1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/MustExecute.h" 11 #include "llvm/Analysis/InstructionSimplify.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/Passes.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/IR/AssemblyAnnotationWriter.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/InstIterator.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/FormattedStream.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 /// Computes loop safety information, checks loop body & header 26 /// for the possibility of may throw exception. 27 /// 28 void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { 29 assert(CurLoop != nullptr && "CurLoop cant be null"); 30 BasicBlock *Header = CurLoop->getHeader(); 31 // Setting default safety values. 32 SafetyInfo->MayThrow = false; 33 SafetyInfo->HeaderMayThrow = false; 34 // Iterate over header and compute safety info. 35 SafetyInfo->HeaderMayThrow = 36 !isGuaranteedToTransferExecutionToSuccessor(Header); 37 38 SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow; 39 // Iterate over loop instructions and compute safety info. 40 // Skip header as it has been computed and stored in HeaderMayThrow. 41 // The first block in loopinfo.Blocks is guaranteed to be the header. 42 assert(Header == *CurLoop->getBlocks().begin() && 43 "First block must be header"); 44 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 45 BBE = CurLoop->block_end(); 46 (BB != BBE) && !SafetyInfo->MayThrow; ++BB) 47 SafetyInfo->MayThrow |= 48 !isGuaranteedToTransferExecutionToSuccessor(*BB); 49 50 // Compute funclet colors if we might sink/hoist in a function with a funclet 51 // personality routine. 52 Function *Fn = CurLoop->getHeader()->getParent(); 53 if (Fn->hasPersonalityFn()) 54 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 55 if (isFuncletEHPersonality(classifyEHPersonality(PersonalityFn))) 56 SafetyInfo->BlockColors = colorEHFunclets(*Fn); 57 } 58 59 /// Return true if we can prove that the given ExitBlock is not reached on the 60 /// first iteration of the given loop. That is, the backedge of the loop must 61 /// be executed before the ExitBlock is executed in any dynamic execution trace. 62 static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, 63 const DominatorTree *DT, 64 const Loop *CurLoop) { 65 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 66 if (!CondExitBlock) 67 // expect unique exits 68 return false; 69 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 70 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 71 if (!BI || !BI->isConditional()) 72 return false; 73 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 74 if (!Cond) 75 return false; 76 // todo: this would be a lot more powerful if we used scev, but all the 77 // plumbing is currently missing to pass a pointer in from the pass 78 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 79 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 80 auto *RHS = Cond->getOperand(1); 81 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 82 return false; 83 auto DL = ExitBlock->getModule()->getDataLayout(); 84 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 85 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 86 IVStart, RHS, 87 {DL, /*TLI*/ nullptr, 88 DT, /*AC*/ nullptr, BI}); 89 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 90 if (!SimpleCst) 91 return false; 92 if (ExitBlock == BI->getSuccessor(0)) 93 return SimpleCst->isZeroValue(); 94 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 95 return SimpleCst->isAllOnesValue(); 96 } 97 98 /// Returns true if the instruction in a loop is guaranteed to execute at least 99 /// once. 100 bool llvm::isGuaranteedToExecute(const Instruction &Inst, 101 const DominatorTree *DT, const Loop *CurLoop, 102 const LoopSafetyInfo *SafetyInfo) { 103 // We have to check to make sure that the instruction dominates all 104 // of the exit blocks. If it doesn't, then there is a path out of the loop 105 // which does not execute this instruction, so we can't hoist it. 106 107 // If the instruction is in the header block for the loop (which is very 108 // common), it is always guaranteed to dominate the exit blocks. Since this 109 // is a common case, and can save some work, check it now. 110 if (Inst.getParent() == CurLoop->getHeader()) 111 // If there's a throw in the header block, we can't guarantee we'll reach 112 // Inst unless we can prove that Inst comes before the potential implicit 113 // exit. At the moment, we use a (cheap) hack for the common case where 114 // the instruction of interest is the first one in the block. 