1e581841eSTue Ly //===-- Single-precision log10(x) function --------------------------------===// 2e581841eSTue Ly // 3e581841eSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e581841eSTue Ly // See https://llvm.org/LICENSE.txt for license information. 5e581841eSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e581841eSTue Ly // 7e581841eSTue Ly //===----------------------------------------------------------------------===// 8e581841eSTue Ly 9e581841eSTue Ly #include "src/math/log10f.h" 10e581841eSTue Ly #include "common_constants.h" // Lookup table for (1/f) 1176ec69a9STue Ly #include "src/__support/FPUtil/FEnvImpl.h" 12e581841eSTue Ly #include "src/__support/FPUtil/FMA.h" 13e581841eSTue Ly #include "src/__support/FPUtil/FPBits.h" 14e581841eSTue Ly #include "src/__support/FPUtil/PolyEval.h" 15ae2d8b49STue Ly #include "src/__support/FPUtil/except_value_utils.h" 16ae2d8b49STue Ly #include "src/__support/FPUtil/multiply_add.h" 17e581841eSTue Ly #include "src/__support/common.h" 185ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 194663d784STue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 204663d784STue Ly #include "src/__support/macros/properties/cpu_features.h" 21e581841eSTue Ly 22e581841eSTue Ly // This is an algorithm for log10(x) in single precision which is 23e581841eSTue Ly // correctly rounded for all rounding modes, based on the implementation of 24e581841eSTue Ly // log10(x) from the RLIBM project at: 25e581841eSTue Ly // https://people.cs.rutgers.edu/~sn349/rlibm 26e581841eSTue Ly 27e581841eSTue Ly // Step 1 - Range reduction: 28e581841eSTue Ly // For x = 2^m * 1.mant, log(x) = m * log10(2) + log10(1.m) 29e581841eSTue Ly // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting 30e581841eSTue Ly // m by 23. 31e581841eSTue Ly 32e581841eSTue Ly // Step 2 - Another range reduction: 33e581841eSTue Ly // To compute log(1.mant), let f be the highest 8 bits including the hidden 34e581841eSTue Ly // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the 35e581841eSTue Ly // mantissa. Then we have the following approximation formula: 36e581841eSTue Ly // log10(1.mant) = log10(f) + log10(1.mant / f) 37e581841eSTue Ly // = log10(f) + log10(1 + d/f) 38e581841eSTue Ly // ~ log10(f) + P(d/f) 39e581841eSTue Ly // since d/f is sufficiently small. 40e581841eSTue Ly // log10(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. 41e581841eSTue Ly 42e581841eSTue Ly // Step 3 - Polynomial approximation: 43e581841eSTue Ly // To compute P(d/f), we use a single degree-5 polynomial in double precision 44e581841eSTue Ly // which provides correct rounding for all but few exception values. 