2702 bool isDone() const { 2703 return FoundConstant; 2704 } 2705 }; 2706 2707 FindConstantInAddMulChain F; 2708 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2709 ST.visitAll(StartExpr); 2710 return F.FoundConstant; 2711 } 2712 2713 /// Get a canonical multiply expression, or something simpler if possible. 2714 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2715 SCEV::NoWrapFlags Flags, 2716 unsigned Depth) { 2717 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2718 "only nuw or nsw allowed"); 2719 assert(!Ops.empty() && "Cannot get empty mul!"); 2720 if (Ops.size() == 1) return Ops[0]; 2721 #ifndef NDEBUG 2722 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2723 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2724 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2725 "SCEVMulExpr operand types don't match!"); 2726 #endif 2727 2728 // Sort by complexity, this groups all similar expression types together. 2729 GroupByComplexity(Ops, &LI, DT); 2730 2731 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2732 2733 // Limit recursion calls depth. 2734 if (Depth > MaxArithDepth) 2735 return getOrCreateMulExpr(Ops, Flags); 2736 2737 // If there are any constants, fold them together. 2738 unsigned Idx = 0; 2739 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2740 2741 // C1*(C2+V) -> C1*C2 + C1*V 2742 if (Ops.size() == 2) 2743 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2744 // If any of Add's ops are Adds or Muls with a constant, 2745 // apply this transformation as well. 2746 if (Add->getNumOperands() == 2) 2747 // TODO: There are some cases where this transformation is not 2748 // profitable, for example: 2749 // Add = (C0 + X) * Y + Z. 2750 // Maybe the scope of this transformation should be narrowed down. 2751 if (containsConstantInAddMulChain(Add)) 2752 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2753 SCEV::FlagAnyWrap, Depth + 1), 2754 getMulExpr(LHSC, Add->getOperand(1), 2755 SCEV::FlagAnyWrap, Depth + 1), 2756 SCEV::FlagAnyWrap, Depth + 1); 2757 2758 ++Idx; 2759 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2760 // We found two constants, fold them together! 2761 ConstantInt *Fold = 2762 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2763 Ops[0] = getConstant(Fold); 2764 Ops.erase(Ops.begin()+1); // Erase the folded element 2765 if (Ops.size() == 1) return Ops[0]; 2766 LHSC = cast<SCEVConstant>(Ops[0]); 2767 } 2768 2769 // If we are left with a constant one being multiplied, strip it off. 2770 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2771 Ops.erase(Ops.begin()); 2772 --Idx; 2773 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2774 // If we have a multiply of zero, it will always be zero. 2775 return Ops[0]; 2776 } else if (Ops[0]->isAllOnesValue()) { 2777 // If we have a mul by -1 of an add, try distributing the -1 among the 2778 // add operands. 2779 if (Ops.size() == 2) { 2780 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2781 SmallVector<const SCEV *, 4> NewOps; 2782 bool AnyFolded = false; 2783 for (const SCEV *AddOp : Add->operands()) { 2784 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2785 Depth + 1); 2786 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2787 NewOps.push_back(Mul); 2788 } 2789 if (AnyFolded) 2790 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2791 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2792 // Negation preserves a recurrence's no self-wrap property. 2793 SmallVector<const SCEV *, 4> Operands; 2794 for (const SCEV *AddRecOp : AddRec->operands()) 2795 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2796 Depth + 1)); 2797 2798 return getAddRecExpr(Operands, AddRec->getLoop(), 2799 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2800 } 2801 } 2802 } 2803 2804 if (Ops.size() == 1) 2805 return Ops[0]; 2806 } 2807 2808 // Skip over the add expression until we get to a multiply. 2809 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2810 ++Idx; 2811 2812 // If there are mul operands inline them all into this expression. 2813 if (Idx < Ops.size()) { 2814 bool DeletedMul = false; 2815 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2816 if (Ops.size() > MulOpsInlineThreshold) 2817 break; 2818 // If we have an mul, expand the mul operands onto the end of the 2819 // operands list. 2820 Ops.erase(Ops.begin()+Idx); 2821 Ops.append(Mul->op_begin(), Mul->op_end()); 2822 DeletedMul = true; 2823 } 2824 2825 // If we deleted at least one mul, we added operands to the end of the 2826 // list, and they are not necessarily sorted. Recurse to resort and 2827 // resimplify any operands we just acquired. 2828 if (DeletedMul) 2829 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2830 } 2831 2832 // If there are any add recurrences in the operands list, see if any other 2833 // added values are loop invariant. If so, we can fold them into the 2834 // recurrence. 2835 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2836 ++Idx; 2837 2838 // Scan over all recurrences, trying to fold loop invariants into them. 2839 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2840 // Scan all of the other operands to this mul and add them to the vector 2841 // if they are loop invariant w.r.t. the recurrence. 2842 SmallVector<const SCEV *, 8> LIOps; 2843 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2844 const Loop *AddRecLoop = AddRec->getLoop(); 2845 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2846 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2847 LIOps.push_back(Ops[i]); 2848 Ops.erase(Ops.begin()+i); 2849 --i; --e; 2850 } 2851 2852 // If we found some loop invariants, fold them into the recurrence. 2853 if (!LIOps.empty()) { 2854 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2855 SmallVector<const SCEV *, 4> NewOps; 2856 NewOps.reserve(AddRec->getNumOperands()); 2857 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2859 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2860 SCEV::FlagAnyWrap, Depth + 1)); 2861 2862 // Build the new addrec. Propagate the NUW and NSW flags if both the 2863 // outer mul and the inner addrec are guaranteed to have no overflow. 2864 // 2865 // No self-wrap cannot be guaranteed after changing the step size, but 2866 // will be inferred if either NUW or NSW is true. 2867 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2868 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2869 2870 // If all of the other operands were loop invariant, we are done. 2871 if (Ops.size() == 1) return NewRec; 2872 2873 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2874 for (unsigned i = 0;; ++i) 2875 if (Ops[i] == AddRec) { 2876 Ops[i] = NewRec; 2877 break; 2878 } 2879 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2880 } 2881 2882 // Okay, if there weren't any loop invariants to be folded, check to see 2883 // if there are multiple AddRec's with the same loop induction variable 2884 // being multiplied together. If so, we can fold them. 2885 2886 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2887 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2888 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2889 // ]]],+,...up to x=2n}. 2890 // Note that the arguments to choose() are always integers with values 2891 // known at compile time, never SCEV objects. 2892 // 2893 // The implementation avoids pointless extra computations when the two 2894 // addrec's are of different length (mathematically, it's equivalent to 2895 // an infinite stream of zeros on the right). 2896 bool OpsModified = false; 2897 for (unsigned OtherIdx = Idx+1; 2898 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2899 ++OtherIdx) { 2900 const SCEVAddRecExpr *OtherAddRec = 2901 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2902 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2903 continue; 2904 2905 // Limit max number of arguments to avoid creation of unreasonably big 2906 // SCEVAddRecs with very complex operands. 2907 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2908 MaxAddRecSize) 2909 continue; 2910 2911 bool Overflow = false; 2912 Type *Ty = AddRec->getType(); 2913 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2914 SmallVector<const SCEV*, 7> AddRecOps; 2915 for (int x = 0, xe = AddRec->getNumOperands() + 2916 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2917 const SCEV *Term = getZero(Ty); 2918 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2919 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2920 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2921 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2922 z < ze && !Overflow; ++z) { 2923 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2924 uint64_t Coeff; 2925 if (LargerThan64Bits) 2926 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2927 else 2928 Coeff = Coeff1*Coeff2; 2929 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2930 const SCEV *Term1 = AddRec->getOperand(y-z); 2931 const SCEV *Term2 = OtherAddRec->getOperand(z); 2932 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2, 2933 SCEV::FlagAnyWrap, Depth + 1), 2934 SCEV::FlagAnyWrap, Depth + 1); 2935 } 2936 } 2937 AddRecOps.push_back(Term); 2938 } 2939 if (!Overflow) { 2940 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2941 SCEV::FlagAnyWrap); 2942 if (Ops.size() == 2) return NewAddRec; 2943 Ops[Idx] = NewAddRec; 2944 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2945 OpsModified = true; 2946 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2947 if (!AddRec) 2948 break; 2949 } 2950 } 2951 if (OpsModified) 2952 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2953 2954 // Otherwise couldn't fold anything into this recurrence. Move onto the 2955 // next one. 2956 } 2957 2958 // Okay, it looks like we really DO need an mul expr. Check to see if we 2959 // already have one, otherwise create a new one. 2960 return getOrCreateMulExpr(Ops, Flags); 2961 } 2962 2963 /// Represents an unsigned remainder expression based on unsigned division. 2964 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2965 const SCEV *RHS) { 2966 assert(getEffectiveSCEVType(LHS->getType()) == 2967 getEffectiveSCEVType(RHS->getType()) && 2968 "SCEVURemExpr operand types don't match!"); 2969 2970 // Short-circuit easy cases 2971 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2972 // If constant is one, the result is trivial 2973 if (RHSC->getValue()->isOne()) 2974 return getZero(LHS->getType()); // X urem 1 --> 0 2975 2976 // If constant is a power of two, fold into a zext(trunc(LHS)). 2977 if (RHSC->getAPInt().isPowerOf2()) { 2978 Type *FullTy = LHS->getType(); 2979 Type *TruncTy = 2980 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2981 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2982 } 2983 } 2984 2985 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2986 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2987 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2988 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2989 } 2990 2991 /// Get a canonical unsigned division expression, or something simpler if 2992 /// possible. 2993 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2994 const SCEV *RHS) { 2995 assert(getEffectiveSCEVType(LHS->getType()) == 2996 getEffectiveSCEVType(RHS->getType()) && 2997 "SCEVUDivExpr operand types don't match!"); 2998 2999 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3000 if (RHSC->getValue()->isOne()) 3001 return LHS; // X udiv 1 --> x 3002 // If the denominator is zero, the result of the udiv is undefined. Don't 3003 // try to analyze it, because the resolution chosen here may differ from 3004 // the resolution chosen in other parts of the compiler. 3005 if (!RHSC->getValue()->isZero()) { 3006 // Determine if the division can be folded into the operands of 3007 // its operands. 3008 // TODO: Generalize this to non-constants by using known-bits information. 3009 Type *Ty = LHS->getType(); 3010 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3011 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3012 // For non-power-of-two values, effectively round the value up to the 3013 // nearest power of two. 3014 if (!RHSC->getAPInt().isPowerOf2()) 3015 ++MaxShiftAmt; 3016 IntegerType *ExtTy = 3017 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3018 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3019 if (const SCEVConstant *Step = 3020 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3021 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3022 const APInt &StepInt = Step->getAPInt(); 3023 const APInt &DivInt = RHSC->getAPInt(); 3024 if (!StepInt.urem(DivInt) && 3025 getZeroExtendExpr(AR, ExtTy) == 3026 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3027 getZeroExtendExpr(Step, ExtTy), 3028 AR->getLoop(), SCEV::FlagAnyWrap)) { 3029 SmallVector<const SCEV *, 4> Operands; 3030 for (const SCEV *Op : AR->operands()) 3031 Operands.push_back(getUDivExpr(Op, RHS)); 3032 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3033 } 3034 /// Get a canonical UDivExpr for a recurrence. 3035 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3036 // We can currently only fold X%N if X is constant. 3037 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3038 if (StartC && !DivInt.urem(StepInt) && 3039 getZeroExtendExpr(AR, ExtTy) == 3040 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3041 getZeroExtendExpr(Step, ExtTy), 3042 AR->getLoop(), SCEV::FlagAnyWrap)) { 3043 const APInt &StartInt = StartC->getAPInt(); 3044 const APInt &StartRem = StartInt.urem(StepInt); 3045 if (StartRem != 0) 3046 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3047 AR->getLoop(), SCEV::FlagNW); 3048 } 3049 } 3050 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3051 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3052 SmallVector<const SCEV *, 4> Operands; 3053 for (const SCEV *Op : M->operands()) 3054 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3055 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3056 // Find an operand that's safely divisible. 3057 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3058 const SCEV *Op = M->getOperand(i); 3059 const SCEV *Div = getUDivExpr(Op, RHSC); 3060 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3061 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3062 M->op_end()); 3063 Operands[i] = Div; 3064 return getMulExpr(Operands); 3065 } 3066 } 3067 } 3068 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3069 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3070 SmallVector<const SCEV *, 4> Operands; 3071 for (const SCEV *Op : A->operands()) 3072 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3073 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3074 Operands.clear(); 3075 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3076 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3077 if (isa<SCEVUDivExpr>(Op) || 3078 getMulExpr(Op, RHS) != A->getOperand(i)) 3079 break; 3080 Operands.push_back(Op); 3081 } 3082 if (Operands.size() == A->getNumOperands()) 3083 return getAddExpr(Operands); 3084 } 3085 } 3086 3087 // Fold if both operands are constant. 3088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3089 Constant *LHSCV = LHSC->getValue(); 3090 Constant *RHSCV = RHSC->getValue(); 3091 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3092 RHSCV))); 3093 } 3094 } 3095 } 3096 3097 FoldingSetNodeID ID; 3098 ID.AddInteger(scUDivExpr); 3099 ID.AddPointer(LHS); 3100 ID.AddPointer(RHS); 3101 void *IP = nullptr; 3102 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3103 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3104 LHS, RHS); 3105 UniqueSCEVs.InsertNode(S, IP); 3106 addToLoopUseLists(S); 3107 return S; 3108 } 3109 3110 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3111 APInt A = C1->getAPInt().abs(); 3112 APInt B = C2->getAPInt().abs(); 3113 uint32_t ABW = A.getBitWidth(); 3114 uint32_t BBW = B.getBitWidth(); 3115 3116 if (ABW > BBW) 3117 B = B.zext(ABW); 3118 else if (ABW < BBW) 3119 A = A.zext(BBW); 3120 3121 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3122 } 3123 3124 /// Get a canonical unsigned division expression, or something simpler if 3125 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3126 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3127 /// it's not exact because the udiv may be clearing bits. 3128 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3129 const SCEV *RHS) { 3130 // TODO: we could try to find factors in all sorts of things, but for now we 3131 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3132 // end of this file for inspiration. 3133 3134 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3135 if (!Mul || !Mul->hasNoUnsignedWrap()) 3136 return getUDivExpr(LHS, RHS); 3137 3138 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3139 // If the mulexpr multiplies by a constant, then that constant must be the 3140 // first element of the mulexpr. 3141 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3142 if (LHSCst == RHSCst) { 3143 SmallVector<const SCEV *, 2> Operands; 3144 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3145 return getMulExpr(Operands); 3146 } 3147 3148 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3149 // that there's a factor provided by one of the other terms. We need to 3150 // check. 3151 APInt Factor = gcd(LHSCst, RHSCst); 3152 if (!Factor.isIntN(1)) { 3153 LHSCst = 3154 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3155 RHSCst = 3156 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3157 SmallVector<const SCEV *, 2> Operands; 3158 Operands.push_back(LHSCst); 3159 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3160 LHS = getMulExpr(Operands); 3161 RHS = RHSCst; 3162 Mul = dyn_cast<SCEVMulExpr>(LHS); 3163 if (!Mul) 3164 return getUDivExactExpr(LHS, RHS); 3165 } 3166 } 3167 } 3168 3169 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3170 if (Mul->getOperand(i) == RHS) { 3171 SmallVector<const SCEV *, 2> Operands; 3172 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3173 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3174 return getMulExpr(Operands); 3175 } 3176 } 3177 3178 return getUDivExpr(LHS, RHS); 3179 } 3180 3181 /// Get an add recurrence expression for the specified loop. Simplify the 3182 /// expression as much as possible. 3183 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3184 const Loop *L, 3185 SCEV::NoWrapFlags Flags) { 3186 SmallVector<const SCEV *, 4> Operands; 3187 Operands.push_back(Start); 3188 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3189 if (StepChrec->getLoop() == L) { 3190 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3191 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3192 } 3193 3194 Operands.push_back(Step); 3195 return getAddRecExpr(Operands, L, Flags); 3196 } 3197 3198 /// Get an add recurrence expression for the specified loop. Simplify the 3199 /// expression as much as possible. 3200 const SCEV * 3201 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3202 const Loop *L, SCEV::NoWrapFlags Flags) { 3203 if (Operands.size() == 1) return Operands[0]; 3204 #ifndef NDEBUG 3205 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3206 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3207 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3208 "SCEVAddRecExpr operand types don't match!"); 3209 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3210 assert(isLoopInvariant(Operands[i], L) && 3211 "SCEVAddRecExpr operand is not loop-invariant!"); 3212 #endif 3213 3214 if (Operands.back()->isZero()) { 3215 Operands.pop_back(); 3216 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3217 } 3218 3219 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3220 // use that information to infer NUW and NSW flags. However, computing a 3221 // BE count requires calling getAddRecExpr, so we may not yet have a 3222 // meaningful BE count at this point (and if we don't, we'd be stuck 3223 // with a SCEVCouldNotCompute as the cached BE count). 3224 3225 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3226 3227 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3228 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3229 const Loop *NestedLoop = NestedAR->getLoop(); 3230 if (L->contains(NestedLoop) 3231 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3232 : (!NestedLoop->contains(L) && 3233 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3234 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3235 NestedAR->op_end()); 3236 Operands[0] = NestedAR->getStart(); 3237 // AddRecs require their operands be loop-invariant with respect to their 3238 // loops. Don't perform this transformation if it would break this 3239 // requirement. 3240 bool AllInvariant = all_of( 3241 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3242 3243 if (AllInvariant) { 3244 // Create a recurrence for the outer loop with the same step size. 3245 // 3246 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3247 // inner recurrence has the same property. 3248 SCEV::NoWrapFlags OuterFlags = 3249 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3250 3251 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3252 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3253 return isLoopInvariant(Op, NestedLoop); 3254 }); 3255 3256 if (AllInvariant) { 3257 // Ok, both add recurrences are valid after the transformation. 3258 // 3259 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3260 // the outer recurrence has the same property. 3261 SCEV::NoWrapFlags InnerFlags = 3262 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3263 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3264 } 3265 } 3266 // Reset Operands to its original state. 3267 Operands[0] = NestedAR; 3268 } 3269 } 3270 3271 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3272 // already have one, otherwise create a new one. 3273 FoldingSetNodeID ID; 3274 ID.AddInteger(scAddRecExpr); 3275 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3276 ID.AddPointer(Operands[i]); 3277 ID.AddPointer(L); 3278 void *IP = nullptr; 3279 SCEVAddRecExpr *S = 3280 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3281 if (!S) { 3282 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3283 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3284 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3285 O, Operands.size(), L); 3286 UniqueSCEVs.InsertNode(S, IP); 3287 addToLoopUseLists(S); 3288 } 3289 S->setNoWrapFlags(Flags); 3290 return S; 3291 } 3292 3293 const SCEV * 3294 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3295 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3296 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3297 // getSCEV(Base)->getType() has the same address space as Base->getType() 3298 // because SCEV::getType() preserves the address space. 3299 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3300 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3301 // instruction to its SCEV, because the Instruction may be guarded by control 3302 // flow and the no-overflow bits may not be valid for the expression in any 3303 // context. This can be fixed similarly to how these flags are handled for 3304 // adds. 3305 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3306 : SCEV::FlagAnyWrap; 3307 3308 const SCEV *TotalOffset = getZero(IntPtrTy); 3309 // The array size is unimportant. The first thing we do on CurTy is getting 3310 // its element type. 3311 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3312 for (const SCEV *IndexExpr : IndexExprs) { 3313 // Compute the (potentially symbolic) offset in bytes for this index. 3314 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3315 // For a struct, add the member offset. 3316 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3317 unsigned FieldNo = Index->getZExtValue(); 3318 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3319 3320 // Add the field offset to the running total offset. 3321 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3322 3323 // Update CurTy to the type of the field at Index. 3324 CurTy = STy->getTypeAtIndex(Index); 3325 } else { 3326 // Update CurTy to its element type. 3327 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3328 // For an array, add the element offset, explicitly scaled. 3329 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3330 // Getelementptr indices are signed. 3331 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3332 3333 // Multiply the index by the element size to compute the element offset. 3334 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3335 3336 // Add the element offset to the running total offset. 3337 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3338 } 3339 } 3340 3341 // Add the total offset from all the GEP indices to the base. 3342 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3343 } 3344 3345 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3346 const SCEV *RHS) { 3347 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3348 return getSMaxExpr(Ops); 3349 } 3350 3351 const SCEV * 3352 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3353 assert(!Ops.empty() && "Cannot get empty smax!"); 3354 if (Ops.size() == 1) return Ops[0]; 3355 #ifndef NDEBUG 3356 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3357 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3358 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3359 "SCEVSMaxExpr operand types don't match!"); 3360 #endif 3361 3362 // Sort by complexity, this groups all similar expression types together. 3363 GroupByComplexity(Ops, &LI, DT); 3364 3365 // If there are any constants, fold them together. 3366 unsigned Idx = 0; 3367 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3368 ++Idx; 3369 assert(Idx < Ops.size()); 3370 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3371 // We found two constants, fold them together! 3372 ConstantInt *Fold = ConstantInt::get( 3373 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3374 Ops[0] = getConstant(Fold); 3375 Ops.erase(Ops.begin()+1); // Erase the folded element 3376 if (Ops.size() == 1) return Ops[0]; 3377 LHSC = cast<SCEVConstant>(Ops[0]); 3378 } 3379 3380 // If we are left with a constant minimum-int, strip it off. 3381 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3382 Ops.erase(Ops.begin()); 3383 --Idx; 3384 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3385 // If we have an smax with a constant maximum-int, it will always be 3386 // maximum-int. 3387 return Ops[0]; 3388 } 3389 3390 if (Ops.size() == 1) return Ops[0]; 3391 } 3392 3393 // Find the first SMax 3394 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3395 ++Idx; 3396 3397 // Check to see if one of the operands is an SMax. If so, expand its operands 3398 // onto our operand list, and recurse to simplify. 3399 if (Idx < Ops.size()) { 3400 bool DeletedSMax = false; 3401 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3402 Ops.erase(Ops.begin()+Idx); 3403 Ops.append(SMax->op_begin(), SMax->op_end()); 3404 DeletedSMax = true; 3405 } 3406 3407 if (DeletedSMax) 3408 return getSMaxExpr(Ops); 3409 } 3410 3411 // Okay, check to see if the same value occurs in the operand list twice. If 3412 // so, delete one. Since we sorted the list, these values are required to 3413 // be adjacent. 3414 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3415 // X smax Y smax Y --> X smax Y 3416 // X smax Y --> X, if X is always greater than Y 3417 if (Ops[i] == Ops[i+1] || 3418 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3419 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3420 --i; --e; 3421 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3422 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3423 --i; --e; 3424 } 3425 3426 if (Ops.size() == 1) return Ops[0]; 3427 3428 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3429 3430 // Okay, it looks like we really DO need an smax expr. Check to see if we 3431 // already have one, otherwise create a new one. 3432 FoldingSetNodeID ID; 3433 ID.AddInteger(scSMaxExpr); 3434 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3435 ID.AddPointer(Ops[i]); 3436 void *IP = nullptr; 3437 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3438 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3439 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3440 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3441 O, Ops.size()); 3442 UniqueSCEVs.InsertNode(S, IP); 3443 addToLoopUseLists(S); 3444 return S; 3445 } 3446 3447 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3448 const SCEV *RHS) { 3449 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3450 return getUMaxExpr(Ops); 3451 } 3452 3453 const SCEV * 3454 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3455 assert(!Ops.empty() && "Cannot get empty umax!"); 3456 if (Ops.size() == 1) return Ops[0]; 3457 #ifndef NDEBUG 3458 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3459 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3460 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3461 "SCEVUMaxExpr operand types don't match!"); 3462 #endif 3463 3464 // Sort by complexity, this groups all similar expression types together. 3465 GroupByComplexity(Ops, &LI, DT); 3466 3467 // If there are any constants, fold them together. 3468 unsigned Idx = 0; 3469 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3470 ++Idx; 3471 assert(Idx < Ops.size()); 3472 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3473 // We found two constants, fold them together! 3474 ConstantInt *Fold = ConstantInt::get( 3475 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3476 Ops[0] = getConstant(Fold); 3477 Ops.erase(Ops.begin()+1); // Erase the folded element 3478 if (Ops.size() == 1) return Ops[0]; 3479 LHSC = cast<SCEVConstant>(Ops[0]); 3480 } 3481 3482 // If we are left with a constant minimum-int, strip it off. 3483 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3484 Ops.erase(Ops.begin()); 3485 --Idx; 3486 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3487 // If we have an umax with a constant maximum-int, it will always be 3488 // maximum-int. 3489 return Ops[0]; 3490 } 3491 3492 if (Ops.size() == 1) return Ops[0]; 3493 } 3494 3495 // Find the first UMax 3496 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3497 ++Idx; 3498 3499 // Check to see if one of the operands is a UMax. If so, expand its operands 3500 // onto our operand list, and recurse to simplify. 3501 if (Idx < Ops.size()) { 3502 bool DeletedUMax = false; 3503 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3504 Ops.erase(Ops.begin()+Idx); 3505 Ops.append(UMax->op_begin(), UMax->op_end()); 3506 DeletedUMax = true; 3507 } 3508 3509 if (DeletedUMax) 3510 return getUMaxExpr(Ops); 3511 } 3512 3513 // Okay, check to see if the same value occurs in the operand list twice. If 3514 // so, delete one. Since we sorted the list, these values are required to 3515 // be adjacent. 3516 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3517 // X umax Y umax Y --> X umax Y 3518 // X umax Y --> X, if X is always greater than Y 3519 if (Ops[i] == Ops[i+1] || 3520 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3521 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3522 --i; --e; 3523 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3524 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3525 --i; --e; 3526 } 3527 3528 if (Ops.size() == 1) return Ops[0]; 3529 3530 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3531 3532 // Okay, it looks like we really DO need a umax expr. Check to see if we 3533 // already have one, otherwise create a new one. 3534 FoldingSetNodeID ID; 3535 ID.AddInteger(scUMaxExpr); 3536 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3537 ID.AddPointer(Ops[i]); 3538 void *IP = nullptr; 3539 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3540 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3541 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3542 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3543 O, Ops.size()); 3544 UniqueSCEVs.InsertNode(S, IP); 3545 addToLoopUseLists(S); 3546 return S; 3547 } 3548 3549 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3550 const SCEV *RHS) { 3551 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3552 return getSMinExpr(Ops); 3553 } 3554 3555 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3556 // ~smax(~x, ~y, ~z) == smin(x, y, z). 3557 SmallVector<const SCEV *, 2> NotOps; 3558 for (auto *S : Ops) 3559 NotOps.push_back(getNotSCEV(S)); 3560 return getNotSCEV(getSMaxExpr(NotOps)); 3561 } 3562 3563 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3564 const SCEV *RHS) { 3565 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3566 return getUMinExpr(Ops); 3567 } 3568 3569 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3570 assert(!Ops.empty() && "At least one operand must be!"); 3571 // Trivial case. 3572 if (Ops.size() == 1) 3573 return Ops[0]; 3574 3575 // ~umax(~x, ~y, ~z) == umin(x, y, z). 3576 SmallVector<const SCEV *, 2> NotOps; 3577 for (auto *S : Ops) 3578 NotOps.push_back(getNotSCEV(S)); 3579 return getNotSCEV(getUMaxExpr(NotOps)); 3580 } 3581 3582 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3583 // We can bypass creating a target-independent 3584 // constant expression and then folding it back into a ConstantInt. 3585 // This is just a compile-time optimization. 3586 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3587 } 3588 3589 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3590 StructType *STy, 3591 unsigned FieldNo) { 3592 // We can bypass creating a target-independent 3593 // constant expression and then folding it back into a ConstantInt. 3594 // This is just a compile-time optimization. 3595 return getConstant( 3596 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3597 } 3598 3599 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3600 // Don't attempt to do anything other than create a SCEVUnknown object 3601 // here. createSCEV only calls getUnknown after checking for all other 3602 // interesting possibilities, and any other code that calls getUnknown 3603 // is doing so in order to hide a value from SCEV canonicalization. 3604 3605 FoldingSetNodeID ID; 3606 ID.AddInteger(scUnknown); 3607 ID.AddPointer(V); 3608 void *IP = nullptr; 3609 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3610 assert(cast<SCEVUnknown>(S)->getValue() == V && 3611 "Stale SCEVUnknown in uniquing map!"); 3612 return S; 3613 } 3614 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3615 FirstUnknown); 3616 FirstUnknown = cast<SCEVUnknown>(S); 3617 UniqueSCEVs.InsertNode(S, IP); 3618 return S; 3619 } 3620 3621 //===----------------------------------------------------------------------===// 3622 // Basic SCEV Analysis and PHI Idiom Recognition Code 3623 // 3624 3625 /// Test if values of the given type are analyzable within the SCEV 3626 /// framework. This primarily includes integer types, and it can optionally 3627 /// include pointer types if the ScalarEvolution class has access to 3628 /// target-specific information. 3629 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3630 // Integers and pointers are always SCEVable. 3631 return Ty->isIntegerTy() || Ty->isPointerTy(); 3632 } 3633 3634 /// Return the size in bits of the specified type, for which isSCEVable must 3635 /// return true. 3636 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3637 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3638 if (Ty->isPointerTy()) 3639 return getDataLayout().getIndexTypeSizeInBits(Ty); 3640 return getDataLayout().getTypeSizeInBits(Ty); 3641 } 3642 3643 /// Return a type with the same bitwidth as the given type and which represents 3644 /// how SCEV will treat the given type, for which isSCEVable must return 3645 /// true. For pointer types, this is the pointer-sized integer type. 3646 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3647 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3648 3649 if (Ty->isIntegerTy()) 3650 return Ty; 3651 3652 // The only other support type is pointer. 3653 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3654 return getDataLayout().getIntPtrType(Ty); 3655 } 3656 3657 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3658 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3659 } 3660 3661 const SCEV *ScalarEvolution::getCouldNotCompute() { 3662 return CouldNotCompute.get(); 3663 } 3664 3665 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3666 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3667 auto *SU = dyn_cast<SCEVUnknown>(S); 3668 return SU && SU->getValue() == nullptr; 3669 }); 3670 3671 return !ContainsNulls; 3672 } 3673 3674 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3675 HasRecMapType::iterator I = HasRecMap.find(S); 3676 if (I != HasRecMap.end()) 3677 return I->second; 3678 3679 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3680 HasRecMap.insert({S, FoundAddRec}); 3681 return FoundAddRec; 3682 } 3683 3684 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3685 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3686 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3687 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3688 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3689 if (!Add) 3690 return {S, nullptr}; 3691 3692 if (Add->getNumOperands() != 2) 3693 return {S, nullptr}; 3694 3695 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3696 if (!ConstOp) 3697 return {S, nullptr}; 3698 3699 return {Add->getOperand(1), ConstOp->getValue()}; 3700 } 3701 3702 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3703 /// by the value and offset from any ValueOffsetPair in the set. 3704 SetVector<ScalarEvolution::ValueOffsetPair> * 3705 ScalarEvolution::getSCEVValues(const SCEV *S) { 3706 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3707 if (SI == ExprValueMap.end()) 3708 return nullptr; 3709 #ifndef NDEBUG 3710 if (VerifySCEVMap) { 3711 // Check there is no dangling Value in the set returned. 3712 for (const auto &VE : SI->second) 3713 assert(ValueExprMap.count(VE.first)); 3714 } 3715 #endif 3716 return &SI->second; 3717 } 3718 3719 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3720 /// cannot be used separately. eraseValueFromMap should be used to remove 3721 /// V from ValueExprMap and ExprValueMap at the same time. 3722 void ScalarEvolution::eraseValueFromMap(Value *V) { 3723 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3724 if (I != ValueExprMap.end()) { 3725 const SCEV *S = I->second; 3726 // Remove {V, 0} from the set of ExprValueMap[S] 3727 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3728 SV->remove({V, nullptr}); 3729 3730 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3731 const SCEV *Stripped; 3732 ConstantInt *Offset; 3733 std::tie(Stripped, Offset) = splitAddExpr(S); 3734 if (Offset != nullptr) { 3735 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3736 SV->remove({V, Offset}); 3737 } 3738 ValueExprMap.erase(V); 3739 } 3740 } 3741 3742 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3743 /// TODO: In reality it is better to check the poison recursevely 3744 /// but this is better than nothing. 3745 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3746 if (auto *I = dyn_cast<Instruction>(V)) { 3747 if (isa<OverflowingBinaryOperator>(I)) { 3748 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3749 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3750 return true; 3751 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3752 return true; 3753 } 3754 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3755 return true; 3756 } 3757 return false; 3758 } 3759 3760 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3761 /// create a new one. 3762 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3763 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3764 3765 const SCEV *S = getExistingSCEV(V); 3766 if (S == nullptr) { 3767 S = createSCEV(V); 3768 // During PHI resolution, it is possible to create two SCEVs for the same 3769 // V, so it is needed to double check whether V->S is inserted into 3770 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3771 std::pair<ValueExprMapType::iterator, bool> Pair = 3772 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3773 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3774 ExprValueMap[S].insert({V, nullptr}); 3775 3776 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3777 // ExprValueMap. 3778 const SCEV *Stripped = S; 3779 ConstantInt *Offset = nullptr; 3780 std::tie(Stripped, Offset) = splitAddExpr(S); 3781 // If stripped is SCEVUnknown, don't bother to save 3782 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3783 // increase the complexity of the expansion code. 3784 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3785 // because it may generate add/sub instead of GEP in SCEV expansion. 3786 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3787 !isa<GetElementPtrInst>(V)) 3788 ExprValueMap[Stripped].insert({V, Offset}); 3789 } 3790 } 3791 return S; 3792 } 3793 3794 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3795 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3796 3797 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3798 if (I != ValueExprMap.end()) { 3799 const SCEV *S = I->second; 3800 if (checkValidity(S)) 3801 return S; 3802 eraseValueFromMap(V); 3803 forgetMemoizedResults(S); 3804 } 3805 return nullptr; 3806 } 3807 3808 /// Return a SCEV corresponding to -V = -1*V 3809 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3810 SCEV::NoWrapFlags Flags) { 3811 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3812 return getConstant( 3813 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3814 3815 Type *Ty = V->getType(); 3816 Ty = getEffectiveSCEVType(Ty); 3817 return getMulExpr( 3818 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3819 } 3820 3821 /// Return a SCEV corresponding to ~V = -1-V 3822 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3823 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3824 return getConstant( 3825 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3826 3827 Type *Ty = V->getType(); 3828 Ty = getEffectiveSCEVType(Ty); 3829 const SCEV *AllOnes = 3830 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3831 return getMinusSCEV(AllOnes, V); 3832 } 3833 3834 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3835 SCEV::NoWrapFlags Flags, 3836 unsigned Depth) { 3837 // Fast path: X - X --> 0. 3838 if (LHS == RHS) 3839 return getZero(LHS->getType()); 3840 3841 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3842 // makes it so that we cannot make much use of NUW. 3843 auto AddFlags = SCEV::FlagAnyWrap; 3844 const bool RHSIsNotMinSigned = 3845 !getSignedRangeMin(RHS).isMinSignedValue(); 3846 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3847 // Let M be the minimum representable signed value. Then (-1)*RHS 3848 // signed-wraps if and only if RHS is M. That can happen even for 3849 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3850 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3851 // (-1)*RHS, we need to prove that RHS != M. 3852 // 3853 // If LHS is non-negative and we know that LHS - RHS does not 3854 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3855 // either by proving that RHS > M or that LHS >= 0. 