1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/MustExecute.h" 11 #include "llvm/Analysis/InstructionSimplify.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/Passes.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/IR/AssemblyAnnotationWriter.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/InstIterator.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/FormattedStream.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 const DenseMap<BasicBlock *, ColorVector> & 26 LoopSafetyInfo::getBlockColors() const { 27 return BlockColors; 28 } 29 30 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { 31 ColorVector &ColorsForNewBlock = BlockColors[New]; 32 ColorVector &ColorsForOldBlock = BlockColors[Old]; 33 ColorsForNewBlock = ColorsForOldBlock; 34 } 35 36 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 37 (void)BB; 38 return anyBlockMayThrow(); 39 } 40 41 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { 42 return MayThrow; 43 } 44 45 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 46 assert(CurLoop != nullptr && "CurLoop can't be null"); 47 BasicBlock *Header = CurLoop->getHeader(); 48 // Iterate over header and compute safety info. 49 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); 50 MayThrow = HeaderMayThrow; 51 // Iterate over loop instructions and compute safety info. 52 // Skip header as it has been computed and stored in HeaderMayThrow. 53 // The first block in loopinfo.Blocks is guaranteed to be the header. 54 assert(Header == *CurLoop->getBlocks().begin() && 55 "First block must be header"); 56 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 57 BBE = CurLoop->block_end(); 58 (BB != BBE) && !MayThrow; ++BB) 59 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB); 60 61 computeBlockColors(CurLoop); 62 } 63 64 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { 65 return ICF.hasICF(BB); 66 } 67 68 bool ICFLoopSafetyInfo::anyBlockMayThrow() const { 69 return MayThrow; 70 } 71 72 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { 73 assert(CurLoop != nullptr && "CurLoop can't be null"); 74 ICF.clear(); 75 MayThrow = false; 76 // Figure out the fact that at least one block may throw. 77 for (auto &BB : CurLoop->blocks()) 78 if (ICF.hasICF(&*BB)) { 79 MayThrow = true; 80 break; 81 } 82 computeBlockColors(CurLoop); 83 } 84 85 void ICFLoopSafetyInfo::dropCachedInfo(const BasicBlock *BB) { 86 ICF.invalidateBlock(BB); 87 } 88 89 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { 90 // Compute funclet colors if we might sink/hoist in a function with a funclet 91 // personality routine. 92 Function *Fn = CurLoop->getHeader()->getParent(); 93 if (Fn->hasPersonalityFn()) 94 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 95 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) 96 BlockColors = colorEHFunclets(*Fn); 97 } 98 99 /// Return true if we can prove that the given ExitBlock is not reached on the 100 /// first iteration of the given loop. That is, the backedge of the loop must 101 /// be executed before the ExitBlock is executed in any dynamic execution trace. 102 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, 103 const DominatorTree *DT, 104 const Loop *CurLoop) { 105 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 106 if (!CondExitBlock) 107 // expect unique exits 108 return false; 109 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 110 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 111 if (!BI || !BI->isConditional()) 112 return false; 113 // If condition is constant and false leads to ExitBlock then we always 114 // execute the true branch. 115 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) 116 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; 117 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 118 if (!Cond) 119 return false; 120 // todo: this would be a lot more powerful if we used scev, but all the 121 // plumbing is currently missing to pass a pointer in from the pass 122 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 123 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 124 auto *RHS = Cond->getOperand(1); 125 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 126 return false; 127 auto DL = ExitBlock->getModule()->getDataLayout(); 128 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 129 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 130 IVStart, RHS, 131 {DL, /*TLI*/ nullptr, 132 DT, /*AC*/ nullptr, BI}); 133 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 134 if (!SimpleCst) 135 return false; 136 if (ExitBlock == BI->getSuccessor(0)) 137 return SimpleCst->isZeroValue(); 138 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 139 return SimpleCst->isAllOnesValue(); 140 } 141 142 void LoopSafetyInfo::collectTransitivePredecessors( 143 const Loop *CurLoop, const BasicBlock *BB, 144 SmallPtrSetImpl<const BasicBlock *> &Predecessors) const { 145 assert(Predecessors.empty() && "Garbage in predecessors set?"); 146 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 147 if (BB == CurLoop->getHeader()) 148 return; 149 SmallVector<const BasicBlock *, 4> WorkList; 150 for (auto *Pred : predecessors(BB)) { 151 Predecessors.insert(Pred); 152 WorkList.push_back(Pred); 153 } 154 while (!WorkList.empty()) { 155 auto *Pred = WorkList.pop_back_val(); 156 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); 157 // We are not interested in backedges and we don't want to leave loop. 158 if (Pred == CurLoop->getHeader()) 159 continue; 160 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all 161 // blocks of this inner loop, even those that are always executed AFTER the 162 // BB. It may make our analysis more conservative than it could be, see test 163 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. 164 // We can ignore backedge of all loops containing BB to get a sligtly more 165 // optimistic result. 166 for (auto *PredPred : predecessors(Pred)) 167 if (Predecessors.insert(PredPred).second) 168 WorkList.push_back(PredPred); 169 } 170 } 171 172 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, 173 const BasicBlock *BB, 174 const DominatorTree *DT) const { 175 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); 176 177 // Fast path: header is always reached once the loop is entered. 