45e581841eSTue Ly // For more detail about how this polynomial is obtained, please refer to the 46e581841eSTue Ly // papers: 47e581841eSTue Ly // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce 48e581841eSTue Ly // Correctly Rounded Results of an Elementary Function for Multiple 49e581841eSTue Ly // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN 50e581841eSTue Ly // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, 51e581841eSTue Ly // USA, Jan. 16-22, 2022. 52e581841eSTue Ly // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf 53e581841eSTue Ly // Aanjaneya, M., Lim, J., and Nagarakatte, S., "RLibm-Prog: Progressive 54e581841eSTue Ly // Polynomial Approximations for Fast Correctly Rounded Math Libraries", 55e581841eSTue Ly // Dept. of Comp. Sci., Rutgets U., Technical Report DCS-TR-758, Nov. 2021. 56e581841eSTue Ly // https://arxiv.org/pdf/2111.12852.pdf. 57e581841eSTue Ly 585ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 59e581841eSTue Ly 609af8dca7STue Ly // Lookup table for -log10(r) where r is defined in common_constants.cpp. 619af8dca7STue Ly static constexpr double LOG10_R[128] = { 629af8dca7STue Ly 0x0.0000000000000p+0, 0x1.be76bd77b4fc3p-9, 0x1.c03a80ae5e054p-8, 639af8dca7STue Ly 0x1.51824c7587ebp-7, 0x1.c3d0837784c41p-7, 0x1.1b85d6044e9aep-6, 649af8dca7STue Ly 0x1.559bd2406c3bap-6, 0x1.902c31d62a843p-6, 0x1.cb38fccd8bfdbp-6, 659af8dca7STue Ly 0x1.e8eeb09f2f6cbp-6, 0x1.125d0432ea20ep-5, 0x1.30838cdc2fbfdp-5, 669af8dca7STue Ly 0x1.3faf7c663060ep-5, 0x1.5e3966b7e9295p-5, 0x1.7d070145f4fd7p-5, 679af8dca7STue Ly 0x1.8c878eeb05074p-5, 0x1.abbcebd84fcap-5, 0x1.bb7209d1e24e5p-5, 689af8dca7STue Ly 0x1.db11ed766abf4p-5, 0x1.eafd05035bd3bp-5, 0x1.0585283764178p-4, 699af8dca7STue Ly 0x1.0d966cc6500fap-4, 0x1.1dd5460c8b16fp-4, 0x1.2603072a25f82p-4, 709af8dca7STue Ly 0x1.367ba3aaa1883p-4, 0x1.3ec6ad5407868p-4, 0x1.4f7aad9bbcbafp-4, 719af8dca7STue Ly 0x1.57e3d47c3af7bp-4, 0x1.605735ee985f1p-4, 0x1.715d0ce367afcp-4, 729af8dca7STue Ly 0x1.79efb57b0f803p-4, 0x1.828cfed29a215p-4, 0x1.93e7de0fc3e8p-4, 739af8dca7STue Ly 0x1.9ca5aa1729f45p-4, 0x1.a56e8325f5c87p-4, 0x1.ae4285509950bp-4, 749af8dca7STue Ly 0x1.b721cd17157e3p-4, 0x1.c902a19e65111p-4, 0x1.d204698cb42bdp-4, 759af8dca7STue Ly 0x1.db11ed766abf4p-4, 0x1.e42b4c16caaf3p-4, 0x1.ed50a4a26eafcp-4, 769af8dca7STue Ly 0x1.ffbfc2bbc7803p-4, 0x1.0484e4942aa43p-3, 0x1.093025a19976cp-3, 779af8dca7STue Ly 0x1.0de1b56356b04p-3, 0x1.1299a4fb3e306p-3, 0x1.175805d1587c1p-3, 789af8dca7STue Ly 0x1.1c1ce9955c0c6p-3, 0x1.20e8624038fedp-3, 0x1.25ba8215af7fcp-3, 799af8dca7STue Ly 0x1.2a935ba5f1479p-3, 0x1.2f7301cf4e87bp-3, 