3856 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3857 AddFlags = SCEV::FlagNSW; 3858 } 3859 } 3860 3861 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3862 // RHS is NSW and LHS >= 0. 3863 // 3864 // The difficulty here is that the NSW flag may have been proven 3865 // relative to a loop that is to be found in a recurrence in LHS and 3866 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3867 // larger scope than intended. 3868 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3869 3870 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3871 } 3872 3873 const SCEV * 3874 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3875 Type *SrcTy = V->getType(); 3876 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3877 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3878 "Cannot truncate or zero extend with non-integer arguments!"); 3879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3880 return V; // No conversion 3881 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3882 return getTruncateExpr(V, Ty); 3883 return getZeroExtendExpr(V, Ty); 3884 } 3885 3886 const SCEV * 3887 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3888 Type *Ty) { 3889 Type *SrcTy = V->getType(); 3890 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3891 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3892 "Cannot truncate or zero extend with non-integer arguments!"); 3893 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3894 return V; // No conversion 3895 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3896 return getTruncateExpr(V, Ty); 3897 return getSignExtendExpr(V, Ty); 3898 } 3899 3900 const SCEV * 3901 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3902 Type *SrcTy = V->getType(); 3903 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3904 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3905 "Cannot noop or zero extend with non-integer arguments!"); 3906 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3907 "getNoopOrZeroExtend cannot truncate!"); 3908 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3909 return V; // No conversion 3910 return getZeroExtendExpr(V, Ty); 3911 } 3912 3913 const SCEV * 3914 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3915 Type *SrcTy = V->getType(); 3916 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3917 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3918 "Cannot noop or sign extend with non-integer arguments!"); 3919 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3920 "getNoopOrSignExtend cannot truncate!"); 3921 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3922 return V; // No conversion 3923 return getSignExtendExpr(V, Ty); 3924 } 3925 3926 const SCEV * 3927 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3928 Type *SrcTy = V->getType(); 3929 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3930 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3931 "Cannot noop or any extend with non-integer arguments!"); 3932 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3933 "getNoopOrAnyExtend cannot truncate!"); 3934 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3935 return V; // No conversion 3936 return getAnyExtendExpr(V, Ty); 3937 } 3938 3939 const SCEV * 3940 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3941 Type *SrcTy = V->getType(); 3942 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3943 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3944 "Cannot truncate or noop with non-integer arguments!"); 3945 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3946 "getTruncateOrNoop cannot extend!"); 3947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3948 return V; // No conversion 3949 return getTruncateExpr(V, Ty); 3950 } 3951 3952 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3953 const SCEV *RHS) { 3954 const SCEV *PromotedLHS = LHS; 3955 const SCEV *PromotedRHS = RHS; 3956 3957 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3958 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3959 else 3960 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3961 3962 return getUMaxExpr(PromotedLHS, PromotedRHS); 3963 } 3964 3965 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3966 const SCEV *RHS) { 3967 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3968 return getUMinFromMismatchedTypes(Ops); 3969 } 3970 3971 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3972 SmallVectorImpl<const SCEV *> &Ops) { 3973 assert(!Ops.empty() && "At least one operand must be!"); 3974 // Trivial case. 3975 if (Ops.size() == 1) 3976 return Ops[0]; 3977 3978 // Find the max type first. 3979 Type *MaxType = nullptr; 3980 for (auto *S : Ops) 3981 if (MaxType) 3982 MaxType = getWiderType(MaxType, S->getType()); 3983 else 3984 MaxType = S->getType(); 3985 3986 // Extend all ops to max type. 3987 SmallVector<const SCEV *, 2> PromotedOps; 3988 for (auto *S : Ops) 3989 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3990 3991 // Generate umin. 3992 return getUMinExpr(PromotedOps); 3993 } 3994 3995 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3996 // A pointer operand may evaluate to a nonpointer expression, such as null. 3997 if (!V->getType()->isPointerTy()) 3998 return V; 3999 4000 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4001 return getPointerBase(Cast->getOperand()); 4002 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4003 const SCEV *PtrOp = nullptr; 4004 for (const SCEV *NAryOp : NAry->operands()) { 4005 if (NAryOp->getType()->isPointerTy()) { 4006 // Cannot find the base of an expression with multiple pointer operands. 4007 if (PtrOp) 4008 return V; 4009 PtrOp = NAryOp; 4010 } 4011 } 4012 if (!PtrOp) 4013 return V; 4014 return getPointerBase(PtrOp); 4015 } 4016 return V; 4017 } 4018 4019 /// Push users of the given Instruction onto the given Worklist. 4020 static void 4021 PushDefUseChildren(Instruction *I, 4022 SmallVectorImpl<Instruction *> &Worklist) { 4023 // Push the def-use children onto the Worklist stack. 4024 for (User *U : I->users()) 4025 Worklist.push_back(cast<Instruction>(U)); 4026 } 4027 4028 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4029 SmallVector<Instruction *, 16> Worklist; 4030 PushDefUseChildren(PN, Worklist); 4031 4032 SmallPtrSet<Instruction *, 8> Visited; 4033 Visited.insert(PN); 4034 while (!Worklist.empty()) { 4035 Instruction *I = Worklist.pop_back_val(); 4036 if (!Visited.insert(I).second) 4037 continue; 4038 4039 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4040 if (It != ValueExprMap.end()) { 4041 const SCEV *Old = It->second; 4042 4043 // Short-circuit the def-use traversal if the symbolic name 4044 // ceases to appear in expressions. 4045 if (Old != SymName && !hasOperand(Old, SymName)) 4046 continue; 4047 4048 // SCEVUnknown for a PHI either means that it has an unrecognized 4049 // structure, it's a PHI that's in the progress of being computed 4050 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4051 // additional loop trip count information isn't going to change anything. 4052 // In the second case, createNodeForPHI will perform the necessary 4053 // updates on its own when it gets to that point. In the third, we do 4054 // want to forget the SCEVUnknown. 4055 if (!isa<PHINode>(I) || 4056 !isa<SCEVUnknown>(Old) || 4057 (I != PN && Old == SymName)) { 4058 eraseValueFromMap(It->first); 4059 forgetMemoizedResults(Old); 4060 } 4061 } 4062 4063 PushDefUseChildren(I, Worklist); 4064 } 4065 } 4066 4067 namespace { 4068 4069 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4070 /// expression in case its Loop is L. If it is not L then 4071 /// if IgnoreOtherLoops is true then use AddRec itself 4072 /// otherwise rewrite cannot be done. 4073 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4074 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4075 public: 4076 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4077 bool IgnoreOtherLoops = true) { 4078 SCEVInitRewriter Rewriter(L, SE); 4079 const SCEV *Result = Rewriter.visit(S); 4080 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4081 return SE.getCouldNotCompute(); 4082 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4083 ? SE.getCouldNotCompute() 4084 : Result; 4085 } 4086 4087 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4088 if (!SE.isLoopInvariant(Expr, L)) 4089 SeenLoopVariantSCEVUnknown = true; 4090 return Expr; 4091 } 4092 4093 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4094 // Only re-write AddRecExprs for this loop. 4095 if (Expr->getLoop() == L) 4096 return Expr->getStart(); 4097 SeenOtherLoops = true; 4098 return Expr; 4099 } 4100 4101 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4102 4103 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4104 4105 private: 4106 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4107 : SCEVRewriteVisitor(SE), L(L) {} 4108 4109 const Loop *L; 4110 bool SeenLoopVariantSCEVUnknown = false; 4111 bool SeenOtherLoops = false; 4112 }; 4113 4114 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4115 /// increment expression in case its Loop is L. If it is not L then 4116 /// use AddRec itself. 4117 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4118 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4119 public: 4120 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4121 SCEVPostIncRewriter Rewriter(L, SE); 4122 const SCEV *Result = Rewriter.visit(S); 4123 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4124 ? SE.getCouldNotCompute() 4125 : Result; 4126 } 4127 4128 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4129 if (!SE.isLoopInvariant(Expr, L)) 4130 SeenLoopVariantSCEVUnknown = true; 4131 return Expr; 4132 } 4133 4134 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4135 // Only re-write AddRecExprs for this loop. 4136 if (Expr->getLoop() == L) 4137 return Expr->getPostIncExpr(SE); 4138 SeenOtherLoops = true; 4139 return Expr; 4140 } 4141 4142 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4143 4144 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4145 4146 private: 4147 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4148 : SCEVRewriteVisitor(SE), L(L) {} 4149 4150 const Loop *L; 4151 bool SeenLoopVariantSCEVUnknown = false; 4152 bool SeenOtherLoops = false; 4153 }; 4154 4155 /// This class evaluates the compare condition by matching it against the 4156 /// condition of loop latch. If there is a match we assume a true value 4157 /// for the condition while building SCEV nodes. 4158 class SCEVBackedgeConditionFolder 4159 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4160 public: 4161 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4162 ScalarEvolution &SE) { 4163 bool IsPosBECond = false; 4164 Value *BECond = nullptr; 4165 if (BasicBlock *Latch = L->getLoopLatch()) { 4166 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4167 if (BI && BI->isConditional()) { 4168 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4169 "Both outgoing branches should not target same header!"); 4170 BECond = BI->getCondition(); 4171 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4172 } else { 4173 return S; 4174 } 4175 } 4176 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4177 return Rewriter.visit(S); 4178 } 4179 4180 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4181 const SCEV *Result = Expr; 4182 bool InvariantF = SE.isLoopInvariant(Expr, L); 4183 4184 if (!InvariantF) { 4185 Instruction *I = cast<Instruction>(Expr->getValue()); 4186 switch (I->getOpcode()) { 4187 case Instruction::Select: { 4188 SelectInst *SI = cast<SelectInst>(I); 4189 Optional<const SCEV *> Res = 4190 compareWithBackedgeCondition(SI->getCondition()); 4191 if (Res.hasValue()) { 4192 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4193 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4194 } 4195 break; 4196 } 4197 default: { 4198 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4199 if (Res.hasValue()) 4200 Result = Res.getValue(); 4201 break; 4202 } 4203 } 4204 } 4205 return Result; 4206 } 4207 4208 private: 4209 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4210 bool IsPosBECond, ScalarEvolution &SE) 4211 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4212 IsPositiveBECond(IsPosBECond) {} 4213 4214 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4215 4216 const Loop *L; 4217 /// Loop back condition. 4218 Value *BackedgeCond = nullptr; 4219 /// Set to true if loop back is on positive branch condition. 4220 bool IsPositiveBECond; 4221 }; 4222 4223 Optional<const SCEV *> 4224 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4225 4226 // If value matches the backedge condition for loop latch, 4227 // then return a constant evolution node based on loopback 4228 // branch taken. 4229 if (BackedgeCond == IC) 4230 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4231 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4232 return None; 4233 } 4234 4235 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4236 public: 4237 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4238 ScalarEvolution &SE) { 4239 SCEVShiftRewriter Rewriter(L, SE); 4240 const SCEV *Result = Rewriter.visit(S); 4241 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4242 } 4243 4244 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4245 // Only allow AddRecExprs for this loop. 4246 if (!SE.isLoopInvariant(Expr, L)) 4247 Valid = false; 4248 return Expr; 4249 } 4250 4251 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4252 if (Expr->getLoop() == L && Expr->isAffine()) 4253 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4254 Valid = false; 4255 return Expr; 4256 } 4257 4258 bool isValid() { return Valid; } 4259 4260 private: 4261 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4262 : SCEVRewriteVisitor(SE), L(L) {} 4263 4264 const Loop *L; 4265 bool Valid = true; 4266 }; 4267 4268 } // end anonymous namespace 4269 4270 SCEV::NoWrapFlags 4271 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4272 if (!AR->isAffine()) 4273 return SCEV::FlagAnyWrap; 4274 4275 using OBO = OverflowingBinaryOperator; 4276 4277 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4278 4279 if (!AR->hasNoSignedWrap()) { 4280 ConstantRange AddRecRange = getSignedRange(AR); 4281 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4282 4283 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4284 Instruction::Add, IncRange, OBO::NoSignedWrap); 4285 if (NSWRegion.contains(AddRecRange)) 4286 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4287 } 4288 4289 if (!AR->hasNoUnsignedWrap()) { 4290 ConstantRange AddRecRange = getUnsignedRange(AR); 4291 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4292 4293 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4294 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4295 if (NUWRegion.contains(AddRecRange)) 4296 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4297 } 4298 4299 return Result; 4300 } 4301 4302 namespace { 4303 4304 /// Represents an abstract binary operation. This may exist as a 4305 /// normal instruction or constant expression, or may have been 4306 /// derived from an expression tree. 4307 struct BinaryOp { 4308 unsigned Opcode; 4309 Value *LHS; 4310 Value *RHS; 4311 bool IsNSW = false; 4312 bool IsNUW = false; 4313 4314 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4315 /// constant expression. 4316 Operator *Op = nullptr; 4317 4318 explicit BinaryOp(Operator *Op) 4319 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4320 Op(Op) { 4321 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4322 IsNSW = OBO->hasNoSignedWrap(); 4323 IsNUW = OBO->hasNoUnsignedWrap(); 4324 } 4325 } 4326 4327 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4328 bool IsNUW = false) 4329 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4330 }; 4331 4332 } // end anonymous namespace 4333 4334 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4335 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4336 auto *Op = dyn_cast<Operator>(V); 4337 if (!Op) 4338 return None; 4339 4340 // Implementation detail: all the cleverness here should happen without 4341 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4342 // SCEV expressions when possible, and we should not break that. 4343 4344 switch (Op->getOpcode()) { 4345 case Instruction::Add: 4346 case Instruction::Sub: 4347 case Instruction::Mul: 4348 case Instruction::UDiv: 4349 case Instruction::URem: 4350 case Instruction::And: 4351 case Instruction::Or: 4352 case Instruction::AShr: 4353 case Instruction::Shl: 4354 return BinaryOp(Op); 4355 4356 case Instruction::Xor: 4357 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4358 // If the RHS of the xor is a signmask, then this is just an add. 4359 // Instcombine turns add of signmask into xor as a strength reduction step. 4360 if (RHSC->getValue().isSignMask()) 4361 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4362 return BinaryOp(Op); 4363 4364 case Instruction::LShr: 4365 // Turn logical shift right of a constant into a unsigned divide. 4366 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4367 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4368 4369 // If the shift count is not less than the bitwidth, the result of 4370 // the shift is undefined. Don't try to analyze it, because the 4371 // resolution chosen here may differ from the resolution chosen in 4372 // other parts of the compiler. 4373 if (SA->getValue().ult(BitWidth)) { 4374 Constant *X = 4375 ConstantInt::get(SA->getContext(), 4376 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4377 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4378 } 4379 } 4380 return BinaryOp(Op); 4381 4382 case Instruction::ExtractValue: { 4383 auto *EVI = cast<ExtractValueInst>(Op); 4384 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4385 break; 4386 4387 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4388 if (!CI) 4389 break; 4390 4391 if (auto *F = CI->getCalledFunction()) 4392 switch (F->getIntrinsicID()) { 4393 case Intrinsic::sadd_with_overflow: 4394 case Intrinsic::uadd_with_overflow: 4395 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4396 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4397 CI->getArgOperand(1)); 4398 4399 // Now that we know that all uses of the arithmetic-result component of 4400 // CI are guarded by the overflow check, we can go ahead and pretend 4401 // that the arithmetic is non-overflowing. 4402 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4403 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4404 CI->getArgOperand(1), /* IsNSW = */ true, 4405 /* IsNUW = */ false); 4406 else 4407 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4408 CI->getArgOperand(1), /* IsNSW = */ false, 4409 /* IsNUW*/ true); 4410 case Intrinsic::ssub_with_overflow: 4411 case Intrinsic::usub_with_overflow: 4412 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4413 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4414 CI->getArgOperand(1)); 4415 4416 // The same reasoning as sadd/uadd above. 4417 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) 4418 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4419 CI->getArgOperand(1), /* IsNSW = */ true, 4420 /* IsNUW = */ false); 4421 else 4422 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4423 CI->getArgOperand(1), /* IsNSW = */ false, 4424 /* IsNUW = */ true); 4425 case Intrinsic::smul_with_overflow: 4426 case Intrinsic::umul_with_overflow: 4427 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4428 CI->getArgOperand(1)); 4429 default: 4430 break; 4431 } 4432 break; 4433 } 4434 4435 default: 4436 break; 4437 } 4438 4439 return None; 4440 } 4441 4442 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4443 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4444 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4445 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4446 /// follows one of the following patterns: 4447 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4448 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4449 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4450 /// we return the type of the truncation operation, and indicate whether the 4451 /// truncated type should be treated as signed/unsigned by setting 4452 /// \p Signed to true/false, respectively. 4453 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4454 bool &Signed, ScalarEvolution &SE) { 4455 // The case where Op == SymbolicPHI (that is, with no type conversions on 4456 // the way) is handled by the regular add recurrence creating logic and 4457 // would have already been triggered in createAddRecForPHI. Reaching it here 4458 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4459 // because one of the other operands of the SCEVAddExpr updating this PHI is 4460 // not invariant). 4461 // 4462 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4463 // this case predicates that allow us to prove that Op == SymbolicPHI will 4464 // be added. 4465 if (Op == SymbolicPHI) 4466 return nullptr; 4467 4468 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4469 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4470 if (SourceBits != NewBits) 4471 return nullptr; 4472 4473 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4474 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4475 if (!SExt && !ZExt) 4476 return nullptr; 4477 const SCEVTruncateExpr *Trunc = 4478 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4479 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4480 if (!Trunc) 4481 return nullptr; 4482 const SCEV *X = Trunc->getOperand(); 4483 if (X != SymbolicPHI) 4484 return nullptr; 4485 Signed = SExt != nullptr; 4486 return Trunc->getType(); 4487 } 4488 4489 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4490 if (!PN->getType()->isIntegerTy()) 4491 return nullptr; 4492 const Loop *L = LI.getLoopFor(PN->getParent()); 4493 if (!L || L->getHeader() != PN->getParent()) 4494 return nullptr; 4495 return L; 4496 } 4497 4498 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4499 // computation that updates the phi follows the following pattern: 4500 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4501 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4502 // If so, try to see if it can be rewritten as an AddRecExpr under some 4503 // Predicates. If successful, return them as a pair. Also cache the results 4504 // of the analysis. 4505 // 4506 // Example usage scenario: 4507 // Say the Rewriter is called for the following SCEV: 4508 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4509 // where: 4510 // %X = phi i64 (%Start, %BEValue) 4511 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4512 // and call this function with %SymbolicPHI = %X. 4513 // 4514 // The analysis will find that the value coming around the backedge has 4515 // the following SCEV: 4516 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4517 // Upon concluding that this matches the desired pattern, the function 4518 // will return the pair {NewAddRec, SmallPredsVec} where: 4519 // NewAddRec = {%Start,+,%Step} 4520 // SmallPredsVec = {P1, P2, P3} as follows: 4521 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4522 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4523 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4524 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4525 // under the predicates {P1,P2,P3}. 4526 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4527 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4528 // 4529 // TODO's: 4530 // 4531 // 1) Extend the Induction descriptor to also support inductions that involve 4532 // casts: When needed (namely, when we are called in the context of the 4533 // vectorizer induction analysis), a Set of cast instructions will be 4534 // populated by this method, and provided back to isInductionPHI. This is 4535 // needed to allow the vectorizer to properly record them to be ignored by 4536 // the cost model and to avoid vectorizing them (otherwise these casts, 4537 // which are redundant under the runtime overflow checks, will be 4538 // vectorized, which can be costly). 4539 // 4540 // 2) Support additional induction/PHISCEV patterns: We also want to support 4541 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4542 // after the induction update operation (the induction increment): 4543 // 4544 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4545 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4546 // 4547 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4548 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4549 // 4550 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4551 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4552 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4553 SmallVector<const SCEVPredicate *, 3> Predicates; 4554 4555 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4556 // return an AddRec expression under some predicate. 4557 4558 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4559 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4560 assert(L && "Expecting an integer loop header phi"); 4561 4562 // The loop may have multiple entrances or multiple exits; we can analyze 4563 // this phi as an addrec if it has a unique entry value and a unique 4564 // backedge value. 4565 Value *BEValueV = nullptr, *StartValueV = nullptr; 4566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4567 Value *V = PN->getIncomingValue(i); 4568 if (L->contains(PN->getIncomingBlock(i))) { 4569 if (!BEValueV) { 4570 BEValueV = V; 4571 } else if (BEValueV != V) { 4572 BEValueV = nullptr; 4573 break; 4574 } 4575 } else if (!StartValueV) { 4576 StartValueV = V; 4577 } else if (StartValueV != V) { 4578 StartValueV = nullptr; 4579 break; 4580 } 4581 } 4582 if (!BEValueV || !StartValueV) 4583 return None; 4584 4585 const SCEV *BEValue = getSCEV(BEValueV); 4586 4587 // If the value coming around the backedge is an add with the symbolic 4588 // value we just inserted, possibly with casts that we can ignore under 4589 // an appropriate runtime guard, then we found a simple induction variable! 4590 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4591 if (!Add) 4592 return None; 4593 4594 // If there is a single occurrence of the symbolic value, possibly 4595 // casted, replace it with a recurrence. 4596 unsigned FoundIndex = Add->getNumOperands(); 4597 Type *TruncTy = nullptr; 4598 bool Signed; 4599 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4600 if ((TruncTy = 4601 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4602 if (FoundIndex == e) { 4603 FoundIndex = i; 4604 break; 4605 } 4606 4607 if (FoundIndex == Add->getNumOperands()) 4608 return None; 4609 4610 // Create an add with everything but the specified operand. 4611 SmallVector<const SCEV *, 8> Ops; 4612 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4613 if (i != FoundIndex) 4614 Ops.push_back(Add->getOperand(i)); 4615 const SCEV *Accum = getAddExpr(Ops); 4616 4617 // The runtime checks will not be valid if the step amount is 4618 // varying inside the loop. 4619 if (!isLoopInvariant(Accum, L)) 4620 return None; 4621 4622 // *** Part2: Create the predicates 4623 4624 // Analysis was successful: we have a phi-with-cast pattern for which we 4625 // can return an AddRec expression under the following predicates: 4626 // 4627 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4628 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4629 // P2: An Equal predicate that guarantees that 4630 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4631 // P3: An Equal predicate that guarantees that 4632 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4633 // 4634 // As we next prove, the above predicates guarantee that: 4635 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4636 // 4637 // 4638 // More formally, we want to prove that: 4639 // Expr(i+1) = Start + (i+1) * Accum 4640 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4641 // 4642 // Given that: 4643 // 1) Expr(0) = Start 4644 // 2) Expr(1) = Start + Accum 4645 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4646 // 3) Induction hypothesis (step i): 4647 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4648 // 4649 // Proof: 4650 // Expr(i+1) = 4651 // = Start + (i+1)*Accum 4652 // = (Start + i*Accum) + Accum 4653 // = Expr(i) + Accum 4654 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4655 // :: from step i 4656 // 4657 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4658 // 4659 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4660 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4661 // + Accum :: from P3 4662 // 4663 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4664 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4665 // 4666 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4667 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4668 // 4669 // By induction, the same applies to all iterations 1<=i<n: 4670 // 4671 4672 // Create a truncated addrec for which we will add a no overflow check (P1). 4673 const SCEV *StartVal = getSCEV(StartValueV); 4674 const SCEV *PHISCEV = 4675 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4676 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4677 4678 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4679 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4680 // will be constant. 4681 // 4682 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4683 // add P1. 4684 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4685 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4686 Signed ? SCEVWrapPredicate::IncrementNSSW 4687 : SCEVWrapPredicate::IncrementNUSW; 4688 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4689 Predicates.push_back(AddRecPred); 4690 } 4691 4692 // Create the Equal Predicates P2,P3: 4693 4694 // It is possible that the predicates P2 and/or P3 are computable at 4695 // compile time due to StartVal and/or Accum being constants. 4696 // If either one is, then we can check that now and escape if either P2 4697 // or P3 is false. 4698 4699 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4700 // for each of StartVal and Accum 4701 auto getExtendedExpr = [&](const SCEV *Expr, 4702 bool CreateSignExtend) -> const SCEV * { 4703 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4704 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4705 const SCEV *ExtendedExpr = 4706 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4707 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4708 return ExtendedExpr; 4709 }; 4710 4711 // Given: 4712 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4713 // = getExtendedExpr(Expr) 4714 // Determine whether the predicate P: Expr == ExtendedExpr 4715 // is known to be false at compile time 4716 auto PredIsKnownFalse = [&](const SCEV *Expr, 4717 const SCEV *ExtendedExpr) -> bool { 4718 return Expr != ExtendedExpr && 4719 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4720 }; 4721 4722 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4723 if (PredIsKnownFalse(StartVal, StartExtended)) { 4724 DEBUG(dbgs() << "P2 is compile-time false\n";); 4725 return None; 4726 } 4727 4728 // The Step is always Signed (because the overflow checks are either 4729 // NSSW or NUSW) 4730 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4731 if (PredIsKnownFalse(Accum, AccumExtended)) { 4732 DEBUG(dbgs() << "P3 is compile-time false\n";); 4733 return None; 4734 } 4735 4736 auto AppendPredicate = [&](const SCEV *Expr, 4737 const SCEV *ExtendedExpr) -> void { 4738 if (Expr != ExtendedExpr && 4739 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4740 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4741 DEBUG (dbgs() << "Added Predicate: " << *Pred); 4742 Predicates.push_back(Pred); 4743 } 4744 }; 4745 4746 AppendPredicate(StartVal, StartExtended); 4747 AppendPredicate(Accum, AccumExtended); 4748 4749 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4750 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4751 // into NewAR if it will also add the runtime overflow checks specified in 4752 // Predicates. 4753 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4754 4755 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4756 std::make_pair(NewAR, Predicates); 4757 // Remember the result of the analysis for this SCEV at this locayyytion. 4758 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4759 return PredRewrite; 4760 } 4761 4762 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4763 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4764 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4765 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4766 if (!L) 4767 return None; 4768 4769 // Check to see if we already analyzed this PHI. 4770 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4771 if (I != PredicatedSCEVRewrites.end()) { 4772 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4773 I->second; 4774 // Analysis was done before and failed to create an AddRec: 4775 if (Rewrite.first == SymbolicPHI) 4776 return None; 4777 // Analysis was done before and succeeded to create an AddRec under 4778 // a predicate: 4779 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4780 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4781 return Rewrite; 4782 } 4783 4784 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4785 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4786 4787 // Record in the cache that the analysis failed 4788 if (!Rewrite) { 4789 SmallVector<const SCEVPredicate *, 3> Predicates; 4790 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4791 return None; 4792 } 4793 4794 return Rewrite; 4795 } 4796 4797 // FIXME: This utility is currently required because the Rewriter currently 4798 // does not rewrite this expression: 4799 // {0, +, (sext ix (trunc iy to ix) to iy)} 4800 // into {0, +, %step}, 4801 // even when the following Equal predicate exists: 4802 // "%step == (sext ix (trunc iy to ix) to iy)". 4803 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4804 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4805 if (AR1 == AR2) 4806 return true; 4807 4808 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4809 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4810 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4811 return false; 4812 return true; 4813 }; 4814 4815 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4816 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4817 return false; 4818 return true; 4819 } 4820 4821 /// A helper function for createAddRecFromPHI to handle simple cases. 4822 /// 4823 /// This function tries to find an AddRec expression for the simplest (yet most 4824 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4825 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4826 /// technique for finding the AddRec expression. 4827 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4828 Value *BEValueV, 4829 Value *StartValueV) { 4830 const Loop *L = LI.getLoopFor(PN->getParent()); 4831 assert(L && L->getHeader() == PN->getParent()); 4832 assert(BEValueV && StartValueV); 4833 4834 auto BO = MatchBinaryOp(BEValueV, DT); 4835 if (!BO) 4836 return nullptr; 4837 4838 if (BO->Opcode != Instruction::Add) 4839 return nullptr; 4840 4841 const SCEV *Accum = nullptr; 4842 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4843 Accum = getSCEV(BO->RHS); 4844 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4845 Accum = getSCEV(BO->LHS); 4846 4847 if (!Accum) 4848 return nullptr; 4849 4850 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4851 if (BO->IsNUW) 4852 Flags = setFlags(Flags, SCEV::FlagNUW); 4853 if (BO->IsNSW) 4854 Flags = setFlags(Flags, SCEV::FlagNSW); 4855 4856 const SCEV *StartVal = getSCEV(StartValueV); 4857 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4858 4859 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4860 4861 // We can add Flags to the post-inc expression only if we 4862 // know that it is *undefined behavior* for BEValueV to 4863 // overflow. 4864 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4865 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4866 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4867 4868 return PHISCEV; 4869 } 4870 4871 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4872 const Loop *L = LI.getLoopFor(PN->getParent()); 4873 if (!L || L->getHeader() != PN->getParent()) 4874 return nullptr; 4875 4876 // The loop may have multiple entrances or multiple exits; we can analyze 4877 // this phi as an addrec if it has a unique entry value and a unique 4878 // backedge value. 4879 Value *BEValueV = nullptr, *StartValueV = nullptr; 4880 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4881 Value *V = PN->getIncomingValue(i); 4882 if (L->contains(PN->getIncomingBlock(i))) { 4883 if (!BEValueV) { 4884 BEValueV = V; 4885 } else if (BEValueV != V) { 4886 BEValueV = nullptr; 4887 break; 4888 } 4889 } else if (!StartValueV) { 4890 StartValueV = V; 4891 } else if (StartValueV != V) { 4892 StartValueV = nullptr; 4893 break; 4894 } 4895 } 4896 if (!BEValueV || !StartValueV) 4897 return nullptr; 4898 4899 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4900 "PHI node already processed?"); 4901 4902 // First, try to find AddRec expression without creating a fictituos symbolic 4903 // value for PN. 4904 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4905 return S; 4906 4907 // Handle PHI node value symbolically. 4908 const SCEV *SymbolicName = getUnknown(PN); 4909 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4910 4911 // Using this symbolic name for the PHI, analyze the value coming around 4912 // the back-edge. 4913 const SCEV *BEValue = getSCEV(BEValueV); 4914 4915 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4916 // has a special value for the first iteration of the loop. 4917 4918 // If the value coming around the backedge is an add with the symbolic 4919 // value we just inserted, then we found a simple induction variable! 4920 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4921 // If there is a single occurrence of the symbolic value, replace it 4922 // with a recurrence. 4923 unsigned FoundIndex = Add->getNumOperands(); 4924 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4925 if (Add->getOperand(i) == SymbolicName) 4926 if (FoundIndex == e) { 4927 FoundIndex = i; 4928 break; 4929 } 4930 4931 if (FoundIndex != Add->getNumOperands()) { 4932 // Create an add with everything but the specified operand. 4933 SmallVector<const SCEV *, 8> Ops; 4934 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4935 if (i != FoundIndex) 4936 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4937 L, *this)); 4938 const SCEV *Accum = getAddExpr(Ops); 4939 4940 // This is not a valid addrec if the step amount is varying each 4941 // loop iteration, but is not itself an addrec in this loop. 4942 if (isLoopInvariant(Accum, L) || 4943 (isa<SCEVAddRecExpr>(Accum) && 4944 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4945 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4946 4947 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4948 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4949 if (BO->IsNUW) 4950 Flags = setFlags(Flags, SCEV::FlagNUW); 4951 if (BO->IsNSW) 4952 Flags = setFlags(Flags, SCEV::FlagNSW); 4953 } 4954 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4955 // If the increment is an inbounds GEP, then we know the address 4956 // space cannot be wrapped around. We cannot make any guarantee 4957 // about signed or unsigned overflow because pointers are 4958 // unsigned but we may have a negative index from the base 4959 // pointer. We can guarantee that no unsigned wrap occurs if the 4960 // indices form a positive value. 4961 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4962 Flags = setFlags(Flags, SCEV::FlagNW); 4963 4964 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4965 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4966 Flags = setFlags(Flags, SCEV::FlagNUW); 4967 } 4968 4969 // We cannot transfer nuw and nsw flags from subtraction 4970 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4971 // for instance. 4972 } 4973 4974 const SCEV *StartVal = getSCEV(StartValueV); 4975 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4976 4977 // Okay, for the entire analysis of this edge we assumed the PHI 4978 // to be symbolic. We now need to go back and purge all of the 4979 // entries for the scalars that use the symbolic expression. 4980 forgetSymbolicName(PN, SymbolicName); 4981 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4982 4983 // We can add Flags to the post-inc expression only if we 4984 // know that it is *undefined behavior* for BEValueV to 4985 // overflow. 4986 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4987 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4988 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4989 4990 return PHISCEV; 4991 } 4992 } 4993 } else { 4994 // Otherwise, this could be a loop like this: 4995 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4996 // In this case, j = {1,+,1} and BEValue is j. 4997 // Because the other in-value of i (0) fits the evolution of BEValue 4998 // i really is an addrec evolution. 4999 // 5000 // We can generalize this saying that i is the shifted value of BEValue 5001 // by one iteration: 5002 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5003 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5004 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5005 if (Shifted != getCouldNotCompute() && 5006 Start != getCouldNotCompute()) { 5007 const SCEV *StartVal = getSCEV(StartValueV); 5008 if (Start == StartVal) { 5009 // Okay, for the entire analysis of this edge we assumed the PHI 5010 // to be symbolic. We now need to go back and purge all of the 5011 // entries for the scalars that use the symbolic expression. 5012 forgetSymbolicName(PN, SymbolicName); 5013 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5014 return Shifted; 5015 } 5016 } 5017 } 5018 5019 // Remove the temporary PHI node SCEV that has been inserted while intending 5020 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5021 // as it will prevent later (possibly simpler) SCEV expressions to be added 5022 // to the ValueExprMap. 5023 eraseValueFromMap(PN); 5024 5025 return nullptr; 5026 } 5027 5028 // Checks if the SCEV S is available at BB. S is considered available at BB 5029 // if S can be materialized at BB without introducing a fault. 