1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/Delinearization.h" 34 #include "llvm/Analysis/DependenceAnalysis.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-cache-cost" 44 45 static cl::opt<unsigned> DefaultTripCount( 46 "default-trip-count", cl::init(100), cl::Hidden, 47 cl::desc("Use this to specify the default trip count of a loop")); 48 49 // In this analysis two array references are considered to exhibit temporal 50 // reuse if they access either the same memory location, or a memory location 51 // with distance smaller than a configurable threshold. 52 static cl::opt<unsigned> TemporalReuseThreshold( 53 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 54 cl::desc("Use this to specify the max. distance between array elements " 55 "accessed in a loop so that the elements are classified to have " 56 "temporal reuse")); 57 58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 59 /// nullptr if any loops in the loop vector supplied has more than one sibling. 60 /// The loop vector is expected to contain loops collected in breadth-first 61 /// order. 62 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 63 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 64 65 Loop *LastLoop = Loops.back(); 66 Loop *ParentLoop = LastLoop->getParentLoop(); 67 68 if (ParentLoop == nullptr) { 69 assert(Loops.size() == 1 && "Expecting a single loop"); 70 return LastLoop; 71 } 72 73 return (llvm::is_sorted(Loops, 74 [](const Loop *L1, const Loop *L2) { 75 return L1->getLoopDepth() < L2->getLoopDepth(); 76 })) 77 ? LastLoop 78 : nullptr; 79 } 80 81 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 82 const Loop &L, ScalarEvolution &SE) { 83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 84 if (!AR || !AR->isAffine()) 85 return false; 86 87 assert(AR->getLoop() && "AR should have a loop"); 88 89 // Check that start and increment are not add recurrences. 90 const SCEV *Start = AR->getStart(); 91 const SCEV *Step = AR->getStepRecurrence(SE); 92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 93 return false; 94 95 // Check that start and increment are both invariant in the loop. 96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 97 return false; 98 99 const SCEV *StepRec = AR->getStepRecurrence(SE); 100 if (StepRec && SE.isKnownNegative(StepRec)) 101 StepRec = SE.getNegativeSCEV(StepRec); 102 103 return StepRec == &ElemSize; 104 } 105 106 /// Compute the trip count for the given loop \p L or assume a default value if 107 /// it is not a compile time constant. Return the SCEV expression for the trip 108 /// count. 109 static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, 110 ScalarEvolution &SE) { 111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 112 const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 113 isa<SCEVConstant>(BackedgeTakenCount)) 114 ? SE.getTripCountFromExitCount(BackedgeTakenCount) 115 : nullptr; 116 117 if (!TripCount) { 118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 119 << " could not be computed, using DefaultTripCount\n"); 120 TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount); 121 } 122 123 return TripCount; 124 } 125 126 //===----------------------------------------------------------------------===// 127 // IndexedReference implementation 128 // 129 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 130 if (!R.IsValid) { 131 OS << R.StoreOrLoadInst; 132 OS << ", IsValid=false."; 133 return OS; 134 } 135 136 OS << *R.BasePointer; 137 for (const SCEV *Subscript : R.Subscripts) 138 OS << "[" << *Subscript << "]"; 139 140 OS << ", Sizes: "; 141 for (const SCEV *Size : R.Sizes) 142 OS << "[" << *Size << "]"; 143 144 return OS; 145 } 146 147 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 148 const LoopInfo &LI, ScalarEvolution &SE) 149 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 150 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 151 "Expecting a load or store instruction"); 152 153 IsValid = delinearize(LI); 154 if (IsValid) 155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 156 << "\n"); 157 } 158 159 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 160 unsigned CLS, 161 AAResults &AA) const { 162 assert(IsValid && "Expecting a valid reference"); 163 164 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 165 LLVM_DEBUG(dbgs().indent(2) 166 << "No spacial reuse: different base pointers\n"); 167 return false; 168 } 169 170 unsigned NumSubscripts = getNumSubscripts(); 171 if (NumSubscripts != Other.getNumSubscripts()) { 172 LLVM_DEBUG(dbgs().indent(2) 173 << "No spacial reuse: different number of subscripts\n"); 174 return false; 175 } 176 177 // all subscripts must be equal, except the leftmost one (the last one). 