1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/MustExecute.h" 10 #include "llvm/ADT/PostOrderIterator.h" 11 #include "llvm/Analysis/CFG.h" 12 #include "llvm/Analysis/InstructionSimplify.h" 13 #include "llvm/Analysis/LoopInfo.h" 14 #include "llvm/Analysis/Passes.h" 15 #include "llvm/Analysis/PostDominators.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/AssemblyAnnotationWriter.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/FormattedStream.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "must-execute" 30 31 const DenseMap<BasicBlock *, ColorVector> & 32 LoopSafetyInfo::getBlockColors() const { 33 return BlockColors; 34 } 35 36 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { 37 ColorVector &ColorsForNewBlock = BlockColors[New]; 38 ColorVector &ColorsForOldBlock = BlockColors[Old]; 39 ColorsForNewBlock = ColorsForOldBlock; 40 } 41 42 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 43 (void)BB; 44 return anyBlockMayThrow(); 45 } 46 47 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { 48 return MayThrow; 49 } 50 51 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 52 assert(CurLoop != nullptr && "CurLoop can't be null"); 53 BasicBlock *Header = CurLoop->getHeader(); 54 // Iterate over header and compute safety info. 55 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); 56 MayThrow = HeaderMayThrow; 57 // Iterate over loop instructions and compute safety info. 58 // Skip header as it has been computed and stored in HeaderMayThrow. 59 // The first block in loopinfo.Blocks is guaranteed to be the header. 60 assert(Header == *CurLoop->getBlocks().begin() && 61 "First block must be header"); 62 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 63 BBE = CurLoop->block_end(); 64 (BB != BBE) && !MayThrow; ++BB) 65 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB); 66 67 computeBlockColors(CurLoop); 68 } 69 70 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 71 return ICF.hasICF(BB); 72 } 73 74 bool ICFLoopSafetyInfo::anyBlockMayThrow() const { 75 return MayThrow; 76 } 77 78 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 79 assert(CurLoop != nullptr && "CurLoop can't be null"); 80 ICF.clear(); 81 MW.clear(); 82 MayThrow = false; 83 // Figure out the fact that at least one block may throw. 84 for (auto &BB : CurLoop->blocks()) 85 if (ICF.hasICF(&*BB)) { 86 MayThrow = true; 87 break; 88 } 89 computeBlockColors(CurLoop); 90 } 91 92 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, 93 const BasicBlock *BB) { 94 ICF.insertInstructionTo(Inst, BB); 95 MW.insertInstructionTo(Inst, BB); 96 } 97 98 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { 99 ICF.removeInstruction(Inst); 100 MW.removeInstruction(Inst); 101 } 102 103 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { 104 // Compute funclet colors if we might sink/hoist in a function with a funclet 105 // personality routine. 106 Function *Fn = CurLoop->getHeader()->getParent(); 107 if (Fn->hasPersonalityFn()) 108 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 109 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) 110 BlockColors = colorEHFunclets(*Fn); 111 } 112 113 /// Return true if we can prove that the given ExitBlock is not reached on the 114 /// first iteration of the given loop. That is, the backedge of the loop must 115 /// be executed before the ExitBlock is executed in any dynamic execution trace. 116 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, 117 const DominatorTree *DT, 118 const Loop *CurLoop) { 119 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 120 if (!CondExitBlock) 121 // expect unique exits 122 return false; 123 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 124 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 125 if (!BI || !BI->isConditional()) 126 return false; 127 // If condition is constant and false leads to ExitBlock then we always 128 // execute the true branch. 