5030 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5031 BasicBlock *BB) { 5032 struct CheckAvailable { 5033 bool TraversalDone = false; 5034 bool Available = true; 5035 5036 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5037 BasicBlock *BB = nullptr; 5038 DominatorTree &DT; 5039 5040 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5041 : L(L), BB(BB), DT(DT) {} 5042 5043 bool setUnavailable() { 5044 TraversalDone = true; 5045 Available = false; 5046 return false; 5047 } 5048 5049 bool follow(const SCEV *S) { 5050 switch (S->getSCEVType()) { 5051 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5052 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5053 // These expressions are available if their operand(s) is/are. 5054 return true; 5055 5056 case scAddRecExpr: { 5057 // We allow add recurrences that are on the loop BB is in, or some 5058 // outer loop. This guarantees availability because the value of the 5059 // add recurrence at BB is simply the "current" value of the induction 5060 // variable. We can relax this in the future; for instance an add 5061 // recurrence on a sibling dominating loop is also available at BB. 5062 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5063 if (L && (ARLoop == L || ARLoop->contains(L))) 5064 return true; 5065 5066 return setUnavailable(); 5067 } 5068 5069 case scUnknown: { 5070 // For SCEVUnknown, we check for simple dominance. 5071 const auto *SU = cast<SCEVUnknown>(S); 5072 Value *V = SU->getValue(); 5073 5074 if (isa<Argument>(V)) 5075 return false; 5076 5077 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5078 return false; 5079 5080 return setUnavailable(); 5081 } 5082 5083 case scUDivExpr: 5084 case scCouldNotCompute: 5085 // We do not try to smart about these at all. 5086 return setUnavailable(); 5087 } 5088 llvm_unreachable("switch should be fully covered!"); 5089 } 5090 5091 bool isDone() { return TraversalDone; } 5092 }; 5093 5094 CheckAvailable CA(L, BB, DT); 5095 SCEVTraversal<CheckAvailable> ST(CA); 5096 5097 ST.visitAll(S); 5098 return CA.Available; 5099 } 5100 5101 // Try to match a control flow sequence that branches out at BI and merges back 5102 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5103 // match. 5104 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5105 Value *&C, Value *&LHS, Value *&RHS) { 5106 C = BI->getCondition(); 5107 5108 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5109 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5110 5111 if (!LeftEdge.isSingleEdge()) 5112 return false; 5113 5114 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5115 5116 Use &LeftUse = Merge->getOperandUse(0); 5117 Use &RightUse = Merge->getOperandUse(1); 5118 5119 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5120 LHS = LeftUse; 5121 RHS = RightUse; 5122 return true; 5123 } 5124 5125 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5126 LHS = RightUse; 5127 RHS = LeftUse; 5128 return true; 5129 } 5130 5131 return false; 5132 } 5133 5134 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5135 auto IsReachable = 5136 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5137 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5138 const Loop *L = LI.getLoopFor(PN->getParent()); 5139 5140 // We don't want to break LCSSA, even in a SCEV expression tree. 5141 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5142 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5143 return nullptr; 5144 5145 // Try to match 5146 // 5147 // br %cond, label %left, label %right 5148 // left: 5149 // br label %merge 5150 // right: 5151 // br label %merge 5152 // merge: 5153 // V = phi [ %x, %left ], [ %y, %right ] 5154 // 5155 // as "select %cond, %x, %y" 5156 5157 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5158 assert(IDom && "At least the entry block should dominate PN"); 5159 5160 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5161 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5162 5163 if (BI && BI->isConditional() && 5164 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5165 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5166 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5167 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5168 } 5169 5170 return nullptr; 5171 } 5172 5173 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5174 if (const SCEV *S = createAddRecFromPHI(PN)) 5175 return S; 5176 5177 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5178 return S; 5179 5180 // If the PHI has a single incoming value, follow that value, unless the 5181 // PHI's incoming blocks are in a different loop, in which case doing so 5182 // risks breaking LCSSA form. Instcombine would normally zap these, but 5183 // it doesn't have DominatorTree information, so it may miss cases. 5184 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5185 if (LI.replacementPreservesLCSSAForm(PN, V)) 5186 return getSCEV(V); 5187 5188 // If it's not a loop phi, we can't handle it yet. 5189 return getUnknown(PN); 5190 } 5191 5192 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5193 Value *Cond, 5194 Value *TrueVal, 5195 Value *FalseVal) { 5196 // Handle "constant" branch or select. This can occur for instance when a 5197 // loop pass transforms an inner loop and moves on to process the outer loop. 5198 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5199 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5200 5201 // Try to match some simple smax or umax patterns. 5202 auto *ICI = dyn_cast<ICmpInst>(Cond); 5203 if (!ICI) 5204 return getUnknown(I); 5205 5206 Value *LHS = ICI->getOperand(0); 5207 Value *RHS = ICI->getOperand(1); 5208 5209 switch (ICI->getPredicate()) { 5210 case ICmpInst::ICMP_SLT: 5211 case ICmpInst::ICMP_SLE: 5212 std::swap(LHS, RHS); 5213 LLVM_FALLTHROUGH; 5214 case ICmpInst::ICMP_SGT: 5215 case ICmpInst::ICMP_SGE: 5216 // a >s b ? a+x : b+x -> smax(a, b)+x 5217 // a >s b ? b+x : a+x -> smin(a, b)+x 5218 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5219 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5220 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5221 const SCEV *LA = getSCEV(TrueVal); 5222 const SCEV *RA = getSCEV(FalseVal); 5223 const SCEV *LDiff = getMinusSCEV(LA, LS); 5224 const SCEV *RDiff = getMinusSCEV(RA, RS); 5225 if (LDiff == RDiff) 5226 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5227 LDiff = getMinusSCEV(LA, RS); 5228 RDiff = getMinusSCEV(RA, LS); 5229 if (LDiff == RDiff) 5230 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5231 } 5232 break; 5233 case ICmpInst::ICMP_ULT: 5234 case ICmpInst::ICMP_ULE: 5235 std::swap(LHS, RHS); 5236 LLVM_FALLTHROUGH; 5237 case ICmpInst::ICMP_UGT: 5238 case ICmpInst::ICMP_UGE: 5239 // a >u b ? a+x : b+x -> umax(a, b)+x 5240 // a >u b ? b+x : a+x -> umin(a, b)+x 5241 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5242 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5243 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5244 const SCEV *LA = getSCEV(TrueVal); 5245 const SCEV *RA = getSCEV(FalseVal); 5246 const SCEV *LDiff = getMinusSCEV(LA, LS); 5247 const SCEV *RDiff = getMinusSCEV(RA, RS); 5248 if (LDiff == RDiff) 5249 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5250 LDiff = getMinusSCEV(LA, RS); 5251 RDiff = getMinusSCEV(RA, LS); 5252 if (LDiff == RDiff) 5253 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5254 } 5255 break; 5256 case ICmpInst::ICMP_NE: 5257 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5258 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5259 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5260 const SCEV *One = getOne(I->getType()); 5261 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5262 const SCEV *LA = getSCEV(TrueVal); 5263 const SCEV *RA = getSCEV(FalseVal); 5264 const SCEV *LDiff = getMinusSCEV(LA, LS); 5265 const SCEV *RDiff = getMinusSCEV(RA, One); 5266 if (LDiff == RDiff) 5267 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5268 } 5269 break; 5270 case ICmpInst::ICMP_EQ: 5271 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5272 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5273 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5274 const SCEV *One = getOne(I->getType()); 5275 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5276 const SCEV *LA = getSCEV(TrueVal); 5277 const SCEV *RA = getSCEV(FalseVal); 5278 const SCEV *LDiff = getMinusSCEV(LA, One); 5279 const SCEV *RDiff = getMinusSCEV(RA, LS); 5280 if (LDiff == RDiff) 5281 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5282 } 5283 break; 5284 default: 5285 break; 5286 } 5287 5288 return getUnknown(I); 5289 } 5290 5291 /// Expand GEP instructions into add and multiply operations. This allows them 5292 /// to be analyzed by regular SCEV code. 5293 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5294 // Don't attempt to analyze GEPs over unsized objects. 5295 if (!GEP->getSourceElementType()->isSized()) 5296 return getUnknown(GEP); 5297 5298 SmallVector<const SCEV *, 4> IndexExprs; 5299 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5300 IndexExprs.push_back(getSCEV(*Index)); 5301 return getGEPExpr(GEP, IndexExprs); 5302 } 5303 5304 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5305 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5306 return C->getAPInt().countTrailingZeros(); 5307 5308 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5309 return std::min(GetMinTrailingZeros(T->getOperand()), 5310 (uint32_t)getTypeSizeInBits(T->getType())); 5311 5312 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5313 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5314 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5315 ? getTypeSizeInBits(E->getType()) 5316 : OpRes; 5317 } 5318 5319 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5320 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5321 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5322 ? getTypeSizeInBits(E->getType()) 5323 : OpRes; 5324 } 5325 5326 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5327 // The result is the min of all operands results. 5328 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5329 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5330 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5331 return MinOpRes; 5332 } 5333 5334 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5335 // The result is the sum of all operands results. 5336 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5337 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5338 for (unsigned i = 1, e = M->getNumOperands(); 5339 SumOpRes != BitWidth && i != e; ++i) 5340 SumOpRes = 5341 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5342 return SumOpRes; 5343 } 5344 5345 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5346 // The result is the min of all operands results. 5347 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5348 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5349 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5350 return MinOpRes; 5351 } 5352 5353 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5354 // The result is the min of all operands results. 5355 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5356 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5357 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5358 return MinOpRes; 5359 } 5360 5361 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5362 // The result is the min of all operands results. 5363 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5364 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5365 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5366 return MinOpRes; 5367 } 5368 5369 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5370 // For a SCEVUnknown, ask ValueTracking. 5371 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5372 return Known.countMinTrailingZeros(); 5373 } 5374 5375 // SCEVUDivExpr 5376 return 0; 5377 } 5378 5379 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5380 auto I = MinTrailingZerosCache.find(S); 5381 if (I != MinTrailingZerosCache.end()) 5382 return I->second; 5383 5384 uint32_t Result = GetMinTrailingZerosImpl(S); 5385 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5386 assert(InsertPair.second && "Should insert a new key"); 5387 return InsertPair.first->second; 5388 } 5389 5390 /// Helper method to assign a range to V from metadata present in the IR. 5391 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5392 if (Instruction *I = dyn_cast<Instruction>(V)) 5393 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5394 return getConstantRangeFromMetadata(*MD); 5395 5396 return None; 5397 } 5398 5399 /// Determine the range for a particular SCEV. If SignHint is 5400 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5401 /// with a "cleaner" unsigned (resp. signed) representation. 5402 const ConstantRange & 5403 ScalarEvolution::getRangeRef(const SCEV *S, 5404 ScalarEvolution::RangeSignHint SignHint) { 5405 DenseMap<const SCEV *, ConstantRange> &Cache = 5406 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5407 : SignedRanges; 5408 5409 // See if we've computed this range already. 5410 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5411 if (I != Cache.end()) 5412 return I->second; 5413 5414 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5415 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5416 5417 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5418 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5419 5420 // If the value has known zeros, the maximum value will have those known zeros 5421 // as well. 5422 uint32_t TZ = GetMinTrailingZeros(S); 5423 if (TZ != 0) { 5424 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5425 ConservativeResult = 5426 ConstantRange(APInt::getMinValue(BitWidth), 5427 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5428 else 5429 ConservativeResult = ConstantRange( 5430 APInt::getSignedMinValue(BitWidth), 5431 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5432 } 5433 5434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5435 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5436 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5437 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5438 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5439 } 5440 5441 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5442 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5443 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5444 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5445 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5446 } 5447 5448 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5449 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5450 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5451 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5452 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5453 } 5454 5455 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5456 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5457 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5458 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5459 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5460 } 5461 5462 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5463 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5464 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5465 return setRange(UDiv, SignHint, 5466 ConservativeResult.intersectWith(X.udiv(Y))); 5467 } 5468 5469 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5470 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5471 return setRange(ZExt, SignHint, 5472 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5473 } 5474 5475 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5476 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5477 return setRange(SExt, SignHint, 5478 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5479 } 5480 5481 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5482 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5483 return setRange(Trunc, SignHint, 5484 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5485 } 5486 5487 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5488 // If there's no unsigned wrap, the value will never be less than its 5489 // initial value. 5490 if (AddRec->hasNoUnsignedWrap()) 5491 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5492 if (!C->getValue()->isZero()) 5493 ConservativeResult = ConservativeResult.intersectWith( 5494 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5495 5496 // If there's no signed wrap, and all the operands have the same sign or 5497 // zero, the value won't ever change sign. 5498 if (AddRec->hasNoSignedWrap()) { 5499 bool AllNonNeg = true; 5500 bool AllNonPos = true; 5501 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5502 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5503 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5504 } 5505 if (AllNonNeg) 5506 ConservativeResult = ConservativeResult.intersectWith( 5507 ConstantRange(APInt(BitWidth, 0), 5508 APInt::getSignedMinValue(BitWidth))); 5509 else if (AllNonPos) 5510 ConservativeResult = ConservativeResult.intersectWith( 5511 ConstantRange(APInt::getSignedMinValue(BitWidth), 5512 APInt(BitWidth, 1))); 5513 } 5514 5515 // TODO: non-affine addrec 5516 if (AddRec->isAffine()) { 5517 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5518 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5519 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5520 auto RangeFromAffine = getRangeForAffineAR( 5521 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5522 BitWidth); 5523 if (!RangeFromAffine.isFullSet()) 5524 ConservativeResult = 5525 ConservativeResult.intersectWith(RangeFromAffine); 5526 5527 auto RangeFromFactoring = getRangeViaFactoring( 5528 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5529 BitWidth); 5530 if (!RangeFromFactoring.isFullSet()) 5531 ConservativeResult = 5532 ConservativeResult.intersectWith(RangeFromFactoring); 5533 } 5534 } 5535 5536 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5537 } 5538 5539 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5540 // Check if the IR explicitly contains !range metadata. 5541 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5542 if (MDRange.hasValue()) 5543 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5544 5545 // Split here to avoid paying the compile-time cost of calling both 5546 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5547 // if needed. 5548 const DataLayout &DL = getDataLayout(); 5549 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5550 // For a SCEVUnknown, ask ValueTracking. 5551 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5552 if (Known.One != ~Known.Zero + 1) 5553 ConservativeResult = 5554 ConservativeResult.intersectWith(ConstantRange(Known.One, 5555 ~Known.Zero + 1)); 5556 } else { 5557 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5558 "generalize as needed!"); 5559 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5560 if (NS > 1) 5561 ConservativeResult = ConservativeResult.intersectWith( 5562 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5563 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5564 } 5565 5566 // A range of Phi is a subset of union of all ranges of its input. 5567 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5568 // Make sure that we do not run over cycled Phis. 5569 if (PendingPhiRanges.insert(Phi).second) { 5570 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5571 for (auto &Op : Phi->operands()) { 5572 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5573 RangeFromOps = RangeFromOps.unionWith(OpRange); 5574 // No point to continue if we already have a full set. 5575 if (RangeFromOps.isFullSet()) 5576 break; 5577 } 5578 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); 5579 bool Erased = PendingPhiRanges.erase(Phi); 5580 assert(Erased && "Failed to erase Phi properly?"); 5581 (void) Erased; 5582 } 5583 } 5584 5585 return setRange(U, SignHint, std::move(ConservativeResult)); 5586 } 5587 5588 return setRange(S, SignHint, std::move(ConservativeResult)); 5589 } 5590 5591 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5592 // values that the expression can take. Initially, the expression has a value 5593 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5594 // argument defines if we treat Step as signed or unsigned. 5595 static ConstantRange getRangeForAffineARHelper(APInt Step, 5596 const ConstantRange &StartRange, 5597 const APInt &MaxBECount, 5598 unsigned BitWidth, bool Signed) { 5599 // If either Step or MaxBECount is 0, then the expression won't change, and we 5600 // just need to return the initial range. 5601 if (Step == 0 || MaxBECount == 0) 5602 return StartRange; 5603 5604 // If we don't know anything about the initial value (i.e. StartRange is 5605 // FullRange), then we don't know anything about the final range either. 5606 // Return FullRange. 5607 if (StartRange.isFullSet()) 5608 return ConstantRange(BitWidth, /* isFullSet = */ true); 5609 5610 // If Step is signed and negative, then we use its absolute value, but we also 5611 // note that we're moving in the opposite direction. 5612 bool Descending = Signed && Step.isNegative(); 5613 5614 if (Signed) 5615 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5616 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5617 // This equations hold true due to the well-defined wrap-around behavior of 5618 // APInt. 5619 Step = Step.abs(); 5620 5621 // Check if Offset is more than full span of BitWidth. If it is, the 5622 // expression is guaranteed to overflow. 5623 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5624 return ConstantRange(BitWidth, /* isFullSet = */ true); 5625 5626 // Offset is by how much the expression can change. Checks above guarantee no 5627 // overflow here. 5628 APInt Offset = Step * MaxBECount; 5629 5630 // Minimum value of the final range will match the minimal value of StartRange 5631 // if the expression is increasing and will be decreased by Offset otherwise. 5632 // Maximum value of the final range will match the maximal value of StartRange 5633 // if the expression is decreasing and will be increased by Offset otherwise. 5634 APInt StartLower = StartRange.getLower(); 5635 APInt StartUpper = StartRange.getUpper() - 1; 5636 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5637 : (StartUpper + std::move(Offset)); 5638 5639 // It's possible that the new minimum/maximum value will fall into the initial 5640 // range (due to wrap around). This means that the expression can take any 5641 // value in this bitwidth, and we have to return full range. 5642 if (StartRange.contains(MovedBoundary)) 5643 return ConstantRange(BitWidth, /* isFullSet = */ true); 5644 5645 APInt NewLower = 5646 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5647 APInt NewUpper = 5648 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5649 NewUpper += 1; 5650 5651 // If we end up with full range, return a proper full range. 5652 if (NewLower == NewUpper) 5653 return ConstantRange(BitWidth, /* isFullSet = */ true); 5654 5655 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5656 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5657 } 5658 5659 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5660 const SCEV *Step, 5661 const SCEV *MaxBECount, 5662 unsigned BitWidth) { 5663 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5664 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5665 "Precondition!"); 5666 5667 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5668 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5669 5670 // First, consider step signed. 5671 ConstantRange StartSRange = getSignedRange(Start); 5672 ConstantRange StepSRange = getSignedRange(Step); 5673 5674 // If Step can be both positive and negative, we need to find ranges for the 5675 // maximum absolute step values in both directions and union them. 5676 ConstantRange SR = 5677 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5678 MaxBECountValue, BitWidth, /* Signed = */ true); 5679 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5680 StartSRange, MaxBECountValue, 5681 BitWidth, /* Signed = */ true)); 5682 5683 // Next, consider step unsigned. 5684 ConstantRange UR = getRangeForAffineARHelper( 5685 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5686 MaxBECountValue, BitWidth, /* Signed = */ false); 5687 5688 // Finally, intersect signed and unsigned ranges. 5689 return SR.intersectWith(UR); 5690 } 5691 5692 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5693 const SCEV *Step, 5694 const SCEV *MaxBECount, 5695 unsigned BitWidth) { 5696 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5697 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5698 5699 struct SelectPattern { 5700 Value *Condition = nullptr; 5701 APInt TrueValue; 5702 APInt FalseValue; 5703 5704 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5705 const SCEV *S) { 5706 Optional<unsigned> CastOp; 5707 APInt Offset(BitWidth, 0); 5708 5709 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5710 "Should be!"); 5711 5712 // Peel off a constant offset: 5713 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5714 // In the future we could consider being smarter here and handle 5715 // {Start+Step,+,Step} too. 5716 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5717 return; 5718 5719 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5720 S = SA->getOperand(1); 5721 } 5722 5723 // Peel off a cast operation 5724 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5725 CastOp = SCast->getSCEVType(); 5726 S = SCast->getOperand(); 5727 } 5728 5729 using namespace llvm::PatternMatch; 5730 5731 auto *SU = dyn_cast<SCEVUnknown>(S); 5732 const APInt *TrueVal, *FalseVal; 5733 if (!SU || 5734 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5735 m_APInt(FalseVal)))) { 5736 Condition = nullptr; 5737 return; 5738 } 5739 5740 TrueValue = *TrueVal; 5741 FalseValue = *FalseVal; 5742 5743 // Re-apply the cast we peeled off earlier 5744 if (CastOp.hasValue()) 5745 switch (*CastOp) { 5746 default: 5747 llvm_unreachable("Unknown SCEV cast type!"); 5748 5749 case scTruncate: 5750 TrueValue = TrueValue.trunc(BitWidth); 5751 FalseValue = FalseValue.trunc(BitWidth); 5752 break; 5753 case scZeroExtend: 5754 TrueValue = TrueValue.zext(BitWidth); 5755 FalseValue = FalseValue.zext(BitWidth); 5756 break; 5757 case scSignExtend: 5758 TrueValue = TrueValue.sext(BitWidth); 5759 FalseValue = FalseValue.sext(BitWidth); 5760 break; 5761 } 5762 5763 // Re-apply the constant offset we peeled off earlier 5764 TrueValue += Offset; 5765 FalseValue += Offset; 5766 } 5767 5768 bool isRecognized() { return Condition != nullptr; } 5769 }; 5770 5771 SelectPattern StartPattern(*this, BitWidth, Start); 5772 if (!StartPattern.isRecognized()) 5773 return ConstantRange(BitWidth, /* isFullSet = */ true); 5774 5775 SelectPattern StepPattern(*this, BitWidth, Step); 5776 if (!StepPattern.isRecognized()) 5777 return ConstantRange(BitWidth, /* isFullSet = */ true); 5778 5779 if (StartPattern.Condition != StepPattern.Condition) { 5780 // We don't handle this case today; but we could, by considering four 5781 // possibilities below instead of two. I'm not sure if there are cases where 5782 // that will help over what getRange already does, though. 5783 return ConstantRange(BitWidth, /* isFullSet = */ true); 5784 } 5785 5786 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5787 // construct arbitrary general SCEV expressions here. This function is called 5788 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5789 // say) can end up caching a suboptimal value. 5790 5791 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5792 // C2352 and C2512 (otherwise it isn't needed). 5793 5794 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5795 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5796 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5797 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5798 5799 ConstantRange TrueRange = 5800 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5801 ConstantRange FalseRange = 5802 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5803 5804 return TrueRange.unionWith(FalseRange); 5805 } 5806 5807 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5808 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5809 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5810 5811 // Return early if there are no flags to propagate to the SCEV. 5812 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5813 if (BinOp->hasNoUnsignedWrap()) 5814 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5815 if (BinOp->hasNoSignedWrap()) 5816 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5817 if (Flags == SCEV::FlagAnyWrap) 5818 return SCEV::FlagAnyWrap; 5819 5820 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5821 } 5822 5823 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5824 // Here we check that I is in the header of the innermost loop containing I, 5825 // since we only deal with instructions in the loop header. The actual loop we 5826 // need to check later will come from an add recurrence, but getting that 5827 // requires computing the SCEV of the operands, which can be expensive. This 5828 // check we can do cheaply to rule out some cases early. 5829 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5830 if (InnermostContainingLoop == nullptr || 5831 InnermostContainingLoop->getHeader() != I->getParent()) 5832 return false; 5833 5834 // Only proceed if we can prove that I does not yield poison. 5835 if (!programUndefinedIfFullPoison(I)) 5836 return false; 5837 5838 // At this point we know that if I is executed, then it does not wrap 5839 // according to at least one of NSW or NUW. If I is not executed, then we do 5840 // not know if the calculation that I represents would wrap. Multiple 5841 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5842 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5843 // derived from other instructions that map to the same SCEV. We cannot make 5844 // that guarantee for cases where I is not executed. So we need to find the 5845 // loop that I is considered in relation to and prove that I is executed for 5846 // every iteration of that loop. That implies that the value that I 5847 // calculates does not wrap anywhere in the loop, so then we can apply the 5848 // flags to the SCEV. 5849 // 5850 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5851 // from different loops, so that we know which loop to prove that I is 5852 // executed in. 5853 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5854 // I could be an extractvalue from a call to an overflow intrinsic. 5855 // TODO: We can do better here in some cases. 5856 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5857 return false; 5858 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5859 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5860 bool AllOtherOpsLoopInvariant = true; 5861 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5862 ++OtherOpIndex) { 5863 if (OtherOpIndex != OpIndex) { 5864 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5865 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5866 AllOtherOpsLoopInvariant = false; 5867 break; 5868 } 5869 } 5870 } 5871 if (AllOtherOpsLoopInvariant && 5872 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5873 return true; 5874 } 5875 } 5876 return false; 5877 } 5878 5879 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5880 // If we know that \c I can never be poison period, then that's enough. 5881 if (isSCEVExprNeverPoison(I)) 5882 return true; 5883 5884 // For an add recurrence specifically, we assume that infinite loops without 5885 // side effects are undefined behavior, and then reason as follows: 5886 // 5887 // If the add recurrence is poison in any iteration, it is poison on all 5888 // future iterations (since incrementing poison yields poison). If the result 5889 // of the add recurrence is fed into the loop latch condition and the loop 5890 // does not contain any throws or exiting blocks other than the latch, we now 5891 // have the ability to "choose" whether the backedge is taken or not (by 5892 // choosing a sufficiently evil value for the poison feeding into the branch) 5893 // for every iteration including and after the one in which \p I first became 5894 // poison. There are two possibilities (let's call the iteration in which \p 5895 // I first became poison as K): 5896 // 5897 // 1. In the set of iterations including and after K, the loop body executes 5898 // no side effects. In this case executing the backege an infinte number 5899 // of times will yield undefined behavior. 5900 // 5901 // 2. In the set of iterations including and after K, the loop body executes 5902 // at least one side effect. In this case, that specific instance of side 5903 // effect is control dependent on poison, which also yields undefined 5904 // behavior. 5905 5906 auto *ExitingBB = L->getExitingBlock(); 5907 auto *LatchBB = L->getLoopLatch(); 5908 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5909 return false; 5910 5911 SmallPtrSet<const Instruction *, 16> Pushed; 5912 SmallVector<const Instruction *, 8> PoisonStack; 5913 5914 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5915 // things that are known to be fully poison under that assumption go on the 5916 // PoisonStack. 5917 Pushed.insert(I); 5918 PoisonStack.push_back(I); 5919 5920 bool LatchControlDependentOnPoison = false; 5921 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5922 const Instruction *Poison = PoisonStack.pop_back_val(); 5923 5924 for (auto *PoisonUser : Poison->users()) { 5925 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5926 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5927 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5928 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5929 assert(BI->isConditional() && "Only possibility!"); 5930 if (BI->getParent() == LatchBB) { 5931 LatchControlDependentOnPoison = true; 5932 break; 5933 } 5934 } 5935 } 5936 } 5937 5938 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5939 } 5940 5941 ScalarEvolution::LoopProperties 5942 ScalarEvolution::getLoopProperties(const Loop *L) { 5943 using LoopProperties = ScalarEvolution::LoopProperties; 5944 5945 auto Itr = LoopPropertiesCache.find(L); 5946 if (Itr == LoopPropertiesCache.end()) { 5947 auto HasSideEffects = [](Instruction *I) { 5948 if (auto *SI = dyn_cast<StoreInst>(I)) 5949 return !SI->isSimple(); 5950 5951 return I->mayHaveSideEffects(); 5952 }; 5953 5954 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5955 /*HasNoSideEffects*/ true}; 5956 5957 for (auto *BB : L->getBlocks()) 5958 for (auto &I : *BB) { 5959 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5960 LP.HasNoAbnormalExits = false; 5961 if (HasSideEffects(&I)) 5962 LP.HasNoSideEffects = false; 5963 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5964 break; // We're already as pessimistic as we can get. 5965 } 5966 5967 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5968 assert(InsertPair.second && "We just checked!"); 5969 Itr = InsertPair.first; 5970 } 5971 5972 return Itr->second; 5973 } 5974 5975 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5976 if (!isSCEVable(V->getType())) 5977 return getUnknown(V); 5978 5979 if (Instruction *I = dyn_cast<Instruction>(V)) { 5980 // Don't attempt to analyze instructions in blocks that aren't 5981 // reachable. Such instructions don't matter, and they aren't required 5982 // to obey basic rules for definitions dominating uses which this 5983 // analysis depends on. 5984 if (!DT.isReachableFromEntry(I->getParent())) 5985 return getUnknown(V); 5986 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5987 return getConstant(CI); 5988 else if (isa<ConstantPointerNull>(V)) 5989 return getZero(V->getType()); 5990 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5991 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5992 else if (!isa<ConstantExpr>(V)) 5993 return getUnknown(V); 5994 5995 Operator *U = cast<Operator>(V); 5996 if (auto BO = MatchBinaryOp(U, DT)) { 5997 switch (BO->Opcode) { 5998 case Instruction::Add: { 5999 // The simple thing to do would be to just call getSCEV on both operands 6000 // and call getAddExpr with the result. However if we're looking at a 6001 // bunch of things all added together, this can be quite inefficient, 6002 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6003 // Instead, gather up all the operands and make a single getAddExpr call. 6004 // LLVM IR canonical form means we need only traverse the left operands. 6005 SmallVector<const SCEV *, 4> AddOps; 6006 do { 6007 if (BO->Op) { 6008 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6009 AddOps.push_back(OpSCEV); 6010 break; 6011 } 6012 6013 // If a NUW or NSW flag can be applied to the SCEV for this 6014 // addition, then compute the SCEV for this addition by itself 6015 // with a separate call to getAddExpr. We need to do that 6016 // instead of pushing the operands of the addition onto AddOps, 6017 // since the flags are only known to apply to this particular 6018 // addition - they may not apply to other additions that can be 6019 // formed with operands from AddOps. 6020 const SCEV *RHS = getSCEV(BO->RHS); 6021 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6022 if (Flags != SCEV::FlagAnyWrap) { 6023 const SCEV *LHS = getSCEV(BO->LHS); 6024 if (BO->Opcode == Instruction::Sub) 6025 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6026 else 6027 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6028 break; 6029 } 6030 } 6031 6032 if (BO->Opcode == Instruction::Sub) 6033 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6034 else 6035 AddOps.push_back(getSCEV(BO->RHS)); 6036 6037 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6038 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6039 NewBO->Opcode != Instruction::Sub)) { 6040 AddOps.push_back(getSCEV(BO->LHS)); 6041 break; 6042 } 6043 BO = NewBO; 6044 } while (true); 6045 6046 return getAddExpr(AddOps); 6047 } 6048 6049 case Instruction::Mul: { 6050 SmallVector<const SCEV *, 4> MulOps; 6051 do { 6052 if (BO->Op) { 6053 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6054 MulOps.push_back(OpSCEV); 6055 break; 6056 } 6057 6058 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6059 if (Flags != SCEV::FlagAnyWrap) { 6060 MulOps.push_back( 6061 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6062 break; 6063 } 6064 } 6065 6066 MulOps.push_back(getSCEV(BO->RHS)); 6067 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6068 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6069 MulOps.push_back(getSCEV(BO->LHS)); 6070 break; 6071 } 6072 BO = NewBO; 6073 } while (true); 6074 6075 return getMulExpr(MulOps); 6076 } 6077 case Instruction::UDiv: 6078 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6079 case Instruction::URem: 6080 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6081 case Instruction::Sub: { 6082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6083 if (BO->Op) 6084 Flags = getNoWrapFlagsFromUB(BO->Op); 6085 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6086 } 6087 case Instruction::And: 6088 // For an expression like x&255 that merely masks off the high bits, 6089 // use zext(trunc(x)) as the SCEV expression. 6090 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6091 if (CI->isZero()) 6092 return getSCEV(BO->RHS); 6093 if (CI->isMinusOne()) 6094 return getSCEV(BO->LHS); 6095 const APInt &A = CI->getValue(); 6096 6097 // Instcombine's ShrinkDemandedConstant may strip bits out of 6098 // constants, obscuring what would otherwise be a low-bits mask. 6099 // Use computeKnownBits to compute what ShrinkDemandedConstant 6100 // knew about to reconstruct a low-bits mask value. 6101 unsigned LZ = A.countLeadingZeros(); 6102 unsigned TZ = A.countTrailingZeros(); 6103 unsigned BitWidth = A.getBitWidth(); 6104 KnownBits Known(BitWidth); 6105 computeKnownBits(BO->LHS, Known, getDataLayout(), 6106 0, &AC, nullptr, &DT); 6107 6108 APInt EffectiveMask = 6109 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6110 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6111 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6112 const SCEV *LHS = getSCEV(BO->LHS); 6113 const SCEV *ShiftedLHS = nullptr; 6114 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6115 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6116 // For an expression like (x * 8) & 8, simplify the multiply. 6117 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6118 unsigned GCD = std::min(MulZeros, TZ); 6119 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6120 SmallVector<const SCEV*, 4> MulOps; 6121 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6122 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6123 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6124 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6125 } 6126 } 6127 if (!ShiftedLHS) 6128 ShiftedLHS = getUDivExpr(LHS, MulCount); 6129 return getMulExpr( 6130 getZeroExtendExpr( 6131 getTruncateExpr(ShiftedLHS, 6132 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6133 BO->LHS->getType()), 6134 MulCount); 6135 } 6136 } 6137 break; 6138 6139 case Instruction::Or: 6140 // If the RHS of the Or is a constant, we may have something like: 6141 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6142 // optimizations will transparently handle this case. 6143 // 6144 // In order for this transformation to be safe, the LHS must be of the 6145 // form X*(2^n) and the Or constant must be less than 2^n. 6146 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6147 const SCEV *LHS = getSCEV(BO->LHS); 6148 const APInt &CIVal = CI->getValue(); 6149 if (GetMinTrailingZeros(LHS) >= 6150 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6151 // Build a plain add SCEV. 6152 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6153 // If the LHS of the add was an addrec and it has no-wrap flags, 6154 // transfer the no-wrap flags, since an or won't introduce a wrap. 6155 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6156 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6157 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6158 OldAR->getNoWrapFlags()); 6159 } 6160 return S; 6161 } 6162 } 6163 break; 6164 6165 case Instruction::Xor: 6166 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6167 // If the RHS of xor is -1, then this is a not operation. 6168 if (CI->isMinusOne()) 6169 return getNotSCEV(getSCEV(BO->LHS)); 6170 6171 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6172 // This is a variant of the check for xor with -1, and it handles 6173 // the case where instcombine has trimmed non-demanded bits out 6174 // of an xor with -1. 