1ea93c538SHendrik Hübner //===-- Single-precision sinpif function ----------------------------------===// 2ea93c538SHendrik Hübner // 3ea93c538SHendrik Hübner // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4ea93c538SHendrik Hübner // See https://llvm.org/LICENSE.txt for license information. 5ea93c538SHendrik Hübner // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6ea93c538SHendrik Hübner // 7ea93c538SHendrik Hübner //===----------------------------------------------------------------------===// 8ea93c538SHendrik Hübner 9ea93c538SHendrik Hübner #include "src/math/sinpif.h" 10ea93c538SHendrik Hübner #include "sincosf_utils.h" 11ea93c538SHendrik Hübner #include "src/__support/FPUtil/FEnvImpl.h" 12ea93c538SHendrik Hübner #include "src/__support/FPUtil/FPBits.h" 13ea93c538SHendrik Hübner #include "src/__support/FPUtil/PolyEval.h" 14ea93c538SHendrik Hübner #include "src/__support/FPUtil/multiply_add.h" 15ea93c538SHendrik Hübner #include "src/__support/common.h" 16*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 17ea93c538SHendrik Hübner #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 18ea93c538SHendrik Hübner 19*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 20ea93c538SHendrik Hübner 21ea93c538SHendrik Hübner LLVM_LIBC_FUNCTION(float, sinpif, (float x)) { 22ea93c538SHendrik Hübner using FPBits = typename fputil::FPBits<float>; 23ea93c538SHendrik Hübner FPBits xbits(x); 24ea93c538SHendrik Hübner 25ea93c538SHendrik Hübner uint32_t x_u = xbits.uintval(); 26ea93c538SHendrik Hübner uint32_t x_abs = x_u & 0x7fff'ffffU; 27ea93c538SHendrik Hübner double xd = static_cast<double>(x); 28ea93c538SHendrik Hübner 29ea93c538SHendrik Hübner // Range reduction: 30f8834ed2SHendrik Hübner // For |x| > 1/32, we perform range reduction as follows: 31ea93c538SHendrik Hübner // Find k and y such that: 32ea93c538SHendrik Hübner // x = (k + y) * 1/32 33ea93c538SHendrik Hübner // k is an integer 34ea93c538SHendrik Hübner // |y| < 0.5 35f8834ed2SHendrik Hübner // 36f8834ed2SHendrik Hübner // This is done by performing: 37ea93c538SHendrik Hübner // k = round(x * 32) 38ea93c538SHendrik Hübner // y = x * 32 - k 39ea93c538SHendrik Hübner // 40ea93c538SHendrik Hübner // Once k and y are computed, we then deduce the answer by the sine of sum 41ea93c538SHendrik Hübner // formula: 42ea93c538SHendrik Hübner // sin(x * pi) = sin((k + y)*pi/32) 43ea93c538SHendrik Hübner // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) 44ea93c538SHendrik Hübner // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed 45ea93c538SHendrik Hübner // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are 46ea93c538SHendrik Hübner // computed using degree-7 and degree-6 minimax polynomials generated by 47ea93c538SHendrik Hübner // Sollya respectively. 48ea93c538SHendrik Hübner 49ea93c538SHendrik Hübner // |x| <= 1/16 50ea93c538SHendrik Hübner if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U)) { 51ea93c538SHendrik Hübner 52ea93c538SHendrik Hübner if (LIBC_UNLIKELY(x_abs < 0x33CD'01D7U)) { 53ea93c538SHendrik Hübner if (LIBC_UNLIKELY(x_abs == 0U)) { 54ea93c538SHendrik Hübner // For signed zeros. 55ea93c538SHendrik Hübner return x; 56ea93c538SHendrik Hübner } 57ea93c538SHendrik Hübner 58ea93c538SHendrik Hübner // For very small values we can approximate sinpi(x) with x * pi 59ea93c538SHendrik Hübner // An exhaustive test shows that this is accurate for |x| < 9.546391 × 60ea93c538SHendrik Hübner // 10-8 61ea93c538SHendrik Hübner double xdpi = xd * 0x1.921fb54442d18p1; 62ea93c538SHendrik Hübner return static_cast<float>(xdpi); 63ea93c538SHendrik Hübner } 64ea93c538SHendrik Hübner 65ea93c538SHendrik Hübner // |x| < 1/16. 66ea93c538SHendrik Hübner double xsq = xd * xd; 67ea93c538SHendrik Hübner 68ea93c538SHendrik Hübner // Degree-9 polynomial approximation: 69ea93c538SHendrik Hübner // sinpi(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 70ea93c538SHendrik Hübner // = x (1 + a_3 x^2 + ... + a_9 x^8) 71ea93c538SHendrik Hübner // = x * P(x^2) 72ea93c538SHendrik Hübner // generated by Sollya with the following commands: 73ea93c538SHendrik Hübner // > display = hexadecimal; 74ea93c538SHendrik Hübner // > Q = fpminimax(sin(pi * x)/x, [|0, 2, 4, 6, 8|], [|D...|], [0, 1/16]); 75ea93c538SHendrik Hübner double result = fputil::polyeval( 76ea93c538SHendrik Hübner xsq, 0x1.921fb54442d18p1, -0x1.4abbce625bbf2p2, 0x1.466bc675e116ap1, 77ea93c538SHendrik Hübner -0x1.32d2c0b62d41cp-1, 0x1.501ec4497cb7dp-4); 78ea93c538SHendrik Hübner return static_cast<float>(xd * result); 79ea93c538SHendrik Hübner } 80ea93c538SHendrik Hübner 81ea93c538SHendrik Hübner // Numbers greater or equal to 2^23 are always integers or NaN 82ea93c538SHendrik Hübner if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) { 83ea93c538SHendrik Hübner 84ea93c538SHendrik Hübner // check for NaN values 85ea93c538SHendrik Hübner if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { 86ea93c538SHendrik Hübner if (x_abs == 0x7f80'0000U) { 87ea93c538SHendrik Hübner fputil::set_errno_if_required(EDOM); 88ea93c538SHendrik Hübner fputil::raise_except_if_required(FE_INVALID); 89ea93c538SHendrik Hübner } 90ea93c538SHendrik Hübner 91ea93c538SHendrik Hübner return x + FPBits::quiet_nan().get_val(); 92ea93c538SHendrik Hübner } 93ea93c538SHendrik Hübner 94ea93c538SHendrik Hübner return FPBits::zero(xbits.sign()).get_val(); 95ea93c538SHendrik Hübner } 96ea93c538SHendrik Hübner 97ea93c538SHendrik Hübner // Combine the results with the sine of sum formula: 98ea93c538SHendrik Hübner // sin(x * pi) = sin((k + y)*pi/32) 99ea93c538SHendrik Hübner // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) 100ea93c538SHendrik Hübner // = sin_y * cos_k + (1 + cosm1_y) * sin_k 101ea93c538SHendrik Hübner // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) 102ea93c538SHendrik Hübner double sin_k, cos_k, sin_y, cosm1_y; 103ea93c538SHendrik Hübner sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y); 104ea93c538SHendrik Hübner 105ea93c538SHendrik Hübner if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0)) 106ea93c538SHendrik Hübner return FPBits::zero(xbits.sign()).get_val(); 107ea93c538SHendrik Hübner 108ea93c538SHendrik Hübner return static_cast<float>(fputil::multiply_add( 109ea93c538SHendrik Hübner sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); 110ea93c538SHendrik Hübner } 111ea93c538SHendrik Hübner 112*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 113