129 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) 130 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; 131 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 132 if (!Cond) 133 return false; 134 // todo: this would be a lot more powerful if we used scev, but all the 135 // plumbing is currently missing to pass a pointer in from the pass 136 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 137 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 138 auto *RHS = Cond->getOperand(1); 139 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 140 return false; 141 auto DL = ExitBlock->getModule()->getDataLayout(); 142 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 143 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 144 IVStart, RHS, 145 {DL, /*TLI*/ nullptr, 146 DT, /*AC*/ nullptr, BI}); 147 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 148 if (!SimpleCst) 149 return false; 150 if (ExitBlock == BI->getSuccessor(0)) 151 return SimpleCst->isZeroValue(); 152 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 153 return SimpleCst->isAllOnesValue(); 154 } 155 156 /// Collect all blocks from \p CurLoop which lie on all possible paths from 157 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set 158 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. 159 static void collectTransitivePredecessors( 160 const Loop *CurLoop, const BasicBlock *BB, 161 SmallPtrSetImpl<const BasicBlock *> &Predecessors) { 162 assert(Predecessors.empty() && "Garbage in predecessors set?"); 163 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 164 if (BB == CurLoop->getHeader()) 165 return; 166 SmallVector<const BasicBlock *, 4> WorkList; 167 for (auto *Pred : predecessors(BB)) { 168 Predecessors.insert(Pred); 169 WorkList.push_back(Pred); 170 } 171 while (!WorkList.empty()) { 172 auto *Pred = WorkList.pop_back_val(); 173 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); 174 // We are not interested in backedges and we don't want to leave loop. 175 if (Pred == CurLoop->getHeader()) 176 continue; 177 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all 178 // blocks of this inner loop, even those that are always executed AFTER the 179 // BB. It may make our analysis more conservative than it could be, see test 180 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. 181 // We can ignore backedge of all loops containing BB to get a sligtly more 182 // optimistic result. 183 for (auto *PredPred : predecessors(Pred)) 184 if (Predecessors.insert(PredPred).second) 185 WorkList.push_back(PredPred); 186 } 187 } 188 189 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, 190 const BasicBlock *BB, 191 const DominatorTree *DT) const { 192 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 193 194 // Fast path: header is always reached once the loop is entered. 195 if (BB == CurLoop->getHeader()) 196 return true; 197 198 // Collect all transitive predecessors of BB in the same loop. This set will 199 // be a subset of the blocks within the loop. 200 SmallPtrSet<const BasicBlock *, 4> Predecessors; 201 collectTransitivePredecessors(CurLoop, BB, Predecessors); 202 203 // Make sure that all successors of, all predecessors of BB which are not 204 // dominated by BB, are either: 205 // 1) BB, 206 // 2) Also predecessors of BB, 207 // 3) Exit blocks which are not taken on 1st iteration. 208 // Memoize blocks we've already checked. 209 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; 210 for (auto *Pred : Predecessors) { 211 // Predecessor block may throw, so it has a side exit. 212 if (blockMayThrow(Pred)) 213 return false; 214 215 // BB dominates Pred, so if Pred runs, BB must run. 216 // This is true when Pred is a loop latch. 217 if (DT->dominates(BB, Pred)) 218 continue; 219 220 for (auto *Succ : successors(Pred)) 221 if (CheckedSuccessors.insert(Succ).second && 222 Succ != BB && !Predecessors.count(Succ)) 223 // By discharging conditions that are not executed on the 1st iteration, 224 // we guarantee that *at least* on the first iteration all paths from 225 // header that *may* execute will lead us to the block of interest. So 226 // that if we had virtually peeled one iteration away, in this peeled 227 // iteration the set of predecessors would contain only paths from 228 // header to BB without any exiting edges that may execute. 229 // 230 // TODO: We only do it for exiting edges currently. We could use the 231 // same function to skip some of the edges within the loop if we know 232 // that they will not be taken on the 1st iteration. 