17d68d9d2Slntue //===-- Double-precision tan function -------------------------------------===// 27d68d9d2Slntue // 37d68d9d2Slntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 47d68d9d2Slntue // See https://llvm.org/LICENSE.txt for license information. 57d68d9d2Slntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 67d68d9d2Slntue // 77d68d9d2Slntue //===----------------------------------------------------------------------===// 87d68d9d2Slntue 97d68d9d2Slntue #include "src/math/tan.h" 107d68d9d2Slntue #include "hdr/errno_macros.h" 117d68d9d2Slntue #include "src/__support/FPUtil/FEnvImpl.h" 127d68d9d2Slntue #include "src/__support/FPUtil/FPBits.h" 137d68d9d2Slntue #include "src/__support/FPUtil/PolyEval.h" 147d68d9d2Slntue #include "src/__support/FPUtil/double_double.h" 157d68d9d2Slntue #include "src/__support/FPUtil/dyadic_float.h" 167d68d9d2Slntue #include "src/__support/FPUtil/except_value_utils.h" 177d68d9d2Slntue #include "src/__support/FPUtil/multiply_add.h" 187d68d9d2Slntue #include "src/__support/FPUtil/rounding_mode.h" 197d68d9d2Slntue #include "src/__support/common.h" 205ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 217d68d9d2Slntue #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 227d68d9d2Slntue #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 2351e9430aSlntue #include "src/math/generic/range_reduction_double_common.h" 247d68d9d2Slntue 2551e9430aSlntue #ifdef LIBC_TARGET_CPU_HAS_FMA 2651e9430aSlntue #include "range_reduction_double_fma.h" 2751e9430aSlntue #else 2851e9430aSlntue #include "range_reduction_double_nofma.h" 2951e9430aSlntue #endif // LIBC_TARGET_CPU_HAS_FMA 307d68d9d2Slntue 315ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 327d68d9d2Slntue 337d68d9d2Slntue using DoubleDouble = fputil::DoubleDouble; 347d68d9d2Slntue using Float128 = typename fputil::DyadicFloat<128>; 357d68d9d2Slntue 367d68d9d2Slntue namespace { 377d68d9d2Slntue 3851e9430aSlntue LIBC_INLINE double tan_eval(const DoubleDouble &u, DoubleDouble &result) { 397d68d9d2Slntue // Evaluate tan(y) = tan(x - k * (pi/128)) 407d68d9d2Slntue // We use the degree-9 Taylor approximation: 417d68d9d2Slntue // tan(y) ~ P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 427d68d9d2Slntue // Then the error is bounded by: 437d68d9d2Slntue // |tan(y) - P(y)| < 2^-6 * |y|^11 < 2^-6 * 2^-66 = 2^-72. 447d68d9d2Slntue // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms 457d68d9d2Slntue // < ulp(u_hi^3) gives us: 467d68d9d2Slntue // P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 = ... 477d68d9d2Slntue // ~ u_hi + u_hi^3 * (1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + 487d68d9d2Slntue // + u_hi^2 * 62/2835))) + 497d68d9d2Slntue // + u_lo (1 + u_hi^2 * (1 + u_hi^2 * 2/3)) 507d68d9d2Slntue double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58. 517d68d9d2Slntue // p1 ~ 17/315 + u_hi^2 62 / 2835. 527d68d9d2Slntue double p1 = 537d68d9d2Slntue fputil::multiply_add(u_hi_sq, 0x1.664f4882c10fap-6, 0x1.ba1ba1ba1ba1cp-5); 547d68d9d2Slntue // p2 ~ 1/3 + u_hi^2 2 / 15. 557d68d9d2Slntue double p2 = 567d68d9d2Slntue fputil::multiply_add(u_hi_sq, 0x1.1111111111111p-3, 0x1.5555555555555p-2); 577d68d9d2Slntue // q1 ~ 1 + u_hi^2 * 2/3. 