1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 //===----------------------------------------------------------------------===// 67 // Useful predicates 68 //===----------------------------------------------------------------------===// 69 70 /// Returns true if the pointer is to a function-local object that never 71 /// escapes from the function. 72 static bool isNonEscapingLocalObject(const Value *V) { 73 // If this is a local allocation, check to see if it escapes. 74 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 75 // Set StoreCaptures to True so that we can assume in our callers that the 76 // pointer is not the result of a load instruction. Currently 77 // PointerMayBeCaptured doesn't have any special analysis for the 78 // StoreCaptures=false case; if it did, our callers could be refined to be 79 // more precise. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 // If this is an argument that corresponds to a byval or noalias argument, 83 // then it has not escaped before entering the function. Check if it escapes 84 // inside the function. 85 if (const Argument *A = dyn_cast<Argument>(V)) 86 if (A->hasByValAttr() || A->hasNoAliasAttr()) 87 // Note even if the argument is marked nocapture, we still need to check 88 // for copies made inside the function. The nocapture attribute only 89 // specifies that there are no copies made that outlive the function. 90 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 91 92 return false; 93 } 94 95 /// Returns true if the pointer is one which would have been considered an 96 /// escape by isNonEscapingLocalObject. 97 static bool isEscapeSource(const Value *V) { 98 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 99 return true; 100 101 // The load case works because isNonEscapingLocalObject considers all 102 // stores to be escapes (it passes true for the StoreCaptures argument 103 // to PointerMayBeCaptured). 104 if (isa<LoadInst>(V)) 105 return true; 106 107 return false; 108 } 109 110 /// Returns the size of the object specified by V or UnknownSize if unknown. 111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 112 const TargetLibraryInfo &TLI, 113 bool RoundToAlign = false) { 114 uint64_t Size; 115 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 116 return Size; 117 return MemoryLocation::UnknownSize; 118 } 119 120 /// Returns true if we can prove that the object specified by V is smaller than 121 /// Size. 122 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 157 158 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 159 } 160 161 /// Returns true if we can prove that the object specified by V has size Size. 162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 165 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // GetElementPtr Instruction Decomposition and Analysis 170 //===----------------------------------------------------------------------===// 171 172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 173 /// B are constant integers. 174 /// 175 /// Returns the scale and offset values as APInts and return V as a Value*, and 176 /// return whether we looked through any sign or zero extends. The incoming 177 /// Value is known to have IntegerType, and it may already be sign or zero 178 /// extended. 179 /// 180 /// Note that this looks through extends, so the high bits may not be 181 /// represented in the result. 182 /*static*/ const Value *BasicAAResult::GetLinearExpression( 183 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 184 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 185 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 186 assert(V->getType()->isIntegerTy() && "Not an integer value"); 187 188 // Limit our recursion depth. 189 if (Depth == 6) { 190 Scale = 1; 191 Offset = 0; 192 return V; 193 } 194 195 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 196 // If it's a constant, just convert it to an offset and remove the variable. 197 // If we've been called recursively, the Offset bit width will be greater 198 // than the constant's (the Offset's always as wide as the outermost call), 199 // so we'll zext here and process any extension in the isa<SExtInst> & 200 // isa<ZExtInst> cases below. 201 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 202 assert(Scale == 0 && "Constant values don't have a scale"); 203 return V; 204 } 205 206 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 207 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 208 209 // If we've been called recursively, then Offset and Scale will be wider 210 // than the BOp operands. We'll always zext it here as we'll process sign 211 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 212 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 213 214 switch (BOp->getOpcode()) { 215 default: 216 // We don't understand this instruction, so we can't decompose it any 217 // further. 218 Scale = 1; 219 Offset = 0; 220 return V; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) { 226 Scale = 1; 227 Offset = 0; 228 return V; 229 } 230 // FALL THROUGH. 231 case Instruction::Add: 232 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 233 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 234 Offset += RHS; 235 break; 236 case Instruction::Sub: 237 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 238 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 239 Offset -= RHS; 240 break; 241 case Instruction::Mul: 242 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 243 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 244 Offset *= RHS; 245 Scale *= RHS; 246 break; 247 case Instruction::Shl: 248 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 249 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 250 Offset <<= RHS.getLimitedValue(); 251 Scale <<= RHS.getLimitedValue(); 252 // the semantics of nsw and nuw for left shifts don't match those of 253 // multiplications, so we won't propagate them. 254 NSW = NUW = false; 255 return V; 256 } 257 258 if (isa<OverflowingBinaryOperator>(BOp)) { 259 NUW &= BOp->hasNoUnsignedWrap(); 260 NSW &= BOp->hasNoSignedWrap(); 261 } 262 return V; 263 } 264 } 265 266 // Since GEP indices are sign extended anyway, we don't care about the high 267 // bits of a sign or zero extended value - just scales and offsets. The 268 // extensions have to be consistent though. 269 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 270 Value *CastOp = cast<CastInst>(V)->getOperand(0); 271 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 272 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 273 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 274 const Value *Result = 275 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 276 Depth + 1, AC, DT, NSW, NUW); 277 278 // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this 279 // by just incrementing the number of bits we've extended by. 280 unsigned ExtendedBy = NewWidth - SmallWidth; 281 282 if (isa<SExtInst>(V) && ZExtBits == 0) { 283 // sext(sext(%x, a), b) == sext(%x, a + b) 284 285 if (NSW) { 286 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 287 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 288 unsigned OldWidth = Offset.getBitWidth(); 289 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 290 } else { 291 // We may have signed-wrapped, so don't decompose sext(%x + c) into 292 // sext(%x) + sext(c) 293 Scale = 1; 294 Offset = 0; 295 Result = CastOp; 296 ZExtBits = OldZExtBits; 297 SExtBits = OldSExtBits; 298 } 299 SExtBits += ExtendedBy; 300 } else { 301 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 302 303 if (!NUW) { 304 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 305 // zext(%x) + zext(c) 306 Scale = 1; 307 Offset = 0; 308 Result = CastOp; 309 ZExtBits = OldZExtBits; 310 SExtBits = OldSExtBits; 311 } 312 ZExtBits += ExtendedBy; 313 } 314 315 return Result; 316 } 317 318 Scale = 1; 319 Offset = 0; 320 return V; 321 } 322 323 /// To ensure a pointer offset fits in an integer of size PointerSize 324 /// (in bits) when that size is smaller than 64. This is an issue in 325 /// particular for 32b programs with negative indices that rely on two's 326 /// complement wrap-arounds for correct alias information. 