233 // 234 // TODO: If we somehow know the number of iterations in loop, the same 235 // check may be done for any arbitrary N-th iteration as long as N is 236 // not greater than minimum number of iterations in this loop. 237 if (CurLoop->contains(Succ) || 238 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) 239 return false; 240 } 241 242 // All predecessors can only lead us to BB. 243 return true; 244 } 245 246 /// Returns true if the instruction in a loop is guaranteed to execute at least 247 /// once. 248 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 249 const DominatorTree *DT, 250 const Loop *CurLoop) const { 251 // If the instruction is in the header block for the loop (which is very 252 // common), it is always guaranteed to dominate the exit blocks. Since this 253 // is a common case, and can save some work, check it now. 254 if (Inst.getParent() == CurLoop->getHeader()) 255 // If there's a throw in the header block, we can't guarantee we'll reach 256 // Inst unless we can prove that Inst comes before the potential implicit 257 // exit. At the moment, we use a (cheap) hack for the common case where 258 // the instruction of interest is the first one in the block. 259 return !HeaderMayThrow || 260 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; 261 262 // If there is a path from header to exit or latch that doesn't lead to our 263 // instruction's block, return false. 264 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 265 } 266 267 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 268 const DominatorTree *DT, 269 const Loop *CurLoop) const { 270 return !ICF.isDominatedByICFIFromSameBlock(&Inst) && 271 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 272 } 273 274 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, 275 const Loop *CurLoop) const { 276 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 277 278 // Fast path: there are no instructions before header. 279 if (BB == CurLoop->getHeader()) 280 return true; 281 282 // Collect all transitive predecessors of BB in the same loop. This set will 283 // be a subset of the blocks within the loop. 284 SmallPtrSet<const BasicBlock *, 4> Predecessors; 285 collectTransitivePredecessors(CurLoop, BB, Predecessors); 286 // Find if there any instruction in either predecessor that could write 287 // to memory. 288 for (auto *Pred : Predecessors) 289 if (MW.mayWriteToMemory(Pred)) 290 return false; 291 return true; 292 } 293 294 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, 295 const Loop *CurLoop) const { 296 auto *BB = I.getParent(); 297 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 298 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) && 299 doesNotWriteMemoryBefore(BB, CurLoop); 300 } 301 302 namespace { 303 struct MustExecutePrinter : public FunctionPass { 304 305 static char ID; // Pass identification, replacement for typeid 306 MustExecutePrinter() : FunctionPass(ID) { 307 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 308 } 309 void getAnalysisUsage(AnalysisUsage &AU) const override { 310 AU.setPreservesAll(); 311 AU.addRequired<DominatorTreeWrapperPass>(); 312 AU.addRequired<LoopInfoWrapperPass>(); 313 } 314 bool runOnFunction(Function &F) override; 315 }; 316 struct MustBeExecutedContextPrinter : public ModulePass { 317 static char ID; 318 319 MustBeExecutedContextPrinter() : ModulePass(ID) { 320 initializeMustBeExecutedContextPrinterPass(*PassRegistry::getPassRegistry()); 321 } 322 void getAnalysisUsage(AnalysisUsage &AU) const override { 323 AU.setPreservesAll(); 324 } 325 bool runOnModule(Module &M) override; 326 }; 327 } 328 329 char MustExecutePrinter::ID = 0; 330 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 331 "Instructions which execute on loop entry", false, true) 332 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 333 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 334 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 335 "Instructions which execute on loop entry", false, true) 336 337 FunctionPass *llvm::createMustExecutePrinter() { 338 return new MustExecutePrinter(); 339 } 340 341 char MustBeExecutedContextPrinter::ID = 0; 342 INITIALIZE_PASS_BEGIN( 343 MustBeExecutedContextPrinter, "print-must-be-executed-contexts", 344 "print the must-be-executed-contexed for all instructions", false, true) 345 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 346 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 347 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 