178 if (BB == CurLoop->getHeader()) 179 return true; 180 181 // Collect all transitive predecessors of BB in the same loop. This set will 182 // be a subset of the blocks within the loop. 183 SmallPtrSet<const BasicBlock *, 4> Predecessors; 184 collectTransitivePredecessors(CurLoop, BB, Predecessors); 185 186 // Make sure that all successors of all predecessors of BB are either: 187 // 1) BB, 188 // 2) Also predecessors of BB, 189 // 3) Exit blocks which are not taken on 1st iteration. 190 // Memoize blocks we've already checked. 191 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; 192 for (auto *Pred : Predecessors) { 193 // Predecessor block may throw, so it has a side exit. 194 if (blockMayThrow(Pred)) 195 return false; 196 for (auto *Succ : successors(Pred)) 197 if (CheckedSuccessors.insert(Succ).second && 198 Succ != BB && !Predecessors.count(Succ)) 199 // By discharging conditions that are not executed on the 1st iteration, 200 // we guarantee that *at least* on the first iteration all paths from 201 // header that *may* execute will lead us to the block of interest. So 202 // that if we had virtually peeled one iteration away, in this peeled 203 // iteration the set of predecessors would contain only paths from 204 // header to BB without any exiting edges that may execute. 205 // 206 // TODO: We only do it for exiting edges currently. We could use the 207 // same function to skip some of the edges within the loop if we know 208 // that they will not be taken on the 1st iteration. 209 // 210 // TODO: If we somehow know the number of iterations in loop, the same 211 // check may be done for any arbitrary N-th iteration as long as N is 212 // not greater than minimum number of iterations in this loop. 213 if (CurLoop->contains(Succ) || 214 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) 215 return false; 216 } 217 218 // All predecessors can only lead us to BB. 219 return true; 220 } 221 222 /// Returns true if the instruction in a loop is guaranteed to execute at least 223 /// once. 224 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 225 const DominatorTree *DT, 226 const Loop *CurLoop) const { 227 // If the instruction is in the header block for the loop (which is very 228 // common), it is always guaranteed to dominate the exit blocks. Since this 229 // is a common case, and can save some work, check it now. 230 if (Inst.getParent() == CurLoop->getHeader()) 231 // If there's a throw in the header block, we can't guarantee we'll reach 232 // Inst unless we can prove that Inst comes before the potential implicit 233 // exit. At the moment, we use a (cheap) hack for the common case where 234 // the instruction of interest is the first one in the block. 235 return !HeaderMayThrow || 236 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; 237 238 // If there is a path from header to exit or latch that doesn't lead to our 239 // instruction's block, return false. 240 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 241 } 242 243 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, 244 const DominatorTree *DT, 245 const Loop *CurLoop) const { 246 return !ICF.isDominatedByICFIFromSameBlock(&Inst) && 247 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); 248 } 249 250 namespace { 251 struct MustExecutePrinter : public FunctionPass { 252 253 static char ID; // Pass identification, replacement for typeid 254 MustExecutePrinter() : FunctionPass(ID) { 255 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 256 } 257 void getAnalysisUsage(AnalysisUsage &AU) const override { 258 AU.setPreservesAll(); 259 AU.addRequired<DominatorTreeWrapperPass>(); 260 AU.addRequired<LoopInfoWrapperPass>(); 261 } 262 bool runOnFunction(Function &F) override; 263 }; 264 } 265 266 char MustExecutePrinter::ID = 0; 267 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 268 "Instructions which execute on loop entry", false, true) 269 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 270 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 271 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 272 "Instructions which execute on loop entry", false, true) 273 274 FunctionPass *llvm::createMustExecutePrinter() { 275 return new MustExecutePrinter(); 276 } 277 278 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 279 // TODO: merge these two routines. For the moment, we display the best 280 // result obtained by *either* implementation. This is a bit unfair since no 281 // caller actually gets the full power at the moment. 282 SimpleLoopSafetyInfo LSI; 283 LSI.computeLoopSafetyInfo(L); 284 return LSI.isGuaranteedToExecute(I, DT, L) || 285 isGuaranteedToExecuteForEveryIteration(&I, L); 286 } 287 288 namespace { 289 /// An assembly annotator class to print must execute information in 290 /// comments. 291 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 292 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 293 294 public: 295 MustExecuteAnnotatedWriter(const Function &F, 296 DominatorTree &DT, LoopInfo &LI) { 297 for (auto &I: instructions(F)) { 298 Loop *L = LI.getLoopFor(I.getParent()); 299 while (L) { 300 if (isMustExecuteIn(I, L, &DT)) { 301 MustExec[&I].push_back(L); 302 } 303 L = L->getParentLoop(); 304 }; 305 } 306 } 307 MustExecuteAnnotatedWriter(const Module &M, 308 DominatorTree &DT, LoopInfo &LI) { 309 for (auto &F : M) 310 for (auto &I: instructions(F)) { 311 Loop *L = LI.getLoopFor(I.getParent()); 312 while (L) { 313 if (isMustExecuteIn(I, L, &DT)) { 314 MustExec[&I].push_back(L); 315 } 316 L = L->getParentLoop(); 317 }; 318 } 319 } 320 321 322 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 323 if (!MustExec.count(&V)) 324 return; 325 326 const auto &Loops = MustExec.lookup(&V); 327 const auto NumLoops = Loops.size(); 328 if (NumLoops > 1) 329 OS << " ; (mustexec in " << NumLoops << " loops: "; 330 else 331 OS << " ; (mustexec in: "; 332 333 bool first = true; 334 for (const Loop *L : Loops) { 335 if (!first) 336 OS << ", "; 337 first = false; 338 OS << L->getHeader()->getName(); 339 } 340 OS << ")"; 341 } 342 }; 343 } // namespace 344 345 bool MustExecutePrinter::runOnFunction(Function &F) { 346 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 347 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 348 349 MustExecuteAnnotatedWriter Writer(F, DT, LI); 350 F.print(dbgs(), &Writer); 351 352 return false; 353 } 354