327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 328 assert(PointerSize <= 64 && "Invalid PointerSize!"); 329 unsigned ShiftBits = 64 - PointerSize; 330 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 331 } 332 333 /// If V is a symbolic pointer expression, decompose it into a base pointer 334 /// with a constant offset and a number of scaled symbolic offsets. 335 /// 336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 338 /// specified amount, but which may have other unrepresented high bits. As 339 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 340 /// 341 /// When DataLayout is around, this function is capable of analyzing everything 342 /// that GetUnderlyingObject can look through. To be able to do that 343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 345 /// through pointer casts. 346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression( 347 const Value *V, int64_t &BaseOffs, 348 SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached, 349 const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { 350 // Limit recursion depth to limit compile time in crazy cases. 351 unsigned MaxLookup = MaxLookupSearchDepth; 352 MaxLookupReached = false; 353 SearchTimes++; 354 355 BaseOffs = 0; 356 do { 357 // See if this is a bitcast or GEP. 358 const Operator *Op = dyn_cast<Operator>(V); 359 if (!Op) { 360 // The only non-operator case we can handle are GlobalAliases. 361 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 362 if (!GA->mayBeOverridden()) { 363 V = GA->getAliasee(); 364 continue; 365 } 366 } 367 return V; 368 } 369 370 if (Op->getOpcode() == Instruction::BitCast || 371 Op->getOpcode() == Instruction::AddrSpaceCast) { 372 V = Op->getOperand(0); 373 continue; 374 } 375 376 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 377 if (!GEPOp) { 378 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 379 // can come up with something. This matches what GetUnderlyingObject does. 380 if (const Instruction *I = dyn_cast<Instruction>(V)) 381 // TODO: Get a DominatorTree and AssumptionCache and use them here 382 // (these are both now available in this function, but this should be 383 // updated when GetUnderlyingObject is updated). TLI should be 384 // provided also. 385 if (const Value *Simplified = 386 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 387 V = Simplified; 388 continue; 389 } 390 391 return V; 392 } 393 394 // Don't attempt to analyze GEPs over unsized objects. 395 if (!GEPOp->getSourceElementType()->isSized()) 396 return V; 397 398 unsigned AS = GEPOp->getPointerAddressSpace(); 399 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 400 gep_type_iterator GTI = gep_type_begin(GEPOp); 401 unsigned PointerSize = DL.getPointerSizeInBits(AS); 402 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 403 I != E; ++I) { 404 const Value *Index = *I; 405 // Compute the (potentially symbolic) offset in bytes for this index. 406 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 407 // For a struct, add the member offset. 408 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 409 if (FieldNo == 0) 410 continue; 411 412 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 413 continue; 414 } 415 416 // For an array/pointer, add the element offset, explicitly scaled. 417 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 418 if (CIdx->isZero()) 419 continue; 420 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 421 continue; 422 } 423 424 uint64_t Scale = DL.getTypeAllocSize(*GTI); 425 unsigned ZExtBits = 0, SExtBits = 0; 426 427 // If the integer type is smaller than the pointer size, it is implicitly 428 // sign extended to pointer size. 429 unsigned Width = Index->getType()->getIntegerBitWidth(); 430 if (PointerSize > Width) 431 SExtBits += PointerSize - Width; 432 433 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 434 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 435 bool NSW = true, NUW = true; 436 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 437 SExtBits, DL, 0, AC, DT, NSW, NUW); 438 439 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 440 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 441 BaseOffs += IndexOffset.getSExtValue() * Scale; 442 Scale *= IndexScale.getSExtValue(); 443 444 // If we already had an occurrence of this index variable, merge this 445 // scale into it. For example, we want to handle: 446 // A[x][x] -> x*16 + x*4 -> x*20 447 // This also ensures that 'x' only appears in the index list once. 448 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 449 if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && 450 VarIndices[i].SExtBits == SExtBits) { 451 Scale += VarIndices[i].Scale; 452 VarIndices.erase(VarIndices.begin() + i); 453 break; 454 } 455 } 456 457 // Make sure that we have a scale that makes sense for this target's 458 // pointer size. 459 Scale = adjustToPointerSize(Scale, PointerSize); 460 461 if (Scale) { 462 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 463 static_cast<int64_t>(Scale)}; 464 VarIndices.push_back(Entry); 465 } 466 } 467 468 // Take care of wrap-arounds 469 BaseOffs = adjustToPointerSize(BaseOffs, PointerSize); 470 471 // Analyze the base pointer next. 472 V = GEPOp->getOperand(0); 473 } while (--MaxLookup); 474 475 // If the chain of expressions is too deep, just return early. 476 MaxLookupReached = true; 477 SearchLimitReached++; 478 return V; 479 } 480 481 /// Returns whether the given pointer value points to memory that is local to 482 /// the function, with global constants being considered local to all 483 /// functions. 484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 485 bool OrLocal) { 486 assert(Visited.empty() && "Visited must be cleared after use!"); 487 488 unsigned MaxLookup = 8; 489 SmallVector<const Value *, 16> Worklist; 490 Worklist.push_back(Loc.Ptr); 491 do { 492 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 493 if (!Visited.insert(V).second) { 494 Visited.clear(); 495 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 496 } 497 498 // An alloca instruction defines local memory. 499 if (OrLocal && isa<AllocaInst>(V)) 500 continue; 501 502 // A global constant counts as local memory for our purposes. 503 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 504 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 505 // global to be marked constant in some modules and non-constant in 506 // others. GV may even be a declaration, not a definition. 