587d68d9d2Slntue double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-1, 1.0); 597d68d9d2Slntue double u_hi_3 = u_hi_sq * u.hi; 607d68d9d2Slntue double u_hi_4 = u_hi_sq * u_hi_sq; 617d68d9d2Slntue // p3 ~ 1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + u_hi^2 * 62/2835)) 627d68d9d2Slntue double p3 = fputil::multiply_add(u_hi_4, p1, p2); 637d68d9d2Slntue // q2 ~ 1 + u_hi^2 * (1 + u_hi^2 * 2/3) 647d68d9d2Slntue double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0); 657d68d9d2Slntue double tan_lo = fputil::multiply_add(u_hi_3, p3, u.lo * q2); 667d68d9d2Slntue // Overall, |tan(y) - (u_hi + tan_lo)| < ulp(u_hi^3) <= 2^-71. 677d68d9d2Slntue // And the relative errors is: 687d68d9d2Slntue // |(tan(y) - (u_hi + tan_lo)) / tan(y) | <= 2*ulp(u_hi^2) < 2^-64 6951e9430aSlntue result = fputil::exact_add(u.hi, tan_lo); 7051e9430aSlntue return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(), 7151e9430aSlntue 0x1.0p-51, 0x1.0p-102); 727d68d9d2Slntue } 737d68d9d2Slntue 7451e9430aSlntue #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS 757d68d9d2Slntue // Accurate evaluation of tan for small u. 76d3a55896SJoseph Huber [[maybe_unused]] Float128 tan_eval(const Float128 &u) { 777d68d9d2Slntue Float128 u_sq = fputil::quick_mul(u, u); 787d68d9d2Slntue 797d68d9d2Slntue // tan(x) ~ x + x^3/3 + x^5 * 2/15 + x^7 * 17/315 + x^9 * 62/2835 + 807d68d9d2Slntue // + x^11 * 1382/155925 + x^13 * 21844/6081075 + 817d68d9d2Slntue // + x^15 * 929569/638512875 + x^17 * 6404582/10854718875 827d68d9d2Slntue // Relative errors < 2^-127 for |u| < pi/256. 837d68d9d2Slntue constexpr Float128 TAN_COEFFS[] = { 847d68d9d2Slntue {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1 857d68d9d2Slntue {Sign::POS, -129, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1 867d68d9d2Slntue {Sign::POS, -130, 0x88888888'88888888'88888888'88888889_u128}, // 2/15 877d68d9d2Slntue {Sign::POS, -132, 0xdd0dd0dd'0dd0dd0d'd0dd0dd0'dd0dd0dd_u128}, // 17/315 887d68d9d2Slntue {Sign::POS, -133, 0xb327a441'6087cf99'6b5dd24e'ec0b327a_u128}, // 62/2835 897d68d9d2Slntue {Sign::POS, -134, 907d68d9d2Slntue 0x91371aaf'3611e47a'da8e1cba'7d900eca_u128}, // 1382/155925 917d68d9d2Slntue {Sign::POS, -136, 927d68d9d2Slntue 0xeb69e870'abeefdaf'e606d2e4'd1e65fbc_u128}, // 21844/6081075 937d68d9d2Slntue {Sign::POS, -137, 947d68d9d2Slntue 0xbed1b229'5baf15b5'0ec9af45'a2619971_u128}, // 929569/638512875 957d68d9d2Slntue {Sign::POS, -138, 967d68d9d2Slntue 0x9aac1240'1b3a2291'1b2ac7e3'e4627d0a_u128}, // 6404582/10854718875 977d68d9d2Slntue }; 987d68d9d2Slntue 997d68d9d2Slntue return fputil::quick_mul( 1007d68d9d2Slntue u, fputil::polyeval(u_sq, TAN_COEFFS[0], TAN_COEFFS[1], TAN_COEFFS[2], 1017d68d9d2Slntue TAN_COEFFS[3], TAN_COEFFS[4], TAN_COEFFS[5], 1027d68d9d2Slntue TAN_COEFFS[6], TAN_COEFFS[7], TAN_COEFFS[8])); 1037d68d9d2Slntue } 1047d68d9d2Slntue 1057d68d9d2Slntue // Calculation a / b = a * (1/b) for Float128. 