xref: /llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp (revision 87ddb65fa6633c55d73f8be546b9ea286238536d)
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230       // FALL THROUGH.
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for correct alias information.
327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
347     const Value *V, int64_t &BaseOffs,
348     SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
349     const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
350   // Limit recursion depth to limit compile time in crazy cases.
351   unsigned MaxLookup = MaxLookupSearchDepth;
352   MaxLookupReached = false;
353   SearchTimes++;
354 
355   BaseOffs = 0;
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->mayBeOverridden()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       return V;
368     }
369 
370     if (Op->getOpcode() == Instruction::BitCast ||
371         Op->getOpcode() == Instruction::AddrSpaceCast) {
372       V = Op->getOperand(0);
373       continue;
374     }
375 
376     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
377     if (!GEPOp) {
378       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
379       // can come up with something. This matches what GetUnderlyingObject does.
380       if (const Instruction *I = dyn_cast<Instruction>(V))
381         // TODO: Get a DominatorTree and AssumptionCache and use them here
382         // (these are both now available in this function, but this should be
383         // updated when GetUnderlyingObject is updated). TLI should be
384         // provided also.
385         if (const Value *Simplified =
386                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
387           V = Simplified;
388           continue;
389         }
390 
391       return V;
392     }
393 
394     // Don't attempt to analyze GEPs over unsized objects.
395     if (!GEPOp->getSourceElementType()->isSized())
396       return V;
397 
398     unsigned AS = GEPOp->getPointerAddressSpace();
399     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
400     gep_type_iterator GTI = gep_type_begin(GEPOp);
401     unsigned PointerSize = DL.getPointerSizeInBits(AS);
402     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
403          I != E; ++I) {
404       const Value *Index = *I;
405       // Compute the (potentially symbolic) offset in bytes for this index.
406       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
407         // For a struct, add the member offset.
408         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
409         if (FieldNo == 0)
410           continue;
411 
412         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
413         continue;
414       }
415 
416       // For an array/pointer, add the element offset, explicitly scaled.
417       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
418         if (CIdx->isZero())
419           continue;
420         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
421         continue;
422       }
423 
424       uint64_t Scale = DL.getTypeAllocSize(*GTI);
425       unsigned ZExtBits = 0, SExtBits = 0;
426 
427       // If the integer type is smaller than the pointer size, it is implicitly
428       // sign extended to pointer size.
429       unsigned Width = Index->getType()->getIntegerBitWidth();
430       if (PointerSize > Width)
431         SExtBits += PointerSize - Width;
432 
433       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
434       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
435       bool NSW = true, NUW = true;
436       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
437                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
438 
439       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
440       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
441       BaseOffs += IndexOffset.getSExtValue() * Scale;
442       Scale *= IndexScale.getSExtValue();
443 
444       // If we already had an occurrence of this index variable, merge this
445       // scale into it.  For example, we want to handle:
446       //   A[x][x] -> x*16 + x*4 -> x*20
447       // This also ensures that 'x' only appears in the index list once.
448       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
449         if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
450             VarIndices[i].SExtBits == SExtBits) {
451           Scale += VarIndices[i].Scale;
452           VarIndices.erase(VarIndices.begin() + i);
453           break;
454         }
455       }
456 
457       // Make sure that we have a scale that makes sense for this target's
458       // pointer size.
459       Scale = adjustToPointerSize(Scale, PointerSize);
460 
461       if (Scale) {
462         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
463                                   static_cast<int64_t>(Scale)};
464         VarIndices.push_back(Entry);
465       }
466     }
467 
468     // Take care of wrap-arounds
469     BaseOffs = adjustToPointerSize(BaseOffs, PointerSize);
470 
471     // Analyze the base pointer next.
472     V = GEPOp->getOperand(0);
473   } while (--MaxLookup);
474 
475   // If the chain of expressions is too deep, just return early.
476   MaxLookupReached = true;
477   SearchLimitReached++;
478   return V;
479 }
480 
481 /// Returns whether the given pointer value points to memory that is local to
482 /// the function, with global constants being considered local to all
483 /// functions.
484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
485                                            bool OrLocal) {
486   assert(Visited.empty() && "Visited must be cleared after use!");
487 
488   unsigned MaxLookup = 8;
489   SmallVector<const Value *, 16> Worklist;
490   Worklist.push_back(Loc.Ptr);
491   do {
492     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
493     if (!Visited.insert(V).second) {
494       Visited.clear();
495       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
496     }
497 
498     // An alloca instruction defines local memory.
499     if (OrLocal && isa<AllocaInst>(V))
500       continue;
501 
502     // A global constant counts as local memory for our purposes.
503     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
504       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
505       // global to be marked constant in some modules and non-constant in
506       // others.  GV may even be a declaration, not a definition.
507       if (!GV->isConstant()) {
508         Visited.clear();
509         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
510       }
511       continue;
512     }
513 
514     // If both select values point to local memory, then so does the select.
515     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
516       Worklist.push_back(SI->getTrueValue());
517       Worklist.push_back(SI->getFalseValue());
518       continue;
519     }
520 
521     // If all values incoming to a phi node point to local memory, then so does
522     // the phi.
523     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
524       // Don't bother inspecting phi nodes with many operands.