348 INITIALIZE_PASS_END(MustBeExecutedContextPrinter, 349 "print-must-be-executed-contexts", 350 "print the must-be-executed-contexed for all instructions", 351 false, true) 352 353 ModulePass *llvm::createMustBeExecutedContextPrinter() { 354 return new MustBeExecutedContextPrinter(); 355 } 356 357 bool MustBeExecutedContextPrinter::runOnModule(Module &M) { 358 // We provide non-PM analysis here because the old PM doesn't like to query 359 // function passes from a module pass. 360 SmallVector<PostDominatorTree *, 8> PDTs; 361 SmallVector<DominatorTree *, 8> DTs; 362 SmallVector<LoopInfo *, 8> LIs; 363 364 GetterTy<LoopInfo> LIGetter = [&](const Function &F) { 365 DominatorTree *DT = new DominatorTree(const_cast<Function &>(F)); 366 LoopInfo *LI = new LoopInfo(*DT); 367 DTs.push_back(DT); 368 LIs.push_back(LI); 369 return LI; 370 }; 371 GetterTy<DominatorTree> DTGetter = [&](const Function &F) { 372 DominatorTree *DT = new DominatorTree(const_cast<Function &>(F)); 373 DTs.push_back(DT); 374 return DT; 375 }; 376 GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) { 377 PostDominatorTree *PDT = new PostDominatorTree(const_cast<Function &>(F)); 378 PDTs.push_back(PDT); 379 return PDT; 380 }; 381 MustBeExecutedContextExplorer Explorer( 382 /* ExploreInterBlock */ true, 383 /* ExploreCFGForward */ true, 384 /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter); 385 386 for (Function &F : M) { 387 for (Instruction &I : instructions(F)) { 388 dbgs() << "-- Explore context of: " << I << "\n"; 389 for (const Instruction *CI : Explorer.range(&I)) 390 dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI 391 << "\n"; 392 } 393 } 394 395 DeleteContainerPointers(PDTs); 396 DeleteContainerPointers(LIs); 397 DeleteContainerPointers(DTs); 398 return false; 399 } 400 401 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 402 // TODO: merge these two routines. For the moment, we display the best 403 // result obtained by *either* implementation. This is a bit unfair since no 404 // caller actually gets the full power at the moment. 405 SimpleLoopSafetyInfo LSI; 406 LSI.computeLoopSafetyInfo(L); 407 return LSI.isGuaranteedToExecute(I, DT, L) || 408 isGuaranteedToExecuteForEveryIteration(&I, L); 409 } 410 411 namespace { 412 /// An assembly annotator class to print must execute information in 413 /// comments. 414 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 415 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 416 417 public: 418 MustExecuteAnnotatedWriter(const Function &F, 419 DominatorTree &DT, LoopInfo &LI) { 420 for (auto &I: instructions(F)) { 421 Loop *L = LI.getLoopFor(I.getParent()); 422 while (L) { 423 if (isMustExecuteIn(I, L, &DT)) { 424 MustExec[&I].push_back(L); 425 } 426 L = L->getParentLoop(); 427 }; 428 } 429 } 430 MustExecuteAnnotatedWriter(const Module &M, 431 DominatorTree &DT, LoopInfo &LI) { 432 for (auto &F : M) 433 for (auto &I: instructions(F)) { 434 Loop *L = LI.getLoopFor(I.getParent()); 435 while (L) { 436 if (isMustExecuteIn(I, L, &DT)) { 437 MustExec[&I].push_back(L); 438 } 439 L = L->getParentLoop(); 440 }; 441 } 442 } 443 444 445 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 446 if (!MustExec.count(&V)) 447 return; 448 449 const auto &Loops = MustExec.lookup(&V); 450 const auto NumLoops = Loops.size(); 451 if (NumLoops > 1) 452 OS << " ; (mustexec in " << NumLoops << " loops: "; 453 else 454 OS << " ; (mustexec in: "; 455 456 bool first = true; 457 for (const Loop *L : Loops) { 458 if (!first) 459 OS << ", "; 460 first = false; 461 OS << L->getHeader()->getName(); 462 } 463 OS << ")"; 464 } 465 }; 466 } // namespace 467 468 bool MustExecutePrinter::runOnFunction(Function &F) { 469 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 471 472 MustExecuteAnnotatedWriter Writer(F, DT, LI); 473 F.print(dbgs(), &Writer); 474 475 return false; 476 } 477 478 /// Return true if \p L might be an endless loop. 479 static bool maybeEndlessLoop(const Loop &L) { 480 if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn)) 481 return false; 482 // TODO: Actually try to prove it is not. 483 // TODO: If maybeEndlessLoop is going to be expensive, cache it. 484 return true; 485 } 486 487 static bool mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) { 488 if (!LI) 489 return false; 490 using RPOTraversal = ReversePostOrderTraversal<const Function *>; 491 RPOTraversal FuncRPOT(&F); 492 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal, 493 const LoopInfo>(FuncRPOT, *LI); 494 } 495 496 /// Lookup \p Key in \p Map and return the result, potentially after 497 /// initializing the optional through \p Fn(\p args). 