xref: /llvm-project/libc/src/math/generic/log1pf.cpp (revision 5ff3ff33ff930e4ec49da7910612d8a41eb068cb)
19e7688c7STue Ly //===-- Single-precision log1p(x) function --------------------------------===//
29e7688c7STue Ly //
39e7688c7STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
49e7688c7STue Ly // See https://llvm.org/LICENSE.txt for license information.
59e7688c7STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
69e7688c7STue Ly //
79e7688c7STue Ly //===----------------------------------------------------------------------===//
89e7688c7STue Ly 
99e7688c7STue Ly #include "src/math/log1pf.h"
109e7688c7STue Ly #include "common_constants.h" // Lookup table for (1/f) and log(f)
1176ec69a9STue Ly #include "src/__support/FPUtil/FEnvImpl.h"
129e7688c7STue Ly #include "src/__support/FPUtil/FMA.h"
139e7688c7STue Ly #include "src/__support/FPUtil/FPBits.h"
149e7688c7STue Ly #include "src/__support/FPUtil/PolyEval.h"
15ae2d8b49STue Ly #include "src/__support/FPUtil/except_value_utils.h"
16ae2d8b49STue Ly #include "src/__support/FPUtil/multiply_add.h"
179e7688c7STue Ly #include "src/__support/common.h"
18*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
194663d784STue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
204663d784STue Ly #include "src/__support/macros/properties/cpu_features.h"
219e7688c7STue Ly 
229e7688c7STue Ly // This is an algorithm for log10(x) in single precision which is
239e7688c7STue Ly // correctly rounded for all rounding modes.
249e7688c7STue Ly // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x)
259e7688c7STue Ly // for all rounding modes.
26ae2d8b49STue Ly // - When 2^(-6) <= |x| < 2^45, the sum (double(x) + 1.0) is exact,
279e7688c7STue Ly // so we can adapt the correctly rounded algorithm of logf to compute
289e7688c7STue Ly // log(double(x) + 1.0) correctly.  For more information about the logf
299e7688c7STue Ly // algorithm, see `libc/src/math/generic/logf.cpp`.
30ae2d8b49STue Ly // - When |x| < 2^(-6), we use a degree-8 polynomial in double precision
319e7688c7STue Ly // generated with Sollya using the following command:
32ae2d8b49STue Ly //   fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]);
339e7688c7STue Ly 
34*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
359e7688c7STue Ly 
369e7688c7STue Ly namespace internal {
379e7688c7STue Ly 
38ae2d8b49STue Ly // We don't need to treat denormal and 0
39ae2d8b49STue Ly LIBC_INLINE float log(double x) {
409e7688c7STue Ly   constexpr double LOG_2 = 0x1.62e42fefa39efp-1;
419e7688c7STue Ly 
429e7688c7STue Ly   using FPBits = typename fputil::FPBits<double>;
439e7688c7STue Ly   FPBits xbits(x);
449e7688c7STue Ly 
45ae2d8b49STue Ly   uint64_t x_u = xbits.uintval();
469e7688c7STue Ly 
476b02d2f8SGuillaume Chatelet   if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) {
4811ec512fSGuillaume Chatelet     if (xbits.is_neg() && !xbits.is_nan()) {
4931c39439STue Ly       fputil::set_errno_if_required(EDOM);
5031c39439STue Ly       fputil::raise_except_if_required(FE_INVALID);
51ace383dfSGuillaume Chatelet       return fputil::FPBits<float>::quiet_nan().get_val();
529e7688c7STue Ly     }
539e7688c7STue Ly     return static_cast<float>(x);
549e7688c7STue Ly   }
559e7688c7STue Ly 
569e7688c7STue Ly   double m = static_cast<double>(xbits.get_exponent());
579e7688c7STue Ly 
589e7688c7STue Ly   // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for
599e7688c7STue Ly   // lookup tables.