525       if (PN->getNumIncomingValues() > MaxLookup) {
526         Visited.clear();
527         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
528       }
529       for (Value *IncValue : PN->incoming_values())
530         Worklist.push_back(IncValue);
531       continue;
532     }
533 
534     // Otherwise be conservative.
535     Visited.clear();
536     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
537 
538   } while (!Worklist.empty() && --MaxLookup);
539 
540   Visited.clear();
541   return Worklist.empty();
542 }
543 
544 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
545 // some common utility location.
546 static bool isMemsetPattern16(const Function *MS,
547                               const TargetLibraryInfo &TLI) {
548   if (TLI.has(LibFunc::memset_pattern16) &&
549       MS->getName() == "memset_pattern16") {
550     FunctionType *MemsetType = MS->getFunctionType();
551     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
552         isa<PointerType>(MemsetType->getParamType(0)) &&
553         isa<PointerType>(MemsetType->getParamType(1)) &&
554         isa<IntegerType>(MemsetType->getParamType(2)))
555       return true;
556   }
557   return false;
558 }
559 
560 /// Returns the behavior when calling the given call site.
561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
562   if (CS.doesNotAccessMemory())
563     // Can't do better than this.
564     return FMRB_DoesNotAccessMemory;
565 
566   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
567 
568   // If the callsite knows it only reads memory, don't return worse
569   // than that.
570   if (CS.onlyReadsMemory())
571     Min = FMRB_OnlyReadsMemory;
572 
573   if (CS.onlyAccessesArgMemory())
574     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
575 
576   // The AAResultBase base class has some smarts, lets use them.
577   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
578 }
579 
580 /// Returns the behavior when calling the given function. For use when the call
581 /// site is not known.
582 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
583   // If the function declares it doesn't access memory, we can't do better.
584   if (F->doesNotAccessMemory())
585     return FMRB_DoesNotAccessMemory;
586 
587   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
588 
589   // If the function declares it only reads memory, go with that.
590   if (F->onlyReadsMemory())
591     Min = FMRB_OnlyReadsMemory;
592 
593   if (F->onlyAccessesArgMemory())
594     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
595 
596   // Otherwise be conservative.
597   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
598 }
599 
600 /// Returns true if this is a writeonly (i.e Mod only) parameter.  Currently,
601 /// we don't have a writeonly attribute, so this only knows about builtin
602 /// intrinsics and target library functions.  We could consider adding a
603 /// writeonly attribute in the future and moving all of these facts to either
604 /// Intrinsics.td or InferFunctionAttr.cpp
605 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
606                              const TargetLibraryInfo &TLI) {
607   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
608     switch (II->getIntrinsicID()) {
609     default:
610       break;
611     case Intrinsic::memset:
612     case Intrinsic::memcpy:
613     case Intrinsic::memmove:
614       // We don't currently have a writeonly attribute.  All other properties
615       // of these intrinsics are nicely described via attributes in
616       // Intrinsics.td and handled generically.
617       if (ArgIdx == 0)
618         return true;
619     }
620 
621   // We can bound the aliasing properties of memset_pattern16 just as we can
622   // for memcpy/memset.  This is particularly important because the
623   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
624   // whenever possible.  Note that all but the missing writeonly attribute are
625   // handled via InferFunctionAttr.
626   if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI))
627     if (ArgIdx == 0)
628       return true;
629 
630   // TODO: memset_pattern4, memset_pattern8
631   // TODO: _chk variants
632   // TODO: strcmp, strcpy
633 
634   return false;
635 }
636 
637 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
638                                            unsigned ArgIdx) {
639 
640   // Emulate the missing writeonly attribute by checking for known builtin
641   // intrinsics and target library functions.
642   if (isWriteOnlyParam(CS, ArgIdx, TLI))
643     return MRI_Mod;
644 
645   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
646     return MRI_Ref;
647 
648   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
649     return MRI_NoModRef;
650 
651   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
652 }
653 
654 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
655   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
656   return II && II->getIntrinsicID() == Intrinsic::assume;
657 }
658 
659 #ifndef NDEBUG
660 static const Function *getParent(const Value *V) {
661   if (const Instruction *inst = dyn_cast<Instruction>(V))
662     return inst->getParent()->getParent();
663 
664   if (const Argument *arg = dyn_cast<Argument>(V))
665     return arg->getParent();
666 
667   return nullptr;
668 }
669 
670 static bool notDifferentParent(const Value *O1, const Value *O2) {
671 
672   const Function *F1 = getParent(O1);
673   const Function *F2 = getParent(O2);
674 
675   return !F1 || !F2 || F1 == F2;
676 }
677 #endif
678 
679 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
680                                  const MemoryLocation &LocB) {
681   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
682          "BasicAliasAnalysis doesn't support interprocedural queries.");
683 
684   // If we have a directly cached entry for these locations, we have recursed
685   // through this once, so just return the cached results. Notably, when this
686   // happens, we don't clear the cache.
687   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
688   if (CacheIt != AliasCache.end())
689     return CacheIt->second;
690 
691   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
692                                  LocB.Size, LocB.AATags);
693   // AliasCache rarely has more than 1 or 2 elements, always use
694   // shrink_and_clear so it quickly returns to the inline capacity of the
695   // SmallDenseMap if it ever grows larger.