0x1.345987bfeea91p-3, 809af8dca7STue Ly 0x1.394700f7953fdp-3, 0x1.3e3b8149739d4p-3, 0x1.43371cde076c2p-3, 819af8dca7STue Ly 0x1.4839e83506c87p-3, 0x1.4d43f8275a483p-3, 0x1.525561e9256eep-3, 829af8dca7STue Ly 0x1.576e3b0bde0a7p-3, 0x1.5c8e998072fe2p-3, 0x1.61b6939983048p-3, 839af8dca7STue Ly 0x1.66e6400da3f77p-3, 0x1.6c1db5f9bb336p-3, 0x1.6c1db5f9bb336p-3, 849af8dca7STue Ly 0x1.715d0ce367afcp-3, 0x1.76a45cbb7e6ffp-3, 0x1.7bf3bde099f3p-3, 859af8dca7STue Ly 0x1.814b4921bd52bp-3, 0x1.86ab17c10bc7fp-3, 0x1.86ab17c10bc7fp-3, 869af8dca7STue Ly 0x1.8c13437695532p-3, 0x1.9183e673394fap-3, 0x1.96fd1b639fc09p-3, 879af8dca7STue Ly 0x1.9c7efd734a2f9p-3, 0x1.a209a84fbcff8p-3, 0x1.a209a84fbcff8p-3, 889af8dca7STue Ly 0x1.a79d382bc21d9p-3, 0x1.ad39c9c2c608p-3, 0x1.b2df7a5c50299p-3, 899af8dca7STue Ly 0x1.b2df7a5c50299p-3, 0x1.b88e67cf9798p-3, 0x1.be46b087354bcp-3, 909af8dca7STue Ly 0x1.c4087384f4f8p-3, 0x1.c4087384f4f8p-3, 0x1.c9d3d065c5b42p-3, 919af8dca7STue Ly 0x1.cfa8e765cbb72p-3, 0x1.cfa8e765cbb72p-3, 0x1.d587d96494759p-3, 929af8dca7STue Ly 0x1.db70c7e96e7f3p-3, 0x1.db70c7e96e7f3p-3, 0x1.e163d527e68cfp-3, 939af8dca7STue Ly 0x1.e76124046b3f3p-3, 0x1.e76124046b3f3p-3, 0x1.ed68d819191fcp-3, 949af8dca7STue Ly 0x1.f37b15bab08d1p-3, 0x1.f37b15bab08d1p-3, 0x1.f99801fdb749dp-3, 959af8dca7STue Ly 0x1.ffbfc2bbc7803p-3, 0x1.ffbfc2bbc7803p-3, 0x1.02f93f4c87101p-2, 969af8dca7STue Ly 0x1.06182e84fd4acp-2, 0x1.06182e84fd4acp-2, 0x1.093cc32c90f84p-2, 979af8dca7STue Ly 0x1.093cc32c90f84p-2, 0x1.0c6711d6abd7ap-2, 0x1.0f972f87ff3d6p-2, 989af8dca7STue Ly 0x1.0f972f87ff3d6p-2, 0x1.12cd31b9c99ffp-2, 0x1.12cd31b9c99ffp-2, 999af8dca7STue Ly 0x1.16092e5d3a9a6p-2, 0x1.194b3bdef6b9ep-2, 0x1.194b3bdef6b9ep-2, 1009af8dca7STue Ly 0x1.1c93712abc7ffp-2, 0x1.1c93712abc7ffp-2, 0x1.1fe1e5af2c141p-2, 1019af8dca7STue Ly 0x1.1fe1e5af2c141p-2, 0x1.2336b161b3337p-2, 0x1.2336b161b3337p-2, 1029af8dca7STue Ly 0x1.2691ecc29f042p-2, 0x1.2691ecc29f042p-2, 0x1.29f3b0e15584bp-2, 1039af8dca7STue Ly 0x1.29f3b0e15584bp-2, 0x1.2d5c1760b86bbp-2, 0x1.2d5c1760b86bbp-2, 1049af8dca7STue Ly 0x1.30cb3a7bb3625p-2, 0x1.34413509f79ffp-2}; 105e581841eSTue Ly 106e581841eSTue Ly LLVM_LIBC_FUNCTION(float, log10f, (float x)) { 107e581841eSTue Ly constexpr double LOG10_2 = 0x1.34413509f79ffp-2; 108e581841eSTue Ly 109e581841eSTue Ly using FPBits = typename fputil::FPBits<float>; 1102137894aSGuillaume Chatelet 111e581841eSTue Ly FPBits xbits(x); 112ae2d8b49STue Ly uint32_t x_u = xbits.uintval(); 113e581841eSTue Ly 114e581841eSTue Ly // Exact powers of 10 and other hard-to-round cases. 