507 if (!GV->isConstant()) { 508 Visited.clear(); 509 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 510 } 511 continue; 512 } 513 514 // If both select values point to local memory, then so does the select. 515 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 516 Worklist.push_back(SI->getTrueValue()); 517 Worklist.push_back(SI->getFalseValue()); 518 continue; 519 } 520 521 // If all values incoming to a phi node point to local memory, then so does 522 // the phi. 523 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 524 // Don't bother inspecting phi nodes with many operands. 525 if (PN->getNumIncomingValues() > MaxLookup) { 526 Visited.clear(); 527 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 528 } 529 for (Value *IncValue : PN->incoming_values()) 530 Worklist.push_back(IncValue); 531 continue; 532 } 533 534 // Otherwise be conservative. 535 Visited.clear(); 536 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 537 538 } while (!Worklist.empty() && --MaxLookup); 539 540 Visited.clear(); 541 return Worklist.empty(); 542 } 543 544 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to 545 // some common utility location. 546 static bool isMemsetPattern16(const Function *MS, 547 const TargetLibraryInfo &TLI) { 548 if (TLI.has(LibFunc::memset_pattern16) && 549 MS->getName() == "memset_pattern16") { 550 FunctionType *MemsetType = MS->getFunctionType(); 551 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 552 isa<PointerType>(MemsetType->getParamType(0)) && 553 isa<PointerType>(MemsetType->getParamType(1)) && 554 isa<IntegerType>(MemsetType->getParamType(2))) 555 return true; 556 } 557 return false; 558 } 559 560 /// Returns the behavior when calling the given call site. 561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 562 if (CS.doesNotAccessMemory()) 563 // Can't do better than this. 564 return FMRB_DoesNotAccessMemory; 565 566 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 567 568 // If the callsite knows it only reads memory, don't return worse 569 // than that. 570 if (CS.onlyReadsMemory()) 571 Min = FMRB_OnlyReadsMemory; 572 573 if (CS.onlyAccessesArgMemory()) 574 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 575 576 // The AAResultBase base class has some smarts, lets use them. 577 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 578 } 579 580 /// Returns the behavior when calling the given function. For use when the call 581 /// site is not known. 582 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 583 // If the function declares it doesn't access memory, we can't do better. 584 if (F->doesNotAccessMemory()) 585 return FMRB_DoesNotAccessMemory; 586 587 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 588 589 // If the function declares it only reads memory, go with that. 590 if (F->onlyReadsMemory()) 591 Min = FMRB_OnlyReadsMemory; 592 593 if (F->onlyAccessesArgMemory()) 594 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 595 596 // Otherwise be conservative. 597 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 598 } 599 600 /// Returns true if this is a writeonly (i.e Mod only) parameter. Currently, 601 /// we don't have a writeonly attribute, so this only knows about builtin 602 /// intrinsics and target library functions. We could consider adding a 603 /// writeonly attribute in the future and moving all of these facts to either 604 /// Intrinsics.td or InferFunctionAttr.cpp 605 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 606 const TargetLibraryInfo &TLI) { 607 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 608 switch (II->getIntrinsicID()) { 609 default: 610 break; 611 case Intrinsic::memset: 612 case Intrinsic::memcpy: 613 case Intrinsic::memmove: 614 // We don't currently have a writeonly attribute. All other properties 615 // of these intrinsics are nicely described via attributes in 616 // Intrinsics.td and handled generically. 617 if (ArgIdx == 0) 618 return true; 619 } 620 621 // We can bound the aliasing properties of memset_pattern16 just as we can 622 // for memcpy/memset. This is particularly important because the 623 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 624 // whenever possible. Note that all but the missing writeonly attribute are 625 // handled via InferFunctionAttr. 626 if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI)) 627 if (ArgIdx == 0) 628 return true; 629 630 // TODO: memset_pattern4, memset_pattern8 631 // TODO: _chk variants 632 // TODO: strcmp, strcpy 633 634 return false; 635 } 636 637 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 638 unsigned ArgIdx) { 639 640 // Emulate the missing writeonly attribute by checking for known builtin 641 // intrinsics and target library functions. 642 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 643 return MRI_Mod; 644 645 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 646 return MRI_Ref; 647 648 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 649 return MRI_NoModRef; 650 651 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 652 } 653 654 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 655 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 656 return II && II->getIntrinsicID() == Intrinsic::assume; 657 } 658 659 #ifndef NDEBUG 660 static const Function *getParent(const Value *V) { 661 if (const Instruction *inst = dyn_cast<Instruction>(V)) 662 return inst->getParent()->getParent(); 663 664 if (const Argument *arg = dyn_cast<Argument>(V)) 665 return arg->getParent(); 666 667 return nullptr; 668 } 669 670 static bool notDifferentParent(const Value *O1, const Value *O2) { 671 672 const Function *F1 = getParent(O1); 673 const Function *F2 = getParent(O2); 674 675 return !F1 || !F2 || F1 == F2; 676 } 677 #endif 678 679 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 680 const MemoryLocation &LocB) { 681 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 682 "BasicAliasAnalysis doesn't support interprocedural queries."); 683 684 // If we have a directly cached entry for these locations, we have recursed 685 // through this once, so just return the cached results. Notably, when this 686 // happens, we don't clear the cache. 687 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 688 if (CacheIt != AliasCache.end()) 689 return CacheIt->second; 690 691 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 692 LocB.Size, LocB.AATags); 693 // AliasCache rarely has more than 1 or 2 elements, always use 694 // shrink_and_clear so it quickly returns to the inline capacity of the 695 // SmallDenseMap if it ever grows larger. 696 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 697 AliasCache.shrink_and_clear(); 698 VisitedPhiBBs.clear(); 699 return Alias; 700 } 701 702 /// Checks to see if the specified callsite can clobber the specified memory 703 /// object. 704 /// 705 /// Since we only look at local properties of this function, we really can't 706 /// say much about this query. We do, however, use simple "address taken" 707 /// analysis on local objects. 708 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 709 const MemoryLocation &Loc) { 710 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 711 "AliasAnalysis query involving multiple functions!"); 712 713 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 714 715 // If this is a tail call and Loc.Ptr points to a stack location, we know that 716 // the tail call cannot access or modify the local stack. 