1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/Delinearization.h" 34 #include "llvm/Analysis/DependenceAnalysis.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-cache-cost" 44 45 static cl::opt<unsigned> DefaultTripCount( 46 "default-trip-count", cl::init(100), cl::Hidden, 47 cl::desc("Use this to specify the default trip count of a loop")); 48 49 // In this analysis two array references are considered to exhibit temporal 50 // reuse if they access either the same memory location, or a memory location 51 // with distance smaller than a configurable threshold. 52 static cl::opt<unsigned> TemporalReuseThreshold( 53 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 54 cl::desc("Use this to specify the max. distance between array elements " 55 "accessed in a loop so that the elements are classified to have " 56 "temporal reuse")); 57 58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 59 /// nullptr if any loops in the loop vector supplied has more than one sibling. 60 /// The loop vector is expected to contain loops collected in breadth-first 61 /// order. 62 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 63 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 64 65 Loop *LastLoop = Loops.back(); 66 Loop *ParentLoop = LastLoop->getParentLoop(); 67 68 if (ParentLoop == nullptr) { 69 assert(Loops.size() == 1 && "Expecting a single loop"); 70 return LastLoop; 71 } 72 73 return (llvm::is_sorted(Loops, 74 [](const Loop *L1, const Loop *L2) { 75 return L1->getLoopDepth() < L2->getLoopDepth(); 76 })) 77 ? LastLoop 78 : nullptr; 79 } 80 81 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 82 const Loop &L, ScalarEvolution &SE) { 83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 84 if (!AR || !AR->isAffine()) 85 return false; 86 87 assert(AR->getLoop() && "AR should have a loop"); 88 89 // Check that start and increment are not add recurrences. 90 const SCEV *Start = AR->getStart(); 91 const SCEV *Step = AR->getStepRecurrence(SE); 92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 93 return false; 94 95 // Check that start and increment are both invariant in the loop. 96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 97 return false; 98 99 const SCEV *StepRec = AR->getStepRecurrence(SE); 100 if (StepRec && SE.isKnownNegative(StepRec)) 101 StepRec = SE.getNegativeSCEV(StepRec); 102 103 return StepRec == &ElemSize; 104 } 105 106 /// Compute the trip count for the given loop \p L or assume a default value if 107 /// it is not a compile time constant. Return the SCEV expression for the trip 108 /// count. 109 static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, 110 ScalarEvolution &SE) { 111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 112 const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 113 isa<SCEVConstant>(BackedgeTakenCount)) 114 ? SE.getTripCountFromExitCount(BackedgeTakenCount) 115 : nullptr; 116 117 if (!TripCount) { 118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 119 << " could not be computed, using DefaultTripCount\n"); 120 TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount); 121 } 122 123 return TripCount; 124 } 125 126 //===----------------------------------------------------------------------===// 127 // IndexedReference implementation 128 // 129 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 130 if (!R.IsValid) { 131 OS << R.StoreOrLoadInst; 132 OS << ", IsValid=false."; 133 return OS; 134 } 135 136 OS << *R.BasePointer; 137 for (const SCEV *Subscript : R.Subscripts) 138 OS << "[" << *Subscript << "]"; 139 140 OS << ", Sizes: "; 141 for (const SCEV *Size : R.Sizes) 142 OS << "[" << *Size << "]"; 143 144 return OS; 145 } 146 147 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 148 const LoopInfo &LI, ScalarEvolution &SE) 149 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 150 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 151 "Expecting a load or store instruction"); 152 153 IsValid = delinearize(LI); 154 if (IsValid) 155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 156 << "\n"); 157 } 158 159 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 160 unsigned CLS, 161 AAResults &AA) const { 162 assert(IsValid && "Expecting a valid reference"); 163 164 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 165 LLVM_DEBUG(dbgs().indent(2) 166 << "No spacial reuse: different base pointers\n"); 167 return false; 168 } 169 170 unsigned NumSubscripts = getNumSubscripts(); 171 if (NumSubscripts != Other.getNumSubscripts()) { 172 LLVM_DEBUG(dbgs().indent(2) 173 << "No spacial reuse: different number of subscripts\n"); 174 return false; 175 } 176 177 // all subscripts must be equal, except the leftmost one (the last one). 