1159af8dca7STue Ly if (LIBC_UNLIKELY((x_u & 0x3FF) == 0)) { 116ae2d8b49STue Ly switch (x_u) { 1179af8dca7STue Ly case 0x3f80'0000U: // x = 1 1189af8dca7STue Ly return 0.0f; 119e581841eSTue Ly case 0x4120'0000U: // x = 10 120e581841eSTue Ly return 1.0f; 121e581841eSTue Ly case 0x42c8'0000U: // x = 100 122e581841eSTue Ly return 2.0f; 123e581841eSTue Ly case 0x447a'0000U: // x = 1,000 124e581841eSTue Ly return 3.0f; 125e581841eSTue Ly case 0x461c'4000U: // x = 10,000 126e581841eSTue Ly return 4.0f; 127e581841eSTue Ly case 0x47c3'5000U: // x = 100,000 128e581841eSTue Ly return 5.0f; 129e581841eSTue Ly case 0x4974'2400U: // x = 1,000,000 130e581841eSTue Ly return 6.0f; 1319af8dca7STue Ly } 1329af8dca7STue Ly } else { 1339af8dca7STue Ly switch (x_u) { 134e581841eSTue Ly case 0x4b18'9680U: // x = 10,000,000 135e581841eSTue Ly return 7.0f; 136e581841eSTue Ly case 0x4cbe'bc20U: // x = 100,000,000 137e581841eSTue Ly return 8.0f; 138e581841eSTue Ly case 0x4e6e'6b28U: // x = 1,000,000,000 139e581841eSTue Ly return 9.0f; 140e581841eSTue Ly case 0x5015'02f9U: // x = 10,000,000,000 141e581841eSTue Ly return 10.0f; 1429af8dca7STue Ly case 0x0efe'ee7aU: // x = 0x1.fddcf4p-98f 1439af8dca7STue Ly return fputil::round_result_slightly_up(-0x1.d33a46p+4f); 1449af8dca7STue Ly case 0x3f5f'de1bU: // x = 0x1.bfbc36p-1f 1459af8dca7STue Ly return fputil::round_result_slightly_up(-0x1.dd2c6ep-5f); 1469af8dca7STue Ly case 0x3f80'70d8U: // x = 0x1.00e1bp0f 1479af8dca7STue Ly return fputil::round_result_slightly_up(0x1.8762c4p-10f); 1489af8dca7STue Ly #ifndef LIBC_TARGET_CPU_HAS_FMA 1499af8dca7STue Ly case 0x08ae'a356U: // x = 0x1.5d46acp-110f 1509af8dca7STue Ly return fputil::round_result_slightly_up(-0x1.07d3b4p+5f); 1519af8dca7STue Ly case 0x120b'93dcU: // x = 0x1.1727b8p-91f 1529af8dca7STue Ly return fputil::round_result_slightly_down(-0x1.b5b2aep+4f); 1539af8dca7STue Ly case 0x13ae'78d3U: // x = 0x1.5cf1a6p-88f 1549af8dca7STue Ly return fputil::round_result_slightly_down(-0x1.a5b2aep+4f); 155e581841eSTue Ly case 0x4f13'4f83U: // x = 2471461632.0 156ae2d8b49STue Ly return fputil::round_result_slightly_down(0x1.2c9314p+3f); 157ae2d8b49STue Ly case 0x7956'ba5eU: // x = 69683218960000541503257137270226944.0 158ae2d8b49STue Ly return fputil::round_result_slightly_up(0x1.16bebap+5f); 1594663d784STue Ly #endif // LIBC_TARGET_CPU_HAS_FMA 160e581841eSTue Ly } 1619af8dca7STue Ly } 162e581841eSTue Ly 1633546f4daSGuillaume Chatelet int m = -FPBits::EXP_BIAS; 164ae2d8b49STue Ly 1656b02d2f8SGuillaume Chatelet if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval() || 1666b02d2f8SGuillaume Chatelet x_u > FPBits::max_normal().uintval())) { 167*0f4b3c40Slntue if (x == 0.0f) { 168ae2d8b49STue Ly // Return -inf and raise FE_DIVBYZERO 