xref: /llvm-project/llvm/lib/Analysis/MustExecute.cpp (revision bfbd4d1fb6a9afec4ab050ef3e0cee2b540ea19c)
1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/MustExecute.h"
11 #include "llvm/Analysis/InstructionSimplify.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/Passes.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/IR/AssemblyAnnotationWriter.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/InstIterator.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/FormattedStream.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 bool LoopSafetyInfo::headerMayThrow() const {
26   return HeaderMayThrow;
27 }
28 
29 bool LoopSafetyInfo::anyBlockMayThrow() const {
30   return MayThrow;
31 }
32 
33 void LoopSafetyInfo::computeLoopSafetyInfo(Loop *CurLoop) {
34   assert(CurLoop != nullptr && "CurLoop can't be null");
35   BasicBlock *Header = CurLoop->getHeader();
36   // Iterate over header and compute safety info.
37   HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
38   MayThrow = HeaderMayThrow;
39   // Iterate over loop instructions and compute safety info.
40   // Skip header as it has been computed and stored in HeaderMayThrow.
41   // The first block in loopinfo.Blocks is guaranteed to be the header.
42   assert(Header == *CurLoop->getBlocks().begin() &&
43          "First block must be header");
44   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
45                             BBE = CurLoop->block_end();
46        (BB != BBE) && !MayThrow; ++BB)
47     MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
48 
49   // Compute funclet colors if we might sink/hoist in a function with a funclet
50   // personality routine.
51   Function *Fn = CurLoop->getHeader()->getParent();
52   if (Fn->hasPersonalityFn())
53     if (Constant *PersonalityFn = Fn->getPersonalityFn())
54       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
55         BlockColors = colorEHFunclets(*Fn);
56 }
57 
58 /// Return true if we can prove that the given ExitBlock is not reached on the
59 /// first iteration of the given loop.  That is, the backedge of the loop must
60 /// be executed before the ExitBlock is executed in any dynamic execution trace.
61 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
62                                            const DominatorTree *DT,
63                                            const Loop *CurLoop) {
64   auto *CondExitBlock = ExitBlock->getSinglePredecessor();
65   if (!CondExitBlock)
66     // expect unique exits
67     return false;
68   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
69   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
70   if (!BI || !BI->isConditional())
71     return false;
72   // If condition is constant and false leads to ExitBlock then we always
73   // execute the true branch.
74   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
75     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
76   auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
77   if (!Cond)
78     return false;
79   // todo: this would be a lot more powerful if we used scev, but all the
80   // plumbing is currently missing to pass a pointer in from the pass
81   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
82   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
83   auto *RHS = Cond->getOperand(1);
84   if (!LHS || LHS->getParent() != CurLoop->getHeader())
85     return false;
86   auto DL = ExitBlock->getModule()->getDataLayout();
87   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
88   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
89                                           IVStart, RHS,
90                                           {DL, /*TLI*/ nullptr,
91                                               DT, /*AC*/ nullptr, BI});
92   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
93   if (!SimpleCst)
94     return false;
95   if (ExitBlock == BI->getSuccessor(0))
96     return SimpleCst->isZeroValue();
97   assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
98   return SimpleCst->isAllOnesValue();
99 }
100 
101 void LoopSafetyInfo::collectTransitivePredecessors(
102     const Loop *CurLoop, const BasicBlock *BB,
103     SmallPtrSetImpl<const BasicBlock *> &Predecessors) const {
104   assert(Predecessors.empty() && "Garbage in predecessors set?");
105   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
106   if (BB == CurLoop->getHeader())
107     return;
108   SmallVector<const BasicBlock *, 4> WorkList;
109   for (auto *Pred : predecessors(BB)) {
110     Predecessors.insert(Pred);
111     WorkList.push_back(Pred);
112   }
113   while (!WorkList.empty()) {
114     auto *Pred = WorkList.pop_back_val();
115     assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
116     // We are not interested in backedges and we don't want to leave loop.
117     if (Pred == CurLoop->getHeader())
118       continue;
119     // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
120     // blocks of this inner loop, even those that are always executed AFTER the
121     // BB. It may make our analysis more conservative than it could be, see test
122     // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
123     // We can ignore backedge of all loops containing BB to get a sligtly more
124     // optimistic result.
125     for (auto *PredPred : predecessors(Pred))
126       if (Predecessors.insert(PredPred).second)
127         WorkList.push_back(PredPred);
128   }
129 }
130 
131 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
132                                              const BasicBlock *BB,
133                                              const DominatorTree *DT) const {
134   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
135 
136   // Fast path: header is always reached once the loop is entered.
137   if (BB == CurLoop->getHeader())
138     return true;
139 
140   // Collect all transitive predecessors of BB in the same loop. This set will
141   // be a subset of the blocks within the loop.
142   SmallPtrSet<const BasicBlock *, 4> Predecessors;
143   collectTransitivePredecessors(CurLoop, BB, Predecessors);
144 
145   // Make sure that all successors of all predecessors of BB are either:
146   // 1) BB,
147   // 2) Also predecessors of BB,
148   // 3) Exit blocks which are not taken on 1st iteration.
149   // Memoize blocks we've already checked.