717 // We cannot exclude byval arguments here; these belong to the caller of 718 // the current function not to the current function, and a tail callee 719 // may reference them. 720 if (isa<AllocaInst>(Object)) 721 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 722 if (CI->isTailCall()) 723 return MRI_NoModRef; 724 725 // If the pointer is to a locally allocated object that does not escape, 726 // then the call can not mod/ref the pointer unless the call takes the pointer 727 // as an argument, and itself doesn't capture it. 728 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 729 isNonEscapingLocalObject(Object)) { 730 bool PassedAsArg = false; 731 unsigned OperandNo = 0; 732 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 733 CI != CE; ++CI, ++OperandNo) { 734 // Only look at the no-capture or byval pointer arguments. If this 735 // pointer were passed to arguments that were neither of these, then it 736 // couldn't be no-capture. 737 if (!(*CI)->getType()->isPointerTy() || 738 (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo))) 739 continue; 740 741 // If this is a no-capture pointer argument, see if we can tell that it 742 // is impossible to alias the pointer we're checking. If not, we have to 743 // assume that the call could touch the pointer, even though it doesn't 744 // escape. 745 AliasResult AR = 746 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 747 if (AR) { 748 PassedAsArg = true; 749 break; 750 } 751 } 752 753 if (!PassedAsArg) 754 return MRI_NoModRef; 755 } 756 757 // While the assume intrinsic is marked as arbitrarily writing so that 758 // proper control dependencies will be maintained, it never aliases any 759 // particular memory location. 760 if (isAssumeIntrinsic(CS)) 761 return MRI_NoModRef; 762 763 // The AAResultBase base class has some smarts, lets use them. 764 return AAResultBase::getModRefInfo(CS, Loc); 765 } 766 767 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 768 ImmutableCallSite CS2) { 769 // While the assume intrinsic is marked as arbitrarily writing so that 770 // proper control dependencies will be maintained, it never aliases any 771 // particular memory location. 772 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 773 return MRI_NoModRef; 774 775 // The AAResultBase base class has some smarts, lets use them. 776 return AAResultBase::getModRefInfo(CS1, CS2); 777 } 778 779 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 780 /// both having the exact same pointer operand. 781 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 782 uint64_t V1Size, 783 const GEPOperator *GEP2, 784 uint64_t V2Size, 785 const DataLayout &DL) { 786 787 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 788 "Expected GEPs with the same pointer operand"); 789 790 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 791 // such that the struct field accesses provably cannot alias. 792 // We also need at least two indices (the pointer, and the struct field). 793 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 794 GEP1->getNumIndices() < 2) 795 return MayAlias; 796 797 // If we don't know the size of the accesses through both GEPs, we can't 798 // determine whether the struct fields accessed can't alias. 799 if (V1Size == MemoryLocation::UnknownSize || 800 V2Size == MemoryLocation::UnknownSize) 801 return MayAlias; 802 803 ConstantInt *C1 = 804 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 805 ConstantInt *C2 = 806 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 807 808 // If the last (struct) indices are constants and are equal, the other indices 809 // might be also be dynamically equal, so the GEPs can alias. 810 if (C1 && C2 && C1 == C2) 811 return MayAlias; 812 813 // Find the last-indexed type of the GEP, i.e., the type you'd get if 814 // you stripped the last index. 815 // On the way, look at each indexed type. If there's something other 816 // than an array, different indices can lead to different final types. 817 SmallVector<Value *, 8> IntermediateIndices; 818 819 // Insert the first index; we don't need to check the type indexed 820 // through it as it only drops the pointer indirection. 821 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 822 IntermediateIndices.push_back(GEP1->getOperand(1)); 823 824 // Insert all the remaining indices but the last one. 825 // Also, check that they all index through arrays. 826 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 827 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 828 GEP1->getSourceElementType(), IntermediateIndices))) 829 return MayAlias; 830 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 831 } 832 833 auto *Ty = GetElementPtrInst::getIndexedType( 834 GEP1->getSourceElementType(), IntermediateIndices); 835 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 836 837 if (isa<SequentialType>(Ty)) { 838 // We know that: 839 // - both GEPs begin indexing from the exact same pointer; 840 // - the last indices in both GEPs are constants, indexing into a sequential 841 // type (array or pointer); 842 // - both GEPs only index through arrays prior to that. 843 // 844 // Because array indices greater than the number of elements are valid in 845 // GEPs, unless we know the intermediate indices are identical between 846 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 847 // partially overlap. We also need to check that the loaded size matches 848 // the element size, otherwise we could still have overlap. 849 const uint64_t ElementSize = 850 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 851 if (V1Size != ElementSize || V2Size != ElementSize) 852 return MayAlias; 853 854 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 855 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 856 return MayAlias; 857 858 // Now we know that the array/pointer that GEP1 indexes into and that 859 // that GEP2 indexes into must either precisely overlap or be disjoint. 860 // Because they cannot partially overlap and because fields in an array 861 // cannot overlap, if we can prove the final indices are different between 862 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 863 864 // If the last indices are constants, we've already checked they don't 865 // equal each other so we can exit early. 866 if (C1 && C2) 867 return NoAlias; 868 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 869 GEP2->getOperand(GEP2->getNumOperands() - 1), 870 DL)) 871 return NoAlias; 872 return MayAlias; 873 } else if (!LastIndexedStruct || !C1 || !C2) { 874 return MayAlias; 875 } 876 877 // We know that: 878 // - both GEPs begin indexing from the exact same pointer; 879 // - the last indices in both GEPs are constants, indexing into a struct; 880 // - said indices are different, hence, the pointed-to fields are different; 881 // - both GEPs only index through arrays prior to that. 882 // 883 // This lets us determine that the struct that GEP1 indexes into and the 884 // struct that GEP2 indexes into must either precisely overlap or be 885 // completely disjoint. Because they cannot partially overlap, indexing into 886 // different non-overlapping fields of the struct will never alias. 887 888 // Therefore, the only remaining thing needed to show that both GEPs can't 889 // alias is that the fields are not overlapping. 