xref: /llvm-project/libc/src/math/generic/tan.cpp (revision 0f4b3c409fbd756d826c89d5539d9ea22bcc56aa)
17d68d9d2Slntue //===-- Double-precision tan function -------------------------------------===//
27d68d9d2Slntue //
37d68d9d2Slntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
47d68d9d2Slntue // See https://llvm.org/LICENSE.txt for license information.
57d68d9d2Slntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
67d68d9d2Slntue //
77d68d9d2Slntue //===----------------------------------------------------------------------===//
87d68d9d2Slntue 
97d68d9d2Slntue #include "src/math/tan.h"
107d68d9d2Slntue #include "hdr/errno_macros.h"
117d68d9d2Slntue #include "src/__support/FPUtil/FEnvImpl.h"
127d68d9d2Slntue #include "src/__support/FPUtil/FPBits.h"
137d68d9d2Slntue #include "src/__support/FPUtil/PolyEval.h"
147d68d9d2Slntue #include "src/__support/FPUtil/double_double.h"
157d68d9d2Slntue #include "src/__support/FPUtil/dyadic_float.h"
167d68d9d2Slntue #include "src/__support/FPUtil/except_value_utils.h"
177d68d9d2Slntue #include "src/__support/FPUtil/multiply_add.h"
187d68d9d2Slntue #include "src/__support/FPUtil/rounding_mode.h"
197d68d9d2Slntue #include "src/__support/common.h"
205ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
217d68d9d2Slntue #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
227d68d9d2Slntue #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
2351e9430aSlntue #include "src/math/generic/range_reduction_double_common.h"
247d68d9d2Slntue 
2551e9430aSlntue #ifdef LIBC_TARGET_CPU_HAS_FMA
2651e9430aSlntue #include "range_reduction_double_fma.h"
2751e9430aSlntue #else
2851e9430aSlntue #include "range_reduction_double_nofma.h"
2951e9430aSlntue #endif // LIBC_TARGET_CPU_HAS_FMA
307d68d9d2Slntue 
315ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
327d68d9d2Slntue 
337d68d9d2Slntue using DoubleDouble = fputil::DoubleDouble;
347d68d9d2Slntue using Float128 = typename fputil::DyadicFloat<128>;
357d68d9d2Slntue 
367d68d9d2Slntue namespace {
377d68d9d2Slntue 
3851e9430aSlntue LIBC_INLINE double tan_eval(const DoubleDouble &u, DoubleDouble &result) {
397d68d9d2Slntue   // Evaluate tan(y) = tan(x - k * (pi/128))
407d68d9d2Slntue   // We use the degree-9 Taylor approximation:
417d68d9d2Slntue   //   tan(y) ~ P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835
427d68d9d2Slntue   // Then the error is bounded by:
437d68d9d2Slntue   //   |tan(y) - P(y)| < 2^-6 * |y|^11 < 2^-6 * 2^-66 = 2^-72.
447d68d9d2Slntue   // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
457d68d9d2Slntue   // < ulp(u_hi^3) gives us:
467d68d9d2Slntue   //   P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 = ...
477d68d9d2Slntue   // ~ u_hi + u_hi^3 * (1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 +
487d68d9d2Slntue   //                                                     + u_hi^2 * 62/2835))) +
497d68d9d2Slntue   //        + u_lo (1 + u_hi^2 * (1 + u_hi^2 * 2/3))
507d68d9d2Slntue   double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58.
517d68d9d2Slntue   // p1 ~ 17/315 + u_hi^2 62 / 2835.
527d68d9d2Slntue   double p1 =
537d68d9d2Slntue       fputil::multiply_add(u_hi_sq, 0x1.664f4882c10fap-6, 0x1.ba1ba1ba1ba1cp-5);
547d68d9d2Slntue   // p2 ~ 1/3 + u_hi^2 2 / 15.
557d68d9d2Slntue   double p2 =
567d68d9d2Slntue       fputil::multiply_add(u_hi_sq, 0x1.1111111111111p-3, 0x1.5555555555555p-2);
577d68d9d2Slntue   // q1 ~ 1 + u_hi^2 * 2/3.
