xref: /llvm-project/libc/src/math/generic/sinpif16.cpp (revision 7395ef5419a6438f0c48685bf00b7f151178743d)
1ddc3f2ddSwldfngrs //===-- Half-precision sinpif function ------------------------------------===//
2ddc3f2ddSwldfngrs //
3ddc3f2ddSwldfngrs // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4ddc3f2ddSwldfngrs // See https://llvm.org/LICENSE.txt for license information.
5ddc3f2ddSwldfngrs // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6ddc3f2ddSwldfngrs //
7ddc3f2ddSwldfngrs //===----------------------------------------------------------------------===//
8ddc3f2ddSwldfngrs 
9ddc3f2ddSwldfngrs #include "src/math/sinpif16.h"
10*7395ef54Swldfngrs #include "hdr/errno_macros.h"
11*7395ef54Swldfngrs #include "hdr/fenv_macros.h"
12*7395ef54Swldfngrs #include "sincosf16_utils.h"
13ddc3f2ddSwldfngrs #include "src/__support/FPUtil/FEnvImpl.h"
14ddc3f2ddSwldfngrs #include "src/__support/FPUtil/FPBits.h"
15ddc3f2ddSwldfngrs #include "src/__support/FPUtil/cast.h"
16ddc3f2ddSwldfngrs #include "src/__support/FPUtil/multiply_add.h"
17ddc3f2ddSwldfngrs 
18ddc3f2ddSwldfngrs namespace LIBC_NAMESPACE_DECL {
19ddc3f2ddSwldfngrs 
20ddc3f2ddSwldfngrs LLVM_LIBC_FUNCTION(float16, sinpif16, (float16 x)) {
21ddc3f2ddSwldfngrs   using FPBits = typename fputil::FPBits<float16>;
22ddc3f2ddSwldfngrs   FPBits xbits(x);
23ddc3f2ddSwldfngrs 
24ddc3f2ddSwldfngrs   uint16_t x_u = xbits.uintval();
25ddc3f2ddSwldfngrs   uint16_t x_abs = x_u & 0x7fff;
26*7395ef54Swldfngrs   float xf = x;
27ddc3f2ddSwldfngrs 
28ddc3f2ddSwldfngrs   // Range reduction:
29ddc3f2ddSwldfngrs   // For |x| > 1/32, we perform range reduction as follows:
30ddc3f2ddSwldfngrs   // Find k and y such that:
31ddc3f2ddSwldfngrs   //   x = (k + y) * 1/32
32ddc3f2ddSwldfngrs   //   k is an integer
33ddc3f2ddSwldfngrs   //   |y| < 0.5
34ddc3f2ddSwldfngrs   //
35ddc3f2ddSwldfngrs   // This is done by performing:
36ddc3f2ddSwldfngrs   //   k = round(x * 32)
37ddc3f2ddSwldfngrs   //   y = x * 32 - k
38ddc3f2ddSwldfngrs   //
39ddc3f2ddSwldfngrs   // Once k and y are computed, we then deduce the answer by the sine of sum
40ddc3f2ddSwldfngrs   // formula:
41ddc3f2ddSwldfngrs   //   sin(x * pi) = sin((k + y) * pi/32)
42*7395ef54Swldfngrs   //               = sin(k * pi/32) * cos(y * pi/32) +
43*7395ef54Swldfngrs   //                 sin(y * pi/32) * cos(k * pi/32)
44ddc3f2ddSwldfngrs 
45ddc3f2ddSwldfngrs   // For signed zeros
46ddc3f2ddSwldfngrs   if (LIBC_UNLIKELY(x_abs == 0U))
47ddc3f2ddSwldfngrs     return x;
48ddc3f2ddSwldfngrs 
49ddc3f2ddSwldfngrs   // Numbers greater or equal to 2^10 are integers, or infinity, or NaN
50ddc3f2ddSwldfngrs   if (LIBC_UNLIKELY(x_abs >= 0x6400)) {
51ddc3f2ddSwldfngrs     // Check for NaN or infinity values
52ddc3f2ddSwldfngrs     if (LIBC_UNLIKELY(x_abs >= 0x7c00)) {
53ddc3f2ddSwldfngrs       // If value is equal to infinity
54ddc3f2ddSwldfngrs       if (x_abs == 0x7c00) {
55ddc3f2ddSwldfngrs         fputil::set_errno_if_required(EDOM);
56ddc3f2ddSwldfngrs         fputil::raise_except_if_required(FE_INVALID);
57ddc3f2ddSwldfngrs       }
58ddc3f2ddSwldfngrs 
59ddc3f2ddSwldfngrs       return x + FPBits::quiet_nan().get_val();
60ddc3f2ddSwldfngrs     }
61ddc3f2ddSwldfngrs     return FPBits::zero(xbits.sign()).get_val();
62ddc3f2ddSwldfngrs   }
63ddc3f2ddSwldfngrs 
64*7395ef54Swldfngrs   float sin_k, cos_k, sin_y, cosm1_y;
65*7395ef54Swldfngrs   sincospif16_eval(xf, sin_k, cos_k, sin_y, cosm1_y);
66ddc3f2ddSwldfngrs 
67ddc3f2ddSwldfngrs   if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0))
68ddc3f2ddSwldfngrs     return FPBits::zero(xbits.sign()).get_val();
69ddc3f2ddSwldfngrs 
70ddc3f2ddSwldfngrs   // Since, cosm1_y = cos_y - 1, therefore:
71ddc3f2ddSwldfngrs   // 	sin(x * pi) = cos_k * sin_y + sin_k + (cosm1_y * sin_k)
72ddc3f2ddSwldfngrs   return fputil::cast<float16>(fputil::multiply_add(
73ddc3f2ddSwldfngrs       sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k)));
74ddc3f2ddSwldfngrs }
75*7395ef54Swldfngrs 
76ddc3f2ddSwldfngrs } // namespace LIBC_NAMESPACE_DECL
77