178 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 179 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 181 << "\n\t" << *getSubscript(SubNum) << "\n\t" 182 << *Other.getSubscript(SubNum) << "\n"); 183 return false; 184 } 185 } 186 187 // the difference between the last subscripts must be less than the cache line 188 // size. 189 const SCEV *LastSubscript = getLastSubscript(); 190 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 191 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 192 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 193 194 if (Diff == nullptr) { 195 LLVM_DEBUG(dbgs().indent(2) 196 << "No spacial reuse, difference between subscript:\n\t" 197 << *LastSubscript << "\n\t" << OtherLastSubscript 198 << "\nis not constant.\n"); 199 return None; 200 } 201 202 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 203 204 LLVM_DEBUG({ 205 if (InSameCacheLine) 206 dbgs().indent(2) << "Found spacial reuse.\n"; 207 else 208 dbgs().indent(2) << "No spacial reuse.\n"; 209 }); 210 211 return InSameCacheLine; 212 } 213 214 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 215 unsigned MaxDistance, 216 const Loop &L, 217 DependenceInfo &DI, 218 AAResults &AA) const { 219 assert(IsValid && "Expecting a valid reference"); 220 221 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 222 LLVM_DEBUG(dbgs().indent(2) 223 << "No temporal reuse: different base pointer\n"); 224 return false; 225 } 226 227 std::unique_ptr<Dependence> D = 228 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 229 230 if (D == nullptr) { 231 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 232 return false; 233 } 234 235 if (D->isLoopIndependent()) { 236 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 237 return true; 238 } 239 240 // Check the dependence distance at every loop level. There is temporal reuse 241 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 242 // it is zero at every other loop level. 243 int LoopDepth = L.getLoopDepth(); 244 int Levels = D->getLevels(); 245 for (int Level = 1; Level <= Levels; ++Level) { 246 const SCEV *Distance = D->getDistance(Level); 247 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 248 249 if (SCEVConst == nullptr) { 250 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 251 return None; 252 } 253 254 const ConstantInt &CI = *SCEVConst->getValue(); 255 if (Level != LoopDepth && !CI.isZero()) { 256 LLVM_DEBUG(dbgs().indent(2) 257 << "No temporal reuse: distance is not zero at depth=" << Level 258 << "\n"); 259 return false; 260 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 261 LLVM_DEBUG( 262 dbgs().indent(2) 263 << "No temporal reuse: distance is greater than MaxDistance at depth=" 264 << Level << "\n"); 265 return false; 266 } 267 } 268 269 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 270 return true; 271 } 272 273 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 274 unsigned CLS) const { 275 assert(IsValid && "Expecting a valid reference"); 276 LLVM_DEBUG({ 277 dbgs().indent(2) << "Computing cache cost for:\n"; 278 dbgs().indent(4) << *this << "\n"; 279 }); 280 281 // If the indexed reference is loop invariant the cost is one. 282 if (isLoopInvariant(L)) { 283 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 284 return 1; 285 } 286 287 const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE); 288 assert(TripCount && "Expecting valid TripCount"); 289 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 290 291 const SCEV *RefCost = nullptr; 292 if (isConsecutive(L, CLS)) { 293 // If the indexed reference is 'consecutive' the cost is 294 // (TripCount*Stride)/CLS. 295 const SCEV *Coeff = getLastCoefficient(); 296 const SCEV *ElemSize = Sizes.back(); 297 assert(Coeff->getType() == ElemSize->getType() && 298 "Expecting the same type"); 299 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 300 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 301 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS); 302 if (SE.isKnownNegative(Stride)) 303 Stride = SE.getNegativeSCEV(Stride); 304 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 305 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 306 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 307 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 308 309 LLVM_DEBUG(dbgs().indent(4) 310 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 311 << *RefCost << "\n"); 312 } else { 313 // If the indexed reference is not 'consecutive' the cost is proportional to 314 // the trip count and the depth of the dimension which the subject loop 315 // subscript is accessing. We try to estimate this by multiplying the cost 316 // by the trip counts of loops corresponding to the inner dimensions. For 317 // example, given the indexed reference 'A[i][j][k]', and assuming the 318 // i-loop is in the innermost position, the cost would be equal to the 319 // iterations of the i-loop multiplied by iterations of the j-loop. 320 RefCost = TripCount; 321 322 int Index = getSubscriptIndex(L); 323 assert(Index >= 0 && "Cound not locate a valid Index"); 324 325 for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { 326 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I)); 327 assert(AR && AR->getLoop() && "Expecting valid loop"); 328 const SCEV *TripCount = 329 computeTripCount(*AR->getLoop(), *Sizes.back(), SE); 330 Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType()); 331 RefCost = SE.getMulExpr(SE.getNoopOrAnyExtend(RefCost, WiderType), 332 SE.getNoopOrAnyExtend(TripCount, WiderType)); 333 } 334 335 LLVM_DEBUG(dbgs().indent(4) 336 << "Access is not consecutive: RefCost=" << *RefCost << "\n"); 337 } 338 assert(RefCost && "Expecting a valid RefCost"); 339 340 // Attempt to fold RefCost into a constant. 341 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 342 return ConstantCost->getValue()->getSExtValue(); 343 344 LLVM_DEBUG(dbgs().indent(4) 345 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 346 "(invalid value).\n"); 347 348 return CacheCost::InvalidCost; 349 } 350 351 bool IndexedReference::tryDelinearizeFixedSize( 352 ScalarEvolution *SE, Instruction *Src, const SCEV *SrcAccessFn, 353 SmallVectorImpl<const SCEV *> &SrcSubscripts) { 354 Value *SrcPtr = getLoadStorePointerOperand(Src); 355 const SCEVUnknown *SrcBase = 356 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); 357 358 // Check the simple case where the array dimensions are fixed size. 359 auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr); 360 if (!SrcGEP) 361 return false; 362 363 SmallVector<int, 4> SrcSizes; 364 getIndexExpressionsFromGEP(*SE, SrcGEP, SrcSubscripts, SrcSizes); 365 366 // Check that the two size arrays are non-empty and equal in length and 367 // value. 368 if (SrcSizes.empty() || SrcSubscripts.size() <= 1) { 369 SrcSubscripts.clear(); 370 return false; 371 } 372 373 Value *SrcBasePtr = SrcGEP->getOperand(0)->stripPointerCasts(); 374 375 // Check that for identical base pointers we do not miss index offsets 376 // that have been added before this GEP is applied. 377 if (SrcBasePtr != SrcBase->getValue()) { 378 SrcSubscripts.clear(); 379 return false; 380 } 381 382 assert(SrcSubscripts.size() == SrcSizes.size() + 1 && 383 "Expected equal number of entries in the list of size and " 384 "subscript."); 385 386 for (auto Idx : seq<unsigned>(1, Subscripts.size())) 387 Sizes.push_back(SE->getConstant(Subscripts[Idx]->getType(), SrcSizes[Idx - 1])); 388 389 LLVM_DEBUG({ 390 dbgs() << "Delinearized subscripts of fixed-size array\n" 391 << "SrcGEP:" << *SrcGEP << "\n"; 392 }); 393 return true; 394 } 395 396 bool IndexedReference::delinearize(const LoopInfo &LI) { 397 assert(Subscripts.empty() && "Subscripts should be empty"); 398 assert(Sizes.empty() && "Sizes should be empty"); 399 assert(!IsValid && "Should be called once from the constructor"); 400 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 401 402 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 403 const BasicBlock *BB = StoreOrLoadInst.getParent(); 404 405 if (Loop *L = LI.getLoopFor(BB)) { 406 const SCEV *AccessFn = 407 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 408 409 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 410 if (BasePointer == nullptr) { 411 LLVM_DEBUG( 412 dbgs().indent(2) 413 << "ERROR: failed to delinearize, can't identify base pointer\n"); 414 return false; 415 } 416 417 bool IsFixedSize = false; 418 // Try to delinearize fixed-size arrays. 419 if (tryDelinearizeFixedSize(&SE, &StoreOrLoadInst, AccessFn, Subscripts)) { 420 IsFixedSize = true; 421 /// The last element of \p Sizes is the element size. 422 Sizes.push_back(ElemSize); 423 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 424 << "', AccessFn: " << *AccessFn << "\n"); 425 } 426 427 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 428 429 // Try to delinearize parametric-size arrays. 430 if (!IsFixedSize) { 431 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 432 << "', AccessFn: " << *AccessFn << "\n"); 433 llvm::delinearize(SE, AccessFn, Subscripts, Sizes, 434 SE.getElementSize(&StoreOrLoadInst)); 435 } 436 437 if (Subscripts.empty() || Sizes.empty() || 438 Subscripts.size() != Sizes.size()) { 439 // Attempt to determine whether we have a single dimensional array access. 440 // before giving up. 441 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 442 LLVM_DEBUG(dbgs().indent(2) 443 << "ERROR: failed to delinearize reference\n"); 444 Subscripts.clear(); 445 Sizes.clear(); 446 return false; 447 } 448 449 // The array may be accessed in reverse, for example: 450 // for (i = N; i > 0; i--) 451 // A[i] = 0; 452 // In this case, reconstruct the access function using the absolute value 453 // of the step recurrence. 