178 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 179 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 181 << "\n\t" << *getSubscript(SubNum) << "\n\t" 182 << *Other.getSubscript(SubNum) << "\n"); 183 return false; 184 } 185 } 186 187 // the difference between the last subscripts must be less than the cache line 188 // size. 189 const SCEV *LastSubscript = getLastSubscript(); 190 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 191 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 192 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 193 194 if (Diff == nullptr) { 195 LLVM_DEBUG(dbgs().indent(2) 196 << "No spacial reuse, difference between subscript:\n\t" 197 << *LastSubscript << "\n\t" << OtherLastSubscript 198 << "\nis not constant.\n"); 199 return None; 200 } 201 202 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 203 204 LLVM_DEBUG({ 205 if (InSameCacheLine) 206 dbgs().indent(2) << "Found spacial reuse.\n"; 207 else 208 dbgs().indent(2) << "No spacial reuse.\n"; 209 }); 210 211 return InSameCacheLine; 212 } 213 214 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 215 unsigned MaxDistance, 216 const Loop &L, 217 DependenceInfo &DI, 218 AAResults &AA) const { 219 assert(IsValid && "Expecting a valid reference"); 220 221 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 222 LLVM_DEBUG(dbgs().indent(2) 223 << "No temporal reuse: different base pointer\n"); 224 return false; 225 } 226 227 std::unique_ptr<Dependence> D = 228 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 229 230 if (D == nullptr) { 231 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 232 return false; 233 } 234 235 if (D->isLoopIndependent()) { 236 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 237 return true; 238 } 239 240 // Check the dependence distance at every loop level. There is temporal reuse 241 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 242 // it is zero at every other loop level. 243 int LoopDepth = L.getLoopDepth(); 244 int Levels = D->getLevels(); 245 for (int Level = 1; Level <= Levels; ++Level) { 246 const SCEV *Distance = D->getDistance(Level); 247 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 248 249 if (SCEVConst == nullptr) { 250 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 251 return None; 252 } 253 254 const ConstantInt &CI = *SCEVConst->getValue(); 255 if (Level != LoopDepth && !CI.isZero()) { 256 LLVM_DEBUG(dbgs().indent(2) 257 << "No temporal reuse: distance is not zero at depth=" << Level 258 << "\n"); 259 return false; 260 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 261 LLVM_DEBUG( 262 dbgs().indent(2) 263 << "No temporal reuse: distance is greater than MaxDistance at depth=" 264 << Level << "\n"); 265 return false; 266 } 267 } 268 269 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 270 return true; 271 } 272 273 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 274 unsigned CLS) const { 275 assert(IsValid && "Expecting a valid reference"); 276 LLVM_DEBUG({ 277 dbgs().indent(2) << "Computing cache cost for:\n"; 278 dbgs().indent(4) << *this << "\n"; 279 }); 280 281 // If the indexed reference is loop invariant the cost is one. 282 if (isLoopInvariant(L)) { 283 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 284 return 1; 285 } 286 287 const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE); 288 assert(TripCount && "Expecting valid TripCount"); 289 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 290 291 const SCEV *RefCost = nullptr; 292 const SCEV *Stride = nullptr; 293 if (isConsecutive(L, Stride, CLS)) { 294 // If the indexed reference is 'consecutive' the cost is 295 // (TripCount*Stride)/CLS. 296 assert(Stride != nullptr && 297 "Stride should not be null for consecutive access!"); 298 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 299 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS); 300 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 301 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 302 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 303 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 304 305 LLVM_DEBUG(dbgs().indent(4) 306 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 307 << *RefCost << "\n"); 308 } else { 309 // If the indexed reference is not 'consecutive' the cost is proportional to 310 // the trip count and the depth of the dimension which the subject loop 311 // subscript is accessing. We try to estimate this by multiplying the cost 312 // by the trip counts of loops corresponding to the inner dimensions. For 313 // example, given the indexed reference 'A[i][j][k]', and assuming the 314 // i-loop is in the innermost position, the cost would be