1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/InstructionSimplify.h" 11 #include "llvm/Analysis/LoopInfo.h" 12 #include "llvm/Analysis/Passes.h" 13 #include "llvm/Analysis/ValueTracking.h" 14 #include "llvm/IR/AssemblyAnnotationWriter.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/InstIterator.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/Support/ErrorHandling.h" 20 #include "llvm/Support/FormattedStream.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Transforms/Utils/LoopUtils.h" 23 using namespace llvm; 24 25 /// Computes loop safety information, checks loop body & header 26 /// for the possibility of may throw exception. 27 /// 28 void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { 29 assert(CurLoop != nullptr && "CurLoop cant be null"); 30 BasicBlock *Header = CurLoop->getHeader(); 31 // Setting default safety values. 32 SafetyInfo->MayThrow = false; 33 SafetyInfo->HeaderMayThrow = false; 34 // Iterate over header and compute safety info. 35 SafetyInfo->HeaderMayThrow = 36 !isGuaranteedToTransferExecutionToSuccessor(Header); 37 38 SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow; 39 // Iterate over loop instructions and compute safety info. 40 // Skip header as it has been computed and stored in HeaderMayThrow. 41 // The first block in loopinfo.Blocks is guaranteed to be the header. 42 assert(Header == *CurLoop->getBlocks().begin() && 43 "First block must be header"); 44 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), 45 BBE = CurLoop->block_end(); 46 (BB != BBE) && !SafetyInfo->MayThrow; ++BB) 47 SafetyInfo->MayThrow |= 48 !isGuaranteedToTransferExecutionToSuccessor(*BB); 49 50 // Compute funclet colors if we might sink/hoist in a function with a funclet 51 // personality routine. 52 Function *Fn = CurLoop->getHeader()->getParent(); 53 if (Fn->hasPersonalityFn()) 54 if (Constant *PersonalityFn = Fn->getPersonalityFn()) 55 if (isFuncletEHPersonality(classifyEHPersonality(PersonalityFn))) 56 SafetyInfo->BlockColors = colorEHFunclets(*Fn); 57 } 58 59 /// Return true if we can prove that the given ExitBlock is not reached on the 60 /// first iteration of the given loop. That is, the backedge of the loop must 61 /// be executed before the ExitBlock is executed in any dynamic execution trace. 62 static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, 63 const DominatorTree *DT, 64 const Loop *CurLoop) { 65 auto *CondExitBlock = ExitBlock->getSinglePredecessor(); 66 if (!CondExitBlock) 67 // expect unique exits 68 return false; 69 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block"); 70 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator()); 71 if (!BI || !BI->isConditional()) 72 return false; 73 auto *Cond = dyn_cast<CmpInst>(BI->getCondition()); 74 if (!Cond) 75 return false; 76 // todo: this would be a lot more powerful if we used scev, but all the 77 // plumbing is currently missing to pass a pointer in from the pass 78 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known 79 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0)); 80 auto *RHS = Cond->getOperand(1); 81 if (!LHS || LHS->getParent() != CurLoop->getHeader()) 82 return false; 83 auto DL = ExitBlock->getModule()->getDataLayout(); 84 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 85 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(), 86 IVStart, RHS, 87 {DL, /*TLI*/ nullptr, 88 DT, /*AC*/ nullptr, BI}); 89 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull); 90 if (!SimpleCst) 91 return false; 92 if (ExitBlock == BI->getSuccessor(0)) 93 return SimpleCst->isZeroValue(); 94 assert(ExitBlock == BI->getSuccessor(1) && "implied by above"); 95 return SimpleCst->isAllOnesValue(); 96 } 97 98 /// Returns true if the instruction in a loop is guaranteed to execute at least 99 /// once. 100 bool llvm::isGuaranteedToExecute(const Instruction &Inst, 101 const DominatorTree *DT, const Loop *CurLoop, 102 const LoopSafetyInfo *SafetyInfo) { 103 // We have to check to make sure that the instruction dominates all 104 // of the exit blocks. If it doesn't, then there is a path out of the loop 105 // which does not execute this instruction, so we can't hoist it. 106 107 // If the instruction is in the header block for the loop (which is very 108 // common), it is always guaranteed to dominate the exit blocks. Since this 109 // is a common case, and can save some work, check it now. 110 if (Inst.getParent() == CurLoop->getHeader()) 111 // If there's a throw in the header block, we can't guarantee we'll reach 112 // Inst. 113 return !SafetyInfo->HeaderMayThrow; 114 115 // Somewhere in this loop there is an instruction which may throw and make us 116 // exit the loop. 117 if (SafetyInfo->MayThrow) 118 return false; 119 120 // Note: There are two styles of reasoning intermixed below for 121 // implementation efficiency reasons. They are: 122 // 1) If we can prove that the instruction dominates all exit blocks, then we 123 // know the instruction must have executed on *some* iteration before we 124 // exit. We do not prove *which* iteration the instruction must execute on. 125 // 2) If we can prove that the instruction dominates the latch and all exits 126 // which might be taken on the first iteration, we know the instruction must 127 // execute on the first iteration. This second style allows a conditional 128 // exit before the instruction of interest which is provably not taken on the 129 // first iteration. This is a quite common case for range check like 130 // patterns. TODO: support loops with multiple latches. 131 132 const bool InstDominatesLatch = 133 CurLoop->getLoopLatch() != nullptr && 134 DT->dominates(Inst.getParent(), CurLoop->getLoopLatch()); 135 136 // Get the exit blocks for the current loop. 137 SmallVector<BasicBlock *, 8> ExitBlocks; 138 CurLoop->getExitBlocks(ExitBlocks); 139 140 // Verify that the block dominates each of the exit blocks of the loop. 141 for (BasicBlock *ExitBlock : ExitBlocks) 142 if (!DT->dominates(Inst.getParent(), ExitBlock)) 143 if (!InstDominatesLatch || 144 !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop)) 145 return false; 146 147 // As a degenerate case, if the loop is statically infinite then we haven't 148 // proven anything since there are no exit blocks. 149 if (ExitBlocks.empty()) 150 return false; 151 152 // FIXME: In general, we have to prove that the loop isn't an infinite loop. 153 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 154 // just a special case of this.) 155 return true; 156 } 157 158 159 namespace { 160 struct MustExecutePrinter : public FunctionPass { 161 162 static char ID; // Pass identification, replacement for typeid 163 MustExecutePrinter() : FunctionPass(ID) { 164 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry()); 165 } 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.setPreservesAll(); 168 AU.addRequired<DominatorTreeWrapperPass>(); 169 AU.addRequired<LoopInfoWrapperPass>(); 170 } 171 bool runOnFunction(Function &F) override; 172 }; 173 } 174 175 char MustExecutePrinter::ID = 0; 176 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute", 177 "Instructions which execute on loop entry", false, true) 178 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 179 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 180 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute", 181 "Instructions which execute on loop entry", false, true) 182 183 FunctionPass *llvm::createMustExecutePrinter() { 184 return new MustExecutePrinter(); 185 } 186 187 bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { 188 // TODO: merge these two routines. For the moment, we display the best 189 // result obtained by *either* implementation. This is a bit unfair since no 190 // caller actually gets the full power at the moment. 191 LoopSafetyInfo LSI; 192 computeLoopSafetyInfo(&LSI, L); 193 return isGuaranteedToExecute(I, DT, L, &LSI) || 194 isGuaranteedToExecuteForEveryIteration(&I, L); 195 } 196 197 /// \brief An assembly annotator class to print must execute information in 198 /// comments. 199 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter { 200 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec; 201 202 public: 203 MustExecuteAnnotatedWriter(const Function &F, 204 DominatorTree &DT, LoopInfo &LI) { 205 for (auto &I: instructions(F)) { 206 Loop *L = LI.getLoopFor(I.getParent()); 207 while (L) { 208 if (isMustExecuteIn(I, L, &DT)) { 209 MustExec[&I].push_back(L); 210 } 211 L = L->getParentLoop(); 212 }; 213 } 214 } 215 MustExecuteAnnotatedWriter(const Module &M, 216 DominatorTree &DT, LoopInfo &LI) { 217 for (auto &F : M) 218 for (auto &I: instructions(F)) { 219 Loop *L = LI.getLoopFor(I.getParent()); 220 while (L) { 221 if (isMustExecuteIn(I, L, &DT)) { 222 MustExec[&I].push_back(L); 223 } 224 L = L->getParentLoop(); 225 }; 226 } 227 } 228 229 230 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override { 231 if (!MustExec.count(&V)) 232 return; 233 234 const auto &Loops = MustExec.lookup(&V); 235 const auto NumLoops = Loops.size(); 236 if (NumLoops > 1) 237 OS << " ; (mustexec in " << NumLoops << " loops: "; 238 else 239 OS << " ; (mustexec in: "; 240 241 bool first = true; 242 for (const Loop *L : Loops) { 243 if (!first) 244 OS << ", "; 245 first = false; 246 OS << L->getHeader()->getName(); 247 } 248 OS << ")"; 249 } 250 }; 251 252 bool MustExecutePrinter::runOnFunction(Function &F) { 253 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 254 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 255 256 MustExecuteAnnotatedWriter Writer(F, DT, LI); 257 F.print(dbgs(), &Writer); 258 259 return false; 260 } 261