454 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 455 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 456 457 if (StepRec && SE.isKnownNegative(StepRec)) 458 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 459 SE.getNegativeSCEV(StepRec), 460 AccessFnAR->getLoop(), 461 AccessFnAR->getNoWrapFlags()); 462 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 463 Subscripts.push_back(Div); 464 Sizes.push_back(ElemSize); 465 } 466 467 return all_of(Subscripts, [&](const SCEV *Subscript) { 468 return isSimpleAddRecurrence(*Subscript, *L); 469 }); 470 } 471 472 return false; 473 } 474 475 bool IndexedReference::isLoopInvariant(const Loop &L) const { 476 Value *Addr = getPointerOperand(&StoreOrLoadInst); 477 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 478 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 479 480 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 481 return true; 482 483 // The indexed reference is loop invariant if none of the coefficients use 484 // the loop induction variable. 485 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 486 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 487 }); 488 489 return allCoeffForLoopAreZero; 490 } 491 492 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 493 // The indexed reference is 'consecutive' if the only coefficient that uses 494 // the loop induction variable is the last one... 495 const SCEV *LastSubscript = Subscripts.back(); 496 for (const SCEV *Subscript : Subscripts) { 497 if (Subscript == LastSubscript) 498 continue; 499 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 500 return false; 501 } 502 503 // ...and the access stride is less than the cache line size. 504 const SCEV *Coeff = getLastCoefficient(); 505 const SCEV *ElemSize = Sizes.back(); 506 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 507 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 508 509 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 510 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 511 } 512 513 int IndexedReference::getSubscriptIndex(const Loop &L) const { 514 for (auto Idx : seq<int>(0, getNumSubscripts())) { 515 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx)); 516 if (AR && AR->getLoop() == &L) { 517 return Idx; 518 } 519 } 520 return -1; 521 } 522 523 const SCEV *IndexedReference::getLastCoefficient() const { 524 const SCEV *LastSubscript = getLastSubscript(); 525 auto *AR = cast<SCEVAddRecExpr>(LastSubscript); 526 return AR->getStepRecurrence(SE); 527 } 528 529 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 530 const Loop &L) const { 531 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 532 return (AR != nullptr) ? AR->getLoop() != &L 533 : SE.isLoopInvariant(&Subscript, &L); 534 } 535 536 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 537 const Loop &L) const { 538 if (!isa<SCEVAddRecExpr>(Subscript)) 539 return false; 540 541 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 542 assert(AR->getLoop() && "AR should have a loop"); 543 544 if (!AR->isAffine()) 545 return false; 546 547 const SCEV *Start = AR->getStart(); 548 const SCEV *Step = AR->getStepRecurrence(SE); 549 550 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 551 return false; 552 553 return true; 554 } 555 556 bool IndexedReference::isAliased(const IndexedReference &Other, 557 AAResults &AA) const { 558 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 559 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 560 return AA.isMustAlias(Loc1, Loc2); 561 } 562 563 //===----------------------------------------------------------------------===// 564 // CacheCost implementation 565 // 566 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 567 for (const auto &LC : CC.LoopCosts) { 568 const Loop *L = LC.first; 569 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 570 } 571 return OS; 572 } 573 574 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 575 ScalarEvolution &SE, TargetTransformInfo &TTI, 576 AAResults &AA, DependenceInfo &DI, Optional<unsigned> TRT) 577 : Loops(Loops), 578 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 579 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 580 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 581 582 for (const Loop *L : Loops) { 583 unsigned TripCount = SE.getSmallConstantTripCount(L); 584 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 585 TripCounts.push_back({L, TripCount}); 586 } 587 588 calculateCacheFootprint(); 589 } 590 591 std::unique_ptr<CacheCost> 592 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 593 DependenceInfo &DI, Optional<unsigned> TRT) { 594 if (!Root.isOutermost()) { 595 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 596 return nullptr; 597 } 598 599 LoopVectorTy Loops; 600 