696   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
697   AliasCache.shrink_and_clear();
698   VisitedPhiBBs.clear();
699   return Alias;
700 }
701 
702 /// Checks to see if the specified callsite can clobber the specified memory
703 /// object.
704 ///
705 /// Since we only look at local properties of this function, we really can't
706 /// say much about this query.  We do, however, use simple "address taken"
707 /// analysis on local objects.
708 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
709                                         const MemoryLocation &Loc) {
710   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
711          "AliasAnalysis query involving multiple functions!");
712 
713   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
714 
715   // If this is a tail call and Loc.Ptr points to a stack location, we know that
716   // the tail call cannot access or modify the local stack.
717   // We cannot exclude byval arguments here; these belong to the caller of
718   // the current function not to the current function, and a tail callee
719   // may reference them.
720   if (isa<AllocaInst>(Object))
721     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
722       if (CI->isTailCall())
723         return MRI_NoModRef;
724 
725   // If the pointer is to a locally allocated object that does not escape,
726   // then the call can not mod/ref the pointer unless the call takes the pointer
727   // as an argument, and itself doesn't capture it.
728   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
729       isNonEscapingLocalObject(Object)) {
730     bool PassedAsArg = false;
731     unsigned OperandNo = 0;
732     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
733          CI != CE; ++CI, ++OperandNo) {
734       // Only look at the no-capture or byval pointer arguments.  If this
735       // pointer were passed to arguments that were neither of these, then it
736       // couldn't be no-capture.
737       if (!(*CI)->getType()->isPointerTy() ||
738           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
739         continue;
740 
741       // If this is a no-capture pointer argument, see if we can tell that it
742       // is impossible to alias the pointer we're checking.  If not, we have to
743       // assume that the call could touch the pointer, even though it doesn't
744       // escape.
745       AliasResult AR =
746           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
747       if (AR) {
748         PassedAsArg = true;
749         break;
750       }
751     }
752 
753     if (!PassedAsArg)
754       return MRI_NoModRef;
755   }
756 
757   // While the assume intrinsic is marked as arbitrarily writing so that
758   // proper control dependencies will be maintained, it never aliases any
759   // particular memory location.
760   if (isAssumeIntrinsic(CS))
761     return MRI_NoModRef;
762 
763   // The AAResultBase base class has some smarts, lets use them.
764   return AAResultBase::getModRefInfo(CS, Loc);
765 }
766 
767 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
768                                         ImmutableCallSite CS2) {
769   // While the assume intrinsic is marked as arbitrarily writing so that
770   // proper control dependencies will be maintained, it never aliases any
771   // particular memory location.
772   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
773     return MRI_NoModRef;
774 
775   // The AAResultBase base class has some smarts, lets use them.
776   return AAResultBase::getModRefInfo(CS1, CS2);
777 }
778 
779 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
780 /// both having the exact same pointer operand.
781 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
782                                             uint64_t V1Size,
783                                             const GEPOperator *GEP2,
784                                             uint64_t V2Size,
785                                             const DataLayout &DL) {
786 
787   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
788          "Expected GEPs with the same pointer operand");
789 
790   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
791   // such that the struct field accesses provably cannot alias.
792   // We also need at least two indices (the pointer, and the struct field).
793   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
794       GEP1->getNumIndices() < 2)
795     return MayAlias;
796 
797   // If we don't know the size of the accesses through both GEPs, we can't
798   // determine whether the struct fields accessed can't alias.
799   if (V1Size == MemoryLocation::UnknownSize ||
800       V2Size == MemoryLocation::UnknownSize)
801     return MayAlias;
802 
803   ConstantInt *C1 =
804       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
805   ConstantInt *C2 =
806       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
807 
808   // If the last (struct) indices are constants and are equal, the other indices
809   // might be also be dynamically equal, so the GEPs can alias.
810   if (C1 && C2 && C1 == C2)
811     return MayAlias;
812 
813   // Find the last-indexed type of the GEP, i.e., the type you'd get if
814   // you stripped the last index.
815   // On the way, look at each indexed type.  If there's something other
816   // than an array, different indices can lead to different final types.
817   SmallVector<Value *, 8> IntermediateIndices;
818 
819   // Insert the first index; we don't need to check the type indexed
820   // through it as it only drops the pointer indirection.
821   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
822   IntermediateIndices.push_back(GEP1->getOperand(1));
823 
824   // Insert all the remaining indices but the last one.
825   // Also, check that they all index through arrays.
826   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
827     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
828             GEP1->getSourceElementType(), IntermediateIndices)))
829       return MayAlias;
830     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
831   }
832 
833   auto *Ty = GetElementPtrInst::getIndexedType(
834     GEP1->getSourceElementType(), IntermediateIndices);
835   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
836 
837   if (isa<SequentialType>(Ty)) {
838     // We know that:
839     // - both GEPs begin indexing from the exact same pointer;
840     // - the last indices in both GEPs are constants, indexing into a sequential
841     //   type (array or pointer);
842     // - both GEPs only index through arrays prior to that.
