xref: /llvm-project/libc/src/math/generic/logf.cpp (revision 0f4b3c409fbd756d826c89d5539d9ea22bcc56aa)
1d08a801bSTue Ly //===-- Single-precision log(x) function ----------------------------------===//
2d08a801bSTue Ly //
3d08a801bSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4d08a801bSTue Ly // See https://llvm.org/LICENSE.txt for license information.
5d08a801bSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6d08a801bSTue Ly //
7d08a801bSTue Ly //===----------------------------------------------------------------------===//
8d08a801bSTue Ly 
9d08a801bSTue Ly #include "src/math/logf.h"
109e7688c7STue Ly #include "common_constants.h" // Lookup table for (1/f) and log(f)
1182df72ccSTue Ly #include "src/__support/FPUtil/FEnvImpl.h"
12d08a801bSTue Ly #include "src/__support/FPUtil/FPBits.h"
13d08a801bSTue Ly #include "src/__support/FPUtil/PolyEval.h"
14ae2d8b49STue Ly #include "src/__support/FPUtil/except_value_utils.h"
15ae2d8b49STue Ly #include "src/__support/FPUtil/multiply_add.h"
16d08a801bSTue Ly #include "src/__support/common.h"
175ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
184663d784STue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
194663d784STue Ly #include "src/__support/macros/properties/cpu_features.h"
20d08a801bSTue Ly 
2182df72ccSTue Ly // This is an algorithm for log(x) in single precision which is correctly
2282df72ccSTue Ly // rounded for all rounding modes, based on the implementation of log(x) from
2382df72ccSTue Ly // the RLIBM project at:
24d08a801bSTue Ly // https://people.cs.rutgers.edu/~sn349/rlibm
25d08a801bSTue Ly 
26d08a801bSTue Ly // Step 1 - Range reduction:
27d08a801bSTue Ly //   For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m)
28d08a801bSTue Ly //   If x is denormal, we normalize it by multiplying x by 2^23 and subtracting
29d08a801bSTue Ly //   m by 23.
30d08a801bSTue Ly 
31d08a801bSTue Ly // Step 2 - Another range reduction:
32d08a801bSTue Ly //   To compute log(1.mant), let f be the highest 8 bits including the hidden
33d08a801bSTue Ly // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the
34d08a801bSTue Ly // mantissa. Then we have the following approximation formula:
35d08a801bSTue Ly //   log(1.mant) = log(f) + log(1.mant / f)
36d08a801bSTue Ly //               = log(f) + log(1 + d/f)
37d08a801bSTue Ly //               ~ log(f) + P(d/f)
38d08a801bSTue Ly // since d/f is sufficiently small.
39d08a801bSTue Ly //   log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables.
40d08a801bSTue Ly 
41d08a801bSTue Ly // Step 3 - Polynomial approximation:
42d08a801bSTue Ly //   To compute P(d/f), we use a single degree-5 polynomial in double precision
43d08a801bSTue Ly // which provides correct rounding for all but few exception values.
44d08a801bSTue Ly //   For more detail about how this polynomial is obtained, please refer to the
45d08a801bSTue Ly // paper:
46d08a801bSTue Ly //   Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce
47d08a801bSTue Ly // Correctly Rounded Results of an Elementary Function for Multiple
48d08a801bSTue Ly // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN
49d08a801bSTue Ly // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia,
50d08a801bSTue Ly // USA, January 16-22, 2022.
51d08a801bSTue Ly // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf
52d08a801bSTue Ly 
535ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
54d08a801bSTue Ly 
55d08a801bSTue Ly LLVM_LIBC_FUNCTION(float, logf, (float x)) {
56d08a801bSTue Ly   constexpr double LOG_2 = 0x1.62e42fefa39efp-1;
57d08a801bSTue Ly   using FPBits = typename fputil::FPBits<float>;
582137894aSGuillaume Chatelet 
59d08a801bSTue Ly   FPBits xbits(x);
60ae2d8b49STue Ly   uint32_t x_u = xbits.uintval();
6182df72ccSTue Ly 
623546f4daSGuillaume Chatelet   int m = -FPBits::EXP_BIAS;
63bc8e87efSTue Ly 
64ae2d8b49STue Ly   using fputil::round_result_slightly_down;
65ae2d8b49STue Ly   using fputil::round_result_slightly_up;
66ae2d8b49STue Ly 
67bc8e87efSTue Ly   // Small inputs
68bc8e87efSTue Ly   if (x_u < 0x4c5d65a5U) {
69bc8e87efSTue Ly     // Hard-to-round cases.