equal to the 315 // iterations of the i-loop multiplied by iterations of the j-loop. 316 RefCost = TripCount; 317 318 int Index = getSubscriptIndex(L); 319 assert(Index >= 0 && "Cound not locate a valid Index"); 320 321 for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { 322 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I)); 323 assert(AR && AR->getLoop() && "Expecting valid loop"); 324 const SCEV *TripCount = 325 computeTripCount(*AR->getLoop(), *Sizes.back(), SE); 326 Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType()); 327 RefCost = SE.getMulExpr(SE.getNoopOrAnyExtend(RefCost, WiderType), 328 SE.getNoopOrAnyExtend(TripCount, WiderType)); 329 } 330 331 LLVM_DEBUG(dbgs().indent(4) 332 << "Access is not consecutive: RefCost=" << *RefCost << "\n"); 333 } 334 assert(RefCost && "Expecting a valid RefCost"); 335 336 // Attempt to fold RefCost into a constant. 337 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 338 return ConstantCost->getValue()->getSExtValue(); 339 340 LLVM_DEBUG(dbgs().indent(4) 341 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 342 "(invalid value).\n"); 343 344 return CacheCost::InvalidCost; 345 } 346 347 bool IndexedReference::tryDelinearizeFixedSize( 348 const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) { 349 SmallVector<int, 4> ArraySizes; 350 if (!tryDelinearizeFixedSizeImpl(&SE, &StoreOrLoadInst, AccessFn, Subscripts, 351 ArraySizes)) 352 return false; 353 354 // Populate Sizes with scev expressions to be used in calculations later. 355 for (auto Idx : seq<unsigned>(1, Subscripts.size())) 356 Sizes.push_back( 357 SE.getConstant(Subscripts[Idx]->getType(), ArraySizes[Idx - 1])); 358 359 LLVM_DEBUG({ 360 dbgs() << "Delinearized subscripts of fixed-size array\n" 361 << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst) 362 << "\n"; 363 }); 364 return true; 365 } 366 367 bool IndexedReference::delinearize(const LoopInfo &LI) { 368 assert(Subscripts.empty() && "Subscripts should be empty"); 369 assert(Sizes.empty() && "Sizes should be empty"); 370 assert(!IsValid && "Should be called once from the constructor"); 371 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 372 373 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 374 const BasicBlock *BB = StoreOrLoadInst.getParent(); 375 376 if (Loop *L = LI.getLoopFor(BB)) { 377 const SCEV *AccessFn = 378 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 379 380 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 381 if (BasePointer == nullptr) { 382 LLVM_DEBUG( 383 dbgs().indent(2) 384 << "ERROR: failed to delinearize, can't identify base pointer\n"); 385 return false; 386 } 387 388 bool IsFixedSize = false; 389 // Try to delinearize fixed-size arrays. 390 if (tryDelinearizeFixedSize(AccessFn, Subscripts)) { 391 IsFixedSize = true; 392 // The last element of Sizes is the element size. 393 Sizes.push_back(ElemSize); 394 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 395 << "', AccessFn: " << *AccessFn << "\n"); 396 } 397 398 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 399 400 // Try to delinearize parametric-size arrays. 401 if (!IsFixedSize) { 402 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 403 << "', AccessFn: " << *AccessFn << "\n"); 404 llvm::delinearize(SE, AccessFn, Subscripts, Sizes, 405 SE.getElementSize(&StoreOrLoadInst)); 406 } 407 408 if (Subscripts.empty() || Sizes.empty() || 409 Subscripts.size() != Sizes.size()) { 410 // Attempt to determine whether we have a single dimensional array access. 411 // before giving up. 412 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 413 LLVM_DEBUG(dbgs().indent(2) 414 << "ERROR: failed to delinearize reference\n"); 415 Subscripts.clear(); 416 Sizes.clear(); 417 return false; 418 } 419 420 // The array may be accessed in reverse, for example: 421 // for (i = N; i > 0; i--) 422 // A[i] = 0; 423 // In this case, reconstruct the access function using the absolute value 424 // of the step recurrence. 425 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 426 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 427 428 if (StepRec && SE.isKnownNegative(StepRec)) 429 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 430 SE.getNegativeSCEV(StepRec), 431 AccessFnAR->getLoop(), 432 AccessFnAR->getNoWrapFlags()); 433 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 434 Subscripts.push_back(Div); 435 Sizes.push_back(ElemSize); 436 } 437 438 return all_of(Subscripts, [&](const SCEV *Subscript) { 439 return isSimpleAddRecurrence(*Subscript, *L); 440 }); 441 } 442 443 return false; 444 } 445 446 bool IndexedReference::isLoopInvariant(const Loop &L) const { 447 Value *Addr = getPointerOperand(&StoreOrLoadInst); 448 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 449 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 450 451 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 452 return true; 453 454 // The indexed reference is loop invariant if none of the coefficients use 455 // the loop induction variable. 