843     //
844     // Because array indices greater than the number of elements are valid in
845     // GEPs, unless we know the intermediate indices are identical between
846     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
847     // partially overlap. We also need to check that the loaded size matches
848     // the element size, otherwise we could still have overlap.
849     const uint64_t ElementSize =
850         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
851     if (V1Size != ElementSize || V2Size != ElementSize)
852       return MayAlias;
853 
854     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
855       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
856         return MayAlias;
857 
858     // Now we know that the array/pointer that GEP1 indexes into and that
859     // that GEP2 indexes into must either precisely overlap or be disjoint.
860     // Because they cannot partially overlap and because fields in an array
861     // cannot overlap, if we can prove the final indices are different between
862     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
863 
864     // If the last indices are constants, we've already checked they don't
865     // equal each other so we can exit early.
866     if (C1 && C2)
867       return NoAlias;
868     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
869                         GEP2->getOperand(GEP2->getNumOperands() - 1),
870                         DL))
871       return NoAlias;
872     return MayAlias;
873   } else if (!LastIndexedStruct || !C1 || !C2) {
874     return MayAlias;
875   }
876 
877   // We know that:
878   // - both GEPs begin indexing from the exact same pointer;
879   // - the last indices in both GEPs are constants, indexing into a struct;
880   // - said indices are different, hence, the pointed-to fields are different;
881   // - both GEPs only index through arrays prior to that.
882   //
883   // This lets us determine that the struct that GEP1 indexes into and the
884   // struct that GEP2 indexes into must either precisely overlap or be
885   // completely disjoint.  Because they cannot partially overlap, indexing into
886   // different non-overlapping fields of the struct will never alias.
887 
888   // Therefore, the only remaining thing needed to show that both GEPs can't
889   // alias is that the fields are not overlapping.
890   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
891   const uint64_t StructSize = SL->getSizeInBytes();
892   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
893   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
894 
895   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
896                                       uint64_t V2Off, uint64_t V2Size) {
897     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
898            ((V2Off + V2Size <= StructSize) ||
899             (V2Off + V2Size - StructSize <= V1Off));
900   };
901 
902   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
903       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
904     return NoAlias;
905 
906   return MayAlias;
907 }
908 
909 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
910 /// another pointer.
911 ///
912 /// We know that V1 is a GEP, but we don't know anything about V2.
913 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
914 /// V2.
915 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
916                                     const AAMDNodes &V1AAInfo, const Value *V2,
917                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
918                                     const Value *UnderlyingV1,
919                                     const Value *UnderlyingV2) {
920   int64_t GEP1BaseOffset;
921   bool GEP1MaxLookupReached;
922   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
923 
924   // If we have two gep instructions with must-alias or not-alias'ing base
925   // pointers, figure out if the indexes to the GEP tell us anything about the
926   // derived pointer.
927   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
928     // Do the base pointers alias?
929     AliasResult BaseAlias =
930         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
931                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
932 
933     // Check for geps of non-aliasing underlying pointers where the offsets are
934     // identical.
935     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
936       // Do the base pointers alias assuming type and size.
937       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
938                                                 UnderlyingV2, V2Size, V2AAInfo);
939       if (PreciseBaseAlias == NoAlias) {
940         // See if the computed offset from the common pointer tells us about the
941         // relation of the resulting pointer.
942         int64_t GEP2BaseOffset;
943         bool GEP2MaxLookupReached;
944         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
945         const Value *GEP2BasePtr =
946             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
947                                    GEP2MaxLookupReached, DL, &AC, DT);
948         const Value *GEP1BasePtr =
949             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
950                                    GEP1MaxLookupReached, DL, &AC, DT);
951         // DecomposeGEPExpression and GetUnderlyingObject should return the
952         // same result except when DecomposeGEPExpression has no DataLayout.
953         // FIXME: They always have a DataLayout, so this should become an
954         // assert.
955         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
956           return MayAlias;
957         }
958         // If the max search depth is reached the result is undefined
959         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
960           return MayAlias;
961 
962         // Same offsets.
963         if (GEP1BaseOffset == GEP2BaseOffset &&
964             GEP1VariableIndices == GEP2VariableIndices)
965           return NoAlias;
966         GEP1VariableIndices.clear();
967       }
968     }
969 
970     // If we get a No or May, then return it immediately, no amount of analysis
971     // will improve this situation.
972     if (BaseAlias != MustAlias)
973       return BaseAlias;
974 
975     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
976     // exactly, see if the computed offset from the common pointer tells us
977     // about the relation of the resulting pointer.
978     const Value *GEP1BasePtr =
979         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
980                                GEP1MaxLookupReached, DL, &AC, DT);
981 
982     int64_t GEP2BaseOffset;
983     bool GEP2MaxLookupReached;
984     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
985     const Value *GEP2BasePtr =
986         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
987                                GEP2MaxLookupReached, DL, &AC, DT);
988 
989     // DecomposeGEPExpression and GetUnderlyingObject should return the
990     // same result except when DecomposeGEPExpression has no DataLayout.
991     // FIXME: They always have a DataLayout, so this should become an assert.
992     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
993       return MayAlias;
994     }
995 
996     // If we know the two GEPs are based off of the exact same pointer (and not
997     // just the same underlying object), see if that tells us anything about
998     // the resulting pointers.