70ae2d8b49STue Ly     switch (x_u) {
71bc8e87efSTue Ly     case 0x3f7f4d6fU: // x = 0x1.fe9adep-1f
72bc8e87efSTue Ly       return round_result_slightly_up(-0x1.659ec8p-9f);
73ae2d8b49STue Ly     case 0x41178febU: // x = 0x1.2f1fd6p+3f
74ae2d8b49STue Ly       return round_result_slightly_up(0x1.1fcbcep+1f);
75bc8e87efSTue Ly #ifdef LIBC_TARGET_CPU_HAS_FMA
76bc8e87efSTue Ly     case 0x3f800000U: // x = 1.0f
77bc8e87efSTue Ly       return 0.0f;
78bc8e87efSTue Ly #else
79bc8e87efSTue Ly     case 0x1e88452dU: // x = 0x1.108a5ap-66f
80bc8e87efSTue Ly       return round_result_slightly_up(-0x1.6d7b18p+5f);
81bc8e87efSTue Ly #endif // LIBC_TARGET_CPU_HAS_FMA
82bc8e87efSTue Ly     }
83bc8e87efSTue Ly     // Subnormal inputs.
846b02d2f8SGuillaume Chatelet     if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval())) {
85*0f4b3c40Slntue       if (x == 0.0f) {
86bc8e87efSTue Ly         // Return -inf and raise FE_DIVBYZERO
87bc8e87efSTue Ly         fputil::set_errno_if_required(ERANGE);
88bc8e87efSTue Ly         fputil::raise_except_if_required(FE_DIVBYZERO);
892856db0dSGuillaume Chatelet         return FPBits::inf(Sign::NEG).get_val();
90bc8e87efSTue Ly       }
91bc8e87efSTue Ly       // Normalize denormal inputs.
92d02471edSGuillaume Chatelet       xbits = FPBits(xbits.get_val() * 0x1.0p23f);
93bc8e87efSTue Ly       m -= 23;
94bc8e87efSTue Ly       x_u = xbits.uintval();
95bc8e87efSTue Ly     }
96bc8e87efSTue Ly   } else {
97bc8e87efSTue Ly     // Hard-to-round cases.
98bc8e87efSTue Ly     switch (x_u) {
99ae2d8b49STue Ly     case 0x4c5d65a5U: // x = 0x1.bacb4ap+25f
100ae2d8b49STue Ly       return round_result_slightly_down(0x1.1e0696p+4f);
101ae2d8b49STue Ly     case 0x65d890d3U: // x = 0x1.b121a6p+76f
102ae2d8b49STue Ly       return round_result_slightly_down(0x1.a9a3f2p+5f);
103ae2d8b49STue Ly     case 0x6f31a8ecU: // x = 0x1.6351d8p+95f
104ae2d8b49STue Ly       return round_result_slightly_down(0x1.08b512p+6f);
105ae2d8b49STue Ly     case 0x7a17f30aU: // x = 0x1.2fe614p+117f
106ae2d8b49STue Ly       return round_result_slightly_up(0x1.451436p+6f);
1074663d784STue Ly #ifndef LIBC_TARGET_CPU_HAS_FMA
108bc8e87efSTue Ly     case 0x500ffb03U: // x = 0x1.1ff606p+33f
109bc8e87efSTue Ly       return round_result_slightly_up(0x1.6fdd34p+4f);
110bc8e87efSTue Ly     case 0x5cd69e88U: // x = 0x1.ad3d1p+58f
111bc8e87efSTue Ly       return round_result_slightly_up(0x1.45c146p+5f);
112ae2d8b49STue Ly     case 0x5ee8984eU: // x = 0x1.d1309cp+62f;
113ae2d8b49STue Ly       return round_result_slightly_up(0x1.5c9442p+5f);
1144663d784STue Ly #endif // LIBC_TARGET_CPU_HAS_FMA
11582df72ccSTue Ly     }
116bc8e87efSTue Ly     // Exceptional inputs.