456 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 457 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 458 }); 459 460 return allCoeffForLoopAreZero; 461 } 462 463 bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride, 464 unsigned CLS) const { 465 // The indexed reference is 'consecutive' if the only coefficient that uses 466 // the loop induction variable is the last one... 467 const SCEV *LastSubscript = Subscripts.back(); 468 for (const SCEV *Subscript : Subscripts) { 469 if (Subscript == LastSubscript) 470 continue; 471 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 472 return false; 473 } 474 475 // ...and the access stride is less than the cache line size. 476 const SCEV *Coeff = getLastCoefficient(); 477 const SCEV *ElemSize = Sizes.back(); 478 Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType()); 479 // FIXME: This assumes that all values are signed integers which may 480 // be incorrect in unusual codes and incorrectly use sext instead of zext. 481 // for (uint32_t i = 0; i < 512; ++i) { 482 // uint8_t trunc = i; 483 // A[trunc] = 42; 484 // } 485 // This consecutively iterates twice over A. If `trunc` is sign-extended, 486 // we would conclude that this may iterate backwards over the array. 487 // However, LoopCacheAnalysis is heuristic anyway and transformations must 488 // not result in wrong optimizations if the heuristic was incorrect. 489 Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType), 490 SE.getNoopOrSignExtend(ElemSize, WiderType)); 491 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 492 493 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 494 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 495 } 496 497 int IndexedReference::getSubscriptIndex(const Loop &L) const { 498 for (auto Idx : seq<int>(0, getNumSubscripts())) { 499 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx)); 500 if (AR && AR->getLoop() == &L) { 501 return Idx; 502 } 503 } 504 return -1; 505 } 506 507 const SCEV *IndexedReference::getLastCoefficient() const { 508 const SCEV *LastSubscript = getLastSubscript(); 509 auto *AR = cast<SCEVAddRecExpr>(LastSubscript); 510 return AR->getStepRecurrence(SE); 511 } 512 513 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 514 const Loop &L) const { 515 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 516 return (AR != nullptr) ? AR->getLoop() != &L 517 : SE.isLoopInvariant(&Subscript, &L); 518 } 519 520 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 521 const Loop &L) const { 522 if (!isa<SCEVAddRecExpr>(Subscript)) 523 return false; 524 525 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 526 assert(AR->getLoop() && "AR should have a loop"); 527 528 if (!AR->isAffine()) 529 return false; 530 531 const SCEV *Start = AR->getStart(); 532 const SCEV *Step = AR->getStepRecurrence(SE); 533 534 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 535 return false; 536 537 return true; 538 } 539 540 bool IndexedReference::isAliased(const IndexedReference &Other, 541 AAResults &AA) const { 542 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 543 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 544 return AA.isMustAlias(Loc1, Loc2); 545 } 546 547 //===----------------------------------------------------------------------===// 548 // CacheCost implementation 549 // 550 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 551 for (const auto &LC : CC.LoopCosts) { 552 const Loop *L = LC.first; 553 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 554 } 555 return OS; 556 } 557 558 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 559 ScalarEvolution &SE, TargetTransformInfo &TTI, 560 AAResults &AA, DependenceInfo &DI, Optional<unsigned> TRT) 561 : Loops(Loops), TRT(TRT.value_or(TemporalReuseThreshold)), LI(LI), SE(SE), 562 TTI(TTI), AA(AA), DI(DI) { 563 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 564 565 for (const Loop *L : Loops) { 566 unsigned TripCount = SE.getSmallConstantTripCount(L); 567 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 568 TripCounts.push_back({L, TripCount}); 569 } 570 571 calculateCacheFootprint(); 572 } 573 574 std::unique_ptr<CacheCost> 575 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 576 DependenceInfo &DI, Optional<unsigned> TRT) { 577 if (!Root.isOutermost()) { 578 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 579 return nullptr; 580 } 581 582 