999     if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
1000       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1001       // If we couldn't find anything interesting, don't abandon just yet.
1002       if (R != MayAlias)
1003         return R;
1004     }
1005 
1006     // If the max search depth is reached, the result is undefined
1007     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1008       return MayAlias;
1009 
1010     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1011     // symbolic difference.
1012     GEP1BaseOffset -= GEP2BaseOffset;
1013     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1014 
1015   } else {
1016     // Check to see if these two pointers are related by the getelementptr
1017     // instruction.  If one pointer is a GEP with a non-zero index of the other
1018     // pointer, we know they cannot alias.
1019 
1020     // If both accesses are unknown size, we can't do anything useful here.
1021     if (V1Size == MemoryLocation::UnknownSize &&
1022         V2Size == MemoryLocation::UnknownSize)
1023       return MayAlias;
1024 
1025     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1026                                AAMDNodes(), V2, V2Size, V2AAInfo);
1027     if (R != MustAlias)
1028       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1029       // If V2 is known not to alias GEP base pointer, then the two values
1030       // cannot alias per GEP semantics: "A pointer value formed from a
1031       // getelementptr instruction is associated with the addresses associated
1032       // with the first operand of the getelementptr".
1033       return R;
1034 
1035     const Value *GEP1BasePtr =
1036         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1037                                GEP1MaxLookupReached, DL, &AC, DT);
1038 
1039     // DecomposeGEPExpression and GetUnderlyingObject should return the
1040     // same result except when DecomposeGEPExpression has no DataLayout.
1041     // FIXME: They always have a DataLayout, so this should become an assert.
1042     if (GEP1BasePtr != UnderlyingV1) {
1043       return MayAlias;
1044     }
1045     // If the max search depth is reached the result is undefined
1046     if (GEP1MaxLookupReached)
1047       return MayAlias;
1048   }
1049 
1050   // In the two GEP Case, if there is no difference in the offsets of the
1051   // computed pointers, the resultant pointers are a must alias.  This
1052   // happens when we have two lexically identical GEP's (for example).
1053   //
1054   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1055   // must aliases the GEP, the end result is a must alias also.
1056   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1057     return MustAlias;
1058 
1059   // If there is a constant difference between the pointers, but the difference
1060   // is less than the size of the associated memory object, then we know
1061   // that the objects are partially overlapping.  If the difference is
1062   // greater, we know they do not overlap.
1063   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1064     if (GEP1BaseOffset >= 0) {
1065       if (V2Size != MemoryLocation::UnknownSize) {
1066         if ((uint64_t)GEP1BaseOffset < V2Size)
1067           return PartialAlias;
1068         return NoAlias;
1069       }
1070     } else {
1071       // We have the situation where:
1072       // +                +
1073       // | BaseOffset     |
1074       // ---------------->|
1075       // |-->V1Size       |-------> V2Size
1076       // GEP1             V2
1077       // We need to know that V2Size is not unknown, otherwise we might have
1078       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1079       if (V1Size != MemoryLocation::UnknownSize &&
1080           V2Size != MemoryLocation::UnknownSize) {
1081         if (-(uint64_t)GEP1BaseOffset < V1Size)
1082           return PartialAlias;
1083         return NoAlias;
1084       }
1085     }
1086   }
1087 
1088   if (!GEP1VariableIndices.empty()) {
1089     uint64_t Modulo = 0;
1090     bool AllPositive = true;
1091     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1092 
1093       // Try to distinguish something like &A[i][1] against &A[42][0].
1094       // Grab the least significant bit set in any of the scales. We
1095       // don't need std::abs here (even if the scale's negative) as we'll
1096       // be ^'ing Modulo with itself later.
1097       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1098 
1099       if (AllPositive) {
1100         // If the Value could change between cycles, then any reasoning about
1101         // the Value this cycle may not hold in the next cycle. We'll just
1102         // give up if we can't determine conditions that hold for every cycle:
1103         const Value *V = GEP1VariableIndices[i].V;
1104 
1105         bool SignKnownZero, SignKnownOne;
1106         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1107                        0, &AC, nullptr, DT);
1108 
1109         // Zero-extension widens the variable, and so forces the sign
1110         // bit to zero.
1111         bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1112         SignKnownZero |= IsZExt;
1113         SignKnownOne &= !IsZExt;
1114 
1115         // If the variable begins with a zero then we know it's
1116         // positive, regardless of whether the value is signed or
1117         // unsigned.
1118         int64_t Scale = GEP1VariableIndices[i].Scale;
1119         AllPositive =
1120             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1121       }
1122     }
1123 
1124     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1125 
1126     // We can compute the difference between the two addresses
1127     // mod Modulo. Check whether that difference guarantees that the
1128     // two locations do not alias.
1129     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1130     if (V1Size != MemoryLocation::UnknownSize &&
1131         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1132         V1Size <= Modulo - ModOffset)
1133       return NoAlias;
1134 
1135     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1136     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1137     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1138     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1139       return NoAlias;
1140 
1141     if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
1142                                 GEP1BaseOffset, &AC, DT))
1143       return NoAlias;
1144   }
1145 
1146   // Statically, we can see that the base objects are the same, but the
1147   // pointers have dynamic offsets which we can't resolve. And none of our
1148   // little tricks above worked.