60493cc71dSGuillaume Chatelet   int f_index = static_cast<int>(xbits.get_mantissa() >>
613546f4daSGuillaume Chatelet                                  (fputil::FPBits<double>::FRACTION_LEN - 7));
629e7688c7STue Ly 
63ae2d8b49STue Ly   // Set bits to 1.m
647b387d27SGuillaume Chatelet   xbits.set_biased_exponent(0x3FF);
657e7ecef9SGuillaume Chatelet   FPBits f = xbits;
66ae2d8b49STue Ly 
679e7688c7STue Ly   // Clear the lowest 45 bits.
6824a903c4SGuillaume Chatelet   f.set_uintval(f.uintval() & ~0x0000'1FFF'FFFF'FFFFULL);
699e7688c7STue Ly 
702856db0dSGuillaume Chatelet   double d = xbits.get_val() - f.get_val();
719e7688c7STue Ly   d *= ONE_OVER_F[f_index];
729e7688c7STue Ly 
73c5f8a0a1STue Ly   double extra_factor = fputil::multiply_add(m, LOG_2, LOG_F[f_index]);
749e7688c7STue Ly 
759e7688c7STue Ly   double r = fputil::polyeval(d, extra_factor, 0x1.fffffffffffacp-1,
769e7688c7STue Ly                               -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2,
779e7688c7STue Ly                               -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3);
789e7688c7STue Ly 
799e7688c7STue Ly   return static_cast<float>(r);
809e7688c7STue Ly }
819e7688c7STue Ly 
829e7688c7STue Ly } // namespace internal
839e7688c7STue Ly 
849e7688c7STue Ly LLVM_LIBC_FUNCTION(float, log1pf, (float x)) {
859e7688c7STue Ly   using FPBits = typename fputil::FPBits<float>;
869e7688c7STue Ly   FPBits xbits(x);
87ae2d8b49STue Ly   uint32_t x_u = xbits.uintval();
88ae2d8b49STue Ly   uint32_t x_a = x_u & 0x7fff'ffffU;
899e7688c7STue Ly   double xd = static_cast<double>(x);
909e7688c7STue Ly 
91ae2d8b49STue Ly   // Use log1p(x) = log(1 + x) for |x| > 2^-6;
92ae2d8b49STue Ly   if (x_a > 0x3c80'0000U) {
939e7688c7STue Ly     // Hard-to-round cases.
94ae2d8b49STue Ly     switch (x_u) {
95ae2d8b49STue Ly     case 0x41078febU: // x = 0x1.0f1fd6p3
96ae2d8b49STue Ly       return fputil::round_result_slightly_up(0x1.1fcbcep1f);
979e7688c7STue Ly     case 0x5cd69e88U: // x = 0x1.ad3d1p+58f
98ae2d8b49STue Ly       return fputil::round_result_slightly_up(0x1.45c146p+5f);
999e7688c7STue Ly     case 0x65d890d3U: // x = 0x1.b121a6p+76f
100ae2d8b49STue Ly       return fputil::round_result_slightly_down(0x1.a9a3f2p+5f);
1019e7688c7STue Ly     case 0x6f31a8ecU: // x = 0x1.6351d8p+95f
102ae2d8b49STue Ly       return fputil::round_result_slightly_down(0x1.08b512p+6f);
1039e7688c7STue Ly     case 0x7a17f30aU: // x = 0x1.2fe614p+117f
104ae2d8b49STue Ly       return fputil::round_result_slightly_up(0x1.451436p+6f);
1059e7688c7STue Ly     case 0xbd1d20afU: // x = -0x1.3a415ep-5f
106ae2d8b49STue Ly       return fputil::round_result_slightly_up(-0x1.407112p-5f);
107ae2d8b49STue Ly     case 0xbf800000U: // x = -1.0
10831c39439STue Ly       fputil::set_errno_if_required(ERANGE);
10931c39439STue Ly       fputil::raise_except_if_required(FE_DIVBYZERO);