LoopVectorTy Loops; 583 append_range(Loops, breadth_first(&Root)); 584 585 if (!getInnerMostLoop(Loops)) { 586 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 587 "than one innermost loop\n"); 588 return nullptr; 589 } 590 591 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 592 } 593 594 void CacheCost::calculateCacheFootprint() { 595 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 596 ReferenceGroupsTy RefGroups; 597 if (!populateReferenceGroups(RefGroups)) 598 return; 599 600 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 601 for (const Loop *L : Loops) { 602 assert(llvm::none_of( 603 LoopCosts, 604 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && 605 "Should not add duplicate element"); 606 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 607 LoopCosts.push_back(std::make_pair(L, LoopCost)); 608 } 609 610 sortLoopCosts(); 611 RefGroups.clear(); 612 } 613 614 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 615 assert(RefGroups.empty() && "Reference groups should be empty"); 616 617 unsigned CLS = TTI.getCacheLineSize(); 618 Loop *InnerMostLoop = getInnerMostLoop(Loops); 619 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 620 621 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 622 for (Instruction &I : *BB) { 623 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 624 continue; 625 626 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 627 if (!R->isValid()) 628 continue; 629 630 bool Added = false; 631 for (ReferenceGroupTy &RefGroup : RefGroups) { 632 const IndexedReference &Representative = *RefGroup.front(); 633 LLVM_DEBUG({ 634 dbgs() << "References:\n"; 635 dbgs().indent(2) << *R << "\n"; 636 dbgs().indent(2) << Representative << "\n"; 637 }); 638 639 640 // FIXME: Both positive and negative access functions will be placed 641 // into the same reference group, resulting in a bi-directional array 642 // access such as: 643 // for (i = N; i > 0; i--) 644 // A[i] = A[N - i]; 645 // having the same cost calculation as a single dimention access pattern 646 // for (i = 0; i < N; i++) 647 // A[i] = A[i]; 648 // when in actuality, depending on the array size, the first example 649 // should have a cost closer to 2x the second due to the two cache 650 // access per iteration from opposite ends of the array 651 Optional<bool> HasTemporalReuse = 652 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 653 Optional<bool> HasSpacialReuse = 654 R->hasSpacialReuse(Representative, CLS, AA); 655 656 if ((HasTemporalReuse && *HasTemporalReuse) || 657 (HasSpacialReuse && *HasSpacialReuse)) { 658 RefGroup.push_back(std::move(R)); 659 Added = true; 660 break; 661 } 662 } 663 664 if (!Added) { 665 ReferenceGroupTy RG; 666 RG.push_back(std::move(R)); 667 RefGroups.push_back(std::move(RG)); 668 } 669 } 670 } 671 672 if (RefGroups.empty()) 673 return false; 674 675 LLVM_DEBUG({ 676 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 677 int n = 1; 678 for (const ReferenceGroupTy &RG : RefGroups) { 679 dbgs().indent(2) << "RefGroup " << n << ":\n"; 680 for (const auto &IR : RG) 681 dbgs().indent(4) << *IR << "\n"; 682 n++; 683 } 684 dbgs() << "\n"; 685 }); 686 687 return true; 688 } 689 690 CacheCostTy 691 CacheCost::computeLoopCacheCost(const Loop &L, 692 const ReferenceGroupsTy &RefGroups) const { 693 if (!L.isLoopSimplifyForm()) 694 return InvalidCost; 695 696 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 697 << "' as innermost loop.\n"); 698 699 // Compute the product of the trip counts of each other loop in the nest. 700 CacheCostTy TripCountsProduct = 1; 701 for (const auto &TC : TripCounts) { 702 if (TC.first == &L) 703 continue; 704 TripCountsProduct *= TC.second; 705 } 706 707 CacheCostTy LoopCost = 0; 708 for (const ReferenceGroupTy &RG : RefGroups) { 709 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 710 LoopCost += RefGroupCost * TripCountsProduct; 711 } 712 713 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 714 << "' has cost=" << LoopCost << "\n"); 715 716 return LoopCost; 717 } 718 719 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 720 const Loop &L) const { 721 assert(!RG.empty() && "Reference group should have at least one member."); 722 723 const IndexedReference *Representative = RG.front().get(); 724 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // LoopCachePrinterPass implementation 729 // 730 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 731 LoopStandardAnalysisResults &AR, 732 LPMUpdater &U) { 733 Function *F = L.getHeader()->getParent(); 734 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 735 736 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 737 OS << *CC; 738 739 return PreservedAnalyses::all(); 740 } 741