1149   //
1150   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1151   // practical effect of this is protecting TBAA in the case of dynamic
1152   // indices into arrays of unions or malloc'd memory.
1153   return PartialAlias;
1154 }
1155 
1156 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1157   // If the results agree, take it.
1158   if (A == B)
1159     return A;
1160   // A mix of PartialAlias and MustAlias is PartialAlias.
1161   if ((A == PartialAlias && B == MustAlias) ||
1162       (B == PartialAlias && A == MustAlias))
1163     return PartialAlias;
1164   // Otherwise, we don't know anything.
1165   return MayAlias;
1166 }
1167 
1168 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1169 /// against another.
1170 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1171                                        const AAMDNodes &SIAAInfo,
1172                                        const Value *V2, uint64_t V2Size,
1173                                        const AAMDNodes &V2AAInfo) {
1174   // If the values are Selects with the same condition, we can do a more precise
1175   // check: just check for aliases between the values on corresponding arms.
1176   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1177     if (SI->getCondition() == SI2->getCondition()) {
1178       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1179                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1180       if (Alias == MayAlias)
1181         return MayAlias;
1182       AliasResult ThisAlias =
1183           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1184                      SI2->getFalseValue(), V2Size, V2AAInfo);
1185       return MergeAliasResults(ThisAlias, Alias);
1186     }
1187 
1188   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1189   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1190   AliasResult Alias =
1191       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1192   if (Alias == MayAlias)
1193     return MayAlias;
1194 
1195   AliasResult ThisAlias =
1196       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1197   return MergeAliasResults(ThisAlias, Alias);
1198 }
1199 
1200 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1201 /// another.
1202 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1203                                     const AAMDNodes &PNAAInfo, const Value *V2,
1204                                     uint64_t V2Size,
1205                                     const AAMDNodes &V2AAInfo) {
1206   // Track phi nodes we have visited. We use this information when we determine
1207   // value equivalence.
1208   VisitedPhiBBs.insert(PN->getParent());
1209 
1210   // If the values are PHIs in the same block, we can do a more precise
1211   // as well as efficient check: just check for aliases between the values
1212   // on corresponding edges.
1213   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1214     if (PN2->getParent() == PN->getParent()) {
1215       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1216                    MemoryLocation(V2, V2Size, V2AAInfo));
1217       if (PN > V2)
1218         std::swap(Locs.first, Locs.second);
1219       // Analyse the PHIs' inputs under the assumption that the PHIs are
1220       // NoAlias.
1221       // If the PHIs are May/MustAlias there must be (recursively) an input
1222       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1223       // there must be an operation on the PHIs within the PHIs' value cycle
1224       // that causes a MayAlias.
1225       // Pretend the phis do not alias.
1226       AliasResult Alias = NoAlias;
1227       assert(AliasCache.count(Locs) &&
1228              "There must exist an entry for the phi node");
1229       AliasResult OrigAliasResult = AliasCache[Locs];
1230       AliasCache[Locs] = NoAlias;
1231 
1232       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1233         AliasResult ThisAlias =
1234             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1235                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1236                        V2Size, V2AAInfo);
1237         Alias = MergeAliasResults(ThisAlias, Alias);
1238         if (Alias == MayAlias)
1239           break;
1240       }
1241 
1242       // Reset if speculation failed.
1243       if (Alias != NoAlias)
1244         AliasCache[Locs] = OrigAliasResult;
1245 
1246       return Alias;
1247     }
1248 
1249   SmallPtrSet<Value *, 4> UniqueSrc;
1250   SmallVector<Value *, 4> V1Srcs;
1251   bool isRecursive = false;
1252   for (Value *PV1 : PN->incoming_values()) {
1253     if (isa<PHINode>(PV1))
1254       // If any of the source itself is a PHI, return MayAlias conservatively
1255       // to avoid compile time explosion. The worst possible case is if both
1256       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1257       // and 'n' are the number of PHI sources.
1258       return MayAlias;
1259 
1260     if (EnableRecPhiAnalysis)
1261       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1262         // Check whether the incoming value is a GEP that advances the pointer
1263         // result of this PHI node (e.g. in a loop). If this is the case, we
1264         // would recurse and always get a MayAlias. Handle this case specially
1265         // below.
1266         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1267             isa<ConstantInt>(PV1GEP->idx_begin())) {
1268           isRecursive = true;
1269           continue;
1270         }
1271       }
1272 
1273     if (UniqueSrc.insert(PV1).second)
1274       V1Srcs.push_back(PV1);
1275   }
1276 
1277   // If this PHI node is recursive, set the size of the accessed memory to
1278   // unknown to represent all the possible values the GEP could advance the
1279   // pointer to.
1280   if (isRecursive)
1281     PNSize = MemoryLocation::UnknownSize;
1282 
1283   AliasResult Alias =
1284       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1285 
1286   // Early exit if the check of the first PHI source against V2 is MayAlias.
1287   // Other results are not possible.