1102137894aSGuillaume Chatelet       return FPBits::inf(Sign::NEG).get_val();
1114663d784STue Ly #ifndef LIBC_TARGET_CPU_HAS_FMA
112ae2d8b49STue Ly     case 0x4cc1c80bU: // x = 0x1.839016p+26f
113ae2d8b49STue Ly       return fputil::round_result_slightly_down(0x1.26fc04p+4f);
114ae2d8b49STue Ly     case 0x5ee8984eU: // x = 0x1.d1309cp+62f
115ae2d8b49STue Ly       return fputil::round_result_slightly_up(0x1.5c9442p+5f);
116ae2d8b49STue Ly     case 0x665e7ca6U: // x = 0x1.bcf94cp+77f
117ae2d8b49STue Ly       return fputil::round_result_slightly_up(0x1.af66cp+5f);
118ae2d8b49STue Ly     case 0x79e7ec37U: // x = 0x1.cfd86ep+116f
119da28593dSlntue       return fputil::round_result_slightly_up(0x1.43ff6ep+6f);
1204663d784STue Ly #endif // LIBC_TARGET_CPU_HAS_FMA
1219e7688c7STue Ly     }
1229e7688c7STue Ly 
1239e7688c7STue Ly     return internal::log(xd + 1.0);
1249e7688c7STue Ly   }
1259e7688c7STue Ly 
126ae2d8b49STue Ly   // |x| <= 2^-6.
1279e7688c7STue Ly   // Hard-to round cases.
128ae2d8b49STue Ly   switch (x_u) {
1299e7688c7STue Ly   case 0x35400003U: // x = 0x1.800006p-21f
130ae2d8b49STue Ly     return fputil::round_result_slightly_down(0x1.7ffffep-21f);
1319e7688c7STue Ly   case 0x3710001bU: // x = 0x1.200036p-17f
132ae2d8b49STue Ly     return fputil::round_result_slightly_down(0x1.1fffe6p-17f);
133ae2d8b49STue Ly   case 0xb53ffffdU: // x = -0x1.7ffffap-21
134ae2d8b49STue Ly     return fputil::round_result_slightly_down(-0x1.800002p-21f);
135ae2d8b49STue Ly   case 0xb70fffe5U: // x = -0x1.1fffcap-17
136ae2d8b49STue Ly     return fputil::round_result_slightly_down(-0x1.20001ap-17f);
137ae2d8b49STue Ly   case 0xbb0ec8c4U: // x = -0x1.1d9188p-9
138ae2d8b49STue Ly     return fputil::round_result_slightly_up(-0x1.1de14ap-9f);
1399e7688c7STue Ly   }
1409e7688c7STue Ly 
141ae2d8b49STue Ly   // Polymial generated by Sollya with:
142ae2d8b49STue Ly   // > fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]);
143ae2d8b49STue Ly   const double COEFFS[7] = {-0x1.0000000000000p-1, 0x1.5555555556aadp-2,
144ae2d8b49STue Ly                             -0x1.000000000181ap-2, 0x1.999998998124ep-3,
145ae2d8b49STue Ly                             -0x1.55555452e2a2bp-3, 0x1.24adb8cde4aa7p-3,
146ae2d8b49STue Ly                             -0x1.0019db915ef6fp-3};
147ae2d8b49STue Ly 
148ae2d8b49STue Ly   double xsq = xd * xd;
149ae2d8b49STue Ly   double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
150ae2d8b49STue Ly   double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
151ae2d8b49STue Ly   double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
152ae2d8b49STue Ly   double r = fputil::polyeval(xsq, xd, c0, c1, c2, COEFFS[6]);
153ae2d8b49STue Ly 
1547d11a592SAlex Brachet   return static_cast<float>(r);
1559e7688c7STue Ly }
1569e7688c7STue Ly 
157*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
158