6175 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6176 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6177 if (LBO->getOpcode() == Instruction::And && 6178 LCI->getValue() == CI->getValue()) 6179 if (const SCEVZeroExtendExpr *Z = 6180 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6181 Type *UTy = BO->LHS->getType(); 6182 const SCEV *Z0 = Z->getOperand(); 6183 Type *Z0Ty = Z0->getType(); 6184 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6185 6186 // If C is a low-bits mask, the zero extend is serving to 6187 // mask off the high bits. Complement the operand and 6188 // re-apply the zext. 6189 if (CI->getValue().isMask(Z0TySize)) 6190 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6191 6192 // If C is a single bit, it may be in the sign-bit position 6193 // before the zero-extend. In this case, represent the xor 6194 // using an add, which is equivalent, and re-apply the zext. 6195 APInt Trunc = CI->getValue().trunc(Z0TySize); 6196 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6197 Trunc.isSignMask()) 6198 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6199 UTy); 6200 } 6201 } 6202 break; 6203 6204 case Instruction::Shl: 6205 // Turn shift left of a constant amount into a multiply. 6206 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6207 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6208 6209 // If the shift count is not less than the bitwidth, the result of 6210 // the shift is undefined. Don't try to analyze it, because the 6211 // resolution chosen here may differ from the resolution chosen in 6212 // other parts of the compiler. 6213 if (SA->getValue().uge(BitWidth)) 6214 break; 6215 6216 // It is currently not resolved how to interpret NSW for left 6217 // shift by BitWidth - 1, so we avoid applying flags in that 6218 // case. Remove this check (or this comment) once the situation 6219 // is resolved. See 6220 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6221 // and http://reviews.llvm.org/D8890 . 6222 auto Flags = SCEV::FlagAnyWrap; 6223 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6224 Flags = getNoWrapFlagsFromUB(BO->Op); 6225 6226 Constant *X = ConstantInt::get(getContext(), 6227 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6228 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6229 } 6230 break; 6231 6232 case Instruction::AShr: { 6233 // AShr X, C, where C is a constant. 6234 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6235 if (!CI) 6236 break; 6237 6238 Type *OuterTy = BO->LHS->getType(); 6239 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6240 // If the shift count is not less than the bitwidth, the result of 6241 // the shift is undefined. Don't try to analyze it, because the 6242 // resolution chosen here may differ from the resolution chosen in 6243 // other parts of the compiler. 6244 if (CI->getValue().uge(BitWidth)) 6245 break; 6246 6247 if (CI->isZero()) 6248 return getSCEV(BO->LHS); // shift by zero --> noop 6249 6250 uint64_t AShrAmt = CI->getZExtValue(); 6251 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6252 6253 Operator *L = dyn_cast<Operator>(BO->LHS); 6254 if (L && L->getOpcode() == Instruction::Shl) { 6255 // X = Shl A, n 6256 // Y = AShr X, m 6257 // Both n and m are constant. 6258 6259 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6260 if (L->getOperand(1) == BO->RHS) 6261 // For a two-shift sext-inreg, i.e. n = m, 6262 // use sext(trunc(x)) as the SCEV expression. 6263 return getSignExtendExpr( 6264 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6265 6266 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6267 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6268 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6269 if (ShlAmt > AShrAmt) { 6270 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6271 // expression. We already checked that ShlAmt < BitWidth, so 6272 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6273 // ShlAmt - AShrAmt < Amt. 6274 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6275 ShlAmt - AShrAmt); 6276 return getSignExtendExpr( 6277 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6278 getConstant(Mul)), OuterTy); 6279 } 6280 } 6281 } 6282 break; 6283 } 6284 } 6285 } 6286 6287 switch (U->getOpcode()) { 6288 case Instruction::Trunc: 6289 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6290 6291 case Instruction::ZExt: 6292 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6293 6294 case Instruction::SExt: 6295 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6296 // The NSW flag of a subtract does not always survive the conversion to 6297 // A + (-1)*B. By pushing sign extension onto its operands we are much 6298 // more likely to preserve NSW and allow later AddRec optimisations. 6299 // 6300 // NOTE: This is effectively duplicating this logic from getSignExtend: 6301 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6302 // but by that point the NSW information has potentially been lost. 6303 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6304 Type *Ty = U->getType(); 6305 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6306 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6307 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6308 } 6309 } 6310 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6311 6312 case Instruction::BitCast: 6313 // BitCasts are no-op casts so we just eliminate the cast. 6314 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6315 return getSCEV(U->getOperand(0)); 6316 break; 6317 6318 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6319 // lead to pointer expressions which cannot safely be expanded to GEPs, 6320 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6321 // simplifying integer expressions. 6322 6323 case Instruction::GetElementPtr: 6324 return createNodeForGEP(cast<GEPOperator>(U)); 6325 6326 case Instruction::PHI: 6327 return createNodeForPHI(cast<PHINode>(U)); 6328 6329 case Instruction::Select: 6330 // U can also be a select constant expr, which let fall through. Since 6331 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6332 // constant expressions cannot have instructions as operands, we'd have 6333 // returned getUnknown for a select constant expressions anyway. 6334 if (isa<Instruction>(U)) 6335 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6336 U->getOperand(1), U->getOperand(2)); 6337 break; 6338 6339 case Instruction::Call: 6340 case Instruction::Invoke: 6341 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6342 return getSCEV(RV); 6343 break; 6344 } 6345 6346 return getUnknown(V); 6347 } 6348 6349 //===----------------------------------------------------------------------===// 6350 // Iteration Count Computation Code 6351 // 6352 6353 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6354 if (!ExitCount) 6355 return 0; 6356 6357 ConstantInt *ExitConst = ExitCount->getValue(); 6358 6359 // Guard against huge trip counts. 6360 if (ExitConst->getValue().getActiveBits() > 32) 6361 return 0; 6362 6363 // In case of integer overflow, this returns 0, which is correct. 6364 return ((unsigned)ExitConst->getZExtValue()) + 1; 6365 } 6366 6367 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6368 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6369 return getSmallConstantTripCount(L, ExitingBB); 6370 6371 // No trip count information for multiple exits. 6372 return 0; 6373 } 6374 6375 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6376 BasicBlock *ExitingBlock) { 6377 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6378 assert(L->isLoopExiting(ExitingBlock) && 6379 "Exiting block must actually branch out of the loop!"); 6380 const SCEVConstant *ExitCount = 6381 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6382 return getConstantTripCount(ExitCount); 6383 } 6384 6385 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6386 const auto *MaxExitCount = 6387 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6388 return getConstantTripCount(MaxExitCount); 6389 } 6390 6391 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6392 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6393 return getSmallConstantTripMultiple(L, ExitingBB); 6394 6395 // No trip multiple information for multiple exits. 6396 return 0; 6397 } 6398 6399 /// Returns the largest constant divisor of the trip count of this loop as a 6400 /// normal unsigned value, if possible. This means that the actual trip count is 6401 /// always a multiple of the returned value (don't forget the trip count could 6402 /// very well be zero as well!). 6403 /// 6404 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6405 /// multiple of a constant (which is also the case if the trip count is simply 6406 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6407 /// if the trip count is very large (>= 2^32). 6408 /// 6409 /// As explained in the comments for getSmallConstantTripCount, this assumes 6410 /// that control exits the loop via ExitingBlock. 6411 unsigned 6412 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6413 BasicBlock *ExitingBlock) { 6414 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6415 assert(L->isLoopExiting(ExitingBlock) && 6416 "Exiting block must actually branch out of the loop!"); 6417 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6418 if (ExitCount == getCouldNotCompute()) 6419 return 1; 6420 6421 // Get the trip count from the BE count by adding 1. 6422 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6423 6424 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6425 if (!TC) 6426 // Attempt to factor more general cases. Returns the greatest power of 6427 // two divisor. If overflow happens, the trip count expression is still 6428 // divisible by the greatest power of 2 divisor returned. 6429 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6430 6431 ConstantInt *Result = TC->getValue(); 6432 6433 // Guard against huge trip counts (this requires checking 6434 // for zero to handle the case where the trip count == -1 and the 6435 // addition wraps). 6436 if (!Result || Result->getValue().getActiveBits() > 32 || 6437 Result->getValue().getActiveBits() == 0) 6438 return 1; 6439 6440 return (unsigned)Result->getZExtValue(); 6441 } 6442 6443 /// Get the expression for the number of loop iterations for which this loop is 6444 /// guaranteed not to exit via ExitingBlock. Otherwise return 6445 /// SCEVCouldNotCompute. 6446 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6447 BasicBlock *ExitingBlock) { 6448 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6449 } 6450 6451 const SCEV * 6452 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6453 SCEVUnionPredicate &Preds) { 6454 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6455 } 6456 6457 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6458 return getBackedgeTakenInfo(L).getExact(L, this); 6459 } 6460 6461 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6462 /// known never to be less than the actual backedge taken count. 6463 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6464 return getBackedgeTakenInfo(L).getMax(this); 6465 } 6466 6467 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6468 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6469 } 6470 6471 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6472 static void 6473 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6474 BasicBlock *Header = L->getHeader(); 6475 6476 // Push all Loop-header PHIs onto the Worklist stack. 6477 for (PHINode &PN : Header->phis()) 6478 Worklist.push_back(&PN); 6479 } 6480 6481 const ScalarEvolution::BackedgeTakenInfo & 6482 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6483 auto &BTI = getBackedgeTakenInfo(L); 6484 if (BTI.hasFullInfo()) 6485 return BTI; 6486 6487 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6488 6489 if (!Pair.second) 6490 return Pair.first->second; 6491 6492 BackedgeTakenInfo Result = 6493 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6494 6495 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6496 } 6497 6498 const ScalarEvolution::BackedgeTakenInfo & 6499 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6500 // Initially insert an invalid entry for this loop. If the insertion 6501 // succeeds, proceed to actually compute a backedge-taken count and 6502 // update the value. The temporary CouldNotCompute value tells SCEV 6503 // code elsewhere that it shouldn't attempt to request a new 6504 // backedge-taken count, which could result in infinite recursion. 6505 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6506 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6507 if (!Pair.second) 6508 return Pair.first->second; 6509 6510 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6511 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6512 // must be cleared in this scope. 6513 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6514 6515 if (Result.getExact(L, this) != getCouldNotCompute()) { 6516 assert(isLoopInvariant(Result.getExact(L, this), L) && 6517 isLoopInvariant(Result.getMax(this), L) && 6518 "Computed backedge-taken count isn't loop invariant for loop!"); 6519 ++NumTripCountsComputed; 6520 } 6521 else if (Result.getMax(this) == getCouldNotCompute() && 6522 isa<PHINode>(L->getHeader()->begin())) { 6523 // Only count loops that have phi nodes as not being computable. 6524 ++NumTripCountsNotComputed; 6525 } 6526 6527 // Now that we know more about the trip count for this loop, forget any 6528 // existing SCEV values for PHI nodes in this loop since they are only 6529 // conservative estimates made without the benefit of trip count 6530 // information. This is similar to the code in forgetLoop, except that 6531 // it handles SCEVUnknown PHI nodes specially. 6532 if (Result.hasAnyInfo()) { 6533 SmallVector<Instruction *, 16> Worklist; 6534 PushLoopPHIs(L, Worklist); 6535 6536 SmallPtrSet<Instruction *, 8> Discovered; 6537 while (!Worklist.empty()) { 6538 Instruction *I = Worklist.pop_back_val(); 6539 6540 ValueExprMapType::iterator It = 6541 ValueExprMap.find_as(static_cast<Value *>(I)); 6542 if (It != ValueExprMap.end()) { 6543 const SCEV *Old = It->second; 6544 6545 // SCEVUnknown for a PHI either means that it has an unrecognized 6546 // structure, or it's a PHI that's in the progress of being computed 6547 // by createNodeForPHI. In the former case, additional loop trip 6548 // count information isn't going to change anything. In the later 6549 // case, createNodeForPHI will perform the necessary updates on its 6550 // own when it gets to that point. 6551 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6552 eraseValueFromMap(It->first); 6553 forgetMemoizedResults(Old); 6554 } 6555 if (PHINode *PN = dyn_cast<PHINode>(I)) 6556 ConstantEvolutionLoopExitValue.erase(PN); 6557 } 6558 6559 // Since we don't need to invalidate anything for correctness and we're 6560 // only invalidating to make SCEV's results more precise, we get to stop 6561 // early to avoid invalidating too much. This is especially important in 6562 // cases like: 6563 // 6564 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6565 // loop0: 6566 // %pn0 = phi 6567 // ... 6568 // loop1: 6569 // %pn1 = phi 6570 // ... 6571 // 6572 // where both loop0 and loop1's backedge taken count uses the SCEV 6573 // expression for %v. If we don't have the early stop below then in cases 6574 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6575 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6576 // count for loop1, effectively nullifying SCEV's trip count cache. 6577 for (auto *U : I->users()) 6578 if (auto *I = dyn_cast<Instruction>(U)) { 6579 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6580 if (LoopForUser && L->contains(LoopForUser) && 6581 Discovered.insert(I).second) 6582 Worklist.push_back(I); 6583 } 6584 } 6585 } 6586 6587 // Re-lookup the insert position, since the call to 6588 // computeBackedgeTakenCount above could result in a 6589 // recusive call to getBackedgeTakenInfo (on a different 6590 // loop), which would invalidate the iterator computed 6591 // earlier. 6592 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6593 } 6594 6595 void ScalarEvolution::forgetLoop(const Loop *L) { 6596 // Drop any stored trip count value. 6597 auto RemoveLoopFromBackedgeMap = 6598 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6599 auto BTCPos = Map.find(L); 6600 if (BTCPos != Map.end()) { 6601 BTCPos->second.clear(); 6602 Map.erase(BTCPos); 6603 } 6604 }; 6605 6606 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6607 SmallVector<Instruction *, 32> Worklist; 6608 SmallPtrSet<Instruction *, 16> Visited; 6609 6610 // Iterate over all the loops and sub-loops to drop SCEV information. 6611 while (!LoopWorklist.empty()) { 6612 auto *CurrL = LoopWorklist.pop_back_val(); 6613 6614 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6615 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6616 6617 // Drop information about predicated SCEV rewrites for this loop. 6618 for (auto I = PredicatedSCEVRewrites.begin(); 6619 I != PredicatedSCEVRewrites.end();) { 6620 std::pair<const SCEV *, const Loop *> Entry = I->first; 6621 if (Entry.second == CurrL) 6622 PredicatedSCEVRewrites.erase(I++); 6623 else 6624 ++I; 6625 } 6626 6627 auto LoopUsersItr = LoopUsers.find(CurrL); 6628 if (LoopUsersItr != LoopUsers.end()) { 6629 for (auto *S : LoopUsersItr->second) 6630 forgetMemoizedResults(S); 6631 LoopUsers.erase(LoopUsersItr); 6632 } 6633 6634 // Drop information about expressions based on loop-header PHIs. 6635 PushLoopPHIs(CurrL, Worklist); 6636 6637 while (!Worklist.empty()) { 6638 Instruction *I = Worklist.pop_back_val(); 6639 if (!Visited.insert(I).second) 6640 continue; 6641 6642 ValueExprMapType::iterator It = 6643 ValueExprMap.find_as(static_cast<Value *>(I)); 6644 if (It != ValueExprMap.end()) { 6645 eraseValueFromMap(It->first); 6646 forgetMemoizedResults(It->second); 6647 if (PHINode *PN = dyn_cast<PHINode>(I)) 6648 ConstantEvolutionLoopExitValue.erase(PN); 6649 } 6650 6651 PushDefUseChildren(I, Worklist); 6652 } 6653 6654 LoopPropertiesCache.erase(CurrL); 6655 // Forget all contained loops too, to avoid dangling entries in the 6656 // ValuesAtScopes map. 6657 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6658 } 6659 } 6660 6661 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6662 while (Loop *Parent = L->getParentLoop()) 6663 L = Parent; 6664 forgetLoop(L); 6665 } 6666 6667 void ScalarEvolution::forgetValue(Value *V) { 6668 Instruction *I = dyn_cast<Instruction>(V); 6669 if (!I) return; 6670 6671 // Drop information about expressions based on loop-header PHIs. 6672 SmallVector<Instruction *, 16> Worklist; 6673 Worklist.push_back(I); 6674 6675 SmallPtrSet<Instruction *, 8> Visited; 6676 while (!Worklist.empty()) { 6677 I = Worklist.pop_back_val(); 6678 if (!Visited.insert(I).second) 6679 continue; 6680 6681 ValueExprMapType::iterator It = 6682 ValueExprMap.find_as(static_cast<Value *>(I)); 6683 if (It != ValueExprMap.end()) { 6684 eraseValueFromMap(It->first); 6685 forgetMemoizedResults(It->second); 6686 if (PHINode *PN = dyn_cast<PHINode>(I)) 6687 ConstantEvolutionLoopExitValue.erase(PN); 6688 } 6689 6690 PushDefUseChildren(I, Worklist); 6691 } 6692 } 6693 6694 /// Get the exact loop backedge taken count considering all loop exits. A 6695 /// computable result can only be returned for loops with all exiting blocks 6696 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6697 /// is never skipped. This is a valid assumption as long as the loop exits via 6698 /// that test. For precise results, it is the caller's responsibility to specify 6699 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6700 const SCEV * 6701 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6702 SCEVUnionPredicate *Preds) const { 6703 // If any exits were not computable, the loop is not computable. 6704 if (!isComplete() || ExitNotTaken.empty()) 6705 return SE->getCouldNotCompute(); 6706 6707 const BasicBlock *Latch = L->getLoopLatch(); 6708 // All exiting blocks we have collected must dominate the only backedge. 6709 if (!Latch) 6710 return SE->getCouldNotCompute(); 6711 6712 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6713 // count is simply a minimum out of all these calculated exit counts. 6714 SmallVector<const SCEV *, 2> Ops; 6715 for (auto &ENT : ExitNotTaken) { 6716 const SCEV *BECount = ENT.ExactNotTaken; 6717 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6718 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6719 "We should only have known counts for exiting blocks that dominate " 6720 "latch!"); 6721 6722 Ops.push_back(BECount); 6723 6724 if (Preds && !ENT.hasAlwaysTruePredicate()) 6725 Preds->add(ENT.Predicate.get()); 6726 6727 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6728 "Predicate should be always true!"); 6729 } 6730 6731 return SE->getUMinFromMismatchedTypes(Ops); 6732 } 6733 6734 /// Get the exact not taken count for this loop exit. 6735 const SCEV * 6736 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6737 ScalarEvolution *SE) const { 6738 for (auto &ENT : ExitNotTaken) 6739 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6740 return ENT.ExactNotTaken; 6741 6742 return SE->getCouldNotCompute(); 6743 } 6744 6745 /// getMax - Get the max backedge taken count for the loop. 6746 const SCEV * 6747 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6748 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6749 return !ENT.hasAlwaysTruePredicate(); 6750 }; 6751 6752 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6753 return SE->getCouldNotCompute(); 6754 6755 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6756 "No point in having a non-constant max backedge taken count!"); 6757 return getMax(); 6758 } 6759 6760 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6761 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6762 return !ENT.hasAlwaysTruePredicate(); 6763 }; 6764 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6765 } 6766 6767 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6768 ScalarEvolution *SE) const { 6769 if (getMax() && getMax() != SE->getCouldNotCompute() && 6770 SE->hasOperand(getMax(), S)) 6771 return true; 6772 6773 for (auto &ENT : ExitNotTaken) 6774 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6775 SE->hasOperand(ENT.ExactNotTaken, S)) 6776 return true; 6777 6778 return false; 6779 } 6780 6781 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6782 : ExactNotTaken(E), MaxNotTaken(E) { 6783 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6784 isa<SCEVConstant>(MaxNotTaken)) && 6785 "No point in having a non-constant max backedge taken count!"); 6786 } 6787 6788 ScalarEvolution::ExitLimit::ExitLimit( 6789 const SCEV *E, const SCEV *M, bool MaxOrZero, 6790 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6791 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6792 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6793 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6794 "Exact is not allowed to be less precise than Max"); 6795 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6796 isa<SCEVConstant>(MaxNotTaken)) && 6797 "No point in having a non-constant max backedge taken count!"); 6798 for (auto *PredSet : PredSetList) 6799 for (auto *P : *PredSet) 6800 addPredicate(P); 6801 } 6802 6803 ScalarEvolution::ExitLimit::ExitLimit( 6804 const SCEV *E, const SCEV *M, bool MaxOrZero, 6805 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6806 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6807 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6808 isa<SCEVConstant>(MaxNotTaken)) && 6809 "No point in having a non-constant max backedge taken count!"); 6810 } 6811 6812 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6813 bool MaxOrZero) 6814 : ExitLimit(E, M, MaxOrZero, None) { 6815 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6816 isa<SCEVConstant>(MaxNotTaken)) && 6817 "No point in having a non-constant max backedge taken count!"); 6818 } 6819 6820 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6821 /// computable exit into a persistent ExitNotTakenInfo array. 6822 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6823 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6824 &&ExitCounts, 6825 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6826 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6827 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6828 6829 ExitNotTaken.reserve(ExitCounts.size()); 6830 std::transform( 6831 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6832 [&](const EdgeExitInfo &EEI) { 6833 BasicBlock *ExitBB = EEI.first; 6834 const ExitLimit &EL = EEI.second; 6835 if (EL.Predicates.empty()) 6836 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6837 6838 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6839 for (auto *Pred : EL.Predicates) 6840 Predicate->add(Pred); 6841 6842 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6843 }); 6844 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6845 "No point in having a non-constant max backedge taken count!"); 6846 } 6847 6848 /// Invalidate this result and free the ExitNotTakenInfo array. 6849 void ScalarEvolution::BackedgeTakenInfo::clear() { 6850 ExitNotTaken.clear(); 6851 } 6852 6853 /// Compute the number of times the backedge of the specified loop will execute. 6854 ScalarEvolution::BackedgeTakenInfo 6855 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6856 bool AllowPredicates) { 6857 SmallVector<BasicBlock *, 8> ExitingBlocks; 6858 L->getExitingBlocks(ExitingBlocks); 6859 6860 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6861 6862 SmallVector<EdgeExitInfo, 4> ExitCounts; 6863 bool CouldComputeBECount = true; 6864 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6865 const SCEV *MustExitMaxBECount = nullptr; 6866 const SCEV *MayExitMaxBECount = nullptr; 6867 bool MustExitMaxOrZero = false; 6868 6869 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6870 // and compute maxBECount. 6871 // Do a union of all the predicates here. 6872 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6873 BasicBlock *ExitBB = ExitingBlocks[i]; 6874 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6875 6876 assert((AllowPredicates || EL.Predicates.empty()) && 6877 "Predicated exit limit when predicates are not allowed!"); 6878 6879 // 1. For each exit that can be computed, add an entry to ExitCounts. 6880 // CouldComputeBECount is true only if all exits can be computed. 6881 if (EL.ExactNotTaken == getCouldNotCompute()) 6882 // We couldn't compute an exact value for this exit, so 6883 // we won't be able to compute an exact value for the loop. 6884 CouldComputeBECount = false; 6885 else 6886 ExitCounts.emplace_back(ExitBB, EL); 6887 6888 // 2. Derive the loop's MaxBECount from each exit's max number of 6889 // non-exiting iterations. Partition the loop exits into two kinds: 6890 // LoopMustExits and LoopMayExits. 6891 // 6892 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6893 // is a LoopMayExit. If any computable LoopMustExit is found, then 6894 // MaxBECount is the minimum EL.MaxNotTaken of computable 6895 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6896 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6897 // computable EL.MaxNotTaken. 6898 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6899 DT.dominates(ExitBB, Latch)) { 6900 if (!MustExitMaxBECount) { 6901 MustExitMaxBECount = EL.MaxNotTaken; 6902 MustExitMaxOrZero = EL.MaxOrZero; 6903 } else { 6904 MustExitMaxBECount = 6905 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6906 } 6907 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6908 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6909 MayExitMaxBECount = EL.MaxNotTaken; 6910 else { 6911 MayExitMaxBECount = 6912 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6913 } 6914 } 6915 } 6916 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6917 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6918 // The loop backedge will be taken the maximum or zero times if there's 6919 // a single exit that must be taken the maximum or zero times. 6920 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6921 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6922 MaxBECount, MaxOrZero); 6923 } 6924 6925 ScalarEvolution::ExitLimit 6926 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6927 bool AllowPredicates) { 6928 // Okay, we've chosen an exiting block. See what condition causes us to exit 6929 // at this block and remember the exit block and whether all other targets 6930 // lead to the loop header. 6931 bool MustExecuteLoopHeader = true; 6932 BasicBlock *Exit = nullptr; 6933 for (auto *SBB : successors(ExitingBlock)) 6934 if (!L->contains(SBB)) { 6935 if (Exit) // Multiple exit successors. 6936 return getCouldNotCompute(); 6937 Exit = SBB; 6938 } else if (SBB != L->getHeader()) { 6939 MustExecuteLoopHeader = false; 6940 } 6941 6942 // At this point, we know we have a conditional branch that determines whether 6943 // the loop is exited. However, we don't know if the branch is executed each 6944 // time through the loop. If not, then the execution count of the branch will 6945 // not be equal to the trip count of the loop. 6946 // 6947 // Currently we check for this by checking to see if the Exit branch goes to 6948 // the loop header. If so, we know it will always execute the same number of 6949 // times as the loop. We also handle the case where the exit block *is* the 6950 // loop header. This is common for un-rotated loops. 6951 // 6952 // If both of those tests fail, walk up the unique predecessor chain to the 6953 // header, stopping if there is an edge that doesn't exit the loop. If the 6954 // header is reached, the execution count of the branch will be equal to the 6955 // trip count of the loop. 6956 // 6957 // More extensive analysis could be done to handle more cases here. 6958 // 6959 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 6960 // The simple checks failed, try climbing the unique predecessor chain 6961 // up to the header. 6962 bool Ok = false; 6963 for (BasicBlock *BB = ExitingBlock; BB; ) { 6964 BasicBlock *Pred = BB->getUniquePredecessor(); 6965 if (!Pred) 6966 return getCouldNotCompute(); 6967 TerminatorInst *PredTerm = Pred->getTerminator(); 6968 for (const BasicBlock *PredSucc : PredTerm->successors()) { 6969 if (PredSucc == BB) 6970 continue; 6971 // If the predecessor has a successor that isn't BB and isn't 6972 // outside the loop, assume the worst. 6973 if (L->contains(PredSucc)) 6974 return getCouldNotCompute(); 6975 } 6976 if (Pred == L->getHeader()) { 6977 Ok = true; 6978 break; 6979 } 6980 BB = Pred; 6981 } 6982 if (!Ok) 6983 return getCouldNotCompute(); 6984 } 6985 6986 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6987 TerminatorInst *Term = ExitingBlock->getTerminator(); 6988 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6989 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6990 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6991 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 6992 "It should have one successor in loop and one exit block!"); 6993 // Proceed to the next level to examine the exit condition expression. 6994 return computeExitLimitFromCond( 6995 L, BI->getCondition(), ExitIfTrue, 6996 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6997 } 6998 6999 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 7000 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7001 /*ControlsExit=*/IsOnlyExit); 7002 7003 return getCouldNotCompute(); 7004 } 7005 7006 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7007 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7008 bool ControlsExit, bool AllowPredicates) { 7009 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7010 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7011 ControlsExit, AllowPredicates); 7012 } 7013 7014 Optional<ScalarEvolution::ExitLimit> 7015 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7016 bool ExitIfTrue, bool ControlsExit, 7017 bool AllowPredicates) { 7018 (void)this->L; 7019 (void)this->ExitIfTrue; 7020 (void)this->AllowPredicates; 7021 7022 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7023 this->AllowPredicates == AllowPredicates && 7024 "Variance in assumed invariant key components!"); 7025 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7026 if (Itr == TripCountMap.end()) 7027 return None; 7028 return Itr->second; 7029 } 7030 7031 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7032 bool ExitIfTrue, 7033 bool ControlsExit, 7034 bool AllowPredicates, 7035 const ExitLimit &EL) { 7036 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7037 this->AllowPredicates == AllowPredicates && 7038 "Variance in assumed invariant key components!"); 7039 7040 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7041 assert(InsertResult.second && "Expected successful insertion!"); 7042 (void)InsertResult; 7043 (void)ExitIfTrue; 7044 } 7045 7046 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7047 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7048 bool ControlsExit, bool AllowPredicates) { 7049 7050 if (auto MaybeEL = 7051 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7052 return *MaybeEL; 7053 7054 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7055 ControlsExit, AllowPredicates); 7056 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7057 return EL; 7058 } 7059 7060 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7061 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7062 bool ControlsExit, bool AllowPredicates) { 7063 // Check if the controlling expression for this loop is an And or Or. 7064 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7065 if (BO->getOpcode() == Instruction::And) { 7066 // Recurse on the operands of the and. 7067 bool EitherMayExit = !ExitIfTrue; 7068 ExitLimit EL0 = computeExitLimitFromCondCached( 7069 Cache, L, BO->getOperand(0), ExitIfTrue, 7070 ControlsExit && !EitherMayExit, AllowPredicates); 7071 ExitLimit EL1 = computeExitLimitFromCondCached( 7072 Cache, L, BO->getOperand(1), ExitIfTrue, 7073 ControlsExit && !EitherMayExit, AllowPredicates); 7074 const SCEV *BECount = getCouldNotCompute(); 7075 const SCEV *MaxBECount = getCouldNotCompute(); 7076 if (EitherMayExit) { 7077 // Both conditions must be true for the loop to continue executing. 7078 // Choose the less conservative count. 7079 if (EL0.ExactNotTaken == getCouldNotCompute() || 7080 EL1.ExactNotTaken == getCouldNotCompute()) 7081 BECount = getCouldNotCompute(); 7082 else 7083 BECount = 7084 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7085 if (EL0.MaxNotTaken == getCouldNotCompute()) 7086 MaxBECount = EL1.MaxNotTaken; 7087 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7088 MaxBECount = EL0.MaxNotTaken; 7089 else 7090 MaxBECount = 7091 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7092 } else { 7093 // Both conditions must be true at the same time for the loop to exit. 7094 // For now, be conservative. 7095 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7096 MaxBECount = EL0.MaxNotTaken; 7097 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7098 BECount = EL0.ExactNotTaken; 7099 } 7100 7101 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7102 // to be more aggressive when computing BECount than when computing 7103 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7104 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7105 // to not. 7106 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7107 !isa<SCEVCouldNotCompute>(BECount)) 7108 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7109 7110 return ExitLimit(BECount, MaxBECount, false, 7111 {&EL0.Predicates, &EL1.Predicates}); 7112 } 7113 if (BO->getOpcode() == Instruction::Or) { 7114 // Recurse on the operands of the or. 7115 bool EitherMayExit = ExitIfTrue; 7116 ExitLimit EL0 = computeExitLimitFromCondCached( 7117 Cache, L, BO->getOperand(0), ExitIfTrue, 7118 ControlsExit && !EitherMayExit, AllowPredicates); 7119 ExitLimit EL1 = computeExitLimitFromCondCached( 7120 Cache, L, BO->getOperand(1), ExitIfTrue, 7121 ControlsExit && !EitherMayExit, AllowPredicates); 7122 const SCEV *BECount = getCouldNotCompute(); 7123 const SCEV *MaxBECount = getCouldNotCompute(); 7124 if (EitherMayExit) { 7125 // Both conditions must be false for the loop to continue executing. 7126 // Choose the less conservative count. 7127 if (EL0.ExactNotTaken == getCouldNotCompute() || 7128 EL1.ExactNotTaken == getCouldNotCompute()) 7129 BECount = getCouldNotCompute(); 7130 else 7131 BECount = 7132 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7133 if (EL0.MaxNotTaken == getCouldNotCompute()) 7134 MaxBECount = EL1.MaxNotTaken; 7135 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7136 MaxBECount = EL0.MaxNotTaken; 7137 else 7138 MaxBECount = 7139 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7140 } else { 7141 // Both conditions must be false at the same time for the loop to exit. 7142 // For now, be conservative. 7143 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7144 MaxBECount = EL0.MaxNotTaken; 7145 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7146 BECount = EL0.ExactNotTaken; 7147 } 7148 7149 return ExitLimit(BECount, MaxBECount, false, 7150 {&EL0.Predicates, &EL1.Predicates}); 7151 } 7152 } 7153 7154 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7155 // Proceed to the next level to examine the icmp. 7156 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7157 ExitLimit EL = 7158 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7159 if (EL.hasFullInfo() || !AllowPredicates) 7160 return EL; 7161 7162 // Try again, but use SCEV predicates this time. 7163 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7164 /*AllowPredicates=*/true); 7165 } 7166 7167 // Check for a constant condition. These are normally stripped out by 7168 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7169 // preserve the CFG and is temporarily leaving constant conditions 7170 // in place. 7171 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7172 if (ExitIfTrue == !CI->getZExtValue()) 7173 // The backedge is always taken. 7174 return getCouldNotCompute(); 7175 else 7176 // The backedge is never taken. 7177 return getZero(CI->getType()); 7178 } 7179 7180 // If it's not an integer or pointer comparison then compute it the hard way. 7181 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7182 } 7183 7184 ScalarEvolution::ExitLimit 7185 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7186 ICmpInst *ExitCond, 7187 bool ExitIfTrue, 7188 bool ControlsExit, 7189 bool AllowPredicates) { 7190 // If the condition was exit on true, convert the condition to exit on false 7191 ICmpInst::Predicate Pred; 7192 if (!ExitIfTrue) 7193 Pred = ExitCond->getPredicate(); 7194 else 7195 Pred = ExitCond->getInversePredicate(); 7196 const ICmpInst::Predicate OriginalPred = Pred; 7197 7198 // Handle common loops like: for (X = "string"; *X; ++X) 7199 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7200 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7201 ExitLimit ItCnt = 7202 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7203 if (ItCnt.hasAnyInfo()) 7204 return ItCnt; 7205 } 7206 7207 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7208 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7209 7210 // Try to evaluate any dependencies out of the loop. 7211 LHS = getSCEVAtScope(LHS, L); 7212 RHS = getSCEVAtScope(RHS, L); 7213 7214 // At this point, we would like to compute how many iterations of the 7215 // loop the predicate will return true for these inputs. 7216 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7217 // If there is a loop-invariant, force it into the RHS. 7218 std::swap(LHS, RHS); 7219 Pred = ICmpInst::getSwappedPredicate(Pred); 7220 } 7221 7222 // Simplify the operands before analyzing them. 7223 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7224 7225 // If we have a comparison of a chrec against a constant, try to use value 7226 // ranges to answer this query. 7227 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7228 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7229 if (AddRec->getLoop() == L) { 7230 // Form the constant range. 7231 ConstantRange CompRange = 7232 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7233 7234 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7235 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7236 } 7237 7238 switch (Pred) { 7239 case ICmpInst::ICMP_NE: { // while (X != Y) 7240 // Convert to: while (X-Y != 0) 7241 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7242 AllowPredicates); 7243 if (EL.hasAnyInfo()) return EL; 7244 break; 7245 } 7246 case ICmpInst::ICMP_EQ: { // while (X == Y) 7247 // Convert to: while (X-Y == 0) 7248 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7249 if (EL.hasAnyInfo()) return EL; 7250 break; 7251 } 7252 case ICmpInst::ICMP_SLT: 7253 case ICmpInst::ICMP_ULT: { // while (X < Y) 7254 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7255 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7256 AllowPredicates); 7257 if (EL.hasAnyInfo()) return EL; 7258 break; 7259 } 7260 case ICmpInst::ICMP_SGT: 7261 case ICmpInst::ICMP_UGT: { // while (X > Y) 7262 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7263 ExitLimit EL = 7264 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7265 AllowPredicates); 7266 if (EL.hasAnyInfo()) return EL; 7267 break; 7268 } 7269 default: 7270 break; 7271 } 7272 7273 auto *ExhaustiveCount = 7274 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7275 7276 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7277 return ExhaustiveCount; 7278 7279 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7280 ExitCond->getOperand(1), L, OriginalPred); 7281 } 7282 7283 ScalarEvolution::ExitLimit 7284 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7285 SwitchInst *Switch, 7286 BasicBlock *ExitingBlock, 7287 bool ControlsExit) { 7288 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7289 7290 // Give up if the exit is the default dest of a switch. 7291 if (Switch->getDefaultDest() == ExitingBlock) 7292 return getCouldNotCompute(); 7293 7294 assert(L->contains(Switch->getDefaultDest()) && 7295 "Default case must not exit the loop!"); 7296 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7297 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7298 7299 // while (X != Y) --> while (X-Y != 0) 7300 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7301 if (EL.hasAnyInfo()) 7302 return EL; 7303 7304 return getCouldNotCompute(); 7305 } 7306 7307 static ConstantInt * 7308 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7309 ScalarEvolution &SE) { 7310 const SCEV *InVal = SE.getConstant(C); 7311 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7312 assert(isa<SCEVConstant>(Val) && 7313 "Evaluation of SCEV at constant didn't fold correctly?"); 7314 return cast<SCEVConstant>(Val)->getValue(); 7315 } 7316 7317 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7318 /// compute the backedge execution count. 7319 ScalarEvolution::ExitLimit 7320 ScalarEvolution::computeLoadConstantCompareExitLimit( 7321 LoadInst *LI, 7322 Constant *RHS, 7323 const Loop *L, 7324 ICmpInst::Predicate predicate) { 7325 if (LI->isVolatile()) return getCouldNotCompute(); 7326 7327 // Check to see if the loaded pointer is a getelementptr of a global. 7328 // TODO: Use SCEV instead of manually grubbing with GEPs. 7329 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7330 if (!GEP) return getCouldNotCompute(); 7331 7332 // Make sure that it is really a constant global we are gepping, with an 7333 // initializer, and make sure the first IDX is really 0. 