1288   if (Alias == MayAlias)
1289     return MayAlias;
1290 
1291   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1292   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1293   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1294     Value *V = V1Srcs[i];
1295 
1296     AliasResult ThisAlias =
1297         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1298     Alias = MergeAliasResults(ThisAlias, Alias);
1299     if (Alias == MayAlias)
1300       break;
1301   }
1302 
1303   return Alias;
1304 }
1305 
1306 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1307 /// array references.
1308 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1309                                       AAMDNodes V1AAInfo, const Value *V2,
1310                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
1311   // If either of the memory references is empty, it doesn't matter what the
1312   // pointer values are.
1313   if (V1Size == 0 || V2Size == 0)
1314     return NoAlias;
1315 
1316   // Strip off any casts if they exist.
1317   V1 = V1->stripPointerCasts();
1318   V2 = V2->stripPointerCasts();
1319 
1320   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1321   // value for undef that aliases nothing in the program.
1322   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1323     return NoAlias;
1324 
1325   // Are we checking for alias of the same value?
1326   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1327   // different iterations. We must therefore make sure that this is not the
1328   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1329   // happen by looking at the visited phi nodes and making sure they cannot
1330   // reach the value.
1331   if (isValueEqualInPotentialCycles(V1, V2))
1332     return MustAlias;
1333 
1334   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1335     return NoAlias; // Scalars cannot alias each other
1336 
1337   // Figure out what objects these things are pointing to if we can.
1338   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1339   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1340 
1341   // Null values in the default address space don't point to any object, so they
1342   // don't alias any other pointer.
1343   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1344     if (CPN->getType()->getAddressSpace() == 0)
1345       return NoAlias;
1346   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1347     if (CPN->getType()->getAddressSpace() == 0)
1348       return NoAlias;
1349 
1350   if (O1 != O2) {
1351     // If V1/V2 point to two different objects, we know that we have no alias.
1352     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1353       return NoAlias;
1354 
1355     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1356     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1357         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1358       return NoAlias;
1359 
1360     // Function arguments can't alias with things that are known to be
1361     // unambigously identified at the function level.
1362     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1363         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1364       return NoAlias;
1365 
1366     // Most objects can't alias null.
1367     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1368         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1369       return NoAlias;
1370 
1371     // If one pointer is the result of a call/invoke or load and the other is a
1372     // non-escaping local object within the same function, then we know the
1373     // object couldn't escape to a point where the call could return it.
1374     //
1375     // Note that if the pointers are in different functions, there are a
1376     // variety of complications. A call with a nocapture argument may still
1377     // temporary store the nocapture argument's value in a temporary memory
1378     // location if that memory location doesn't escape. Or it may pass a
1379     // nocapture value to other functions as long as they don't capture it.
1380     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1381       return NoAlias;
1382     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1383       return NoAlias;
1384   }
1385 
1386   // If the size of one access is larger than the entire object on the other
1387   // side, then we know such behavior is undefined and can assume no alias.
1388   if ((V1Size != MemoryLocation::UnknownSize &&
1389        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1390       (V2Size != MemoryLocation::UnknownSize &&
1391        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1392     return NoAlias;
1393 
1394   // Check the cache before climbing up use-def chains. This also terminates
1395   // otherwise infinitely recursive queries.
1396   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1397                MemoryLocation(V2, V2Size, V2AAInfo));
1398   if (V1 > V2)
1399     std::swap(Locs.first, Locs.second);
1400   std::pair<AliasCacheTy::iterator, bool> Pair =
1401       AliasCache.insert(std::make_pair(Locs, MayAlias));
1402   if (!Pair.second)
1403     return Pair.first->second;
1404 
1405   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1406   // GEP can't simplify, we don't even look at the PHI cases.
1407   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1408     std::swap(V1, V2);
1409     std::swap(V1Size, V2Size);
1410     std::swap(O1, O2);
1411     std::swap(V1AAInfo, V2AAInfo);
1412   }
1413   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1414     AliasResult Result =
1415         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1416     if (Result != MayAlias)
1417       return AliasCache[Locs] = Result;
1418   }
1419 
1420   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1421     std::swap(V1, V2);
1422     std::swap(V1Size, V2Size);
1423     std::swap(V1AAInfo, V2AAInfo);
1424   }
1425   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1426     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1427     if (Result != MayAlias)
1428       return AliasCache[Locs] = Result;
1429   }
1430 
1431   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1432     std::swap(V1, V2);
1433     std::swap(V1Size, V2Size);
1434     std::swap(V1AAInfo, V2AAInfo);
1435   }
1436   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1437     AliasResult Result =
1438         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1439     if (Result != MayAlias)
1440       return AliasCache[Locs] = Result;
1441   }
1442 
1443   // If both pointers are pointing into the same object and one of them
1444   // accesses the entire object, then the accesses must overlap in some way.
1445   if (O1 == O2)
1446     if ((V1Size != MemoryLocation::UnknownSize &&
1447          isObjectSize(O1, V1Size, DL, TLI)) ||
1448         (V2Size != MemoryLocation::UnknownSize &&
1449          isObjectSize(O2, V2Size, DL, TLI)))
1450       return AliasCache[Locs] = PartialAlias;
1451 
1452   // Recurse back into the best AA results we have, potentially with refined
1453   // memory locations. We have already ensured that BasicAA has a MayAlias
1454   // cache result for these, so any recursion back into BasicAA won't loop.