1176b02d2f8SGuillaume Chatelet     if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) {
118bc8e87efSTue Ly       if (x_u == 0x8000'0000U) {
119ae2d8b49STue Ly         // Return -inf and raise FE_DIVBYZERO
12031c39439STue Ly         fputil::set_errno_if_required(ERANGE);
12131c39439STue Ly         fputil::raise_except_if_required(FE_DIVBYZERO);
1226b02d2f8SGuillaume Chatelet         return FPBits::inf(Sign::NEG).get_val();
123d08a801bSTue Ly       }
12411ec512fSGuillaume Chatelet       if (xbits.is_neg() && !xbits.is_nan()) {
125ae2d8b49STue Ly         // Return NaN and raise FE_INVALID
12631c39439STue Ly         fputil::set_errno_if_required(EDOM);
12731c39439STue Ly         fputil::raise_except_if_required(FE_INVALID);
128ace383dfSGuillaume Chatelet         return FPBits::quiet_nan().get_val();
129d08a801bSTue Ly       }
130bc8e87efSTue Ly       // x is +inf or nan
131d08a801bSTue Ly       return x;
132d08a801bSTue Ly     }
133d08a801bSTue Ly   }
134d08a801bSTue Ly 
135bc8e87efSTue Ly #ifndef LIBC_TARGET_CPU_HAS_FMA
136bc8e87efSTue Ly   // Returning the correct +0 when x = 1.0 for non-FMA targets with FE_DOWNWARD
137bc8e87efSTue Ly   // rounding mode.
138bc8e87efSTue Ly   if (LIBC_UNLIKELY((x_u & 0x007f'ffffU) == 0))
139bc8e87efSTue Ly     return static_cast<float>(
1407b387d27SGuillaume Chatelet         static_cast<double>(m + xbits.get_biased_exponent()) * LOG_2);
141bc8e87efSTue Ly #endif // LIBC_TARGET_CPU_HAS_FMA
142bc8e87efSTue Ly 
143bc8e87efSTue Ly   uint32_t mant = xbits.get_mantissa();
144bc8e87efSTue Ly   // Extract 7 leading fractional bits of the mantissa
145bc8e87efSTue Ly   int index = mant >> 16;
146bc8e87efSTue Ly   // Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are
147bc8e87efSTue Ly   // all 1's.
148bc8e87efSTue Ly   m += static_cast<int>((x_u + (1 << 16)) >> 23);
149bc8e87efSTue Ly 
150d08a801bSTue Ly   // Set bits to 1.m
1517b387d27SGuillaume Chatelet   xbits.set_biased_exponent(0x7F);
152d08a801bSTue Ly 
1532856db0dSGuillaume Chatelet   float u = xbits.get_val();
154bc8e87efSTue Ly   double v;
155bc8e87efSTue Ly #ifdef LIBC_TARGET_CPU_HAS_FMA
156bc8e87efSTue Ly   v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact.
157bc8e87efSTue Ly #else
158bc8e87efSTue Ly   v = fputil::multiply_add(static_cast<double>(u), RD[index], -1.0); // Exact
159bc8e87efSTue Ly #endif // LIBC_TARGET_CPU_HAS_FMA
160d08a801bSTue Ly 
161bc8e87efSTue Ly   // Degree-5 polynomial approximation of log generated by Sollya with:
162bc8e87efSTue Ly   // > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]);
163bc8e87efSTue Ly   constexpr double COEFFS[4] = {-0x1.000000000fe63p-1, 0x1.555556e963c16p-2,
164bc8e87efSTue Ly                                 -0x1.000028dedf986p-2, 0x1.966681bfda7f7p-3};
165bc8e87efSTue Ly   double v2 = v * v; // Exact
166bc8e87efSTue Ly   double p2 = fputil::multiply_add(v, COEFFS[3], COEFFS[2]);
167bc8e87efSTue Ly   double p1 = fputil::multiply_add(v, COEFFS[1], COEFFS[0]);
168bc8e87efSTue Ly   double p0 = LOG_R[index] + v;
169bc8e87efSTue Ly   double r = fputil::multiply_add(static_cast<double>(m), LOG_2,
170bc8e87efSTue Ly                                   fputil::polyeval(v2, p0, p1, p2));
17182df72ccSTue Ly   return static_cast<float>(r);
172d08a801bSTue Ly }
173d08a801bSTue Ly 
1745ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
175