15ef987c9SKirill Okhotnikov //===-- Single-precision tanh function ------------------------------------===// 25ef987c9SKirill Okhotnikov // 35ef987c9SKirill Okhotnikov // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 45ef987c9SKirill Okhotnikov // See https://llvm.org/LICENSE.txt for license information. 55ef987c9SKirill Okhotnikov // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 65ef987c9SKirill Okhotnikov // 75ef987c9SKirill Okhotnikov //===----------------------------------------------------------------------===// 85ef987c9SKirill Okhotnikov 95ef987c9SKirill Okhotnikov #include "src/math/tanhf.h" 105ef987c9SKirill Okhotnikov #include "src/__support/FPUtil/FPBits.h" 115dbd5118STue Ly #include "src/__support/FPUtil/PolyEval.h" 125dbd5118STue Ly #include "src/__support/FPUtil/multiply_add.h" 135dbd5118STue Ly #include "src/__support/FPUtil/nearest_integer.h" 14*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 15737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 165dbd5118STue Ly #include "src/__support/macros/properties/cpu_features.h" 1789ed5b7cSKirill Okhotnikov #include "src/math/generic/explogxf.h" 185ef987c9SKirill Okhotnikov 19*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 205ef987c9SKirill Okhotnikov 215dbd5118STue Ly // 2^6 * log2(e) 225dbd5118STue Ly constexpr double LOG2_E_EXP2_6 = ExpBase::LOG2_B * 2.0; 235dbd5118STue Ly 245ef987c9SKirill Okhotnikov LLVM_LIBC_FUNCTION(float, tanhf, (float x)) { 255ef987c9SKirill Okhotnikov using FPBits = typename fputil::FPBits<float>; 265ef987c9SKirill Okhotnikov FPBits xbits(x); 27ea43c8eeSGuillaume Chatelet uint32_t x_abs = xbits.abs().uintval(); 285ef987c9SKirill Okhotnikov 2911ec512fSGuillaume Chatelet const int sign_index = xbits.is_neg() ? 1 : 0; 3011ec512fSGuillaume Chatelet 315dbd5118STue Ly // When |x| >= 15, or x is inf or nan, or |x| <= 0.078125 325dbd5118STue Ly if (LIBC_UNLIKELY((x_abs >= 0x4170'0000U) || (x_abs <= 0x3da0'0000U))) { 335dbd5118STue Ly if (x_abs <= 0x3da0'0000U) { 345ef987c9SKirill Okhotnikov // |x| <= 0.078125 355dbd5118STue Ly if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) { 365dbd5118STue Ly // |x| <= 2^-26 375dbd5118STue Ly return (x_abs != 0) 385dbd5118STue Ly ? static_cast<float>(x - 0x1.5555555555555p-2 * x * x * x) 395dbd5118STue Ly : x; 405dbd5118STue Ly } 415dbd5118STue Ly 425dbd5118STue Ly const double TAYLOR[] = {-0x1.5555555555555p-2, 0x1.1111111111111p-3, 435dbd5118STue Ly -0x1.ba1ba1ba1ba1cp-5, 0x1.664f4882c10fap-6, 445dbd5118STue Ly -0x1.226e355e6c23dp-7}; 455ef987c9SKirill Okhotnikov double xdbl = x; 465ef987c9SKirill Okhotnikov double x2 = xdbl * xdbl; 475dbd5118STue Ly // Taylor polynomial. 485dbd5118STue Ly double x4 = x2 * x2; 495dbd5118STue Ly double c0 = x2 * TAYLOR[0]; 505dbd5118STue Ly double c1 = fputil::multiply_add(x2, TAYLOR[2], TAYLOR[1]); 515dbd5118STue Ly double c2 = fputil::multiply_add(x2, TAYLOR[4], TAYLOR[3]); 525dbd5118STue Ly double pe = fputil::polyeval(x4, c0, c1, c2); 535dbd5118STue Ly 547d11a592SAlex Brachet return static_cast<float>(fputil::multiply_add(xdbl, pe, xdbl)); 555ef987c9SKirill Okhotnikov } 565ef987c9SKirill Okhotnikov 575dbd5118STue Ly // |x| >= 15 585dbd5118STue Ly if (LIBC_UNLIKELY(xbits.is_nan())) 595dbd5118STue Ly return x + 1.0f; // sNaN to qNaN + signal 605dbd5118STue Ly 61e328d193SMichael