1455   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1456   return AliasCache[Locs] = Result;
1457 }
1458 
1459 /// Check whether two Values can be considered equivalent.
1460 ///
1461 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1462 /// they can not be part of a cycle in the value graph by looking at all
1463 /// visited phi nodes an making sure that the phis cannot reach the value. We
1464 /// have to do this because we are looking through phi nodes (That is we say
1465 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1466 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1467                                                   const Value *V2) {
1468   if (V != V2)
1469     return false;
1470 
1471   const Instruction *Inst = dyn_cast<Instruction>(V);
1472   if (!Inst)
1473     return true;
1474 
1475   if (VisitedPhiBBs.empty())
1476     return true;
1477 
1478   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1479     return false;
1480 
1481   // Make sure that the visited phis cannot reach the Value. This ensures that
1482   // the Values cannot come from different iterations of a potential cycle the
1483   // phi nodes could be involved in.
1484   for (auto *P : VisitedPhiBBs)
1485     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1486       return false;
1487 
1488   return true;
1489 }
1490 
1491 /// Computes the symbolic difference between two de-composed GEPs.
1492 ///
1493 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1494 /// instructions GEP1 and GEP2 which have common base pointers.
1495 void BasicAAResult::GetIndexDifference(
1496     SmallVectorImpl<VariableGEPIndex> &Dest,
1497     const SmallVectorImpl<VariableGEPIndex> &Src) {
1498   if (Src.empty())
1499     return;
1500 
1501   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1502     const Value *V = Src[i].V;
1503     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1504     int64_t Scale = Src[i].Scale;
1505 
1506     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1507     // than a few variable indexes.
1508     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1509       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1510           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1511         continue;
1512 
1513       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1514       // goes to zero, remove the entry.
1515       if (Dest[j].Scale != Scale)
1516         Dest[j].Scale -= Scale;
1517       else
1518         Dest.erase(Dest.begin() + j);
1519       Scale = 0;
1520       break;
1521     }
1522 
1523     // If we didn't consume this entry, add it to the end of the Dest list.
1524     if (Scale) {
1525       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1526       Dest.push_back(Entry);
1527     }
1528   }
1529 }
1530 
1531 bool BasicAAResult::constantOffsetHeuristic(
1532     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1533     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1534     DominatorTree *DT) {
1535   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1536       V2Size == MemoryLocation::UnknownSize)
1537     return false;
1538 
1539   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1540 
1541   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1542       Var0.Scale != -Var1.Scale)
1543     return false;
1544 
1545   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1546 
1547   // We'll strip off the Extensions of Var0 and Var1 and do another round
1548   // of GetLinearExpression decomposition. In the example above, if Var0
1549   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1550 
1551   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1552       V1Offset(Width, 0);
1553   bool NSW = true, NUW = true;
1554   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1555   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1556                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1557   NSW = true, NUW = true;
1558   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1559                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1560 
1561   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1562       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1563     return false;
1564 
1565   // We have a hit - Var0 and Var1 only differ by a constant offset!
1566 
1567   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1568   // Var1 is possible to calculate, but we're just interested in the absolute
1569   // minimum difference between the two. The minimum distance may occur due to
1570   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1571   // the minimum distance between %i and %i + 5 is 3.
1572   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1573   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1574   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1575 
1576   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1577   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1578   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1579   // V2Size can fit in the MinDiffBytes gap.
1580   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1581          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1582 }
1583 
1584 //===----------------------------------------------------------------------===//
1585 // BasicAliasAnalysis Pass
1586 //===----------------------------------------------------------------------===//
1587 
1588 char BasicAA::PassID;
1589 
1590 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) {
1591   return BasicAAResult(F.getParent()->getDataLayout(),
1592                        AM->getResult<TargetLibraryAnalysis>(F),
1593                        AM->getResult<AssumptionAnalysis>(F),
1594                        AM->getCachedResult<DominatorTreeAnalysis>(F),
1595                        AM->getCachedResult<LoopAnalysis>(F));
1596 }
1597 
1598 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1599     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1600 }
1601 
1602 char BasicAAWrapperPass::ID = 0;
1603 void BasicAAWrapperPass::anchor() {}
1604 
1605 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1606                       "Basic Alias Analysis (stateless AA impl)", true, true)
1607 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1608 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1609 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1610                     "Basic Alias Analysis (stateless AA impl)", true, true)
1611 
1612 FunctionPass *llvm::createBasicAAWrapperPass() {
1613   return new BasicAAWrapperPass();
1614 }
1615 
1616 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1617   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1618   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1619   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1620   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1621 
1622   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1623                                  ACT.getAssumptionCache(F),
1624                                  DTWP ? &DTWP->getDomTree() : nullptr,
1625                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1626 
1627   return false;
1628 }
1629 
1630 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1631   AU.setPreservesAll();
1632   AU.addRequired<AssumptionCacheTracker>();
1633   AU.addRequired<TargetLibraryInfoWrapperPass>();
1634 }
1635 
1636 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1637   return BasicAAResult(
1638       F.getParent()->getDataLayout(),
1639       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1640       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1641 }
1642