1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/MustExecute.h" 11 #include "llvm/Analysis/InstructionSimplify.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/Passes.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/IR/AssemblyAnnotationWriter.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/InstIterator.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/FormattedStream.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 /// Computes loop safety information, checks loop body & header 26 /// for the possibility of may throw exception. 27 /// 28 void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { 29 assert(CurLoop != nullptr && "CurLoop cant be null"); 30 BasicBlock *Header = CurLoop->getHeader(); 31 // Setting default safety values. 32 SafetyInfo->MayThrow = false; 33 SafetyInfo->HeaderMayThrow = false; 34 // Iterate over header and compute safety info. 35 SafetyInfo->HeaderMayThrow = 36 !isGuaranteedToTransferExecutionToSuccessor(Header); 37 38 SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow; 39 // Iterate over loop instructions and compute safety info. 40 // Skip header as it has been computed and stored in HeaderMayThrow. 41 // The first block in loopinfo.Blocks is guaranteed to be the header. 42 assert(Header == *CurLoop->getBlocks().begin() && 43 "First block must be header"); 44 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 45 BBE = CurLoop->block_end(); 46 (BB != BBE) && !SafetyInfo->MayThrow; ++BB) 47 SafetyInfo->MayThrow |= 48 !isGuaranteedToTransferExecutionToSuccessor(*BB); 49 50 // Compute funclet colors if we might sink/hoist in a function with a funclet 51 // personality routine. 52 Function *Fn = CurLoop->getHeader()->getParent(); 53 if (Fn->hasPersonalityFn()) 54 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 55 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) 56 SafetyInfo->BlockColors = colorEHFunclets(*Fn); 57 } 58 59 /// Return true if we can prove that the given ExitBlock is not reached on the 60 /// first iteration of the given loop. That is, the backedge of the loop must 61 /// be executed before the ExitBlock is executed in any dynamic execution trace. 62 static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, 63 const DominatorTree *DT, 64 const Loop *CurLoop) { 65 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 66 if (!CondExitBlock) 67 // expect unique exits 68 return false; 69 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 70 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 71 if (!BI || !BI->isConditional()) 72 return false; 73 // If condition is constant and false leads to ExitBlock then we always 74 // execute the true branch. 75 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) 76 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock; 77 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 78 if (!Cond) 79 return false; 80 // todo: this would be a lot more powerful if we used scev, but all the 81 // plumbing is currently missing to pass a pointer in from the pass 82 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 83 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 84 auto *RHS = Cond->getOperand(1); 85 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 86 return false; 87 auto DL = ExitBlock->getModule()->getDataLayout(); 88 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 89 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 90 IVStart, RHS, 91 {DL, /*TLI*/ nullptr, 92 DT, /*AC*/ nullptr, BI}); 93 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 94 if (!SimpleCst) 95 return false; 96 if (ExitBlock == BI->getSuccessor(0)) 97 return SimpleCst->isZeroValue(); 98 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 99 return SimpleCst->isAllOnesValue(); 100 } 101 102 /// Returns true if the instruction in a loop is guaranteed to execute at least 103 /// once. 104 bool llvm::isGuaranteedToExecute(const Instruction &Inst, 105 const DominatorTree *DT, const Loop *CurLoop, 106 const LoopSafetyInfo *SafetyInfo) { 107 // We have to check to make sure that the instruction dominates all 108 // of the exit blocks. If it doesn't, then there is a path out of the loop 109 // which does not execute this instruction, so we can't hoist it. 110 111 // If the instruction is in the header block for the loop (which is very 112 // common), it is always guaranteed to dominate the exit blocks. Since this 113 // is a common case, and can save some work, check it now. 114 if (Inst.getParent() == CurLoop->getHeader()) 115 // If there's a throw in the header block, we can't guarantee we'll reach 116 // Inst unless we can prove that Inst comes before the potential implicit 117 // exit. At the moment, we use a (cheap) hack for the common case where 118 // the instruction of interest is the first one in the block. 