1067d68d9d2Slntue // Using the initial approximation of q ~ (1/b), then apply 2 Newton-Raphson 1077d68d9d2Slntue // iterations, before multiplying by a. 10812e47aabSJoseph Huber [[maybe_unused]] Float128 newton_raphson_div(const Float128 &a, Float128 b, 10912e47aabSJoseph Huber double q) { 1107d68d9d2Slntue Float128 q0(q); 1117d68d9d2Slntue constexpr Float128 TWO(2.0); 1127d68d9d2Slntue b.sign = (b.sign == Sign::POS) ? Sign::NEG : Sign::POS; 1137d68d9d2Slntue Float128 q1 = 1147d68d9d2Slntue fputil::quick_mul(q0, fputil::quick_add(TWO, fputil::quick_mul(b, q0))); 1157d68d9d2Slntue Float128 q2 = 1167d68d9d2Slntue fputil::quick_mul(q1, fputil::quick_add(TWO, fputil::quick_mul(b, q1))); 1177d68d9d2Slntue return fputil::quick_mul(a, q2); 1187d68d9d2Slntue } 11951e9430aSlntue #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS 1207d68d9d2Slntue 1217d68d9d2Slntue } // anonymous namespace 1227d68d9d2Slntue 1237d68d9d2Slntue LLVM_LIBC_FUNCTION(double, tan, (double x)) { 1247d68d9d2Slntue using FPBits = typename fputil::FPBits<double>; 1257d68d9d2Slntue FPBits xbits(x); 1267d68d9d2Slntue 1277d68d9d2Slntue uint16_t x_e = xbits.get_biased_exponent(); 1287d68d9d2Slntue 1297d68d9d2Slntue DoubleDouble y; 1307d68d9d2Slntue unsigned k; 13151e9430aSlntue LargeRangeReduction range_reduction_large{}; 1327d68d9d2Slntue 13351e9430aSlntue // |x| < 2^16 1347d68d9d2Slntue if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) { 13551e9430aSlntue // |x| < 2^-7 13651e9430aSlntue if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) { 13751e9430aSlntue // |x| < 2^-27, |tan(x) - x| < ulp(x)/2. 1387d68d9d2Slntue if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) { 1397d68d9d2Slntue // Signed zeros. 1407d68d9d2Slntue if (LIBC_UNLIKELY(x == 0.0)) 141*0f4b3c40Slntue return x + x; // Make sure it works with FTZ/DAZ. 1427d68d9d2Slntue 1437d68d9d2Slntue #ifdef LIBC_TARGET_CPU_HAS_FMA 1447d68d9d2Slntue return fputil::multiply_add(x, 0x1.0p-54, x); 1457d68d9d2Slntue #else 1467d68d9d2Slntue if (LIBC_UNLIKELY(x_e < 4)) { 1477d68d9d2Slntue int rounding_mode = fputil::quick_get_round(); 14851e9430aSlntue if ((xbits.sign() == Sign::POS && rounding_mode == FE_UPWARD) || 14951e9430aSlntue (xbits.sign() == Sign::NEG && rounding_mode == FE_DOWNWARD)) 1507d68d9d2Slntue return FPBits(xbits.uintval() + 1).get_val(); 1517d68d9d2Slntue } 1527d68d9d2Slntue return fputil::multiply_add(x, 0x1.0p-54, x); 1537d68d9d2Slntue #endif // LIBC_TARGET_CPU_HAS_FMA 1547d68d9d2Slntue } 15551e9430aSlntue // No range reduction needed. 15651e9430aSlntue k = 0; 15751e9430aSlntue y.lo = 0.0; 15851e9430aSlntue y.hi = x; 15951e9430aSlntue } else { 16051e9430aSlntue // Small range reduction. 1617d68d9d2Slntue k = range_reduction_small(x, y); 16251e9430aSlntue } 1637d68d9d2Slntue } else { 1647d68d9d2Slntue // Inf or NaN 1657d68d9d2Slntue if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) { 1667d68d9d2Slntue // tan(+-Inf) = NaN 1677d68d9d2Slntue if (xbits.get_mantissa() == 0) { 1687d68d9d2Slntue fputil::set_errno_if_required(EDOM); 1697d68d9d2Slntue fputil::raise_except_if_required(FE_INVALID); 1707d68d9d2Slntue } 1717d68d9d2Slntue return x + FPBits::quiet_nan().get_val(); 1727d68d9d2Slntue } 1737d68d9d2Slntue 1747d68d9d2Slntue // Large range reduction. 