16931c39439STue Ly fputil::set_errno_if_required(ERANGE); 17031c39439STue Ly fputil::raise_except_if_required(FE_DIVBYZERO); 1716b02d2f8SGuillaume Chatelet return FPBits::inf(Sign::NEG).get_val(); 172e581841eSTue Ly } 17311ec512fSGuillaume Chatelet if (xbits.is_neg() && !xbits.is_nan()) { 174ae2d8b49STue Ly // Return NaN and raise FE_INVALID 17531c39439STue Ly fputil::set_errno_if_required(EDOM); 17631c39439STue Ly fputil::raise_except_if_required(FE_INVALID); 177ace383dfSGuillaume Chatelet return FPBits::quiet_nan().get_val(); 178e581841eSTue Ly } 179e581841eSTue Ly if (xbits.is_inf_or_nan()) { 180e581841eSTue Ly return x; 181e581841eSTue Ly } 182e581841eSTue Ly // Normalize denormal inputs. 183d02471edSGuillaume Chatelet xbits = FPBits(xbits.get_val() * 0x1.0p23f); 184ae2d8b49STue Ly m -= 23; 1859af8dca7STue Ly x_u = xbits.uintval(); 186e581841eSTue Ly } 187e581841eSTue Ly 1889af8dca7STue Ly // Add unbiased exponent. 1899af8dca7STue Ly m += static_cast<int>(x_u >> 23); 1909af8dca7STue Ly // Extract 7 leading fractional bits of the mantissa 1919af8dca7STue Ly int index = (x_u >> 16) & 0x7F; 192e581841eSTue Ly // Set bits to 1.m 1937b387d27SGuillaume Chatelet xbits.set_biased_exponent(0x7F); 194e581841eSTue Ly 1952856db0dSGuillaume Chatelet float u = xbits.get_val(); 1969af8dca7STue Ly double v; 1979af8dca7STue Ly #ifdef LIBC_TARGET_CPU_HAS_FMA 1989af8dca7STue Ly v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact. 1999af8dca7STue Ly #else 2009af8dca7STue Ly v = fputil::multiply_add(static_cast<double>(u), 2019af8dca7STue Ly static_cast<double>(R[index]), -1.0); // Exact 2029af8dca7STue Ly #endif // LIBC_TARGET_CPU_HAS_FMA 203e581841eSTue Ly 2049af8dca7STue Ly // Degree-5 polynomial approximation of log10 generated by: 2059af8dca7STue Ly // > P = fpminimax(log10(1 + x)/x, 4, [|D...|], [-2^-8, 2^-7]); 2069af8dca7STue Ly constexpr double COEFFS[5] = {0x1.bcb7b1526e2e5p-2, -0x1.bcb7b1528d43dp-3, 2079af8dca7STue Ly 0x1.287a77eb4ca0dp-3, -0x1.bcb8110a181b5p-4, 2089af8dca7STue Ly 0x1.60e7e3e747129p-4}; 2099af8dca7STue Ly double v2 = v * v; // Exact 2109af8dca7STue Ly double p2 = fputil::multiply_add(v, COEFFS[4], COEFFS[3]); 2119af8dca7STue Ly double p1 = fputil::multiply_add(v, COEFFS[2], COEFFS[1]); 2129af8dca7STue Ly double p0 = fputil::multiply_add(v, COEFFS[0], LOG10_R[index]); 2139af8dca7STue Ly double r = fputil::multiply_add(static_cast<double>(m), LOG10_2, 2149af8dca7STue Ly fputil::polyeval(v2, p0, p1, p2)); 215e581841eSTue Ly 216e581841eSTue Ly return static_cast<float>(r); 217e581841eSTue Ly } 218e581841eSTue Ly 2195ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 220