115 return !SafetyInfo->HeaderMayThrow || 116 Inst.getParent()->getFirstNonPHI() == &Inst; 117 118 // Somewhere in this loop there is an instruction which may throw and make us 119 // exit the loop. 120 if (SafetyInfo->MayThrow) 121 return false; 122 123 // Note: There are two styles of reasoning intermixed below for 124 // implementation efficiency reasons. They are: 125 // 1) If we can prove that the instruction dominates all exit blocks, then we 126 // know the instruction must have executed on *some* iteration before we 127 // exit. We do not prove *which* iteration the instruction must execute on. 128 // 2) If we can prove that the instruction dominates the latch and all exits 129 // which might be taken on the first iteration, we know the instruction must 130 // execute on the first iteration. This second style allows a conditional 131 // exit before the instruction of interest which is provably not taken on the 132 // first iteration. This is a quite common case for range check like 133 // patterns. TODO: support loops with multiple latches. 134 135 const bool InstDominatesLatch = 136 CurLoop->getLoopLatch() != nullptr && 137 DT->dominates(Inst.getParent(), CurLoop->getLoopLatch()); 138 139 // Get the exit blocks for the current loop. 140 SmallVector<BasicBlock *, 8> ExitBlocks; 141 CurLoop->getExitBlocks(ExitBlocks); 142 143 // Verify that the block dominates each of the exit blocks of the loop. 144 for (BasicBlock *ExitBlock : ExitBlocks) 145 if (!DT->dominates(Inst.getParent(), ExitBlock)) 146 if (!InstDominatesLatch || 147 !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop)) 148 return false; 149 150 // As a degenerate case, if the loop is statically infinite then we haven't 151 // proven anything since there are no exit blocks. 152 if (ExitBlocks.empty()) 153 return false; 154 155 // FIXME: In general, we have to prove that the loop isn't an infinite loop. 156 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 157 // just a special case of this.) 158 return true; 159 } 160 161 162 namespace { 163 struct MustExecutePrinter : public FunctionPass { 164 165 static char ID; // Pass identification, replacement for typeid 166 MustExecutePrinter() : FunctionPass(ID) { 167 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 168 } 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 AU.setPreservesAll(); 171 AU.addRequired<DominatorTreeWrapperPass>(); 172 AU.addRequired<LoopInfoWrapperPass>(); 173 } 174 bool runOnFunction(Function &F) override; 175 }; 176 } 177 178 char MustExecutePrinter::ID = 0; 179 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 180 "Instructions which execute on loop entry", false, true) 181 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 182 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 183 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 184 "Instructions which execute on loop entry", false, true) 185 186 FunctionPass *llvm::createMustExecutePrinter() { 187 return new MustExecutePrinter(); 188 } 189 190 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 191 // TODO: merge these two routines. For the moment, we display the best 192 // result obtained by *either* implementation. This is a bit unfair since no 193 // caller actually gets the full power at the moment. 194 LoopSafetyInfo LSI; 195 computeLoopSafetyInfo(&LSI, L); 196 return isGuaranteedToExecute(I, DT, L, &LSI) || 197 isGuaranteedToExecuteForEveryIteration(&I, L); 198 } 199 200 namespace { 201 /// \brief An assembly annotator class to print must execute information in 202 /// comments. 203 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 204 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 205 206 public: 207 MustExecuteAnnotatedWriter(const Function &F, 208 DominatorTree &DT, LoopInfo &LI) { 209 for (auto &I: instructions(F)) { 210 Loop *L = LI.getLoopFor(I.getParent()); 211 while (L) { 212 if (isMustExecuteIn(I, L, &DT)) { 213 MustExec[&I].push_back(L); 214 } 215 L = L->getParentLoop(); 216 }; 217 } 218 } 219 MustExecuteAnnotatedWriter(const Module &M, 220 DominatorTree &DT, LoopInfo &LI) { 221 for (auto &F : M) 222 for (auto &I: instructions(F)) { 223 Loop *L = LI.getLoopFor(I.getParent()); 224 while (L) { 225 if (isMustExecuteIn(I, L, &DT)) { 226 MustExec[&I].push_back(L); 227 } 228 L = L->getParentLoop(); 229 }; 230 } 231 } 232 233 234 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 235 if (!MustExec.count(&V)) 236 return; 237 238 const auto &Loops = MustExec.lookup(&V); 239 const auto NumLoops = Loops.size(); 240 if (NumLoops > 1) 241 OS << " ; (mustexec in " << NumLoops << " loops: "; 242 else 243 OS << " ; (mustexec in: "; 244 245 bool first = true; 246 for (const Loop *L : Loops) { 247 if (!first) 248 OS << ", "; 249 first = false; 250 OS << L->getHeader()->getName(); 251 } 252 OS << ")"; 253 } 254 }; 255 } // namespace 256 257 bool MustExecutePrinter::runOnFunction(Function &F) { 258 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 259 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 260 261 MustExecuteAnnotatedWriter Writer(F, DT, LI); 262 F.print(dbgs(), &Writer); 263 264 return false; 265 } 266