17551e9430aSlntue k = range_reduction_large.fast(x, y); 1767d68d9d2Slntue } 1777d68d9d2Slntue 17851e9430aSlntue DoubleDouble tan_y; 17951e9430aSlntue [[maybe_unused]] double err = tan_eval(y, tan_y); 1807d68d9d2Slntue 1817d68d9d2Slntue // Look up sin(k * pi/128) and cos(k * pi/128) 18251e9430aSlntue #ifdef LIBC_MATH_HAS_SMALL_TABLES 18351e9430aSlntue // Memory saving versions. Use 65-entry table: 18451e9430aSlntue auto get_idx_dd = [](unsigned kk) -> DoubleDouble { 18551e9430aSlntue unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); 18651e9430aSlntue DoubleDouble ans = SIN_K_PI_OVER_128[idx]; 18751e9430aSlntue if (kk & 128) { 18851e9430aSlntue ans.hi = -ans.hi; 18951e9430aSlntue ans.lo = -ans.lo; 19051e9430aSlntue } 19151e9430aSlntue return ans; 19251e9430aSlntue }; 19351e9430aSlntue DoubleDouble msin_k = get_idx_dd(k + 128); 19451e9430aSlntue DoubleDouble cos_k = get_idx_dd(k + 64); 19551e9430aSlntue #else 1967d68d9d2Slntue // Fast look up version, but needs 256-entry table. 1977d68d9d2Slntue // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). 1987d68d9d2Slntue DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255]; 1997d68d9d2Slntue DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255]; 20051e9430aSlntue #endif // LIBC_MATH_HAS_SMALL_TABLES 2017d68d9d2Slntue 2027d68d9d2Slntue // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). 2037d68d9d2Slntue // So k is an integer and -pi / 256 <= y <= pi / 256. 2047d68d9d2Slntue // Then tan(x) = sin(x) / cos(x) 2057d68d9d2Slntue // = sin((k * pi/128 + y) / cos((k * pi/128 + y) 2067d68d9d2Slntue // = (cos(y) * sin(k*pi/128) + sin(y) * cos(k*pi/128)) / 2077d68d9d2Slntue // / (cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128)) 2087d68d9d2Slntue // = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) / 2097d68d9d2Slntue // / (cos(k*pi/128) - tan(y) * sin(k*pi/128)) 21051e9430aSlntue DoubleDouble cos_k_tan_y = fputil::quick_mult(tan_y, cos_k); 21151e9430aSlntue DoubleDouble msin_k_tan_y = fputil::quick_mult(tan_y, msin_k); 2127d68d9d2Slntue 2137d68d9d2Slntue // num_dd = sin(k*pi/128) + tan(y) * cos(k*pi/128) 2147d68d9d2Slntue DoubleDouble num_dd = fputil::exact_add<false>(cos_k_tan_y.hi, -msin_k.hi); 2157d68d9d2Slntue // den_dd = cos(k*pi/128) - tan(y) * sin(k*pi/128) 2167d68d9d2Slntue DoubleDouble den_dd = fputil::exact_add<false>(msin_k_tan_y.hi, cos_k.hi); 2177d68d9d2Slntue num_dd.lo += cos_k_tan_y.lo - msin_k.lo; 2187d68d9d2Slntue den_dd.lo += msin_k_tan_y.lo + cos_k.lo; 2197d68d9d2Slntue 22051e9430aSlntue #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS 2217d68d9d2Slntue double tan_x = (num_dd.hi + num_dd.lo) / (den_dd.hi + den_dd.lo); 2227d68d9d2Slntue return tan_x; 2237d68d9d2Slntue #else 2247d68d9d2Slntue // Accurate test and pass for correctly rounded implementation. 2257d68d9d2Slntue 2267d68d9d2Slntue // Accurate double-double division 2277d68d9d2Slntue DoubleDouble tan_x = fputil::div(num_dd, den_dd); 2287d68d9d2Slntue 22951e9430aSlntue // Simple error bound: |1 / den_dd| < 2^(1 + floor(-log2(den_dd)))). 