7334 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7335 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7336 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7337 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7338 return getCouldNotCompute(); 7339 7340 // Okay, we allow one non-constant index into the GEP instruction. 7341 Value *VarIdx = nullptr; 7342 std::vector<Constant*> Indexes; 7343 unsigned VarIdxNum = 0; 7344 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7345 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7346 Indexes.push_back(CI); 7347 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7348 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7349 VarIdx = GEP->getOperand(i); 7350 VarIdxNum = i-2; 7351 Indexes.push_back(nullptr); 7352 } 7353 7354 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7355 if (!VarIdx) 7356 return getCouldNotCompute(); 7357 7358 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7359 // Check to see if X is a loop variant variable value now. 7360 const SCEV *Idx = getSCEV(VarIdx); 7361 Idx = getSCEVAtScope(Idx, L); 7362 7363 // We can only recognize very limited forms of loop index expressions, in 7364 // particular, only affine AddRec's like {C1,+,C2}. 7365 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7366 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7367 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7368 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7369 return getCouldNotCompute(); 7370 7371 unsigned MaxSteps = MaxBruteForceIterations; 7372 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7373 ConstantInt *ItCst = ConstantInt::get( 7374 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7375 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7376 7377 // Form the GEP offset. 7378 Indexes[VarIdxNum] = Val; 7379 7380 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7381 Indexes); 7382 if (!Result) break; // Cannot compute! 7383 7384 // Evaluate the condition for this iteration. 7385 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7386 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7387 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7388 ++NumArrayLenItCounts; 7389 return getConstant(ItCst); // Found terminating iteration! 7390 } 7391 } 7392 return getCouldNotCompute(); 7393 } 7394 7395 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7396 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7397 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7398 if (!RHS) 7399 return getCouldNotCompute(); 7400 7401 const BasicBlock *Latch = L->getLoopLatch(); 7402 if (!Latch) 7403 return getCouldNotCompute(); 7404 7405 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7406 if (!Predecessor) 7407 return getCouldNotCompute(); 7408 7409 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7410 // Return LHS in OutLHS and shift_opt in OutOpCode. 7411 auto MatchPositiveShift = 7412 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7413 7414 using namespace PatternMatch; 7415 7416 ConstantInt *ShiftAmt; 7417 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7418 OutOpCode = Instruction::LShr; 7419 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7420 OutOpCode = Instruction::AShr; 7421 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7422 OutOpCode = Instruction::Shl; 7423 else 7424 return false; 7425 7426 return ShiftAmt->getValue().isStrictlyPositive(); 7427 }; 7428 7429 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7430 // 7431 // loop: 7432 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7433 // %iv.shifted = lshr i32 %iv, <positive constant> 7434 // 7435 // Return true on a successful match. Return the corresponding PHI node (%iv 7436 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7437 auto MatchShiftRecurrence = 7438 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7439 Optional<Instruction::BinaryOps> PostShiftOpCode; 7440 7441 { 7442 Instruction::BinaryOps OpC; 7443 Value *V; 7444 7445 // If we encounter a shift instruction, "peel off" the shift operation, 7446 // and remember that we did so. Later when we inspect %iv's backedge 7447 // value, we will make sure that the backedge value uses the same 7448 // operation. 7449 // 7450 // Note: the peeled shift operation does not have to be the same 7451 // instruction as the one feeding into the PHI's backedge value. We only 7452 // really care about it being the same *kind* of shift instruction -- 7453 // that's all that is required for our later inferences to hold. 7454 if (MatchPositiveShift(LHS, V, OpC)) { 7455 PostShiftOpCode = OpC; 7456 LHS = V; 7457 } 7458 } 7459 7460 PNOut = dyn_cast<PHINode>(LHS); 7461 if (!PNOut || PNOut->getParent() != L->getHeader()) 7462 return false; 7463 7464 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7465 Value *OpLHS; 7466 7467 return 7468 // The backedge value for the PHI node must be a shift by a positive 7469 // amount 7470 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7471 7472 // of the PHI node itself 7473 OpLHS == PNOut && 7474 7475 // and the kind of shift should be match the kind of shift we peeled 7476 // off, if any. 7477 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7478 }; 7479 7480 PHINode *PN; 7481 Instruction::BinaryOps OpCode; 7482 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7483 return getCouldNotCompute(); 7484 7485 const DataLayout &DL = getDataLayout(); 7486 7487 // The key rationale for this optimization is that for some kinds of shift 7488 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7489 // within a finite number of iterations. If the condition guarding the 7490 // backedge (in the sense that the backedge is taken if the condition is true) 7491 // is false for the value the shift recurrence stabilizes to, then we know 7492 // that the backedge is taken only a finite number of times. 7493 7494 ConstantInt *StableValue = nullptr; 7495 switch (OpCode) { 7496 default: 7497 llvm_unreachable("Impossible case!"); 7498 7499 case Instruction::AShr: { 7500 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7501 // bitwidth(K) iterations. 7502 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7503 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7504 Predecessor->getTerminator(), &DT); 7505 auto *Ty = cast<IntegerType>(RHS->getType()); 7506 if (Known.isNonNegative()) 7507 StableValue = ConstantInt::get(Ty, 0); 7508 else if (Known.isNegative()) 7509 StableValue = ConstantInt::get(Ty, -1, true); 7510 else 7511 return getCouldNotCompute(); 7512 7513 break; 7514 } 7515 case Instruction::LShr: 7516 case Instruction::Shl: 7517 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7518 // stabilize to 0 in at most bitwidth(K) iterations. 7519 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7520 break; 7521 } 7522 7523 auto *Result = 7524 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7525 assert(Result->getType()->isIntegerTy(1) && 7526 "Otherwise cannot be an operand to a branch instruction"); 7527 7528 if (Result->isZeroValue()) { 7529 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7530 const SCEV *UpperBound = 7531 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7532 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7533 } 7534 7535 return getCouldNotCompute(); 7536 } 7537 7538 /// Return true if we can constant fold an instruction of the specified type, 7539 /// assuming that all operands were constants. 7540 static bool CanConstantFold(const Instruction *I) { 7541 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7542 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7543 isa<LoadInst>(I)) 7544 return true; 7545 7546 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7547 if (const Function *F = CI->getCalledFunction()) 7548 return canConstantFoldCallTo(CI, F); 7549 return false; 7550 } 7551 7552 /// Determine whether this instruction can constant evolve within this loop 7553 /// assuming its operands can all constant evolve. 7554 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7555 // An instruction outside of the loop can't be derived from a loop PHI. 7556 if (!L->contains(I)) return false; 7557 7558 if (isa<PHINode>(I)) { 7559 // We don't currently keep track of the control flow needed to evaluate 7560 // PHIs, so we cannot handle PHIs inside of loops. 7561 return L->getHeader() == I->getParent(); 7562 } 7563 7564 // If we won't be able to constant fold this expression even if the operands 7565 // are constants, bail early. 7566 return CanConstantFold(I); 7567 } 7568 7569 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7570 /// recursing through each instruction operand until reaching a loop header phi. 7571 static PHINode * 7572 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7573 DenseMap<Instruction *, PHINode *> &PHIMap, 7574 unsigned Depth) { 7575 if (Depth > MaxConstantEvolvingDepth) 7576 return nullptr; 7577 7578 // Otherwise, we can evaluate this instruction if all of its operands are 7579 // constant or derived from a PHI node themselves. 7580 PHINode *PHI = nullptr; 7581 for (Value *Op : UseInst->operands()) { 7582 if (isa<Constant>(Op)) continue; 7583 7584 Instruction *OpInst = dyn_cast<Instruction>(Op); 7585 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7586 7587 PHINode *P = dyn_cast<PHINode>(OpInst); 7588 if (!P) 7589 // If this operand is already visited, reuse the prior result. 7590 // We may have P != PHI if this is the deepest point at which the 7591 // inconsistent paths meet. 7592 P = PHIMap.lookup(OpInst); 7593 if (!P) { 7594 // Recurse and memoize the results, whether a phi is found or not. 7595 // This recursive call invalidates pointers into PHIMap. 7596 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7597 PHIMap[OpInst] = P; 7598 } 7599 if (!P) 7600 return nullptr; // Not evolving from PHI 7601 if (PHI && PHI != P) 7602 return nullptr; // Evolving from multiple different PHIs. 7603 PHI = P; 7604 } 7605 // This is a expression evolving from a constant PHI! 7606 return PHI; 7607 } 7608 7609 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7610 /// in the loop that V is derived from. We allow arbitrary operations along the 7611 /// way, but the operands of an operation must either be constants or a value 7612 /// derived from a constant PHI. If this expression does not fit with these 7613 /// constraints, return null. 7614 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7615 Instruction *I = dyn_cast<Instruction>(V); 7616 if (!I || !canConstantEvolve(I, L)) return nullptr; 7617 7618 if (PHINode *PN = dyn_cast<PHINode>(I)) 7619 return PN; 7620 7621 // Record non-constant instructions contained by the loop. 7622 DenseMap<Instruction *, PHINode *> PHIMap; 7623 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7624 } 7625 7626 /// EvaluateExpression - Given an expression that passes the 7627 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7628 /// in the loop has the value PHIVal. If we can't fold this expression for some 7629 /// reason, return null. 7630 static Constant *EvaluateExpression(Value *V, const Loop *L, 7631 DenseMap<Instruction *, Constant *> &Vals, 7632 const DataLayout &DL, 7633 const TargetLibraryInfo *TLI) { 7634 // Convenient constant check, but redundant for recursive calls. 7635 if (Constant *C = dyn_cast<Constant>(V)) return C; 7636 Instruction *I = dyn_cast<Instruction>(V); 7637 if (!I) return nullptr; 7638 7639 if (Constant *C = Vals.lookup(I)) return C; 7640 7641 // An instruction inside the loop depends on a value outside the loop that we 7642 // weren't given a mapping for, or a value such as a call inside the loop. 7643 if (!canConstantEvolve(I, L)) return nullptr; 7644 7645 // An unmapped PHI can be due to a branch or another loop inside this loop, 7646 // or due to this not being the initial iteration through a loop where we 7647 // couldn't compute the evolution of this particular PHI last time. 7648 if (isa<PHINode>(I)) return nullptr; 7649 7650 std::vector<Constant*> Operands(I->getNumOperands()); 7651 7652 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7653 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7654 if (!Operand) { 7655 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7656 if (!Operands[i]) return nullptr; 7657 continue; 7658 } 7659 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7660 Vals[Operand] = C; 7661 if (!C) return nullptr; 7662 Operands[i] = C; 7663 } 7664 7665 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7666 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7667 Operands[1], DL, TLI); 7668 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7669 if (!LI->isVolatile()) 7670 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7671 } 7672 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7673 } 7674 7675 7676 // If every incoming value to PN except the one for BB is a specific Constant, 7677 // return that, else return nullptr. 7678 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7679 Constant *IncomingVal = nullptr; 7680 7681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7682 if (PN->getIncomingBlock(i) == BB) 7683 continue; 7684 7685 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7686 if (!CurrentVal) 7687 return nullptr; 7688 7689 if (IncomingVal != CurrentVal) { 7690 if (IncomingVal) 7691 return nullptr; 7692 IncomingVal = CurrentVal; 7693 } 7694 } 7695 7696 return IncomingVal; 7697 } 7698 7699 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7700 /// in the header of its containing loop, we know the loop executes a 7701 /// constant number of times, and the PHI node is just a recurrence 7702 /// involving constants, fold it. 7703 Constant * 7704 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7705 const APInt &BEs, 7706 const Loop *L) { 7707 auto I = ConstantEvolutionLoopExitValue.find(PN); 7708 if (I != ConstantEvolutionLoopExitValue.end()) 7709 return I->second; 7710 7711 if (BEs.ugt(MaxBruteForceIterations)) 7712 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7713 7714 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7715 7716 DenseMap<Instruction *, Constant *> CurrentIterVals; 7717 BasicBlock *Header = L->getHeader(); 7718 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7719 7720 BasicBlock *Latch = L->getLoopLatch(); 7721 if (!Latch) 7722 return nullptr; 7723 7724 for (PHINode &PHI : Header->phis()) { 7725 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7726 CurrentIterVals[&PHI] = StartCST; 7727 } 7728 if (!CurrentIterVals.count(PN)) 7729 return RetVal = nullptr; 7730 7731 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7732 7733 // Execute the loop symbolically to determine the exit value. 7734 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7735 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7736 7737 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7738 unsigned IterationNum = 0; 7739 const DataLayout &DL = getDataLayout(); 7740 for (; ; ++IterationNum) { 7741 if (IterationNum == NumIterations) 7742 return RetVal = CurrentIterVals[PN]; // Got exit value! 7743 7744 // Compute the value of the PHIs for the next iteration. 7745 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7746 DenseMap<Instruction *, Constant *> NextIterVals; 7747 Constant *NextPHI = 7748 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7749 if (!NextPHI) 7750 return nullptr; // Couldn't evaluate! 7751 NextIterVals[PN] = NextPHI; 7752 7753 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7754 7755 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7756 // cease to be able to evaluate one of them or if they stop evolving, 7757 // because that doesn't necessarily prevent us from computing PN. 7758 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7759 for (const auto &I : CurrentIterVals) { 7760 PHINode *PHI = dyn_cast<PHINode>(I.first); 7761 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7762 PHIsToCompute.emplace_back(PHI, I.second); 7763 } 7764 // We use two distinct loops because EvaluateExpression may invalidate any 7765 // iterators into CurrentIterVals. 7766 for (const auto &I : PHIsToCompute) { 7767 PHINode *PHI = I.first; 7768 Constant *&NextPHI = NextIterVals[PHI]; 7769 if (!NextPHI) { // Not already computed. 7770 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7771 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7772 } 7773 if (NextPHI != I.second) 7774 StoppedEvolving = false; 7775 } 7776 7777 // If all entries in CurrentIterVals == NextIterVals then we can stop 7778 // iterating, the loop can't continue to change. 7779 if (StoppedEvolving) 7780 return RetVal = CurrentIterVals[PN]; 7781 7782 CurrentIterVals.swap(NextIterVals); 7783 } 7784 } 7785 7786 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7787 Value *Cond, 7788 bool ExitWhen) { 7789 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7790 if (!PN) return getCouldNotCompute(); 7791 7792 // If the loop is canonicalized, the PHI will have exactly two entries. 7793 // That's the only form we support here. 7794 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7795 7796 DenseMap<Instruction *, Constant *> CurrentIterVals; 7797 BasicBlock *Header = L->getHeader(); 7798 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7799 7800 BasicBlock *Latch = L->getLoopLatch(); 7801 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7802 7803 for (PHINode &PHI : Header->phis()) { 7804 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7805 CurrentIterVals[&PHI] = StartCST; 7806 } 7807 if (!CurrentIterVals.count(PN)) 7808 return getCouldNotCompute(); 7809 7810 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7811 // the loop symbolically to determine when the condition gets a value of 7812 // "ExitWhen". 7813 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7814 const DataLayout &DL = getDataLayout(); 7815 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7816 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7817 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7818 7819 // Couldn't symbolically evaluate. 7820 if (!CondVal) return getCouldNotCompute(); 7821 7822 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7823 ++NumBruteForceTripCountsComputed; 7824 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7825 } 7826 7827 // Update all the PHI nodes for the next iteration. 7828 DenseMap<Instruction *, Constant *> NextIterVals; 7829 7830 // Create a list of which PHIs we need to compute. We want to do this before 7831 // calling EvaluateExpression on them because that may invalidate iterators 7832 // into CurrentIterVals. 7833 SmallVector<PHINode *, 8> PHIsToCompute; 7834 for (const auto &I : CurrentIterVals) { 7835 PHINode *PHI = dyn_cast<PHINode>(I.first); 7836 if (!PHI || PHI->getParent() != Header) continue; 7837 PHIsToCompute.push_back(PHI); 7838 } 7839 for (PHINode *PHI : PHIsToCompute) { 7840 Constant *&NextPHI = NextIterVals[PHI]; 7841 if (NextPHI) continue; // Already computed! 7842 7843 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7844 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7845 } 7846 CurrentIterVals.swap(NextIterVals); 7847 } 7848 7849 // Too many iterations were needed to evaluate. 7850 return getCouldNotCompute(); 7851 } 7852 7853 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7854 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7855 ValuesAtScopes[V]; 7856 // Check to see if we've folded this expression at this loop before. 7857 for (auto &LS : Values) 7858 if (LS.first == L) 7859 return LS.second ? LS.second : V; 7860 7861 Values.emplace_back(L, nullptr); 7862 7863 // Otherwise compute it. 7864 const SCEV *C = computeSCEVAtScope(V, L); 7865 for (auto &LS : reverse(ValuesAtScopes[V])) 7866 if (LS.first == L) { 7867 LS.second = C; 7868 break; 7869 } 7870 return C; 7871 } 7872 7873 /// This builds up a Constant using the ConstantExpr interface. That way, we 7874 /// will return Constants for objects which aren't represented by a 7875 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7876 /// Returns NULL if the SCEV isn't representable as a Constant. 7877 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7878 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7879 case scCouldNotCompute: 7880 case scAddRecExpr: 7881 break; 7882 case scConstant: 7883 return cast<SCEVConstant>(V)->getValue(); 7884 case scUnknown: 7885 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7886 case scSignExtend: { 7887 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7888 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7889 return ConstantExpr::getSExt(CastOp, SS->getType()); 7890 break; 7891 } 7892 case scZeroExtend: { 7893 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7894 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7895 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7896 break; 7897 } 7898 case scTruncate: { 7899 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7900 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7901 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7902 break; 7903 } 7904 case scAddExpr: { 7905 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7906 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7907 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7908 unsigned AS = PTy->getAddressSpace(); 7909 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7910 C = ConstantExpr::getBitCast(C, DestPtrTy); 7911 } 7912 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7913 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7914 if (!C2) return nullptr; 7915 7916 // First pointer! 7917 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7918 unsigned AS = C2->getType()->getPointerAddressSpace(); 7919 std::swap(C, C2); 7920 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7921 // The offsets have been converted to bytes. We can add bytes to an 7922 // i8* by GEP with the byte count in the first index. 7923 C = ConstantExpr::getBitCast(C, DestPtrTy); 7924 } 7925 7926 // Don't bother trying to sum two pointers. We probably can't 7927 // statically compute a load that results from it anyway. 7928 if (C2->getType()->isPointerTy()) 7929 return nullptr; 7930 7931 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7932 if (PTy->getElementType()->isStructTy()) 7933 C2 = ConstantExpr::getIntegerCast( 7934 C2, Type::getInt32Ty(C->getContext()), true); 7935 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7936 } else 7937 C = ConstantExpr::getAdd(C, C2); 7938 } 7939 return C; 7940 } 7941 break; 7942 } 7943 case scMulExpr: { 7944 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7945 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7946 // Don't bother with pointers at all. 7947 if (C->getType()->isPointerTy()) return nullptr; 7948 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7949 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7950 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7951 C = ConstantExpr::getMul(C, C2); 7952 } 7953 return C; 7954 } 7955 break; 7956 } 7957 case scUDivExpr: { 7958 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7959 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7960 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7961 if (LHS->getType() == RHS->getType()) 7962 return ConstantExpr::getUDiv(LHS, RHS); 7963 break; 7964 } 7965 case scSMaxExpr: 7966 case scUMaxExpr: 7967 break; // TODO: smax, umax. 7968 } 7969 return nullptr; 7970 } 7971 7972 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7973 if (isa<SCEVConstant>(V)) return V; 7974 7975 // If this instruction is evolved from a constant-evolving PHI, compute the 7976 // exit value from the loop without using SCEVs. 7977 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7978 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7979 const Loop *LI = this->LI[I->getParent()]; 7980 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7981 if (PHINode *PN = dyn_cast<PHINode>(I)) 7982 if (PN->getParent() == LI->getHeader()) { 7983 // Okay, there is no closed form solution for the PHI node. Check 7984 // to see if the loop that contains it has a known backedge-taken 7985 // count. If so, we may be able to force computation of the exit 7986 // value. 7987 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7988 if (const SCEVConstant *BTCC = 7989 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7990 7991 // This trivial case can show up in some degenerate cases where 7992 // the incoming IR has not yet been fully simplified. 7993 if (BTCC->getValue()->isZero()) { 7994 Value *InitValue = nullptr; 7995 bool MultipleInitValues = false; 7996 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 7997 if (!LI->contains(PN->getIncomingBlock(i))) { 7998 if (!InitValue) 7999 InitValue = PN->getIncomingValue(i); 8000 else if (InitValue != PN->getIncomingValue(i)) { 8001 MultipleInitValues = true; 8002 break; 8003 } 8004 } 8005 if (!MultipleInitValues && InitValue) 8006 return getSCEV(InitValue); 8007 } 8008 } 8009 // Okay, we know how many times the containing loop executes. If 8010 // this is a constant evolving PHI node, get the final value at 8011 // the specified iteration number. 8012 Constant *RV = 8013 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8014 if (RV) return getSCEV(RV); 8015 } 8016 } 8017 8018 // Okay, this is an expression that we cannot symbolically evaluate 8019 // into a SCEV. Check to see if it's possible to symbolically evaluate 8020 // the arguments into constants, and if so, try to constant propagate the 8021 // result. This is particularly useful for computing loop exit values. 8022 if (CanConstantFold(I)) { 8023 SmallVector<Constant *, 4> Operands; 8024 bool MadeImprovement = false; 8025 for (Value *Op : I->operands()) { 8026 if (Constant *C = dyn_cast<Constant>(Op)) { 8027 Operands.push_back(C); 8028 continue; 8029 } 8030 8031 // If any of the operands is non-constant and if they are 8032 // non-integer and non-pointer, don't even try to analyze them 8033 // with scev techniques. 8034 if (!isSCEVable(Op->getType())) 8035 return V; 8036 8037 const SCEV *OrigV = getSCEV(Op); 8038 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8039 MadeImprovement |= OrigV != OpV; 8040 8041 Constant *C = BuildConstantFromSCEV(OpV); 8042 if (!C) return V; 8043 if (C->getType() != Op->getType()) 8044 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8045 Op->getType(), 8046 false), 8047 C, Op->getType()); 8048 Operands.push_back(C); 8049 } 8050 8051 // Check to see if getSCEVAtScope actually made an improvement. 8052 if (MadeImprovement) { 8053 Constant *C = nullptr; 8054 const DataLayout &DL = getDataLayout(); 8055 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8056 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8057 Operands[1], DL, &TLI); 8058 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8059 if (!LI->isVolatile()) 8060 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8061 } else 8062 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8063 if (!C) return V; 8064 return getSCEV(C); 8065 } 8066 } 8067 } 8068 8069 // This is some other type of SCEVUnknown, just return it. 8070 return V; 8071 } 8072 8073 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8074 // Avoid performing the look-up in the common case where the specified 8075 // expression has no loop-variant portions. 8076 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8077 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8078 if (OpAtScope != Comm->getOperand(i)) { 8079 // Okay, at least one of these operands is loop variant but might be 8080 // foldable. Build a new instance of the folded commutative expression. 8081 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8082 Comm->op_begin()+i); 8083 NewOps.push_back(OpAtScope); 8084 8085 for (++i; i != e; ++i) { 8086 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8087 NewOps.push_back(OpAtScope); 8088 } 8089 if (isa<SCEVAddExpr>(Comm)) 8090 return getAddExpr(NewOps); 8091 if (isa<SCEVMulExpr>(Comm)) 8092 return getMulExpr(NewOps); 8093 if (isa<SCEVSMaxExpr>(Comm)) 8094 return getSMaxExpr(NewOps); 8095 if (isa<SCEVUMaxExpr>(Comm)) 8096 return getUMaxExpr(NewOps); 8097 llvm_unreachable("Unknown commutative SCEV type!"); 8098 } 8099 } 8100 // If we got here, all operands are loop invariant. 8101 return Comm; 8102 } 8103 8104 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8105 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8106 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8107 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8108 return Div; // must be loop invariant 8109 return getUDivExpr(LHS, RHS); 8110 } 8111 8112 // If this is a loop recurrence for a loop that does not contain L, then we 8113 // are dealing with the final value computed by the loop. 8114 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8115 // First, attempt to evaluate each operand. 8116 // Avoid performing the look-up in the common case where the specified 8117 // expression has no loop-variant portions. 8118 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8119 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8120 if (OpAtScope == AddRec->getOperand(i)) 8121 continue; 8122 8123 // Okay, at least one of these operands is loop variant but might be 8124 // foldable. Build a new instance of the folded commutative expression. 8125 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8126 AddRec->op_begin()+i); 8127 NewOps.push_back(OpAtScope); 8128 for (++i; i != e; ++i) 8129 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8130 8131 const SCEV *FoldedRec = 8132 getAddRecExpr(NewOps, AddRec->getLoop(), 8133 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8134 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8135 // The addrec may be folded to a nonrecurrence, for example, if the 8136 // induction variable is multiplied by zero after constant folding. Go 8137 // ahead and return the folded value. 8138 if (!AddRec) 8139 return FoldedRec; 8140 break; 8141 } 8142 8143 // If the scope is outside the addrec's loop, evaluate it by using the 8144 // loop exit value of the addrec. 8145 if (!AddRec->getLoop()->contains(L)) { 8146 // To evaluate this recurrence, we need to know how many times the AddRec 8147 // loop iterates. Compute this now. 8148 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8149 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8150 8151 // Then, evaluate the AddRec. 8152 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8153 } 8154 8155 return AddRec; 8156 } 8157 8158 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8159 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8160 if (Op == Cast->getOperand()) 8161 return Cast; // must be loop invariant 8162 return getZeroExtendExpr(Op, Cast->getType()); 8163 } 8164 8165 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8166 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8167 if (Op == Cast->getOperand()) 8168 return Cast; // must be loop invariant 8169 return getSignExtendExpr(Op, Cast->getType()); 8170 } 8171 8172 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8173 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8174 if (Op == Cast->getOperand()) 8175 return Cast; // must be loop invariant 8176 return getTruncateExpr(Op, Cast->getType()); 8177 } 8178 8179 llvm_unreachable("Unknown SCEV type!"); 8180 } 8181 8182 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8183 return getSCEVAtScope(getSCEV(V), L); 8184 } 8185 8186 /// Finds the minimum unsigned root of the following equation: 8187 /// 8188 /// A * X = B (mod N) 8189 /// 8190 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8191 /// A and B isn't important. 8192 /// 8193 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8194 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8195 ScalarEvolution &SE) { 8196 uint32_t BW = A.getBitWidth(); 8197 assert(BW == SE.getTypeSizeInBits(B->getType())); 8198 assert(A != 0 && "A must be non-zero."); 8199 8200 // 1. D = gcd(A, N) 8201 // 8202 // The gcd of A and N may have only one prime factor: 2. The number of 8203 // trailing zeros in A is its multiplicity 8204 uint32_t Mult2 = A.countTrailingZeros(); 8205 // D = 2^Mult2 8206 8207 // 2. Check if B is divisible by D. 8208 // 8209 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8210 // is not less than multiplicity of this prime factor for D. 8211 if (SE.GetMinTrailingZeros(B) < Mult2) 8212 return SE.getCouldNotCompute(); 8213 8214 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8215 // modulo (N / D). 8216 // 8217 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8218 // (N / D) in general. The inverse itself always fits into BW bits, though, 8219 // so we immediately truncate it. 8220 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8221 APInt Mod(BW + 1, 0); 8222 Mod.setBit(BW - Mult2); // Mod = N / D 8223 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8224 8225 // 4. Compute the minimum unsigned root of the equation: 8226 // I * (B / D) mod (N / D) 8227 // To simplify the computation, we factor out the divide by D: 8228 // (I * B mod N) / D 8229 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8230 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8231 } 8232 8233 /// Find the roots of the quadratic equation for the given quadratic chrec 8234 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 8235 /// two SCEVCouldNotCompute objects. 8236 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 8237 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8238 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8239 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8240 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8241 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8242 8243 // We currently can only solve this if the coefficients are constants. 8244 if (!LC || !MC || !NC) 8245 return None; 8246 8247 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 8248 const APInt &L = LC->getAPInt(); 8249 const APInt &M = MC->getAPInt(); 8250 const APInt &N = NC->getAPInt(); 8251 APInt Two(BitWidth, 2); 8252 8253 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 8254 8255 // The A coefficient is N/2 8256 APInt A = N.sdiv(Two); 8257 8258 // The B coefficient is M-N/2 8259 APInt B = M; 8260 B -= A; // A is the same as N/2. 8261 8262 // The C coefficient is L. 8263 const APInt& C = L; 8264 8265 // Compute the B^2-4ac term. 8266 APInt SqrtTerm = B; 8267 SqrtTerm *= B; 8268 SqrtTerm -= 4 * (A * C); 8269 8270 if (SqrtTerm.isNegative()) { 8271 // The loop is provably infinite. 8272 return None; 8273 } 8274 8275 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 8276 // integer value or else APInt::sqrt() will assert. 8277 APInt SqrtVal = SqrtTerm.sqrt(); 8278 8279 // Compute the two solutions for the quadratic formula. 8280 // The divisions must be performed as signed divisions. 8281 APInt NegB = -std::move(B); 8282 APInt TwoA = std::move(A); 8283 TwoA <<= 1; 8284 if (TwoA.isNullValue()) 8285 return None; 8286 8287 LLVMContext &Context = SE.getContext(); 8288 8289 ConstantInt *Solution1 = 8290 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 8291 ConstantInt *Solution2 = 8292 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 8293 8294 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 8295 cast<SCEVConstant>(SE.getConstant(Solution2))); 8296 } 8297 8298 ScalarEvolution::ExitLimit 8299 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8300 bool AllowPredicates) { 8301 8302 // This is only used for loops with a "x != y" exit test. The exit condition 8303 // is now expressed as a single expression, V = x-y. So the exit test is 8304 // effectively V != 0. We know and take advantage of the fact that this 8305 // expression only being used in a comparison by zero context. 8306 8307 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8308 // If the value is a constant 8309 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8310 // If the value is already zero, the branch will execute zero times. 8311 if (C->getValue()->isZero()) return C; 8312 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8313 } 8314 8315 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 8316 if (!AddRec && AllowPredicates) 8317 // Try to make this an AddRec using runtime tests, in the first X 8318 // iterations of this loop, where X is the SCEV expression found by the 8319 // algorithm below. 8320 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8321 8322 if (!AddRec || AddRec->getLoop() != L) 8323 return getCouldNotCompute(); 8324 8325 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8326 // the quadratic equation to solve it. 8327 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8328 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 8329 const SCEVConstant *R1 = Roots->first; 8330 const SCEVConstant *R2 = Roots->second; 8331 // Pick the smallest positive root value. 8332 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8333 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8334 if (!CB->getZExtValue()) 8335 std::swap(R1, R2); // R1 is the minimum root now. 8336 8337 // We can only use this value if the chrec ends up with an exact zero 8338 // value at this index. When solving for "X*X != 5", for example, we 8339 // should not accept a root of 2. 8340 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 8341 if (Val->isZero()) 8342 // We found a quadratic root! 8343 return ExitLimit(R1, R1, false, Predicates); 8344 } 8345 } 8346 return getCouldNotCompute(); 8347 } 8348 8349 // Otherwise we can only handle this if it is affine. 8350 if (!AddRec->isAffine()) 8351 return getCouldNotCompute(); 8352 8353 // If this is an affine expression, the execution count of this branch is 8354 // the minimum unsigned root of the following equation: 8355 // 8356 // Start + Step*N = 0 (mod 2^BW) 8357 // 8358 // equivalent to: 8359 // 8360 // Step*N = -Start (mod 2^BW) 8361 // 8362 // where BW is the common bit width of Start and Step. 8363 8364 // Get the initial value for the loop. 8365 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8366 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8367 8368 // For now we handle only constant steps. 8369 // 8370 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8371 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8372 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8373 // We have not yet seen any such cases. 8374 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8375 if (!StepC || StepC->getValue()->isZero()) 8376 return getCouldNotCompute(); 8377 8378 // For positive steps (counting up until unsigned overflow): 8379 // N = -Start/Step (as unsigned) 8380 // For negative steps (counting down to zero): 8381 // N = Start/-Step 8382 // First compute the unsigned distance from zero in the direction of Step. 8383 bool CountDown = StepC->getAPInt().isNegative(); 8384 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8385 8386 // Handle unitary steps, which cannot wraparound. 8387 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8388 // N = Distance (as unsigned) 8389 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8390 APInt MaxBECount = getUnsignedRangeMax(Distance); 8391 8392 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8393 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8394 // case, and see if we can improve the bound. 8395 // 8396 // Explicitly handling this here is necessary because getUnsignedRange 8397 // isn't context-sensitive; it doesn't know that we only care about the 8398 // range inside the loop. 8399 const SCEV *Zero = getZero(Distance->getType()); 8400 const SCEV *One = getOne(Distance->getType()); 8401 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8402 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8403 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8404 // as "unsigned_max(Distance + 1) - 1". 8405 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8406 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8407 } 8408 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8409 } 8410 8411 // If the condition controls loop exit (the loop exits only if the expression 8412 // is true) and the addition is no-wrap we can use unsigned divide to 8413 // compute the backedge count. In this case, the step may not divide the 8414 // distance, but we don't care because if the condition is "missed" the loop 8415 // will have undefined behavior due to wrapping. 8416 if (ControlsExit && AddRec->hasNoSelfWrap() && 8417 loopHasNoAbnormalExits(AddRec->getLoop())) { 8418 const SCEV *Exact = 8419 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8420 const SCEV *Max = 8421 Exact == getCouldNotCompute() 8422 ? Exact 8423 : getConstant(getUnsignedRangeMax(Exact)); 8424 return ExitLimit(Exact, Max, false, Predicates); 8425 } 8426 8427 // Solve the general equation. 8428 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8429 getNegativeSCEV(Start), *this); 8430 const SCEV *M = E == getCouldNotCompute() 8431 ? E 8432 : getConstant(getUnsignedRangeMax(E)); 8433 return ExitLimit(E, M, false, Predicates); 8434 } 8435 8436 ScalarEvolution::ExitLimit 8437 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8438 // Loops that look like: while (X == 0) are very strange indeed. We don't 8439 // handle them yet except for the trivial case. This could be expanded in the 8440 // future as needed. 8441 8442 // If the value is a constant, check to see if it is known to be non-zero 8443 // already. If so, the backedge will execute zero times. 8444 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8445 if (!C->getValue()->isZero()) 8446 return getZero(C->getType()); 8447 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8448 } 8449 8450 // We could implement others, but I really doubt anyone writes loops like 8451 // this, and if they did, they would already be constant folded. 8452 return getCouldNotCompute(); 8453 } 8454 8455 std::pair<BasicBlock *, BasicBlock *> 8456 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8457 // If the block has a unique predecessor, then there is no path from the 8458 // predecessor to the block that does not go through the direct edge 8459 // from the predecessor to the block. 8460 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8461 return {Pred, BB}; 8462 8463 // A loop's header is defined to be a block that dominates the loop. 8464 // If the header has a unique predecessor outside the loop, it must be 8465 // a block that has exactly one successor that can reach the loop. 8466 if (Loop *L = LI.getLoopFor(BB)) 8467 return {L->getLoopPredecessor(), L->getHeader()}; 8468 8469 return {nullptr, nullptr}; 8470 } 8471 8472 /// SCEV structural equivalence is usually sufficient for testing whether two 8473 /// expressions are equal, however for the purposes of looking for a condition 8474 /// guarding a loop, it can be useful to be a little more general, since a 8475 /// front-end may have replicated the controlling expression. 