890 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 891 const uint64_t StructSize = SL->getSizeInBytes(); 892 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 893 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 894 895 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 896 uint64_t V2Off, uint64_t V2Size) { 897 return V1Off < V2Off && V1Off + V1Size <= V2Off && 898 ((V2Off + V2Size <= StructSize) || 899 (V2Off + V2Size - StructSize <= V1Off)); 900 }; 901 902 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 903 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 904 return NoAlias; 905 906 return MayAlias; 907 } 908 909 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 910 /// another pointer. 911 /// 912 /// We know that V1 is a GEP, but we don't know anything about V2. 913 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 914 /// V2. 915 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 916 const AAMDNodes &V1AAInfo, const Value *V2, 917 uint64_t V2Size, const AAMDNodes &V2AAInfo, 918 const Value *UnderlyingV1, 919 const Value *UnderlyingV2) { 920 int64_t GEP1BaseOffset; 921 bool GEP1MaxLookupReached; 922 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 923 924 // If we have two gep instructions with must-alias or not-alias'ing base 925 // pointers, figure out if the indexes to the GEP tell us anything about the 926 // derived pointer. 927 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 928 // Do the base pointers alias? 929 AliasResult BaseAlias = 930 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 931 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 932 933 // Check for geps of non-aliasing underlying pointers where the offsets are 934 // identical. 935 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 936 // Do the base pointers alias assuming type and size. 937 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 938 UnderlyingV2, V2Size, V2AAInfo); 939 if (PreciseBaseAlias == NoAlias) { 940 // See if the computed offset from the common pointer tells us about the 941 // relation of the resulting pointer. 942 int64_t GEP2BaseOffset; 943 bool GEP2MaxLookupReached; 944 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 945 const Value *GEP2BasePtr = 946 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 947 GEP2MaxLookupReached, DL, &AC, DT); 948 const Value *GEP1BasePtr = 949 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 950 GEP1MaxLookupReached, DL, &AC, DT); 951 // DecomposeGEPExpression and GetUnderlyingObject should return the 952 // same result except when DecomposeGEPExpression has no DataLayout. 953 // FIXME: They always have a DataLayout, so this should become an 954 // assert. 955 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 956 return MayAlias; 957 } 958 // If the max search depth is reached the result is undefined 959 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 960 return MayAlias; 961 962 // Same offsets. 963 if (GEP1BaseOffset == GEP2BaseOffset && 964 GEP1VariableIndices == GEP2VariableIndices) 965 return NoAlias; 966 GEP1VariableIndices.clear(); 967 } 968 } 969 970 // If we get a No or May, then return it immediately, no amount of analysis 971 // will improve this situation. 972 if (BaseAlias != MustAlias) 973 return BaseAlias; 974 975 // Otherwise, we have a MustAlias. Since the base pointers alias each other 976 // exactly, see if the computed offset from the common pointer tells us 977 // about the relation of the resulting pointer. 978 const Value *GEP1BasePtr = 979 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 980 GEP1MaxLookupReached, DL, &AC, DT); 981 982 int64_t GEP2BaseOffset; 983 bool GEP2MaxLookupReached; 984 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 985 const Value *GEP2BasePtr = 986 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 987 GEP2MaxLookupReached, DL, &AC, DT); 988 989 // DecomposeGEPExpression and GetUnderlyingObject should return the 990 // same result except when DecomposeGEPExpression has no DataLayout. 991 // FIXME: They always have a DataLayout, so this should become an assert. 992 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 993 return MayAlias; 994 } 995 996 // If we know the two GEPs are based off of the exact same pointer (and not 997 // just the same underlying object), see if that tells us anything about 998 // the resulting pointers. 999 if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1000 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1001 // If we couldn't find anything interesting, don't abandon just yet. 1002 if (R != MayAlias) 1003 return R; 1004 } 1005 1006 // If the max search depth is reached, the result is undefined 1007 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1008 return MayAlias; 1009 1010 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1011 // symbolic difference. 1012 GEP1BaseOffset -= GEP2BaseOffset; 1013 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1014 1015 } else { 1016 // Check to see if these two pointers are related by the getelementptr 1017 // instruction. If one pointer is a GEP with a non-zero index of the other 1018 // pointer, we know they cannot alias. 1019 1020 // If both accesses are unknown size, we can't do anything useful here. 1021 if (V1Size == MemoryLocation::UnknownSize && 1022 V2Size == MemoryLocation::UnknownSize) 1023 return MayAlias; 1024 1025 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1026 AAMDNodes(), V2, V2Size, V2AAInfo); 1027 if (R != MustAlias) 1028 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1029 // If V2 is known not to alias GEP base pointer, then the two values 1030 // cannot alias per GEP semantics: "A pointer value formed from a 1031 // getelementptr instruction is associated with the addresses associated 1032 // with the first operand of the getelementptr". 1033 return R; 1034 1035 const Value *GEP1BasePtr = 1036 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1037 GEP1MaxLookupReached, DL, &AC, DT); 1038 1039 // DecomposeGEPExpression and GetUnderlyingObject should return the 1040 // same result except when DecomposeGEPExpression has no DataLayout. 1041 // FIXME: They always have a DataLayout, so this should become an assert. 1042 if (GEP1BasePtr != UnderlyingV1) { 1043 return MayAlias; 1044 } 1045 // If the max search depth is reached the result is undefined 1046 if (GEP1MaxLookupReached) 1047 return MayAlias; 1048 } 1049 1050 // In the two GEP Case, if there is no difference in the offsets of the 1051 // computed pointers, the resultant pointers are a must alias. This 1052 // happens when we have two lexically identical GEP's (for example). 1053 // 1054 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1055 // must aliases the GEP, the end result is a must alias also. 1056 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1057 return MustAlias; 1058 1059 // If there is a constant difference between the pointers, but the difference 1060 // is less than the size of the associated memory object, then we know 1061 // that the objects are partially overlapping. If the difference is 1062 // greater, we know they do not overlap. 