23051e9430aSlntue uint64_t den_inv = (static_cast<uint64_t>(FPBits::EXP_BIAS + 1) 23151e9430aSlntue << (FPBits::FRACTION_LEN + 1)) - 23251e9430aSlntue (FPBits(den_dd.hi).uintval() & FPBits::EXP_MASK); 2337d68d9d2Slntue 23451e9430aSlntue // For tan_x = (num_dd + err) / (den_dd + err), the error is bounded by: 23551e9430aSlntue // | tan_x - num_dd / den_dd | <= err * ( 1 + | tan_x * den_dd | ). 23651e9430aSlntue double tan_err = 23751e9430aSlntue err * fputil::multiply_add(FPBits(den_inv).get_val(), 23851e9430aSlntue FPBits(tan_x.hi).abs().get_val(), 1.0); 2397d68d9d2Slntue 2407d68d9d2Slntue double err_higher = tan_x.lo + tan_err; 2417d68d9d2Slntue double err_lower = tan_x.lo - tan_err; 2427d68d9d2Slntue 2437d68d9d2Slntue double tan_upper = tan_x.hi + err_higher; 2447d68d9d2Slntue double tan_lower = tan_x.hi + err_lower; 2457d68d9d2Slntue 2467d68d9d2Slntue // Ziv's rounding test. 2477d68d9d2Slntue if (LIBC_LIKELY(tan_upper == tan_lower)) 2487d68d9d2Slntue return tan_upper; 2497d68d9d2Slntue 2507d68d9d2Slntue Float128 u_f128; 2517d68d9d2Slntue if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) 25251e9430aSlntue u_f128 = range_reduction_small_f128(x); 2537d68d9d2Slntue else 2547d68d9d2Slntue u_f128 = range_reduction_large.accurate(); 2557d68d9d2Slntue 2567d68d9d2Slntue Float128 tan_u = tan_eval(u_f128); 2577d68d9d2Slntue 2587d68d9d2Slntue auto get_sin_k = [](unsigned kk) -> Float128 { 2597d68d9d2Slntue unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); 26051e9430aSlntue Float128 ans = SIN_K_PI_OVER_128_F128[idx]; 2617d68d9d2Slntue if (kk & 128) 2627d68d9d2Slntue ans.sign = Sign::NEG; 2637d68d9d2Slntue return ans; 2647d68d9d2Slntue }; 2657d68d9d2Slntue 2667d68d9d2Slntue // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). 2677d68d9d2Slntue Float128 sin_k_f128 = get_sin_k(k); 2687d68d9d2Slntue Float128 cos_k_f128 = get_sin_k(k + 64); 2697d68d9d2Slntue Float128 msin_k_f128 = get_sin_k(k + 128); 2707d68d9d2Slntue 2717d68d9d2Slntue // num_f128 = sin(k*pi/128) + tan(y) * cos(k*pi/128) 2727d68d9d2Slntue Float128 num_f128 = 2737d68d9d2Slntue fputil::quick_add(sin_k_f128, fputil::quick_mul(cos_k_f128, tan_u)); 2747d68d9d2Slntue // den_f128 = cos(k*pi/128) - tan(y) * sin(k*pi/128) 2757d68d9d2Slntue Float128 den_f128 = 2767d68d9d2Slntue fputil::quick_add(cos_k_f128, fputil::quick_mul(msin_k_f128, tan_u)); 2777d68d9d2Slntue 2787d68d9d2Slntue // tan(x) = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) / 2797d68d9d2Slntue // / (cos(k*pi/128) - tan(y) * sin(k*pi/128)) 2807d68d9d2Slntue // TODO: The initial seed 1.0/den_dd.hi for Newton-Raphson reciprocal can be 2817d68d9d2Slntue // reused from DoubleDouble fputil::div in the fast pass. 2827d68d9d2Slntue Float128 result = newton_raphson_div(num_f128, den_f128, 1.0 / den_dd.hi); 2837d68d9d2Slntue 2847d68d9d2Slntue // TODO: Add assertion if Ziv's accuracy tests fail in debug mode. 2857d68d9d2Slntue // https://github.com/llvm/llvm-project/issues/96452. 2867d68d9d2Slntue return static_cast<double>(result); 2877d68d9d2Slntue 28851e9430aSlntue #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS 2897d68d9d2Slntue } 2907d68d9d2Slntue 2915ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 292