8476 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8477 // Quick check to see if they are the same SCEV. 8478 if (A == B) return true; 8479 8480 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8481 // Not all instructions that are "identical" compute the same value. For 8482 // instance, two distinct alloca instructions allocating the same type are 8483 // identical and do not read memory; but compute distinct values. 8484 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8485 }; 8486 8487 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8488 // two different instructions with the same value. Check for this case. 8489 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8490 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8491 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8492 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8493 if (ComputesEqualValues(AI, BI)) 8494 return true; 8495 8496 // Otherwise assume they may have a different value. 8497 return false; 8498 } 8499 8500 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8501 const SCEV *&LHS, const SCEV *&RHS, 8502 unsigned Depth) { 8503 bool Changed = false; 8504 8505 // If we hit the max recursion limit bail out. 8506 if (Depth >= 3) 8507 return false; 8508 8509 // Canonicalize a constant to the right side. 8510 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8511 // Check for both operands constant. 8512 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8513 if (ConstantExpr::getICmp(Pred, 8514 LHSC->getValue(), 8515 RHSC->getValue())->isNullValue()) 8516 goto trivially_false; 8517 else 8518 goto trivially_true; 8519 } 8520 // Otherwise swap the operands to put the constant on the right. 8521 std::swap(LHS, RHS); 8522 Pred = ICmpInst::getSwappedPredicate(Pred); 8523 Changed = true; 8524 } 8525 8526 // If we're comparing an addrec with a value which is loop-invariant in the 8527 // addrec's loop, put the addrec on the left. Also make a dominance check, 8528 // as both operands could be addrecs loop-invariant in each other's loop. 8529 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8530 const Loop *L = AR->getLoop(); 8531 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8532 std::swap(LHS, RHS); 8533 Pred = ICmpInst::getSwappedPredicate(Pred); 8534 Changed = true; 8535 } 8536 } 8537 8538 // If there's a constant operand, canonicalize comparisons with boundary 8539 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8540 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8541 const APInt &RA = RC->getAPInt(); 8542 8543 bool SimplifiedByConstantRange = false; 8544 8545 if (!ICmpInst::isEquality(Pred)) { 8546 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8547 if (ExactCR.isFullSet()) 8548 goto trivially_true; 8549 else if (ExactCR.isEmptySet()) 8550 goto trivially_false; 8551 8552 APInt NewRHS; 8553 CmpInst::Predicate NewPred; 8554 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8555 ICmpInst::isEquality(NewPred)) { 8556 // We were able to convert an inequality to an equality. 8557 Pred = NewPred; 8558 RHS = getConstant(NewRHS); 8559 Changed = SimplifiedByConstantRange = true; 8560 } 8561 } 8562 8563 if (!SimplifiedByConstantRange) { 8564 switch (Pred) { 8565 default: 8566 break; 8567 case ICmpInst::ICMP_EQ: 8568 case ICmpInst::ICMP_NE: 8569 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8570 if (!RA) 8571 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8572 if (const SCEVMulExpr *ME = 8573 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8574 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8575 ME->getOperand(0)->isAllOnesValue()) { 8576 RHS = AE->getOperand(1); 8577 LHS = ME->getOperand(1); 8578 Changed = true; 8579 } 8580 break; 8581 8582 8583 // The "Should have been caught earlier!" messages refer to the fact 8584 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8585 // should have fired on the corresponding cases, and canonicalized the 8586 // check to trivially_true or trivially_false. 8587 8588 case ICmpInst::ICMP_UGE: 8589 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8590 Pred = ICmpInst::ICMP_UGT; 8591 RHS = getConstant(RA - 1); 8592 Changed = true; 8593 break; 8594 case ICmpInst::ICMP_ULE: 8595 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8596 Pred = ICmpInst::ICMP_ULT; 8597 RHS = getConstant(RA + 1); 8598 Changed = true; 8599 break; 8600 case ICmpInst::ICMP_SGE: 8601 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8602 Pred = ICmpInst::ICMP_SGT; 8603 RHS = getConstant(RA - 1); 8604 Changed = true; 8605 break; 8606 case ICmpInst::ICMP_SLE: 8607 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8608 Pred = ICmpInst::ICMP_SLT; 8609 RHS = getConstant(RA + 1); 8610 Changed = true; 8611 break; 8612 } 8613 } 8614 } 8615 8616 // Check for obvious equality. 8617 if (HasSameValue(LHS, RHS)) { 8618 if (ICmpInst::isTrueWhenEqual(Pred)) 8619 goto trivially_true; 8620 if (ICmpInst::isFalseWhenEqual(Pred)) 8621 goto trivially_false; 8622 } 8623 8624 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8625 // adding or subtracting 1 from one of the operands. 8626 switch (Pred) { 8627 case ICmpInst::ICMP_SLE: 8628 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8629 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8630 SCEV::FlagNSW); 8631 Pred = ICmpInst::ICMP_SLT; 8632 Changed = true; 8633 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8634 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8635 SCEV::FlagNSW); 8636 Pred = ICmpInst::ICMP_SLT; 8637 Changed = true; 8638 } 8639 break; 8640 case ICmpInst::ICMP_SGE: 8641 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8642 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8643 SCEV::FlagNSW); 8644 Pred = ICmpInst::ICMP_SGT; 8645 Changed = true; 8646 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8647 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8648 SCEV::FlagNSW); 8649 Pred = ICmpInst::ICMP_SGT; 8650 Changed = true; 8651 } 8652 break; 8653 case ICmpInst::ICMP_ULE: 8654 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8655 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8656 SCEV::FlagNUW); 8657 Pred = ICmpInst::ICMP_ULT; 8658 Changed = true; 8659 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8660 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8661 Pred = ICmpInst::ICMP_ULT; 8662 Changed = true; 8663 } 8664 break; 8665 case ICmpInst::ICMP_UGE: 8666 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8667 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8668 Pred = ICmpInst::ICMP_UGT; 8669 Changed = true; 8670 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8671 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8672 SCEV::FlagNUW); 8673 Pred = ICmpInst::ICMP_UGT; 8674 Changed = true; 8675 } 8676 break; 8677 default: 8678 break; 8679 } 8680 8681 // TODO: More simplifications are possible here. 8682 8683 // Recursively simplify until we either hit a recursion limit or nothing 8684 // changes. 8685 if (Changed) 8686 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8687 8688 return Changed; 8689 8690 trivially_true: 8691 // Return 0 == 0. 8692 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8693 Pred = ICmpInst::ICMP_EQ; 8694 return true; 8695 8696 trivially_false: 8697 // Return 0 != 0. 8698 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8699 Pred = ICmpInst::ICMP_NE; 8700 return true; 8701 } 8702 8703 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8704 return getSignedRangeMax(S).isNegative(); 8705 } 8706 8707 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8708 return getSignedRangeMin(S).isStrictlyPositive(); 8709 } 8710 8711 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8712 return !getSignedRangeMin(S).isNegative(); 8713 } 8714 8715 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8716 return !getSignedRangeMax(S).isStrictlyPositive(); 8717 } 8718 8719 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8720 return isKnownNegative(S) || isKnownPositive(S); 8721 } 8722 8723 std::pair<const SCEV *, const SCEV *> 8724 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 8725 // Compute SCEV on entry of loop L. 8726 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 8727 if (Start == getCouldNotCompute()) 8728 return { Start, Start }; 8729 // Compute post increment SCEV for loop L. 8730 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 8731 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 8732 return { Start, PostInc }; 8733 } 8734 8735 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 8736 const SCEV *LHS, const SCEV *RHS) { 8737 // First collect all loops. 8738 SmallPtrSet<const Loop *, 8> LoopsUsed; 8739 getUsedLoops(LHS, LoopsUsed); 8740 getUsedLoops(RHS, LoopsUsed); 8741 8742 if (LoopsUsed.empty()) 8743 return false; 8744 8745 // Domination relationship must be a linear order on collected loops. 8746 #ifndef NDEBUG 8747 for (auto *L1 : LoopsUsed) 8748 for (auto *L2 : LoopsUsed) 8749 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 8750 DT.dominates(L2->getHeader(), L1->getHeader())) && 8751 "Domination relationship is not a linear order"); 8752 #endif 8753 8754 const Loop *MDL = 8755 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 8756 [&](const Loop *L1, const Loop *L2) { 8757 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 8758 }); 8759 8760 // Get init and post increment value for LHS. 8761 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 8762 // if LHS contains unknown non-invariant SCEV then bail out. 8763 if (SplitLHS.first == getCouldNotCompute()) 8764 return false; 8765 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 8766 // Get init and post increment value for RHS. 8767 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 8768 // if RHS contains unknown non-invariant SCEV then bail out. 8769 if (SplitRHS.first == getCouldNotCompute()) 8770 return false; 8771 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 8772 // It is possible that init SCEV contains an invariant load but it does 8773 // not dominate MDL and is not available at MDL loop entry, so we should 8774 // check it here. 8775 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 8776 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 8777 return false; 8778 8779 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && 8780 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 8781 SplitRHS.second); 8782 } 8783 8784 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 8785 const SCEV *LHS, const SCEV *RHS) { 8786 // Canonicalize the inputs first. 8787 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8788 8789 if (isKnownViaInduction(Pred, LHS, RHS)) 8790 return true; 8791 8792 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 8793 return true; 8794 8795 // Otherwise see what can be done with some simple reasoning. 8796 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 8797 } 8798 8799 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 8800 const SCEVAddRecExpr *LHS, 8801 const SCEV *RHS) { 8802 const Loop *L = LHS->getLoop(); 8803 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 8804 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 8805 } 8806 8807 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 8808 ICmpInst::Predicate Pred, 8809 bool &Increasing) { 8810 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 8811 8812 #ifndef NDEBUG 8813 // Verify an invariant: inverting the predicate should turn a monotonically 8814 // increasing change to a monotonically decreasing one, and vice versa. 8815 bool IncreasingSwapped; 8816 bool ResultSwapped = isMonotonicPredicateImpl( 8817 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 8818 8819 assert(Result == ResultSwapped && "should be able to analyze both!"); 8820 if (ResultSwapped) 8821 assert(Increasing == !IncreasingSwapped && 8822 "monotonicity should flip as we flip the predicate"); 8823 #endif 8824 8825 return Result; 8826 } 8827 8828 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 8829 ICmpInst::Predicate Pred, 8830 bool &Increasing) { 8831 8832 // A zero step value for LHS means the induction variable is essentially a 8833 // loop invariant value. We don't really depend on the predicate actually 8834 // flipping from false to true (for increasing predicates, and the other way 8835 // around for decreasing predicates), all we care about is that *if* the 8836 // predicate changes then it only changes from false to true. 8837 // 8838 // A zero step value in itself is not very useful, but there may be places 8839 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 8840 // as general as possible. 8841 8842 switch (Pred) { 8843 default: 8844 return false; // Conservative answer 8845 8846 case ICmpInst::ICMP_UGT: 8847 case ICmpInst::ICMP_UGE: 8848 case ICmpInst::ICMP_ULT: 8849 case ICmpInst::ICMP_ULE: 8850 if (!LHS->hasNoUnsignedWrap()) 8851 return false; 8852 8853 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 8854 return true; 8855 8856 case ICmpInst::ICMP_SGT: 8857 case ICmpInst::ICMP_SGE: 8858 case ICmpInst::ICMP_SLT: 8859 case ICmpInst::ICMP_SLE: { 8860 if (!LHS->hasNoSignedWrap()) 8861 return false; 8862 8863 const SCEV *Step = LHS->getStepRecurrence(*this); 8864 8865 if (isKnownNonNegative(Step)) { 8866 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8867 return true; 8868 } 8869 8870 if (isKnownNonPositive(Step)) { 8871 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8872 return true; 8873 } 8874 8875 return false; 8876 } 8877 8878 } 8879 8880 llvm_unreachable("switch has default clause!"); 8881 } 8882 8883 bool ScalarEvolution::isLoopInvariantPredicate( 8884 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8885 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8886 const SCEV *&InvariantRHS) { 8887 8888 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8889 if (!isLoopInvariant(RHS, L)) { 8890 if (!isLoopInvariant(LHS, L)) 8891 return false; 8892 8893 std::swap(LHS, RHS); 8894 Pred = ICmpInst::getSwappedPredicate(Pred); 8895 } 8896 8897 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8898 if (!ArLHS || ArLHS->getLoop() != L) 8899 return false; 8900 8901 bool Increasing; 8902 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8903 return false; 8904 8905 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8906 // true as the loop iterates, and the backedge is control dependent on 8907 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8908 // 8909 // * if the predicate was false in the first iteration then the predicate 8910 // is never evaluated again, since the loop exits without taking the 8911 // backedge. 8912 // * if the predicate was true in the first iteration then it will 8913 // continue to be true for all future iterations since it is 8914 // monotonically increasing. 8915 // 8916 // For both the above possibilities, we can replace the loop varying 8917 // predicate with its value on the first iteration of the loop (which is 8918 // loop invariant). 8919 // 8920 // A similar reasoning applies for a monotonically decreasing predicate, by 8921 // replacing true with false and false with true in the above two bullets. 8922 8923 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8924 8925 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8926 return false; 8927 8928 InvariantPred = Pred; 8929 InvariantLHS = ArLHS->getStart(); 8930 InvariantRHS = RHS; 8931 return true; 8932 } 8933 8934 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8935 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8936 if (HasSameValue(LHS, RHS)) 8937 return ICmpInst::isTrueWhenEqual(Pred); 8938 8939 // This code is split out from isKnownPredicate because it is called from 8940 // within isLoopEntryGuardedByCond. 8941 8942 auto CheckRanges = 8943 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8944 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8945 .contains(RangeLHS); 8946 }; 8947 8948 // The check at the top of the function catches the case where the values are 8949 // known to be equal. 8950 if (Pred == CmpInst::ICMP_EQ) 8951 return false; 8952 8953 if (Pred == CmpInst::ICMP_NE) 8954 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8955 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8956 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8957 8958 if (CmpInst::isSigned(Pred)) 8959 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8960 8961 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8962 } 8963 8964 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8965 const SCEV *LHS, 8966 const SCEV *RHS) { 8967 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8968 // Return Y via OutY. 8969 auto MatchBinaryAddToConst = 8970 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 8971 SCEV::NoWrapFlags ExpectedFlags) { 8972 const SCEV *NonConstOp, *ConstOp; 8973 SCEV::NoWrapFlags FlagsPresent; 8974 8975 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 8976 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 8977 return false; 8978 8979 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 8980 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 8981 }; 8982 8983 APInt C; 8984 8985 switch (Pred) { 8986 default: 8987 break; 8988 8989 case ICmpInst::ICMP_SGE: 8990 std::swap(LHS, RHS); 8991 LLVM_FALLTHROUGH; 8992 case ICmpInst::ICMP_SLE: 8993 // X s<= (X + C)<nsw> if C >= 0 8994 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 8995 return true; 8996 8997 // (X + C)<nsw> s<= X if C <= 0 8998 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 8999 !C.isStrictlyPositive()) 9000 return true; 9001 break; 9002 9003 case ICmpInst::ICMP_SGT: 9004 std::swap(LHS, RHS); 9005 LLVM_FALLTHROUGH; 9006 case ICmpInst::ICMP_SLT: 9007 // X s< (X + C)<nsw> if C > 0 9008 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9009 C.isStrictlyPositive()) 9010 return true; 9011 9012 // (X + C)<nsw> s< X if C < 0 9013 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9014 return true; 9015 break; 9016 } 9017 9018 return false; 9019 } 9020 9021 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9022 const SCEV *LHS, 9023 const SCEV *RHS) { 9024 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9025 return false; 9026 9027 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9028 // the stack can result in exponential time complexity. 9029 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9030 9031 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9032 // 9033 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9034 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9035 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9036 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9037 // use isKnownPredicate later if needed. 9038 return isKnownNonNegative(RHS) && 9039 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9040 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9041 } 9042 9043 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9044 ICmpInst::Predicate Pred, 9045 const SCEV *LHS, const SCEV *RHS) { 9046 // No need to even try if we know the module has no guards. 9047 if (!HasGuards) 9048 return false; 9049 9050 return any_of(*BB, [&](Instruction &I) { 9051 using namespace llvm::PatternMatch; 9052 9053 Value *Condition; 9054 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9055 m_Value(Condition))) && 9056 isImpliedCond(Pred, LHS, RHS, Condition, false); 9057 }); 9058 } 9059 9060 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9061 /// protected by a conditional between LHS and RHS. This is used to 9062 /// to eliminate casts. 9063 bool 9064 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9065 ICmpInst::Predicate Pred, 9066 const SCEV *LHS, const SCEV *RHS) { 9067 // Interpret a null as meaning no loop, where there is obviously no guard 9068 // (interprocedural conditions notwithstanding). 9069 if (!L) return true; 9070 9071 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9072 return true; 9073 9074 BasicBlock *Latch = L->getLoopLatch(); 9075 if (!Latch) 9076 return false; 9077 9078 BranchInst *LoopContinuePredicate = 9079 dyn_cast<BranchInst>(Latch->getTerminator()); 9080 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9081 isImpliedCond(Pred, LHS, RHS, 9082 LoopContinuePredicate->getCondition(), 9083 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9084 return true; 9085 9086 // We don't want more than one activation of the following loops on the stack 9087 // -- that can lead to O(n!) time complexity. 9088 if (WalkingBEDominatingConds) 9089 return false; 9090 9091 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9092 9093 // See if we can exploit a trip count to prove the predicate. 9094 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9095 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9096 if (LatchBECount != getCouldNotCompute()) { 9097 // We know that Latch branches back to the loop header exactly 9098 // LatchBECount times. This means the backdege condition at Latch is 9099 // equivalent to "{0,+,1} u< LatchBECount". 9100 Type *Ty = LatchBECount->getType(); 9101 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9102 const SCEV *LoopCounter = 9103 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9104 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9105 LatchBECount)) 9106 return true; 9107 } 9108 9109 // Check conditions due to any @llvm.assume intrinsics. 9110 for (auto &AssumeVH : AC.assumptions()) { 9111 if (!AssumeVH) 9112 continue; 9113 auto *CI = cast<CallInst>(AssumeVH); 9114 if (!DT.dominates(CI, Latch->getTerminator())) 9115 continue; 9116 9117 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9118 return true; 9119 } 9120 9121 // If the loop is not reachable from the entry block, we risk running into an 9122 // infinite loop as we walk up into the dom tree. These loops do not matter 9123 // anyway, so we just return a conservative answer when we see them. 9124 if (!DT.isReachableFromEntry(L->getHeader())) 9125 return false; 9126 9127 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9128 return true; 9129 9130 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9131 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9132 assert(DTN && "should reach the loop header before reaching the root!"); 9133 9134 BasicBlock *BB = DTN->getBlock(); 9135 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9136 return true; 9137 9138 BasicBlock *PBB = BB->getSinglePredecessor(); 9139 if (!PBB) 9140 continue; 9141 9142 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9143 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9144 continue; 9145 9146 Value *Condition = ContinuePredicate->getCondition(); 9147 9148 // If we have an edge `E` within the loop body that dominates the only 9149 // latch, the condition guarding `E` also guards the backedge. This 9150 // reasoning works only for loops with a single latch. 9151 9152 BasicBlockEdge DominatingEdge(PBB, BB); 9153 if (DominatingEdge.isSingleEdge()) { 9154 // We're constructively (and conservatively) enumerating edges within the 9155 // loop body that dominate the latch. The dominator tree better agree 9156 // with us on this: 9157 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9158 9159 if (isImpliedCond(Pred, LHS, RHS, Condition, 9160 BB != ContinuePredicate->getSuccessor(0))) 9161 return true; 9162 } 9163 } 9164 9165 return false; 9166 } 9167 9168 bool 9169 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9170 ICmpInst::Predicate Pred, 9171 const SCEV *LHS, const SCEV *RHS) { 9172 // Interpret a null as meaning no loop, where there is obviously no guard 9173 // (interprocedural conditions notwithstanding). 9174 if (!L) return false; 9175 9176 // Both LHS and RHS must be available at loop entry. 9177 assert(isAvailableAtLoopEntry(LHS, L) && 9178 "LHS is not available at Loop Entry"); 9179 assert(isAvailableAtLoopEntry(RHS, L) && 9180 "RHS is not available at Loop Entry"); 9181 9182 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9183 return true; 9184 9185 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9186 // the facts (a >= b && a != b) separately. A typical situation is when the 9187 // non-strict comparison is known from ranges and non-equality is known from 9188 // dominating predicates. If we are proving strict comparison, we always try 9189 // to prove non-equality and non-strict comparison separately. 9190 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9191 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9192 bool ProvedNonStrictComparison = false; 9193 bool ProvedNonEquality = false; 9194 9195 if (ProvingStrictComparison) { 9196 ProvedNonStrictComparison = 9197 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9198 ProvedNonEquality = 9199 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9200 if (ProvedNonStrictComparison && ProvedNonEquality) 9201 return true; 9202 } 9203 9204 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9205 auto ProveViaGuard = [&](BasicBlock *Block) { 9206 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9207 return true; 9208 if (ProvingStrictComparison) { 9209 if (!ProvedNonStrictComparison) 9210 ProvedNonStrictComparison = 9211 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9212 if (!ProvedNonEquality) 9213 ProvedNonEquality = 9214 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9215 if (ProvedNonStrictComparison && ProvedNonEquality) 9216 return true; 9217 } 9218 return false; 9219 }; 9220 9221 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9222 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9223 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9224 return true; 9225 if (ProvingStrictComparison) { 9226 if (!ProvedNonStrictComparison) 9227 ProvedNonStrictComparison = 9228 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9229 if (!ProvedNonEquality) 9230 ProvedNonEquality = 9231 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9232 if (ProvedNonStrictComparison && ProvedNonEquality) 9233 return true; 9234 } 9235 return false; 9236 }; 9237 9238 // Starting at the loop predecessor, climb up the predecessor chain, as long 9239 // as there are predecessors that can be found that have unique successors 9240 // leading to the original header. 9241 for (std::pair<BasicBlock *, BasicBlock *> 9242 Pair(L->getLoopPredecessor(), L->getHeader()); 9243 Pair.first; 9244 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9245 9246 if (ProveViaGuard(Pair.first)) 9247 return true; 9248 9249 BranchInst *LoopEntryPredicate = 9250 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9251 if (!LoopEntryPredicate || 9252 LoopEntryPredicate->isUnconditional()) 9253 continue; 9254 9255 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9256 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9257 return true; 9258 } 9259 9260 // Check conditions due to any @llvm.assume intrinsics. 9261 for (auto &AssumeVH : AC.assumptions()) { 9262 if (!AssumeVH) 9263 continue; 9264 auto *CI = cast<CallInst>(AssumeVH); 9265 if (!DT.dominates(CI, L->getHeader())) 9266 continue; 9267 9268 if (ProveViaCond(CI->getArgOperand(0), false)) 9269 return true; 9270 } 9271 9272 return false; 9273 } 9274 9275 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9276 const SCEV *LHS, const SCEV *RHS, 9277 Value *FoundCondValue, 9278 bool Inverse) { 9279 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9280 return false; 9281 9282 auto ClearOnExit = 9283 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9284 9285 // Recursively handle And and Or conditions. 9286 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9287 if (BO->getOpcode() == Instruction::And) { 9288 if (!Inverse) 9289 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9290 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9291 } else if (BO->getOpcode() == Instruction::Or) { 9292 if (Inverse) 9293 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9294 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9295 } 9296 } 9297 9298 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9299 if (!ICI) return false; 9300 9301 // Now that we found a conditional branch that dominates the loop or controls 9302 // the loop latch. Check to see if it is the comparison we are looking for. 9303 ICmpInst::Predicate FoundPred; 9304 if (Inverse) 9305 FoundPred = ICI->getInversePredicate(); 9306 else 9307 FoundPred = ICI->getPredicate(); 9308 9309 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9310 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9311 9312 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9313 } 9314 9315 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9316 const SCEV *RHS, 9317 ICmpInst::Predicate FoundPred, 9318 const SCEV *FoundLHS, 9319 const SCEV *FoundRHS) { 9320 // Balance the types. 9321 if (getTypeSizeInBits(LHS->getType()) < 9322 getTypeSizeInBits(FoundLHS->getType())) { 9323 if (CmpInst::isSigned(Pred)) { 9324 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9325 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9326 } else { 9327 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9328 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9329 } 9330 } else if (getTypeSizeInBits(LHS->getType()) > 9331 getTypeSizeInBits(FoundLHS->getType())) { 9332 if (CmpInst::isSigned(FoundPred)) { 9333 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9334 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9335 } else { 9336 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9337 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9338 } 9339 } 9340 9341 // Canonicalize the query to match the way instcombine will have 9342 // canonicalized the comparison. 9343 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9344 if (LHS == RHS) 9345 return CmpInst::isTrueWhenEqual(Pred); 9346 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9347 if (FoundLHS == FoundRHS) 9348 return CmpInst::isFalseWhenEqual(FoundPred); 9349 9350 // Check to see if we can make the LHS or RHS match. 9351 if (LHS == FoundRHS || RHS == FoundLHS) { 9352 if (isa<SCEVConstant>(RHS)) { 9353 std::swap(FoundLHS, FoundRHS); 9354 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9355 } else { 9356 std::swap(LHS, RHS); 9357 Pred = ICmpInst::getSwappedPredicate(Pred); 9358 } 9359 } 9360 9361 // Check whether the found predicate is the same as the desired predicate. 9362 if (FoundPred == Pred) 9363 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9364 9365 // Check whether swapping the found predicate makes it the same as the 9366 // desired predicate. 9367 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9368 if (isa<SCEVConstant>(RHS)) 9369 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9370 else 9371 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9372 RHS, LHS, FoundLHS, FoundRHS); 9373 } 9374 9375 // Unsigned comparison is the same as signed comparison when both the operands 9376 // are non-negative. 9377 if (CmpInst::isUnsigned(FoundPred) && 9378 CmpInst::getSignedPredicate(FoundPred) == Pred && 9379 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9380 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9381 9382 // Check if we can make progress by sharpening ranges. 9383 if (FoundPred == ICmpInst::ICMP_NE && 9384 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9385 9386 const SCEVConstant *C = nullptr; 9387 const SCEV *V = nullptr; 9388 9389 if (isa<SCEVConstant>(FoundLHS)) { 9390 C = cast<SCEVConstant>(FoundLHS); 9391 V = FoundRHS; 9392 } else { 9393 C = cast<SCEVConstant>(FoundRHS); 9394 V = FoundLHS; 9395 } 9396 9397 // The guarding predicate tells us that C != V. If the known range 9398 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9399 // range we consider has to correspond to same signedness as the 9400 // predicate we're interested in folding. 9401 9402 APInt Min = ICmpInst::isSigned(Pred) ? 9403 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9404 9405 if (Min == C->getAPInt()) { 9406 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9407 // This is true even if (Min + 1) wraps around -- in case of 9408 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9409 9410 APInt SharperMin = Min + 1; 9411 9412 switch (Pred) { 9413 case ICmpInst::ICMP_SGE: 9414 case ICmpInst::ICMP_UGE: 9415 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9416 // RHS, we're done. 9417 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9418 getConstant(SharperMin))) 9419 return true; 9420 LLVM_FALLTHROUGH; 9421 9422 case ICmpInst::ICMP_SGT: 9423 case ICmpInst::ICMP_UGT: 9424 // We know from the range information that (V `Pred` Min || 9425 // V == Min). We know from the guarding condition that !(V 9426 // == Min). This gives us 9427 // 9428 // V `Pred` Min || V == Min && !(V == Min) 9429 // => V `Pred` Min 9430 // 9431 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9432 9433 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9434 return true; 9435 LLVM_FALLTHROUGH; 9436 9437 default: 9438 // No change 9439 break; 9440 } 9441 } 9442 } 9443 9444 // Check whether the actual condition is beyond sufficient. 9445 if (FoundPred == ICmpInst::ICMP_EQ) 9446 if (ICmpInst::isTrueWhenEqual(Pred)) 9447 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9448 return true; 9449 if (Pred == ICmpInst::ICMP_NE) 9450 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9451 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9452 return true; 9453 9454 // Otherwise assume the worst. 9455 return false; 9456 } 9457 9458 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9459 const SCEV *&L, const SCEV *&R, 9460 SCEV::NoWrapFlags &Flags) { 9461 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9462 if (!AE || AE->getNumOperands() != 2) 9463 return false; 9464 9465 L = AE->getOperand(0); 9466 R = AE->getOperand(1); 9467 Flags = AE->getNoWrapFlags(); 9468 return true; 9469 } 9470 9471 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9472 const SCEV *Less) { 9473 // We avoid subtracting expressions here because this function is usually 9474 // fairly deep in the call stack (i.e. is called many times). 9475 9476 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9477 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9478 const auto *MAR = cast<SCEVAddRecExpr>(More); 9479 9480 if (LAR->getLoop() != MAR->getLoop()) 9481 return None; 9482 9483 // We look at affine expressions only; not for correctness but to keep 9484 // getStepRecurrence cheap. 9485 if (!LAR->isAffine() || !MAR->isAffine()) 9486 return None; 9487 9488 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9489 return None; 9490 9491 Less = LAR->getStart(); 9492 More = MAR->getStart(); 9493 9494 // fall through 9495 } 9496 9497 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9498 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9499 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9500 return M - L; 9501 } 9502 9503 SCEV::NoWrapFlags Flags; 9504 const SCEV *LLess = nullptr, *RLess = nullptr; 9505 const SCEV *LMore = nullptr, *RMore = nullptr; 9506 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9507 // Compare (X + C1) vs X. 9508 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9509 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9510 if (RLess == More) 9511 return -(C1->getAPInt()); 9512 9513 // Compare X vs (X + C2). 9514 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9515 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9516 if (RMore == Less) 9517 return C2->getAPInt(); 9518 9519 // Compare (X + C1) vs (X + C2). 9520 if (C1 && C2 && RLess == RMore) 9521 return C2->getAPInt() - C1->getAPInt(); 9522 9523 return None; 9524 } 9525 9526 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9527 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9528 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9529 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9530 return false; 9531 9532 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9533 if (!AddRecLHS) 9534 return false; 9535 9536 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9537 if (!AddRecFoundLHS) 9538 return false; 9539 9540 // We'd like to let SCEV reason about control dependencies, so we constrain 9541 // both the inequalities to be about add recurrences on the same loop. This 9542 // way we can use isLoopEntryGuardedByCond later. 9543 9544 const Loop *L = AddRecFoundLHS->getLoop(); 9545 if (L != AddRecLHS->getLoop()) 9546 return false; 9547 9548 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9549 // 9550 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9551 // ... (2) 9552 // 9553 // Informal proof for (2), assuming (1) [*]: 9554 // 9555 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9556 // 9557 // Then 9558 // 9559 // FoundLHS s< FoundRHS s< INT_MIN - C 9560 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9561 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9562 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9563 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9564 // <=> FoundLHS + C s< FoundRHS + C 9565 // 9566 // [*]: (1) can be proved by ruling out overflow. 9567 // 9568 // [**]: This can be proved by analyzing all the four possibilities: 9569 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9570 // (A s>= 0, B s>= 0). 9571 // 9572 // Note: 9573 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9574 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9575 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9576 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9577 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9578 // C)". 9579 9580 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9581 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9582 if (!LDiff || !RDiff || *LDiff != *RDiff) 9583 return false; 9584 9585 if (LDiff->isMinValue()) 9586 return true; 9587 9588 APInt FoundRHSLimit; 9589 9590 if (Pred == CmpInst::ICMP_ULT) { 9591 FoundRHSLimit = -(*RDiff); 9592 } else { 9593 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9594 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9595 } 9596 9597 // Try to prove (1) or (2), as needed. 9598 return isAvailableAtLoopEntry(FoundRHS, L) && 9599 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9600 getConstant(FoundRHSLimit)); 9601 } 9602 9603 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9604 const SCEV *LHS, const SCEV *RHS, 9605 const SCEV *FoundLHS, 9606 const SCEV *FoundRHS, unsigned Depth) { 9607 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9608 9609 auto ClearOnExit = make_scope_exit([&]() { 9610 if (LPhi) { 9611 bool Erased = PendingMerges.erase(LPhi); 9612 assert(Erased && "Failed to erase LPhi!"); 9613 (void)Erased; 9614 } 9615 if (RPhi) { 9616 bool Erased = PendingMerges.erase(RPhi); 9617 assert(Erased && "Failed to erase RPhi!"); 9618 (void)Erased; 9619 } 9620 }); 9621 9622 // Find respective Phis and check that they are not being pending. 9623 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9624 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9625 if (!PendingMerges.insert(Phi).second) 9626 return false; 9627 LPhi = Phi; 9628 } 9629 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9630 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9631 // If we detect a loop of Phi nodes being processed by this method, for 9632 // example: 9633 // 9634 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9635 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9636 // 9637 // we don't want to deal with a case that complex, so return conservative 9638 // answer false. 9639 if (!PendingMerges.insert(Phi).second) 9640 return false; 9641 RPhi = Phi; 9642 } 9643 9644 // If none of LHS, RHS is a Phi, nothing to do here. 9645 if (!LPhi && !RPhi) 9646 return false; 9647 9648 // If there is a SCEVUnknown Phi we are interested in, make it left. 9649 if (!LPhi) { 9650 std::swap(LHS, RHS); 9651 std::swap(FoundLHS, FoundRHS); 9652 std::swap(LPhi, RPhi); 9653 Pred = ICmpInst::getSwappedPredicate(Pred); 9654 } 9655 9656 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9657 const BasicBlock *LBB = LPhi->getParent(); 9658 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9659 9660 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9661 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9662 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9663 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9664 }; 9665 9666 if (RPhi && RPhi->getParent() == LBB) { 9667 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9668 // If we compare two Phis from the same block, and for each entry block 9669 // the predicate is true for incoming values from this block, then the 9670 // predicate is also true for the Phis. 9671 for (const BasicBlock *IncBB : predecessors(LBB)) { 9672 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9673 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9674 if (!ProvedEasily(L, R)) 9675 return false; 9676 } 9677 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9678 // Case two: RHS is also a Phi from the same basic block, and it is an 9679 // AddRec. It means that there is a loop which has both AddRec and Unknown 9680 // PHIs, for it we can compare incoming values of AddRec from above the loop 9681 // and latch with their respective incoming values of LPhi. 9682 assert(LPhi->getNumIncomingValues() == 2 && 9683 "Phi node standing in loop header does not have exactly 2 inputs?"); 9684 auto *RLoop = RAR->getLoop(); 9685 auto *Predecessor = RLoop->getLoopPredecessor(); 9686 assert(Predecessor && "Loop with AddRec with no predecessor?"); 9687 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 9688 if (!ProvedEasily(L1, RAR->getStart())) 9689 return false; 9690 auto *Latch = RLoop->getLoopLatch(); 9691 assert(Latch && "Loop with AddRec with no latch?"); 9692 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 9693 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 9694 return false; 9695 } else { 9696 // In all other cases go over inputs of LHS and compare each of them to RHS, 9697 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 9698 // At this point RHS is either a non-Phi, or it is a Phi from some block 9699 // different from LBB. 9700 for (const BasicBlock *IncBB : predecessors(LBB)) { 9701 // Check that RHS is available in this block. 