Jones constexpr float SIGNS[2][2] = {{1.0f, -0x1.0p-25f}, {-1.0f, 0x1.0p-25f}}; 625dbd5118STue Ly 635dbd5118STue Ly if (LIBC_UNLIKELY(xbits.is_inf())) 6411ec512fSGuillaume Chatelet return SIGNS[sign_index][0]; 655dbd5118STue Ly 6611ec512fSGuillaume Chatelet return SIGNS[sign_index][0] + SIGNS[sign_index][1]; 675ef987c9SKirill Okhotnikov } 685ef987c9SKirill Okhotnikov 695dbd5118STue Ly // Range reduction: e^(2x) = 2^(hi + mid) * e^lo 705dbd5118STue Ly // Let k = round( x * 2^6 * log2(e)), 715dbd5118STue Ly // So k = (hi + mid) * 2^5 725dbd5118STue Ly // Then lo = 2x - (hi + mid) * log(2) = 2x - k * 2^-5 * log(2). 735dbd5118STue Ly 745dbd5118STue Ly double xd = static_cast<double>(x); 755dbd5118STue Ly // k = round( x* 2^6 * log2(e) ) 765dbd5118STue Ly double k; 775dbd5118STue Ly // mk = -k 785dbd5118STue Ly int mk; 795dbd5118STue Ly #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT 805dbd5118STue Ly k = fputil::nearest_integer(xd * LOG2_E_EXP2_6); 815dbd5118STue Ly mk = -static_cast<int>(k); 824973eee1STue Ly #else 835dbd5118STue Ly constexpr double HALF_WAY[2] = {-0.5, 0.5}; 845dbd5118STue Ly 855dbd5118STue Ly mk = static_cast<int>( 8611ec512fSGuillaume Chatelet fputil::multiply_add(xd, -LOG2_E_EXP2_6, HALF_WAY[sign_index])); 875dbd5118STue Ly k = static_cast<double>(-mk); 885dbd5118STue Ly #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT 895dbd5118STue Ly // -hi = floor(-k * 2^(-MID_BITS)) 905dbd5118STue Ly // exp_mhi = shift -hi to the exponent field of double precision. 915dbd5118STue Ly int64_t exp_mhi = static_cast<int64_t>(mk >> ExpBase::MID_BITS) 92c09e6905SGuillaume Chatelet << fputil::FPBits<double>::FRACTION_LEN; 935dbd5118STue Ly // mh = 2^(-hi - mid) 945dbd5118STue Ly int64_t mh_bits = ExpBase::EXP_2_MID[mk & ExpBase::MID_MASK] + exp_mhi; 955dbd5118STue Ly double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val(); 965dbd5118STue Ly // dx = lo/2 = x - (hi + mid) * log(2)/2 = x - k * 2^-6 * log(2) 975dbd5118STue Ly double dx = fputil::multiply_add( 985dbd5118STue Ly k, ExpBase::M_LOGB_2_LO * 0.5, 995dbd5118STue Ly fputil::multiply_add(k, ExpBase::M_LOGB_2_HI * 0.5, xd)); 1005dbd5118STue Ly 1015dbd5118STue Ly // > P = fpminimax(expm1(2*x)/x, 4, [|D...|], [-log(2)/128, log(2)/128]); 1025dbd5118STue Ly constexpr double COEFFS[] = {0x1.ffffffffe5bc8p0, 0x1.555555555cd67p0, 1035dbd5118STue Ly 0x1.5555c2a9b48b4p-1, 0x1.11112a0e34bdbp-2}; 1045dbd5118STue Ly 1055dbd5118STue Ly double dx2 = dx * dx; 1065dbd5118STue Ly double c0 = fputil::multiply_add(dx, 2.0, 1.0); 1075dbd5118STue Ly double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]); 1085dbd5118STue Ly double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]); 1095dbd5118STue Ly double r = fputil::polyeval(dx2, c0, c1, c2); 1105dbd5118STue Ly 1115dbd5118STue Ly // tanh(x) = sinh(x) / cosh(x) 1125dbd5118STue Ly // = (e^x - e^(-x)) / (e^x + e^(-x)) 1135dbd5118STue Ly // = (e^(2x) - 1) / (e^(2x) + 1) 1145dbd5118STue Ly // = (2^(hi + mid) * e^lo - 1) / (2^(hi + mid) * e^lo + 1) 1155dbd5118STue Ly // = (e^lo - 2^(-hi - mid)) / (e^lo + 2^(-hi - mid)) 1165dbd5118STue Ly // = (r - mh) / (r + mh) 1175dbd5118STue Ly return static_cast<float>((r - mh) / (r + mh)); 1185ef987c9SKirill Okhotnikov } 1195ef987c9SKirill Okhotnikov 120*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 121