587d68d9d2Slntue   double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-1, 1.0);
597d68d9d2Slntue   double u_hi_3 = u_hi_sq * u.hi;
607d68d9d2Slntue   double u_hi_4 = u_hi_sq * u_hi_sq;
617d68d9d2Slntue   // p3 ~ 1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + u_hi^2 * 62/2835))
627d68d9d2Slntue   double p3 = fputil::multiply_add(u_hi_4, p1, p2);
637d68d9d2Slntue   // q2 ~ 1 + u_hi^2 * (1 + u_hi^2 * 2/3)
647d68d9d2Slntue   double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0);
657d68d9d2Slntue   double tan_lo = fputil::multiply_add(u_hi_3, p3, u.lo * q2);
667d68d9d2Slntue   // Overall, |tan(y) - (u_hi + tan_lo)| < ulp(u_hi^3) <= 2^-71.
677d68d9d2Slntue   // And the relative errors is:
687d68d9d2Slntue   // |(tan(y) - (u_hi + tan_lo)) / tan(y) | <= 2*ulp(u_hi^2) < 2^-64
6951e9430aSlntue   result = fputil::exact_add(u.hi, tan_lo);
7051e9430aSlntue   return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(),
7151e9430aSlntue                               0x1.0p-51, 0x1.0p-102);
727d68d9d2Slntue }
737d68d9d2Slntue 
7451e9430aSlntue #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
757d68d9d2Slntue // Accurate evaluation of tan for small u.
76d3a55896SJoseph Huber [[maybe_unused]] Float128 tan_eval(const Float128 &u) {
777d68d9d2Slntue   Float128 u_sq = fputil::quick_mul(u, u);
787d68d9d2Slntue 
797d68d9d2Slntue   // tan(x) ~ x + x^3/3 + x^5 * 2/15 + x^7 * 17/315 + x^9 * 62/2835 +
807d68d9d2Slntue   //          + x^11 * 1382/155925 + x^13 * 21844/6081075 +
817d68d9d2Slntue   //          + x^15 * 929569/638512875 + x^17 * 6404582/10854718875
827d68d9d2Slntue   // Relative errors < 2^-127 for |u| < pi/256.
837d68d9d2Slntue   constexpr Float128 TAN_COEFFS[] = {
847d68d9d2Slntue       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1
857d68d9d2Slntue       {Sign::POS, -129, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1
867d68d9d2Slntue       {Sign::POS, -130, 0x88888888'88888888'88888888'88888889_u128}, // 2/15
877d68d9d2Slntue       {Sign::POS, -132, 0xdd0dd0dd'0dd0dd0d'd0dd0dd0'dd0dd0dd_u128}, // 17/315
887d68d9d2Slntue       {Sign::POS, -133, 0xb327a441'6087cf99'6b5dd24e'ec0b327a_u128}, // 62/2835
897d68d9d2Slntue       {Sign::POS, -134,
907d68d9d2Slntue        0x91371aaf'3611e47a'da8e1cba'7d900eca_u128}, // 1382/155925
917d68d9d2Slntue       {Sign::POS, -136,
927d68d9d2Slntue        0xeb69e870'abeefdaf'e606d2e4'd1e65fbc_u128}, // 21844/6081075
937d68d9d2Slntue       {Sign::POS, -137,
947d68d9d2Slntue        0xbed1b229'5baf15b5'0ec9af45'a2619971_u128}, // 929569/638512875
957d68d9d2Slntue       {Sign::POS, -138,
967d68d9d2Slntue        0x9aac1240'1b3a2291'1b2ac7e3'e4627d0a_u128}, // 6404582/10854718875
977d68d9d2Slntue   };
987d68d9d2Slntue 
997d68d9d2Slntue   return fputil::quick_mul(
1007d68d9d2Slntue       u, fputil::polyeval(u_sq, TAN_COEFFS[0], TAN_COEFFS[1], TAN_COEFFS[2],
1017d68d9d2Slntue                           TAN_COEFFS[3], TAN_COEFFS[4], TAN_COEFFS[5],
1027d68d9d2Slntue                           TAN_COEFFS[6], TAN_COEFFS[7], TAN_COEFFS[8]));
1037d68d9d2Slntue }
1047d68d9d2Slntue 
1057d68d9d2Slntue // Calculation a / b = a * (1/b) for Float128.
1067d68d9d2Slntue // Using the initial approximation of q ~ (1/b), then apply 2 Newton-Raphson
1077d68d9d2Slntue // iterations, before multiplying by a.