498 template <typename K, typename V, typename FnTy, typename... ArgsTy> 499 static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map, 500 FnTy &&Fn, ArgsTy&&... args) { 501 Optional<V> &OptVal = Map[Key]; 502 if (!OptVal.hasValue()) 503 OptVal = Fn(std::forward<ArgsTy>(args)...); 504 return OptVal.getValue(); 505 } 506 507 const BasicBlock * 508 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) { 509 const LoopInfo *LI = LIGetter(*InitBB->getParent()); 510 const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent()); 511 512 LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName() 513 << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : "")); 514 515 const Function &F = *InitBB->getParent(); 516 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr; 517 const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB; 518 bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) || 519 (L && !maybeEndlessLoop(*L))) && 520 F.doesNotThrow(); 521 LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "") 522 << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "") 523 << "\n"); 524 525 // Determine the adjacent blocks in the given direction but exclude (self) 526 // loops under certain circumstances. 527 SmallVector<const BasicBlock *, 8> Worklist; 528 for (const BasicBlock *SuccBB : successors(InitBB)) { 529 bool IsLatch = SuccBB == HeaderBB; 530 // Loop latches are ignored in forward propagation if the loop cannot be 531 // endless and may not throw: control has to go somewhere. 532 if (!WillReturnAndNoThrow || !IsLatch) 533 Worklist.push_back(SuccBB); 534 } 535 LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n"); 536 537 // If there are no other adjacent blocks, there is no join point. 538 if (Worklist.empty()) 539 return nullptr; 540 541 // If there is one adjacent block, it is the join point. 542 if (Worklist.size() == 1) 543 return Worklist[0]; 544 545 // Try to determine a join block through the help of the post-dominance 546 // tree. If no tree was provided, we perform simple pattern matching for one 547 // block conditionals and one block loops only. 548 const BasicBlock *JoinBB = nullptr; 549 if (PDT) 550 if (const auto *InitNode = PDT->getNode(InitBB)) 551 if (const auto *IDomNode = InitNode->getIDom()) 552 JoinBB = IDomNode->getBlock(); 553 554 if (!JoinBB && Worklist.size() == 2) { 555 const BasicBlock *Succ0 = Worklist[0]; 556 const BasicBlock *Succ1 = Worklist[1]; 557 const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor(); 558 const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor(); 559 if (Succ0UniqueSucc == InitBB) { 560 // InitBB -> Succ0 -> InitBB 561 // InitBB -> Succ1 = JoinBB 562 JoinBB = Succ1; 563 } else if (Succ1UniqueSucc == InitBB) { 564 // InitBB -> Succ1 -> InitBB 565 // InitBB -> Succ0 = JoinBB 566 JoinBB = Succ0; 567 } else if (Succ0 == Succ1UniqueSucc) { 568 // InitBB -> Succ0 = JoinBB 569 // InitBB -> Succ1 -> Succ0 = JoinBB 570 JoinBB = Succ0; 571 } else if (Succ1 == Succ0UniqueSucc) { 572 // InitBB -> Succ0 -> Succ1 = JoinBB 573 // InitBB -> Succ1 = JoinBB 574 JoinBB = Succ1; 575 } else if (Succ0UniqueSucc == Succ1UniqueSucc) { 576 // InitBB -> Succ0 -> JoinBB 577 // InitBB -> Succ1 -> JoinBB 578 JoinBB = Succ0UniqueSucc; 579 } 580 } 581 582 if (!JoinBB && L) 583 JoinBB = L->getUniqueExitBlock(); 584 585 if (!JoinBB) 586 return nullptr; 587 588 LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n"); 589 590 // In forward direction we check if control will for sure reach JoinBB from 591 // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control 592 // are: infinite loops and instructions that do not necessarily transfer 593 // execution to their successor. To check for them we traverse the CFG from 594 // the adjacent blocks to the JoinBB, looking at all intermediate blocks. 595 596 // If we know the function is "will-return" and "no-throw" there is no need 597 // for futher checks. 