1063 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1064 if (GEP1BaseOffset >= 0) { 1065 if (V2Size != MemoryLocation::UnknownSize) { 1066 if ((uint64_t)GEP1BaseOffset < V2Size) 1067 return PartialAlias; 1068 return NoAlias; 1069 } 1070 } else { 1071 // We have the situation where: 1072 // + + 1073 // | BaseOffset | 1074 // ---------------->| 1075 // |-->V1Size |-------> V2Size 1076 // GEP1 V2 1077 // We need to know that V2Size is not unknown, otherwise we might have 1078 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1079 if (V1Size != MemoryLocation::UnknownSize && 1080 V2Size != MemoryLocation::UnknownSize) { 1081 if (-(uint64_t)GEP1BaseOffset < V1Size) 1082 return PartialAlias; 1083 return NoAlias; 1084 } 1085 } 1086 } 1087 1088 if (!GEP1VariableIndices.empty()) { 1089 uint64_t Modulo = 0; 1090 bool AllPositive = true; 1091 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1092 1093 // Try to distinguish something like &A[i][1] against &A[42][0]. 1094 // Grab the least significant bit set in any of the scales. We 1095 // don't need std::abs here (even if the scale's negative) as we'll 1096 // be ^'ing Modulo with itself later. 1097 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1098 1099 if (AllPositive) { 1100 // If the Value could change between cycles, then any reasoning about 1101 // the Value this cycle may not hold in the next cycle. We'll just 1102 // give up if we can't determine conditions that hold for every cycle: 1103 const Value *V = GEP1VariableIndices[i].V; 1104 1105 bool SignKnownZero, SignKnownOne; 1106 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1107 0, &AC, nullptr, DT); 1108 1109 // Zero-extension widens the variable, and so forces the sign 1110 // bit to zero. 1111 bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1112 SignKnownZero |= IsZExt; 1113 SignKnownOne &= !IsZExt; 1114 1115 // If the variable begins with a zero then we know it's 1116 // positive, regardless of whether the value is signed or 1117 // unsigned. 1118 int64_t Scale = GEP1VariableIndices[i].Scale; 1119 AllPositive = 1120 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1121 } 1122 } 1123 1124 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1125 1126 // We can compute the difference between the two addresses 1127 // mod Modulo. Check whether that difference guarantees that the 1128 // two locations do not alias. 1129 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1130 if (V1Size != MemoryLocation::UnknownSize && 1131 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1132 V1Size <= Modulo - ModOffset) 1133 return NoAlias; 1134 1135 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1136 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1137 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1138 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1139 return NoAlias; 1140 1141 if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, 1142 GEP1BaseOffset, &AC, DT)) 1143 return NoAlias; 1144 } 1145 1146 // Statically, we can see that the base objects are the same, but the 1147 // pointers have dynamic offsets which we can't resolve. And none of our 1148 // little tricks above worked. 1149 // 1150 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1151 // practical effect of this is protecting TBAA in the case of dynamic 1152 // indices into arrays of unions or malloc'd memory. 1153 return PartialAlias; 1154 } 1155 1156 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1157 // If the results agree, take it. 1158 if (A == B) 1159 return A; 1160 // A mix of PartialAlias and MustAlias is PartialAlias. 1161 if ((A == PartialAlias && B == MustAlias) || 1162 (B == PartialAlias && A == MustAlias)) 1163 return PartialAlias; 1164 // Otherwise, we don't know anything. 1165 return MayAlias; 1166 } 1167 1168 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1169 /// against another. 1170 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1171 const AAMDNodes &SIAAInfo, 1172 const Value *V2, uint64_t V2Size, 1173 const AAMDNodes &V2AAInfo) { 1174 // If the values are Selects with the same condition, we can do a more precise 1175 // check: just check for aliases between the values on corresponding arms. 1176 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1177 if (SI->getCondition() == SI2->getCondition()) { 1178 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1179 SI2->getTrueValue(), V2Size, V2AAInfo); 1180 if (Alias == MayAlias) 1181 return MayAlias; 1182 AliasResult ThisAlias = 1183 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1184 SI2->getFalseValue(), V2Size, V2AAInfo); 1185 return MergeAliasResults(ThisAlias, Alias); 1186 } 1187 1188 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1189 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1190 AliasResult Alias = 1191 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1192 if (Alias == MayAlias) 1193 return MayAlias; 1194 1195 AliasResult ThisAlias = 1196 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1197 return MergeAliasResults(ThisAlias, Alias); 1198 } 1199 1200 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1201 /// another. 1202 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1203 const AAMDNodes &PNAAInfo, const Value *V2, 1204 uint64_t V2Size, 1205 const AAMDNodes &V2AAInfo) { 1206 // Track phi nodes we have visited. We use this information when we determine 1207 // value equivalence. 1208 VisitedPhiBBs.insert(PN->getParent()); 1209 1210 // If the values are PHIs in the same block, we can do a more precise 1211 // as well as efficient check: just check for aliases between the values 1212 // on corresponding edges. 1213 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1214 if (PN2->getParent() == PN->getParent()) { 1215 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1216 MemoryLocation(V2, V2Size, V2AAInfo)); 1217 if (PN > V2) 1218 std::swap(Locs.first, Locs.second); 1219 // Analyse the PHIs' inputs under the assumption that the PHIs are 1220 // NoAlias. 1221 // If the PHIs are May/MustAlias there must be (recursively) an input 1222 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1223 // there must be an operation on the PHIs within the PHIs' value cycle 1224 // that causes a MayAlias. 1225 // Pretend the phis do not alias. 1226 AliasResult Alias = NoAlias; 1227 assert(AliasCache.count(Locs) && 1228 "There must exist an entry for the phi node"); 1229 AliasResult OrigAliasResult = AliasCache[Locs]; 1230 AliasCache[Locs] = NoAlias; 1231 1232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1233 AliasResult ThisAlias = 1234 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1235 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1236 V2Size, V2AAInfo); 1237 Alias = MergeAliasResults(ThisAlias, Alias); 1238 if (Alias == MayAlias) 1239 break; 1240 } 1241 1242 // Reset if speculation failed. 1243 if (Alias != NoAlias) 1244 AliasCache[Locs] = OrigAliasResult; 1245 1246 return Alias; 1247 } 1248 1249 SmallPtrSet<Value *, 4> UniqueSrc; 1250 SmallVector<Value *, 4> V1Srcs; 1251 bool isRecursive = false; 1252 for (Value *PV1 : PN->incoming_values()) { 1253 if (isa<PHINode>(PV1)) 1254 // If any of the source itself is a PHI, return MayAlias conservatively 1255 // to avoid compile time explosion. The worst possible case is if both 1256 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1257 // and 'n' are the number of PHI sources. 