append_range(Loops, breadth_first(&Root)); 601 602 if (!getInnerMostLoop(Loops)) { 603 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 604 "than one innermost loop\n"); 605 return nullptr; 606 } 607 608 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 609 } 610 611 void CacheCost::calculateCacheFootprint() { 612 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 613 ReferenceGroupsTy RefGroups; 614 if (!populateReferenceGroups(RefGroups)) 615 return; 616 617 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 618 for (const Loop *L : Loops) { 619 assert(llvm::none_of( 620 LoopCosts, 621 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && 622 "Should not add duplicate element"); 623 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 624 LoopCosts.push_back(std::make_pair(L, LoopCost)); 625 } 626 627 sortLoopCosts(); 628 RefGroups.clear(); 629 } 630 631 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 632 assert(RefGroups.empty() && "Reference groups should be empty"); 633 634 unsigned CLS = TTI.getCacheLineSize(); 635 Loop *InnerMostLoop = getInnerMostLoop(Loops); 636 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 637 638 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 639 for (Instruction &I : *BB) { 640 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 641 continue; 642 643 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 644 if (!R->isValid()) 645 continue; 646 647 bool Added = false; 648 for (ReferenceGroupTy &RefGroup : RefGroups) { 649 const IndexedReference &Representative = *RefGroup.front(); 650 LLVM_DEBUG({ 651 dbgs() << "References:\n"; 652 dbgs().indent(2) << *R << "\n"; 653 dbgs().indent(2) << Representative << "\n"; 654 }); 655 656 657 // FIXME: Both positive and negative access functions will be placed 658 // into the same reference group, resulting in a bi-directional array 659 // access such as: 660 // for (i = N; i > 0; i--) 661 // A[i] = A[N - i]; 662 // having the same cost calculation as a single dimention access pattern 663 // for (i = 0; i < N; i++) 664 // A[i] = A[i]; 665 // when in actuality, depending on the array size, the first example 666 // should have a cost closer to 2x the second due to the two cache 667 // access per iteration from opposite ends of the array 668 Optional<bool> HasTemporalReuse = 669 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 670 Optional<bool> HasSpacialReuse = 671 R->hasSpacialReuse(Representative, CLS, AA); 672 673 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 674 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 675 RefGroup.push_back(std::move(R)); 676 Added = true; 677 break; 678 } 679 } 680 681 if (!Added) { 682 ReferenceGroupTy RG; 683 RG.push_back(std::move(R)); 684 RefGroups.push_back(std::move(RG)); 685 } 686 } 687 } 688 689 if (RefGroups.empty()) 690 return false; 691 692 LLVM_DEBUG({ 693 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 694 int n = 1; 695 for (const ReferenceGroupTy &RG : RefGroups) { 696 dbgs().indent(2) << "RefGroup " << n << ":\n"; 697 for (const auto &IR : RG) 698 dbgs().indent(4) << *IR << "\n"; 699 n++; 700 } 701 dbgs() << "\n"; 702 }); 703 704 return true; 705 } 706 707 CacheCostTy 708 CacheCost::computeLoopCacheCost(const Loop &L, 709 const ReferenceGroupsTy &RefGroups) const { 710 if (!L.isLoopSimplifyForm()) 711 return InvalidCost; 712 713 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 714 << "' as innermost loop.\n"); 715 716 // Compute the product of the trip counts of each other loop in the nest. 717 CacheCostTy TripCountsProduct = 1; 718 for (const auto &TC : TripCounts) { 719 if (TC.first == &L) 720 continue; 721 TripCountsProduct *= TC.second; 722 } 723 724 CacheCostTy LoopCost = 0; 725 for (const ReferenceGroupTy &RG : RefGroups) { 726 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 727 LoopCost += RefGroupCost * TripCountsProduct; 728 } 729 730 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 731 << "' has cost=" << LoopCost << "\n"); 732 733 return LoopCost; 734 } 735 736 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 737 const Loop &L) const { 738 assert(!RG.empty() && "Reference group should have at least one member."); 739 740 const IndexedReference *Representative = RG.front().get(); 741 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 742 } 743 744 //===----------------------------------------------------------------------===// 745 // LoopCachePrinterPass implementation 746 // 747 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 748 LoopStandardAnalysisResults &AR, 749 LPMUpdater &U) { 750 Function *F = L.getHeader()->getParent(); 751 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 752 753 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 754 OS << *CC; 755 756 return PreservedAnalyses::all(); 757 } 758