598 if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) { 599 600 auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) { 601 return isGuaranteedToTransferExecutionToSuccessor(BB); 602 }; 603 604 SmallPtrSet<const BasicBlock *, 16> Visited; 605 while (!Worklist.empty()) { 606 const BasicBlock *ToBB = Worklist.pop_back_val(); 607 if (ToBB == JoinBB) 608 continue; 609 610 // Make sure all loops in-between are finite. 611 if (!Visited.insert(ToBB).second) { 612 if (!F.hasFnAttribute(Attribute::WillReturn)) { 613 if (!LI) 614 return nullptr; 615 616 bool MayContainIrreducibleControl = getOrCreateCachedOptional( 617 &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI); 618 if (MayContainIrreducibleControl) 619 return nullptr; 620 621 const Loop *L = LI->getLoopFor(ToBB); 622 if (L && maybeEndlessLoop(*L)) 623 return nullptr; 624 } 625 626 continue; 627 } 628 629 // Make sure the block has no instructions that could stop control 630 // transfer. 631 bool TransfersExecution = getOrCreateCachedOptional( 632 ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB); 633 if (!TransfersExecution) 634 return nullptr; 635 636 for (const BasicBlock *AdjacentBB : successors(ToBB)) 637 Worklist.push_back(AdjacentBB); 638 } 639 } 640 641 LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n"); 642 return JoinBB; 643 } 644 const BasicBlock * 645 MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) { 646 const LoopInfo *LI = LIGetter(*InitBB->getParent()); 647 const DominatorTree *DT = DTGetter(*InitBB->getParent()); 648 LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName() 649 << (LI ? " [LI]" : "") << (DT ? " [DT]" : "")); 650 651 // Try to determine a join block through the help of the dominance tree. If no 652 // tree was provided, we perform simple pattern matching for one block 653 // conditionals only. 654 if (DT) 655 if (const auto *InitNode = DT->getNode(InitBB)) 656 if (const auto *IDomNode = InitNode->getIDom()) 657 return IDomNode->getBlock(); 658 659 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr; 660 const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr; 661 662 // Determine the predecessor blocks but ignore backedges. 663 SmallVector<const BasicBlock *, 8> Worklist; 664 for (const BasicBlock *PredBB : predecessors(InitBB)) { 665 bool IsBackedge = 666 (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB)); 667 // Loop backedges are ignored in backwards propagation: control has to come 668 // from somewhere. 669 if (!IsBackedge) 670 Worklist.push_back(PredBB); 671 } 672 673 // If there are no other predecessor blocks, there is no join point. 674 if (Worklist.empty()) 675 return nullptr; 676 677 // If there is one predecessor block, it is the join point. 678 if (Worklist.size() == 1) 679 return Worklist[0]; 680 681 const BasicBlock *JoinBB = nullptr; 682 if (Worklist.size() == 2) { 683 const BasicBlock *Pred0 = Worklist[0]; 684 const BasicBlock *Pred1 = Worklist[1]; 685 const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor(); 686 const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor(); 687 if (Pred0 == Pred1UniquePred) { 688 // InitBB <- Pred0 = JoinBB 689 // InitBB <- Pred1 <- Pred0 = JoinBB 690 JoinBB = Pred0; 691 } else if (Pred1 == Pred0UniquePred) { 692 // InitBB <- Pred0 <- Pred1 = JoinBB 693 // InitBB <- Pred1 = JoinBB 694 JoinBB = Pred1; 695 } else if (Pred0UniquePred == Pred1UniquePred) { 696 // InitBB <- Pred0 <- JoinBB 697 // InitBB <- Pred1 <- JoinBB 698 JoinBB = Pred0UniquePred; 699 } 700 } 701 702 if (!JoinBB && L) 703 JoinBB = L->getHeader(); 704 705 // In backwards direction there is no need to show termination of previous 706 // instructions. If they do not terminate, the code afterward is dead, making 707 // any information/transformation correct anyway. 708 return JoinBB; 709 } 710 711 const Instruction * 712 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction( 713 MustBeExecutedIterator &It, const Instruction *PP) { 714 if (!PP) 715 return PP; 716 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n"); 717 718 // If we explore only inside a given basic block we stop at terminators. 719 if (!ExploreInterBlock && PP->isTerminator()) { 720 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n"); 721 return nullptr; 722 } 723 724 // If we do not traverse the call graph we check if we can make progress in 725 // the current function. First, check if the instruction is guaranteed to 726 // transfer execution to the successor. 