119 return !SafetyInfo->HeaderMayThrow || 120 Inst.getParent()->getFirstNonPHI() == &Inst; 121 122 // Somewhere in this loop there is an instruction which may throw and make us 123 // exit the loop. 124 if (SafetyInfo->MayThrow) 125 return false; 126 127 // Note: There are two styles of reasoning intermixed below for 128 // implementation efficiency reasons. They are: 129 // 1) If we can prove that the instruction dominates all exit blocks, then we 130 // know the instruction must have executed on *some* iteration before we 131 // exit. We do not prove *which* iteration the instruction must execute on. 132 // 2) If we can prove that the instruction dominates the latch and all exits 133 // which might be taken on the first iteration, we know the instruction must 134 // execute on the first iteration. This second style allows a conditional 135 // exit before the instruction of interest which is provably not taken on the 136 // first iteration. This is a quite common case for range check like 137 // patterns. TODO: support loops with multiple latches. 138 139 const bool InstDominatesLatch = 140 CurLoop->getLoopLatch() != nullptr && 141 DT->dominates(Inst.getParent(), CurLoop->getLoopLatch()); 142 143 // Get the exit blocks for the current loop. 144 SmallVector<BasicBlock *, 8> ExitBlocks; 145 CurLoop->getExitBlocks(ExitBlocks); 146 147 // Verify that the block dominates each of the exit blocks of the loop. 148 for (BasicBlock *ExitBlock : ExitBlocks) 149 if (!DT->dominates(Inst.getParent(), ExitBlock)) 150 if (!InstDominatesLatch || 151 !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop)) 152 return false; 153 154 // As a degenerate case, if the loop is statically infinite then we haven't 155 // proven anything since there are no exit blocks. 156 if (ExitBlocks.empty()) 157 return false; 158 159 // FIXME: In general, we have to prove that the loop isn't an infinite loop. 160 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 161 // just a special case of this.) 162 return true; 163 } 164 165 166 namespace { 167 struct MustExecutePrinter : public FunctionPass { 168 169 static char ID; // Pass identification, replacement for typeid 170 MustExecutePrinter() : FunctionPass(ID) { 171 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 172 } 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesAll(); 175 AU.addRequired<DominatorTreeWrapperPass>(); 176 AU.addRequired<LoopInfoWrapperPass>(); 177 } 178 bool runOnFunction(Function &F) override; 179 }; 180 } 181 182 char MustExecutePrinter::ID = 0; 183 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 184 "Instructions which execute on loop entry", false, true) 185 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 186 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 187 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 188 "Instructions which execute on loop entry", false, true) 189 190 FunctionPass *llvm::createMustExecutePrinter() { 191 return new MustExecutePrinter(); 192 } 193 194 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 195 // TODO: merge these two routines. For the moment, we display the best 196 // result obtained by *either* implementation. This is a bit unfair since no 197 // caller actually gets the full power at the moment. 198 LoopSafetyInfo LSI; 199 computeLoopSafetyInfo(&LSI, L); 200 return isGuaranteedToExecute(I, DT, L, &LSI) || 201 isGuaranteedToExecuteForEveryIteration(&I, L); 202 } 203 204 namespace { 205 /// An assembly annotator class to print must execute information in 206 /// comments. 207 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 208 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 209 210 public: 211 MustExecuteAnnotatedWriter(const Function &F, 212 DominatorTree &DT, LoopInfo &LI) { 213 for (auto &I: instructions(F)) { 214 Loop *L = LI.getLoopFor(I.getParent()); 215 while (L) { 216 if (isMustExecuteIn(I, L, &DT)) { 217 MustExec[&I].push_back(L); 218 } 219 L = L->getParentLoop(); 220 }; 221 } 222 } 223 MustExecuteAnnotatedWriter(const Module &M, 224 DominatorTree &DT, LoopInfo &LI) { 225 for (auto &F : M) 226 for (auto &I: instructions(F)) { 227 Loop *L = LI.getLoopFor(I.getParent()); 228 while (L) { 229 if (isMustExecuteIn(I, L, &DT)) { 230 MustExec[&I].push_back(L); 231 } 232 L = L->getParentLoop(); 233 }; 234 } 235 } 236 237 238 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 239 if (!MustExec.count(&V)) 240 return; 241 242 const auto &Loops = MustExec.lookup(&V); 243 const auto NumLoops = Loops.size(); 244 if (NumLoops > 1) 245 OS << " ; (mustexec in " << NumLoops << " loops: "; 246 else 247 OS << " ; (mustexec in: "; 248 249 bool first = true; 250 for (const Loop *L : Loops) { 251 if (!first) 252 OS << ", "; 253 first = false; 254 OS << L->getHeader()->getName(); 255 } 256 OS << ")"; 257 } 258 }; 259 } // namespace 260 261 bool MustExecutePrinter::runOnFunction(Function &F) { 262 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 263 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 264 265 MustExecuteAnnotatedWriter Writer(F, DT, LI); 266 F.print(dbgs(), &Writer); 267 268 return false; 269 } 270