10812e47aabSJoseph Huber [[maybe_unused]] Float128 newton_raphson_div(const Float128 &a, Float128 b,
10912e47aabSJoseph Huber                                              double q) {
1107d68d9d2Slntue   Float128 q0(q);
1117d68d9d2Slntue   constexpr Float128 TWO(2.0);
1127d68d9d2Slntue   b.sign = (b.sign == Sign::POS) ? Sign::NEG : Sign::POS;
1137d68d9d2Slntue   Float128 q1 =
1147d68d9d2Slntue       fputil::quick_mul(q0, fputil::quick_add(TWO, fputil::quick_mul(b, q0)));
1157d68d9d2Slntue   Float128 q2 =
1167d68d9d2Slntue       fputil::quick_mul(q1, fputil::quick_add(TWO, fputil::quick_mul(b, q1)));
1177d68d9d2Slntue   return fputil::quick_mul(a, q2);
1187d68d9d2Slntue }
11951e9430aSlntue #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
1207d68d9d2Slntue 
1217d68d9d2Slntue } // anonymous namespace
1227d68d9d2Slntue 
1237d68d9d2Slntue LLVM_LIBC_FUNCTION(double, tan, (double x)) {
1247d68d9d2Slntue   using FPBits = typename fputil::FPBits<double>;
1257d68d9d2Slntue   FPBits xbits(x);
1267d68d9d2Slntue 
1277d68d9d2Slntue   uint16_t x_e = xbits.get_biased_exponent();
1287d68d9d2Slntue 
1297d68d9d2Slntue   DoubleDouble y;
1307d68d9d2Slntue   unsigned k;
13151e9430aSlntue   LargeRangeReduction range_reduction_large{};
1327d68d9d2Slntue 
13351e9430aSlntue   // |x| < 2^16
1347d68d9d2Slntue   if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
13551e9430aSlntue     // |x| < 2^-7
13651e9430aSlntue     if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) {
13751e9430aSlntue       // |x| < 2^-27, |tan(x) - x| < ulp(x)/2.
1387d68d9d2Slntue       if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
1397d68d9d2Slntue         // Signed zeros.
1407d68d9d2Slntue         if (LIBC_UNLIKELY(x == 0.0))
141*0f4b3c40Slntue           return x + x; // Make sure it works with FTZ/DAZ.
1427d68d9d2Slntue 
1437d68d9d2Slntue #ifdef LIBC_TARGET_CPU_HAS_FMA
1447d68d9d2Slntue         return fputil::multiply_add(x, 0x1.0p-54, x);
1457d68d9d2Slntue #else
1467d68d9d2Slntue         if (LIBC_UNLIKELY(x_e < 4)) {
1477d68d9d2Slntue           int rounding_mode = fputil::quick_get_round();
14851e9430aSlntue           if ((xbits.sign() == Sign::POS && rounding_mode == FE_UPWARD) ||
14951e9430aSlntue               (xbits.sign() == Sign::NEG && rounding_mode == FE_DOWNWARD))
1507d68d9d2Slntue             return FPBits(xbits.uintval() + 1).get_val();
1517d68d9d2Slntue         }
1527d68d9d2Slntue         return fputil::multiply_add(x, 0x1.0p-54, x);
1537d68d9d2Slntue #endif // LIBC_TARGET_CPU_HAS_FMA
1547d68d9d2Slntue       }
15551e9430aSlntue       // No range reduction needed.
15651e9430aSlntue       k = 0;
15751e9430aSlntue       y.lo = 0.0;
15851e9430aSlntue       y.hi = x;
15951e9430aSlntue     } else {
16051e9430aSlntue       // Small range reduction.
1617d68d9d2Slntue       k = range_reduction_small(x, y);
16251e9430aSlntue     }
1637d68d9d2Slntue   } else {
1647d68d9d2Slntue     // Inf or NaN
1657d68d9d2Slntue     if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
1667d68d9d2Slntue       // tan(+-Inf) = NaN
1677d68d9d2Slntue       if (xbits.get_mantissa() == 0) {
1687d68d9d2Slntue         fputil::set_errno_if_required(EDOM);
1697d68d9d2Slntue         fputil::raise_except_if_required(FE_INVALID);
1707d68d9d2Slntue       }
1717d68d9d2Slntue       return x + FPBits::quiet_nan().get_val();
1727d68d9d2Slntue     }
1737d68d9d2Slntue 
1747d68d9d2Slntue     // Large range reduction.