9702 if (!dominates(RHS, IncBB)) 9703 return false; 9704 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9705 if (!ProvedEasily(L, RHS)) 9706 return false; 9707 } 9708 } 9709 return true; 9710 } 9711 9712 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9713 const SCEV *LHS, const SCEV *RHS, 9714 const SCEV *FoundLHS, 9715 const SCEV *FoundRHS) { 9716 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9717 return true; 9718 9719 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9720 return true; 9721 9722 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9723 FoundLHS, FoundRHS) || 9724 // ~x < ~y --> x > y 9725 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9726 getNotSCEV(FoundRHS), 9727 getNotSCEV(FoundLHS)); 9728 } 9729 9730 /// If Expr computes ~A, return A else return nullptr 9731 static const SCEV *MatchNotExpr(const SCEV *Expr) { 9732 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 9733 if (!Add || Add->getNumOperands() != 2 || 9734 !Add->getOperand(0)->isAllOnesValue()) 9735 return nullptr; 9736 9737 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 9738 if (!AddRHS || AddRHS->getNumOperands() != 2 || 9739 !AddRHS->getOperand(0)->isAllOnesValue()) 9740 return nullptr; 9741 9742 return AddRHS->getOperand(1); 9743 } 9744 9745 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 9746 template<typename MaxExprType> 9747 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 9748 const SCEV *Candidate) { 9749 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 9750 if (!MaxExpr) return false; 9751 9752 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 9753 } 9754 9755 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 9756 template<typename MaxExprType> 9757 static bool IsMinConsistingOf(ScalarEvolution &SE, 9758 const SCEV *MaybeMinExpr, 9759 const SCEV *Candidate) { 9760 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 9761 if (!MaybeMaxExpr) 9762 return false; 9763 9764 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 9765 } 9766 9767 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 9768 ICmpInst::Predicate Pred, 9769 const SCEV *LHS, const SCEV *RHS) { 9770 // If both sides are affine addrecs for the same loop, with equal 9771 // steps, and we know the recurrences don't wrap, then we only 9772 // need to check the predicate on the starting values. 9773 9774 if (!ICmpInst::isRelational(Pred)) 9775 return false; 9776 9777 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 9778 if (!LAR) 9779 return false; 9780 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9781 if (!RAR) 9782 return false; 9783 if (LAR->getLoop() != RAR->getLoop()) 9784 return false; 9785 if (!LAR->isAffine() || !RAR->isAffine()) 9786 return false; 9787 9788 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 9789 return false; 9790 9791 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 9792 SCEV::FlagNSW : SCEV::FlagNUW; 9793 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 9794 return false; 9795 9796 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 9797 } 9798 9799 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 9800 /// expression? 9801 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 9802 ICmpInst::Predicate Pred, 9803 const SCEV *LHS, const SCEV *RHS) { 9804 switch (Pred) { 9805 default: 9806 return false; 9807 9808 case ICmpInst::ICMP_SGE: 9809 std::swap(LHS, RHS); 9810 LLVM_FALLTHROUGH; 9811 case ICmpInst::ICMP_SLE: 9812 return 9813 // min(A, ...) <= A 9814 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 9815 // A <= max(A, ...) 9816 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 9817 9818 case ICmpInst::ICMP_UGE: 9819 std::swap(LHS, RHS); 9820 LLVM_FALLTHROUGH; 9821 case ICmpInst::ICMP_ULE: 9822 return 9823 // min(A, ...) <= A 9824 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 9825 // A <= max(A, ...) 9826 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 9827 } 9828 9829 llvm_unreachable("covered switch fell through?!"); 9830 } 9831 9832 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 9833 const SCEV *LHS, const SCEV *RHS, 9834 const SCEV *FoundLHS, 9835 const SCEV *FoundRHS, 9836 unsigned Depth) { 9837 assert(getTypeSizeInBits(LHS->getType()) == 9838 getTypeSizeInBits(RHS->getType()) && 9839 "LHS and RHS have different sizes?"); 9840 assert(getTypeSizeInBits(FoundLHS->getType()) == 9841 getTypeSizeInBits(FoundRHS->getType()) && 9842 "FoundLHS and FoundRHS have different sizes?"); 9843 // We want to avoid hurting the compile time with analysis of too big trees. 9844 if (Depth > MaxSCEVOperationsImplicationDepth) 9845 return false; 9846 // We only want to work with ICMP_SGT comparison so far. 9847 // TODO: Extend to ICMP_UGT? 9848 if (Pred == ICmpInst::ICMP_SLT) { 9849 Pred = ICmpInst::ICMP_SGT; 9850 std::swap(LHS, RHS); 9851 std::swap(FoundLHS, FoundRHS); 9852 } 9853 if (Pred != ICmpInst::ICMP_SGT) 9854 return false; 9855 9856 auto GetOpFromSExt = [&](const SCEV *S) { 9857 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 9858 return Ext->getOperand(); 9859 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 9860 // the constant in some cases. 9861 return S; 9862 }; 9863 9864 // Acquire values from extensions. 9865 auto *OrigLHS = LHS; 9866 auto *OrigFoundLHS = FoundLHS; 9867 LHS = GetOpFromSExt(LHS); 9868 FoundLHS = GetOpFromSExt(FoundLHS); 9869 9870 // Is the SGT predicate can be proved trivially or using the found context. 9871 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 9872 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 9873 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 9874 FoundRHS, Depth + 1); 9875 }; 9876 9877 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 9878 // We want to avoid creation of any new non-constant SCEV. Since we are 9879 // going to compare the operands to RHS, we should be certain that we don't 9880 // need any size extensions for this. So let's decline all cases when the 9881 // sizes of types of LHS and RHS do not match. 9882 // TODO: Maybe try to get RHS from sext to catch more cases? 9883 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 9884 return false; 9885 9886 // Should not overflow. 9887 if (!LHSAddExpr->hasNoSignedWrap()) 9888 return false; 9889 9890 auto *LL = LHSAddExpr->getOperand(0); 9891 auto *LR = LHSAddExpr->getOperand(1); 9892 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 9893 9894 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 9895 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 9896 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 9897 }; 9898 // Try to prove the following rule: 9899 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 9900 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 9901 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 9902 return true; 9903 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 9904 Value *LL, *LR; 9905 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 9906 9907 using namespace llvm::PatternMatch; 9908 9909 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 9910 // Rules for division. 9911 // We are going to perform some comparisons with Denominator and its 9912 // derivative expressions. In general case, creating a SCEV for it may 9913 // lead to a complex analysis of the entire graph, and in particular it 9914 // can request trip count recalculation for the same loop. This would 9915 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 9916 // this, we only want to create SCEVs that are constants in this section. 9917 // So we bail if Denominator is not a constant. 9918 if (!isa<ConstantInt>(LR)) 9919 return false; 9920 9921 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 9922 9923 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 9924 // then a SCEV for the numerator already exists and matches with FoundLHS. 9925 auto *Numerator = getExistingSCEV(LL); 9926 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 9927 return false; 9928 9929 // Make sure that the numerator matches with FoundLHS and the denominator 9930 // is positive. 9931 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 9932 return false; 9933 9934 auto *DTy = Denominator->getType(); 9935 auto *FRHSTy = FoundRHS->getType(); 9936 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 9937 // One of types is a pointer and another one is not. We cannot extend 9938 // them properly to a wider type, so let us just reject this case. 9939 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 9940 // to avoid this check. 9941 return false; 9942 9943 // Given that: 9944 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 9945 auto *WTy = getWiderType(DTy, FRHSTy); 9946 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 9947 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 9948 9949 // Try to prove the following rule: 9950 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 9951 // For example, given that FoundLHS > 2. It means that FoundLHS is at 9952 // least 3. If we divide it by Denominator < 4, we will have at least 1. 9953 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 9954 if (isKnownNonPositive(RHS) && 9955 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 9956 return true; 9957 9958 // Try to prove the following rule: 9959 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 9960 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 9961 // If we divide it by Denominator > 2, then: 9962 // 1. If FoundLHS is negative, then the result is 0. 9963 // 2. If FoundLHS is non-negative, then the result is non-negative. 9964 // Anyways, the result is non-negative. 9965 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 9966 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 9967 if (isKnownNegative(RHS) && 9968 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 9969 return true; 9970 } 9971 } 9972 9973 // If our expression contained SCEVUnknown Phis, and we split it down and now 9974 // need to prove something for them, try to prove the predicate for every 9975 // possible incoming values of those Phis. 9976 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 9977 return true; 9978 9979 return false; 9980 } 9981 9982 bool 9983 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 9984 const SCEV *LHS, const SCEV *RHS) { 9985 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 9986 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 9987 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 9988 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 9989 } 9990 9991 bool 9992 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 9993 const SCEV *LHS, const SCEV *RHS, 9994 const SCEV *FoundLHS, 9995 const SCEV *FoundRHS) { 9996 switch (Pred) { 9997 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 9998 case ICmpInst::ICMP_EQ: 9999 case ICmpInst::ICMP_NE: 10000 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10001 return true; 10002 break; 10003 case ICmpInst::ICMP_SLT: 10004 case ICmpInst::ICMP_SLE: 10005 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10006 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10007 return true; 10008 break; 10009 case ICmpInst::ICMP_SGT: 10010 case ICmpInst::ICMP_SGE: 10011 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10012 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10013 return true; 10014 break; 10015 case ICmpInst::ICMP_ULT: 10016 case ICmpInst::ICMP_ULE: 10017 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10018 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10019 return true; 10020 break; 10021 case ICmpInst::ICMP_UGT: 10022 case ICmpInst::ICMP_UGE: 10023 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10024 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10025 return true; 10026 break; 10027 } 10028 10029 // Maybe it can be proved via operations? 10030 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10031 return true; 10032 10033 return false; 10034 } 10035 10036 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10037 const SCEV *LHS, 10038 const SCEV *RHS, 10039 const SCEV *FoundLHS, 10040 const SCEV *FoundRHS) { 10041 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10042 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10043 // reduce the compile time impact of this optimization. 10044 return false; 10045 10046 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10047 if (!Addend) 10048 return false; 10049 10050 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10051 10052 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10053 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10054 ConstantRange FoundLHSRange = 10055 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10056 10057 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10058 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10059 10060 // We can also compute the range of values for `LHS` that satisfy the 10061 // consequent, "`LHS` `Pred` `RHS`": 10062 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10063 ConstantRange SatisfyingLHSRange = 10064 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10065 10066 // The antecedent implies the consequent if every value of `LHS` that 10067 // satisfies the antecedent also satisfies the consequent. 10068 return SatisfyingLHSRange.contains(LHSRange); 10069 } 10070 10071 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10072 bool IsSigned, bool NoWrap) { 10073 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10074 10075 if (NoWrap) return false; 10076 10077 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10078 const SCEV *One = getOne(Stride->getType()); 10079 10080 if (IsSigned) { 10081 APInt MaxRHS = getSignedRangeMax(RHS); 10082 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10083 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10084 10085 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10086 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10087 } 10088 10089 APInt MaxRHS = getUnsignedRangeMax(RHS); 10090 APInt MaxValue = APInt::getMaxValue(BitWidth); 10091 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10092 10093 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10094 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10095 } 10096 10097 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10098 bool IsSigned, bool NoWrap) { 10099 if (NoWrap) return false; 10100 10101 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10102 const SCEV *One = getOne(Stride->getType()); 10103 10104 if (IsSigned) { 10105 APInt MinRHS = getSignedRangeMin(RHS); 10106 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10107 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10108 10109 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10110 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10111 } 10112 10113 APInt MinRHS = getUnsignedRangeMin(RHS); 10114 APInt MinValue = APInt::getMinValue(BitWidth); 10115 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10116 10117 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10118 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10119 } 10120 10121 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10122 bool Equality) { 10123 const SCEV *One = getOne(Step->getType()); 10124 Delta = Equality ? getAddExpr(Delta, Step) 10125 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10126 return getUDivExpr(Delta, Step); 10127 } 10128 10129 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10130 const SCEV *Stride, 10131 const SCEV *End, 10132 unsigned BitWidth, 10133 bool IsSigned) { 10134 10135 assert(!isKnownNonPositive(Stride) && 10136 "Stride is expected strictly positive!"); 10137 // Calculate the maximum backedge count based on the range of values 10138 // permitted by Start, End, and Stride. 10139 const SCEV *MaxBECount; 10140 APInt MinStart = 10141 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10142 10143 APInt StrideForMaxBECount = 10144 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10145 10146 // We already know that the stride is positive, so we paper over conservatism 10147 // in our range computation by forcing StrideForMaxBECount to be at least one. 10148 // In theory this is unnecessary, but we expect MaxBECount to be a 10149 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10150 // is nothing to constant fold it to). 10151 APInt One(BitWidth, 1, IsSigned); 10152 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10153 10154 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10155 : APInt::getMaxValue(BitWidth); 10156 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10157 10158 // Although End can be a MAX expression we estimate MaxEnd considering only 10159 // the case End = RHS of the loop termination condition. This is safe because 10160 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10161 // taken count. 10162 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10163 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10164 10165 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10166 getConstant(StrideForMaxBECount) /* Step */, 10167 false /* Equality */); 10168 10169 return MaxBECount; 10170 } 10171 10172 ScalarEvolution::ExitLimit 10173 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10174 const Loop *L, bool IsSigned, 10175 bool ControlsExit, bool AllowPredicates) { 10176 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10177 10178 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10179 bool PredicatedIV = false; 10180 10181 if (!IV && AllowPredicates) { 10182 // Try to make this an AddRec using runtime tests, in the first X 10183 // iterations of this loop, where X is the SCEV expression found by the 10184 // algorithm below. 10185 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10186 PredicatedIV = true; 10187 } 10188 10189 // Avoid weird loops 10190 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10191 return getCouldNotCompute(); 10192 10193 bool NoWrap = ControlsExit && 10194 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10195 10196 const SCEV *Stride = IV->getStepRecurrence(*this); 10197 10198 bool PositiveStride = isKnownPositive(Stride); 10199 10200 // Avoid negative or zero stride values. 10201 if (!PositiveStride) { 10202 // We can compute the correct backedge taken count for loops with unknown 10203 // strides if we can prove that the loop is not an infinite loop with side 10204 // effects. Here's the loop structure we are trying to handle - 10205 // 10206 // i = start 10207 // do { 10208 // A[i] = i; 10209 // i += s; 10210 // } while (i < end); 10211 // 10212 // The backedge taken count for such loops is evaluated as - 10213 // (max(end, start + stride) - start - 1) /u stride 10214 // 10215 // The additional preconditions that we need to check to prove correctness 10216 // of the above formula is as follows - 10217 // 10218 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10219 // NoWrap flag). 10220 // b) loop is single exit with no side effects. 10221 // 10222 // 10223 // Precondition a) implies that if the stride is negative, this is a single 10224 // trip loop. The backedge taken count formula reduces to zero in this case. 10225 // 10226 // Precondition b) implies that the unknown stride cannot be zero otherwise 10227 // we have UB. 10228 // 10229 // The positive stride case is the same as isKnownPositive(Stride) returning 10230 // true (original behavior of the function). 10231 // 10232 // We want to make sure that the stride is truly unknown as there are edge 10233 // cases where ScalarEvolution propagates no wrap flags to the 10234 // post-increment/decrement IV even though the increment/decrement operation 10235 // itself is wrapping. The computed backedge taken count may be wrong in 10236 // such cases. This is prevented by checking that the stride is not known to 10237 // be either positive or non-positive. For example, no wrap flags are 10238 // propagated to the post-increment IV of this loop with a trip count of 2 - 10239 // 10240 // unsigned char i; 10241 // for(i=127; i<128; i+=129) 10242 // A[i] = i; 10243 // 10244 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10245 !loopHasNoSideEffects(L)) 10246 return getCouldNotCompute(); 10247 } else if (!Stride->isOne() && 10248 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10249 // Avoid proven overflow cases: this will ensure that the backedge taken 10250 // count will not generate any unsigned overflow. Relaxed no-overflow 10251 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10252 // undefined behaviors like the case of C language. 10253 return getCouldNotCompute(); 10254 10255 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10256 : ICmpInst::ICMP_ULT; 10257 const SCEV *Start = IV->getStart(); 10258 const SCEV *End = RHS; 10259 // When the RHS is not invariant, we do not know the end bound of the loop and 10260 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10261 // calculate the MaxBECount, given the start, stride and max value for the end 10262 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10263 // checked above). 10264 if (!isLoopInvariant(RHS, L)) { 10265 const SCEV *MaxBECount = computeMaxBECountForLT( 10266 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10267 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10268 false /*MaxOrZero*/, Predicates); 10269 } 10270 // If the backedge is taken at least once, then it will be taken 10271 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10272 // is the LHS value of the less-than comparison the first time it is evaluated 10273 // and End is the RHS. 10274 const SCEV *BECountIfBackedgeTaken = 10275 computeBECount(getMinusSCEV(End, Start), Stride, false); 10276 // If the loop entry is guarded by the result of the backedge test of the 10277 // first loop iteration, then we know the backedge will be taken at least 10278 // once and so the backedge taken count is as above. If not then we use the 10279 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10280 // as if the backedge is taken at least once max(End,Start) is End and so the 10281 // result is as above, and if not max(End,Start) is Start so we get a backedge 10282 // count of zero. 10283 const SCEV *BECount; 10284 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10285 BECount = BECountIfBackedgeTaken; 10286 else { 10287 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10288 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10289 } 10290 10291 const SCEV *MaxBECount; 10292 bool MaxOrZero = false; 10293 if (isa<SCEVConstant>(BECount)) 10294 MaxBECount = BECount; 10295 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10296 // If we know exactly how many times the backedge will be taken if it's 10297 // taken at least once, then the backedge count will either be that or 10298 // zero. 10299 MaxBECount = BECountIfBackedgeTaken; 10300 MaxOrZero = true; 10301 } else { 10302 MaxBECount = computeMaxBECountForLT( 10303 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10304 } 10305 10306 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10307 !isa<SCEVCouldNotCompute>(BECount)) 10308 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10309 10310 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10311 } 10312 10313 ScalarEvolution::ExitLimit 10314 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10315 const Loop *L, bool IsSigned, 10316 bool ControlsExit, bool AllowPredicates) { 10317 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10318 // We handle only IV > Invariant 10319 if (!isLoopInvariant(RHS, L)) 10320 return getCouldNotCompute(); 10321 10322 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10323 if (!IV && AllowPredicates) 10324 // Try to make this an AddRec using runtime tests, in the first X 10325 // iterations of this loop, where X is the SCEV expression found by the 10326 // algorithm below. 10327 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10328 10329 // Avoid weird loops 10330 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10331 return getCouldNotCompute(); 10332 10333 bool NoWrap = ControlsExit && 10334 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10335 10336 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10337 10338 // Avoid negative or zero stride values 10339 if (!isKnownPositive(Stride)) 10340 return getCouldNotCompute(); 10341 10342 // Avoid proven overflow cases: this will ensure that the backedge taken count 10343 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10344 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10345 // behaviors like the case of C language. 10346 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10347 return getCouldNotCompute(); 10348 10349 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10350 : ICmpInst::ICMP_UGT; 10351 10352 const SCEV *Start = IV->getStart(); 10353 const SCEV *End = RHS; 10354 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10355 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10356 10357 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10358 10359 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10360 : getUnsignedRangeMax(Start); 10361 10362 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10363 : getUnsignedRangeMin(Stride); 10364 10365 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10366 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10367 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10368 10369 // Although End can be a MIN expression we estimate MinEnd considering only 10370 // the case End = RHS. This is safe because in the other case (Start - End) 10371 // is zero, leading to a zero maximum backedge taken count. 10372 APInt MinEnd = 10373 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10374 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10375 10376 10377 const SCEV *MaxBECount = getCouldNotCompute(); 10378 if (isa<SCEVConstant>(BECount)) 10379 MaxBECount = BECount; 10380 else 10381 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 10382 getConstant(MinStride), false); 10383 10384 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10385 MaxBECount = BECount; 10386 10387 return ExitLimit(BECount, MaxBECount, false, Predicates); 10388 } 10389 10390 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10391 ScalarEvolution &SE) const { 10392 if (Range.isFullSet()) // Infinite loop. 10393 return SE.getCouldNotCompute(); 10394 10395 // If the start is a non-zero constant, shift the range to simplify things. 10396 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10397 if (!SC->getValue()->isZero()) { 10398 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10399 Operands[0] = SE.getZero(SC->getType()); 10400 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10401 getNoWrapFlags(FlagNW)); 10402 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10403 return ShiftedAddRec->getNumIterationsInRange( 10404 Range.subtract(SC->getAPInt()), SE); 10405 // This is strange and shouldn't happen. 10406 return SE.getCouldNotCompute(); 10407 } 10408 10409 // The only time we can solve this is when we have all constant indices. 10410 // Otherwise, we cannot determine the overflow conditions. 10411 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10412 return SE.getCouldNotCompute(); 10413 10414 // Okay at this point we know that all elements of the chrec are constants and 10415 // that the start element is zero. 10416 10417 // First check to see if the range contains zero. If not, the first 10418 // iteration exits. 10419 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10420 if (!Range.contains(APInt(BitWidth, 0))) 10421 return SE.getZero(getType()); 10422 10423 if (isAffine()) { 10424 // If this is an affine expression then we have this situation: 10425 // Solve {0,+,A} in Range === Ax in Range 10426 10427 // We know that zero is in the range. If A is positive then we know that 10428 // the upper value of the range must be the first possible exit value. 10429 // If A is negative then the lower of the range is the last possible loop 10430 // value. Also note that we already checked for a full range. 10431 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10432 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10433 10434 // The exit value should be (End+A)/A. 10435 APInt ExitVal = (End + A).udiv(A); 10436 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10437 10438 // Evaluate at the exit value. If we really did fall out of the valid 10439 // range, then we computed our trip count, otherwise wrap around or other 10440 // things must have happened. 10441 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10442 if (Range.contains(Val->getValue())) 10443 return SE.getCouldNotCompute(); // Something strange happened 10444 10445 // Ensure that the previous value is in the range. This is a sanity check. 10446 assert(Range.contains( 10447 EvaluateConstantChrecAtConstant(this, 10448 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10449 "Linear scev computation is off in a bad way!"); 10450 return SE.getConstant(ExitValue); 10451 } else if (isQuadratic()) { 10452 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 10453 // quadratic equation to solve it. To do this, we must frame our problem in 10454 // terms of figuring out when zero is crossed, instead of when 10455 // Range.getUpper() is crossed. 10456 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 10457 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 10458 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 10459 10460 // Next, solve the constructed addrec 10461 if (auto Roots = 10462 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 10463 const SCEVConstant *R1 = Roots->first; 10464 const SCEVConstant *R2 = Roots->second; 10465 // Pick the smallest positive root value. 10466 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 10467 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 10468 if (!CB->getZExtValue()) 10469 std::swap(R1, R2); // R1 is the minimum root now. 10470 10471 // Make sure the root is not off by one. The returned iteration should 10472 // not be in the range, but the previous one should be. When solving 10473 // for "X*X < 5", for example, we should not return a root of 2. 10474 ConstantInt *R1Val = 10475 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 10476 if (Range.contains(R1Val->getValue())) { 10477 // The next iteration must be out of the range... 10478 ConstantInt *NextVal = 10479 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 10480 10481 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10482 if (!Range.contains(R1Val->getValue())) 10483 return SE.getConstant(NextVal); 10484 return SE.getCouldNotCompute(); // Something strange happened 10485 } 10486 10487 // If R1 was not in the range, then it is a good return value. Make 10488 // sure that R1-1 WAS in the range though, just in case. 10489 ConstantInt *NextVal = 10490 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 10491 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10492 if (Range.contains(R1Val->getValue())) 10493 return R1; 10494 return SE.getCouldNotCompute(); // Something strange happened 10495 } 10496 } 10497 } 10498 10499 return SE.getCouldNotCompute(); 10500 } 10501 10502 const SCEVAddRecExpr * 10503 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10504 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10505 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10506 // but in this case we cannot guarantee that the value returned will be an 10507 // AddRec because SCEV does not have a fixed point where it stops 10508 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10509 // may happen if we reach arithmetic depth limit while simplifying. So we 10510 // construct the returned value explicitly. 10511 SmallVector<const SCEV *, 3> Ops; 10512 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10513 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10514 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10515 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10516 // We know that the last operand is not a constant zero (otherwise it would 10517 // have been popped out earlier). This guarantees us that if the result has 10518 // the same last operand, then it will also not be popped out, meaning that 10519 // the returned value will be an AddRec. 10520 const SCEV *Last = getOperand(getNumOperands() - 1); 10521 assert(!Last->isZero() && "Recurrency with zero step?"); 10522 Ops.push_back(Last); 10523 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10524 SCEV::FlagAnyWrap)); 10525 } 10526 10527 // Return true when S contains at least an undef value. 10528 static inline bool containsUndefs(const SCEV *S) { 10529 return SCEVExprContains(S, [](const SCEV *S) { 10530 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10531 return isa<UndefValue>(SU->getValue()); 10532 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 10533 return isa<UndefValue>(SC->getValue()); 10534 return false; 10535 }); 10536 } 10537 10538 namespace { 10539 10540 // Collect all steps of SCEV expressions. 10541 struct SCEVCollectStrides { 10542 ScalarEvolution &SE; 10543 SmallVectorImpl<const SCEV *> &Strides; 10544 10545 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10546 : SE(SE), Strides(S) {} 10547 10548 bool follow(const SCEV *S) { 10549 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10550 Strides.push_back(AR->getStepRecurrence(SE)); 10551 return true; 10552 } 10553 10554 bool isDone() const { return false; } 10555 }; 10556 10557 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10558 struct SCEVCollectTerms { 10559 SmallVectorImpl<const SCEV *> &Terms; 10560 10561 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10562 10563 bool follow(const SCEV *S) { 10564 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10565 isa<SCEVSignExtendExpr>(S)) { 10566 if (!containsUndefs(S)) 10567 Terms.push_back(S); 10568 10569 // Stop recursion: once we collected a term, do not walk its operands. 10570 return false; 10571 } 10572 10573 // Keep looking. 10574 return true; 10575 } 10576 10577 bool isDone() const { return false; } 10578 }; 10579 10580 // Check if a SCEV contains an AddRecExpr. 10581 struct SCEVHasAddRec { 10582 bool &ContainsAddRec; 10583 10584 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10585 ContainsAddRec = false; 10586 } 10587 10588 bool follow(const SCEV *S) { 10589 if (isa<SCEVAddRecExpr>(S)) { 10590 ContainsAddRec = true; 10591 10592 // Stop recursion: once we collected a term, do not walk its operands. 10593 return false; 10594 } 10595 10596 // Keep looking. 10597 return true; 10598 } 10599 10600 bool isDone() const { return false; } 10601 }; 10602 10603 // Find factors that are multiplied with an expression that (possibly as a 10604 // subexpression) contains an AddRecExpr. In the expression: 10605 // 10606 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10607 // 10608 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10609 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10610 // parameters as they form a product with an induction variable. 10611 // 10612 // This collector expects all array size parameters to be in the same MulExpr. 10613 // It might be necessary to later add support for collecting parameters that are 10614 // spread over different nested MulExpr. 10615 struct SCEVCollectAddRecMultiplies { 10616 SmallVectorImpl<const SCEV *> &Terms; 10617 ScalarEvolution &SE; 10618 10619 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10620 : Terms(T), SE(SE) {} 10621 10622 bool follow(const SCEV *S) { 10623 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10624 bool HasAddRec = false; 10625 SmallVector<const SCEV *, 0> Operands; 10626 for (auto Op : Mul->operands()) { 10627 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10628 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10629 Operands.push_back(Op); 10630 } else if (Unknown) { 10631 HasAddRec = true; 10632 } else { 10633 bool ContainsAddRec; 10634 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10635 visitAll(Op, ContiansAddRec); 10636 HasAddRec |= ContainsAddRec; 10637 } 10638 } 10639 if (Operands.size() == 0) 10640 return true; 10641 10642 if (!HasAddRec) 10643 return false; 10644 10645 Terms.push_back(SE.getMulExpr(Operands)); 10646 // Stop recursion: once we collected a term, do not walk its operands. 10647 return false; 10648 } 10649 10650 // Keep looking. 10651 return true; 10652 } 10653 10654 bool isDone() const { return false; } 10655 }; 10656 10657 } // end anonymous namespace 10658 10659 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10660 /// two places: 10661 /// 1) The strides of AddRec expressions. 10662 /// 2) Unknowns that are multiplied with AddRec expressions. 10663 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10664 SmallVectorImpl<const SCEV *> &Terms) { 10665 SmallVector<const SCEV *, 4> Strides; 10666 SCEVCollectStrides StrideCollector(*this, Strides); 10667 visitAll(Expr, StrideCollector); 10668 10669 DEBUG({ 10670 dbgs() << "Strides:\n"; 10671 for (const SCEV *S : Strides) 10672 dbgs() << *S << "\n"; 10673 }); 10674 10675 for (const SCEV *S : Strides) { 10676 SCEVCollectTerms TermCollector(Terms); 10677 visitAll(S, TermCollector); 10678 } 10679 10680 DEBUG({ 10681 dbgs() << "Terms:\n"; 10682 for (const SCEV *T : Terms) 10683 dbgs() << *T << "\n"; 10684 }); 10685 10686 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10687 visitAll(Expr, MulCollector); 10688 } 10689 10690 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10691 SmallVectorImpl<const SCEV *> &Terms, 10692 SmallVectorImpl<const SCEV *> &Sizes) { 10693 int Last = Terms.size() - 1; 10694 const SCEV *Step = Terms[Last]; 10695 10696 // End of recursion. 10697 if (Last == 0) { 10698 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10699 SmallVector<const SCEV *, 2> Qs; 10700 for (const SCEV *Op : M->operands()) 10701 if (!isa<SCEVConstant>(Op)) 10702 Qs.push_back(Op); 10703 10704 Step = SE.getMulExpr(Qs); 10705 } 10706 10707 Sizes.push_back(Step); 10708 return true; 10709 } 10710 10711 for (const SCEV *&Term : Terms) { 10712 // Normalize the terms before the next call to findArrayDimensionsRec. 10713 const SCEV *Q, *R; 10714 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10715 10716 // Bail out when GCD does not evenly divide one of the terms. 10717 if (!R->isZero()) 10718 return false; 10719 10720 Term = Q; 10721 } 10722 10723 // Remove all SCEVConstants. 10724 Terms.erase( 10725 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10726 Terms.end()); 10727 10728 if (Terms.size() > 0) 10729 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10730 return false; 10731 10732 Sizes.push_back(Step); 10733 return true; 10734 } 10735 10736 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10737 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10738 for (const SCEV *T : Terms) 10739 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 10740 return true; 10741 return false; 10742 } 10743 10744 // Return the number of product terms in S. 10745 static inline int numberOfTerms(const SCEV *S) { 10746 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10747 return Expr->getNumOperands(); 10748 return 1; 10749 } 10750 10751 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10752 if (isa<SCEVConstant>(T)) 10753 return nullptr; 10754 10755 if (isa<SCEVUnknown>(T)) 10756 return T; 10757 10758 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10759 SmallVector<const SCEV *, 2> Factors; 10760 for (const SCEV *Op : M->operands()) 10761 if (!isa<SCEVConstant>(Op)) 10762 Factors.push_back(Op); 10763 10764 return SE.getMulExpr(Factors); 10765 } 10766 10767 return T; 10768 } 10769 10770 /// Return the size of an element read or written by Inst. 10771 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 10772 Type *Ty; 10773 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 10774 Ty = Store->getValueOperand()->getType(); 10775 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 10776 Ty = Load->getType(); 10777 else 10778 return nullptr; 10779 10780 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 10781 return getSizeOfExpr(ETy, Ty); 10782 } 10783 10784 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 10785 SmallVectorImpl<const SCEV *> &Sizes, 10786 const SCEV *ElementSize) { 10787 if (Terms.size() < 1 || !ElementSize) 10788 return; 10789 10790 // Early return when Terms do not contain parameters: we do not delinearize 10791 // non parametric SCEVs. 10792 if (!containsParameters(Terms)) 10793 return; 10794 10795 DEBUG({ 10796 dbgs() << "Terms:\n"; 10797 for (const SCEV *T : Terms) 10798 dbgs() << *T << "\n"; 10799 }); 10800 10801 // Remove duplicates. 10802 array_pod_sort(Terms.begin(), Terms.end()); 10803 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 10804 10805 // Put larger terms first. 10806 llvm::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 10807 return numberOfTerms(LHS) > numberOfTerms(RHS); 10808 }); 10809 10810 // Try to divide all terms by the element size. If term is not divisible by 10811 // element size, proceed with the original term. 10812 for (const SCEV *&Term : Terms) { 10813 const SCEV *Q, *R; 10814 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 10815 if (!Q->isZero()) 10816 Term = Q; 10817 } 10818 10819 SmallVector<const SCEV *, 4> NewTerms; 10820 10821 // Remove constant factors. 10822 for (const SCEV *T : Terms) 10823 if (const SCEV *NewT = removeConstantFactors(*this, T)) 10824 NewTerms.push_back(NewT); 10825 10826 DEBUG({ 10827 dbgs() << "Terms after sorting:\n"; 10828 for (const SCEV *T : NewTerms) 10829 dbgs() << *T << "\n"; 10830 }); 10831 10832 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 10833 Sizes.clear(); 10834 return; 10835 } 10836 10837 // The last element to be pushed into Sizes is the size of an element. 10838 Sizes.push_back(ElementSize); 10839 10840 DEBUG({ 10841 dbgs() << "Sizes:\n"; 10842 for (const SCEV *S : Sizes) 10843 dbgs() << *S << "\n"; 10844 }); 10845 } 10846 10847 void ScalarEvolution::computeAccessFunctions( 10848 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 10849 SmallVectorImpl<const SCEV *> &Sizes) { 10850 // Early exit in case this SCEV is not an affine multivariate function. 10851 if (Sizes.empty()) 10852 return; 10853 10854 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 10855 if (!AR->isAffine()) 10856 return; 10857 10858 const SCEV *Res = Expr; 10859 int Last = Sizes.size() - 1; 10860 for (int i = Last; i >= 0; i--) { 10861 const SCEV *Q, *R; 10862 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 10863 10864 DEBUG({ 10865 dbgs() << "Res: " << *Res << "\n"; 10866 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 10867 dbgs() << "Res divided by Sizes[i]:\n"; 10868 dbgs() << "Quotient: " << *Q << "\n"; 10869 dbgs() << "Remainder: " << *R << "\n"; 10870 }); 10871 10872 Res = Q; 10873 10874 // Do not record the last subscript corresponding to the size of elements in 10875 // the array. 10876 if (i == Last) { 10877 10878 // Bail out if the remainder is too complex. 10879 if (isa<SCEVAddRecExpr>(R)) { 10880 Subscripts.clear(); 10881 Sizes.clear(); 10882 return; 10883 } 10884 10885 continue; 10886 } 10887 10888 // Record the access function for the current subscript. 10889 Subscripts.push_back(R); 10890 } 10891 10892 // Also push in last position the remainder of the last division: it will be 10893 // the access function of the innermost dimension. 10894 Subscripts.push_back(Res); 10895 10896 std::reverse(Subscripts.begin(), Subscripts.end()); 10897 10898 DEBUG({ 10899 dbgs() << "Subscripts:\n"; 10900 for (const SCEV *S : Subscripts) 10901 dbgs() << *S << "\n"; 10902 }); 10903 } 10904 10905 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 10906 /// sizes of an array access. Returns the remainder of the delinearization that 10907 /// is the offset start of the array. The SCEV->delinearize algorithm computes 10908 /// the multiples of SCEV coefficients: that is a pattern matching of sub 10909 /// expressions in the stride and base of a SCEV corresponding to the 10910 /// computation of a GCD (greatest common divisor) of base and stride. When 10911 /// SCEV->delinearize fails, it returns the SCEV unchanged. 