727 bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP); 728 if (!TransfersExecution) 729 return nullptr; 730 731 // If this is not a terminator we know that there is a single instruction 732 // after this one that is executed next if control is transfered. If not, 733 // we can try to go back to a call site we entered earlier. If none exists, we 734 // do not know any instruction that has to be executd next. 735 if (!PP->isTerminator()) { 736 const Instruction *NextPP = PP->getNextNode(); 737 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n"); 738 return NextPP; 739 } 740 741 // Finally, we have to handle terminators, trivial ones first. 742 assert(PP->isTerminator() && "Expected a terminator!"); 743 744 // A terminator without a successor is not handled yet. 745 if (PP->getNumSuccessors() == 0) { 746 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n"); 747 return nullptr; 748 } 749 750 // A terminator with a single successor, we will continue at the beginning of 751 // that one. 752 if (PP->getNumSuccessors() == 1) { 753 LLVM_DEBUG( 754 dbgs() << "\tUnconditional terminator, continue with successor\n"); 755 return &PP->getSuccessor(0)->front(); 756 } 757 758 // Multiple successors mean we need to find the join point where control flow 759 // converges again. We use the findForwardJoinPoint helper function with 760 // information about the function and helper analyses, if available. 761 if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent())) 762 return &JoinBB->front(); 763 764 LLVM_DEBUG(dbgs() << "\tNo join point found\n"); 765 return nullptr; 766 } 767 768 const Instruction * 769 MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction( 770 MustBeExecutedIterator &It, const Instruction *PP) { 771 if (!PP) 772 return PP; 773 774 bool IsFirst = !(PP->getPrevNode()); 775 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP 776 << (IsFirst ? " [IsFirst]" : "") << "\n"); 777 778 // If we explore only inside a given basic block we stop at the first 779 // instruction. 780 if (!ExploreInterBlock && IsFirst) { 781 LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n"); 782 return nullptr; 783 } 784 785 // The block and function that contains the current position. 786 const BasicBlock *PPBlock = PP->getParent(); 787 788 // If we are inside a block we know what instruction was executed before, the 789 // previous one. 790 if (!IsFirst) { 791 const Instruction *PrevPP = PP->getPrevNode(); 792 LLVM_DEBUG( 793 dbgs() << "\tIntermediate instruction, continue with previous\n"); 794 // We did not enter a callee so we simply return the previous instruction. 795 return PrevPP; 796 } 797 798 // Finally, we have to handle the case where the program point is the first in 799 // a block but not in the function. We use the findBackwardJoinPoint helper 800 // function with information about the function and helper analyses, if 801 // available. 802 if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock)) 803 return &JoinBB->back(); 804 805 LLVM_DEBUG(dbgs() << "\tNo join point found\n"); 806 return nullptr; 807 } 808 809 MustBeExecutedIterator::MustBeExecutedIterator( 810 MustBeExecutedContextExplorer &Explorer, const Instruction *I) 811 : Explorer(Explorer), CurInst(I) { 812 reset(I); 813 } 814 815 void MustBeExecutedIterator::reset(const Instruction *I) { 816 Visited.clear(); 817 resetInstruction(I); 818 } 819 820 void MustBeExecutedIterator::resetInstruction(const Instruction *I) { 821 CurInst = I; 822 Head = Tail = nullptr; 823 Visited.insert({I, ExplorationDirection::FORWARD}); 824 Visited.insert({I, ExplorationDirection::BACKWARD}); 825 if (Explorer.ExploreCFGForward) 826 Head = I; 827 if (Explorer.ExploreCFGBackward) 828 Tail = I; 829 } 830 831 const Instruction *MustBeExecutedIterator::advance() { 832 assert(CurInst && "Cannot advance an end iterator!"); 833 Head = Explorer.getMustBeExecutedNextInstruction(*this, Head); 834 if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second) 835 return Head; 836 Head = nullptr; 837 838 Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail); 839 if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second) 840 return Tail; 841 Tail = nullptr; 842 return nullptr; 843 } 844