17551e9430aSlntue     k = range_reduction_large.fast(x, y);
1767d68d9d2Slntue   }
1777d68d9d2Slntue 
17851e9430aSlntue   DoubleDouble tan_y;
17951e9430aSlntue   [[maybe_unused]] double err = tan_eval(y, tan_y);
1807d68d9d2Slntue 
1817d68d9d2Slntue   // Look up sin(k * pi/128) and cos(k * pi/128)
18251e9430aSlntue #ifdef LIBC_MATH_HAS_SMALL_TABLES
18351e9430aSlntue   // Memory saving versions. Use 65-entry table:
18451e9430aSlntue   auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
18551e9430aSlntue     unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
18651e9430aSlntue     DoubleDouble ans = SIN_K_PI_OVER_128[idx];
18751e9430aSlntue     if (kk & 128) {
18851e9430aSlntue       ans.hi = -ans.hi;
18951e9430aSlntue       ans.lo = -ans.lo;
19051e9430aSlntue     }
19151e9430aSlntue     return ans;
19251e9430aSlntue   };
19351e9430aSlntue   DoubleDouble msin_k = get_idx_dd(k + 128);
19451e9430aSlntue   DoubleDouble cos_k = get_idx_dd(k + 64);
19551e9430aSlntue #else
1967d68d9d2Slntue   // Fast look up version, but needs 256-entry table.
1977d68d9d2Slntue   // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
1987d68d9d2Slntue   DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255];
1997d68d9d2Slntue   DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];
20051e9430aSlntue #endif // LIBC_MATH_HAS_SMALL_TABLES
2017d68d9d2Slntue 
2027d68d9d2Slntue   // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
2037d68d9d2Slntue   // So k is an integer and -pi / 256 <= y <= pi / 256.
2047d68d9d2Slntue   // Then tan(x) = sin(x) / cos(x)
2057d68d9d2Slntue   //             = sin((k * pi/128 + y) / cos((k * pi/128 + y)
2067d68d9d2Slntue   //             = (cos(y) * sin(k*pi/128) + sin(y) * cos(k*pi/128)) /
2077d68d9d2Slntue   //               / (cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128))
2087d68d9d2Slntue   //             = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
2097d68d9d2Slntue   //               / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
21051e9430aSlntue   DoubleDouble cos_k_tan_y = fputil::quick_mult(tan_y, cos_k);
21151e9430aSlntue   DoubleDouble msin_k_tan_y = fputil::quick_mult(tan_y, msin_k);
2127d68d9d2Slntue 
2137d68d9d2Slntue   // num_dd = sin(k*pi/128) + tan(y) * cos(k*pi/128)
2147d68d9d2Slntue   DoubleDouble num_dd = fputil::exact_add<false>(cos_k_tan_y.hi, -msin_k.hi);
2157d68d9d2Slntue   // den_dd = cos(k*pi/128) - tan(y) * sin(k*pi/128)
2167d68d9d2Slntue   DoubleDouble den_dd = fputil::exact_add<false>(msin_k_tan_y.hi, cos_k.hi);
2177d68d9d2Slntue   num_dd.lo += cos_k_tan_y.lo - msin_k.lo;
2187d68d9d2Slntue   den_dd.lo += msin_k_tan_y.lo + cos_k.lo;
2197d68d9d2Slntue 
22051e9430aSlntue #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
2217d68d9d2Slntue   double tan_x = (num_dd.hi + num_dd.lo) / (den_dd.hi + den_dd.lo);
2227d68d9d2Slntue   return tan_x;
2237d68d9d2Slntue #else
2247d68d9d2Slntue   // Accurate test and pass for correctly rounded implementation.
2257d68d9d2Slntue 
2267d68d9d2Slntue   // Accurate double-double division
2277d68d9d2Slntue   DoubleDouble tan_x = fputil::div(num_dd, den_dd);
2287d68d9d2Slntue 
22951e9430aSlntue   // Simple error bound: |1 / den_dd| < 2^(1 + floor(-log2(den_dd)))).