10912 /// 10913 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 10914 /// 10915 /// void foo(long n, long m, long o, double A[n][m][o]) { 10916 /// 10917 /// for (long i = 0; i < n; i++) 10918 /// for (long j = 0; j < m; j++) 10919 /// for (long k = 0; k < o; k++) 10920 /// A[i][j][k] = 1.0; 10921 /// } 10922 /// 10923 /// the delinearization input is the following AddRec SCEV: 10924 /// 10925 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 10926 /// 10927 /// From this SCEV, we are able to say that the base offset of the access is %A 10928 /// because it appears as an offset that does not divide any of the strides in 10929 /// the loops: 10930 /// 10931 /// CHECK: Base offset: %A 10932 /// 10933 /// and then SCEV->delinearize determines the size of some of the dimensions of 10934 /// the array as these are the multiples by which the strides are happening: 10935 /// 10936 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 10937 /// 10938 /// Note that the outermost dimension remains of UnknownSize because there are 10939 /// no strides that would help identifying the size of the last dimension: when 10940 /// the array has been statically allocated, one could compute the size of that 10941 /// dimension by dividing the overall size of the array by the size of the known 10942 /// dimensions: %m * %o * 8. 10943 /// 10944 /// Finally delinearize provides the access functions for the array reference 10945 /// that does correspond to A[i][j][k] of the above C testcase: 10946 /// 10947 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 10948 /// 10949 /// The testcases are checking the output of a function pass: 10950 /// DelinearizationPass that walks through all loads and stores of a function 10951 /// asking for the SCEV of the memory access with respect to all enclosing 10952 /// loops, calling SCEV->delinearize on that and printing the results. 10953 void ScalarEvolution::delinearize(const SCEV *Expr, 10954 SmallVectorImpl<const SCEV *> &Subscripts, 10955 SmallVectorImpl<const SCEV *> &Sizes, 10956 const SCEV *ElementSize) { 10957 // First step: collect parametric terms. 10958 SmallVector<const SCEV *, 4> Terms; 10959 collectParametricTerms(Expr, Terms); 10960 10961 if (Terms.empty()) 10962 return; 10963 10964 // Second step: find subscript sizes. 10965 findArrayDimensions(Terms, Sizes, ElementSize); 10966 10967 if (Sizes.empty()) 10968 return; 10969 10970 // Third step: compute the access functions for each subscript. 10971 computeAccessFunctions(Expr, Subscripts, Sizes); 10972 10973 if (Subscripts.empty()) 10974 return; 10975 10976 DEBUG({ 10977 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 10978 dbgs() << "ArrayDecl[UnknownSize]"; 10979 for (const SCEV *S : Sizes) 10980 dbgs() << "[" << *S << "]"; 10981 10982 dbgs() << "\nArrayRef"; 10983 for (const SCEV *S : Subscripts) 10984 dbgs() << "[" << *S << "]"; 10985 dbgs() << "\n"; 10986 }); 10987 } 10988 10989 //===----------------------------------------------------------------------===// 10990 // SCEVCallbackVH Class Implementation 10991 //===----------------------------------------------------------------------===// 10992 10993 void ScalarEvolution::SCEVCallbackVH::deleted() { 10994 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10995 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 10996 SE->ConstantEvolutionLoopExitValue.erase(PN); 10997 SE->eraseValueFromMap(getValPtr()); 10998 // this now dangles! 10999 } 11000 11001 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11002 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11003 11004 // Forget all the expressions associated with users of the old value, 11005 // so that future queries will recompute the expressions using the new 11006 // value. 11007 Value *Old = getValPtr(); 11008 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11009 SmallPtrSet<User *, 8> Visited; 11010 while (!Worklist.empty()) { 11011 User *U = Worklist.pop_back_val(); 11012 // Deleting the Old value will cause this to dangle. Postpone 11013 // that until everything else is done. 11014 if (U == Old) 11015 continue; 11016 if (!Visited.insert(U).second) 11017 continue; 11018 if (PHINode *PN = dyn_cast<PHINode>(U)) 11019 SE->ConstantEvolutionLoopExitValue.erase(PN); 11020 SE->eraseValueFromMap(U); 11021 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11022 } 11023 // Delete the Old value. 11024 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11025 SE->ConstantEvolutionLoopExitValue.erase(PN); 11026 SE->eraseValueFromMap(Old); 11027 // this now dangles! 11028 } 11029 11030 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11031 : CallbackVH(V), SE(se) {} 11032 11033 //===----------------------------------------------------------------------===// 11034 // ScalarEvolution Class Implementation 11035 //===----------------------------------------------------------------------===// 11036 11037 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11038 AssumptionCache &AC, DominatorTree &DT, 11039 LoopInfo &LI) 11040 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11041 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11042 LoopDispositions(64), BlockDispositions(64) { 11043 // To use guards for proving predicates, we need to scan every instruction in 11044 // relevant basic blocks, and not just terminators. Doing this is a waste of 11045 // time if the IR does not actually contain any calls to 11046 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11047 // 11048 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11049 // to _add_ guards to the module when there weren't any before, and wants 11050 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11051 // efficient in lieu of being smart in that rather obscure case. 11052 11053 auto *GuardDecl = F.getParent()->getFunction( 11054 Intrinsic::getName(Intrinsic::experimental_guard)); 11055 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11056 } 11057 11058 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11059 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11060 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11061 ValueExprMap(std::move(Arg.ValueExprMap)), 11062 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11063 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11064 PendingMerges(std::move(Arg.PendingMerges)), 11065 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11066 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11067 PredicatedBackedgeTakenCounts( 11068 std::move(Arg.PredicatedBackedgeTakenCounts)), 11069 ConstantEvolutionLoopExitValue( 11070 std::move(Arg.ConstantEvolutionLoopExitValue)), 11071 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11072 LoopDispositions(std::move(Arg.LoopDispositions)), 11073 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11074 BlockDispositions(std::move(Arg.BlockDispositions)), 11075 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11076 SignedRanges(std::move(Arg.SignedRanges)), 11077 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11078 UniquePreds(std::move(Arg.UniquePreds)), 11079 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11080 LoopUsers(std::move(Arg.LoopUsers)), 11081 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11082 FirstUnknown(Arg.FirstUnknown) { 11083 Arg.FirstUnknown = nullptr; 11084 } 11085 11086 ScalarEvolution::~ScalarEvolution() { 11087 // Iterate through all the SCEVUnknown instances and call their 11088 // destructors, so that they release their references to their values. 11089 for (SCEVUnknown *U = FirstUnknown; U;) { 11090 SCEVUnknown *Tmp = U; 11091 U = U->Next; 11092 Tmp->~SCEVUnknown(); 11093 } 11094 FirstUnknown = nullptr; 11095 11096 ExprValueMap.clear(); 11097 ValueExprMap.clear(); 11098 HasRecMap.clear(); 11099 11100 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11101 // that a loop had multiple computable exits. 11102 for (auto &BTCI : BackedgeTakenCounts) 11103 BTCI.second.clear(); 11104 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11105 BTCI.second.clear(); 11106 11107 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11108 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11109 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11110 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11111 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11112 } 11113 11114 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11115 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11116 } 11117 11118 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11119 const Loop *L) { 11120 // Print all inner loops first 11121 for (Loop *I : *L) 11122 PrintLoopInfo(OS, SE, I); 11123 11124 OS << "Loop "; 11125 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11126 OS << ": "; 11127 11128 SmallVector<BasicBlock *, 8> ExitBlocks; 11129 L->getExitBlocks(ExitBlocks); 11130 if (ExitBlocks.size() != 1) 11131 OS << "<multiple exits> "; 11132 11133 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11134 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 11135 } else { 11136 OS << "Unpredictable backedge-taken count. "; 11137 } 11138 11139 OS << "\n" 11140 "Loop "; 11141 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11142 OS << ": "; 11143 11144 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 11145 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 11146 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11147 OS << ", actual taken count either this or zero."; 11148 } else { 11149 OS << "Unpredictable max backedge-taken count. "; 11150 } 11151 11152 OS << "\n" 11153 "Loop "; 11154 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11155 OS << ": "; 11156 11157 SCEVUnionPredicate Pred; 11158 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11159 if (!isa<SCEVCouldNotCompute>(PBT)) { 11160 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11161 OS << " Predicates:\n"; 11162 Pred.print(OS, 4); 11163 } else { 11164 OS << "Unpredictable predicated backedge-taken count. "; 11165 } 11166 OS << "\n"; 11167 11168 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11169 OS << "Loop "; 11170 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11171 OS << ": "; 11172 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11173 } 11174 } 11175 11176 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11177 switch (LD) { 11178 case ScalarEvolution::LoopVariant: 11179 return "Variant"; 11180 case ScalarEvolution::LoopInvariant: 11181 return "Invariant"; 11182 case ScalarEvolution::LoopComputable: 11183 return "Computable"; 11184 } 11185 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11186 } 11187 11188 void ScalarEvolution::print(raw_ostream &OS) const { 11189 // ScalarEvolution's implementation of the print method is to print 11190 // out SCEV values of all instructions that are interesting. Doing 11191 // this potentially causes it to create new SCEV objects though, 11192 // which technically conflicts with the const qualifier. This isn't 11193 // observable from outside the class though, so casting away the 11194 // const isn't dangerous. 11195 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11196 11197 OS << "Classifying expressions for: "; 11198 F.printAsOperand(OS, /*PrintType=*/false); 11199 OS << "\n"; 11200 for (Instruction &I : instructions(F)) 11201 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11202 OS << I << '\n'; 11203 OS << " --> "; 11204 const SCEV *SV = SE.getSCEV(&I); 11205 SV->print(OS); 11206 if (!isa<SCEVCouldNotCompute>(SV)) { 11207 OS << " U: "; 11208 SE.getUnsignedRange(SV).print(OS); 11209 OS << " S: "; 11210 SE.getSignedRange(SV).print(OS); 11211 } 11212 11213 const Loop *L = LI.getLoopFor(I.getParent()); 11214 11215 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11216 if (AtUse != SV) { 11217 OS << " --> "; 11218 AtUse->print(OS); 11219 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11220 OS << " U: "; 11221 SE.getUnsignedRange(AtUse).print(OS); 11222 OS << " S: "; 11223 SE.getSignedRange(AtUse).print(OS); 11224 } 11225 } 11226 11227 if (L) { 11228 OS << "\t\t" "Exits: "; 11229 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11230 if (!SE.isLoopInvariant(ExitValue, L)) { 11231 OS << "<<Unknown>>"; 11232 } else { 11233 OS << *ExitValue; 11234 } 11235 11236 bool First = true; 11237 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11238 if (First) { 11239 OS << "\t\t" "LoopDispositions: { "; 11240 First = false; 11241 } else { 11242 OS << ", "; 11243 } 11244 11245 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11246 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11247 } 11248 11249 for (auto *InnerL : depth_first(L)) { 11250 if (InnerL == L) 11251 continue; 11252 if (First) { 11253 OS << "\t\t" "LoopDispositions: { "; 11254 First = false; 11255 } else { 11256 OS << ", "; 11257 } 11258 11259 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11260 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11261 } 11262 11263 OS << " }"; 11264 } 11265 11266 OS << "\n"; 11267 } 11268 11269 OS << "Determining loop execution counts for: "; 11270 F.printAsOperand(OS, /*PrintType=*/false); 11271 OS << "\n"; 11272 for (Loop *I : LI) 11273 PrintLoopInfo(OS, &SE, I); 11274 } 11275 11276 ScalarEvolution::LoopDisposition 11277 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11278 auto &Values = LoopDispositions[S]; 11279 for (auto &V : Values) { 11280 if (V.getPointer() == L) 11281 return V.getInt(); 11282 } 11283 Values.emplace_back(L, LoopVariant); 11284 LoopDisposition D = computeLoopDisposition(S, L); 11285 auto &Values2 = LoopDispositions[S]; 11286 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11287 if (V.getPointer() == L) { 11288 V.setInt(D); 11289 break; 11290 } 11291 } 11292 return D; 11293 } 11294 11295 ScalarEvolution::LoopDisposition 11296 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11297 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11298 case scConstant: 11299 return LoopInvariant; 11300 case scTruncate: 11301 case scZeroExtend: 11302 case scSignExtend: 11303 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11304 case scAddRecExpr: { 11305 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11306 11307 // If L is the addrec's loop, it's computable. 11308 if (AR->getLoop() == L) 11309 return LoopComputable; 11310 11311 // Add recurrences are never invariant in the function-body (null loop). 11312 if (!L) 11313 return LoopVariant; 11314 11315 // Everything that is not defined at loop entry is variant. 11316 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11317 return LoopVariant; 11318 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11319 " dominate the contained loop's header?"); 11320 11321 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11322 if (AR->getLoop()->contains(L)) 11323 return LoopInvariant; 11324 11325 // This recurrence is variant w.r.t. L if any of its operands 11326 // are variant. 11327 for (auto *Op : AR->operands()) 11328 if (!isLoopInvariant(Op, L)) 11329 return LoopVariant; 11330 11331 // Otherwise it's loop-invariant. 11332 return LoopInvariant; 11333 } 11334 case scAddExpr: 11335 case scMulExpr: 11336 case scUMaxExpr: 11337 case scSMaxExpr: { 11338 bool HasVarying = false; 11339 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11340 LoopDisposition D = getLoopDisposition(Op, L); 11341 if (D == LoopVariant) 11342 return LoopVariant; 11343 if (D == LoopComputable) 11344 HasVarying = true; 11345 } 11346 return HasVarying ? LoopComputable : LoopInvariant; 11347 } 11348 case scUDivExpr: { 11349 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11350 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11351 if (LD == LoopVariant) 11352 return LoopVariant; 11353 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11354 if (RD == LoopVariant) 11355 return LoopVariant; 11356 return (LD == LoopInvariant && RD == LoopInvariant) ? 11357 LoopInvariant : LoopComputable; 11358 } 11359 case scUnknown: 11360 // All non-instruction values are loop invariant. All instructions are loop 11361 // invariant if they are not contained in the specified loop. 11362 // Instructions are never considered invariant in the function body 11363 // (null loop) because they are defined within the "loop". 11364 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11365 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11366 return LoopInvariant; 11367 case scCouldNotCompute: 11368 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11369 } 11370 llvm_unreachable("Unknown SCEV kind!"); 11371 } 11372 11373 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11374 return getLoopDisposition(S, L) == LoopInvariant; 11375 } 11376 11377 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11378 return getLoopDisposition(S, L) == LoopComputable; 11379 } 11380 11381 ScalarEvolution::BlockDisposition 11382 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11383 auto &Values = BlockDispositions[S]; 11384 for (auto &V : Values) { 11385 if (V.getPointer() == BB) 11386 return V.getInt(); 11387 } 11388 Values.emplace_back(BB, DoesNotDominateBlock); 11389 BlockDisposition D = computeBlockDisposition(S, BB); 11390 auto &Values2 = BlockDispositions[S]; 11391 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11392 if (V.getPointer() == BB) { 11393 V.setInt(D); 11394 break; 11395 } 11396 } 11397 return D; 11398 } 11399 11400 ScalarEvolution::BlockDisposition 11401 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11402 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11403 case scConstant: 11404 return ProperlyDominatesBlock; 11405 case scTruncate: 11406 case scZeroExtend: 11407 case scSignExtend: 11408 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11409 case scAddRecExpr: { 11410 // This uses a "dominates" query instead of "properly dominates" query 11411 // to test for proper dominance too, because the instruction which 11412 // produces the addrec's value is a PHI, and a PHI effectively properly 11413 // dominates its entire containing block. 11414 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11415 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11416 return DoesNotDominateBlock; 11417 11418 // Fall through into SCEVNAryExpr handling. 11419 LLVM_FALLTHROUGH; 11420 } 11421 case scAddExpr: 11422 case scMulExpr: 11423 case scUMaxExpr: 11424 case scSMaxExpr: { 11425 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11426 bool Proper = true; 11427 for (const SCEV *NAryOp : NAry->operands()) { 11428 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11429 if (D == DoesNotDominateBlock) 11430 return DoesNotDominateBlock; 11431 if (D == DominatesBlock) 11432 Proper = false; 11433 } 11434 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11435 } 11436 case scUDivExpr: { 11437 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11438 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11439 BlockDisposition LD = getBlockDisposition(LHS, BB); 11440 if (LD == DoesNotDominateBlock) 11441 return DoesNotDominateBlock; 11442 BlockDisposition RD = getBlockDisposition(RHS, BB); 11443 if (RD == DoesNotDominateBlock) 11444 return DoesNotDominateBlock; 11445 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11446 ProperlyDominatesBlock : DominatesBlock; 11447 } 11448 case scUnknown: 11449 if (Instruction *I = 11450 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11451 if (I->getParent() == BB) 11452 return DominatesBlock; 11453 if (DT.properlyDominates(I->getParent(), BB)) 11454 return ProperlyDominatesBlock; 11455 return DoesNotDominateBlock; 11456 } 11457 return ProperlyDominatesBlock; 11458 case scCouldNotCompute: 11459 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11460 } 11461 llvm_unreachable("Unknown SCEV kind!"); 11462 } 11463 11464 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11465 return getBlockDisposition(S, BB) >= DominatesBlock; 11466 } 11467 11468 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11469 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11470 } 11471 11472 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11473 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11474 } 11475 11476 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11477 auto IsS = [&](const SCEV *X) { return S == X; }; 11478 auto ContainsS = [&](const SCEV *X) { 11479 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11480 }; 11481 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11482 } 11483 11484 void 11485 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11486 ValuesAtScopes.erase(S); 11487 LoopDispositions.erase(S); 11488 BlockDispositions.erase(S); 11489 UnsignedRanges.erase(S); 11490 SignedRanges.erase(S); 11491 ExprValueMap.erase(S); 11492 HasRecMap.erase(S); 11493 MinTrailingZerosCache.erase(S); 11494 11495 for (auto I = PredicatedSCEVRewrites.begin(); 11496 I != PredicatedSCEVRewrites.end();) { 11497 std::pair<const SCEV *, const Loop *> Entry = I->first; 11498 if (Entry.first == S) 11499 PredicatedSCEVRewrites.erase(I++); 11500 else 11501 ++I; 11502 } 11503 11504 auto RemoveSCEVFromBackedgeMap = 11505 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11506 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11507 BackedgeTakenInfo &BEInfo = I->second; 11508 if (BEInfo.hasOperand(S, this)) { 11509 BEInfo.clear(); 11510 Map.erase(I++); 11511 } else 11512 ++I; 11513 } 11514 }; 11515 11516 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11517 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11518 } 11519 11520 void 11521 ScalarEvolution::getUsedLoops(const SCEV *S, 11522 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11523 struct FindUsedLoops { 11524 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11525 : LoopsUsed(LoopsUsed) {} 11526 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11527 bool follow(const SCEV *S) { 11528 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11529 LoopsUsed.insert(AR->getLoop()); 11530 return true; 11531 } 11532 11533 bool isDone() const { return false; } 11534 }; 11535 11536 FindUsedLoops F(LoopsUsed); 11537 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11538 } 11539 11540 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11541 SmallPtrSet<const Loop *, 8> LoopsUsed; 11542 getUsedLoops(S, LoopsUsed); 11543 for (auto *L : LoopsUsed) 11544 LoopUsers[L].push_back(S); 11545 } 11546 11547 void ScalarEvolution::verify() const { 11548 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11549 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11550 11551 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11552 11553 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11554 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11555 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11556 11557 const SCEV *visitConstant(const SCEVConstant *Constant) { 11558 return SE.getConstant(Constant->getAPInt()); 11559 } 11560 11561 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11562 return SE.getUnknown(Expr->getValue()); 11563 } 11564 11565 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11566 return SE.getCouldNotCompute(); 11567 } 11568 }; 11569 11570 SCEVMapper SCM(SE2); 11571 11572 while (!LoopStack.empty()) { 11573 auto *L = LoopStack.pop_back_val(); 11574 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11575 11576 auto *CurBECount = SCM.visit( 11577 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11578 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11579 11580 if (CurBECount == SE2.getCouldNotCompute() || 11581 NewBECount == SE2.getCouldNotCompute()) { 11582 // NB! This situation is legal, but is very suspicious -- whatever pass 11583 // change the loop to make a trip count go from could not compute to 11584 // computable or vice-versa *should have* invalidated SCEV. However, we 11585 // choose not to assert here (for now) since we don't want false 11586 // positives. 11587 continue; 11588 } 11589 11590 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11591 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11592 // not propagate undef aggressively). This means we can (and do) fail 11593 // verification in cases where a transform makes the trip count of a loop 11594 // go from "undef" to "undef+1" (say). The transform is fine, since in 11595 // both cases the loop iterates "undef" times, but SCEV thinks we 11596 // increased the trip count of the loop by 1 incorrectly. 11597 continue; 11598 } 11599 11600 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11601 SE.getTypeSizeInBits(NewBECount->getType())) 11602 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11603 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11604 SE.getTypeSizeInBits(NewBECount->getType())) 11605 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11606 11607 auto *ConstantDelta = 11608 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 11609 11610 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 11611 dbgs() << "Trip Count Changed!\n"; 11612 dbgs() << "Old: " << *CurBECount << "\n"; 11613 dbgs() << "New: " << *NewBECount << "\n"; 11614 dbgs() << "Delta: " << *ConstantDelta << "\n"; 11615 std::abort(); 11616 } 11617 } 11618 } 11619 11620 bool ScalarEvolution::invalidate( 11621 Function &F, const PreservedAnalyses &PA, 11622 FunctionAnalysisManager::Invalidator &Inv) { 11623 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11624 // of its dependencies is invalidated. 11625 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11626 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11627 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11628 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11629 Inv.invalidate<LoopAnalysis>(F, PA); 11630 } 11631 11632 AnalysisKey ScalarEvolutionAnalysis::Key; 11633 11634 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11635 FunctionAnalysisManager &AM) { 11636 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11637 AM.getResult<AssumptionAnalysis>(F), 11638 AM.getResult<DominatorTreeAnalysis>(F), 11639 AM.getResult<LoopAnalysis>(F)); 11640 } 11641 11642 PreservedAnalyses 11643 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11644 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11645 return PreservedAnalyses::all(); 11646 } 11647 11648 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11649 "Scalar Evolution Analysis", false, true) 11650 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11651 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11652 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11653 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11654 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11655 "Scalar Evolution Analysis", false, true) 11656 11657 char ScalarEvolutionWrapperPass::ID = 0; 11658 11659 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11660 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11661 } 11662 11663 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11664 SE.reset(new ScalarEvolution( 11665 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 11666 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11667 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11668 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11669 return false; 11670 } 11671 11672 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11673 11674 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11675 SE->print(OS); 11676 } 11677 11678 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11679 if (!VerifySCEV) 11680 return; 11681 11682 SE->verify(); 11683 } 11684 11685 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11686 AU.setPreservesAll(); 11687 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11688 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11689 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11690 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11691 } 11692 11693 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11694 const SCEV *RHS) { 11695 FoldingSetNodeID ID; 11696 assert(LHS->getType() == RHS->getType() && 11697 "Type mismatch between LHS and RHS"); 11698 // Unique this node based on the arguments 11699 ID.AddInteger(SCEVPredicate::P_Equal); 11700 ID.AddPointer(LHS); 11701 ID.AddPointer(RHS); 11702 void *IP = nullptr; 11703 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11704 return S; 11705 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11706 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11707 UniquePreds.InsertNode(Eq, IP); 11708 return Eq; 11709 } 11710 11711 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11712 const SCEVAddRecExpr *AR, 11713 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11714 FoldingSetNodeID ID; 11715 // Unique this node based on the arguments 11716 ID.AddInteger(SCEVPredicate::P_Wrap); 11717 ID.AddPointer(AR); 11718 ID.AddInteger(AddedFlags); 11719 void *IP = nullptr; 11720 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11721 return S; 11722 auto *OF = new (SCEVAllocator) 11723 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 11724 UniquePreds.InsertNode(OF, IP); 11725 return OF; 11726 } 11727 11728 namespace { 11729 11730 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 11731 public: 11732 11733 /// Rewrites \p S in the context of a loop L and the SCEV predication 11734 /// infrastructure. 11735 /// 11736 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 11737 /// equivalences present in \p Pred. 11738 /// 11739 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 11740 /// \p NewPreds such that the result will be an AddRecExpr. 11741 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 11742 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11743 SCEVUnionPredicate *Pred) { 11744 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 11745 return Rewriter.visit(S); 11746 } 11747 11748 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11749 if (Pred) { 11750 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 11751 for (auto *Pred : ExprPreds) 11752 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 11753 if (IPred->getLHS() == Expr) 11754 return IPred->getRHS(); 11755 } 11756 return convertToAddRecWithPreds(Expr); 11757 } 11758 11759 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 11760 const SCEV *Operand = visit(Expr->getOperand()); 11761 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11762 if (AR && AR->getLoop() == L && AR->isAffine()) { 11763 // This couldn't be folded because the operand didn't have the nuw 11764 // flag. Add the nusw flag as an assumption that we could make. 11765 const SCEV *Step = AR->getStepRecurrence(SE); 11766 Type *Ty = Expr->getType(); 11767 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 11768 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 11769 SE.getSignExtendExpr(Step, Ty), L, 11770 AR->getNoWrapFlags()); 11771 } 11772 return SE.getZeroExtendExpr(Operand, Expr->getType()); 11773 } 11774 11775 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 11776 const SCEV *Operand = visit(Expr->getOperand()); 11777 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11778 if (AR && AR->getLoop() == L && AR->isAffine()) { 11779 // This couldn't be folded because the operand didn't have the nsw 11780 // flag. Add the nssw flag as an assumption that we could make. 11781 const SCEV *Step = AR->getStepRecurrence(SE); 11782 Type *Ty = Expr->getType(); 11783 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 11784 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 11785 SE.getSignExtendExpr(Step, Ty), L, 11786 AR->getNoWrapFlags()); 11787 } 11788 return SE.getSignExtendExpr(Operand, Expr->getType()); 11789 } 11790 11791 private: 11792 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 11793 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11794 SCEVUnionPredicate *Pred) 11795 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 11796 11797 bool addOverflowAssumption(const SCEVPredicate *P) { 11798 if (!NewPreds) { 11799 // Check if we've already made this assumption. 11800 return Pred && Pred->implies(P); 11801 } 11802 NewPreds->insert(P); 11803 return true; 11804 } 11805 11806 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 11807 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11808 auto *A = SE.getWrapPredicate(AR, AddedFlags); 11809 return addOverflowAssumption(A); 11810 } 11811 11812 // If \p Expr represents a PHINode, we try to see if it can be represented 11813 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 11814 // to add this predicate as a runtime overflow check, we return the AddRec. 11815 // If \p Expr does not meet these conditions (is not a PHI node, or we 11816 // couldn't create an AddRec for it, or couldn't add the predicate), we just 11817 // return \p Expr. 11818 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 11819 if (!isa<PHINode>(Expr->getValue())) 11820 return Expr; 11821 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 11822 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 11823 if (!PredicatedRewrite) 11824 return Expr; 11825 for (auto *P : PredicatedRewrite->second){ 11826 // Wrap predicates from outer loops are not supported. 11827 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 11828 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 11829 if (L != AR->getLoop()) 11830 return Expr; 11831 } 11832 if (!addOverflowAssumption(P)) 11833 return Expr; 11834 } 11835 return PredicatedRewrite->first; 11836 } 11837 11838 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 11839 SCEVUnionPredicate *Pred; 11840 const Loop *L; 11841 }; 11842 11843 } // end anonymous namespace 11844 11845 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 11846 SCEVUnionPredicate &Preds) { 11847 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 11848 } 11849 11850 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 11851 const SCEV *S, const Loop *L, 11852 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 11853 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 11854 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 11855 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 11856 11857 if (!AddRec) 11858 return nullptr; 11859 11860 // Since the transformation was successful, we can now transfer the SCEV 11861 // predicates. 11862 for (auto *P : TransformPreds) 11863 Preds.insert(P); 11864 11865 return AddRec; 11866 } 11867 11868 /// SCEV predicates 11869 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 11870 SCEVPredicateKind Kind) 11871 : FastID(ID), Kind(Kind) {} 11872 11873 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 11874 const SCEV *LHS, const SCEV *RHS) 11875 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 11876 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 11877 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 11878 } 11879 11880 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 11881 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 11882 11883 if (!Op) 11884 return false; 11885 11886 return Op->LHS == LHS && Op->RHS == RHS; 11887 } 11888 11889 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 11890 11891 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 11892 11893 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 11894 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 11895 } 11896 11897 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 11898 const SCEVAddRecExpr *AR, 11899 IncrementWrapFlags Flags) 11900 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 11901 11902 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 11903 11904 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 11905 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 11906 11907 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 11908 } 11909 11910 bool SCEVWrapPredicate::isAlwaysTrue() const { 11911 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 11912 IncrementWrapFlags IFlags = Flags; 11913 11914 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 11915 IFlags = clearFlags(IFlags, IncrementNSSW); 11916 11917 return IFlags == IncrementAnyWrap; 11918 } 11919 11920 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 11921 OS.indent(Depth) << *getExpr() << " Added Flags: "; 11922 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 11923 OS << "<nusw>"; 11924 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 11925 OS << "<nssw>"; 11926 OS << "\n"; 11927 } 11928 11929 SCEVWrapPredicate::IncrementWrapFlags 11930 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 11931 ScalarEvolution &SE) { 11932 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 11933 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 11934 11935 // We can safely transfer the NSW flag as NSSW. 11936 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 11937 ImpliedFlags = IncrementNSSW; 11938 11939 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 11940 // If the increment is positive, the SCEV NUW flag will also imply the 11941 // WrapPredicate NUSW flag. 11942 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 11943 if (Step->getValue()->getValue().isNonNegative()) 11944 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 11945 } 11946 11947 return ImpliedFlags; 11948 } 11949 11950 /// Union predicates don't get cached so create a dummy set ID for it. 11951 SCEVUnionPredicate::SCEVUnionPredicate() 11952 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 11953 11954 bool SCEVUnionPredicate::isAlwaysTrue() const { 11955 return all_of(Preds, 11956 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 11957 } 11958 11959 ArrayRef<const SCEVPredicate *> 11960 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 11961 auto I = SCEVToPreds.find(Expr); 11962 if (I == SCEVToPreds.end()) 11963 return ArrayRef<const SCEVPredicate *>(); 11964 return I->second; 11965 } 11966 11967 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 11968 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 11969 return all_of(Set->Preds, 11970 [this](const SCEVPredicate *I) { return this->implies(I); }); 11971 11972 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 11973 if (ScevPredsIt == SCEVToPreds.end()) 11974 return false; 11975 auto &SCEVPreds = ScevPredsIt->second; 11976 11977 return any_of(SCEVPreds, 11978 [N](const SCEVPredicate *I) { return I->implies(N); }); 11979 } 11980 11981 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 11982 11983 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 11984 for (auto Pred : Preds) 11985 Pred->print(OS, Depth); 11986 } 11987 11988 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 11989 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 11990 for (auto Pred : Set->Preds) 11991 add(Pred); 11992 return; 11993 } 11994 11995 if (implies(N)) 11996 return; 11997 11998 const SCEV *Key = N->getExpr(); 11999 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12000 " associated expression!"); 12001 12002 SCEVToPreds[Key].push_back(N); 12003 Preds.push_back(N); 12004 } 12005 12006 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12007 Loop &L) 12008 : SE(SE), L(L) {} 12009 12010 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12011 const SCEV *Expr = SE.getSCEV(V); 12012 RewriteEntry &Entry = RewriteMap[Expr]; 12013 12014 // If we already have an entry and the version matches, return it. 12015 if (Entry.second && Generation == Entry.first) 12016 return Entry.second; 12017 12018 // We found an entry but it's stale. Rewrite the stale entry 12019 // according to the current predicate. 12020 if (Entry.second) 12021 Expr = Entry.second; 12022 12023 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12024 Entry = {Generation, NewSCEV}; 12025 12026 return NewSCEV; 12027 } 12028 12029 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12030 if (!BackedgeCount) { 12031 SCEVUnionPredicate BackedgePred; 12032 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12033 addPredicate(BackedgePred); 12034 } 12035 return BackedgeCount; 12036 } 12037 12038 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12039 if (Preds.implies(&Pred)) 12040 return; 12041 Preds.add(&Pred); 12042 updateGeneration(); 12043 } 12044 12045 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12046 return Preds; 12047 } 12048 12049 void PredicatedScalarEvolution::updateGeneration() { 12050 // If the generation number wrapped recompute everything. 12051 if (++Generation == 0) { 12052 for (auto &II : RewriteMap) { 12053 const SCEV *Rewritten = II.second.second; 12054 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12055 } 12056 } 12057 } 12058 12059 void PredicatedScalarEvolution::setNoOverflow( 12060 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12061 const SCEV *Expr = getSCEV(V); 12062 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12063 12064 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12065 12066 // Clear the statically implied flags. 12067 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12068 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12069 12070 auto II = FlagsMap.insert({V, Flags}); 12071 if (!II.second) 12072 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12073 } 12074 12075 bool PredicatedScalarEvolution::hasNoOverflow( 12076 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12077 const SCEV *Expr = getSCEV(V); 12078 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12079 12080 Flags = SCEVWrapPredicate::clearFlags( 12081 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12082 12083 auto II = FlagsMap.find(V); 12084 12085 if (II != FlagsMap.end()) 12086 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12087 12088 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12089 } 12090 12091 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12092 const SCEV *Expr = this->getSCEV(V); 12093 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12094 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12095 12096 if (!New) 12097 return nullptr; 12098 12099 for (auto *P : NewPreds) 12100 Preds.add(P); 12101 12102 updateGeneration(); 12103 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12104 return New; 12105 } 12106 12107 PredicatedScalarEvolution::PredicatedScalarEvolution( 12108 const PredicatedScalarEvolution &Init) 12109 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12110 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12111 for (const auto &I : Init.FlagsMap) 12112 FlagsMap.insert(I); 12113 } 12114 12115 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12116 // For each block. 12117 for (auto *BB : L.getBlocks()) 12118 for (auto &I : *BB) { 12119 if (!SE.isSCEVable(I.getType())) 12120 continue; 12121 12122 auto *Expr = SE.getSCEV(&I); 12123 auto II = RewriteMap.find(Expr); 12124 12125 if (II == RewriteMap.end()) 12126 continue; 12127 12128 // Don't print things that are not interesting. 12129 if (II->second.second == Expr) 12130 continue; 12131 12132 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12133 OS.indent(Depth + 2) << *Expr << "\n"; 12134 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12135 } 12136 } 12137