150   SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
151   for (auto *Pred : Predecessors)
152     for (auto *Succ : successors(Pred))
153       if (CheckedSuccessors.insert(Succ).second &&
154           Succ != BB && !Predecessors.count(Succ))
155         // By discharging conditions that are not executed on the 1st iteration,
156         // we guarantee that *at least* on the first iteration all paths from
157         // header that *may* execute will lead us to the block of interest. So
158         // that if we had virtually peeled one iteration away, in this peeled
159         // iteration the set of predecessors would contain only paths from
160         // header to BB without any exiting edges that may execute.
161         //
162         // TODO: We only do it for exiting edges currently. We could use the
163         // same function to skip some of the edges within the loop if we know
164         // that they will not be taken on the 1st iteration.
165         //
166         // TODO: If we somehow know the number of iterations in loop, the same
167         // check may be done for any arbitrary N-th iteration as long as N is
168         // not greater than minimum number of iterations in this loop.
169         if (CurLoop->contains(Succ) ||
170             !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
171           return false;
172 
173   // All predecessors can only lead us to BB.
174   return true;
175 }
176 
177 /// Returns true if the instruction in a loop is guaranteed to execute at least
178 /// once.
179 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
180                                  const DominatorTree *DT, const Loop *CurLoop,
181                                  const LoopSafetyInfo *SafetyInfo) {
182   // We have to check to make sure that the instruction dominates all
183   // of the exit blocks.  If it doesn't, then there is a path out of the loop
184   // which does not execute this instruction, so we can't hoist it.
185 
186   // If the instruction is in the header block for the loop (which is very
187   // common), it is always guaranteed to dominate the exit blocks.  Since this
188   // is a common case, and can save some work, check it now.
189   if (Inst.getParent() == CurLoop->getHeader())
190     // If there's a throw in the header block, we can't guarantee we'll reach
191     // Inst unless we can prove that Inst comes before the potential implicit
192     // exit.  At the moment, we use a (cheap) hack for the common case where
193     // the instruction of interest is the first one in the block.
194     return !SafetyInfo->headerMayThrow() ||
195       Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
196 
197   // Somewhere in this loop there is an instruction which may throw and make us
198   // exit the loop.
199   if (SafetyInfo->anyBlockMayThrow())
200     return false;
201 
202   // If there is a path from header to exit or latch that doesn't lead to our
203   // instruction's block, return false.
204   if (!SafetyInfo->allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT))
205     return false;
206 
207   return true;
208 }
209 
210 
211 namespace {
212   struct MustExecutePrinter : public FunctionPass {
213 
214     static char ID; // Pass identification, replacement for typeid
215     MustExecutePrinter() : FunctionPass(ID) {
216       initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
217     }
218     void getAnalysisUsage(AnalysisUsage &AU) const override {
219       AU.setPreservesAll();
220       AU.addRequired<DominatorTreeWrapperPass>();
221       AU.addRequired<LoopInfoWrapperPass>();
222     }
223     bool runOnFunction(Function &F) override;
224   };
225 }
226 
227 char MustExecutePrinter::ID = 0;
228 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
229                       "Instructions which execute on loop entry", false, true)
230 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
231 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
232 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
233                     "Instructions which execute on loop entry", false, true)
234 
235 FunctionPass *llvm::createMustExecutePrinter() {
236   return new MustExecutePrinter();
237 }
238 
239 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
240   // TODO: merge these two routines.  For the moment, we display the best
241   // result obtained by *either* implementation.  This is a bit unfair since no
242   // caller actually gets the full power at the moment.
243   LoopSafetyInfo LSI;
244   LSI.computeLoopSafetyInfo(L);
245   return isGuaranteedToExecute(I, DT, L, &LSI) ||
246     isGuaranteedToExecuteForEveryIteration(&I, L);
247 }
248 
249 namespace {
250 /// An assembly annotator class to print must execute information in
251 /// comments.
252 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
253   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
254 
255 public:
256   MustExecuteAnnotatedWriter(const Function &F,
257                              DominatorTree &DT, LoopInfo &LI) {
258     for (auto &I: instructions(F)) {
259       Loop *L = LI.getLoopFor(I.getParent());
260       while (L) {
261         if (isMustExecuteIn(I, L, &DT)) {
262           MustExec[&I].push_back(L);
263         }
264         L = L->getParentLoop();
265       };
266     }
267   }
268   MustExecuteAnnotatedWriter(const Module &M,
269                              DominatorTree &DT, LoopInfo &LI) {
270     for (auto &F : M)
271     for (auto &I: instructions(F)) {
272       Loop *L = LI.getLoopFor(I.getParent());
273       while (L) {
274         if (isMustExecuteIn(I, L, &DT)) {
275           MustExec[&I].push_back(L);
276         }
277         L = L->getParentLoop();
278       };
279     }
280   }
281 
282 
283   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
284     if (!MustExec.count(&V))
285       return;
286 
287     const auto &Loops = MustExec.lookup(&V);
288     const auto NumLoops = Loops.size();
289     if (NumLoops > 1)
290       OS << " ; (mustexec in " << NumLoops << " loops: ";
291     else
292       OS << " ; (mustexec in: ";
293 
294     bool first = true;
295     for (const Loop *L : Loops) {
296       if (!first)
297         OS << ", ";
298       first = false;
299       OS << L->getHeader()->getName();
300     }
301     OS << ")";
302   }
303 };
304 } // namespace
305 
306 bool MustExecutePrinter::runOnFunction(Function &F) {
307   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
308   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
309 
310   MustExecuteAnnotatedWriter Writer(F, DT, LI);
311   F.print(dbgs(), &Writer);
312 
313   return false;
314 }
315