23051e9430aSlntue   uint64_t den_inv = (static_cast<uint64_t>(FPBits::EXP_BIAS + 1)
23151e9430aSlntue                       << (FPBits::FRACTION_LEN + 1)) -
23251e9430aSlntue                      (FPBits(den_dd.hi).uintval() & FPBits::EXP_MASK);
2337d68d9d2Slntue 
23451e9430aSlntue   // For tan_x = (num_dd + err) / (den_dd + err), the error is bounded by:
23551e9430aSlntue   //   | tan_x - num_dd / den_dd |  <= err * ( 1 + | tan_x * den_dd | ).
23651e9430aSlntue   double tan_err =
23751e9430aSlntue       err * fputil::multiply_add(FPBits(den_inv).get_val(),
23851e9430aSlntue                                  FPBits(tan_x.hi).abs().get_val(), 1.0);
2397d68d9d2Slntue 
2407d68d9d2Slntue   double err_higher = tan_x.lo + tan_err;
2417d68d9d2Slntue   double err_lower = tan_x.lo - tan_err;
2427d68d9d2Slntue 
2437d68d9d2Slntue   double tan_upper = tan_x.hi + err_higher;
2447d68d9d2Slntue   double tan_lower = tan_x.hi + err_lower;
2457d68d9d2Slntue 
2467d68d9d2Slntue   // Ziv's rounding test.
2477d68d9d2Slntue   if (LIBC_LIKELY(tan_upper == tan_lower))
2487d68d9d2Slntue     return tan_upper;
2497d68d9d2Slntue 
2507d68d9d2Slntue   Float128 u_f128;
2517d68d9d2Slntue   if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
25251e9430aSlntue     u_f128 = range_reduction_small_f128(x);
2537d68d9d2Slntue   else
2547d68d9d2Slntue     u_f128 = range_reduction_large.accurate();
2557d68d9d2Slntue 
2567d68d9d2Slntue   Float128 tan_u = tan_eval(u_f128);
2577d68d9d2Slntue 
2587d68d9d2Slntue   auto get_sin_k = [](unsigned kk) -> Float128 {
2597d68d9d2Slntue     unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
26051e9430aSlntue     Float128 ans = SIN_K_PI_OVER_128_F128[idx];
2617d68d9d2Slntue     if (kk & 128)
2627d68d9d2Slntue       ans.sign = Sign::NEG;
2637d68d9d2Slntue     return ans;
2647d68d9d2Slntue   };
2657d68d9d2Slntue 
2667d68d9d2Slntue   // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
2677d68d9d2Slntue   Float128 sin_k_f128 = get_sin_k(k);
2687d68d9d2Slntue   Float128 cos_k_f128 = get_sin_k(k + 64);
2697d68d9d2Slntue   Float128 msin_k_f128 = get_sin_k(k + 128);
2707d68d9d2Slntue 
2717d68d9d2Slntue   // num_f128 = sin(k*pi/128) + tan(y) * cos(k*pi/128)
2727d68d9d2Slntue   Float128 num_f128 =
2737d68d9d2Slntue       fputil::quick_add(sin_k_f128, fputil::quick_mul(cos_k_f128, tan_u));
2747d68d9d2Slntue   // den_f128 = cos(k*pi/128) - tan(y) * sin(k*pi/128)
2757d68d9d2Slntue   Float128 den_f128 =
2767d68d9d2Slntue       fputil::quick_add(cos_k_f128, fputil::quick_mul(msin_k_f128, tan_u));
2777d68d9d2Slntue 
2787d68d9d2Slntue   // tan(x) = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
2797d68d9d2Slntue   //          / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
2807d68d9d2Slntue   // TODO: The initial seed 1.0/den_dd.hi for Newton-Raphson reciprocal can be
2817d68d9d2Slntue   // reused from DoubleDouble fputil::div in the fast pass.
2827d68d9d2Slntue   Float128 result = newton_raphson_div(num_f128, den_f128, 1.0 / den_dd.hi);
2837d68d9d2Slntue 
2847d68d9d2Slntue   // TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
2857d68d9d2Slntue   // https://github.com/llvm/llvm-project/issues/96452.
2867d68d9d2Slntue   return static_cast<double>(result);
2877d68d9d2Slntue 
28851e9430aSlntue #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
2897d68d9d2Slntue }
2907d68d9d2Slntue 
2915ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
292