1258 return MayAlias; 1259 1260 if (EnableRecPhiAnalysis) 1261 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1262 // Check whether the incoming value is a GEP that advances the pointer 1263 // result of this PHI node (e.g. in a loop). If this is the case, we 1264 // would recurse and always get a MayAlias. Handle this case specially 1265 // below. 1266 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1267 isa<ConstantInt>(PV1GEP->idx_begin())) { 1268 isRecursive = true; 1269 continue; 1270 } 1271 } 1272 1273 if (UniqueSrc.insert(PV1).second) 1274 V1Srcs.push_back(PV1); 1275 } 1276 1277 // If this PHI node is recursive, set the size of the accessed memory to 1278 // unknown to represent all the possible values the GEP could advance the 1279 // pointer to. 1280 if (isRecursive) 1281 PNSize = MemoryLocation::UnknownSize; 1282 1283 AliasResult Alias = 1284 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); 1285 1286 // Early exit if the check of the first PHI source against V2 is MayAlias. 1287 // Other results are not possible. 1288 if (Alias == MayAlias) 1289 return MayAlias; 1290 1291 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1292 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1293 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1294 Value *V = V1Srcs[i]; 1295 1296 AliasResult ThisAlias = 1297 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); 1298 Alias = MergeAliasResults(ThisAlias, Alias); 1299 if (Alias == MayAlias) 1300 break; 1301 } 1302 1303 return Alias; 1304 } 1305 1306 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1307 /// array references. 1308 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1309 AAMDNodes V1AAInfo, const Value *V2, 1310 uint64_t V2Size, AAMDNodes V2AAInfo) { 1311 // If either of the memory references is empty, it doesn't matter what the 1312 // pointer values are. 1313 if (V1Size == 0 || V2Size == 0) 1314 return NoAlias; 1315 1316 // Strip off any casts if they exist. 1317 V1 = V1->stripPointerCasts(); 1318 V2 = V2->stripPointerCasts(); 1319 1320 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1321 // value for undef that aliases nothing in the program. 1322 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1323 return NoAlias; 1324 1325 // Are we checking for alias of the same value? 1326 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1327 // different iterations. We must therefore make sure that this is not the 1328 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1329 // happen by looking at the visited phi nodes and making sure they cannot 1330 // reach the value. 1331 if (isValueEqualInPotentialCycles(V1, V2)) 1332 return MustAlias; 1333 1334 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1335 return NoAlias; // Scalars cannot alias each other 1336 1337 // Figure out what objects these things are pointing to if we can. 1338 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1339 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1340 1341 // Null values in the default address space don't point to any object, so they 1342 // don't alias any other pointer. 1343 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1344 if (CPN->getType()->getAddressSpace() == 0) 1345 return NoAlias; 1346 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1347 if (CPN->getType()->getAddressSpace() == 0) 1348 return NoAlias; 1349 1350 if (O1 != O2) { 1351 // If V1/V2 point to two different objects, we know that we have no alias. 1352 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1353 return NoAlias; 1354 1355 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1356 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1357 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1358 return NoAlias; 1359 1360 // Function arguments can't alias with things that are known to be 1361 // unambigously identified at the function level. 1362 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1363 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1364 return NoAlias; 1365 1366 // Most objects can't alias null. 1367 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1368 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1369 return NoAlias; 1370 1371 // If one pointer is the result of a call/invoke or load and the other is a 1372 // non-escaping local object within the same function, then we know the 1373 // object couldn't escape to a point where the call could return it. 1374 // 1375 // Note that if the pointers are in different functions, there are a 1376 // variety of complications. A call with a nocapture argument may still 1377 // temporary store the nocapture argument's value in a temporary memory 1378 // location if that memory location doesn't escape. Or it may pass a 1379 // nocapture value to other functions as long as they don't capture it. 1380 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1381 return NoAlias; 1382 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1383 return NoAlias; 1384 } 1385 1386 // If the size of one access is larger than the entire object on the other 1387 // side, then we know such behavior is undefined and can assume no alias. 1388 if ((V1Size != MemoryLocation::UnknownSize && 1389 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1390 (V2Size != MemoryLocation::UnknownSize && 1391 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1392 return NoAlias; 1393 1394 // Check the cache before climbing up use-def chains. This also terminates 1395 // otherwise infinitely recursive queries. 1396 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1397 MemoryLocation(V2, V2Size, V2AAInfo)); 1398 if (V1 > V2) 1399 std::swap(Locs.first, Locs.second); 1400 std::pair<AliasCacheTy::iterator, bool> Pair = 1401 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1402 if (!Pair.second) 1403 return Pair.first->second; 1404 1405 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1406 // GEP can't simplify, we don't even look at the PHI cases. 1407 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1408 std::swap(V1, V2); 1409 std::swap(V1Size, V2Size); 1410 std::swap(O1, O2); 1411 std::swap(V1AAInfo, V2AAInfo); 1412 } 1413 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1414 AliasResult Result = 1415 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1416 if (Result != MayAlias) 1417 return AliasCache[Locs] = Result; 1418 } 1419 1420 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1421 std::swap(V1, V2); 1422 std::swap(V1Size, V2Size); 1423 std::swap(V1AAInfo, V2AAInfo); 1424 } 1425 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1426 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1427 if (Result != MayAlias) 1428 return AliasCache[Locs] = Result; 1429 } 1430 1431 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1432 std::swap(V1, V2); 1433 std::swap(V1Size, V2Size); 1434 std::swap(V1AAInfo, V2AAInfo); 1435 } 1436 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1437 AliasResult Result = 1438 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1439 if (Result != MayAlias) 1440 return AliasCache[Locs] = Result; 1441 } 1442 1443 // If both pointers are pointing into the same object and one of them 1444 // accesses the entire object, then the accesses must overlap in some way. 1445 if (O1 == O2) 1446 if ((V1Size != MemoryLocation::UnknownSize && 1447 isObjectSize(O1, V1Size, DL, TLI)) || 1448 (V2Size != MemoryLocation::UnknownSize && 1449 isObjectSize(O2, V2Size, DL, TLI))) 1450 return AliasCache[Locs] = PartialAlias; 1451 1452 // Recurse back into the best AA results we have, potentially with refined 1453 // memory locations. We have already ensured that BasicAA has a MayAlias 1454 // cache result for these, so any recursion back into BasicAA won't loop. 1455 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1456 return AliasCache[Locs] = Result; 1457 } 1458 1459 /// Check whether two Values can be considered equivalent. 1460 /// 1461 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1462 /// they can not be part of a cycle in the value graph by looking at all 1463 /// visited phi nodes an making sure that the phis cannot reach the value. We 1464 /// have to do this because we are looking through phi nodes (That is we say 1465 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1466 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1467 const Value *V2) { 1468 if (V != V2) 1469 return false; 1470 1471 const Instruction *Inst = dyn_cast<Instruction>(V); 1472 if (!Inst) 1473 return true; 1474 1475 if (VisitedPhiBBs.empty()) 1476 return true; 1477 1478 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1479 return false; 1480 1481 // Make sure that the visited phis cannot reach the Value. This ensures that 1482 // the Values cannot come from different iterations of a potential cycle the 1483 // phi nodes could be involved in. 1484 for (auto *P : VisitedPhiBBs) 1485 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1486 return false; 1487 1488 return true; 1489 } 1490 1491 /// Computes the symbolic difference between two de-composed GEPs. 1492 /// 1493 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1494 /// instructions GEP1 and GEP2 which have common base pointers. 1495 void BasicAAResult::GetIndexDifference( 1496 SmallVectorImpl<VariableGEPIndex> &Dest, 1497 const SmallVectorImpl<VariableGEPIndex> &Src) { 1498 if (Src.empty()) 1499 return; 1500 1501 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1502 const Value *V = Src[i].V; 1503 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1504 int64_t Scale = Src[i].Scale; 1505 1506 // Find V in Dest. This is N^2, but pointer indices almost never have more 1507 // than a few variable indexes. 1508 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1509 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1510 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1511 continue; 1512 1513 // If we found it, subtract off Scale V's from the entry in Dest. If it 1514 // goes to zero, remove the entry. 1515 if (Dest[j].Scale != Scale) 1516 Dest[j].Scale -= Scale; 1517 else 1518 Dest.erase(Dest.begin() + j); 1519 Scale = 0; 1520 break; 1521 } 1522 1523 // If we didn't consume this entry, add it to the end of the Dest list. 1524 if (Scale) { 1525 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1526 Dest.push_back(Entry); 1527 } 1528 } 1529 } 1530 1531 bool BasicAAResult::constantOffsetHeuristic( 1532 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1533 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1534 DominatorTree *DT) { 1535 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1536 V2Size == MemoryLocation::UnknownSize) 1537 return false; 1538 1539 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1540 1541 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1542 Var0.Scale != -Var1.Scale) 1543 return false; 1544 1545 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1546 1547 // We'll strip off the Extensions of Var0 and Var1 and do another round 1548 // of GetLinearExpression decomposition. In the example above, if Var0 1549 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1550 1551 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1552 V1Offset(Width, 0); 1553 bool NSW = true, NUW = true; 1554 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1555 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1556 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1557 NSW = true, NUW = true; 1558 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1559 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1560 1561 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1562 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1563 return false; 1564 1565 // We have a hit - Var0 and Var1 only differ by a constant offset! 1566 1567 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1568 // Var1 is possible to calculate, but we're just interested in the absolute 1569 // minimum difference between the two. The minimum distance may occur due to 1570 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1571 // the minimum distance between %i and %i + 5 is 3. 1572 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1573 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1574 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1575 1576 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1577 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1578 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1579 // V2Size can fit in the MinDiffBytes gap. 1580 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1581 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1582 } 1583 1584 //===----------------------------------------------------------------------===// 1585 // BasicAliasAnalysis Pass 1586 //===----------------------------------------------------------------------===// 1587 1588 char BasicAA::PassID; 1589 1590 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) { 1591 return BasicAAResult(F.getParent()->getDataLayout(), 1592 AM->getResult<TargetLibraryAnalysis>(F), 1593 AM->getResult<AssumptionAnalysis>(F), 1594 AM->getCachedResult<DominatorTreeAnalysis>(F), 1595 AM->getCachedResult<LoopAnalysis>(F)); 1596 } 1597 1598 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1599 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1600 } 1601 1602 char BasicAAWrapperPass::ID = 0; 1603 void BasicAAWrapperPass::anchor() {} 1604 1605 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1606 "Basic Alias Analysis (stateless AA impl)", true, true) 1607 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1608 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1609 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1610 "Basic Alias Analysis (stateless AA impl)", true, true) 1611 1612 FunctionPass *llvm::createBasicAAWrapperPass() { 1613 return new BasicAAWrapperPass(); 1614 } 1615 1616 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1617 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1618 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1619 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1620 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1621 1622 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1623 ACT.getAssumptionCache(F), 1624 DTWP ? &DTWP->getDomTree() : nullptr, 1625 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1626 1627 return false; 1628 } 1629 1630 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1631 AU.setPreservesAll(); 1632 AU.addRequired<AssumptionCacheTracker>(); 1633 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1634 } 1635 1636 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1637 return BasicAAResult( 1638 F.getParent()->getDataLayout(), 1639 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1640 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1641 } 1642